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Abstract

Extending work of Klyachko and Perling, we develop a combinatorial description of
pure equivariant sheaves of any dimension on an arbitrary nonsingular toric variety X.
Using GIT, this allows us to construct explicit moduli spaces of pure equivariant sheaves
on X corepresenting natural moduli functors (similar to work of Payne in the case of
equivariant vector bundles). The action of the algebraic torus on X lifts to the moduli
space of all Gieseker stable sheaves on X and we express its fixed point locus explicitly in
terms of moduli spaces of pure equivariant sheaves on X. One of the problems arising is
to find an equivariant line bundle on the side of the GIT problem, which precisely recovers
Gieseker stability. In the case of torsion free equivariant sheaves, we can always construct
such equivariant line bundles. As a by-product, we get a combinatorial description of
the fixed point locus of the moduli space of µ-stable reflexive sheaves on X.

As an application, we study generating functions of Euler characteristics of moduli
spaces of µ-stable torsion free sheaves on X, where X is in addition a surface. We obtain
a general expression for such generating functions in terms of Euler characteristics of
moduli spaces of stable configurations of linear subspaces. The expression holds for any
choice of X, ample divisor, rank and first Chern class. It can be further simplified in
examples, which allows us to compute some new and known generating functions (due
to Göttsche, Klyachko and Yoshioka). In general, these generating functions depend on
choice of stability condition, enabling us to study wall-crossing phenomena and relate to
work of Göttsche and Joyce. As another application, we compute some Euler character-
istics of moduli spaces of µ-stable pure dimension 1 sheaves on P2. These can be seen as
genus zero Gopakumar–Vafa invariants of KP2 by a general conjecture of Katz.





Contents

Preface 7

1 Fixed Point Loci of Moduli Spaces of Sheaves on Toric Varieties 13

1.1 Pure Equivariant Sheaves on Toric Varieties . . . . . . . . . . . . . . . . 16

1.1.1 Combinatorial Descriptions in the Case of Irreducible Support . . 22

1.1.2 Combinatorial Descriptions in the General Case . . . . . . . . . . 28

1.2 Moduli Spaces of Equivariant Sheaves on Toric Varieties . . . . . . . . . 32

1.2.1 Moduli Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.2.2 Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2.3 GIT Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.2.4 Chern Characters of Equivariant Sheaves on Toric Varieties . . . . 47

1.2.5 Matching Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.3 Fixed Point Loci of Moduli Spaces of Sheaves on Toric Varieties . . . . . 72

1.3.1 Torus Actions on Moduli Spaces of Sheaves on Toric Varieties . . 72

1.3.2 Equivariant versus Invariant . . . . . . . . . . . . . . . . . . . . . 77

1.3.3 Combinatorial Description of the Fixed Point Loci (Ms
P )T . . . . 81

1.3.4 Fixed Point Loci of Moduli Spaces of Reflexive Sheaves on Toric

Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2 Euler Characteristics of Moduli Spaces of Sheaves on Toric Surfaces 99

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.1.1 Motivic Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5



2.1.2 The Case P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.2 Euler Characteristics of Moduli Spaces of Torsion Free Sheaves on Toric

Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.2.1 Chern Characters of Torsion Free Equivariant Sheaves on Toric

Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2.2.2 Vector Bundles on Toric Surfaces . . . . . . . . . . . . . . . . . . 111

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2.3.1 Rank 1 on Toric Surfaces . . . . . . . . . . . . . . . . . . . . . . . 119

2.3.2 Rank 2 on P2, Fa . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.3.2.1 Rank 2 on P2 . . . . . . . . . . . . . . . . . . . . . . . . 120

2.3.2.2 Rank 2 on Fa . . . . . . . . . . . . . . . . . . . . . . . . 124

2.3.2.3 Wall-Crossing for Rank 2 on Fa . . . . . . . . . . . . . . 133

2.3.3 Rank 3 on P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2.4 Euler Characteristics of Moduli Spaces of Pure Dimension 1 Sheaves on P2 146

2.5 Application to Donaldson–Thomas Invariants . . . . . . . . . . . . . . . 157

2.5.1 Generalised Donaldson–Thomas Invariants . . . . . . . . . . . . . 157

2.5.2 Some Generating Functions of Donaldson–Thomas Invariants . . . 163

Bibliography 176

6



Preface

One of the great successes of algebraic geometry is its capability of constructing moduli

spaces of geometric objects. Whenever one studies a specific type of geometric objects,

such as certain varieties, schemes, morphisms, vector bundles, sheaves et cetera, one

considers the set of isomorphism classes of such geometric objects and one would like

to put a “natural” geometric structure on this set. Such a problem is called a moduli

problem and a solution to it is called a moduli space of the type of geometric objects

under consideration. “Natural” means one should have a notion of families of the kind of

geometric objects under consideration and the geometric structure should be compatible

with this notion. This leads to the elegant concepts of fine and coarse moduli spaces.

Grothendieck’s Quot scheme provides a powerful tool for constructing fine moduli spaces

for certain moduli problems. Unfortunately, many moduli problems do not have fine

moduli spaces. However, using in addition tools from geometric invariant theory (GIT),

one can often construct coarse moduli spaces for a moduli problem. These techniques

have become classical in algebraic geometry. The moduli spaces constructed by these

methods are schemes. A more modern viewpoint is to construct moduli spaces as stacks.

In this case, the moduli spaces remember the automorphism groups of the geometric

objects under consideration. Moduli spaces of geometric objects tend to be unwieldy. A

moduli space is said to satisfy Murphy’s Law when any singularity type of finite type over

Z appears on it. As Vakil has shown [Vak], many known moduli spaces satisfy Murphy’s

Law, even for moduli problems of perfectly normal types of geometric objects such as

nonsingular curves in projective space, smooth surfaces with very ample canonical bundle
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and Gieseker stable sheaves. Our main interest is in the moduli space of Gieseker stable

sheaves.

Another great feature of algebraic geometry is its capability of dealing with explicit

examples. Important results in modern day high-energy physics, in particular string

theory, have been established by means of explicit computations in algebraic geometry.

String theory is currently the most promising attempt to unite general relativity and the

standard model. Quantising the fundamental building blocks of string theory, i.e. strings

as opposed to point particles, requires a spacetime with more than the four conventional

dimensions. In one popular version, anomalies of the superconformal algebra cancel in

the case spacetime is the product of a conventional four-dimensional spacetime and a

six-dimensional space having the structure of a Calabi–Yau threefold. String theory

has led to many discoveries about Calabi–Yau threefolds such as Mirror Symmetry.

Mirror Symmetry suggests that for (many) Calabi–Yau threefolds X, there should exist

a mirror Calabi–Yau threefold X◦ such that X and X◦ have the same superconformal

field theory. Hence, geometrically very different Calabi–Yau threefolds can give rise

to the same physical reality. Mathematically, this implies that for (many) Calabi–Yau

threefolds X, there should exist a mirror Calabi–Yau threefold X◦ such that their Hodge

diamonds are related by hp,q(X) = h3−p,q(X◦). Evidence for this consequence has been

established by considering large numbers of examples of Calabi–Yau threefolds coming

from constructions in toric geometry [CK, Ch. 4]. In fact, toric geometry has provided

an important laboratory for testing many deep predictions of string theory in specific

examples.

The easiest example of an algebraic variety is affine space. Projective space can be

seen as a particular way of gluing several affine spaces together. Toric geometry in some

sense generalises this procedure. One starts with a finite amount of combinatorial data,

i.e. a fan in a lattice, and this data gives you a recipe for gluing several copies of affine

space together (in the nonsingular case). The resulting varieties are called toric varieties

and come equipped with the regular action of an algebraic torus. Many topological and
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geometric properties of toric varieties are determined in a purely combinatorial way by

their fan and lattice. This makes toric varieties very combinatorial objects suitable for

explicit computations. Although the collection of toric varieties should not be considered

representative of the collection of all algebraic varieties, e.g. toric varieties are always

rational, they provide a perfect testing ground for studying complicated questions in

algebraic geometry. In addition, their explicit nature makes them attractive to physicists,

who often want to do explicit computations.

The central objects of study of this thesis are moduli spaces of Gieseker stable sheaves

on nonsingular projective toric varieties. Along the way we will also study moduli spaces

of µ-stable reflexive sheaves on nonsingular projective toric varieties. The regular action

of the algebraic torus lifts to these moduli spaces and one of our main goals is to give

a combinatorial description of the fixed point loci of these moduli spaces. Extending

work of Klyachko [Kly1], [Kly2], [Kly3], [Kly4] and Perling [Per1], [Per2], we develop a

combinatorial description of pure equivariant sheaves on an arbitrary nonsingular toric

variety X. Using GIT and this combinatorial description, we construct explicit coarse

moduli spaces of pure equivariant sheaves on X corepresenting natural moduli functors

(similar to techniques used in the case of equivariant vector bundles by Payne [Pay]).

We show how the fixed point locus of the moduli space of all Gieseker stable sheaves on

X can be expressed in terms of the explicit moduli spaces of pure equivariant sheaves

on X. One of the problems arising is to find an equivariant line bundle on the side of

the GIT problem, which precisely recovers Gieseker stability. In the case of torsion free

equivariant sheaves, we construct ample equivariant line bundles with this property. As

a by-product, we construct particularly simple ample equivariant line bundles recovering

µ-stability for reflexive equivariant sheaves and give a combinatorial description of the

fixed point locus of the moduli space of µ-stable reflexive sheaves on X. These form the

topics of the first chapter1.

Explicit knowledge about moduli spaces of geometric objects can be important for

computing invariants associated to the moduli space. An interesting example is to com-

1Most of the material of chapter 1 can be found in [Koo1].

9



pute motivic invariants such as the virtual Hodge polynomial, the virtual Poincaré poly-

nomial or the Euler characteristic of a moduli space. These invariants give information

about the topology of the moduli space, although they are in general not invariant under

deformations of the underlying algebraic variety on which the geometric objects live.

Another important example are the generalised Donaldson–Thomas invariants and BPS

invariants of a Calabi–Yau threefold X as recently introduced by Joyce and Song [JS].

They are constructed using moduli spaces of Gieseker or µ-semistable sheaves on X (re-

alised as Artin stacks). Generalised Donaldson–Thomas invariants and BPS invariants

are invariant under deformations of X and therefore provide deep geometric invariants

relevant to both mathematics and physics. In string theory, B-branes on X correspond-

ing to BPS states are described by (semi)stable coherent sheaves on X. Intuitively, BPS

invariants of X count the number of such states on X and therefore are conjectured to

be integers. This is known as the Integrality Conjecture for BPS invariants. In general,

moduli spaces of Gieseker semistable sheaves depend on a choice of ample line bundle on

the underlying algebraic variety on which the sheaves live. I.e. they depend on a choice

of stability condition. As a consequence, motivic and geometric invariants associated to

them also depend on this choice of stability condition. Variations of the stability condi-

tion leads to nice wall-crossing formulae. Generating functions of motivic and geometric

invariants are often expected and sometimes known to have interesting modular prop-

erties. These modular properties are predicted by string theory. For example, roughly,

the S-Duality Conjecture predicts certain generating functions of Euler characteristics of

moduli spaces of sheaves on surfaces to be modular forms.

Localisation is an important method for computing motivic and geometric invariants

in the case the underlying algebraic variety on which the geometric objects live is toric.

Morally, one should be able to use the torus action to reduce the computation to a

problem involving the fixed point locus. For example, the Euler characteristic of a quasi-

projective variety with regular action of an algebraic torus is just the Euler characteristic

of the fixed point locus. As an application of the combinatorial description of fixed point
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loci of moduli spaces of sheaves on toric varieties derived in chapter 1, we study generating

functions of Euler characteristics of moduli spaces of µ-stable torsion free sheaves on

nonsingular complete toric surfaces. We express such a generating function in terms of

Euler characteristics of moduli spaces of stable configurations of linear subspaces. The

expression holds for any choice of nonsingular complete toric surface, ample divisor, rank

and first Chern class. The expression can be further simplified in examples. In the rank

1 case, we recover a well-known result derived for general nonsingular projective surfaces

by Göttsche [Got1]. In the rank 2 case on the projective plane P2, we compare our

result to work of Klyachko [Kly4] and Yoshioka [Yos]. In the rank 2 case on P1 × P1

or any Hirzebruch surface Fa (a ∈ Z≥1), we find a formula with explicit dependence

on choice of stability condition, which allows us to study wall-crossing phenomena. We

compare our expression to results by Göttsche [Got2] and Joyce [Joy2] and perform

various consistency checks. In the rank 3 case on the projective plane P2, we obtain

an explicit but complicated expression, which allows for numerical computations. The

general combinatorial description of fixed point loci of moduli spaces of sheaves on toric

varieties of chapter 1 is more widely applicable. We will discuss examples of computations

of generating functions of Euler characteristics of moduli spaces of pure dimension 1

sheaves on the projective plane P2. These Euler characteristics can be seen as genus zero

Gopakumar–Vafa invariants of the canonical bundle KP2 by a general conjecture of Katz

[Kat]. Our examples are consistent with Katz’ Conjecture. These form the topics of the

second chapter2.
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Chapter 1

Fixed Point Loci of Moduli Spaces

of Sheaves on Toric Varieties

Vakil has shown that the moduli space of Gieseker stable sheaves satisfies Murphy’s Law,

meaning every singularity type of finite type over Z appears on the moduli space [Vak].

Hence the moduli space Ms
P of Gieseker stable sheaves with Hilbert polynomial P on a

projective variety X with ample line bundle OX(1) can become very complicated. Now

assume X is a nonsingular projective toric variety with torus T . We can lift the action

of T on X to an action of T on the moduli space Ms
P . One of the goals of this chapter

is to find a combinatorial description of the fixed point locus (Ms
P )T using techniques of

toric geometry.

Klyachko has given a combinatorial description of equivariant vector bundles and,

more generally, reflexive equivariant and torsion free equivariant sheaves on a nonsingular

toric variety [Kly1], [Kly2], [Kly3], [Kly4]. This description gives a relatively easy way to

compute Chern characters and sheaf cohomology of such sheaves. Klyachko’s work has

been reconsidered and extended by Knutson and Sharpe in [KS1], [KS2]. They sketch

how his combinatorial description can be used to construct moduli spaces of equivariant

vector bundles and reflexive equivariant sheaves. Perling has given a general description

of equivariant quasi-coherent sheaves on toric varieties in [Per1], [Per2]. He gives a
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detailed study of the moduli space of rank 2 equivariant vector bundles on nonsingular

toric surfaces in [Per3]. A systematic construction of the moduli spaces of equivariant

vector bundles on toric varieties has been given by Payne [Pay]. He considers families

of equivariant vector bundles on toric varieties and shows the moduli space of rank 3

equivariant vector bundles on toric varieties satisfies Murphy’s Law.

In the current chapter, we will present a combinatorial description of pure equivariant

sheaves on nonsingular toric varieties (Theorem 1.1.12), generalising the known combina-

torial description of torsion free equivariant sheaves due to Klyachko [Kly4]. Using this

combinatorial description, we construct coarse moduli spaces of pure equivariant sheaves

on nonsingular projective toric varieties (Theorem 1.2.13), corepresenting natural mod-

uli functors. For this, we develop an explicit description of families of pure equivariant

sheaves on nonsingular projective toric varieties (Theorem 1.2.9), analogous to Payne’s

description in the case of families of equivariant vector bundles [Pay]. The moduli spaces

of pure equivariant sheaves on nonsingular projective toric varieties are constructed us-

ing GIT. It is important to note that these moduli spaces are explicit and combinatorial

in nature, which makes them suitable for computations. We are interested in the case

where GIT stability coincides with Gieseker stability, which is the natural notion of sta-

bility for coherent sheaves. Consequently, we would like the existence of an equivariant

line bundle in the GIT problem, which precisely recovers Gieseker stability. In the case

of reflexive equivariant sheaves and µ-stability, some aspects of this issue are discussed

in [KS1], [KS2] and [Kly4]. We construct ample equivariant line bundles matching GIT

and Gieseker stability for torsion free equivariant sheaves in general (Theorem 1.2.22).

Subsequently, we consider the moduli space Ms
P of all Gieseker stable sheaves with (arbi-

trary) fixed Hilbert polynomial P on a nonsingular projective toric variety X with torus

T and ample line bundle OX(1). We lift the action of the torus T to Ms
P , describe the

closed points of the fixed point locus (Ms
P )T and study the difference between invariant

and equivariant simple sheaves. We study deformation theoretic aspects of equivariant

sheaves and describe the fixed point locus (Ms
P )T in terms of moduli spaces of pure

equivariant sheaves on X.
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Theorem 1.0.1 (Corollary 1.3.10). Let X be a nonsingular projective toric variety. Let

OX(1) be an ample line bundle on X and let P be a choice of Hilbert polynomial of degree

dim(X). Then there is a canonical isomorphism

(Ms
P )T ∼=

∐

~χ∈(X 0
P )

gf

M0,s
~χ .

Here the right hand side of the equation is a disjoint union of moduli spaces of torsion

free equivariant sheaves on X. It is important to note that the moduli spaces on the

right hand side are explicit and combinatorial in nature and their construction is very

different from the construction of Ms
P , which makes use of Quot schemes and requires

boundedness results [HL, Ch. 1–4]. The theorem gives us a combinatorial description

of (Ms
P )T . Explicit knowledge of (Ms

P )T is useful for computing invariants associated

to Ms
P , e.g. the Euler characteristic of Ms

P , using localisation techniques. We exploit

these ideas in the next chapter in the case X is a nonsingular complete toric surface

to obtain expressions for generating functions of Euler characteristics of moduli spaces

of µ-stable torsion free sheaves on X. These computations can be used to study wall-

crossing phenomena, i.e. study the dependence of these generating functions on choice

of ample line bundle OX(1) on X. We will mention some of these results in this chapter

without further details. Most of the formulation and proof of the above theorem holds

similarly for P of any degree. The only complication arising in the general case is to

find an equivariant line bundle in the GIT problem, which precisely reproduces Gieseker

stability. Currently, we can only achieve this in full generality for P of degree dim(X),

i.e. for torsion free sheaves, though we will develop the rest of the theory for arbitrary P

(Theorem 1.3.9). As a by-product, we will construct moduli spaces of µ-stable reflexive

equivariant sheaves on nonsingular projective toric varieties (Theorem 1.3.14) and express

the fixed point loci of moduli spaces of µ-stable reflexive sheaves on nonsingular projective

toric varieties in terms of them (Theorem 1.3.15). In the case of reflexive equivariant

sheaves, we will construct particularly simple ample equivariant line bundles in the GIT

problem, which precisely recover µ-stability.
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1.1 Pure Equivariant Sheaves on Toric Varieties

In this section, we will give a combinatorial description of pure equivariant sheaves on

nonsingular toric varieties. After recalling the notion of an equivariant and a pure sheaf,

we will give the combinatorial description in the affine case. Subsequently, we will pass

to the general case. Our main tool will be Perling’s notion of σ-families. In order to

avoid cumbersome notation, we will first treat the case of irreducible support in detail

and discuss the general case at the end.

We recall the notion of a G-equivariant sheaf.

Definition 1.1.1. Let G be an affine algebraic group acting regularly on a scheme1 X of

finite type over k. Denote the group action by σ : G×X −→ X, denote projection to the

second factor by p2 : G×X −→ X and denote multiplication on G by µ : G×G −→ G.

Moreover, denote projection to the last two factors by p23 : G×G×X −→ G×X. Let

E be a sheaf of OX-modules on X. A G-equivariant structure on E is an isomorphism

Φ : σ∗E −→ p∗2E such that

(µ× 1X)∗Φ = p∗23Φ ◦ (1G × σ)∗Φ.

This equation is called the cocycle condition. A sheaf of OX-modules endowed with a

G-equivariant structure is called a G-equivariant sheaf. A G-equivariant morphism from

a G-equivariant sheaf (E ,Φ) to a G-equivariant sheaf (F ,Ψ) is a morphism θ : E −→ F

of sheaves of OX-modules such that p∗2θ ◦ Φ = Ψ ◦ σ∗θ. We denote the k-vector space of

G-equivariant morphisms from (E ,Φ) to (F ,Ψ) by G-Hom(E ,F). ⊘

Using the above definition, we can form the k-linear additive category of G-equivariant

sheaves which we will denote by ModG(X). Similarly, one can construct the categories

of G-equivariant (quasi-)coherent sheaves QcoG(X) and CohG(X). These are abelian

categories and QcoG(X) has enough injectives [Toh, Ch. V].

1In this chapter, all schemes will be schemes over k an algebraically closed field of characteristic 0,
unless stated otherwise.
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Now let X be a toric variety, so G = T is the algebraic torus2. Denote the fan by ∆,

the character group by M = X(T ) and the group of one-parameter subgroups by N (so

M = N∨ and we have a natural pairing between the two lattices 〈·, ·〉 : M ×N −→ Z).

The elements σ of ∆ are in bijective correspondence with the invariant affine open subsets

Uσ of X. In particular, for a strongly convex rational polyhedral cone σ ∈ ∆ (which

lies in the lattice N) we have Uσ = Spec(k[Sσ]), where k[Sσ] is the semigroup algebra

associated to the semigroup Sσ defined by

Sσ = σ∨ ∩M,

σ∨ = {u ∈M ⊗Z R | 〈u, v〉 ≥ 0 for all v ∈ σ} .

We will denote the element of k[M ] corresponding to m ∈ M by χ(m) and write the

group operation on k[M ] multiplicatively, so χ(m)χ(m′) = χ(m + m′). We obtain the

following M -graded k-algebras

Γ(Uσ,OX) =
⊕

m∈Sσ

kχ(m) ⊂
⊕

m∈M

kχ(m) = Γ(T,OX). (1.1)

There is a regular action of T on Γ(Uσ,OX). For t ∈ T a closed point and f : Uσ −→ k

a regular function, one defines

(t · f)(x) = f(t · x).

The regular action of T on Uσ induces a decomposition into weight spaces (Complete Re-

ducibility Theorem [Per1, Thm. 2.30]). This decomposition coincides precisely with the

decomposition in equation (1.1). More generally, if (E ,Φ) is an equivariant quasi-coherent

sheaf on X, there is a natural regular action of T on Γ(Uσ, E) [Per1, Subsect. 2.2.2, Ch. 4].

This action can be described as follows. For any closed point t ∈ T , let it : X −→ T ×X

be the inclusion and define Φt = i∗tΦ : t∗E −→ E . From the cocycle condition, we obtain

Φst = Φt ◦ t
∗Φs for all closed points s, t ∈ T (see Definition 1.1.1). Also, for f ∈ Γ(Uσ, E)

2When dealing with toric geometry, we use the notation of the standard reference [Ful].
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we have a canonically lifted section t∗f ∈ Γ(Uσ, t
∗E), which allows us to define

t · f = Φt(t
∗f).

Again, we get a decomposition into weight spaces [Per1, Thm. 2.30]

Γ(Uσ, E) =
⊕

m∈M

Γ(Uσ, E)m.

In particular, for E = OX , we obtain Γ(Uσ,OX)m = kχ(m) if m ∈ Sσ and Γ(Uσ,OX)m =

0 otherwise. It is not difficult to deduce from the previous discussion that the func-

tor Γ(Uσ,−) induces an equivalence between the category of equivariant quasi-coherent

(resp. coherent) sheaves on Uσ and the category of M -graded (resp. finitely generated

M -graded) Sσ-modules [Per1, Prop. 2.31].

Before we proceed to use the previous notions to give Perling’s characterisation of

equivariant quasi-coherent sheaves on affine toric varieties in terms of σ-families, we

remind the reader of the notion of a pure sheaf.

Definition 1.1.2. Let E 6= 0 be a coherent sheaf on a scheme X of finite type over k.

The sheaf E is said to be pure of dimension d if dim(F) = d for any coherent subsheaf

0 6= F ⊂ E . Here the dimension of a coherent sheaf F is defined to be the dimension of

the support Supp(F) of the coherent sheaf F . In the case X is in addition integral, we

also refer to a pure sheaf on X of dimension dim(X) as a torsion free sheaf on X. ⊘

For future purposes, we state the following easy results.

Proposition 1.1.3. Let X be a scheme of finite type over k, {Ui} an open cover of X

and E 6= 0 a coherent sheaf on X. Then E is pure of dimension d if and only if for each

i the restriction E|Ui
is zero or pure of dimension d.

Proof. The “if” part is trivial. Assume E 6= 0 is pure of dimension d but there is a

coherent subsheaf 0 6= F ⊂ E|Ui
having dimension < d for some i. Let Z = Supp(F)

(where the bar denotes closure in X) and consider the coherent subsheaf EZ ⊂ E defined
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by EZ(U) = ker(E(U) −→ E(U \ Z)) for all open subsets U ⊂ X. This sheaf is nonzero

because 0 6= F ⊂ EZ |Ui
yet Supp(EZ) ⊂ Z so dim(EZ) < d, contradicting purity.

Proposition 1.1.4. Let X, Y be schemes of finite type over k and let X be reduced.

Denote by p2 : X × Y −→ Y projection to the second component. Let E be a coherent

sheaf on X × Y , F a coherent sheaf on Y and Φ,Ψ : E −→ p∗2F morphisms. For any

closed point x ∈ X, let ix : Y −→ X × Y be the induced morphism. If i∗xΦ = i∗xΨ for all

closed points x ∈ X, then Φ = Ψ.

Proof. Using open affine covers, it is enough to prove the case X = Spec(R), Y =

Spec(S), where R,S are finitely generated k-algebras and R has no nilpotent elements.

Consider the finitely generated R ⊗k S-module E = Γ(X, E) and the finitely generated

S-module F = Γ(Y,F). Let Φ,Ψ : E −→ F ⊗k R be the induced morphisms [Har1,

Prop. II.5.2]. Let e ∈ E and let ξ = Φ(e)−Ψ(e). We need to prove ξ = 0. But we know

that for any maximal ideal m ⊂ R, the induced morphism

F ⊗k R −→ F ⊗k R/m ∼= F,

maps ξ to zero [Har1, Prop. II.5.2]. Since R has no nilpotent elements, the intersection of

all its maximal ideals is zero
⋂

m⊂R m =
√

(0) = (0) ([AM, Prop. 1.8], [Eis, Thm. 4.19]),

hence ξ = 0.

Proposition 1.1.5. Let X be a scheme of finite type over k, G an affine algebraic group

acting regularly on X and E 6= 0 a G-equivariant coherent sheaf on X. Then E is pure

of dimension d if and only if all its nontrivial G-equivariant coherent subsheaves have

dimension d.

Proof. There is a unique filtration

0 ⊂ T0(E) ⊂ · · · ⊂ Td(E) = E ,

where Ti(E) is the maximal coherent subsheaf of E of dimension ≤ i. This filtration is
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called the torsion filtration of E [HL, Sect. 1.1]. We claim each Ti(E) is an equivariant

coherent subsheaf of E , i.e. the morphism

σ∗(Ti(E)) →֒ σ∗(E)
Φ

−→ p∗2(E),

factors through p∗2(Ti(E)). This would imply the proposition. By definition of Ti(E), the

morphism

g∗(Ti(E)) →֒ g∗(E)
i∗gΦ
−→ E ,

factors through Ti(E) for any closed point g ∈ G. The result now follows from Proposition

1.1.4 applied to the morphisms

σ∗(Ti(E)) →֒ σ∗(E)
Φ

−→ p∗2(E) −→ p∗2(E/Ti(E)),

σ∗(Ti(E))
0

−→ p∗2(E/Ti(E)).

Let Uσ be an affine toric variety defined by a cone σ in a lattice N . We have already

seen that Γ(Uσ,−) induces an equivalence between the category of equivariant quasi-

coherent sheaves on Uσ and the category ofM -graded k[Sσ]-modules. The latter category

can be conveniently reformulated using Perling’s notion of a σ-family [Per1, Def. 4.2].

Definition 1.1.6. For m,m′ ∈ M , m ≤σ m
′ means m′ −m ∈ Sσ. A σ-family consists

of the following data: a family of k-vector spaces {Eσ
m}m∈M and k-linear maps χσm,m′ :

Eσ
m −→ Eσ

m′ for all m ≤σ m
′, such that χσm,m = 1 and χσm,m′′ = χσm′,m′′ ◦ χσm,m′ for all

m ≤σ m
′ ≤σ m

′′. A morphism of σ-families φ̂σ : Êσ −→ F̂ σ is a family of k-linear maps

{φm : Eσ
m −→ F σ

m}m∈M , such that φσm′ ◦ (χE)σm,m′ = (χF )σm,m′ ◦ φσm for all m ≤σ m
′. ⊘

Let (E ,Φ) be an equivariant quasi-coherent sheaf on Uσ. Denote the corresponding M -

graded k[Sσ]-module by Eσ =
⊕

m∈M Eσ
m. This gives us a σ-family {Eσ

m}m∈M by taking

χσm,m′ : Eσ
m −→ Eσ

m′ , χσm,m′(e) = χ(m′ −m)e,
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for all m ≤σ m
′. This establishes an equivalence between the category of equivariant

quasi-coherent sheaves on Uσ and the category of σ-families [Per1, Thm. 4.5].

Recall that an affine toric variety Uσ defined by a cone σ of dimension s in a lattice

N of rank r is nonsingular if and only if σ is generated by part of a Z-basis for N .

Assume this is the case, then Uσ ∼= ks × (k∗)r−s. Let σ(1) = {ρ1, . . . , ρs} be the rays

(i.e. 1-dimensional faces) of σ. Let n(ρi) be the first integral lattice point on the ray

ρi. Then (n(ρ1), . . . , n(ρs)) is part of a Z-basis for N . Let (m(ρ1), . . . ,m(ρs)) be the

corresponding part of a dual basis for M . The cosets ([m(ρ1)], . . . , [m(ρs)]) form a Z-

basis for M/S⊥
σ . Here S⊥

σ denotes the subgroup S⊥
σ = σ⊥ ∩ M , where σ⊥ = {u ∈

M ⊗Z R | 〈u, v〉 = 0 for all v ∈ σ}. We obtain M/S⊥
σ
∼= Zs. Let Êσ be a σ-family. We

can repackage the data in Êσ somewhat more efficiently as follows. First of all, note

that for all m′ − m ∈ S⊥
σ , the k-linear map χσm,m′ : Eσ

m −→ Eσ
m′ is an isomorphism,

so we might just as well restrict attention to σ-families having χσm,m′ = 1 (and hence

Eσ
m = Eσ

m′) for all m′ −m ∈ S⊥
σ . We can then rewrite for any λ1, . . . , λs ∈ Z

Eσ(λ1, . . . , λs) = Eσ
m, where m =

s∑

i=1

λim(ρi),

χσ1 (λ1, . . . , λs) : Eσ(λ1, . . . , λs) −→ Eσ(λ1 + 1, λ2, . . . , λs),

χσ1 (λ1, . . . , λs) = χσm,m′ , where m =
s∑

i=1

λim(ρi), m
′ = m(ρ1) +m,

. . .

When we would like to suppress the domain, we also denote these maps somewhat

sloppily by x1· = χσ1 (λ1, . . . , λs), . . ., xs· = χσs (λ1, . . . , λs). These k-linear maps satisfy

xixj = xjxi for all i, j = 1, . . . , s. The equivalence between the category of equivariant

quasi-coherent sheaves on Uσ and the category of σ-families restricts to an equivalence

between the full subcategories of equivariant coherent sheaves on Uσ and the category of

finite σ-families (see [Per1, Def. 4.10, Prop. 4.11]). A finite σ-family is a σ-family Êσ such

that all Eσ(λ1, . . . , λs) are finite-dimensional k-vector spaces, there are A1, . . . , As ∈ Z

such that Eσ(λ1, . . . , λs) = 0 unless λ1 ≥ A1, . . ., λs ≥ As and there are only finitely
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many (Λ1, . . . ,Λs) ∈ Zs such that

Eσ(Λ1, . . . ,Λs)

6= spank
{
xΛ1−λ1

1 · · · xΛs−λs
s e

∣
∣ e ∈ Eσ(λ1, . . . , λs) with Λi − λi ≥ 0, not all 0} .

1.1.1 Combinatorial Descriptions in the Case of Irreducible

Support

Going from affine toric varieties to general toric varieties, Perling introduces the notion

of ∆-families [Per1, Sect. 4.2], which are basically collections of σ-families, for all cones

σ in the fan ∆, satisfying certain compatibility conditions. We will not use this notion.

Instead, we will first study pure equivariant sheaves on nonsingular affine toric varieties

and then use gluing to go to general toric varieties. In order to avoid heavy notation,

we will restrict to the case of irreducible support and defer the general case to the next

subsection. Recall that for a toric variety X defined by a fan ∆ in a lattice N , there is a

bijective correspondence between the elements of ∆ and the invariant closed (irreducible)

subvarieties of X [Ful, Sect. 3.1]. The correspondence associates to a cone σ ∈ ∆ the

invariant closed subvariety V (σ) ⊂ X, which is defined to be the closure in X of the

unique orbit of minimal dimension in Uσ. If dim(σ) = s, then codim(V (σ)) = s.

Proposition 1.1.7. Let Uσ be a nonsingular affine toric variety defined by a cone3 σ in

a lattice N of rank r. Let E 6= 0 be an equivariant coherent sheaf on Uσ with irreducible

support. Then Supp(E) = V (τ), for some τ ≺ σ. Now fix τ ≺ σ, let (ρ1, . . . , ρr) be the

rays of σ and (ρ1, . . . , ρs) ⊂ (ρ1, . . . , ρr) the rays of τ . Then Supp(E) = V (τ) if and

only if there are integers B1, . . . , Bs such that Eσ(λ1, . . . , λr) = 0 unless λ1 ≤ B1, . . .,

λs ≤ Bs, but for each λi 6= λ1, . . . , λs there is no such upper bound.

Proof. Note that V (τ) is defined by the prime ideal Iτ = 〈χ(m(ρ1)), . . . , χ(m(ρs))〉.

Define the open subset U = Uσ \ V (τ) = D(χ(m(ρ1))) ∪ · · · ∪ D(χ(m(ρs))), where

D(χ(m(ρi))) is the set of all prime ideals not containing χ(m(ρi)). The open subset

3From now on, in this setting we will always assume dim(σ) = r, so Uσ
∼= Ar.
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D(χ(m(ρi))) = Spec(k[Sσ][χ(−m(ρi))]). Clearly [Har1, Prop. II.5.2]

Supp(E) ⊂ V (τ) ⇐⇒ E|D(χ(m(ρ1))) = · · · = E|D(χ(m(ρs))) = 0

⇐⇒ Γ(Uσ, E) ⊗k[Sσ ] k[Sσ][χ(−m(ρ1))] = 0

· · ·

Γ(Uσ, E) ⊗k[Sσ ] k[Sσ][χ(−m(ρs))] = 0.

Since Γ(Uσ, E) is finitely generated, we in fact have

Supp(E) ⊂ V (τ) ⇐⇒∃κ1, . . . , κs ∈ Z>0

χ(m(ρ1))
κ1Γ(Uσ, E) = · · · = χ(mρs)

κsΓ(Uσ, E) = 0.

The proof now easily follows from the fact that the σ-family corresponding to E is

finite.

Proposition 1.1.8. Let Uσ be a nonsingular affine toric variety defined by a cone σ in

a lattice N of rank r. Let τ ≺ σ, let (ρ1, . . . , ρr) be the rays of σ and (ρ1, . . . , ρs) ⊂

(ρ1, . . . , ρr) the rays of τ . Then the category of pure equivariant sheaves E on Uσ with

support V (τ) is equivalent to the category of σ-families Êσ having the following properties:

(i) There are integers A1 ≤ B1, . . . , As ≤ Bs, As+1, . . . , Ar such that Eσ(λ1, . . . λr) = 0

unless A1 ≤ λ1 ≤ B1, . . ., As ≤ λs ≤ Bs, As+1 ≤ λs+1, . . ., Ar ≤ λr.

(ii) For all integers A1 ≤ Λ1 ≤ B1, . . ., As ≤ Λs ≤ Bs, there is a finite dimensional

k-vector space Eσ(Λ1, . . . ,Λs,∞, . . . ,∞) (not all of them zero) satisfying the fol-

lowing properties. All vector spaces Eσ(Λ1, . . . ,Λs, λs+1, . . . , λr) are subspaces of

Eσ(Λ1, . . . ,Λs,∞, . . . ,∞) and the maps xs+1, . . . , xr are inclusions. Moreover,

there are integers λs+1, . . . , λr such that we have Eσ(Λ1, . . . ,Λs, λs+1, . . . , λr) =

Eσ(Λ1, . . . ,Λs,∞, . . . ,∞).

Proof. Let E be a pure equivariant sheaf with support V (τ) and corresponding σ-family

Êσ. Then (i) follows from Proposition 1.1.7. For (ii), it is enough to prove xs+1, . . . , xr
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are injective (the rest follows from the fact that Êσ is finite). Assume one of them is not

injective, say, without loss of generality, xs+1. I.e.

χσs+1(Λ1, . . . ,Λs,Λs+1,Λs+2, . . . ,Λr) :

Eσ(Λ1, . . . ,Λs,Λs+1,Λs+2, . . . ,Λr) −→ Eσ(Λ1, . . . ,Λs,Λs+1 + 1,Λs+2, . . . ,Λr),

is not injective where A1 ≤ Λ1 ≤ B1, . . ., As ≤ Λs ≤ Bs, Λs+1 ≥ As+1, . . ., Λr ≥ Ar.

Define

F σ(Λ1, . . . ,Λs,Λs+1,Λs+2, . . . ,Λr) = ker χσs+1(Λ1, . . . ,Λs,Λs+1,Λs+2, . . . ,Λr) 6= 0,

F σ(Λ1 + k1, . . . ,Λs + ks,Λs+1,Λs+2 + ks+2, . . . ,Λr + kr)

=

(
∏

i6=s+1

xki

i

)

(F σ(Λ1, . . . ,Λs,Λs+1, . . . ,Λr)) , ∀k1, . . . , ks, ks+2, . . . , kr ∈ Z≥0,

F σ(λ1, . . . , λr) = 0, otherwise.

Clearly, F̂ σ defines a nontrivial equivariant coherent subsheaf of E , hence its support

has to be V (τ). By construction, there is an integer Bs+1 such that F σ(λ1, . . . , λr) = 0

outside some region λ1 ≤ B1, . . ., λs ≤ Bs, λs+1 ≤ Bs+1, which contradicts Proposition

1.1.7.

Conversely, let E be an equivariant quasi-coherent sheaf with corresponding σ-family

Ê∆ as in (i), (ii). It is easy to see that E is coherent and Supp(E) ⊂ V (τ) (see also proof

of Proposition 1.1.7). It is enough to show that any nontrivial equivariant coherent

subsheaf F ⊂ E has support V (τ) by Proposition 1.1.5. Suppose there is a 0 6= F ⊂ E

equivariant coherent subsheaf with support V (ν1) ∪ · · · ∪ V (νp) ( V (τ). Then τ is a

proper face of each νi. Let ρ(νi) be a ray of νi, that is not a ray of τ . Then

F|D(χ(m(ρ(ν1)))···χ(m(ρ(νp)))) = 0.

As a consequence, there is a κ ∈ Z>0 such that

χ(m(ρs+1))
κ · · ·χ(m(ρr))

κΓ(Uσ,F) = 0.
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Let F̂ σ be the σ-family corresponding to F . We obtain that there is a B ∈ Z such that

F σ(λ1, . . . , λs, µ, . . . , µ) = 0 for all λ1, . . . , λs ∈ Z and µ > B. But by injectivity of

xs+1, . . . , xr, we obtain F̂ σ = 0, so F = 0, which is a contradiction.

In order to generalise the result of the previous proposition to arbitrary nonsingular

toric varieties, we need the following proposition for gluing purposes.

Proposition 1.1.9. Let Uσ be a nonsingular affine toric variety defined by a cone σ in

a lattice N of rank r. Let E be a pure equivariant sheaf on Uσ with support V (τ) where

τ ≺ σ. Let (ρ1, . . . , ρr) be the rays of σ and (ρ1, . . . , ρs) ⊂ (ρ1, . . . , ρr) the rays of τ .

Let ν ≺ σ be a proper face and consider the equivariant coherent sheaf E|Uν . Then the

ν-family corresponding to E|Uν is described in terms of the σ-family corresponding to E

as follows:

(i) Assume τ is not a face of ν. Then E|Uν = 0.

(ii) Assume τ ≺ ν. Let (ρ1, . . . , ρs, ρs+1, . . . , ρs+t) ⊂ (ρ1, . . . , ρr) be the rays of ν. Then

for all λ1, . . . , λs+t ∈ Z we have

Eν(λ1, . . . , λs+t) = Eσ(λ1, . . . , λs+t,∞, . . . ,∞),

χνi (λ1, . . . , λs+t) = χσi (λ1, . . . , λs+t,∞, . . . ,∞), ∀i = 1, . . . , s+ t.

Proof. There is an integral element mν ∈ relative interior(ν⊥ ∩ σ∨), such that Sν =

Sσ+Z≥0(−mν) (e.g. [Per1, Thm. 3.14]). Let ρi1 , . . . , ρip be the rays of ν and let ρj1 , . . . , ρjq

be all the other rays (so p+ q = r). Then

mν =

q
∑

k=1

γkm(ρjk),

where all γk > 0 integers. We obtain [Har1, Prop. II.5.2]

Γ(Uν , E|Uν )
∼= Γ(Uσ, E) ⊗k[Sσ ] k[Sν ]

= Γ(Uσ, E) ⊗k[Sσ ] k[Sσ][χ(−m(ρj1))
γj1 , . . . , χ(−m(ρjq))

γjq ].

(1.2)
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Case 1: τ is not a face of ν. Trivial because V (τ) ∩ Uν = ∅. We can also see this case

algebraically as follows. There is a ray ρl of τ which is not a ray of ν. Hence ρl is equal

to one of ρj1 , . . . , ρjq , say without loss of generality ρl = ρj1 = ρ1. There is a κ > 0 such

that χ(m(ρ1))
κΓ(Uσ, E|Uσ) = 0 by Proposition 1.1.7. From equation (1.2), we deduce

Γ(Uν , E|Uν ) = 0.

Case 2: τ ≺ ν. In this case, we can number the rays ρi1 , . . . , ρip of ν as follows

(ρ1, . . . , ρs, ρs+1, . . . , ρs+t). Assume E is described by a σ-family Êσ as in Proposition

1.1.8. Note that Γ(Uσ, E) ⊗k[Sσ ] k[Sν ] has a natural M -grading [Per1, Sect. 2.5]. In

particular, for a fixed m ∈ M , the elements of degree m are finite sums of expressions

of the form e ⊗ χ(m′′), where e ∈ Eσ
m′ , m′ ∈ M , m′′ ∈ Sν such that m′ + m′′ = m.

Now fix m =
∑r

i=1 λim(ρi) ∈ M , m′ =
∑r

i=1 αim(ρi) ∈ M and m′′ ∈ Sν , so m′′ =
∑r

i=1 βim(ρi) − u
∑r

i=s+t+1 γim(ρi) with β1, . . . , βr, u ≥ 0. Assume m = m′ + m′′ and

consider the element e⊗χ(m′′) with e ∈ Eσ
m′ . We can now rewrite e⊗χ(m′′) = e′⊗χ(m′′′),

where

e′ = χ

(
r∑

i=1

βim(ρi)

)

· e ∈ Eσ(λ1, . . . , λs+t, αs+t+1 + βs+t+1, . . . , αr + βr),

χ(m′′′) = χ

(

−u
r∑

i=s+t+1

γim(ρi)

)

.

For v > 0 large enough

e′ ⊗ χ(m′′′) = χ

(

v

r∑

i=s+t+1

γim(ρi)

)

· e′ ⊗ χ

(

−(u+ v)
r∑

i=s+t+1

γim(ρi)

)

,

where χ

(

v

r∑

i=s+t+1

γim(ρi)

)

· e′ ∈ Eσ(λ1, . . . , λs+t,∞, . . . ,∞).

From these remarks, one easily deduces the assertion.

As a special case of the above proposition we get the following result. If we take ν = τ ,

then we obtain that for all integers λ1, . . . , λr

Eσ(λ1, . . . , λr) ⊂ Eσ(λ1, . . . , λs,∞, . . . ,∞) = Eτ (λ1, . . . , λs).
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We obtain that all Eσ(λ1, . . . , λr) are subspaces of Eτ (λ1, . . . , λs).

Combining Propositions 1.1.8 and 1.1.9, we obtain a combinatorial description of

pure equivariant sheaves with irreducible support on nonsingular toric varieties.

Theorem 1.1.10. Let X be a nonsingular toric variety with fan4 ∆ in a lattice N of

rank r. Let τ ∈ ∆ and consider the invariant closed subvariety V (τ). It is covered by

Uσ, where σ ∈ ∆ has dimension r and τ ≺ σ. Denote these cones by σ1, . . . , σl. For each

i = 1, . . . , l, let
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of σi and let
(

ρ
(i)
1 , . . . , ρ

(i)
s

)

⊂
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of τ . The category of pure equivariant sheaves on X with support V (τ) is

equivalent to the category Cτ , which can be described as follows. An object Ê∆ of Cτ

consists of the following data:

(i) For each i = 1, . . . , l we have a σi-family Êσi as described in Proposition 1.1.8.

(ii) Let i, j = 1, . . . , l. Let
{

ρ
(i)
i1
, . . . , ρ

(i)
ip

}

⊂
{

ρ
(i)
1 , . . . , ρ

(i)
r

}

resp.
{

ρ
(j)
j1
, . . . , ρ

(j)
jp

}

⊂
{

ρ
(j)
1 , . . . , ρ

(j)
r

}

be the rays of σi ∩ σj in σi respectively σj, labeled in such a way

that ρ
(i)
ik

= ρ
(j)
jk

for all k = 1, . . . , p. Now let λ
(i)
1 , . . . , λ

(i)
r ∈ Z∪{∞}, λ(j)

1 , . . . , λ
(j)
r ∈

Z ∪ {∞} be such that λ
(i)
ik

= λ
(j)
jk

∈ Z for all k = 1, . . . , p and λ
(i)
n = λ

(j)
n = ∞

otherwise. Then

Eσi

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= Eσj

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

,

χσi
n

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= χσj
n

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

, ∀n = 1, . . . , r.

The morphisms of Cτ are described as follows. If Ê∆, F̂∆ are two objects, then a mor-

phism φ̂∆ : Ê∆ −→ F̂∆ is a collection of morphisms of σ-families {φ̂σi : Êσi −→

F̂ σi}i=1,...,l such that for all i, j as in (ii) one has

φσi

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= φσj

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

.

4From now on, in this setting we will always assume every cone of ∆ is contained in a cone of
dimension r. Therefore, we can cover X by copies of Ar.
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Proof. Note that V (τ) is covered by the star of τ , i.e. the cones σ ∈ ∆ such that τ ≺ σ

[Ful, Sect. 3.1]. Let σ1, . . . , σl ∈ ∆ be the cones of maximal dimension in the star of

τ . Let E be a pure equivariant sheaf on X with support V (τ). Then E|Uσi
is a pure

equivariant sheaf on Uσi
with support V (τ) ∩ Uσi

for all i = 1, . . . , l (using Proposition

1.1.3). Using Proposition 1.1.8, we get a σi-family Êσi for all i = 1, . . . , l (this gives (i)

of the theorem). Using Proposition 1.1.9, we see that these σ-families have to glue as in

(ii) (up to isomorphism).

In the above theorem, we will refer to the category Cτ as the category of pure ∆-families

with support V (τ). If we take τ = 0 to be the apex in this theorem, we obtain the

known combinatorial description of torsion free equivariant sheaves on nonsingular toric

varieties initially due to Klyachko [Kly4] and also discussed by Knutson and Sharpe [KS1,

Sect. 4.5] and Perling [Per1, Subsect. 4.4.2]. The theorem generalises this description. In

the case τ = 0 is the apex, we will refer to the category C0 as the category of torsion free

∆-families. In the above theorem, denote by Cτ,fr the full subcategory of Cτ consisting

of those elements having all limiting vector spaces Eσi(Λ1, . . . ,Λs,∞, . . . ,∞) equal to

k⊕r for some r. We refer to Cτ,fr as the category of framed pure ∆-families with support

V (τ). This notion does not make much sense now because Cτ,fr is equivalent to Cτ , but

framing will become relevant when looking at families.

1.1.2 Combinatorial Descriptions in the General Case

The results of the previous subsection generalise in a straightforward way to the case of

general –not necessarily irreducible– support. Since the proofs will require no essentially

new ideas, we will just discuss the results.

Let us first discuss the generalisation of Proposition 1.1.7. Let Uσ be a nonsingular

affine toric variety defined by a cone σ in a lattice N of rank r. Let E 6= 0 be an

equivariant coherent sheaf on Uσ. Then Supp(E) = V (τ1) ∪ · · · ∪ V (τa) for some faces

τ1, . . . , τa ≺ σ. Now fix faces τ1, . . . , τa ≺ σ, let (ρ1, . . . , ρr) be the rays of σ and let
(

ρ
(α)
1 , . . . , ρ

(α)
sα

)

⊂ (ρ1, . . . , ρr) be the rays of τα for all α = 1, . . . , a. Assume τα ⊀ τβ for
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all α, β = 1, . . . , a with α 6= β. Then Supp(E) = V (τ1) ∪ · · · ∪ V (τa) if and only if the

following property holds:

Eσ(λ1, . . . , λr) = 0 unless (λ1, . . . , λr) ∈ R where R ⊂ N is defined by inequalities as

follows: there are integers A1, . . . , Ar and integers B
(α)
1 , . . . , B

(α)
sα for each α = 1, . . . , a

such that the region R is defined by

[A1 ≤ λ1 ∧ · · · ∧ Ar ≤ λr)]

∧ [(λ
(1)
1 ≤ B

(1)
1 ∧ · · · ∧ λ(1)

s1
≤ B(1)

s1
) ∨ · · · ∨ (λ

(a)
1 ≤ B

(a)
1 ∧ · · · ∧ λ(a)

sa
≤ B(a)

sa
)],

moreover, there is no region R′ of such a form with more upper bounds contained in R

with the same property. Here λ
(j)
i corresponds to the coordinate associated to the ray

ρ
(j)
i defined above.

Note that if we assume in addition that E is pure, then all the V (τα) have the same

dimension so s1 = · · · = sa = s. If dim(E) = d, then Supp(E) = V (τ1) ∪ · · · ∪ V (τa),

where τ1, . . . , τa are some faces of σ of dimension s = r− d. One possible support would

be taking τ1, . . . , τa all faces of σ of dimension s = r − d. In this case, the region R will

be a disjoint union of the following form

{[A1, B1] × · · · × [As, Bs] × (Bs+1,∞) × · · · × (Br,∞)}

⊔ · · ·

⊔ {(B1,∞) × · · · × (Br−s,∞) × [Ar−s+1, Br−s+1] × · · · × [Ar, Br]}

(1.3)

⊔ {[A1, B1] × · · · × [As+1, Bs+1] × (Bs+2,∞) × · · · × (Br,∞)}

⊔ · · ·

⊔ {(B1,∞) × · · · × (Br−s−1,∞) × [Ar−s, Br−s] × · · · × [Ar, Br]}

(1.4)

⊔ · · ·

⊔ {[A1, B1] × · · · × [Ar, Br]}, (1.5)

for some integers A1, . . . , Ar and B1, . . . , Br. Here (1.3) is a disjoint union of
(
r
s

)
regions
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with s upper bounds. Denote these regions of R by Rs
µ, where µ = 1, . . . ,

(
r
s

)
. Here

(1.4) is a disjoint union of
(
r
s+1

)
regions with s+ 1 upper bounds. Denote these regions

of R by Rs+1
µ , where µ = 1, . . . ,

(
r
s+1

)
. Et cetera. Finally, (1.5) is a disjoint union of

(
r
r

)
= 1 regions with r upper bounds (i.e. only [A1, B1] × · · · × [Ar, Br]). Denote this

region of R by Rr
µ. We will use this notation later on. Using the techniques of the

previous subsection, one easily proves the following proposition.

Proposition 1.1.11. Let Uσ be a nonsingular affine toric variety defined by a cone σ in

a lattice N of rank r. Let τ1, . . . , τa ≺ σ be all faces of dimension s. Then the category

of pure equivariant sheaves E on Uσ with support V (τ1)∪ · · · ∪ V (τa) is equivalent to the

category of σ-families Êσ satisfying the following properties:

(i) There are integers A1, . . . , Ar, B1, . . . , Br such that Eσ(λ1, . . . , λr) = 0 unless

(λ1, . . . , λr) ∈ R, where the region R is as above.

(ii) Any region Ri
µ = [A1, B1] × · · · × [Ai, Bi] × (Bi+1,∞) × · · · × (Br,∞) of R satis-

fies the following properties5. Firstly, for any integers A1 ≤ Λ1 ≤ B1, . . ., Ai ≤

Λi ≤ Bi there is a finite-dimensional k-vector space Eσ(Λ1, . . . ,Λi,∞, . . . ,∞),

such that Eσ(Λ1, . . . ,Λi, λi+1, . . . , λr) = Eσ(Λ1, . . . ,Λi,∞, . . . ,∞) for some inte-

gers λi+1 > Bi+1, . . . , λr > Br. Moreover, if Ri
µ is one of the regions Rs

µ, not all

Eσ(Λ1, . . . ,Λi,∞, . . . ,∞) are zero. Secondly, χσi+1(
~λ), . . . , χσr (

~λ) are inclusions for

all ~λ ∈ Ri
µ. Finally, if j1, . . . , js+1 ∈ {1, . . . , i} are distinct, then for any ~λ ∈ Ri

µ

the following k-linear map is injective

Eσ(~λ) →֒ Eσ(λ1, . . . , λj1−1, Bj1 + 1, λj1+1, . . . , λr

⊕ · · · (1.6)

⊕ Eσ(λ1, . . . , λjs+1−1, Bjs+1 + 1, λjs+1+1, . . . , λr),

5Without loss of generality, we denote this region in such a way that the i upper bounds occur in
the first i intervals. The general case is clear.
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(
χσj1(λ1, . . . , λj1−1, Bj1 , λj1+1, . . . , λr) ◦ · · ·

◦χσj1(λ1, . . . , λj1−1, λj1 , λj1+1, . . . , λr)
)

⊕ · · ·

⊕
(
χσjs+1

(λ1, . . . , λjs+1−1, Bjs+1 , λjs+1+1, . . . , λr) ◦ · · ·

◦χσjs+1
(λ1, . . . , λjs+1−1, λjs+1 , λjs+1+1, . . . , λr)

)
.

Note that in this proposition, the only essentially new type of condition compared to

Proposition 1.1.8 is condition (1.6). We obtain the following theorem.

Theorem 1.1.12. Let X be a nonsingular toric variety with fan ∆ in a lattice N of

rank r. Let σ1, . . . , σl be all cones of ∆ of dimension r. Denote the rays of σi by
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

for all i = 1, . . . , l. Let τ1, . . . , τa be all cones of ∆ of dimension s. The

category of pure equivariant sheaves on X with support V (τ1)∪· · ·∪V (τa) is equivalent to

the category Cτ1,...,τa, which can be described as follows. An object Ê∆ of Cτ1,...,τa consists

of the following data:

(i) For each i = 1, . . . , l we have a σi-family Êσi as described in Proposition 1.1.11.

(ii) Let i, j = 1, . . . , l. Let
{

ρ
(i)
i1
, . . . , ρ

(i)
ip

}

⊂
{

ρ
(i)
1 , . . . , ρ

(i)
r

}

resp.
{

ρ
(j)
j1
, . . . , ρ

(j)
jp

}

⊂
{

ρ
(j)
1 , . . . , ρ

(j)
r

}

be the rays of σi ∩ σj in σi respectively σj, labeled in such a way

that ρ
(i)
ik

= ρ
(j)
jk

for all k = 1, . . . , p. Now let λ
(i)
1 , . . . , λ

(i)
r ∈ Z∪{∞}, λ(j)

1 , . . . , λ
(j)
r ∈

Z ∪ {∞} be such that λ
(i)
ik

= λ
(j)
jk

∈ Z for all k = 1, . . . , p and λ
(i)
n = λ

(j)
n = ∞

otherwise. Then

Eσi

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= Eσj

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

,

χσi
n

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= χσj
n

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

, ∀n = 1, . . . , r.

The morphisms of Cτ1,...,τa are described as follows. If Ê∆, F̂∆ are two objects, then a

morphism φ̂∆ : Ê∆ −→ F̂∆ is a collection of morphisms of σ-families {φ̂σi : Êσi −→
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F̂ σi}i=1,...,l such that for all i, j as in (ii) one has

φσi

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= φσj

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

.

Although we only described the “maximally reducible” case in Proposition 1.1.11

and Theorem 1.1.12, the reader will have no difficulty writing down the case of arbi-

trary reducible support. We refrain from doing this since the notation will become too

cumbersome, whereas the ideas are the same.

1.2 Moduli Spaces of Equivariant Sheaves on Toric

Varieties

In this section, we discuss how the combinatorial description of pure equivariant sheaves

on nonsingular toric varieties of Theorems 1.1.10 and 1.1.12 can be used to define a

moduli problem and a coarse moduli space of such sheaves using GIT. We will start

by defining the relevant moduli functors and studying families. Subsequently, we will

perform GIT quotients and show we have obtained coarse moduli spaces. Again, for

notational convenience, we will first discuss the case of irreducible support and discuss

the general case only briefly afterwards. The GIT construction gives rise to various

notions of GIT stability depending on a choice of equivariant line bundle. In order to

recover geometric results, we need an equivariant line bundle which precisely recovers

Gieseker stability. We will construct such (ample) equivariant line bundles for torsion

free equivariant sheaves in general. As a by-product, for reflexive equivariant sheaves, we

can always construct particularly simple ample equivariant line bundles matching GIT

stability and µ-stability (subsection 1.3.4).
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1.2.1 Moduli Functors

We start by defining some topological data.

Definition 1.2.1. Let X be a nonsingular toric variety and use notation as in Theorem

1.1.10. Recall that σ1, . . . , σl are the cones of maximal dimension having τ as a face. Let

E be a pure equivariant sheaf on X with support V (τ). The characteristic function ~χE

of E is defined to be the map

~χE : M −→ Zl,

~χE(m) = (χσ1
E (m), . . . , χσl

E (m)) = (dimk(E
σ1
m ), . . . , dimk(E

σl
m )).

We denote the set of all characteristic functions of pure equivariant sheaves on X with

support V (τ) by X τ . ⊘

Assume X is a nonsingular projective toric variety. Let OX(1) be an ample line

bundle on X, so we can speak of Gieseker (semi)stable sheaves on X [HL, Def. 1.2.4].

Let ~χ ∈ X τ . We will be interested in moduli problems of Gieseker (semi)stable pure

equivariant sheaves on X with support V (τ) and characteristic function ~χ. This means

we need to define moduli functors, i.e. we need an appropriate notion of a family. Let

Sch/k be the category of k-schemes of finite type. Let S be a k-scheme of finite type

and, for any s ∈ S, define the natural morphism ιs : Spec(k(s)) −→ S, where k(s)

is the residue field of s. We define an equivariant S-flat family to be an equivariant

coherent sheaf F on X×S (S with trivial torus action), which is flat w.r.t. the projection

pS : X × S −→ S. Such a family F is said to be Gieseker semistable with support V (τ)

and characteristic function ~χ, if Fs = (1X × ιs)
∗F is Gieseker semistable with support

V (τ)×Spec(k(s)) and characteristic function ~χ for all s ∈ S. Two such families F1,F2 are

said to be equivalent if there is a line bundle L ∈ Pic(S) and an equivariant isomorphism

F1
∼= F2 ⊗ p∗SL, where L is being considered as an equivariant sheaf on S with trivial

equivariant structure. Denote the set of Gieseker semistable equivariant S-flat families

with support V (τ) and characteristic function ~χ modulo equivalence by Mτ,ss
~χ (S). We
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obtain a moduli functor

Mτ,ss
~χ : (Sch/k)o −→ Sets,

S 7→ Mτ,ss
~χ (S),

(f : S ′ −→ S) 7→ Mτ,ss
~χ (f) = f ∗ : Mτ,ss

~χ (S) −→ Mτ,ss
~χ (S ′).

Similarly, we obtain a moduli problem and a moduli functor Mτ,s
~χ in the geometrically

Gieseker stable case. Also note that we could have defined alternative moduli functors

M′τ,ss
~χ , M′τ,s

~χ by using just equivariant isomorphism as the equivalence relation instead

of the one above. We start with the following proposition.

Proposition 1.2.2. Let X be a nonsingular toric variety. Let S be a connected k-scheme

of finite type and let F be an equivariant S-flat family. Then the characteristic functions

of the fibres ~χFs are constant on S.

Proof. Let σ be a cone of the fan ∆. Let V = Spec(A) ⊂ S be an affine open subset6.

It is enough to prove that for all m ∈M

χσFs
(m) = dimk(s) Γ(Uσ × k(s),Fs|Uσ×k(s))m,

is constant for all s ∈ V . Note that the equivariant coherent sheaf F|Uσ×V corresponds

to a finitely generated M -graded k[Sσ] ⊗k A-module

Γ(Uσ × V,F) =
⊕

m∈M

F σ
m,

where all F σ
m are in fact finitely generated A-modules, so they correspond to coherent

sheaves Fσ
m on V . Since F is S-flat, each Fσ

m is a locally free sheaf of some finite rank

r(m) [Har1, Prop. III.9.2]. Fix s ∈ V and consider the natural morphism A −→ k(s),

6Note that from now on, for R a commutative ring, we often sloppily write R instead of Spec(R),
when no confusion is likely to arise.
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then

Γ(Uσ × k(s),Fs|Uσ×k(s))
∼=
⊕

m∈M

F σ
m ⊗A k(s) ∼=

⊕

m∈M

k(s)⊕r(m).

Consequently, χσFs
(m) = r(m) for all m ∈M .

1.2.2 Families

The question now arises to what extent the various moduli functors defined in the pre-

vious subsection are corepresentable. In order to answer this question, we will give a

combinatorial description of a family. Payne has studied a similar problem in [Pay] for

equivariant vector bundles on toric varieties.

We start with some straight-forward generalisations of the theory in section 1.1.

Definition 1.2.3. Let Uσ be an affine toric variety defined by a cone σ in a lattice N .

Let S be a k-scheme of finite type. A σ-family over S consists of the following data: a

family of quasi-coherent sheaves {Fσ
m}m∈M on S and morphisms χσm,m′ : Fσ

m −→ Fσ
m′ for

all m ≤σ m
′, such that χσm,m = 1 and χσm,m′′ = χσm′,m′′ ◦ χσm,m′ for all m ≤σ m

′ ≤σ m
′′. A

morphism φ̂σ : F̂σ −→ Ĝσ of σ-families over S is a family of morphisms {φm : Fσ
m −→

Gσm}m∈M , such that φσm′ ◦ (χF)σm,m′ = (χG)σm,m′ ◦ φσm for all m ≤σ m
′. ⊘

Proposition 1.2.4. Let Uσ be a nonsingular affine toric variety defined by a cone σ and

let S be a k-scheme of finite type. The category of equivariant quasi-coherent sheaves on

Uσ × S is equivalent to the category of σ-families over S.

Proof. Let S = Spec(A) be affine and (F ,Φ) an equivariant coherent sheaf. We have

a regular action of T on F σ = Γ(Uσ × S,F), inducing a decomposition into weight

spaces F σ =
⊕

m∈M F σ
m (Complete Reducibility Theorem, [Per1, Thm. 2.30]). This

time however, the F σ
m are A-modules instead of k-vector spaces. This gives the desired

equivalence of categories. It is easy to see that the same holds for arbitrary S by gluing.

In the context of the previous proposition, a σ-family F̂σ over S is called finite if all Fσ
m

are coherent sheaves on S, there are integers A1, . . . , Ar such that Fσ(λ1, . . . , λr) = 0
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unless A1 ≤ λ1, . . ., Ar ≤ λr and there are only finitely many m ∈ M such that the

morphism
⊕

m′<σm

Fσ
m′ −→ Fσ

m,

is not surjective.

Proposition 1.2.5. Let Uσ be a nonsingular affine toric variety defined by a cone σ

and let S be a k-scheme of finite type. The category of equivariant S-flat families is

equivalent to the category of finite σ-families F̂σ over S with all Fσ
m locally free sheaves

on S of finite rank.

Proof. It is not difficult to derive that the equivalence of Proposition 1.2.4 restricts to

an equivalence between the category of equivariant coherent sheaves on X × S and the

category of finite σ-families over S. In the proof of Proposition 1.2.2, we saw that

S-flatness gives rise to locally free of finite rank.

In the context of the previous proposition, let F̂σ be a σ-family over S corresponding to

an equivariant S-flat family F . For each connected component C ⊂ S, the characteristic

function χFs : M −→ Z, gives us the ranks of the Fσ
m on C.

Proposition 1.2.6. Let Uσ be a nonsingular affine toric variety defined by a cone σ

in a lattice N of rank r. Let τ ≺ σ and let (ρ1, . . . , ρs) ⊂ (ρ1, . . . , ρr) be the rays of τ

respectively σ. Let S be a k-scheme of finite type and χ ∈ X τ . Let F be an equivariant

S-flat family such that χFs = χ for all s ∈ S and let F̂σ be the corresponding σ-family

over S. Then the fibres Fs are pure equivariant with support V (τ) × k(s) if and only if

the following properties are satisfied:

(i) There are integers A1 ≤ B1, . . . , As ≤ Bs, As+1, . . . , Ar such that Fσ(λ1, . . . , λr) =

0 unless A1 ≤ λ1 ≤ B1, . . ., As ≤ λs ≤ Bs, As+1 ≤ λs+1, . . ., Ar ≤ λr and for

λi 6= λ1, . . . , λs there is no such upper bound.

(ii) For any s ∈ S, Fs has a corresponding σ-family F̂s
σ

as in Proposition 1.1.8 (over

ground field k(s)) with bounding integers A1 ≤ B1, . . . , As ≤ Bs, As+1, . . . , Ar.
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Proof. Note first of all that the entire theory of subsection 1.1.1 and 1.1.2 works over

any ground field of characteristic 0, so we can replace k by k(s) in all the results (s ∈ S).

Note that if F σ
m is the A-module corresponding to Fσ

m|V for V = Spec(A) ⊂ S an affine

open subset, then (Fs)
σ
m

∼= F σ
m ⊗A k(s) for all s ∈ V . In particular, χ(m) = rk(Fσ

m) =

dimk(s)((Fs)
σ
m) for all m ∈M, s ∈ S. The result easily follows from Proposition 1.1.8.

Before we proceed, we need a technical result.

Proposition 1.2.7. Let S be a k-scheme of finite type and let φ : E −→ F be a morphism

of locally free sheaves of finite rank on S. Let ιs : k(s) −→ S be the natural morphism

for all s ∈ S. Then φ is injective and coker(φ) is S-flat if and only if ι∗sφ is injective for

all s ∈ S.

Proof. By taking an open affine cover over which both locally free sheaves trivialise, it

is easy to see we are reduced to proving the following:

Claim. Let (R,m) be a local ring. Let k = R/m be the residue field and let φ : R⊕a −→

R⊕b be an R-module homomorphism. Then φ is injective and coker(φ) is free of finite

rank if and only if the induced map φ : k⊕a −→ k⊕b is injective.

Proof of Claim: ⇐. Let M = R⊕b/im(φ), then we have an exact sequence R⊕a φ
−→

R⊕b −→M −→ 0. Applying −⊗R k and using the assumption, we obtain a short exact

sequence 0 −→ k⊕a
φ

−→ k⊕b −→M/mM −→ 0. Here M/mM is a c = b− a dimensional

k-vector space. Take c basis elements ofM/mM , then their representatives inM generate

M as an R-module (Nakayama’s Lemma). Take preimages x1, . . . , xc in R⊕b. Denote

the standard generators of R⊕c by e1, . . . , ec and define ψ : R⊕c −→ R⊕b, ei 7→ xi. We

get a diagram

0 // R⊕a ι //

1
��

R⊕a ⊕R⊕c π //

φ+ψ

��

R⊕c //

��

0

0 // R⊕a
φ // R⊕b // M // 0.

Here the top sequence is split exact and in the lower sequence we still have to verify φ

is injective. Furthermore, all squares commute and φ + ψ is an isomorphism, because
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φ + ψ is surjective [Eis, Cor. 4.4]. Therefore all vertical maps are isomorphisms. The

statement now follows.

Proof of Claim: ⇒. We have a short exact sequence 0 −→ R⊕a φ
−→ R⊕b −→ M −→ 0,

where M = R⊕b/im(φ) ∼= R⊕c for some c. The long exact sequence of Tori(k,−) reads

· · · −→ Tor1(k,M) −→ k⊕a −→ k⊕b −→M/mM −→ 0.

But clearly Tor1(k,M) = 0, since M ∼= R⊕c for some c.

We can now derive a combinatorial description of the type of families we are interested

in for the affine case.

Proposition 1.2.8. Let Uσ be a nonsingular affine toric variety defined by a cone σ

in a lattice N of rank r. Let τ ≺ σ and let (ρ1, . . . , ρs) ⊂ (ρ1, . . . , ρr) be the rays of

τ respectively σ. Let S be a k-scheme of finite type and χ ∈ X τ . The category of

equivariant S-flat families F with fibres Fs pure equivariant with support V (τ) × k(s)

and characteristic function χ is equivalent to the category of σ-families F̂σ over S having

the following properties:

(i) There are integers A1 ≤ B1, . . . , As ≤ Bs, As+1, . . . , Ar such that Fσ(λ1, . . . , λr) =

0 unless A1 ≤ λ1 ≤ B1, . . ., As ≤ λs ≤ Bs, As+1 ≤ λs+1, . . ., Ar ≤ λr.

(ii) For all integers A1 ≤ Λ1 ≤ B1, . . ., As ≤ Λs ≤ Bs, there is a locally free sheaf

Fσ(Λ1, . . . ,Λs,∞, . . . ,∞) on S of finite rank (not all zero) having the follow-

ing properties. All Fσ(Λ1, . . . ,Λs, λs+1, . . . , λr) are quasi-coherent subsheaves of

Fσ(Λ1, . . . ,Λs,∞, . . . ,∞), the maps xs+1, . . . , xr are inclusions with S-flat coker-

nels and there are integers λs+1, . . . , λr such that Fσ(Λ1, . . . ,Λs, λs+1, . . . , λr) =

Fσ(Λ1, . . . ,Λs,∞, . . . ,∞).

(iii) For any m ∈M , we have χ(m) = rk(Fσ
m).
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Proof. Note that if we have a σ-family F̂σ as in (i), (ii), (iii), then all Fσ
m are locally

free of finite rank [Har1, Prop. III.9.1A(e)]. The statement immediately follows from

Propositions 1.2.5, 1.2.6 and 1.2.7.

The general combinatorial description of the kind of families we are interested in

easily follows.

Theorem 1.2.9. Let X be a nonsingular toric variety with fan ∆ in a lattice N of rank

r. Let τ ∈ ∆, then V (τ) is covered by those Uσ where σ ∈ ∆ has dimension r and

τ ≺ σ. Denote these cones by σ1, . . . , σl. For each i = 1, . . . , l, let
(

ρ
(i)
1 , . . . , ρ

(i)
s

)

⊂
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of τ respectively σi. Let S be a k-scheme of finite type and

~χ ∈ X τ . The category of equivariant S-flat families F with fibres Fs pure equivariant

sheaves with support V (τ)×k(s) and characteristic function ~χ is equivalent to the category

Cτ~χ(S), which can be described as follows. An object F̂∆ of Cτ~χ(S) consists of the following

data:

(i) For each i = 1, . . . , l we have a σi-family F̂σi over S as described in Proposition

1.2.8.

(ii) Let i, j = 1, . . . , l. Let
{

ρ
(i)
i1
, . . . , ρ

(i)
ip

}

⊂
{

ρ
(i)
1 , . . . , ρ

(i)
r

}

resp.
{

ρ
(j)
j1
, . . . , ρ

(j)
jp

}

⊂
{

ρ
(j)
1 , . . . , ρ

(j)
r

}

be the rays of σi ∩ σj in σi respectively σj, labeled in such a way

that ρ
(i)
ik

= ρ
(j)
jk

for all k = 1, . . . , p. Now let λ
(i)
1 , . . . , λ

(i)
r ∈ Z∪{∞}, λ(j)

1 , . . . , λ
(j)
r ∈

Z ∪ {∞} be such that λ
(i)
ik

= λ
(j)
jk

∈ Z for all k = 1, . . . , p and λ
(i)
n = λ

(j)
n = ∞

otherwise. Then

Fσi

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= Fσj

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

,

χσi
n

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= χσj
n

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

, ∀n = 1, . . . , r.

The morphisms of Cτ~χ(S) are described as follows. If F̂∆, Ĝ∆ are two objects, then a

morphism φ̂∆ : F̂∆ −→ Ĝ∆ is a collection of morphisms of σ-families {φ̂σi : F̂σi −→
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Ĝσi}i=1,...,l over S such that for all i, j as in (ii) one has

φσi

(
r∑

k=1

λ
(i)
k m

(

ρ
(i)
k

)
)

= φσj

(
r∑

k=1

λ
(j)
k m

(

ρ
(j)
k

)
)

.

Proof. This theorem follows from combining Proposition 1.2.8 and an obvious analogue

of Proposition 1.1.9.

Note that in the context of the above theorem, we can define the following moduli functor

C
τ
~χ : (Sch/k)o −→ Sets,

S 7→ C
τ
~χ(S) = Cτ~χ(S),

(f : S ′ −→ S) 7→ C
τ
~χ(f) = f ∗ : Cτ~χ(S) −→ Cτ~χ(S

′).

For later purposes, we need to define another moduli functor. If S is a k-scheme of

finite type, then we define Cτ,fr~χ (S) to be the full7 subcategory of Cτ~χ(S) consisting of

those objects F̂∆ with each limiting sheaf Fσi(Λ1, . . . ,Λs,∞, . . . ,∞) equal to a sheaf

of the form O⊕n(Λ1,...,Λs)
S for some n(Λ1, . . . ,Λs) ∈ Z≥0. We would like to think of the

objects of this full subcategory as framed objects. This gives rise to a moduli functor

C
τ,fr
~χ : (Sch/k)o −→ Sets.

1.2.3 GIT Quotients

Our goal is to find k-schemes of finite type corepresenting the moduli functors Mτ,ss
~χ and

Mτ,s
~χ . We will achieve this using GIT.

Let X be a nonsingular toric variety, use notation as in Theorem 1.1.10 and fix ~χ ∈

X τ . The integers A
(i)
1 ≤ B

(i)
1 , . . . , A

(i)
s ≤ B

(i)
s , A

(i)
s+1, . . . , A

(i)
r for i = 1, . . . , l in Theorem

1.1.10 of any pure equivariant sheaf E onX with support V (τ) and characteristic function

~χ are uniquely determined by ~χ (if we choose them in a maximal respectively minimal

way). Note that we have A
(1)
k = · · · = A

(l)
k =: Ak and B

(1)
k = · · · = B

(l)
k =: Bk for all

7Note that we do insist on the full subcategory, meaning we keep the notion of morphism from
the category Cτ

~χ(S). This allows us to mod out by isomorphisms and relate to GIT later (see next
subsection).
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k = 1, . . . , s, because of the gluing conditions in Theorem 1.1.10. For all A1 ≤ Λ1 ≤ B1,

. . ., As ≤ Λs ≤ Bs we define

n(Λ1, . . . ,Λs) := lim
λs+1,...,λr→∞

χσi

(
s∑

k=1

Λkm
(

ρ
(i)
k

)

+
r∑

k=s+1

λkm
(

ρ
(i)
k

)
)

,

which is independent of i = 1, . . . , l, because of the gluing conditions in Theorem 1.1.10.

For all other values of Λ1, . . . ,Λs ∈ Z, we define n(Λ1, . . . ,Λs) = 0. In general, denote

by Gr(m,n) the Grassmannian of m-dimensional subspaces of kn and by Mat(m,n)

the affine space of m × n matrices with coefficients in k. Define the following ambient

nonsingular quasi-projective variety

A =
∏

A1 ≤ Λ1 ≤ B1

· · ·

As ≤ Λs ≤ Bs

l∏

i=1

∏

m∈M

Gr (χσi(m), n(Λ1, . . . ,Λs))

×
∏

A1 ≤ Λ1 ≤ B1

· · ·

As ≤ Λs ≤ Bs

Mat(n(Λ1, . . . ,Λs), n(Λ1 + 1,Λ2 . . . ,Λs)) × · · ·

×
∏

A1 ≤ Λ1 ≤ B1

· · ·

As ≤ Λs ≤ Bs

Mat(n(Λ1, . . . ,Λs), n(Λ1, . . . ,Λs−1,Λs + 1)).

(1.7)

There is a natural closed subscheme N τ
~χ of A with closed points precisely the framed

pure ∆-families with support V (τ) and characteristic function ~χ. This closed subscheme

is cut out by requiring the various subspaces of any kn(Λ1,...,Λs) to form a multi-filtration

and by requiring the matrices between the limiting vector spaces kn(Λ1,...,Λs) to commute

and be compatible with the multi-filtrations (see Theorem 1.1.10). Using the standard

atlases of Grassmannians, it is not difficult to see that these conditions cut out a closed
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subscheme. Define the reductive algebraic group

G =
{

M ∈
∏

A1 ≤ Λ1 ≤ B1

· · ·

As ≤ Λs ≤ Bs

GL(n(Λ1, . . . ,Λs), k) | det(M) = 1
}

. (1.8)

There is a natural regular action of G on A leaving N τ
~χ invariant. Two closed points of

N τ
~χ correspond to isomorphic elements if and only if they are in the sameG-orbit. For any

choice of G-equivariant line bundle L ∈ PicG(N~χ), we get the notion of GIT (semi)stable

elements of N~χ with respect to L [MFK, Sect. 1.4]. We denote the G-invariant open

subset of GIT semistable respectively stable elements by N τ,ss
~χ respectively N τ,s

~χ . We

call a pure equivariant sheaf E on X with support V (τ) and characteristic function ~χ

GIT semistable, respectively GIT stable, if its corresponding framed pure ∆-family Ê∆ is

GIT semistable, respectively GIT stable. Using [MFK, Thm. 1.10], we obtain that there

exists a categorical quotient π : N τ,ss
~χ −→ N τ,ss

~χ //G, where N τ,ss
~χ //G is a quasi-projective

scheme of finite type over k which we denote by Mτ,ss
~χ . Moreover, there exists an open

subset U ⊂ Mτ,ss
~χ , such that π−1(U) = N τ,s

~χ and ̟ = π|N τ,s
~χ

: N τ,s
~χ −→ U = N τ,s

~χ /G

is a geometric quotient. We define Mτ,s
~χ = N τ,s

~χ /G. The fibres of closed points of

̟ are precisely the G-orbits of closed points of N τ,s
~χ , or equivalently, the equivariant

isomorphism classes of GIT stable pure equivariant sheaves on X with support V (τ) and

characteristic function ~χ. It seems natural to think of Mτ,ss
~χ and Mτ,s

~χ as moduli spaces.

Before making this more precise, we would like to make the problem more geometric.

Assume in addition X is projective and fix an ample line bundle OX(1) on X. The

natural notion of stability of coherent sheaves on X is Gieseker stability, which depends

on the choice of OX(1) [HL, Sect. 1.2].

Assumption 1.2.10. Let X be a nonsingular projective toric variety defined by a fan

∆. Let OX(1) be an ample line bundle on X and τ ∈ ∆. Then for any ~χ ∈ X τ , let

Lτ~χ ∈ PicG(N τ
~χ ) be an equivariant line bundle such that any pure equivariant sheaf E on
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X with support V (τ) and characteristic function ~χ is GIT semistable respectively GIT

stable w.r.t. Lτ~χ if and only if E is Gieseker semistable respectively Gieseker stable.

We will refer to equivariant line bundles as in this assumption as equivariant line bundles

matching Gieseker and GIT stability. So far, the author cannot prove the existence

of such equivariant line bundles in full generality. However, in subsection 1.2.5, we

will construct such (ample) equivariant line bundles for the case τ = 0, i.e. torsion

free equivariant sheaves (Theorem 1.2.22). As a by-product, for reflexive equivariant

sheaves, we can always construct particularly simple ample equivariant line bundles

matching GIT stability and µ-stability (subsection 1.3.4). For pure equivariant sheaves

of lower dimension, the existence of equivariant line bundles matching Gieseker and GIT

stability can be proved in specific examples. Note that in the classical construction of

moduli spaces of Gieseker (semi)stable sheaves, one also needs to match GIT stability of

the underlying GIT problem to Gieseker stability (see [HL, Thm. 4.3.3]).

We can now prove the following results regarding representability and corepresentabil-

ity.

Proposition 1.2.11. Let X be a nonsingular projective toric variety defined by a fan ∆.

Let OX(1) be an ample line bundle on X, τ ∈ ∆ and ~χ ∈ X τ . Then C
τ,fr
~χ is represented

by N τ
~χ . Assume we have an equivariant line bundle Lτ~χ matching Gieseker and GIT

stability. Let C
τ,ss,fr
~χ respectively C

τ,s,fr
~χ be the moduli subfunctors of C

τ,fr
~χ with Gieseker

semistable respectively geometrically Gieseker stable fibres. Then C
τ,ss,fr
~χ is represented8

by N τ,ss
~χ and C

τ,s,fr
~χ is represented by N τ,s

~χ .

Proof. Recall that for V a k-vector space of dimension n and 0 ≤ m ≤ n, one has a mod-

uli functor of Grassmannians Gr(m,V ) : (Sch/k)o −→ Sets (e.g. [HL, Exm. 2.2.2]),

where Gr(m,V )(S ) consists of quasi-coherent subsheaves E ⊂ V ⊗ OS with S-flat

cokernel of rank n − m and Gr(m,V )(f ) = f ∗ is pull-back. Let U be the sheaf of

sections of the tautological bundle U −→ Gr(m,V ), then it is not difficult to see

8In this setting, it is understood we use a choice of Lτ
~χ as in Assumption 1.2.10 to define our notion

of GIT stability and hence N τ,ss
~χ , N τ,s

~χ , Mτ,ss
~χ , Mτ,s

~χ .
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that U is a universal family. Consequently, Gr(m,V ) is represented by Gr(m,V ).

Likewise, for m,n arbitrary nonnegative integers, one has a moduli functor of matri-

ces Mat(m, n) : (Sch/k)o −→ Sets , where Mat(m, n)(S ) consists of all morphisms

φ : O⊕n
S −→ O⊕m

S and Mat(m, n)(f ) = f ∗ is pull-back. Let (xij) be a matrix of co-

ordinates on Mat(m,n). Then (xij) induces a morphism ξ : O⊕n
Mat(m,n) −→ O⊕m

Mat(m,n).

Again, it is easy to see that ξ is a universal family. Consequently, Mat(m, n) is rep-

resented by Mat(m,n). Now consider N τ
~χ as a closed subscheme of A, where A is

defined in equation (1.7). Consider the universal families on each of the components

Gr(χσi(m), n(Λ1, . . . ,Λs)) and Mat(n(Λ1, . . . ,Λs), n(Λ1, . . . ,Λi+1, . . . ,Λs)) of A. Pulling

back these universal families along projections A −→ Gr(χσi(m), n(Λ1, . . . ,Λs)) respec-

tively A −→ Mat(n(Λ1, . . . ,Λs), n(Λ1, . . . ,Λi+1, . . . ,Λs)) gives a universal family on A.

Pulling this universal family back along the closed immersion N τ
~χ →֒ A gives a universal

family of C
τ,fr
~χ . Consequently, C

τ,fr
~χ is represented by N τ

~χ . Since N τ,s
~χ ⊂ N τ,ss

~χ ⊂ N τ
~χ are

open subschemes defined by properties on the fibres, the rest is easy.

Theorem 1.2.12. Let X be a nonsingular projective toric variety defined by a fan ∆. Let

OX(1) be an ample line bundle on X, τ ∈ ∆ and ~χ ∈ X τ . Assume we have an equivariant

line bundle matching Gieseker and GIT stability. Then Mτ,ss
~χ is corepresented by the

quasi-projective k-scheme of finite type Mτ,ss
~χ . Moreover, there is an open subset Mτ,s

~χ ⊂

Mτ,ss
~χ such that Mτ,s

~χ is corepresented by Mτ,s
~χ and Mτ,s

~χ is a coarse moduli space.

Proof. Define the moduli functor

G : (Sch/k)o −→ Sets,

G(S) =
{

Φ ∈
∏

A1 ≤ Λ1 ≤ B1

· · ·

As ≤ Λs ≤ Bs

Aut
(

O⊕n(Λ1,...,Λs)
S

)

| det(Φ) = 1
}

,

G(f) = f ∗.

It is easy to see that G is naturally represented by G defined in equation (1.8). For

any S ∈ Sch/k we have a natural action of G(S) on C
τ,ss,fr
~χ (S) and a natural action of
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Hom(S,G) on Hom(S,N τ,ss
~χ ). Since we have canonical isomorphisms G ∼= Hom(−, G)

and C
τ,ss,fr
~χ

∼= Hom(−,N τ,ss
~χ ) (Proposition 1.2.11), we get an isomorphism of functors

C
τ,ss,fr
~χ /G ∼= Hom(−,N τ,ss

~χ )/Hom(−, G).

Since Mτ,ss
~χ = N τ,ss

~χ //G is a categorical quotient [HL, Def. 4.2.1], we conclude that Mτ,ss
~χ

corepresents Hom(−,N τ,ss
~χ )/Hom(−, G) and therefore C

τ,ss,fr
~χ /G. We also have obvious

natural transformations9

C
τ,ss,fr
~χ /G =

(

C
τ,ss,fr
~χ / ∼=

)

=⇒
(

C
τ,ss
~χ / ∼=

)
∼=

=⇒ M′τ,ss
~χ =⇒ Mτ,ss

~χ ,

where the first natural transformation is injective over all S ∈ Sch/k and we use Theorem

1.2.9 to obtain the isomorphism
(

C
τ,ss
~χ / ∼=

)
∼= M′τ,ss

~χ . The moduli functors M′τ,ss
~χ , Mτ,ss

~χ

have been introduced in subsection 1.2.1.

We have to show that Mτ,ss
~χ also corepresents

(

C
τ,ss
~χ / ∼=

)
∼= M′τ,ss

~χ and Mτ,ss
~χ . This

can be done by using open affine covers on which locally free sheaves respectively equivari-

ant invertible sheaves trivialise. More precisely, we know Mτ,ss
~χ corepresents

(

C
τ,ss,fr
~χ / ∼=

)

Φ :
(

C
τ,ss,fr
~χ / ∼=

)

−→ Hom(−,Mτ,ss
~χ ).

For a fixed k-scheme S of finite type, define a morphism

Φ̃S :
(

C
τ,ss
~χ / ∼=

)

(S) −→ Hom(S,Mτ,ss
~χ ),

as follows. Let [F̂∆] ∈
(

C
τ,ss
~χ / ∼=

)

(S) and let {ια : Uα →֒ S}α∈I be an open affine cover

of S on which the limiting locally free sheaves of F̂∆ (i.e. the Fσi(Λ1, . . . ,Λs,∞, . . . ,∞))

trivialise. Then [ι∗αF̂
∆] ∈

(

C
τ,ss,fr
~χ / ∼=

)

(Uα) and therefore we get a morphism Fα =

ΦUα([ι∗αF̂
∆]) : Uα −→ Mτ,ss

~χ for all α ∈ I. From the fact that Φ is a natural transforma-

9Here the symbol ∼= in the quotients refers to taking isomorphism classes in the corresponding
categories.
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tion, it is easy to see that {Fα}α∈I glues to a morphism F : S −→ Mτ,ss
~χ independent of

the choice of open affine cover. This defines Φ̃S([F̂
∆]). One readily verifies this defines

a natural transformation Φ̃ fitting in the commutative diagram

(

C
τ,ss,fr
~χ / ∼=

)

+3

Φ

��

(

C
τ,ss
~χ / ∼=

)

Φ̃s{ ooooooooooo

ooooooooooo

Hom(−,Mτ,ss
~χ ).

The fact that Mτ,ss
~χ corepresents

(

C
τ,ss,fr
~χ / ∼=

)

implies that it corepresents
(

C
τ,ss
~χ / ∼=

)
∼=

M′τ,ss
~χ too. Similarly, but easier, one proves Mτ,ss

~χ corepresents Mτ,ss
~χ .

The proof up to now also holds in the case “Gieseker stable”. By saying Mτ,s
~χ is a

coarse moduli space, we mean Mτ,s
~χ corepresents Mτ,s

~χ and Mτ,s
~χ (k) −→ Hom(k,Mτ,s

~χ )

is bijective for any algebraically closed field k of characteristic 0. This is clearly the

case since the closed points of Mτ,s
~χ are precisely the equivariant isomorphism classes of

Gieseker stable equivariant sheaves on X with support V (τ) and characteristic function

~χ.

We end this subsection by discussing how the theory developed in section 1.2 so far

generalises to the case of possibly reducible support. Again, no essentially new ideas will

occur, only the notation will become more cumbersome. Let X be a nonsingular toric

variety defined by a fan ∆. Let τ1, . . . , τa ∈ ∆ be some cones of some dimension s. Let

σ1, . . . , σl ∈ ∆ be all cones of maximal dimension having a cone τα as a face. In subsection

1.1.2, we discussed how to describe pure equivariant sheaves on X with support V (τ1)∪

· · · ∪ V (τa). We define characteristic functions of such sheaves as in Definition 1.2.1, we

denote the set of all such characteristic functions by X τ1,...,τa and we define the moduli

functors Mτ1,...,τa,ss
~χ , Mτ1,...,τa,s

~χ as in subsection 1.2.1. The obvious analogue of Theorem

1.2.9 holds. The only new condition discussed in subsection 1.1.2 is condition (1.6) in

Proposition 1.1.11. This is an open condition on matrix coefficients so it can be easily

incorporated. We can define a k-scheme of finite type N τ1,...,τa
~χ and a reductive algebraic
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group G acting regularly on it as earlier in this subsection. Performing the GIT quotients

w.r.t. an equivariant line bundle L ∈ Pic(N τ1,...,τa
~χ ) gives rise to a categorical quotient

Mτ1,...,τa,ss
~χ and a geometric quotient Mτ1,...,τa,s

~χ (both are quasi-projective schemes of

finite type over k). It is straightforward to prove the following result.

Theorem 1.2.13. Let X be a nonsingular projective toric variety defined by a fan ∆.

Let OX(1) be an ample line bundle on X, τ1, . . . , τa ∈ ∆ some cones of dimension s and

~χ ∈ X τ1,...,τa. Assume we have an equivariant line bundle matching Gieseker and GIT

stability. Then Mτ1,...,τa,ss
~χ is corepresented by the quasi-projective k-scheme of finite

type Mτ1,...,τa,ss
~χ . Moreover, there is an open subset Mτ1,...,τa,s

~χ ⊂ Mτ1,...,τa,ss
~χ such that

Mτ1,...,τa,s
~χ is corepresented by Mτ1,...,τa,s

~χ and Mτ1,...,τa,s
~χ is a coarse moduli space.

It is important to note that the moduli spaces of Theorems 1.2.12 and 1.2.13 are explicit

and combinatorial in nature and their construction is very different from the construction

of general moduli spaces of Gieseker (semi)stable sheaves, which makes use of Quot

schemes and requires boundedness results [HL, Ch. 1–4].

1.2.4 Chern Characters of Equivariant Sheaves on Toric Vari-

eties

The Hilbert polynomial of a pure equivariant sheaf on a nonsingular projective toric

variety with ample line bundle is entirely determined by the characteristic function of

that sheaf. We will prove this by a short general argument in the following proposition.

Proposition 1.2.14. Let X be a nonsingular projective toric variety defined by a fan

∆. Let OX(1) be an ample line bundle on X and let τ1, . . . , τa ∈ ∆ be some cones

of dimension s. Then the Hilbert polynomial of any pure equivariant sheaf on X with

support V (τ1) ∪ · · · ∪ V (τa) and characteristic function ~χ is the same. We refer to this

polynomial as the Hilbert polynomial associated to ~χ and denote the collection of all

characteristic functions ~χ ∈ X τ1,...,τa having the same associated Hilbert polynomial P by

X τ1,...,τa
P .
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Proof. Assume the fan ∆ lies in a lattice N of rank r. Let E be a pure equivariant

sheaf on X with support V (τ1) ∪ · · · ∪ V (τa) and characteristic function ~χ. The Hilbert

polynomial of E is the unique polynomial PE(t) ∈ Q[t] satisfying

PE(t) = χ(E ⊗ OX(t)) =
r∑

i=0

(−1)idim(H i(X, E ⊗ OX(t))),

for all t ∈ Z. Clearly, for a fixed t ∈ Z, χ(E ⊗ OX(t)) only depends on the equivariant

isomorphism class [E ] hence only on the isomorphism class [Ê∆], where Ê∆ is the pure

∆-family corresponding to E . Note that χ(E ⊗ OX(t)) does not vary if we vary the

module structure of E [Har1, Prop. III.2.6]. The module structure of E is encoded in the

k-linear maps χσi

1 (~λ), . . . , χσi
r (~λ), where i = 1, . . . , l and ~λ ∈ Zr ∼= M . Here σ1, . . . , σl

are all cones of maximal dimension having a τα (α = 1, . . . , a) as a face. Therefore,

χ(E ⊗ OX(t)) can only depend on the dimensions of the weight spaces of Ê∆, i.e. only

on ~χ.

The fact that the Hilbert polynomial of a pure equivariant sheaf on a nonsingular

projective toric variety with ample line bundle is entirely determined by the characteristic

function of that sheaf can be made more specific by using a formula due to Klyachko.

Klyachko gives an explicit formula for the Chern character of a torsion free equivariant

sheaf on a nonsingular toric variety [Kly4, Sect. 1.2, 1.3]. We will now discuss Klyachko’s

Formula. The reader has to be aware of the fact that we follow Perling’s convention of

ascending directions for the maps of σ-families, as opposed to Klyachko’s convention of

descending directions. This results in some minus signs compared to Klyachko’s formulae.

Definition 1.2.15. Let {E(λ1, . . . , λr)}(λ1,...,λr)∈Zr be a collection of finite-dimensional

k-vector spaces. For each i = 1, . . . , r, we define a Z-linear operator ∆i on the free

abelian group generated by the vector spaces {E(λ1, . . . , λr)}(λ1,...,λr)∈Zr determined by

∆iE(λ1, . . . , λr) = E(λ1, . . . , λr) − E(λ1, . . . , λi−1, λi − 1, λi+1, . . . , λr),
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for any λ1, . . . , λr ∈ Z. This allows us to define [E](λ1, . . . , λr) = ∆1 · · ·∆rE(λ1, . . . , λr)

for any λ1, . . . , λr ∈ Z. One can then define dimension dim as a Z-linear operator on

the free abelian group generated by the vector spaces {E(λ1, . . . , λr)}(λ1,...,λr)∈Zr in the

obvious way. It now makes sense to consider dim([E](λ1, . . . , λr)) for any λ1, . . . , λr ∈ Z.

For example

dim([E](λ)) = dim(E(λ)) − dim(E(λ− 1)),

dim([E](λ1, λ2)) = dim(E(λ1, λ2)) − dim(E(λ1 − 1, λ2)) − dim(E(λ1, λ2 − 1))

+ dim(E(λ1 − 1, λ2 − 1)),

for any λ, λ1, λ2 ∈ Z. ⊘

Proposition 1.2.16 (Klyachko’s Formula). Let X be a nonsingular quasi-projective toric

variety with fan ∆ in a lattice N of rank r. Let σ1, . . . , σl ∈ ∆ be the cones of dimension

r and for each i = 1, . . . , l, let
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of σi. Let τ1, . . . , τa ∈ ∆ be

some cones of dimension s. Then for any pure equivariant sheaf E on X with support

V (τ1) ∪ · · · ∪ V (τa) and corresponding pure ∆-family Ê∆, we have

ch(E) =
∑

σ∈∆, ~λ∈Zdim(σ)

(−1)codim(σ)dim([Eσ](~λ)) exp



−
∑

ρ∈σ(1)

〈~λ, n(ρ)〉V (ρ)



 .

In this proposition, σ(1) means the collection of rays of σ. Likewise, we denote the

collection of all rays of ∆ by ∆(1). Any cone σ ∈ ∆ is a face of a cone σi of di-

mension r. Assume σ has dimension t. Let Êσ denotes the σ-family corresponding

to the equivariant coherent sheaf E|Uσ . Note that if σ has no τα as a face, E|Uσ = 0

and E|Uσ is pure equivariant otherwise by Propositions 1.1.3, 1.1.9. Let
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of σi, with first integral lattice points
(

n
(

ρ
(i)
1

)

, . . . , n
(

ρ
(i)
r

))

, and let

without loss of generality
(

ρ
(i)
1 , . . . , ρ

(i)
t

)

⊂
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of σ. Then

Eσ(λ1, . . . , λt) = Eσi(λ1, . . . , λt,∞, . . . ,∞) for all λ1, . . . , λt ∈ Z by Proposition 1.1.9.

Although Klyachko’s Formula as presented in this proposition was originally stated for
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torsion free equivariant sheaves on nonsingular toric varieties only [Kly4, Sect. 1.2, 1.3],

it holds for pure equivariant sheaves on nonsingular quasi-projective toric varieties in

general. This can be seen by noting that any equivariant coherent sheaf on a nonsingu-

lar quasi-projective toric variety admits a finite locally free equivariant resolution ([CG,

Prop. 5.1.28]) and applying Klyachko’s Formula to the resolution. Finally, note that

Proposition 1.2.14 now follows from Klyachko’s Formula (Proposition 1.2.16) and the

Hirzebruch–Riemann–Roch Theorem [Har1, Thm. A.4.1].

We end this subsection by proving a combinatorial result we will use in the next

subsection. As a nice aside, applying this combinatorial result for s = 1 to the above

proposition, we recover a simple formula for the first Chern class due to Klyachko [Kly4,

Sect. 1.2, 1.3].

Proposition 1.2.17. Let ∆ be a simplicial fan in a lattice N of rank r with support

|∆| = N ⊗Z R. Let τ ∈ ∆ be a cone of dimension s. Then

(−1)r−s
r−s∑

a=0

(−1)a#{σ ∈ ∆ | τ ≺ σ and dim(σ) = a+ s} = 1.

Proof. Choose a basis for N ⊗Z R such that the first s basis vectors generate τ and let

N ⊗Z R be endowed with the standard inner product. Let x be in the relative interior of

τ and fix ǫ > 0. Define a normal space Nxτ ∼= Rr−s to τ at x and a sphere Sr−s−1 ⊂ Nxτ

using the standard inner product

Nxτ = {x+ v | v ⊥ τ}, Sr−s−1 = {x+ v | v ⊥ τ, |v| = ǫ}.

By definition, the union of all cones of ∆ is N ⊗Z R. Choosing ǫ > 0 sufficiently small

{σ ∩ Sr−s−1 | σ ∈ ∆, τ ≺ σ, dim(σ) > s},

forms a triangulation of Sr−s−1. Therefore

r−s∑

a=1

(−1)a−1#{σ ∈ ∆ | τ ≺ σ and dim(σ) = a+ s} = e(Sr−s−1),
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where e(Sr−s−1) is the Euler characteristic of Sr−s−1 [Mun, Sect. 22], which satisfies

e(Sr−s−1) = 0 when r− s is even and e(Sr−s−1) = 2 when r− s is odd [Mun, Thm. 31.8].

Corollary 1.2.18. Let X be a nonsingular projective toric variety with fan ∆ in a lattice

N of rank r. Let σ1, . . . , σl ∈ ∆ be the cones of dimension r and for each i = 1, . . . , l, let
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of σi. Let τ1, . . . , τa ∈ ∆ be some cones of dimension s. Then

for any pure equivariant sheaf E on X with support V (τ1)∪· · ·∪V (τa) and corresponding

pure ∆-family Ê∆, we have

c1(E) = −
∑

ρ∈∆(1), λ∈Z

λ dim([Eρ](λ))V (ρ).

Proof. Using Klyachko’s Formula (Proposition 1.2.16), we obtain

c1(E) = −
∑

σ∈∆, ~λ∈Zdim(σ)

∑

ρ∈σ(1)

(−1)codim(σ)dim([Eσ](~λ))〈~λ, n(ρ)〉V (ρ)

= −
∑

ρ∈∆(1)

∑

λ∈Z

∑

ρ≺σ∈∆

(−1)codim(σ)λ dim([Eρ](λ))V (ρ).

The corollary follows from applying Proposition 1.2.17 with τ = ρ ∈ ∆(1) and s = 1.

1.2.5 Matching Stability

In this subsection, we will prove the existence of ample equivariant line bundles matching

Gieseker and GIT stability for torsion free equivariant sheaves on nonsingular projec-

tive toric varieties (Theorem 1.2.22). Along the way, we derive a number of important

preparatory results as well as some results which are interesting on their own.

As we have seen in Proposition 1.1.5, for a G-equivariant coherent sheaf, it is enough

to test purity just for G-equivariant coherent subsheaves. It is natural to ask whether

an analogous property holds for Gieseker stability.
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Proposition 1.2.19. Let X be a projective variety with ample line bundle OX(1). Let G

be an affine algebraic group acting regularly on X. Let E be a pure G-equivariant sheaf on

X. Then E is Gieseker semistable if and only if pF ≤ pE for any proper G-equivariant

coherent subsheaf F . Now assume G = T is an algebraic torus. Then E is Gieseker

stable if and only if pF < pE for any proper equivariant coherent subsheaf F .

Proof. The statement on Gieseker semistability is clear by noting that the Harder–

Narasimhan filtration of E is G-equivariant. For the definition of the Harder–Narasimhan

filtration see [HL, Def. 1.3.2]. Now assume G = T is an algebraic torus and for any proper

equivariant coherent subsheaf F ⊂ E one has pF < pE . We have to prove E is Gieseker

stable. Since E is clearly Gieseker semistable, it contains a unique nontrivial maximal

Gieseker polystable subsheaf S with the same reduced Hilbert polynomial as E . The sheaf

S is called the socle of E [HL, Lem. 1.5.5]. Because of uniqueness, S is an equivariant

coherent subsheaf hence E = S. Therefore, there are n ∈ Z>0 mutually non-isomorphic

Gieseker stable sheaves E1, . . . , En, positive integers m1, . . . ,mn and an isomorphism of

coherent sheaves θ :
⊕n

i=1 E
⊕mi

i

∼=
−→ E . Clearly, pE1 = · · · = pEn = pE . We claim that

each Ei is isomorphic to an equivariant coherent subsheaf of E . This would prove the

proposition. We proceed in two steps. First we show Ei a priori admits an equivariant

structure for each i = 1, . . . , n. Subsequently, we use representation theory of the alge-

braic torus T . Denote by Φ the equivariant structure on E , by σ : T × X −→ X the

regular action of T on X, by p2 : T ×X −→ X projection and by Tcl the set of closed

points of T .

We claim each Ei admits an equivariant structure. By Proposition 1.3.4 of subsection

1.3.2, it is enough to prove Ei is invariant, i.e. σ∗Ei ∼= p∗2Ei. By Propositions 1.3.2, 1.3.3

of subsection 1.3.1, this is equivalent to t∗Ei ∼= Ei for all t ∈ Tcl. Note that we use G = T

is an algebraic torus. We now prove t∗Ei ∼= Ei for any i = 1, . . . , n, t ∈ Tcl. Since each Ei

is indecomposable, the Krull–Schmidt property of the category of coherent sheaves on X

[Ati, Thm. 2] implies for any i = 1, . . . , n and t ∈ Tcl there is an isomorphism t∗Ei ∼= Ej
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for some j = 1, . . . , n. Note that for i, j = 1, . . . , n we have [HL, Prop. 1.2.7]

Hom(Ei, Ej) =







k if i = j

0 otherwise.

Fix i = 1, . . . , n and define Γj = {t ∈ Tcl | t
∗Ei ∼= Ej} for each j = 1, . . . , n. Each Γj can

be written as

Γj = {t ∈ Tcl | dim(Hom(t∗Ei, Ej)) ≥ 1},

by using the fact that any morphism between Gieseker stable sheaves with the same

reduced Hilbert polynomial is zero or an isomorphism [HL, Prop. 1.2.7]. We deduce each

Γj is a closed subset by a semicontinuity argument. But each Γj is also open, because its

complement is the disjoint union
∐

k 6=j Γk. Connectedness of Tcl implies Tcl = Γi, since

1 ∈ Γi. Therefore, we obtain an equivariant structure Ψ(i) on Ei for each i = 1, . . . , n.

Fix i = 1, . . . , n. Using θ, we obtain Hom(Ei, E) ∼= k⊕mi and any nonzero element of

Hom(Ei, E) is injective. The equivariant structures Φ, Ψ(i) give us a regular representation

of Tcl

Tcl × Hom(Ei, E) −→ Hom(Ei, E),

t · f = Φ−1
1 ◦ Φt−1 ◦ (t−1)∗(f) ◦ Ψ

(i)−1

t−1 ◦ Ψ
(i)
1 ,

where we define Φt = i∗tΦ, Ψ
(i)
t = i∗tΨ

(i) using the natural morphism it : X −→ T × X

for any t ∈ Tcl. Now use that we are dealing with an algebraic torus T to deduce

there are 1-dimensional k-vector spaces V
(i)
1 = k · v(i)

1 , . . ., V
(i)
mi = k · v(i)

mi and characters

χ
(i)
1 , . . . , χ

(i)
mi ∈ X(T ) such that (Complete Reducibility Theorem [Per1, Thm. 2.30])

Hom(Ei, E) = V
(i)
1 ⊕ · · · ⊕ V (i)

mi
,

t · v(i)
a = χ(i)

a (t) · v(i)
a , ∀t ∈ Tcl ∀a = 1, . . . ,mi.

Redefine χ̃
(i)
a (−) = χ

(i)
a ((−)−1) ∈ X(T ), ṽ

(i)
a = Φ1◦v

(i)
a ◦Ψ

(i)−1
1 ∈ Hom(Ei, E)\0 and define
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Ψ̃
(i)
a to be the equivariant structure on ṽ

(i)
a (Ei) induced by Ψ(i) for all a = 1, . . . ,mi. We

deduce

E ∼=

n⊕

i=1

(

ṽ
(i)
1 (Ei) ⊕ · · · ⊕ ṽ(i)

mi
(Ei)
)

,

and the equivariant structure Φ induces an equivariant structure on each ṽ
(i)
a (Ei), denoted

by Φ|
ṽ
(i)
a (Ei)

such that

Φ|
ṽ
(i)
a (Ei)

= O(χ̃(i)
a ) ⊗ Ψ̃(i)

a , ∀i = 1, . . . , n ∀a = 1, . . . ,mi,

where O(χ̃
(i)
a ) is the equivariant structure induced by the character χ̃

(i)
a .

As an exercise, we prove the following proposition matching Gieseker and GIT sta-

bility for torsion free equivariant sheaves of rank r = 2 on nonsingular projective toric

varieties of dimension d = 2. Although we will generalise this proposition to any r, d later

(Theorem 1.2.22), its proof is nevertheless instructive because of its explicit nature10.

Proposition 1.2.20. Let X be a nonsingular complete toric surface with ample divisor

H. Let ~χ ∈ X 0 be the characteristic function of a rank 2 torsion free equivariant sheaf

on X. Then there exists an ample equivariant line bundle L0
~χ ∈ Pic(N 0

~χ) such that

any torsion free equivariant sheaf E on X with characteristic function ~χ is Gieseker

semistable resp. Gieseker stable if and only if E is GIT semistable resp. properly11 GIT

stable w.r.t. L0
~χ.

Proof. We consider X a nonsingular complete toric surface with ample divisor H (cor-

responding to an ample line bundle OX(1)) and ~χ ∈ X 0 the characteristic function of a

rank 2 torsion free sheaf on X. Let E be a rank 2 torsion free equivariant sheaf on X

with characteristic function ~χ. We use the notation of subsection 2.2.1. Denoting the

corresponding framed torsion free ∆-family by Ê∆, subsection 2.2.1 introduces integers

10In this proposition, we work over ground field C, as we do in chapter 2. In the proof of the
proposition, we use the notation introduced in subsection 2.2.1. We identify A2(X) ∼= H4(X, Z) ∼= Z.

11Since we want to apply [Dol, Thm. 11.1] and the notion of GIT stable points in [Dol] corresponds
to the notion of properly GIT stable points in [MFK] (compare [Dol, Sect. 8.1] and [MFK, Def. 1.8]), we
match “Gieseker stable” with “properly GIT stable”. Note that the results of section 1.2 so far continue
to hold analogously in this setting.
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Ai ∈ Z, ∆i = ∆i(1) ∈ Z≥0, 2D partitions πi(1), πi(2) and elements pi = pi(1) ∈ P1

for all i = 1, . . . , N . We want to compute the Hilbert polynomial PE(t) of E . For all

i = 1, . . . , N , we introduce further elements p
(1)
i,i+1, . . . , p

(αi,i+1)
i,i+1 ∈ P1, which correspond to

the 1-dimensional subspaces “in the corners” of the double-filtrations as indicated in the

following diagram.

____________

�
�
�

_ _

�
�

_ _

�
�
�

_ _

�
�

_ _ _ _ _

�
�
�

_ _

�
�

_ _

�
�
�
�
�
�
�
�
�
�

∆i

∆i+1

•
(Ai, Ai+1)

. . .

pi

p
(1)
i

p
(αi,i+1−1)
i

p
(αi,i+1)
i

pi+1

0

2
1

1

1

1

1

Note that αi,i+1 ∈ Z≥0. In Proposition 2.2.2 of subsection 2.2.1, we give a formula for

the Chern character ch(E) of E in terms of the Ai ∈ Z, ∆i ∈ Z≥0 and number of blocks

#πi(1), #πi(2) of the 2D partitions πi(1), πi(2) (i = 1, . . . , N). Now write the ample

line bundle as OX(1) ∼= OX(α3D3 + · · · + αNDN), where α3, . . . , αN are certain integers

and define α1 = α2 = 0 (see subsection 2.2.1 for the notation). Then for any t ∈ Z

ch(OX(t)) = 1 +
N∑

i=1

tαiDi +
1

2

(
N∑

i=1

tαiDi

)2

.
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Using the Euler sequence

0 −→ O⊕(N−2)
X −→

N⊕

i=1

OX(Di) −→ TX −→ 0,

for the tangent bundle TX of X and using the expression for the Todd class in terms of

the Chern class [Har1, App. A], we obtain

td(TX) = 1 +
1

2

N∑

i=1

Di +
1

12

(

3N −
N∑

i=1

ai

)

pt

= 1 +
1

2

N∑

i=1

Di + pt.

Here we use [Ful, Sect. 2.5] in order to obtain the second equality. Combining Proposition

2.2.2, the Hirzebruch–Riemann–Roch Theorem [Har1, Thm. A.4.1] and the expression

for td(TX), one can compute the Hilbert polynomial

PE(t) =

(
N∑

i=1

αiDi

)2

t2 +

[(
N∑

i=1

αiDi

)(
N∑

i=1

Di

)

−

(
N∑

i=1

αiDi

)(
N∑

i=1

(2Ai + ∆i)Di

)]

t

−
1

2

(
N∑

i=1

Di

)(
N∑

i=1

(2Ai + ∆i)Di

)

+
1

2

(
N∑

i=1

AiDi

)2

+
1

2

(
N∑

i=1

(Ai + ∆i)Di

)2

+ 2 −
N∑

i=1

(#πi(1) + #πi(2)).

For each component χσi of the characteristic function, there are two possibilities. Either

the shape of χσi is such that necessarily pi = pi+1, because they are connected (in

particular ∆i > 0 and ∆i+1 > 0), which we symbolically represent by:

_________

�
�
�
�
�
�
�
�
�

type 1
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Or this is not the case, which we symbolically represent by:

_________

�
�
�
�
�
�
�
�

type 2

where we allow ∆i = 0 or ∆i+1 = 0. Suppose χσi is of type 2. Then we introduce

non-negative integers Mi,i+1, Ni,i+1, mi,i+1, ni,i+1, αi,i+1, q
(1)
i,i+1, . . ., q

(αi,i+1)
i,i+1 giving the

area of the various regions of χσi as indicated in the following diagram.

____________

�
�
�

_ _

�
�

_ _

�
�
�

_ _

�
�

_ _ _ _ _

�
�
�

_ _

�
�

_ _

�
�
�
�
�
�
�
�
�
�

∆i

∆i+1

•
(Ai, Ai+1)

. . .

q
(1)
i

q
(αi,i+1−1)
i

q
(αi,i+1)
i

mi,i+1

ni,i+1

∆i∆i+1

Mi,i+1

Ni,i+1

Note that

#πi(1) = ∆i∆i+1 +Mi,i+1 +Ni,i+1 + #πi(2) −mi,i+1 − ni,i+1 −

αi,i+1∑

j=1

q
(j)
i,i+1.
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Now let 0 6= W ( C⊕2 be a 1-dimensional linear subspace. Let F̂∆
W = Ê∆ ∩W be the

corresponding torsion free ∆-family. Let FW be the corresponding equivariant coherent

subsheaf of E . Let πW1 , . . . , π
W
N be the 2D partitions corresponding to the torsion free

∆-family F̂∆
W . Proceeding similarly to before, one can compute

PFW
(t) =

1

2

(
N∑

i=1

αiDi

)2

t2 +

[

1

2

(
N∑

i=1

αiDi

)(
N∑

i=1

Di

)

−

(
N∑

i=1

αiDi

)(
N∑

i=1

(Ai + (1 − dim(pi ∩W ))∆i)Di

)]

t

+ 1 −
1

2

(
N∑

i=1

Di

)(
N∑

i=1

(Ai + (1 − dim(pi ∩W ))∆i)Di

)

+
1

2

(
N∑

i=1

(Ai + (1 − dim(pi ∩W ))∆i)Di

)2

−
N∑

i=1

#πWi .

Here for any i = 1, . . . , N

#πWi = #πi(1)dim(pi ∩W ) + #πi(2)(1 − dim(pi ∩W )),

if χσi is of type 1 and

#πWi =∆i∆i+1dim(pi ∩W )dim(pi+1 ∩W ) +Mi,i+1dim(pi ∩W ) +Ni,i+1dim(pi+1 ∩W )

+ #πi(2) −mi,i+1dim(pi ∩W ) − ni,i+1dim(pi+1 ∩W )

−

αi,i+1∑

j=1

q
(j)
i,i+1dim(p

(j)
i,i+1 ∩W ),

if χσi is of type 2. Before we continue, we make two remarks regarding positivity.

Firstly, since the leading coefficient of any Hilbert polynomial is positive, we deduce that
(
∑N

i=1 αiDi

)2

> 0. Secondly, using the definition of degree of a coherent sheaf [HL,

Def. 1.2.11] and the Nakai–Moishezon Criterion [Har1, Thm. A.5.1], we deduce that for

any j = 1, . . . , N

deg(Dj) := deg(OX(Dj)) =

(
N∑

i=1

αiDi

)

Dj > 0.
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Suppose all χσi are of type 2. The general case can be treated similarly. Since we are

dealing with rank 2 sheaves dim(pi∩W )2 = dim(pi∩W ) for all i = 1, . . . , N . Also recall

the intersection numbers D2
i = −ai pt for all i = 1, . . . , N discussed in subsection 2.2.1.

Using Proposition 1.2.19, we deduce that E is Gieseker semistable (resp. Gieseker stable)

if and only if for any linear subspace 0 6= W ( C⊕2 and t≫ 0

0 ≤(resp. <)

(
N∑

i=1

αiDi

)2

(pE(t) − pFW
(t))

=
N∑

i=1

(
1

2
− dim(pi ∩W )

){

deg(Di)∆it−Mi,i+1 −Ni−1,i +mi,i+1 + ni−1,i

+

(

1 −
1

2
ai − Ai+1 + aiAi − Ai−1

)

∆i +

(

−∆i+1 +
1

2
ai∆i − ∆i−1

)

∆i

}

+
N∑

i=1

αi,i+1∑

j=1

(
1

2
− dim(p

(j)
i,i+1 ∩W )

)

q
(j)
i,i+1.

Note that N 0
~χ =

∏N
i=1 P1 ×

∏N
i=1

∏αi,i+1

j=1 P1, where one omits the ith copy of P1 in the

first product if ∆i = 0. The framed torsion free ∆-family Ê∆ corresponds to the closed

point (pi; p
(j)
i,i+1)i=1,...,N,j=1,...,αi,i+1

. Equivariant line bundles on N 0
~χ (up to equivariant

isomorphism) correspond to arbitrary sequences of integers (ki; k
(j)
i,i+1)i=1,...,N,j=1,...,αi,i+1

and such an equivariant line bundle is ample if and only if all the integers are positive

[Dol, Lem. 11.1, Sect. 11.1]. Choose an integer R ≫ 0 and define the ample equivariant

line bundle L0
~χ by

ki =deg(Di)∆iR−Mi,i+1 −Ni−1,i +mi,i+1 + ni−1,i

+

(

1 −
1

2
ai − Ai+1 + aiAi − Ai−1

)

∆i +

(

−∆i+1 +
1

2
ai∆i − ∆i−1

)

∆i,

k
(j)
i,i+1 =q

(j)
i,i+1,

where i = 1, . . . , N , j = 1, . . . , αi,i+1. The notion of GIT stability determined by such

an ample equivariant line bundle is made explicit in [Dol, Thm. 11.1]. Using [Dol,

Thm. 11.1], we see that the point (pi; p
(j)
i,i+1)i=1,...,N,j=1,...,αi,i+1

is GIT semistable w.r.t. L0
~χ
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(resp. properly GIT stable w.r.t. L0
~χ) if and only if for any linear subspace 0 6= W ( C⊕2

N∑

i=1

kidim(pi∩W )+
N∑

i=1

αi,i+1∑

j=1

k
(j)
i,i+1dim(p

(j)
i,i+1 ∩W ) ≤ (resp. <)

1

2

N∑

i=1

ki +
1

2

N∑

i=1

αi,i+1∑

j=1

k
(j)
i,i+1.

By choosing R ≫ 0, we see that E is Gieseker semistable (resp. Gieseker stable) if

and only if E is GIT semistable w.r.t. L0
~χ (resp. properly GIT stable w.r.t L0

~χ). This

establishes the proof in the case χσi is of type 2 for all i = 1, . . . , N . The general case

works in a similar way.

The following proposition relates µ-stability and GIT stability of torsion free equiv-

ariant sheaves on nonsingular projective toric varieties. Although we do not need this

proposition for the proof of Theorem 1.2.22, which matches Gieseker and GIT stability

for torsion free equivariant sheaves on nonsingular projective toric varieties in general, the

proof is instructive. Moreover, the ample equivariant line bundles L0,µ
~χ constructed in the

proof are of a particularly simple form as opposed to the more complicated ample equiv-

ariant line bundles L0
~χ matching Gieseker and GIT stability of Proposition 1.2.20 and

Theorem 1.2.22. Furthermore, the reasoning in the proof will be used later to construct

particularly simple ample equivariant line bundles matching µ-stability and GIT stabil-

ity for reflexive equivariant sheaves on nonsingular projective toric varieties (subsection

1.3.4). Recall that a torsion free sheaf E on a nonsingular projective variety X with am-

ple line bundle OX(1) is µ-semistable, resp. µ-stable, if µF ≤ µE , resp. µF < µE , for any

coherent subsheaf F ⊂ E with 0 < rk(F) < rk(E) [HL, Def. 1.2.12]. Denoting the Hilbert

polynomial of E by PE(t) =
∑n

i=0
αi(E)
i!
ti, where n = dim(X), the rank of E is defined to

be rk(E) = αn(E)
αn(OX)

, the degree of E is defined to be deg(E) = αn−1(E)−αn−1(OX) · rk(E)

and the slope of E is defined to be µE = deg(E)
rk(E)

[HL, Def. 1.2.2, 1.2.11].

Proposition 1.2.21. Let X be a nonsingular projective toric variety and let OX(1) be an

ample line bundle on X. Then for any ~χ ∈ X 0, there is an ample equivariant line bundle

L0,µ
~χ ∈ PicG(N 0

~χ), such that any torsion free equivariant sheaf E on X with characteristic
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function ~χ satisfies

E is µ-stable =⇒ E is properly GIT stable w.r.t. L0,µ
~χ =⇒ E is µ-semistable.

Proof. We note that if E is a torsion free equivariant sheaf on X, then E is µ-semistable if

and only if for any equivariant coherent subsheaf F ⊂ E with 0 < rk(F) < rk(E) we have

µ(F) ≤ µ(E). This can be seen by noting that the Harder–Narasimhan filtration of E is

equivariant. As an aside: note that we do not prove E is µ-stable if and only if for any

equivariant coherent subsheaf F ⊂ E with 0 < rk(F) < rk(E) we have µ(F) < µ(E). We

will prove this in the case E is reflexive in Proposition 1.3.13 of subsection 1.3.4. For E

torsion free equivariant, the problem is that if µ(F) < µ(E) for any equivariant coherent

subsheaf F ⊂ E with 0 < rk(F) < rk(E), then indeed E is µ-semistable and has a µ-

Jordan–Hölder filtration [HL, Sect. 1.6], but the graded object grJH(E) is only unique in

codimension 1 [HL, Sect. 1.6]. Consequently, in the case of µ-stability, we cannot mimic

the proof of Proposition 1.2.19, which uses the socle of E and its uniqueness.

LetX be defined by a fan ∆ in a latticeN of rank r. Let E be a torsion free equivariant

sheaf on X with characteristic function ~χ and corresponding framed torsion free ∆-family

Ê∆. Assume E has rank M (we can assume M ≥ 2 otherwise the proposition is trivial).

Then Ê∆ consists of multi-filtrations {Eσi(~λ)}~λ∈Zr of k⊕M , for each i = 1, . . . , l, such

that each multi-filtration reaches k⊕M (see Theorem 1.1.10 and use the notation of this

theorem). Moreover, for each i = 1, . . . , l, there are integers A
(i)
1 , . . . , A

(i)
r such that

Eσi(~λ) = 0 unless A
(i)
1 ≤ λ1, . . ., A

(i)
r ≤ λr (let A

(i)
1 , . . . , A

(i)
r be maximally chosen with

this property). These multi-filtrations satisfy certain gluing conditions (see Theorem

1.1.10). Let (ρ1, . . . , ρN) be all rays and let A1, . . . , AN be the corresponding integers

among the A
(i)
j (this makes sense because of the gluing conditions). Fix j = 1, . . . , N

and let σi be some cone of maximal dimension having ρj as a ray. Let
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be
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the rays of σi and let ρ
(i)
k = ρj. Consider the filtration

{βλ}λ∈Z =






lim

λk→λ

λ1,...,λk−1,λk+1...,λr→∞

Eσi

(
r∑

α=1

λαm(ρα)

)






λ∈Z

,

of k⊕M . Define integers ∆j(1),∆j(2), . . . ,∆j(M − 1) ∈ Z≥0 and elements pj(1) ∈

Gr(1,M), pj(2) ∈ Gr(2,M), . . ., pj(M − 1) ∈ Gr(M − 1,M), such that the filtration

changes value as follows

βλ =







0 if λ < Aj

pj(1) ∈ Gr(1,M) if Aj ≤ λ < Aj + ∆j(1)

pj(2) ∈ Gr(2,M) if Aj + ∆j(1) ≤ λ < Aj + ∆j(1) + ∆j(2)

. . . . . .

k⊕M if Aj + ∆j(1) + ∆j(2) + · · · + ∆j(M − 1) ≤ λ.

Note that ∆j(k) = 0 is allowed. These definitions are independent of the cone σi chosen,

because of the gluing conditions. Denote the toric divisor V (ρj) corresponding to the

ray ρj by Dj. Using the formula for first Chern class of Corollary 1.2.18, we easily obtain

ch(E) = M−
N∑

j=1

(MAj + (M − 1)∆j(1) + (M − 2)∆j(2) + · · · + ∆j(M − 1))Dj +O(2),

where O(2) means terms of degree ≥ 2 in the Chow ring A(X) ⊗Z Q. Using the Euler

sequence

0 −→ O⊕(N−r)
X −→

N⊕

j=1

OX(Dj) −→ TX −→ 0,

for the tangent bundle TX of X and using the expression of the Todd class in terms of

the Chern class [Har1, App. A], we obtain

td(TX) = 1 +
1

2

N∑

j=1

Dj +O(2).
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Now c1(OX(1)) =
∑N

j=1 αjDj for some integers αj, since D1, . . . , DN generate A1(X)

[Ful, Sect. 5.2]. Consequently,

ch(OX(t)) =
1

r!

(
N∑

j=1

αjDj

)r

tr +
1

(r − 1)!

(
N∑

j=1

αjDj

)r−1

tr−1 + · · · .

From the Hirzebruch–Riemann–Roch Theorem [Har1, Thm. A.4.1], we obtain the two

leading terms of the Hilbert polynomial of E

PE(t) =
M

r!
deg

{(
N∑

j=1

αjDj

)r}

r

tr +
1

(r − 1)!
deg







M

2

(
N∑

j=1

αjDj

)r−1( N∑

j=1

Dj

)

−

(
N∑

j=1

αjDj

)r−1( N∑

j=1

[

MAj +
M−1∑

k=1

(M − k)∆j(k)

]

Dj

)






r

tr−1 + · · · ,

where · · · means terms of degree < r − 1 in t, {−}r denotes the component of degree r

in A(X)⊗Z Q and deg : Ar(X)⊗Z Q −→ Q is the degree map. Let 0 6= W ⊂ k⊕M be an

m-dimensional subspace and let F̂∆ = Ê∆ ∩W ⊂ Ê∆ be the corresponding torsion free

∆-family. Let FW ⊂ E be the corresponding equivariant coherent subsheaf. Analogous

to the previous reasoning, one computes the two leading terms of the Hilbert polynomial

of FW to be

PFW
(t) =

m

r!
deg

{(
N∑

j=1

αjDj

)r}

r

tr +
1

(r − 1)!
deg







m

2

(
N∑

j=1

αjDj

)r−1( N∑

j=1

Dj

)

−

(
N∑

j=1

αjDj

)r−1( N∑

j=1

[

mAj +
M−1∑

k=1

(m− dim(pj(k) ∩W )) ∆j(k)

]

Dj

)






r

tr−1 + · · · ,

where the term on the second line can be straightforwardly derived by using induction on

M . Before we continue, we make two remarks regarding positivity. Firstly, since the lead-

ing coefficient of any Hilbert polynomial is positive, we deduce deg
{(
∑N

j=1 αjDj

)r}

r
>

0. Secondly, using the definition of degree of a coherent sheaf [HL, Def. 1.2.11] and the
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Nakai–Moishezon Criterion [Har1, Thm. A.5.1], we deduce that for any j = 1, . . . , N

deg(Dj) := deg(OX(Dj)) = deg







(
N∑

k=1

αkDk

)r−1

Dj







r

> 0.

Combining our results so far and using the definition of slope of a coherent sheaf [HL,

Def. 1.2.11], we obtain that E is µ-semistable if and only if for any subspace 0 6= W ( k⊕M

we have

N∑

j=1

M−1∑

k=1

∆j(k) deg(Dj) dim(pj(k) ∩W ) ≤
dim(W )

M

N∑

j=1

M−1∑

k=1

∆j(k) deg(Dj) dim(pj(k)).

We are now ready to prove the proposition. Let ~χ ∈ X 0 be arbitrary. From ~χ we read

off the integers Aj, the rank M (we assume M ≥ 2 otherwise the proposition is trivial)

and the non-negative integers ∆j(k) ∈ Z. Without loss of generality, we can assume not

all ∆j(k) = 0 (otherwise there are no µ-stable torsion free equivariant sheaves on X with

characteristic function ~χ and the proposition is trivial). In subsection 1.2.3, we defined

the closed subscheme12

N 0
~χ ⊂ A′ =

N∏

j=1

M−1∏

k=1

Gr(k,M) ×
a∏

α=1

Gr(nα,M).

Here a ∈ Z≥0 and 0 < n1, . . . , na < M are some integers. A closed point of N 0
~χ is of the

form (pj(k); qα)j=1,...,N,k=1,...,M−1,α=1,...,a, where there are certain compatibilities among

the pj(k), qα dictated by the shape of ~χ. An equivariant line bundle L0,µ′
~χ on A′ (up to

equivariant isomorphism) is of the form (κjk;κα)j=1,...,N,k=1,...,M−1,α=1,...,a, where κjk, κα

can be any integers [Dol, Lem. 11.1]. Such an equivariant line bundle is ample if and

only if all κjk, κα > 0 [Dol, Sect. 11.1]. The notion of GIT stability determined by

such an ample equivariant line bundle is made explicit in [Dol, Thm. 11.1]. Suppose

a = 0. Choose κjk = ∆j(k) deg(Dj) for all j, k and L0,µ
~χ = L0,µ′

~χ |N 0
~χ
. The proposition

12To be be precise: for those ∆j(k) which are zero, the corresponding term Gr(k,M) in the product
of A′ should be left out.
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now follow easily from [Dol, Thm. 11.1] and [MFK, Thm. 1.19]. Now assume a > 0. Let

R be a positive integer satisfying 0 <
∑a

α=1
nα

R
< 1

M2 . Choose κjk = ∆j(k) deg(Dj)R

and κα = 1 for all j, k, α. Note that any µ-stable torsion free equivariant sheaf on X

with characteristic function ~χ and corresponding framed torsion free ∆-family defined

by (pj(k); qα)j=1,...,N,k=1,...,M−1,α=1,...,a satisfies

dim(W )

M

N∑

j=1

M−1∑

k=1

∆j(k) deg(Dj) dim(pj(k))−
N∑

j=1

M−1∑

k=1

∆j(k) deg(Dj) dim(pj(k)∩W ) ≥
1

M

for any subspace 0 6= W ( k⊕M . Using [Dol, Thm. 11.1] and [MFK, Thm. 1.19] finishes

the proof13.

Here is our main result of this subsection, which explicitly matches Gieseker and GIT

stability for torsion free sheaves in full generality.

Theorem 1.2.22. Let X be a nonsingular projective toric variety defined by a fan ∆.

Let OX(1) be an ample line bundle on X. Then for any ~χ ∈ X 0, there is an ample

equivariant line bundle L0
~χ ∈ PicG(N 0

~χ) such that any torsion free equivariant sheaf E on

X with characteristic function ~χ is GIT semistable resp. properly GIT stable w.r.t. L0
~χ

if and only if E is Gieseker semistable resp. Gieseker stable.

Proof. Let the fan ∆ lie in a lattice N ∼= Zr. Fix ~χ ∈ X 0 and let E be a torsion

free equivariant sheaf on X with characteristic function ~χ. Denote the corresponding

framed torsion free ∆-family by Ê∆. Let ∆(1) be the collection of rays of ∆, then the

corresponding divisors {V (ρ)}ρ∈∆(1) generate A1(X) ([Ful, Sect. 5.2]), therefore we can

write

OX(1) ∼= O




∑

ρ∈∆(1)

αρV (ρ)



 .

Using the Hirzebruch–Riemann–Roch Theorem [Har1, Thm. A.4.1] and Klyachko’s For-

13Note that in this proof, we are not allowed to deduce “E is properly GIT stable w.r.t. L0,µ
~χ =⇒ E is

µ-stable”.
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mula (Proposition 1.2.16), we obtain the Hilbert polynomial of E

PE(t) =
∑

σ∈∆, ~λ∈Zdim(σ)

Φσ,~λ(t) dim([Eσ](~λ)),

Φσ,~λ(t) = (−1)codim(σ)deg
{

e−
∑

ρ∈σ(1)〈
~λ,n(ρ)〉V (ρ)+

∑

ρ∈∆(1) tαρV (ρ)td(TX)
}

r
,

where td(TX) is the Todd class of the tangent bundle TX ofX, {−}r projects to the degree

r component in the Chow ring A(X) ⊗Z Q and deg : Ar(X) ⊗Z Q −→ Q is the degree

map. Let σ1, . . . , σl be the cones of dimension r and for each σi denote by (ρ
(i)
1 , . . . , ρ

(i)
r )

the rays of σi. For a fixed j = 0, . . . , r, we denote the
(
r
j

)
faces of σi of dimension j

by σijk. In other words, we choose a bijection between integers k ∈ {1, . . . ,
(
r
j

)
} and

j-tuples i1 < · · · < ij ∈ {1, . . . , r} and the cone σijk is by definition generated by the

rays (ρ
(i)
i1
, . . . , ρ

(i)
ij

). This allows us to rewrite

PE(t) =
l∑

i=1

r∑

j=0

(r
j)∑

k=1

∑

~λ∈Z
dim(σijk)

Φσijk,~λ
(t) dim([Eσijk ](~λ)).

This sum is imprecise as it stands. For fixed (i, j, k), there can be distinct (i′, j′, k′)

such that σijk = σi′j′k′ . In this case, we call (i, j, k) and (i′, j′, k′) equivalent. This

induces an equivalence relation on the set of such triples. We now choose exactly one

representative (i′, j′, k′) of each equivalence class [(i, j, k)], for which the sequence of

polynomials {Φσi′j′k′ ,
~λ(t)}~λ∈Z

dim(σ
i′j′k′

) is possibly nonzero. This defines the above sum.

Fix a component χσi of the characteristic function ~χ = (χσ1 , . . . , χσl). There exists a box

Bσi = (−∞, C
(i)
1 ] × · · · × (−∞, C(i)

r ],

with the following properties. Write the box as

Bσi =Bσi
r ⊔ Bσi

r−1 ⊔ · · · ⊔ Bσi

0 ,

Bσi
r =(−∞, C

(i)
1 ) × · · · × (−∞, C(i)

r ),
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Bσi

r−1 =({C(i)
1 } × (−∞, C

(i)
2 ) × · · · × (−∞, C(i)

r )) ⊔ · · ·

⊔ ((−∞, C
(i)
1 ) × · · · × (−∞, C

(i)
r−1) × {C(i)

r }),

· · ·

Bσi

0 ={C(i)
1 } × · · · × {C(i)

r },

where Bσi

j is the disjoint union of
(
r
j

)
sets Bσi

j (k). Here the labeling is such that the j

components of Bσi

j (k) in which we have an open interval correspond precisely to the j rays

(ρ
(i)
i1
, . . . , ρ

(i)
ij

) that generate the cone σijk, where i1 < · · · < ij ∈ {1, . . . , r} corresponds to

k. Then for any j = 0, . . . , r, k = 1, . . . ,
(
r
j

)
(corresponding to i1 < · · · < ij ∈ {1, . . . , r})

and any polynomial f(λi1 , . . . , λij) ∈ k[λi1 , . . . , λij ]

∑

(λi1
,...,λij

)∈Z
dim(σijk)

f(λi1 , . . . , λij) dim([Eσijk ](λi1 , . . . , λij))

=
∑

(λi1
,...,λij

)∈B
σi
j (k)

f(λi1 , . . . , λij) dim([Eσijk ](λi1 , . . . , λij)),

(1.9)

and if we let a1 < · · · < ar−j ∈ {1, . . . , r} \ {i1, . . . , ij}, then for all λi1 , . . . , λij ∈ Z

lim
λa1→C

(i)
a1
,...,λar−j

→C
(i)
ar−j

Eσijk

(
r∑

i=1

λim(ρ(i))

)

= lim
λa1→∞,...,λar−j

→∞
Eσijk

(
r∑

i=1

λim(ρ(i))

)

.

The bar in equation (1.9) denotes closure in Rr. Let f(λi1 , . . . , λij) ∈ k[λi1 , . . . , λij ] and

assume without loss of generality (i1, . . . , ij) = (1, . . . , j). Then equation (1.9) can be

rewritten as

C
(i)
1 −1
∑

λ1=−∞

· · ·

C
(i)
j −1
∑

λj=−∞

[f(λ1, . . . , λj) − f(λ1 + 1, λ2, . . . , λj) − · · · − f(λ1, . . . , λj−1, λj + 1)

+ · · · + (−1)jf(λ1 + 1, . . . , λj + 1)
]
dim(Eσi(λ1, . . . , λj,∞, . . . ,∞)) (1.10)

+

C
(i)
2 −1
∑

λ2=−∞

· · ·

C
(i)
j −1
∑

λj=−∞

[

f(C
(i)
1 , λ2, . . . , λj) − f(C

(i)
1 , λ2 + 1, λ3, . . . , λj) − · · ·
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−f(C
(i)
1 , λ2, . . . , λj−1, λj + 1) + · · · + (−1)j−1f(C

(i)
1 , λ2 + 1, . . . , λj + 1)

]

· dim(Eσi(∞, λ2, . . . , λj,∞, . . . ,∞))

+ · · ·

+

C
(i)
1 −1
∑

λ1=−∞

· · ·

C
(i)
j−1−1
∑

λj−1=−∞

[

f(λ1, . . . , λj−1, C
(i)
j ) − f(λ1 + 1, λ2, . . . , λj−1, C

(i)
j ) − · · ·

−f(λ1, . . . , λj−2, λj−1 + 1, C
(i)
j ) + · · · + (−1)j−1f(λ1 + 1, . . . , λj−1 + 1, C

(i)
j )
]

· dim(Eσi(λ1, . . . , λj−1,∞, . . . ,∞))

+ · · ·

+ f(C
(i)
1 , . . . , C

(i)
j ) dim(Eσi(∞, . . . ,∞)).

Using these manipulations only, we can write

PE(t) =
l∑

i=1

r∑

j=0

(r
j)∑

k=1

∑

~λ∈B
σi
j (k)

Ψσijk,~λ
(t) dim(Eσi(~λ)).

We rewrite this expression one more time. For each i = 1, . . . , l, j = 0, . . . , r, k =

1, . . . ,
(
r
j

)
we define Ψσijk,~λ

(t) = 0 in the case ~λ /∈ Bσi

j (k). Then we can write

PE(t) =
l∑

i=1

r∑

j=0

(r
j)∑

k=1

∑

~λ∈B
σi
j (k)

Ψσijk,~λ
(t) dim(Eσi(~λ))

=
∑

equivalence classes

[(i′, j′, k′)]

∑

~λ∈Z
dim(σ

i′j′k′
)




∑

(i,j,k)∈[(i′,j′,k′)]

Ψσijk,~λ
(t)





︸ ︷︷ ︸

Ξ
σ

i′j′k′
,~λ

(t)

dim(Eσi′j′k′ (~λ)).

Note that summing over all equivalence classes [(i′, j′, k′)] corresponds to summing over

all cones of ∆ and if (i, j, k) ∈ [(i′, j′, k′)], then j = j′. Recall that for fixed i =

1, . . . , r, there are integers A
(i)
1 , . . . , A

(i)
r such that Eσi(λ1, . . . , λr) = 0 unless λ1 ≥ A

(i)
1 ,

. . ., λr ≥ A
(i)
r (Proposition 1.1.8). Therefore, by construction, there are only finitely

68



many Ξσi′j′k′ ,
~λ(t) that are possibly non-zero. Consequently, for a fixed equivalence class

[(i′, j′, k′)], there is a finite subset R([(i′, j′, k′)]) ⊂ Zdim(σi′j′k′ ) such that

PE(t) =
∑

equivalence classes

[(i′, j′, k′)]

∑

~λ∈R([(i′,j′,k′)])

Ξσi′j′k′ ,
~λ(t) dim(Eσi′j′k′ (~λ)). (1.11)

Note that the polynomials Φσ,~λ(t), the boxes Bσi

j (k) and hence the polynomials Ψσijk,~λ
(t),

Ξσi′j′k′ ,
~λ(t) and the regions R([i′, j′, k′]) can be chosen such that they only depend on the

characteristic function ~χ. Therefore, equation (1.11) holds for any torsion free equivariant

sheaf E on X with characteristic function ~χ and corresponding framed torsion free ∆-

family Ê∆. Now let E be a torsion free equivariant sheaf on X with characteristic

function ~χ and corresponding framed torsion free ∆-family Ê∆. Assume the rank of E is

M . Let 0 6= W ( k⊕M = Eσi(∞, . . . ,∞) be a linear subspace. Consider the torsion free

∆-family F̂∆
W = Ê∆ ∩W and denote the corresponding torsion free equivariant sheaf by

FW . It is not difficult to see that

PFW
(t) =

∑

equivalence classes

[(i′, j′, k′)]

∑

~λ∈R([(i′,j′,k′)])

Ξσi′j′k′ ,
~λ(t) dim(Eσi′j′k′ (~λ) ∩W ).

Using Proposition 1.2.19, we see that E is Gieseker semistable if and only if for any linear

subspace 0 6= W ( k⊕M and t≫ 0

1

dim(W )

∑

equivalence classes

[(i′, j′, k′)]

∑

~λ∈R([(i′,j′,k′)])

Ξσi′j′k′ ,
~λ(t) dim(Eσi′j′k′ (~λ) ∩W )

≤
1

M

∑

equivalence classes

[(i′, j′, k′)]

∑

~λ∈R([(i′,j′,k′)])

Ξσi′j′k′ ,
~λ(t) dim(Eσi′j′k′ (~λ)).

Moreover, E is Gieseker stable if and only if the same holds with strict inequality.
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We now have to study the polynomials Ξσi′j′k′ ,
~λ(t) in more detail. Fix i′ = 1, . . . , l,

j′ = 1, . . . , r and k′ = 1, . . . ,
(
r
j′

)
. We will now show that for any ~λ ∈ R([(i′, j′, k′)]),

we have Ξσi′j′k′ ,
~λ(R) ∈ Z>0 for integers R ≫ 0. From the fact that the polynomials

Φσ,~λ(t) are integer-valued for t ∈ Z it easily follows that the polynomials Ξσi′j′k′ ,
~λ(t) are

integer-valued for t ∈ Z. Let E be an arbitrary torsion free equivariant sheaf on X with

characteristic function ~χ and corresponding framed torsion free ∆-family Ê∆. Consider

the face σi′j′k′ ≺ σi′ and assume without loss of generality that it is spanned by the rays

(ρ
(i′)
1 , . . . , ρ

(i′)
j′ ) ⊂ (ρ

(i′)
1 , . . . , ρ

(i′)
r ). Consider the expression

Ξσi′j′k′ ,
~λ(t) dim(Eσi′ (λ1, . . . , λj′ ,∞, . . . ,∞)),

for fixed ~λ ∈ R([(i′, j′, k′)]). We first claim Ξσi′j′k′ ,
~λ(t) is a polynomial in t of degree at

most r − j′. To see this, consider expression (1.10) for i = i′ and j ≥ j′. Then for any

monomial f of degree < j′, expression (1.10) does not contribute to Ξσi′j′k′ ,
~λ(t). We now

want to show Ξσi′j′k′ ,
~λ(t) is of degree r − j′ in t with positive leading coefficient. Fix i, j

as before and consider expression (1.10) for any monomial f of degree j′. We only get a

contribution to the leading term of Ξσi′j′k′ ,
~λ(t) for f(λ1, . . . , λj) = λ1 · · ·λj′ . From this,

it is easy to see that the leading term of Ξσi′j′k′ ,
~λ(t) is

r−j′
∑

a=0

(−1)r−(j′+a)

(r − j′)!
#{σ ∈ ∆ | σi′j′k′ ≺ σ, dim(σ) = a+ j′}

·
(

Hr−j′ · V
(

ρ
(i′)
1

)

· · ·V
(

ρ
(i′)
j′

))

tr−j
′

=
1

(r − j′)!

(

Hr−j′ · V
(

ρ
(i′)
1

)

· · ·V
(

ρ
(i′)
j′

))

tr−j
′

,

where we use Proposition 1.2.17. Let ν be the cone generated by the rays ρ
(i′)
1 , . . ., ρ

(i′)
j′ ,

then V
(

ρ
(i′)
1

)

∩· · ·∩V
(

ρ
(i′)
j′

)

= V (ν) is a nonsingular closed subvariety ofX of dimension

r − j′ [Ful, Sect. 3.1]. We deduce that Hr−j′ · V
(

ρ
(i′)
1

)

· · ·V
(

ρ
(i′)
j′

)

= Hr−j′ · V (ν) > 0

by the Nakai–Moishezon Criterion [Har1, Thm. A.5.1].

Let [(i′, j′, k′)] be an equivalence class and let k′ = 1, . . . ,
(
r
j′

)
correspond to i1 < · · · <

ij′ ∈ {1, . . . , r}. Assume a1 < · · · < ar−j′ ∈ {1, . . . , r} \ {i1, . . . , ij′}. Define χσi′,j′,k′ (~λ) =
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limλa1→∞,...,λa
r−j′

→∞ χσi′ (~λ) for all ~λ = (λi1 , . . . , λij′ ) ∈ Zdim(σi′j′k′ ). Consider the product

of Grassmannians

∏

equivalence classes

[(i′, j′, k′)]

∏

~λ∈R([i′,j′,k′])

Gr(χσi′j′k′ (~λ),M). (1.12)

Referring to [Dol, Sect. 11.1], the equivariant line bundles (up to equivariant isomor-

phism) on the product of Grassmannians (1.12) correspond to arbitrary sequences of

integers {k[(i′,j′,k′)],~λ}, where ([(i′, j′, k′)], ~λ) ∈
∐

equivalence classes

[(i′, j′, k′)]

R([(i′, j′, k′)]). Such an

equivariant line bundle {k[(i′,j′,k′)],~λ} is ample if and only if all k[(i′,j′,k′)],~λ > 0 [Dol,

Sect. 11.1]. We conclude that by choosing an integer R ≫ 0, the sequence {Ξσi′j′k′ ,
~λ(R)}

forms an ample equivariant line bundle on the product of Grassmannians (1.12). The

notion of GIT stability determined by such an ample equivariant line bundle is made

explicit in [Dol, Thm. 11.1]. By definition, N 0
~χ is a closed subscheme of the product of

Grassmannians (1.12). Using [Dol, Thm. 11.1], we see that a the closed point Ê∆ of N 0
~χ is

GIT semistable w.r.t. {Ξσi′j′k′ ,
~λ(R)} if and only if for any linear subspace 0 6= W ( k⊕M

1

dim(W )

∑

equivalence classes

[(i′, j′, k′)]

∑

~λ∈R([(i′,j′,k′)])

Ξσi′j′k′ ,
~λ(R) dim(Eσi′j′k′ (~λ) ∩W )

≤
1

M

∑

equivalence classes

[(i′, j′, k′)]

∑

~λ∈R([(i′,j′,k′)])

Ξσi′j′k′ ,
~λ(R) dim(Eσi′j′k′ (~λ)).

Moreover, Ê∆ is properly GIT stable w.r.t. {Ξσi′j′k′ ,
~λ(R)} if and only if the same holds

with strict inequality. By choosing R sufficiently large, we conclude any torsion free

equivariant sheaf E on X with characteristic function ~χ and framed torsion free ∆-

family Ê∆ is Gieseker semistable resp. Gieseker stable if and only if Ê∆ is GIT semistable

resp. properly GIT stable w.r.t. {Ξσi′j′k′ ,
~λ(R)}. Pulling back the ample equivariant line
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bundle {Ξσi′j′k′ ,
~λ(R)} to N 0

~χ defines the desired ample equivariant line bundle L0
~χ and

finishes the proof by [MFK, Thm. 1.19].

1.3 Fixed Point Loci of Moduli Spaces of Sheaves on

Toric Varieties

In this section, we study how the explicit moduli spaces of pure equivariant sheaves of

the previous section relate to fixed point loci of moduli spaces of all Gieseker stable

sheaves on nonsingular projective toric varieties. We start by studying the torus action

on moduli spaces of Gieseker semistable sheaves on projective toric varieties. Subse-

quently, we study relations between equivariant and invariant simple sheaves. We prove

a theorem expressing fixed point loci of moduli spaces of all Gieseker stable sheaves on

an arbitrary nonsingular projective toric variety in terms of the explicit moduli spaces

of pure equivariant sheaves of the previous section in the case one can match Gieseker

and GIT stability. Since this match can always be achieved for torsion free equivariant

sheaves, we obtain the theorem discussed in the introduction (Theorem 1.0.1). After dis-

cussing some examples appearing more detailed in the next chapter, where we specialise

to X a nonsingular complete toric surface over C, we prove how the fixed point locus

of any moduli space of µ-stable sheaves on a nonsingular projective toric variety can be

expressed combinatorially.

1.3.1 Torus Actions on Moduli Spaces of Sheaves on Toric Va-

rieties

Let us briefly recall some notions concerning moduli spaces of Gieseker (semi)stable

sheaves in general as discussed in [HL, Ch. 4]. Let X be a connected projective k-

scheme, OX(1) an ample line bundle and P a choice of Hilbert polynomial. Let S

be a k-scheme of finite type. Any two S-flat families F1,F2 are said to be equivalent
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if there exists a line bundle L ∈ Pic(S) and an isomorphism F1
∼= F2 ⊗ p∗SL, where

pS : X × S −→ S is projection. Let Mss
P (S) be the collection of equivalence classes of

Gieseker semistable S-flat families with Hilbert polynomial P . Likewise, let Ms
P (S) be

the collection of equivalence classes of geometrically Gieseker stable S-flat families with

Hilbert polynomial P . These give rise to moduli functors Mss
P , Ms

P . One can prove that

there is a projective k-scheme of finite type Mss
P corepresenting Mss

P [HL, Thm. 4.3.4].

Moreover, there is an open subset Ms
P of Mss

P corepresenting Ms
P . The closed points

of Mss
P are in bijection with S-equivalence classes of Gieseker semistable sheaves on X

with Hilbert polynomial P . The closed points of Ms
P are in bijection with isomorphism

classes of Gieseker stable sheaves on X with Hilbert polynomial P (hence Ms
P is a coarse

moduli space). If X is a toric variety with torus T , then we can define a natural regular

action of T on Mss
P , Ms

P as is expressed by the following proposition.

Proposition 1.3.1. Let X be a projective toric variety with torus T . Let OX(1) be an

ample line bundle on X and P a choice of Hilbert polynomial. Choose an equivariant

structure on OX(1). Then there is a natural induced regular action σ : T ×Mss
P −→ Mss

P

defined using the equivariant structure, which restricts to Ms
P and on closed points is

given by

σ : Tcl ×Mss
P,cl −→ Mss

P,cl,

σ(t, [E ]) 7→ [t∗E ].

Proof. Denote the action of the torus by σ : T × X −→ X. Let m be an integer such

that any Gieseker semistable sheaf on X with Hilbert polynomial P is m-regular [HL,

Sect. 4.3]. Let V = k⊕P (m) and H = V ⊗k OX(−m). We start by noting that any line

bundle on X admits a T -equivariant structure, since Pic(T ) = 0 (e.g. [Dol, Thm. 7.2]).

Let Φ be a T -equivariant structure on OX(1). The T -equivariant structure Φ induces a

T -equivariant structure on OX(−m) and therefore it induces a T -equivariant structure

ΦH : σ∗H −→ p∗2H (where we let T act trivially on V ). Let Q = Quot
X/k

(H, P ) be the

Quot functor and let Q = QuotX/k(H, P ) be the Quot scheme. Here Q is a projective
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k-scheme representing Q [HL, Sect. 2.2]

Ξ : Q
∼=

=⇒ Q,

where for any k-scheme S we denote the contravariant functor Hom(−, S) by S. Now

let [HQ
u

−→ U ] be the universal family. Here HQ is the pull-back of H along projection

X×Q −→ X, U is a Q-flat coherent sheaf on X×Q with Hilbert polynomial P and u is

a surjective morphism. Let p12 : T ×X ×Q −→ T ×X be projection, then it is easy to

see that precomposing (σ × 1Q)∗u with p∗12Φ
−1
H gives an element of Q(T ×Q). Applying

ΞT×Q gives a morphism σ : T × Q −→ Q, our candidate regular action. Note that σ

depends on the choice of T -equivariant structure on H. For any closed point t ∈ T , let

it : X −→ T ×X be the induced morphism and consider ΦH,t = i∗tΦH : t∗H
∼=

−→ H. Let

p = [H
ρ

−→ F ] be a closed point of Q. Using the properties of the universal family and

the definition of σ, it is easy to see that the closed point corresponding to σ(t, p) = t · p

is given by

[H
Φ−1

H,t
−→ t∗H

t∗ρ
−→ t∗F ].

Using the properties of the universal family, a somewhat tedious yet straightforward

exercise shows that σ : T × Q −→ Q satisfies the axioms of an action. Let R ⊂ Q

be the open subscheme with closed points those elements [H
ρ

−→ F ] ∈ Q, where F is

Gieseker semistable and the induced map V −→ H0(X,F(m)) is an isomorphism. Since

the T -equivariant structure on H comes from a T -equivariant structure on OX(1) and a

trivial action of T on V , σ restricts to a regular action on R. Let G = PGL(V ), then

there is a natural (right) action Q×G =⇒ Q. This induces a regular (right) action of G

on Q, which restricts to R. The moduli space M ss = Mss
P can be formed as a categorical

quotient π : R −→M ss [HL, Sect. 4.3]. Consider the diagram

T ×R
σ //

1T×π
��

R

π

��
T ×M ss M ss.
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The morphism σ : T × R −→ R is G-equivariant (where we let G act trivially on T ).

Again, this can be seen by using that the T -equivariant structure on H comes from a

T -equivariant structure on OX(1) and a trivial action of T on V . Consequently, π ◦ σ is

G-invariant. From the definition of a categorical quotient, we get an induced morphism

σ : T ×M ss −→ M ss. Again, using the definition of a categorical quotient, we obtain

that σ : T ×M ss −→ M ss is a regular action of T on M ss acting on closed points as

stated in the proposition. Let Rs ⊂ R be the open subscheme with closed points Gieseker

stable sheaves and denote the corresponding geometric quotient by ̟ : Rs −→ M s. It

is clear the regular action σ : T ×M ss −→M ss will restrict to M s.

Proposition 1.3.2. Let X be a projective toric variety with torus action σ : T ×X −→

X. Denote projection to the second factor by p2 : T ×X −→ X. Let OX(1) be an ample

line bundle on X and P a choice of Hilbert polynomial. Choose an equivariant structure

on OX(1). Then the closed points of the fixed point locus14 of the natural induced regular

action of T on Ms
P (defined, using the equivariant structure, in Proposition 1.3.1) are

(Ms
P )Tcl =

{
[E ] ∈ Ms

P,cl | σ
∗E ∼= p∗2E

}
.

Proof. From the definition of σ : T ×Ms
P −→ Ms

P , it is clear that the fixed point locus

can be characterised as [Fog, Rmk. 4]

(Ms
P )Tcl =

{
[E ] ∈ Ms

P,cl | t
∗E ∼= E ∀t ∈ Tcl

}
.

However, we claim that moreover

(Ms
P )Tcl =

{
[E ] ∈ Ms

P,cl | σ
∗E ∼= p∗2E

}
.

The inclusion “⊃” is trivial. Conversely, let E be Gieseker stable sheaf on X with Hilbert

14We use the notion of fixed point locus as defined in [Fog].
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polynomial P such that t∗E ∼= E for all closed points t ∈ T . Since E is simple15 [HL,

Cor. 1.2.8], the result follows from the following proposition16 applied to σ∗E and p∗2E .

Proposition 1.3.3. Let X be a projective k-scheme of finite type and T an algebraic

torus. Let E, F be T -flat coherent sheaves on T ×X such that and Et ∼= Ft is simple for

all closed points t ∈ T . Then E ∼= F .

Proof. Denote projection to the first component by p1 : T × X −→ X. For any closed

point t ∈ T , we denote the induced morphism by it : k −→ T . We consider the coherent

sheaf L = p1∗HomOT×X
(E ,F) and will prove it is a line bundle on T . There exists a

coherent sheaf N on T and an isomorphism

p1∗HomOT×X
(E ,F ⊗OT×X

p∗1(−)) ∼= HomOT
(N ,−),

of functors Qco(T ) −→ Qco(T ) [EGA3, Cor. 7.7.8]. We deduce L ∼= N ∨. However, the

construction of N commutes with base change [EGA3, Rem. 7.7.9], so

(i∗tN )∨ ∼= HomX(Et,Ft) ∼= k,

for all closed points t ∈ T . Here we use that Et ∼= Ft is simple for all closed points t ∈ T .

Consequently, N and L are line bundles on T [Har1, Exc. II.5.8]. Since Pic(T ) = 0, we

deduce L ∼= OT . Now consider

H0(T,L) = HomT×X(E ,F).

Since L ∼= OT , there exists a nowhere vanishing section f ∈ H0(T,L). This section

corresponds to a morphism f : E −→ F having the property that ft : Et −→ Ft is

nonzero for any closed point t ∈ T . Similarly, L′ = p1∗HomOT×X
(F , E) ∼= OT and

15A simple sheaf E on a k-scheme X of finite type is by definition a coherent sheaf E on X such that
End(E) ∼= k.

16The following proposition and its proof are due to Tom Bridgeland. The author’s original proof of
Proposition 1.3.2 was much more complicated and involved Luna’s Étale Slice Theorem and descent for
quasi-coherent sheaves.
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we can take a nowhere vanishing section f ′ ∈ H0(T,L′) corresponding to a morphism

f ′ : F −→ E . Now consider the composition g = f ′ ◦ f . There is a canonical map

H0(T,OT )
∼=

−→ HomT×X(E , E),

which is an isomorphism by the arguments above. It is easy to see that gt 6= 0 for any

closed point t ∈ T , from which we deduce that g corresponds to cχ ∈ H0(T,OT ) for

some c ∈ k∗ and χ ∈ X(T ) a character. Therefore (c−1χ−1f ′) ◦ f = idE . Similarly, we

get a right inverse for f , showing f is an isomorphism.

Note that if we are in the situation of Propositions 1.3.1 and 1.3.2, the regular action of

T on Mss
P , Ms

P a priori depends on choice of equivariant structure on OX(1). However,

the set (Ms
P )Tcl is independent of this choice and our future constructions will not depend

on this choice either. Hence, whenever we are in the situation of these propositions, we

assume we fix an arbitrary equivariant structure on OX(1) and induced torus action on

Mss
P without further notice.

1.3.2 Equivariant versus Invariant

LetG be an affine algebraic group acting regularly on a k-schemeX of finite type. Denote

the action by σ : G×X −→ X and projection by p2 : G×X −→ X. From Proposition

1.3.2, we see that it is natural to define a G-invariant sheaf on X to be a sheaf of OX-

modules E onX for which there is an isomorphism σ∗E ∼= p∗2E . Clearly, anyG-equivariant

sheaf on X is G-invariant, but the converse is not true in general (for an example, see

[DOPR, App. A]). In the situation of Proposition 1.3.2, the isomorphism classes of

Gieseker stable invariant sheaves on X with Hilbert polynomial P are in bijection with

the closed points of (Ms
P )T . We have the following results.

Proposition 1.3.4. Let G be a connected affine algebraic group acting regularly on a

scheme X of finite type over k. Let E be a simple sheaf on X. Then E is G-invariant if

and only if E admits a G-equivariant structure.
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Proof. Denote the action by σ : G×X −→ X and projection to the second component

by p2 : G × X −→ X. Assume E is a simple sheaf on X and we have an isomorphism

Φ : σ∗E −→ p∗2E . We would like Φ to satisfy the cocycle condition (see Definition 1.1.1).

In order to achieve this, we use an argument similar to the proof of [Dol, Lem. 7.1]. For

any closed point g ∈ G given by a morphism k −→ G, let ig : X −→ G × X be the

induced map and define Φg = i∗gΦ : g∗E −→ E . By Proposition 1.1.4, it is enough to

prove Φhg = Φg ◦ g
∗Φh, for all closed points g, h ∈ G. By redefining Φ, i.e. replacing Φ

by p∗2(Φ
−1
1 ) ◦ Φ, we might just as well assume Φ1 = 1. Now define the morphism

F : Gcl ×Gcl −→ Aut(E) ∼= k∗,

F (g, h) = Φg ◦ g
∗(Φh) ◦ Φ−1

hg ,

where (−)cl means taking the closed points. We know F (g, 1) = F (1, h) = 1 and we

have to prove F (g, h) = 1, for all closed points g, h ∈ G. Since Gcl is an irreducible

algebraic variety over an algebraically closed field k and F ∈ O(Gcl ×Gcl)
∗, we can use

a theorem by Rosenlicht [Dol, Rmk. 7.1], to conclude that F (g, h) = F1(g)F2(h), where

F1, F2 ∈ O(Gcl)
∗, for all closed points g, h ∈ G. The result now follows immediately.

Proposition 1.3.5. Let G be an affine algebraic group acting regularly on a scheme X

of finite type over k. Let E be a simple G-equivariant sheaf on X. Then all G-equivariant

structures on E are given by E⊗OX(χ), where OX(χ) is the structure sheaf of X endowed

with the G-equivariant structure induced by the character χ ∈ X(G).

Proof. Let Φ,Ψ : σ∗(E) −→ p∗2(E) be two G-equivariant structures on E . Consider the

automorphism Ψ ◦ Φ−1 : p∗2(E) −→ p∗2(E). For all closed points g ∈ G

Ψg ◦ Φ−1
g ∈ Aut(E) ∼= k∗.

We obtain a morphism of varieties χ : Gcl −→ k∗ defined by χ(g) = Ψg ◦ Φ−1
g . In fact,

from the fact that Φ,Ψ satisfy the cocycle condition (see Definition 1.1.1), we see that

χ is a character. The result follows from applying Proposition 1.1.4.
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This last proposition suggests we should study the effect of tensoring an equivariant

sheaf on a toric variety by an equivariant line bundle. We start with a brief recapit-

ulation of equivariant line bundles and reflexive equivariant sheaves on toric varieties.

On a general normal variety X, a coherent sheaf F is said to be reflexive if the natural

morphism F −→ F∨∨ is an isomorphism, where (−)∨ = Hom(−,OX) is the dual. Let

X be a nonsingular toric variety defined by a fan ∆ in a lattice N of rank r. Take τ = 0

and let σ1, . . . , σl be the cones of dimension r. For each i = 1, . . . , l, let
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of σi. The equivariant line bundles on X are precisely the rank 1 reflexive

equivariant sheaves on X. In general, reflexive equivariant sheaves on X are certain

torsion free equivariant sheaves on X and they admit a particularly nice combinatorial

description in terms of filtrations associated to the rays of ∆. Denote the collection

of rays by ∆(1). Let E be a nonzero finite-dimensional k-vector space. For each ray

ρ ∈ ∆(1) specify k-vector spaces

· · · ⊂ Eρ(λ− 1) ⊂ Eρ(λ) ⊂ Eρ(λ+ 1) ⊂ · · · ,

such that there is an integer Aρ with Eρ(λ) = 0 if λ < Aρ and there is an integer Bρ

such that Eρ(λ) = E if λ ≥ Bρ. There is an obvious notion of morphisms between

such collections of filtrations {Eρ(λ)}ρ∈∆(1). Suppose we are given such a collection of

filtrations {Eρ(λ)}ρ∈∆(1). From it we obtain a torsion free ∆-family by defining

Eσi(λ1, . . . , λr) = Eρ
(i)
1 (λ1) ∩ · · · ∩ Eρ

(i)
r (λr), (1.13)

for all i = 1, . . . , l, λ1, . . . , λr ∈ Z. Denote the full subcategory of torsion free ∆-families

obtained in this way by R. The equivalence of categories of Theorem 1.1.10, restricts

to an equivalence between the the full subcategory of reflexive equivariant sheaves on X

and the full subcategory R (see [Per1, Thm. 4.21]). This equivalence further restricts to

an equivalence between the category of equivariant line bundles on X and the category

of filtrations of E = k associated to the rays of ∆ as above. We obtain a canonical iso-
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morphism PicT (X) ∼= Z∆(1), where Z∆(1) = Z#∆(1). In particular, if ∆(1) = (ρ1, . . . , ρN),

then the integers ~k = (k1, . . . , kN) ∈ Z∆(1) correspond to the filtrations {Lρ~k(λ)}ρ∈∆(1)

defined by17

L
ρj

~k
(λ) =







k if λ ≥ −kj

0 if λ < −kj,

for all j = 1, . . . , N . Denote the corresponding equivariant line bundle by L~k. Note that

the first Chern class of L~k is given by c1(L~k) =
∑

j kjV (ρj) (Corollary 1.2.18), so as a

line bundle L~k
∼= OX(

∑

j kjV (ρj)). Finally, when we consider ~k, {Lρ~k(λ)}ρ∈∆(1), L~k as

above, then the corresponding torsion free ∆-family is given by (equation (1.13))

Lσi

~k
(λ1, . . . , λr) =







k if λ1 ≥ −k(i)
1 , . . . , λr ≥ −k(i)

r

0 otherwise,

for all i = 1, . . . , l, where σi has rays
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

and we denote the corresponding

integers where the filtrations L
ρ
(i)
1

~k
(λ), . . . , Lρ

(i)
r

~k
(λ) jump by −k(i)

1 , . . . ,−k(i)
r .

Proposition 1.3.6. Let X be a nonsingular toric variety with fan ∆ in a lattice N of

rank r. Let τ1, . . . , τa be some cones of ∆ of dimension s. Let σ1, . . . , σl be all cones

of ∆ of maximal dimension having a cone τα as a face. For each i = 1, . . . , l, let
(

ρ
(i)
1 , . . . , ρ

(i)
r

)

be the rays of σi. Let E be a pure equivariant sheaf on X with support

V (τ1) ∪ · · · ∪ V (τa) and corresponding pure ∆-family Ê∆. Consider the equivariant line

bundle L~k for some ~k ∈ Z∆(1). Then F = E ⊗ L~k is a pure equivariant sheaf on X with

support V (τ1) ∪ · · · ∪ V (τa) and its pure ∆-family F̂∆ is given by

F σi(λ1, . . . , λr) = Eσi(λ1 + k
(i)
1 , . . . , λr + k(i)

r ), ∀i = 1, . . . , l

χσi

F,n(λ1, . . . , λr) = χσi

E,n(λ1 + k
(i)
1 , . . . , λr + k(i)

r ), ∀i = 1, . . . , l, ∀n = 1, . . . , r.

Proof. One can compute the M -grading of Γ(Uσi
,F) ∼= Γ(Uσi

, E)⊗k[Sσi
] Γ(Uσi

,L~k) along

the same lines as in the proof of Proposition 1.1.9. The result easily follows.

17Do not be confused by the unfortunate clash of notation: k is the ground field and the kj are
integers.
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1.3.3 Combinatorial Description of the Fixed Point Loci (Ms
P )T

We are now ready to prove the theorem stated in the introduction (Theorem 1.0.1).

An analogous result to Theorem 1.0.1 turns out to hold without any assumption on

the Hilbert polynomial if we assume the existence of equivariant line bundles matching

Gieseker and GIT stability. Therefore, we will first prove a general combinatorial ex-

pression for the fixed point locus of any moduli space of Gieseker stable sheaves on a

nonsingular projective toric variety making this assumption (Theorem 1.3.9). Theorem

1.0.1 then follows as a trivial corollary of this result by combining with Theorem 1.2.22.

Let X be a nonsingular projective toric variety defined by a fan ∆ in a lattice N of rank

r. Let OX(1) be an ample line bundle on X and let P be a choice of Hilbert polyno-

mial. The degree d of P is the dimension d of any coherent sheaf on X with Hilbert

polynomial P . Let s = r− d and let τ1, . . . , τa be all cones of ∆ of dimension s. For any

i1 < · · · < iα ∈ {1, . . . , a}, we have defined X
τi1 ,...,τiα
P ⊂ X τi1 ,...,τiα to be the subset of all

characteristic functions with associated Hilbert polynomial P (see Proposition 1.2.14).

Assume that for any ~χ ∈ X
τi1 ,...,τiα
P , we can pick an equivariant line bundle matching

Gieseker and GIT stability (e.g. for P of degree dim(X) this can always be done by

Theorem 1.2.22). For any ~χ ∈ X
τi1 ,...,τiα
P the obvious forgetful natural transformations

M
τi1 ,...,τiα ,ss

~χ =⇒ Mss
P , M

τi1 ,...,τiα ,s

~χ =⇒ Ms
P induce morphisms M

τi1 ,...,τiα ,ss

~χ −→ Mss
P ,

M
τi1 ,...,τiα ,s

~χ −→ Ms
P (by Theorem 1.2.13). We obtain morphisms

a∐

α=1

∐

i1<···<iα∈{1,...,a}

∐

~χ∈X
τi1

,...,τiα
P

M
τi1 ,...,τiα ,ss

~χ −→ Mss
P ,

a∐

α=1

∐

i1<···<iα∈{1,...,a}

∐

~χ∈X
τi1

,...,τiα
P

M
τi1 ,...,τiα ,s

~χ −→ Ms
P ,

where the second morphism, on closed points, is just the map forgetting the equivariant

structure. Consequently, we could expect the second morphism to factor through an

isomorphism onto the fixed point locus (Ms
P )T . Indeed it maps to the fixed point locus
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on closed points

a∐

α=1

∐

i1<···<iα∈{1,...,a}

∐

~χ∈X
τi1

,...,τiα
P

M
τi1 ,...,τiα ,s

~χ,cl −→ (Ms
P )Tcl ,

and this map is surjective (Propositions 1.3.2 and 1.3.4). However, it is not injective

(Proposition 1.3.5). Indeed, if E is an invariant simple sheaf on X, then it admits an

equivariant structure (fix one) and all equivariant structures are given by E ⊗ OX(χ),

χ ∈ M . So we have the character group acting as a gauge group. Therefore, we need

to do gauge-fixing and take a gauge slice before we can expect the morphism to factor

through an isomorphism onto the fixed point locus (Ms
P )T . In view of Proposition 1.3.6,

this might be achieved as follows. Let σ1, . . . , σl be all cones of maximal dimension. Let

α = 1, . . . , a and i1 < · · · < iα ∈ {1, . . . , a}. Let σn be a cone among σ1, . . . , σl having

at least one of τi1 , . . . , τiα as a face. For definiteness, we choose σn the cone among

σ1, . . . , σl with this property and smallest index n. Let ~χ ∈ X
τi1 ,...,τiα
P , then there are

integers A
(n)
1 , . . . , A

(n)
r such that χσn(λ1, . . . , λr) = 0 unless λ1 ≥ A

(n)
1 , . . ., λr ≥ A

(n)
r

(see section 1.1). Assume A
(n)
1 , . . . , A

(n)
r are chosen maximally with this property. We

define ~χ to be gauge-fixed if A
(n)
1 = · · · = A

(n)
r = 0. We denote the subset of gauge-fixed

characteristic functions of X
τi1 ,...,τiα
P by

(
X
τi1 ,...,τiα
P

)gf
. We get a morphism

F :
a∐

α=1

∐

i1<···<iα∈{1,...,a}

∐

~χ∈
(

X
τi1

,...,τiα
P

)gf

M
τi1 ,...,τiα ,s

~χ −→ Ms
P . (1.14)

Claim. The map induced by F on closed points maps bijectively onto (Ms
P )Tcl.

Proof of Claim. This can be seen as follows. We need to characterise all equivariant

line bundles OX(χ), χ ∈ X(T ) (introduced in Proposition 1.3.5). By [Dol, Cor. 7.1,

Thm. 7.2], they are precisely the elements of the kernel of the forgetful map in the short

exact sequence

0 −→M −→ PicT (X) −→ Pic(X) −→ 0.
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Suppose L~k,
~k ∈ Z∆(1) is an equivariant line bundle (notation as in subsection 1.3.2).

Then its underlying line bundle is trivial if and only if
∑N

j=1 kjV (ρj) = 0 in the Chow

group Ar−1(X). The Chow group Ar−1(X) is the free abelian group on V (ρ1), . . . , V (ρN)

modulo the following relations [Ful, Sect. 5.2]

N∑

j=1

〈u, n(ρj)〉V (ρj) = 0, ∀u ∈M.

Let σn be any cone of maximal dimension and take m
(

ρ
(n)
1

)

, . . . ,m
(

ρ
(n)
r

)

as a basis

for M . From this we see that for arbitrary k
(n)
1 , . . . , k

(n)
r ∈ Z, there are unique other

k
(i)
1 , . . . , k

(i)
r , for all i = 1, . . . , l, i 6= n such that

∑N
j=1 kjV (ρj) = 0. In particular,

if L~k,
~k ∈ Z∆(1) is an equivariant line bundle with underlying line bundle trivial and

k
(n)
1 = · · · = k

(n)
r = 0, then also k

(i)
1 = · · · = k

(i)
r = 0 for all i = 1, . . . , l, i 6= n. Now note

that for any two distinct sequences i1 < · · · < iα, j1 < · · · < jβ ∈ {1, . . . , a}, we have

X τi1 ,...,τiα ∩ X τj1 ,...,τjβ = ∅. Using Propositions 1.3.2, 1.3.4, 1.3.5 and 1.3.6, the claim

follows. �

We note that the above claim crucially depends on Propositions 1.3.2, 1.3.4, 1.3.5,

which are about simple sheaves. This is one of the main reasons we have to focus

attention on Gieseker stable sheaves only in this section. The above claim provides good

evidence that the morphism F of equation (1.14) indeed factors through an isomorphism

onto the fixed point locus (Ms
P )T . We will prove this using the following two technical

results.

Proposition 1.3.7. Let X,Y be schemes of finite type and separated over k. Let f :

X −→ Y be a morphism and ι : Y ′ →֒ Y a closed immersion. Assume for any local

artinian k-algebra A with residue field k, the map f ◦ − factors bijectively

Hom(A,X)

∼= ((PPPPPP

f◦− // Hom(A, Y )

Hom(A, Y ′).
?�

ι◦−

O

83



Then f factors isomorphically and uniquely onto Y ′

X
f //

∼= !!B
B

B
B Y

Y ′.
?�

ι

O

Proof. First we prove the proposition while assuming f ◦ − factors (not necessarily as

a bijection) and conclude f factors through Y ′ (not necessarily as an isomorphism). It

is clear that if f factors, then it factors uniquely, because ι is a closed immersion. By

taking an appropriate open affine cover we get the following diagram of finitely generated

k-algebras

R S
f#

oo

ι#

��
S/I,

where I ⊂ S is some ideal. It is enough to prove f#(I) = 0. Suppose this is not the

case. Then there is some 0 6= s ∈ I such that f#(s) = r 6= 0. There exists a maximal

ideal m ⊂ R such that r is not mapped to zero by the localisation map R −→ Rm

(use [AM, Exc. 4.10]). Moreover, there is an integer n > 0 such that the canonical

map Rm −→ Rm/(mRm)n maps r/1 ∈ Rm to a nonzero element (this follows from a

corollary of Krull’s Theorem [AM, Cor. 10.19]). Now Rm/(mRm)n is a local artinian

k-algebra with residue field k [AM, Prop. 8.6]. We obtain a k-algebra homomorphism

R −→ Rm/(mRm)n such that precomposition with f# maps s to a nonzero element. But

by assumption, this composition has to factor through S/I and since s ∈ I this is a

contradiction.

The second part of the proof of the proposition consists of proving the statement of

the proposition in the case Y ′ = Y . Together with the first part of the proof, this proves

the proposition. This part can be proved similarly by again taking an appropriate open

affine cover and using the same corollary of Krull’s Theorem in a similar fashion applied

to the kernel and cokernel of f#. In dealing with the open affine covers, it is useful
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to first prove that f is everywhere locally a closed immersion, consequently proper and

quasi-finite, hence finite [EGA2, Cor. 4.4.11] and therefore affine.

Proposition 1.3.8. Let X be a nonsingular projective toric variety defined by a fan ∆ in

a lattice N of rank r. Let OX(1) be an ample line bundle on X, let P be a choice of Hilbert

polynomial of degree d and let τ1, . . . , τa be all cones of ∆ of dimension s = r − d. Let

i1 < · · · < iα ∈ {1, . . . , a} and assume for any ~χ ∈ X
τi1 ,...,τiα
P , we can pick an equivariant

line bundle matching Gieseker and GIT stability. Then for any local artinian k-algebra

A with residue field k the moduli functors and their moduli spaces induce bijections

M
τi1 ,...,τiα ,s

~χ (A)
∼=

−→ Hom(A,M
τi1 ,...,τiα ,s

~χ ),

Ms
P (A)

∼=
−→ Hom(A,Ms

P ).

Proof. Let us prove the first bijection first. Denote the moduli functor M
τi1 ,...,τiα ,s

~χ by M.

Recall thatM = M
τi1 ,...,τiα ,s

~χ was formed by considering the regular action of the reductive

algebraic groupG onN = N
τi1 ,...,τiα ,s

~χ (where GIT stability is defined by theG-equivariant

line bundle L = L
τi1 ,...,τiα
~χ ) and the induced geometric quotient ̟ : N −→ M = N/G

(see subsection 1.2.3). Here G is the closed subgroup of elements of determinant 1 of an

algebraic group of the form

H =
n∏

i=1

GL(ni, k).

We would like to use a corollary of Luna’s Étale Slice Theorem to conclude that ̟ is a

principal G-bundle [HL, Cor. 4.2.13]. Unfortunately, the stabiliser of a closed point of

N is the group µp of pth roots of unity, where p =
∑n

i=1 ni, hence not trivial. Consider

the diagonal closed subgroup Gm ⊳H and define G̃ = H/Gm. There is a natural regular

action of the reductive algebraic group G̃ on N
τi1 ,...,τiα
~χ giving rise to the same orbits as

G. The natural morphism G −→ G̃ of algebraic groups gives rise to an isomorphism

G/µp ∼= G̃ of algebraic groups. If we fix a G-equivariant line bundle L, then it is easy

to see that L⊗p admits a G̃-equivariant structure. For both choices, the sets of GIT

semistable respectively stable points will be the same and the categorical and geometric
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quotients will be the same. In particular M = N/G = N/G̃. The stabiliser in G̃ of

any GIT stable closed point of N is trivial. Consequently, ̟ : N −→ M is a principal

G̃-bundle, i.e. there is an étale surjective morphism π : Y −→ M and a G̃-equivariant

isomorphism ψ : G̃× Y −→ N ×M Y , such that the following diagram commutes

G̃× Y
ψ //

��

N ×M Y

xxrrrrrrrrrrr

Y.

Let P = [E ] ∈M be a closed point and let Q ∈ Y be a closed point such that π(Q) = P .

Let A be any local artinian k-algebra with residue field k, let Hom(A,M)P be the set of

morphisms A −→M where the point is mapped to P and let Hom(A, Y )Q be the set of

morphisms A −→ Y where the point is mapped to Q. Using induction on the length18

of A and using the definition of formally étale [EGA4, Def. 17.1.1], it is easy to see that

composition with π gives a bijection

Hom(A, Y )Q
∼=

−→ Hom(A,M)P .

As an aside, we note that this implies in particular that the Zariski tangent spaces at

P and Q are isomorphic TQY ∼= TPM , by taking A the ring of dual numbers. We have

M(A) ∼= Hom(A,N)/Hom(A,G) = Hom(A,N)/Hom(A, G̃). The first isomorphism

follows from the definition of M (see proof of Theorem 1.2.12). The second equality

can be deduced from the fact that the morphism G −→ G̃ is étale and surjective on

closed points. Using these facts, together with the isomorphism ψ, we obtain a natural

injection Hom(A,M)P →֒ M(A) such that the following diagram commutes

M(A) // Hom(A,M)

Hom(A,M)P .
T4

gO O O O O O
?�

⊂

O

18Note that for any local artinian k-algebra (A′,m′) of length l ≥ 2 with residue field k there is a
surjective local k-algebra homomorphism σ : A′ −→ A, where A is a local artinian k-algebra of length
< l with residue field k and kernel J a principal ideal satisfying m

′J = 0. Such surjective morphisms
are called small extensions [Sch].
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Let M(A)P be the image of the injection Hom(A,M)P →֒ M(A). Consider the natural

morphism ι : k −→ A (we actually mean ι : Spec(k) −→ Spec(A)). It is easy to see

that M(A)P is the set of equivariant isomorphism classes of A-flat equivariant coherent

sheaves F on X ×A such that there exists an equivariant isomorphism (1X × ι)∗F ∼= E .

We obtain a natural bijection

M(A)P = {[F ] ∈ M(A) | (1X × ι)∗F ∼= E}
∼=

−→ Hom(A,M)P .

Taking a union over all closed points P gives the required bijection. The second bijection

of the proposition can be proved entirely analogously. For the definition of the moduli

functor and moduli space in this case, we refer to [HL, Ch. 4].

We can now formulate and prove the following theorem.

Theorem 1.3.9. Let X be a nonsingular projective toric variety defined by a fan ∆ in

a lattice N of rank r. Let OX(1) be an ample line bundle on X, let P be a choice of

Hilbert polynomial of degree d and let τ1, . . . , τa be all cones of ∆ of dimension s = r−d.

Assume for any i1 < · · · < iα ∈ {1, . . . , a} and ~χ ∈ X
τi1 ,...,τiα
P , we can pick an equivariant

line bundle matching Gieseker and GIT stability. Then there is a natural isomorphism

of quasi-projective schemes of finite type over k

a∐

α=1

∐

i1<···<iα∈{1,...,a}

∐

~χ∈
(

X
τi1

,...,τiα
P

)gf

M
τi1 ,...,τiα ,s

~χ
∼= (Ms

P )T . (1.15)

Proof. Consider the morphism F of equation (1.14). We start by noting that there are

only finitely many characteristic functions ~χ in the disjoint union of the left hand side of

equation (1.15) for which M
τi1 ,...,τiα ,s

~χ 6= ∅. This follows from the fact that the morphism

Fcl on closed points is bijective and the disjoint union is over a countable set. As a

consequence, the left hand side of (1.15) is a quasi-projective k-scheme of finite type over

k (see Theorem 1.2.13). We now want to apply Proposition 1.3.7 to the morphism F of

equation (1.14) and the closed subscheme ι : (Ms
P )T →֒ Ms

P . We proceed by induction
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on the length of local artinian k-algebras with residue field k. For length 1 (i.e. A ∼= k),

the hypothesis of Proposition 1.3.7 is satisfied. This is the content of the claim at the

beginning of this subsection. Assume we have proved the hypothesis of Proposition 1.3.7

for all lengths 1, . . . , l and let A′ be a local artinian k-algebra of length l+1 with residue

field k. Then it fits in a small extension 0 −→ J −→ A′ σ
−→ A −→ 0, where A is a

local artinian k-algebra of length ≤ l with residue field k. Using [Fog, Thm. 2.3], one

can show the image of Hom(A′, (Ms
P )T ) in Hom(A′,Ms

P ) is Hom(A′,Ms
P )Tcl . Define

abbreviations

M =
a∐

α=1

∐

i1<···<iα∈{1,...,a}

∐

~χ∈
(

X
τi1

,...,τiα
P

)gf

M
τi1 ,...,τiα ,s

~χ ,

N = Ms
P .

Using Proposition 1.3.8, it is enough to prove that the map M(A′) −→ N (A′) maps

bijectively onto the fixed point locus N (A′)Tcl . (Note that Tcl act naturally on the set

N (A′). We will drop the subscript cl referring to closed points from now on.) By the

induction hypothesis, we know M(A) −→ N (A) maps bijectively onto N (A)T . Before

we continue, we need to study the deformations and obstructions associated to the moduli

functors M, N .

In general, let E0 be a simple coherent sheaf onX and F0 a simple equivariant coherent

sheaf on X. Let Artin/k be the category of local artinian k-algebras with residue field k.

Consider the deformation functor DE0 : Artin/k −→ Sets, where DE0(A) is defined to be

the set of isomorphism classes of A-flat coherent sheaves on X×A such that F⊗kA ∼= E0.

Similarly, we define the deformation functor Deq
F0

: Artin/k −→ Sets, where Deq
F0

(A) is

defined to be the set of equivariant isomorphism classes of A-flat equivariant coherent

sheaves on X × A such that F ⊗k A ∼= F0 (equivariant isomorphism). In our setting,

we have a small extension 0 −→ J −→ A′ σ
−→ A −→ 0. We now consider the maps

DE0(σ) : DE0(A
′) −→ DE0(A), Deq

F0
(σ) : Deq

F0
(A′) −→ Deq

F0
(A). There is a natural map

o(σ) : DE0(A) −→ Ext2(E0, E0) ⊗k J,
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called the obstruction map, such that o(σ)−1(0) = im(DE0(σ)). The construction of

this map can be found in [Art, Sect. 2]. Moreover, for any [F ] ∈ im(DE0(σ)), the fibre

DE0(σ)−1([F ]) is naturally an Ext1(E0, E0) ⊗k J-torsor. This can be seen by noting that

Proposition 1.3.8 implies DE0 is pro-representable by the completion ÔMs
P ,[E0] of the

noetherian local k-algebra OMs
P ,[E0] and using Schlessinger’s Criterion [Sch, Thm. 2.11].

Entirely analogously, one can construct an obstruction map19

o
eq(σ) : DF0(A) −→ T -Ext2(F0,F0) ⊗k J,

also called the obstruction map, such that o
eq(σ)−1(0) = im(Deq

F0
(σ)). Moreover, for any

[F ] ∈ im(Deq
F0

(σ)), the fibre Deq
F0

(σ)−1([F ]) is naturally a T -Ext1(F0,F0) ⊗k J-torsor.

Rewriting the moduli functors in terms of deformation functors, we obtain

M(A′) =
∐

[F ]∈M(A)

DF⊗Ak(σ)−1([F ]),

N (A′) =
∐

[F ]∈N (A)

Deq
F⊗Ak

(σ)−1([F ]).

The remarks on obstructions and deformations together with the induction hypothesis,

show that it is enough to relate the T -equivariant Ext groups to the invariant part of

the ordinary Ext groups. It is enough to prove that for any equivariant coherent sheaves

A,B on X and for any i ∈ Z there is a canonical bijection

T -Exti(A,B)
∼=

−→ Exti(A,B)T ⊂ Exti(A,B).

This can be seen by using the following spectral sequence [Toh, Thm. 5.6.3]

IIp,q2 (B) = Hp(T,Extq(A,B)) =⇒ T -Extn(A,B),

19By Ext·(−,−) we denote the Ext groups formed in the category Qco(X) of quasi-coherent sheaves
on X. By T -Ext·(−,−) we denote the Ext groups formed in the category QcoT (X) of T -equivariant
quasi-coherent sheaves on X.
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together with Hp(T,Extq(A,B)) = 0 for any p > 0, q ∈ Z [Jan, Lem. 4.3]. Note that

Hp(T,−) denotes rational cohomology.

Corollary 1.3.10 (Theorem 1.0.1). Let X be a nonsingular projective toric variety. Let

OX(1) be an ample line bundle on X and let P be a choice of Hilbert polynomial of degree

dim(X). Then there is a canonical isomorphism20

(Ms
P )T ∼=

∐

~χ∈(X 0
P )

gf

M0,s
~χ .

Proof. Immediate from Theorems 1.3.9 and 1.2.22.

The advantage of this result is that for any nonsingular projective toric variety X

with ample line bundle OX(1) and Hilbert polynomial P of degree dim(X), we now

have a combinatorial description of (Ms
P )T in terms of the explicit moduli spaces of

torsion free equivariant sheaves of section 1.2. Explicit knowledge of (Ms
P )T is useful

for computing invariants associated to Ms
P , e.g. the Euler characteristic of Ms

P , using

localisation techniques. This will be exploited in the next chapter, where we take X to

be a nonsingular complete toric surface over C. We will derive expressions for generating

functions of Euler characteristics of moduli spaces of µ-stable torsion free sheaves on X,

keeping track of the dependence on choice of ample line bundle OX(1). This will give

rise to wall-crossing formulae. We will give the easiest two examples occurring in the

next chapter, without further discussion. In these examples, wall-crossing phenomena

are absent.

Example 1.3.11. Let X be a nonsingular complete toric surface over C and let H be an

ample divisor on X. Let e(X) be the Euler characteristic of X. Denote by MH
X (r, c1, c2)

the moduli space of µ-stable torsion free sheaves on X of rank r ∈ H0(X,Z) ∼= Z, first

Chern class c1 ∈ H2(X,Z) and second Chern class c2 ∈ H4(X,Z) ∼= Z. Then for rank

20Note that in the context of Theorem 1.2.22, “Gieseker stable” is equivalent to “properly GIT stable”.
Therefore, one should take properly GIT stable points on the right hand side.
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r = 1, we have
∑

c2∈Z

e(MH
X (1, c1, c2))q

c2 =
1

∏∞
k=1(1 − qk)e(X)

.

This result is known for general nonsingular projective surfaces X over C by work of

Göttsche, using very different techniques, i.e. using his expression for the Poincaré poly-

nomial of Hilbert schemes of points computed using the Weil Conjectures. ⊘

Example 1.3.12. Using the notation of the previous example, let X = P2 and rank

r = 2. Then

∑

c2∈Z

e(MH
X (2, 1, c2))q

c2 =
1

∏∞
k=1(1 − qk)6

∞∑

m=1

∞∑

n=1

qmn

1 − qm+n−1

= q + 9q2 + 48q3 + 203q4 + 729q5 + 2346q6 + 6918q7 + 19062q8 + 49620q9 +O(q10).

Another expression for the same generating function has been obtained by Yoshioka, who

obtains an expression for the Poincaré polynomial using the Weil Conjectures. In [Kly4],

Klyachko also computes this generating function expressing it in terms of Hurwitz class

numbers. In fact, the current chapter lays the foundations for many ideas appearing

in [Kly4] and generalises them to pure equivariant sheaves of any dimension on any

nonsingular toric variety. The next chapter can be seen as a systematic application to

torsion free sheaves on nonsingular complete toric surfaces. ⊘

1.3.4 Fixed Point Loci of Moduli Spaces of Reflexive Sheaves

on Toric Varieties

We end this section by discussing how our theory so far can be adapted to give combi-

natorial descriptions of fixed point loci of moduli spaces of µ-stable reflexive sheaves on

a nonsingular projective toric variety X with ample line bundle OX(1). We will start by

describing how sections 1.1 and 1.2 analogously hold in the setting of reflexive equivari-

ant sheaves on nonsingular toric varieties. In fact, we will construct a particularly simple

ample equivariant line bundle in the GIT problem, which precisely recovers µ-stability.
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Subsequently, we will quickly construct a general theory of moduli spaces of µ-stable

reflexive sheaves on any normal projective variety X with ample line bundle OX(1) in

a form useful for our purposes. Combining the results, gives the desired combinatorial

description of the fixed point loci.

Let X be a nonsingular toric variety defined by a fan ∆ in a lattice N of rank r.

In subsection 1.3.2, we mentioned the combinatorial description of reflexive equivariant

sheaves on X originally due to Klyachko (see for instance [Kly4]). As we discussed,

the category of reflexive equivariant sheaves on X is equivalent to the category R of

filtrations {Eρ(λ)}ρ∈∆(1) of finite-dimensional nonzero k-vector spaces. Let X r be the

collection of characteristic functions of reflexive equivariant sheaves on X, which is a

subset of the collection X 0 of characteristic functions of torsion free equivariant sheaves

on X. Note that the characteristic function of a reflexive equivariant sheaf can also occur

as the characteristic function of a torsion free equivariant sheaf that is not reflexive. Now

assume X is projective and OX(1) is an ample line bundle on X. Let ~χ ∈ X r, then we

can introduce natural moduli functors

N µss
~χ : (Sch/k)o −→ Sets,

N µs
~χ : (Sch/k)o −→ Sets,

where N µss
~χ (S) consists of equivariant S-flat families F on X×S such that the fibres Fs

are µ-semistable reflexive equivariant sheaves on X×k(s) with characteristic function ~χ,

where we identify two such families F1,F2 if there is a line bundle L on S (with trivial

equivariant structure) and an equivariant isomorphism F1
∼= F2 ⊗ p∗SL. The definition

of N µs
~χ is analogous using geometric µ-stability21. Taking τ = 0, Theorem 1.2.9 tells us

how to describe equivariant S-flat families with fibres torsion free equivariant sheaves

with fixed characteristic function ~χ. Let F be such a family with corresponding object

21On a projective k-scheme X (for k any field, not necessarily algebraically closed of characteristic
zero) with ample line bundle OX(1), a torsion free sheaf E is called geometrically µ-stable if E ⊗k K is
torsion free and µ-stable on X×kK for any field extension K/k. If k is algebraically closed, a torsion free
sheaf E on X is µ-stable if and only if geometrically µ-stable [HL, Exm. 1.6.5, Thm. 1.6.6, Cor. 1.5.11].
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F̂∆ ∈ C0
~χ(S). We see that F has reflexive fibres if and only if for all σ ∈ ∆ a cone of

maximal dimension and s ∈ S we have

Fσ(λ1, . . . , λr)s = Fσ(λ1,∞, . . . ,∞)s ∩ · · · ∩ Fσ(∞, . . . ,∞, λr)s,

for all λ1, . . . , λr ∈ Z, or equivalently for all σ ∈ ∆ a cone of maximal dimension and

s ∈ S we have

dimk(s) (Fσ(λ1,∞, . . . ,∞)s ∩ · · · ∩ Fσ(∞, . . . ,∞, λr)s) = χσ(λ1, . . . , λr), (1.16)

for all λ1, . . . , λr ∈ Z. This gives rise to a subcategory Cr~χ(S) ⊂ C0
~χ(S) and the category

of equivariant S-flat families with fibres reflexive equivariant sheaves with characteristic

function ~χ is equivalent to Cr~χ(S). Using a framing, we get a moduli functor C
r,fr
~χ which

is a subfunctor of the functor C
0,fr
~χ introduced in subsection 1.2.2. Now let N be the

number of rays of ∆ and M = χσ(∞, . . . ,∞) the rank, where σ can be chosen to be

any cone of maximal dimension. Referring to Proposition 1.2.11 and using the notation

occurring in the proof of Proposition 1.2.21, we recall C
0,fr
~χ is represented by a closed

subscheme

N 0
~χ ⊂ A′ =

N∏

j=1

M−1∏

k=1

Gr(k,M) ×
a∏

α=1

Gr(nα,M).

The new conditions on the fibres (1.16) determine an open subset N r
~χ ⊂ N 0

~χ which

represents C
r,fr
~χ . This can be proved by noting that for any finite product of Grassman-

nians
∏

i Gr(ni, N) the map {pi} 7→ dimk (
⋂

i pi) is upper semicontinuous. In fact, N r
~χ

is naturally a locally closed subscheme of just
∏N

j=1

∏M−1
k=1 Gr(k,M). This subscheme is

invariant under the natural regular action of G = SL(M,k) on
∏N

j=1

∏M−1
k=1 Gr(k,M).

We need the following variation on Proposition 1.2.19.

Proposition 1.3.13. Let X be a projective variety with ample line bundle OX(1). Let G

be an affine algebraic group acting regularly on X. Let E be a torsion free G-equivariant

sheaf on X. Then E is µ-semistable if and only if µF ≤ µE for any G-equivariant coherent
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subsheaf F with 0 < rk(F) < rk(E). Now assume in addition E is reflexive and G = T

is an algebraic torus. Then E is µ-stable if and only if µF < µE for any equivariant

coherent subsheaf F with 0 < rk(F) < rk(E).

Proof. We can copy the proof of Proposition 1.2.19, but need E to be reflexive and G = T

an algebraic torus for the second part. The reason is that for reflexive sheaves we have

the following three claims (see also the discussion at the start of the proof of Proposition

1.2.21). Let X be any projective normal variety with ample line bundle OX(1).

Claim 1. Let E be a reflexive sheaf on X. Then E is µ-semistable if and only if µF ≤ µE

for any proper reflexive subsheaf F ⊂ E . Moreover, E is µ-stable if and only if µF < µE

for any proper reflexive subsheaf F ⊂ E .

Claim 2. A reflexive µ-polystable sheaf on X is a µ-semistable sheaf on X isomorphic

to a (finite, nontrivial) direct sum of reflexive µ-stable sheaves. Let E be a µ-semistable

reflexive sheaf on X. Then E contains a unique maximal reflexive µ-polystable subsheaf

of the same slope as E . This subsheaf we refer to as the reflexive µ-socle of E .

Claim 3. Let E , F be reflexive µ-stable sheaves on X with the same slope. Then

Hom(E ,F) =







k if E ∼= F

0 otherwise.

Proof of Claim 1. By [OSS], one only has to test µ-semistability and µ-stability of

E for reflexive subsheaves F ⊂ E with 0 < rk(F) < rk(E). The claim follows from

the statement that for any reflexive sheaf E on X and reflexive subsheaf F ⊂ E with

rk(F) = rk(E) and µF = µE one has F = E . This can be seen as follows. Suppose ∅ 6=

Y = Supp(E/F), then Y is a closed subset with codim(Y ) ≥ 2. Since E|X\Y = F|X\Y

and for any open subset U ⊂ X, we have a commutative diagram [Har2, Prop. 1.6],

F(U) //

∼=
��

E(U)

∼=
��

F(U \ Y ) ∼=
// E(U \ Y ),
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we reach a contradiction.

Proof of Claim 2. Note that the collection {Fi | i ∈ I} of µ-stable reflexive subsheaves of

E with the same slope as E is nonempty (first remark in the proof of Claim 1). Consider

the subsheaf S =
∑

i∈I Fi, which can be written as S =
∑

i∈J Fi for some finite subset

∅ 6= J ⊂ I. Assume J = {1, . . . ,m} and Fi+1 * F1 + · · · + Fi for all i = 1, . . . ,m − 1.

It is enough to prove (F1 + · · · + Fi) ∩ Fi+1 = 0 for all i = 1, . . . ,m − 1. Suppose we

know the statement for 1, . . . , k− 1, but (F1 + · · ·+Fk)∩Fk+1 6= 0. By the short exact

sequence

0 −→ (F1 + · · · + Fk) ∩ Fk+1 −→ (F1 + · · · + Fk) ⊕Fk+1 −→ F1 + · · · + Fk+1 −→ 0,

and F1 + · · · + Fk = F1 ⊕ · · · ⊕ Fk, we see that if µ(F1+···+Fk)∩Fk+1
< µF1⊕···⊕Fk+1

, then

µF1+···+Fk+1
> µF1⊕···⊕Fk+1

= µF1 = · · · = µFk+1
= µE ,

which contradicts E being µ-semistable. Therefore

µE = µF1 = · · · = µFk+1
= µF1⊕···⊕Fk+1

≤ µ(F1+···+Fk)∩Fk+1
.

On the other hand, (F1 + · · ·+Fk)∩Fk+1 = (F1 ⊕· · ·⊕Fk)∩Fk+1 is reflexive by [Har2,

Prop. 1.6], so Claim 1 implies

µ(F1+···+Fk)∩Fk+1
< µFk+1

,

which yields a contradiction.

Proof of Claim 3. Let φ : E −→ F be a morphism. It suffices to prove φ is zero or an

isomorphism, because E , F are simple. Let K be the kernel and I the image of φ. In

the case K = E we are done. In the case K = 0, the possibility 0 6= I ( F is ruled out

by Claim 1 and we are done in the other cases. Suppose 0 6= K ( E , then K can easily

seen to be reflexive by [Har2, Prop. 1.6]. Consequently, µK < µE by Claim 1. In the case
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I = 0, we are done. In the case I = F , we reach a contradiction since µE = µK. In the

case 0 6= I ( F we reach a contradiction since µE ≤ µK.

Using Proposition 1.3.13 and the proof of Proposition 1.2.21, it easy to see we can choose

an ample equivariant line bundle Lr~χ on N r
~χ such that the GIT semistable points of N r

~χ

are precisely the µ-semistable elements and the properly GIT stable points of N r
~χ are

precisely the µ-stable elements. This ample equivariant line bundle can be deduced from

the a = 0 case of the proof of Proposition 1.2.21 and is particularly simple. We choose

such an ample equivariant line bundle and denote the GIT quotients by N µss
~χ , N µs

~χ . We

obtain the following theorem.

Theorem 1.3.14. Let X be a nonsingular projective toric variety. Let OX(1) be an

ample line bundle on X and ~χ ∈ X r a characteristic function of a reflexive equivariant

sheaf on X. Then N µss
~χ is corepresented by the quasi-projective k-scheme of finite type

N µss
~χ . Moreover, there is an open subset N µs

~χ ⊂ N µss
~χ such that N µs

~χ is corepresented by

N µs
~χ and N µs

~χ is a coarse moduli space.

We now discuss how to define moduli spaces of µ-stable reflexive sheaves on normal

projective varieties in general in a way useful for our purposes. Let X be a normal projec-

tive variety with ample line bundle OX(1) (not necessarily nonsingular or toric). Let P

be a choice of Hilbert polynomial of a reflexive sheaf on X. Then there are natural mod-

uli functors Mss
P , Ms

P of flat families with fibres Gieseker semistable resp. geometrically

Gieseker stable sheaves with Hilbert polynomial P as we discussed in subsection 1.3.1

referring to [HL]. The moduli functor Mss
P is corepresented by a projective k-scheme

Mss
P of finite type and Mss

P contains an open subset Ms
P , which corepresents Ms

P and

is in fact a coarse moduli space. Let P be a property of coherent sheaves on k-schemes

of finite type. We say P is an open property if for any projective morphism f : Z −→ S

of k-schemes of finite type and F an S-flat coherent sheaf on Z, the collection of points

s ∈ S such that the fibre Fs satisfies property P is open (see [HL, Def. 2.1.9]). We claim
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that if P is an open property, then the moduli functor

Ms
P,P ⊂ Ms

P ,

defined as the subfunctor of all families with every fibre satisfying P , is corepresented

by an open subset Ms
P,P ⊂ Ms

P and Ms
P,P is a coarse moduli space. This is immediate

in the case we have a universal family for Ms
P and on the level of Quot schemes we can

always define obvious subfunctors represented by obvious open subsets. In the general

case, one can prove the claim using arguments involving Luna’s Étale Slice Theorem and

local artinian k-algebras with residue field k as in Propositions 1.3.7 and 1.3.8. We now

would like to take P to be the property “geometrically µ-stable and reflexive”. Using an

argument analogous to the proof of [HL, Prop. 2.3.1] (which uses a boundedness result

by Grothendieck), it is easy to see that geometrically µ-stable is an open property. Using

a result by Kollár [Kol, Prop. 28] and a semicontinuity argument, we see that reflexive

is also an open property. Therefore, it makes sense to define a moduli functor N µs
P ⊂

Ms
P consisting of those families where all fibres are geometrically µ-stable and reflexive.

The moduli functor N µs
P is corepresented by an open subset N µs

P ⊂ Ms
P and N µs

P is a

coarse moduli space coming from a geometric quotient of an open subset of the Quot

scheme. In the case X is a nonsingular projective toric variety, we get a regular action

σ : T ×N µs
P −→ N µs

P and the fixed point locus is a closed subscheme (N µs
P )T ⊂ N µs

P . We

define (X r
P )gf = (X 0

P )
gf

∩ X r to be the collection of gauge-fixed characteristic functions

of reflexive equivariant sheaves on X giving rise to Hilbert polynomial P . Completely

analogous to subsections 1.3.1, 1.3.2, 1.3.3, we obtain the following theorem.

Theorem 1.3.15. Let X be a nonsingular projective toric variety. Let OX(1) be an

ample line bundle on X and let P be a choice of Hilbert polynomial of a reflexive sheaf

on X. Then there is a canonical isomorphism

(N µs
P )T ∼=

∐

~χ∈(X r
P )

gf

N µs
~χ .
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Chapter 2

Euler Characteristics of Moduli

Spaces of Sheaves on Toric Surfaces

The moduli space of Gieseker stable sheaves is a complicated object1. For example, it

satisfies Murphy’s Law, meaning every singularity type of finite type over Z appears on

it [Vak]. Nevertheless, we need a reasonable understanding of components of it, when

we want to compute invariants associated to these components. Examples are motivic

invariants like virtual Hodge polynomials, virtual Poincaré polynomials and Euler char-

acteristics of components of the moduli space of Gieseker stable sheaves. Other examples

are (generalised) Donaldson–Thomas invariants of a Calabi–Yau threefold.

This leads us to consider the following situation. Let X be a nonsingular projective

toric variety with torus T , let OX(1) be an ample line bundle on X and let P be a choice

of Hilbert polynomial2. We can lift the action of the torus T on X to a regular action

on the moduli space Ms
P of Gieseker stable sheaves on X with Hilbert polynomial P .

In the previous chapter, we gave a combinatorial description of the fixed locus (Ms
P )T .

As a by-product, for any Hilbert polynomial P of a reflexive sheaf on X, we found

a combinatorial description of the fixed point locus (N s
P )T of the moduli space N s

P of

1The notion of Gieseker stability is defined in [HL, Def. 1.2.4].
2In this chapter, we will work with varieties, schemes and stacks over ground field C unless specified

otherwise.
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Gieseker stable reflexive sheaves on X with Hilbert polynomial P . In the present chapter,

we apply the combinatorial descriptions of the fixed point loci to the case of torsion free

sheaves on nonsingular complete toric surfaces. Many of the guiding ideas of the previous

chapter and the present chapter come from Klyachko’s remarkable preprint [Kly4] (see

also [Kly1], [Kly2], [Kly3]). The previous chapter lays the foundations for many ideas

appearing in [Kly4] and generalises them to pure equivariant sheaves of any dimension on

any nonsingular toric variety. The present chapter can be seen as a systematic application

to torsion free sheaves on nonsingular complete toric surfaces.

The main goal of the present chapter is to derive an expression for the generating

function of Euler characteristics of moduli spaces of µ-stable3 torsion free sheaves of

rank r and first Chern class c1 on a nonsingular complete toric surface X with ample

divisor H. We will obtain an expression for this generating function in terms of Euler

characteristics of moduli spaces of stable configurations of linear subspaces in Theorem

2.2.7, keeping X, H, r and c1 completely arbitrary4. The expression in Theorem 2.2.7

can be further simplified in examples. The dependence on H allows us to study wall-

crossing phenomena. Note that we compute Euler characteristics of moduli spaces of

µ-stable torsion free sheaves only, even in the presence of strictly µ-semistable torsion

free sheaves.

This chapter is organised as follows. In section 2.1, we gather some rudimentary

information about motivic invariants and torus localisation. In section 2.2, we start by

giving an explicit expression of the Chern character of a torsion free equivariant sheaf on

a nonsingular complete toric surface in terms of certain 2D partitions associated to the

sheaf. Here we use a formula due to Klyachko. Subsequently, using a result by Göttsche

and Yoshioka, we note that in the surface case it is sufficient to compute generating

functions of moduli spaces of µ-stable reflexive sheaves only. Using these results, we

derive a formula for any generating function of Euler characteristics of moduli spaces of

3The notion of µ-stability is defined in [HL, Def. 1.2.12].
4Configurations of linear subspaces and their moduli spaces are a classical topic in GIT. See [Dol,

Ch. 11] for a discussion.
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µ-stable torsion free sheaves on a nonsingular complete toric surface (Theorem 2.2.7).

In section 2.3, we simplify this formula in examples and compare these examples to

the literature. We consider the case rank 1 and trivially retrieve a result by Ellingsrud

and Strømme [ES] and Göttsche [Got1]. We consider the case rank 2 and X = P2

and compare to work of Klyachko [Kly4] and Yoshioka [Yos]. We consider rank 2 and

X = P1 ×P1 or any Hirzebruch surface Fa (a ∈ Z≥1), where we make the dependence on

choice of ample divisor H explicit. This allows us to study wall-crossing phenomena and

compare to work of Göttsche [Got2] and Joyce [Joy2]. We perform various consistency

checks. Finally, we give a formula for rank 3 and X = P2, which we are not able to write

in a short form5. This formula allows for numerical computations. It should be noted

that Ellingsrud and Strømme [ES] and Klyachko [Kly4] use the torus action/techniques

of toric geometry, whereas Göttsche [Got1], [Got2] and Yoshioka [Yos] use very different

techniques namely the Weil Conjectures to compute virtual Poincaré polynomials. Also

Joyce [Joy2] uses very different techniques namely his theory of wall-crossing for motivic

invariants counting (semi)stable objects.

The entire theory of chapter 1 has been developed for arbitrary moduli spaces of

Gieseker stable sheaves on nonsingular projective toric varieties, except for matching

GIT stability of the moduli spaces of pure equivariant sheaves to Gieseker stability. This

has only been achieved in full generality for torsion free sheaves. However, for pure

equivariant sheaves of lower dimension, one can still match GIT and Gieseker stability

in many examples. We exploit this in section 2.4 to compute generating functions of

moduli spaces of µ-stable pure dimension 1 sheaves on X = P2 with first Chern class

c1 = 1, 2, 3. Davesh Maulik suggested looking at this example. Jinwon Choi has also

considered this example using [Koo1], i.e. chapter 1 (private communication). He found

the same results as the author and in addition considered the case c1 = 4. In section 2.5,

we describe how various generating functions obtained in sections 2.3–2.4 can be seen

5During the finishing of subsections 2.1–2.3, the author found out about recent independent work of
Weist [Wei], where he also computes the case rank 3 and X = P2 using techniques of toric geometry
and quivers.
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as generating functions of Donaldson–Thomas invariants of the canonical bundle KX .

In the case of pure dimension 1 sheaves on X = P2, (generalised) Donaldson–Thomas

invariants of KX are conjectured to correspond to genus zero Gopakumar–Vafa invariants

of KX [Kat], [JS]. The examples we consider are consistent with this conjecture.

2.1 Introduction

In this section, we will briefly discuss motivic invariants and torus localisation. As a

warming-up we treat a trivial application, viz. generating functions of Euler character-

istics of moduli spaces of µ-stable torsion free sheaves on P1.

2.1.1 Motivic Invariants

One can define the virtual Poincaré polynomial P (X, z) ∈ Q[z] of any quasi-projective

variety X (this is summarised in [Joy1, Exm. 4.3, 4.4] and also [Got2, Sect. 1(c)]).

The definition is elaborate and involves Deligne’s weight filtration. The value e(X) =

P (X,−1) is the Euler characteristic of X. In the case X is nonsingular and projective,

the virtual Poincaré polynomial reduces to the ordinary Poincaré polynomial P (X, z) =
∑2dim(X)

k=0 bk(X)zk, where bk(X) are the Betti numbers. The virtual Poincaré polynomial

(and therefore the Euler characteristic) satisfies the following properties:

(i) If Y ⊂ X is a closed subvariety of a quasi-projective variety, then P (X, z) =

P (X \ Y, z) + P (Y, z).

(ii) If X,Y are quasi-projective varieties, then P (X × Y, z) = P (X, z)P (Y, z).

(iii) If f : X −→ Y is a bijective morphism of quasi-projective varieties, then P (X, z) =

P (Y, z).

As a consequence, a Zariski locally trivial fibration φ : X −→ Y of quasi-projective

varieties with fibre a quasi-projective variety F satisfies P (X, z) = P (F, z)P (Y, z) [Joy1,

Lem. 4.2]. One can also define the virtual Hodge polynomial H(X;x, y), but we will
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not go into this. All of these objects are called motivic invariants. By restricting to the

reduced subscheme, all of these motivic invariants can be extended to quasi-projective

C-schemes of finite type and the aforementioned properties continue to hold. Note that

P (A1, z) = z2 and P (pt, z) = 1. The following result is well-known (e.g. see [CG]).

Proposition 2.1.1 (Torus Localisation). Let X be a quasi-projective C-scheme of finite

type. Let T be an algebraic torus acting regularly on X. Then e(X) = e(XT ).

2.1.2 The Case P1

Let X be a nonsingular projective (irreducible) variety of dimension n. Instead of

Hilbert polynomial, it is better for computational purposes to fix Chern characters

chk ∈ H2k(X,Q) (for all k = 0, . . . , n) or, equivalently, rank r ∈ H0(X,Z) and Chern

classes ck ∈ H2k(X,Z) (for all k = 1, . . . , n). Therefore, we will proceed to do this

instead. Note that H0(X,Z) ∼= Z ∼= H2n(X,Z). The combinatorial descriptions of fixed

point loci of the previous chapter, Theorem 1.3.9, Corollary 1.3.10 and Theorem 1.3.15,

hold analogously in this setting6.

Consider the combinatorial description in Corollary 1.3.10 of fixed point loci of moduli

spaces of torsion free sheaves on nonsingular projective toric varieties in the simplest case,

i.e. when dim(X) = 1. The only nonsingular projective toric variety of dimension 1 is

X = P1 with fan:

•
σ2 σ1

Let D be a point on X and H = αD an ample divisor on X (i.e. α ∈ Z>0). A coherent

sheaf E on X is torsion free if and only if reflexive if and only if locally free. Let E be a

rank r equivariant vector bundle on X with corresponding framed torsion free ∆-family

Ê∆. Then Ê∆ is described by a pair of filtrations ({Eσ1(λ)}λ∈Z, {E
σ2(λ))}λ∈Z) where

Eσi(λ) is 0 for λ sufficiently small and C⊕r for λ sufficiently large for each i = 1, 2

6Note that when X is in addition toric, H2∗(X, Z) ∼= A∗(X) and H2∗(X, Q) ∼= A∗(X) ⊗Z Q, so it
does not matter whether we work in cohomology or the Chow ring [Ful, Sect. 5.2].
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(Theorem 1.1.10). Let NH
X (r, c1) be the moduli space of µ-stable vector bundles on X of

rank r and first Chern class c1.

Case 1: r = 1. In this case E is always a line bundle and Ê∆ is described by two integers

A1, A2 indicating where the filtrations Eσ1(λ), Eσ2(λ) jump dimension. From Theorem

1.3.15 and Klyachko’s Formula (Proposition 1.2.16), we obtain NH
X (1, c1)

T = pt. Using

torus localisation (Proposition 2.1.1), we deduce that

∑

c1∈Z

e(NH
X (1, c1))q

c1 =
∑

k∈Z

qk.

Case 2: r > 1. In this case, it is easy to see E always decomposes, since the pair of

filtrations ({Eσ1(λ)}λ∈Z, {E
σ2(λ))}λ∈Z) decomposes. Hence there cannot be any µ-stable

equivariant vector bundles on X of rank r, so Theorem 1.3.15 implies NH
X (1, c1)

T = ∅.

Using torus localisation (Proposition 2.1.1), we deduce that

∑

c1∈Z

e(NH
X (r, c1))q

c1 = 0.

Note that this result trivially follows from [HL, Thm. 1.3.1].

2.2 Euler Characteristics of Moduli Spaces of Tor-

sion Free Sheaves on Toric Surfaces

In the rest of this chapter, we will consider a nonsingular complete7 toric surface X with

ample divisor H. For fixed rank r > 0, first Chern class c1 and second Chern class

c2, we denote the moduli space of µ-stable torsion free sheaves on X of rank r, first

Chern class c1 and second Chern class c2 by MH
X (r, c1, c2). Since geometric µ-stability

is an open condition, this moduli space is naturally an open subset of the moduli space

of Gieseker stable torsion free sheaves on X of rank r, first Chern class c1 and second

7Note that for 2-dimensional toric varieties the notion of complete (i.e. proper) and projective are
the same [Ful, Sect. 3.4].
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Chern class c2 (see subsection 1.3.4 for a more detailed discussion). Our goal is to use

the combinatorial description of fixed point loci of the previous chapter, i.e. Corollary

1.3.10, Theorem 1.3.15, to compute the generating function

∑

c2∈Z

e(MH
X (r, c1, c2))q

c2 .

Note that this generating function is an element of Z((q)), i.e. a formal Laurent series in

q, by the Bogomolov Inequality [HL, Thm. 3.4.1]. We derive a general formula for this

generating function expressing it in terms of Euler characteristics of moduli spaces of

stable configurations of linear subspaces (Theorem 2.2.7). Note that we compute Euler

characteristics of moduli spaces of µ-stable torsion free sheaves MH
X (r, c1, c2) only and

ignore strictly µ-semistable torsion free sheaves. The reason is that the combinatorial

descriptions of fixed point loci of the previous chapter, Theorem 1.3.9, Corollary 1.3.10

and Theorem 1.3.15, use simpleness in an essential way (see section 1.3). In section 2.3,

we simplify the general formula of Theorem 2.2.7 and compare to the literature in the

examplesX arbitrary and rank r = 1, X = P2 and rank r = 1, 2, 3, andX = Fa (a ∈ Z≥0)

and rank r = 1, 2. Here we write Fa for the bundle8 p : Fa = P(OP1(a) ⊕ OP1) −→ P1.

We insist on keeping H and c1 arbitrary in these examples.

2.2.1 Chern Characters of Torsion Free Equivariant Sheaves on

Toric Surfaces

We will start by recalling some well-known facts. A classification of all nonsingular

complete toric surfaces is given by the following proposition [Ful, Sect. 2.5].

Proposition 2.2.1. All nonsingular complete toric surfaces are obtained by successive

blow-ups of P2 and Fa (a ∈ Z≥0) at fixed points.

Combinatorially, such blow-ups are described by stellar subdivisions, i.e. creating a fan

∆̃ out of ∆ by subdividing a fixed cone through the sum of the two integral lattice

8Note that F0 = P1 × P1 and the Fa for a ∈ Z≥1 are the Hirzebruch surfaces.
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vectors of its rays. Let ∆ be a fan obtained in such a way out of one of the fans of P2,

Fa (a ∈ Z≥0). Let σ1, . . . , σN be its 2-dimensional cones and let ρ1, . . . , ρN be its rays

numbered counterclockwise as follows:

�������������������������

��������������������

oooooooooooooooooooo

ttttttttttttttttttttt ρ1

ρ2

ρ3

ρ4ρ5

. . .

...

. . .

TTTTTTTTTTTTTTTTTTT

ρN

?????????????????????????

ρi

∆

where cone σi has rays ρi, ρi+1 for all i = 1, . . . , N (the index i is understood modulo

N , so cone σN has rays ρN , ρ1). Note that we take N = Z2 as the underlying lattice,

M = Z2 as the dual lattice and 〈−,−〉 : M ×N −→ Z as the canonical pairing9. Denote

the primitive lattice vectors corresponding to the rays ρ1, . . . , ρN by v1, . . . , vN . Since

v1, v2 form a basis for N , we can assume without loss of generality that v1 = e1, v2 = e2

are the standard basis vectors. Denote the corresponding divisors by D1, . . . , DN
∼= P1

([Ful, Sect. 2.5]). Consider the Chow ring A(X) = A0(X)⊕A1(X)⊕A2(X). Using [Ful,

Sect. 5.2], we get A(X) = Z[D1, . . . , DN ]/I, where I is the ideal generated by

D1 +
N∑

i=3

〈e1, vi〉Di = 0, D2 +
N∑

i=3

〈e2, vi〉Di = 0,

DiDj = 0, unless i = 1, . . . , N, j = i+ 1,

DiDjDk = 0, for all i, j, k = 1, . . . , N.

Since X is a complete toric variety, A2(X) ∼= Z so D1D2 = D2D3 = · · · = DN−1DN =

DND1 6= 0 in A(X) ([Ful, Sect. 2.5]). Denote this element, which generates A2(X),

9We use N = Z2 for the lattice and N ∈ Z≥3 for the number of 2-dimensional cones σ1, . . . , σN of
∆, but from the context no confusion in notation will arise.
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by pt. Finally, the self-intersections are given by D2
i = −ai pt, where ai is defined to

be the integer satisfying vi−1 + vi+1 = aivi for all i = 1, . . . , N ([Ful, Sect. 2.5]). We

define ξi = −〈e1, vi〉, ηi = −〈e2, vi〉 for all i = 3, . . . , N . The integers {ai}
N
i=1, {ξi}

N
i=3,

{ηi}
N
i=3 are entirely determined by the fan ∆. Note that e(X) = N by torus localisation

(Proposition 2.1.1).

Let OX(1) be an ample line bundle on X. There are isomorphisms ZN−2 ∼= A1(X) ∼=

Pic(X), which map integers (α3, . . . , αN) to the divisor α3D3 + · · · + αNDN and to the

line bundle OX(α3D3 + · · ·+ αNDN). Let (α3, . . . , αN) be the integers corresponding to

OX(1) and define α1 = α2 = 0. Let E be a torsion free equivariant sheaf on X of rank

r with corresponding framed torsion free ∆-family Ê∆. Using Theorem 1.1.10, we see

such a family is described by N double-filtrations {Eσi(λ1, λ2)}(λ1,λ2)∈Z2 of C⊕r

Eσi(λ1, λ2) ⊂ Eσi(λ1 + 1, λ2), for all (λ1, λ2) ∈ Z2,

Eσi(λ1, λ2) ⊂ Eσi(λ1, λ2 + 1), for all (λ1, λ2) ∈ Z2,

such that for each i = 1, . . . , N there are integers Ai, Bi with the property Eσi(λ1, λ2) = 0

unless λ1 ≥ Ai, λ2 ≥ Bi and there are integers λ1, λ2 such that Eσi(λ1, λ2) = C⊕r. These

double-filtrations satisfy gluing conditions

Eσi(∞, λ) = Eσi+1(λ,∞), for all λ ∈ Z,

for all i = 1, . . . , N . We introduce notation for the limiting filtrations {Eσi(λ,∞)}λ∈Z

associated to any ray ρi

Eσi(λ,∞) =







0 if λ < Ai

pi(1) ∈ Gr(1, r) if Ai ≤ λ < Ai + ∆i(1)

pi(2) ∈ Gr(2, r) if Ai + ∆i(1) ≤ λ < Ai + ∆i(1) + ∆i(2)

. . . . . .

C⊕r if Ai + ∆i(1) + ∆i(2) + . . .+ ∆i(r − 1) ≤ λ.
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Note that the Ai ∈ Z and the ∆i(j) ∈ Z≥0.

Let ~χ ∈ X 0 be the characteristic function of a torsion free equivariant sheaf on X of

rank r. Then for any i = 1, . . . , l, the dimension profile of χσi looks as follows, where we

use notation Ai, ∆i(j) as just introduced.

___________________

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

_ _

�
�

_ _ _

0

1

1

1

r − 1

r − 1

r − 1

r−1

r

. . .

. . .

...
...

∆i(1) ∆i(r − 1)

∆i+1(1)

∆i+1(r − 1)

•
(Ai, Ai+1)

Let j = 1, . . . , r and define for all (λ1, λ2) ∈ Z2

φi(j)(λ1, λ2) =







1 if χσi(λ1, λ2) ≥ j

0 otherwise,

ψi(j)(λ1, λ2) =







1 if φi(j)(λ1, λ
′
2) = φi(j)(λ

′
1, λ2) = 1 for some λ′1 ≥ λ1 and λ′2 ≥ λ2

0 otherwise.

Subsequently, we define πi(j) to be the union of all blocks [λ1, λ1 + 1] × [λ2, λ2 + 1]

for (λ1, λ2) ∈ Z2 such that ψi(j)(λ1, λ2) − φi(j)(λ1, λ2) = 1. In other words, from the
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diagram of χσi , we obtain 2D partitions πi(1), . . . , πi(r) ⊂M ⊗Z R:

. . .πi(1) πi(2) πi(r − 1) πi(r)

We denote by #πi(j) the number of blocks of the 2D partition πi(j)

#πi(j) =
∑

(λ1,λ2)∈Z2

(ψi(j)(λ1, λ2) − φi(j)(λ1, λ2)) .

Proposition 2.2.2. Let E be a torsion free equivariant sheaf of rank r on a nonsingular

complete toric surface X with Euler characteristic N . Suppose the characteristic function

~χE of E gives rise to integers Ai for all i = 1, . . . , N , nonnegative integers ∆i(j) for all

i = 1, . . . , N and j = 1, . . . , r − 1 and 2D partitions πi(j) for all i = 1, . . . , N and

j = 1, . . . , r. Then

ch(E) = r −
N∑

i=1

(

rAi +
r−1∑

j=1

(r − j)∆i(j)

)

Di

+
1

2

(
N∑

i=1

AiDi

)2

+
1

2

r−1∑

j=1

(
N∑

i=1

(

Ai +

j
∑

k=1

∆i(k)

)

Di

)2

−
N∑

i=1

r∑

j=1

#πi(j) pt.

Proof. Step 1. Assume r = 1 and A1 = · · · = Ar = 0. For each i = 1, . . . , N , the

double-filtration {Eσi(λ1, λ2)}(λ1,λ2)∈Z2 gives rise to a 2D partition πi consisting of #πi

blocks. Referring to Klyachko’s Formula (Proposition 1.2.16), for each i = 1, . . . , N we

have to compute

∑

λ∈Z

f(λ) [dim(Eσi(λ,∞)) − dim(Eσi(λ− 1,∞))] ,
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∑

λ1,λ2∈Z

g(λ1, λ2) [dim(Eσi(λ1, λ2)) − dim(Eσi(λ1 − 1, λ2)) − dim(Eσi(λ1, λ2 − 1))

+dim(Eσi(λ1 − 1, λ2 − 1))] ,

where f(λ) is λ or λ2 and g(λ1, λ2) is λ1, λ2, λ
2
1, λ1λ2 or λ2

2. For each i = 1, . . . , N ,

define a(i) to be the smallest integer where Eσi(λ, 0) jumps dimension and define b(i) to

be the smallest integer where Eσi(0, λ) jumps dimension. Since A1 = · · · = AN = 0, the

first sum will be zero for both choices of f(λ). The second sum can be rewritten as

a(i)−1∑

λ1=0

b(i)−1∑

λ2=0

[g(λ1, λ2) − g(λ1 + 1, λ2) − g(λ1, λ2 + 1) + g(λ1 + 1, λ2 + 1)] dim(Eσi(λ1, λ2))

+ g(a(i), b(i)) +
b(i)−1∑

λ2=0

g(a(i), λ2) +
a(i)−1∑

λ1=0

g(λ1, b
(i)) −

a(i)−1∑

λ1=0

g(λ1 + 1, b(i))

−
b(i)−1∑

λ2=0

g(a(i), λ2 + 1).

It is easy to see this sum only contributes for g(λ1, λ2) = λ1λ2, in which case the contri-

bution is

−a(i)b(i) +
a(i)−1∑

λ1=0

b(i)−1∑

λ2=0

dim(Eσi(λ1, λ2)) = −#πi.

We obtain

ch(E) = 1 −
N∑

i=1

#πi pt.

Step 2. Assume r = 1 and A1, . . . , Ar arbitrary. This case can be reduced to Step 1 by

tensoring with an equivariant line bundle and using Proposition 1.3.6. One immediately

obtains the following formula

ch(E) =

(

1 −
N∑

i=1

#πi pt

)

e−
∑N

i=1 AiDi

= 1 −
N∑

i=1

AiDi +
1

2

(
N∑

i=1

AiDi

)2

−
N∑

i=1

#πi pt.
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Step 3. Now let r be general. Let ~χE be the characteristic function of E , then ch(E)

depends only on ~χE (Proposition 1.2.16). Let F = L1⊕· · ·⊕Lr be the sum of r rank 1 tor-

sion free equivariant sheaves La defined by torsion free ∆-families {Lσi
a (λ1, λ2)}(λ1,λ2)∈Z2

Lσi
a (λ1, λ2) =







C if dim(Eσi(λ1, λ2)) ≥ a

0 otherwise.

Clearly ~χE = ~χF , so the result follows from ch(E) =
∑r

i=1 ch(Li) and Step 2.

2.2.2 Vector Bundles on Toric Surfaces

In this subsection, we will discuss in more detail reflexive equivariant sheaves on non-

singular complete toric surfaces. Recall that on a nonsingular surface a coherent sheaf

is reflexive if and only if locally free [Har2, Cor. 1.4]. We will derive an expression for

generating functions of Euler characteristics of moduli spaces of µ-stable vector bun-

dles on nonsingular complete toric surfaces. This will yield an expression for generating

functions of Euler characteristics of moduli spaces of µ-stable torsion free sheaves on non-

singular complete toric surfaces by the following proposition of Göttsche and Yoshioka

[Got3, Prop. 3.1].

Proposition 2.2.3. Let X be a nonsingular projective surface, H an ample divisor,

r ∈ Z>0 and c1 ∈ H2(X,Z). Then

∑

c2∈Z

e(MH
X (r, c1, c2))q

c2 =
1

∏∞
k=1(1 − qk)re(X)

∑

c2∈Z

e(NH
X (r, c1, c2))q

c2 .

In this proposition, NH
X (r, c1, c2) is the moduli space of µ-stable vector bundles on X

of rank r, first Chern class c1 and second Chern class c2 (see subsection 1.3.4). Note

that NH
X (r, c1, c2) is an open subset of MH

X (r, c1, c2), since reflexive is an open condition

(see subsection 1.3.4). Combining this proposition with torus localisation (Proposition
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2.1.1) and the combinatorial description of fixed point loci of moduli spaces of µ-stable

reflexive sheaves on nonsingular projective toric varieties (Theorem 1.3.15), we obtain

the following result.

Proposition 2.2.4. Let X be a nonsingular complete toric surface, H an ample divisor,

r ∈ Z>0 and c1 ∈ H2(X,Z). Then

∑

c2∈Z

e(MH
X (r, c1, c2))q

c2 =
1

∏∞
k=1(1 − qk)re(X)

∑

c2∈Z

∑

~χ∈
(

X r
(r,c1,c2)

)gf

e(Nµs
~χ )qc2 .

In this proposition, Nµs
~χ denotes the moduli space of µ-stable reflexive equivariant sheaves

on X with characteristic function ~χ (see subsection 1.3.4).

The goal of this subsection is to simplify the expression in the previous proposition

by studying more closely how characteristic functions and Chern classes of equivariant

vector bundles on nonsingular complete toric surfaces are related. Here we will make

use of Proposition 2.2.2. The notion of characteristic function of an equivariant vector

bundle on a nonsingular complete toric surface can be rephrased by using the notion of

display named after Klyachko’s similar notion introduced in [Kly4, Def. 1.3.6].

Definition 2.2.5. Let r be a positive integer, let A1, A2 be integers and let ∆1(1), . . . ,

∆1(r − 1), ∆2(1), . . . ,∆2(r − 1) be positive integers. A display δ located at (A1, A2) of

widths (∆1(1), . . . ,∆1(r−1); ∆2(1), . . . ,∆2(r−1)) and rank r is a diagram δ obtained as

follows. Consider the lines x = A1, x = A1 +∆1(1), . . ., x = A1 +∆1(1)+ · · ·+∆1(r−1),

y = A2, y = A2 + ∆2(1), . . ., y = A2 + ∆2(1) + · · · + ∆2(r − 1) in R2 an choose a

permutation σ ∈ Sr. From this we construct a diagram. For example, in the case of a

permutation σ ∈ Sr sending 1 → 3, 2 → 1, 3 → 4, 4 → 2, . . ., we draw the following

diagram, where we refer to the lines as the edges.
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�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� _______________

O�
O�
O�
O�

/o/o/o

•
(A1, A2)

∆1(1) ∆1(2) ∆1(3) ∆1(r − 1). . .

. . .

∆2(1)

∆2(2)

∆2(3)

∆2(r − 1)

...
...

It is clear how the edges arise from the permutation σ. One can uniquely put numbers,

called dimensions, in this diagram as follows. Put the number r in the upper right region

x > A1 + ∆1(1) + · · ·+ ∆1(r− 1), y > A2 + ∆2(1) + · · ·+ ∆2(r− 1) and every time one

crosses a horizontal or vertical edge, one decreases the dimension of the corresponding

region by one as indicated by the following diagram.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� _______________

O�
O�
O�
O�

/o/o/o

•
(A1, A2)

∆1(1) ∆1(2) ∆1(3) ∆1(r − 1). . .

. . .

∆2(1)

∆2(2)

∆2(3)

∆2(r − 1)

...
...δ

0

1

1

2

2

3

3

r

The resulting diagram is called a display δ located at (A1, A2) of widths (∆1(1), . . . ,∆1(r−

1); ∆2(1), . . . ,∆2(r − 1)) and rank r. Next, we want to allow degeneracies i.e. al-
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low the ∆i(j) in the definition of a display to be zero. For any A1, A2 ∈ Z and

∆1(1), . . . ,∆1(r − 1) ∈ Z≥0, ∆2(1), . . . ,∆2(r − 1) ∈ Z≥0, we define a display δ lo-

cated at (A1, A2) of widths (∆1(1), . . . ,∆1(r − 1); ∆2(1), . . . ,∆2(r − 1)) and rank r as

follows. Let σ ∈ Sr be a permutation. Consider the display located at (A1, A2) of widths

(1, . . . , 1; 1, . . . , 1) and rank r defined by σ. Then separate (or join) two adjacent horizon-

tal or vertical lines according to the widths ∆1(1), . . . ,∆1(r − 1), ∆2(1), . . . ,∆2(r − 1),

where several lines are allowed to coincide. The diagram of such a display δ typically

looks like:

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� _______________

O�
O�
O�
O�

/o/o/o

•
(A1, A2)

∆1(1) ∆1(3) ∆1(r − 1). . .

. . .

∆2(1)

∆2(2)

∆2(3)

∆2(r − 1)

...
...δ

0

1

1

2

2

3

3

r

We denote the collection of displays located at (A1, A2) of widths (∆1(1), . . . ,∆1(r −

1); ∆2(1), . . . ,∆2(r−1)) and rank r by D(A1, A2; ∆1(1), . . . ,∆1(r−1); ∆2(1), . . . ,∆2(r−

1)). ⊘

The main use of displays is as follows. Consider the affine plane A2 as a toric variety

with canonical torus action. Characteristic functions of equivariant vector bundles (or,

equivalently, reflexive equivariant sheaves) of rank r on A2 are in 1-1 correspondence

with displays of rank r (see subsections 1.3.2 and 2.2.1). As such, given a display δ of

rank r, we can associate 2D partitions π(1), . . . , π(r) to it as in subsection 2.2.1. We

define the size of δ to be #δ =
∑r

i=1 #π(i).

Let X be a nonsingular complete toric surface. Let r ∈ Z>0, A1, . . . , AN ∈ Z

and ∆i(1), . . . ,∆i(r − 1) ∈ Z≥0 for all i = 1, . . . , N . For each i = 1, . . . , N , define
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Flag(∆i(1), . . . ,∆i(r− 1)) to be the closed subscheme of
∏r−1

j=1 Gr(j, r) defined by closed

points (pi(1), . . . , pi(r − 1)) satisfying pi(1) ⊂ · · · ⊂ pi(r − 1). Note that we omit

factors Gr(j, r) in the product
∏r−1

j=1 Gr(j, r) corresponding to ∆i(j) = 0. Suppose

~δ ∈
∏N

i=1 D(Ai, Ai+1; ∆i(1), . . . ,∆i(r − 1); ∆i+1(1), . . . ,∆i+1(r − 1)). We also refer to

~δ as a display. We define an associated locally closed subscheme

D~δ ⊂
N∏

i=1

Flag(∆i(1), . . . ,∆i(r − 1)) ⊂
N∏

i=1

r−1∏

j=1

Gr(j, r),

where a closed point {pi(j)} of
∏N

i=1 Flag(∆i(1), . . . ,∆i(r − 1)) is defined to belong to

D~δ whenever for any i = 1, . . . , N , j1, j2 = 1, . . . , r − 1 we have dim (pi(j1) ∩ pi+1(j2)) is

equal to the dimension of the region Ai + ∆i(1) + · · · + ∆i(j1 − 1) < x < Ai + ∆i(1) +

· · · + ∆i(j1 − 1) + ∆i(j1), Ai+1 + ∆i+1(1) + · · · + ∆i+1(j2 − 1) < y < Ai+1 + ∆i+1(1) +

· · · + ∆i+1(j2 − 1) + ∆i+1(j2) of the display δi. Note that these conditions are locally

closed conditions10 in
∏N

i=1

∏r−1
j=1 Gr(j, r). We can write11

N∏

i=1

Flag(∆i(1), . . . ,∆i(r − 1)) =
∐

~δ∈
∏N

i=1 D(Ai,Ai+1;∆i(1),...,∆i(r−1);∆i+1(1),...,∆i+1(r−1))

D~δ.

Note that for some ~δ, one can have D~δ = ∅. We introduce the notation #~δ =
∑N

i=1 #δi.

As we have seen, the category of reflexive equivariant sheaves of rank r on X is equivalent

to the category of N filtrations of C⊕r (see subsection 1.3.2 for details). The objects of

the latter category are precisely the closed points of the following C-scheme11

∐

A1,...,AN∈Z

N∐

i=1

∐

∆i(1),...,∆i(r−1)∈Z≥0

N∏

i=1

Flag(∆i(1), . . . ,∆i(r − 1)) (2.1)

=
∐

A1,...,AN∈Z

N∐

i=1

∐

∆i(1),...,∆i(r−1)∈Z≥0

∐

~δ∈
∏N

i=1 D(Ai,Ai+1;∆i(1),...,∆i(r−1);∆i+1(1),...,∆i+1(r−1))

D~δ.

10Here it is useful to note that for any finite product of Grassmannians
∏

i Gr(ni, N), the map {pi} 7→
dim (

⋂

i pi) is upper semicontinuous.
11Strictly speaking, the equality sign means there is a canonical bijective morphism of C-schemes from

LHS to RHS.
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Let H be an ample divisor on X and let r ∈ Z>0, c1 ∈ H2(X,Z), c2 ∈ Z. Let E

be any equivariant vector bundle of rank r on X with corresponding framed torsion free

∆-family Ê∆ considered as a closed point of the C-scheme (2.1). If the point lies in the

component indexed by A1, . . . , AN , ∆1(1), . . . ,∆1(r − 1), . . ., ∆N(1), . . . ,∆N(r − 1), ~δ,

then its first Chern class is entirely determined by A1, . . . , AN , ∆1(1), . . . ,∆1(r− 1), . . .,

∆N(1), . . . ,∆N(r − 1) and its second Chern class by A1, . . . , AN , ∆1(1), . . . ,∆1(r − 1),

. . ., ∆N(1), . . . ,∆N(r − 1) and ~δ (see Proposition 2.2.2). Therefore, it makes sense

to speak about A1, . . . , AN ∈ Z, ∆1(1), . . . ,∆1(r − 1) ∈ Z≥0, . . ., ∆N(1), . . . ,∆N(r −

1) ∈ Z≥0 giving rise to c1 and given such about ~δ ∈
∏N

i=1 D(Ai, Ai+1; ∆i(1), . . . ,∆i(r −

1); ∆i+1(1), . . . ,∆i+1(r − 1)) giving rise to c2 by the formula in Proposition 2.2.2. We

immediately obtain that the objects of the category of N filtrations of C⊕r corresponding

to equivariant vector bundles on X of rank r, first Chern class c1 and second Chern class

c2 are in 1-1 correspondence with the closed points of the C-scheme

∐

A1, . . . , AN ∈ Z

∆1(1), . . . ,∆1(r − 1) ∈ Z≥0

· · ·

∆N (1), . . . ,∆N (r − 1) ∈ Z≥0

giving rise to c1

∐

~δ ∈
∏N

i=1
D(Ai, Ai+1;∆i(1), . . . ,∆i(r − 1);∆i+1(1), . . . ,∆i+1(r − 1))

giving rise to c2

D~δ.

There is a natural regular action of the reductive algebraic group SL(r,C) on the ambient

variety
∏N

i=1

∏r−1
j=1 Gr(j, r) leaving each of the locally closed subschemes D~δ invariant.

Equivariant isomorphism classes of ample equivariant line bundles on
∏N

i=1

∏r−1
j=1 Gr(j, r)

are in 1-1 correspondence with sequences of positive integers {κij}i=1,...,N,j=1,...,r−1 [Dol,

Sect. 11.1]. We consider the ample equivariant line bundle {∆i(j)(H ·Di)}i=1,...,N,j=1,...,r−1,

where we recall that H ·Di > 0 for each i = 1, . . . , r by the Nakai–Moishezon Criterion

[Har1, Thm. A.5.1]. It is proved in subsection 1.3.4 (referring to Proposition 1.2.21)

that the pull-back of this ample equivariant line bundle to each D~δ gives a notion of

GIT stability which precisely coincides with µ-stability. More precisely, we use these
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pull-backs to define our notion of GIT stability on each D~δ and any equivariant vector

bundle E of rank r on X with corresponding collection of N filtrations Ê∆ of C⊕r is

µ-semistable if and only if Ê∆ corresponds to a GIT semistable point in the C-scheme

(2.1) and E is µ-stable if and only if Ê∆ corresponds to a properly GIT stable point in

the C-scheme (2.1). The previous discussion combined with Theorem 1.3.15 yields the

following proposition.

Proposition 2.2.6. Let X be a nonsingular complete toric surface, H an ample divisor

on X, r ∈ Z>0 and c1 ∈ H2(X,Z). Then for any c2 ∈ Z, there is a canonical isomorphism

NH
X (r, c1, c2)

T ∼=
∐

A3, . . . , AN ∈ Z

∆1(1), . . . ,∆1(r − 1) ∈ Z≥0

· · ·

∆N (1), . . . ,∆N (r − 1) ∈ Z≥0

giving rise to c1

~δ ∈
∏N

i=1
D(Ai, Ai+1;∆i(1), . . . ,∆i(r − 1);∆i+1(1), . . . ,∆i+1(r − 1))

giving rise to c2

Ds
~δ
/ SL(r,C),

where Ds
~δ

is the open subset of properly GIT stable elements with respect to the am-

ple equivariant line bundle {∆i(j)(H · Di)}i=1,...,N,j=1,...,r−1 and the quotient is a good

geometric quotient.

Note that in the above proposition, we take A1 = A2 = 0 because of the disjoint

union over gauge-fixed characteristic functions in Theorem 1.3.15. Moreover, for any

A3, . . . , AN ∈ Z, ∆1(1), . . . ,∆1(r− 1), . . . ,∆N(1), . . . ,∆N(r− 1) ∈ Z≥0 giving rise to c1,

the integersA3, . . . , AN are unique with this property (i.e. determined by ∆1(1), . . . ,∆1(r−

1), . . . ,∆N(1), . . . ,∆N(r − 1)). The isomorphism of the proposition is nothing but the

isomorphism of schemes of Theorem 1.3.15 (with Hilbert polynomial replaced by rank

and Chern classes). The displays ~δ in the disjoint union for which D~δ 6= ∅ precisely cor-

respond to the characteristic functions ~χ ∈
(

X r
(r,c1,c2)

)gf

and the Ds
~δ
/ SL(r,C) precisely

correspond to the Nµs
~χ .
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Let a, b ∈ Z. If a 6= 0, then we write a | b whenever b = ak for some k ∈ Z. Also,

for later convenience, we write (a, b) = 1 whenever a and b are coprime. Recall the

notation introduced in subsection 2.2.1. Using Propositions 2.1.1, 2.2.2, 2.2.3, 2.2.6, a

now straightforward computation yields an expression for the generating function.

Theorem 2.2.7. Let X be a nonsingular complete toric surface, H an ample divisor on

X, r ∈ Z>0 and c1 =
∑N

i=3 fiDi ∈ H2(X,Z). Then

∑

c2∈Z

e(MH
X (r, c1, c2))q

c2 =
1

∏∞
k=1(1 − qk)re(X)

·
∑

∆1(1), . . . ,∆1(r − 1) ∈ Z≥0

· · ·

∆N (1), . . . ,∆N (r − 1) ∈ Z≥0

such that ∀i = 3, . . . , N

r | − fi +
∑r−1

j=1
j (∆1(j)ξi + ∆2(j)ηi + ∆i(j))

q
1
2(
∑N

i=3 fiDi)
2

· q

− 1

2r2

∑r−1

j=0

[
∑N

i=3

(

−fi −
∑r−1

k=1
(r − k)∆i(k) + {−

∑r−1

k=1
(r − k)∆1(k) +

∑j
k=1

r∆1(k)}ξi

+{−
∑r−1

k=1
(r − k)∆2(k) +

∑j
k=1

r∆2(k)}ηi +
∑j

k=1
r∆i(k)

)

Di

]2

·
∑

~δ∈
∏N

i=1 D(∆i(1),...,∆i(r−1);∆i+1(1),...,∆i+1(r−1))

e
(
Ds
~δ
/ SL(r,C)

)
q#~δ,

where Ds
~δ

is the open subset of properly GIT stable elements with respect to the am-

ple equivariant line bundle {∆i(j)(H · Di)}i=1,...,N,j=1,...,r−1 and the quotient is a good

geometric quotient.

2.3 Examples

Theorem 2.2.7 gives an expression for the generating function of Euler characteristics

of moduli spaces of µ-stable torsion free sheaves of rank r and first Chern class c1 on

an arbitrary nonsingular complete toric surface X with ample divisor H. Although

the expression in Theorem 2.2.7 is general, further simplifications can be obtained in

examples as we will see in this section. We apply Theorem 2.2.7 to the examples X
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arbitrary and rank r = 1, X = P2 and rank r = 1, 2, 3 and X = Fa (a ∈ Z≥0) and rank

r = 1, 2. Various authors have considered some of these cases individually including

Ellingsrud and Strømme, Göttsche, Klyachko, Yoshioka and Weist. We will compare our

results to their work and Joyce’s general theory of wall-crossing for motivic invariants

counting (semi)stable objects.

2.3.1 Rank 1 on Toric Surfaces

Let us consider the expression in Theorem 2.2.7 for rank r = 1.

Corollary 2.3.1. Let X be a nonsingular complete toric surface and let H be an ample

divisor on X. Then for any c1 ∈ H2(X,Z)

∑

c2∈Z

e(MH
X (1, c1, c2))q

c2 =
1

∏∞
k=1(1 − qk)e(X)

.

This was first shown by Ellingsrud and Strømme [ES] for the projective plane and the

Hirzebruch surfaces using a natural C∗-action. Subsequently, Göttsche proved it for

general nonsingular projective surfaces using the Weil Conjectures [Got1]. In fact, he

computes an expression for Poincaré polynomials, not just Euler characteristics.

2.3.2 Rank 2 on P2, Fa

Consider the expression in Theorem 2.2.7 for rank r = 2. This time the occurrence of

Euler characteristics of moduli spaces of stable configurations of points on P1 makes the

expression for the generating function significantly more complicated. Note that these

moduli spaces of stable configurations of points on P1 depend on the ample divisor H.

We will simplify the formula for X = P2 and X = Fa (a ∈ Z≥0). We will also study

wall-crossing for X = Fa (a ∈ Z≥0). Throughout, we will pay special attention to the

case X = P1 × P1.
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2.3.2.1 Rank 2 on P2

Consider the fan of P2.

��
��

��
��

��
��

�

Let D be the toric divisor corresponding to any of the rays, then for α ∈ Z we have αD

is ample if and only if α is a positive integer. Note that for X = P2 and ample divisor

H = αD, the generating function in Theorem 2.2.7 is independent of α, so without loss

of generality, we can choose α = 1. In the rank r = 2 case, the spaces D~δ in Theorem

2.2.7 are locally closed subschemes of (P1)
N

, where N is the Euler characteristic of the

surface X. For X = P2, we have N = 3. We introduce some graphical notation. Denote

by:

• • •
1 2 3

the locally closed subset determined by points (p1, p2, p3) ∈ (P1)3 with p1 6= p2, p2 6= p3

and p1 6= p3. Similarly, denote by:

• •
1, 2 3

the locally closed subset determined by points (p1, p2, p3) ∈ (P1)3 with p1 = p2 6= p3. We

use similar notation for similar locally closed subsets. We refer to such locally closed

subschemes as incidence spaces. For completeness, we will write out all terms of the

expression in Theorem 2.2.7, though most will trivially be zero. We choose the first

Chern class c1 = f3D3 = f3D arbitrary and define f = f3 ∈ Z

∞∏

k=1

(1 − qk)6
∑

c2∈Z

e(MH
X (2, c1, c2))q

c2 =
∑

∆1,∆2,∆3 ∈ Z>0

2 | − f + ∆1 + ∆2 + ∆3

q
1
4
f2− 1

4
(∆1+∆2+∆3)2

·

{

e

(

• • •
1 2 3

/(∆1,∆2,∆3)SL(2,C)

)

q∆1∆2+∆2∆3+∆3∆1
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+e

(

• •
1, 2 3

/(∆1+∆2,∆3)SL(2,C)

)

q∆2∆3+∆3∆1

+e

(

• •
2, 3 1

/(∆1,∆2+∆3)SL(2,C)

)

q∆1∆2+∆3∆1

+e

(

• •
1, 3 2

/(∆1+∆3,∆2)

)

q∆1∆2+∆2∆3

+e

(

•
1, 2, 3

/∆1+∆2+∆3SL(2,C)

)}

+
∑

∆2,∆3 ∈ Z>0

2 | − f + ∆2 + ∆3

q
1
4
f2− 1

4
(∆2+∆3)2

·

{

e

(

• •
2 3

/(∆2,∆3)SL(2,C)

)

q∆2∆3

+e

(

•
2, 3

/∆2+∆3SL(2,C)

)}

+
∑

∆1,∆3 ∈ Z>0

2 | − f + ∆1 + ∆3

q
1
4
f2− 1

4
(∆1+∆3)2

·

{

e

(

• •
1 3

/(∆1,∆3)SL(2,C)

)

q∆3∆1

+e

(

•
1, 3

/∆1+∆3SL(2,C)

)}

+
∑

∆1,∆2 ∈ Z>0

2 | − f + ∆1 + ∆2

q
1
4
f2− 1

4
(∆1+∆2)2

·

{

e

(

• •
1 2

/(∆1,∆2)SL(2,C)

)

q∆1∆2

+e

(

•
1, 2

/∆1+∆2SL(2,C)

)}

+
∑

∆1 ∈ Z>0

2 | − f + ∆1

e

(

•
1

/∆1SL(2,C)

)

q
1
4
f2− 1

4
∆2

1

+
∑

∆2 ∈ Z>0

2 | − f + ∆2

e

(

•
2

/∆2SL(2,C)

)

q
1
4
f2− 1

4
∆2

2 +
∑

∆3 ∈ Z>0

2 | − f + ∆3

e

(

•
3

/∆3SL(2,C)

)

q
1
4
f2− 1

4
∆2

3

=
∑

∆1,∆2,∆3 ∈ Z>0

2 | − f + ∆1 + ∆2 + ∆3

∆1 < ∆2 + ∆3

∆2 < ∆1 + ∆3

∆3 < ∆1 + ∆2

q
f2

4
+

∆1∆2
2

+
∆2∆3

2
+

∆3∆1
2

−
∆2

1
4

−
∆2

2
4

−
∆2

3
4 . (2.2)
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Here the quotients • • •
1 2 3

/(∆1,∆2,∆3)SL(2,C), . . ., are just another way of writing

the quotients Ds
~δ
/ SL(r,C) in Theorem 2.2.7. Therefore, the subscript of “/” refers

to the ample equivariant line bundle with respect to which we take the geometric quo-

tient (see subsection 2.2.2). Clearly, all these spaces are empty except for possibly

• • •
1 2 3

/(∆1,∆2,∆3)SL(2,C), which satisfies

e

(

• • •
1 2 3

/(∆1,∆2,∆3)SL(2,C)

)

=







1 if ∆i < ∆j + ∆k for all {i, j, k} = {1, 2, 3}

0 otherwise.

Let X be any nonsingular projective surface, H an ample divisor, r ∈ Z>0, c1 ∈

H2(X,Z) and c2 ∈ Z. Let a be a Weil divisor. Applying − ⊗ OX(a), we obtain an

isomorphism

MH
X (r, c1, c2) ∼= MH

X (r, c1 + ra, (r − 1)c1a+
1

2
r(r − 1)a2 + c2).

For this, we note that −⊗OX(a) preserves µ-stability. We deduce

∑

c2∈Z

e(MH
X (r, c1 + ra, c2))q

c2 = q(r−1)c1a+
1
2
r(r−1)a2

∑

c2∈Z

e(MH
X (r, c1, c2))q

c2 . (2.3)

So for X = P2 and r = 2, the only two interesting values for f are 0 and 1. We can now

prove the following corollary.

Corollary 2.3.2. Let X = P2 and let H be an ample divisor on X. Then

∑

c2∈Z

e(MH
X (2, 0, c2))q

c2 =
1

∏∞
k=1(1 − qk)6

∞∑

m=1

∞∑

n=1

qmn+m+n

1 − qm+n

= q3 + 6q4 + 30q5 + 116q6 + 399q7 + 1233q8 + 3539q9 + 9519q10 +O(q11),

∑

c2∈Z

e(MH
X (2, 1, c2))q

c2 =
1

∏∞
k=1(1 − qk)6

∞∑

m=1

∞∑

n=1

qmn

1 − qm+n−1

= q + 9q2 + 48q3 + 203q4 + 729q5 + 2346q6 + 6918q7 + 19062q8 + 49620q9

+ 123195q10 +O(q11).
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Proof. Refer to the previous computation, in particular equation (2.2). Summing over

∆1,∆2,∆3 ∈ Z, ∆1 > 0, ∆2 > 0, ∆3 > 0, ∆1 < ∆2 + ∆3, ∆2 < ∆1 + ∆3,

∆3 < ∆1 + ∆2, 2 | − f + ∆1 + ∆2 + ∆3,

is equivalent to summing over

ξ, η, ζ ∈ Q>0, ξ + η ∈ Z, ξ + ζ ∈ Z, η + ζ ∈ Z, 2 | − f + 2ξ + 2η + 2ζ,

by using the substitutions ξ = 1
2
(∆1 + ∆2 − ∆3), η = 1

2
(∆1 − ∆2 + ∆3), ζ = 1

2
(−∆1 +

∆2 + ∆3). This in turn is equivalent to summing over

k,m, n ∈ Z, k >
f

2
, m > k −

f

2
, n > k −

f

2
,

by using the substitutions ξ = 2k−f
2

, η = m− 2k−f
2

, ζ = n− 2k−f
2

. We obtain

∑

c2∈Z

e(MH
X (2, 0, c2))q

c2 =
1

∏∞
p=1(1 − qp)6

∞∑

k=1

∞∑

m=k+1

∞∑

n=k+1

qmn−k
2

,

∑

c2∈Z

e(MH
X (2, 1, c2))q

c2 =
1

∏∞
p=1(1 − qp)6

∞∑

k=1

∞∑

m=k

∞∑

n=k

qmn−k(k−1),

from which the result follows by using the geometric series.

In [Yos], Yoshioka derives an expression for the generating function of Poincaré poly-

nomials of MH
X (2, 1, c2) for X = P2 and H any ample divisor on X using the Weil

Conjectures. Specialising to Euler characteristics, his result is

∑

c2∈Z

e(MH
X (2, 1, c2))q

c2 =

1
∏∞

k=1(1 − qk)6

(
1

2
∑

m∈Z
qm2

) ∞∑

n=0

(
2 − 4n

1 − q2n+1
+

8q2n+1

(1 − q2n+1)2

)

q(n+1)2 .

Equating to the formula obtained in Corollary 2.3.2, we have proved an interesting
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equality of expressions. Although it does not seem to be easy to show the equality

directly, one can numerically check agreement of the coefficients up to large order by

making expansions of both series. In [Kly4], Klyachko computes
∑

c2∈Z
e(MH

X (2, 1, c2))q
c2

for X = P2 and H any ample divisor on X, essentially using the same methods as in this

chapter. In fact, this thesis is based on the philosophy of Klyachko. As mentioned in the

introduction to this chapter, the previous chapter lays the foundations for many ideas

appearing in [Kly4] and generalises them to pure equivariant sheaves of any dimension on

any nonsingular toric variety. The present chapter can be seen as a systematic application

to torsion free sheaves on nonsingular complete toric surfaces. Klyachko expresses his

answer as
∑

c2∈Z

e(MH
X (2, 1, c2))q

c2 =
1

∏∞
k=1(1 − qk)6

∞∑

m=1

3H(4m− 1)qm,

where H(D) is the Hurwitz class number

H(D) =






number of integer binary quadratic forms Q of

discriminant −D counted with weight 2
Aut(Q)




 .

2.3.2.2 Rank 2 on Fa

Let us repeat the computation for rank 2 on P2 in the more complicated case of rank 2

on X = Fa (a ∈ Z≥0). The fan of Fa is:

//////////

(−1, a)

We obtain relations D1 = D3 and D4 = D2 + aD3. Define E = D1, F = D2, then the

Chow ring is given by

A(X) = Z[E,F ]/(E2, F 2 + aEF, F 3).
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Any line bundle (up to isomorphism) is of the form O(αE + βF ), where α, β ∈ Z. Such

a line bundle is ample if and only if β > 0, α′ := α− aβ > 0 [Ful, Sect. 3.4]. Fix such an

ample line bundle and denote the corresponding ample divisor by H = αE + βF . We

note H · D1 = β, H · D2 = α′, H · D3 = β and H · D4 = α. Choose an arbitrary first

Chern class c1 = f3D3 + f4D4 ∈ H2(X,Z). By formula (2.3), the only interesting cases

are (f3, f4) = (0, 0), (1, 0), (0, 1), (1, 1). Using the same notation for incidence spaces as

before, it is easy to see that exactly 11 incidence spaces contribute to the generating

function of Theorem 2.2.7, namely for any i, j, k, l such that {i, j, k, l} = {1, 2, 3, 4}:

• • • •
1 2 3 4

• • •
i, j k l

• • •
i j k

We proceed entirely analogously to the derivation of equation (2.2) in the rank 2 on P2

case. Note that this time, the geometric quotients Ds
~δ
/ SL(r,C) of Theorem 2.2.7 can

split up as a disjoint union of various incidence spaces. We obtain

∞∏

k=1

(1 − qk)8
∑

c2∈Z

e(MH
X (2, c1, c2))q

c2 = (2.4)

−
∑

∆1,∆2,∆3,∆4 ∈ Z>0

2 | − f3 + ∆1 − a∆2 + ∆3

2 | − f4 + ∆2 + ∆4

β∆1 < α′∆2 + β∆3 + α∆4

α′∆2 < β∆1 + β∆3 + α∆4

β∆3 < β∆1 + α′∆2 + α∆4

α∆4 < β∆1 + α′∆2 + β∆3

q
1
2
f3f4+a

4
f2
4 + 1

2
(∆2+∆4)(∆1+a

2
∆2+∆3−

a
2
∆4)
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+
∑

∆1,∆2,∆3,∆4 ∈ Z>0

2 | − f3 + ∆1 − a∆2 + ∆3

2 | − f4 + ∆2 + ∆4

β∆1 + β∆3 < α′∆2 + α∆4

α′∆2 < β∆1 + β∆3 + α∆4

α∆4 < β∆1 + α′∆2 + β∆3

q
1
2
f3f4+a

4
f2
4 + 1

2
(∆2+∆4)(∆1+a

2
∆2+∆3−

a
2
∆4)

+
∑

∆1,∆2,∆3,∆4 ∈ Z>0

2 | − f3 + ∆1 − a∆2 + ∆3

2 | − f4 + ∆2 + ∆4

α′∆2 + α∆4 < β∆1 + β∆3

β∆1 < α′∆2 + β∆3 + α∆4

β∆3 < β∆1 + α′∆2 + α∆4

q
1
2
f3f4+a

4
f2
4 + 1

2
(∆2+∆4)(∆1+a

2
∆2+∆3−

a
2
∆4)

+
∑

∆1,∆2,∆3,∆4 ∈ Z>0

2 | − f3 + ∆1 − a∆2 + ∆3

2 | − f4 + ∆2 + ∆4

β∆1 + α′∆2 < β∆3 + α∆4

β∆3 < β∆1 + α′∆2 + α∆4

α∆4 < β∆1 + α′∆2 + β∆3

q
1
2
f3f4+a

4
f2
4−

1
2
(∆2+∆4)(∆1−

a
2
∆2+∆3+a

2
∆4)+∆2∆3+∆3∆4+∆4∆1

+
∑

∆1,∆2,∆3,∆4 ∈ Z>0

2 | − f3 + ∆1 − a∆2 + ∆3

2 | − f4 + ∆2 + ∆4

β∆1 + α∆4 < α′∆2 + β∆3

α′∆2 < β∆1 + β∆3 + α∆4

β∆3 < β∆1 + α′∆2 + α∆4

q
1
2
f3f4+a

4
f2
4−

1
2
(∆2+∆4)(∆1−

a
2
∆2+∆3+a

2
∆4)+∆1∆2+∆2∆3+∆3∆4

+
∑

∆1,∆2,∆3,∆4 ∈ Z>0

2 | − f3 + ∆1 − a∆2 + ∆3

2 | − f4 + ∆2 + ∆4

α′∆2 + β∆3 < β∆1 + α∆4

β∆1 < α′∆2 + β∆3 + α∆4

α∆4 < β∆1 + α′∆2 + β∆3

q
1
2
f3f4+a

4
f2
4−

1
2
(∆2+∆4)(∆1−

a
2
∆2+∆3+a

2
∆4)+∆1∆2+∆3∆4+∆4∆1
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+
∑

∆1,∆2,∆3,∆4 ∈ Z>0

2 | − f3 + ∆1 − a∆2 + ∆3

2 | − f4 + ∆2 + ∆4

β∆3 + α∆4 < β∆1 + α′∆2

β∆1 < α′∆2 + β∆3 + α∆4

α′∆2 < β∆1 + β∆3 + α∆4

q
1
2
f3f4+a

4
f2
4−

1
2
(∆2+∆4)(∆1−

a
2
∆2+∆3+a

2
∆4)+∆1∆2+∆2∆3+∆4∆1

+
∑

∆2,∆3,∆4 ∈ Z>0

2 | − f3 − a∆2 + ∆3

2 | − f4 + ∆2 + ∆4

α′∆2 < β∆3 + α∆4

β∆3 < α′∆2 + α∆4

α∆4 < α′∆2 + β∆3

q
1
2
f3f4+a

4
f2
4 + 1

2
(∆2+∆4)(a

2
∆2+∆3−

a
2
∆4)

+
∑

∆1,∆3,∆4 ∈ Z>0

2 | − f3 + ∆1 + ∆3

2 | − f4 + ∆4

β∆1 < β∆3 + α∆4

β∆3 < β∆1 + α∆4

α∆4 < β∆1 + β∆3

q
1
2
f3f4+a

4
f2
4 + 1

2
∆4(∆1+∆3−

a
2
∆4) +

∑

∆1,∆2,∆4 ∈ Z>0

2 | − f3 + ∆1 − a∆2

2 | − f4 + ∆2 + ∆4

β∆1 < α′∆2 + α∆4

α′∆2 < β∆1 + α∆4

α∆4 < β∆1 + α′∆2

q
1
2
f3f4+a

4
f2
4 + 1

2
(∆2+∆4)(∆1+a

2
∆2−

a
2
∆4)

+
∑

∆1,∆2,∆3 ∈ Z>0

2 | − f3 + ∆1 − a∆2 + ∆3

2 | − f4 + ∆2

β∆1 < α′∆2 + β∆3

α′∆2 < β∆1 + β∆3

β∆3 < β∆1 + α′∆2

q
1
2
f3f4+a

4
f2
4 + 1

2
∆2(∆1+a

2
∆2+∆3).

Using equation (2.4), we can now prove the following corollary.
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Corollary 2.3.3. Let X = Fa, where a ∈ Z≥0. Let H = αD1 +βD2 be an ample divisor,

i.e. α, β are integers such that α > aβ, β > 0. Let c1 = f3D3 +f4D4 ∈ H2(X,Z). Define

λ = α
β
, then

∞∏

k=1

(1 − qk)8
∑

c2∈Z

e(MH
X (2, c1, c2))q

c2 =

−
∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

λj = i, −j < l < j

−λj + a(j + l) < k < λj

q
1
2
f3f4+a

4
f2
4 + 1

2
j(i−a

2
j)

+ 2

(
∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

k < λl < i, l < j

−i − a(j − l) < k, −λj < k

+
∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

k < λl < i, l < j

−i + a(j + l) < k, −λj + a(j + l) < k

)

q
1
2
f3f4+a

4
f2
4 + 1

4
ij− 1

4
jk+ 1

4
il+ 1

4
kl−a

4
l2

+

(

2
∑

i, j, k ∈ Z

2 | f3 + i, 2 | f4 + j

2 | j + k

i < λj, a
2
(j + k) < i

− i
λ−a

+ aj
λ−a

< k < λ−1i

+
∑

i, j, k ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k

λj < i, −λj < k < λj

+
∑

i, j, k ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k

λj < i, j > 0

−λj + 2aj < k < λj

)

q
1
2
f3f4+a

4
f2
4 + 1

2
j(i−a

2
j).

Proof. We start by rewriting the first three terms of equation (2.4). In fact, these three

terms will combine to give the first term of the expression in the corollary. By using the

substitutions i = ∆1 + ∆3 + a∆2, j = ∆2 + ∆4, k = ∆1 − ∆3 + a∆2 and l = ∆2 − ∆4,
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the first term of equation (2.4) can be rewritten as

−
∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

0 < λj ≤ i, −j < l < j

−λj + a(j + l) < k < λj

q
1
2
f3f4+a

4
f2
4 + 1

2
j(i−a

2
j) −

∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

0 < i < λj, − i
λ−a

+ aj
λ−a

< l < λ−1i

−i + a(j + l) < k < i

q
1
2
f3f4+a

4
f2
4 + 1

2
j(i−a

2
j).

Using the same substitutions, the second and third term of equation (2.4) reduce to

∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

0 < i < λj, − i
λ−a

+ aj
λ−a

< l < λ−1i

−i + a(j + l) < k < i

q
1
2
f3f4+a

4
f2
4 + 1

2
j(i−a

2
j) +

∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

0 < λj < i, −j < l < j

−λj + a(j + l) < k < λj

q
1
2
f3f4+a

4
f2
4 + 1

2
j(i−a

2
j).

Therefore the first three terms of equation (2.4) combine to give

−
∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

λj = i, −j < l < j

−λj + a(j + l) < k < λj

q
1
2
f3f4+a

4
f2
4 + 1

2
j(i−a

2
j).

We now prove the fourth to seventh terms of equation (2.4) combine to give terms two

and three of the expression in the corollary. Using the substitutions i = ∆1 + ∆3 − a∆2,

j = ∆2 + ∆4, k = ∆1 − ∆3 − a∆2 and l = −∆2 + ∆4, the fourth term of equation (2.4)
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rewrites as
∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

k < λl < i, l < j

−i − a(j − l) < k, −λj < k

q
1
2
f3f4+a

4
f2
4 + 1

4
ij− 1

4
jk+ 1

4
il+ 1

4
kl−a

4
l2 .

The fifth to seventh terms reduce in a similar way.

Finally, we claim the eighth to eleventh terms of equation (2.4) reduce to the fourth,

fifth and sixth term of the expression in the corollary. Using the substitutions i =

∆3 + a∆2, j = ∆2 + ∆4 and k = ∆2 − ∆4, the eighth term becomes

∑

i, j, k ∈ Z

2 | f3 + i, 2 | f4 + j

2 | j + k

i < λj, a
2
(j + k) < i

− i
λ−a

+ aj
λ−a

< k < λ−1i

q
1
2
f3f4+a

4
f2
4 + 1

2
j(i−a

2
j).

The ninth to eleventh terms simplify similarly.

Specialising to a = 0 in Corollary 2.3.3 immediately yields the following result.

Corollary 2.3.4. Let X = P1 × P1. Let H = αD1 + βD2 be an ample divisor, i.e. α, β

are positive integers. Let c1 = f3D3 + f4D4 ∈ H2(X,Z). Define λ = α
β
, then

∞∏

k=1

(1 − qk)8
∑

c2∈Z

e(MH
X (2, c1, c2))q

c2 = −
∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

λj = i, −j < l < j

−λj < k < λj

q
1
2
f3f4+ 1

2
ij
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+ 4
∑

i, j, k, l ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, 2 | j + l

k < λl < i, l < j

−i < k, −λj < k

q
1
2
f3f4+ 1

4
ij− 1

4
jk+ 1

4
il+ 1

4
kl + 2

∑

i, j, k ∈ Z

2 | f3 + i, 2 | f4 + j

2 | j + k, i < λj

−λ−1i < k < λ−1i

q
1
2
f3f4+ 1

2
ij + 2

∑

i, j, k ∈ Z

2 | f3 + i, 2 | f4 + j

2 | i + k, λj < i

−λj < k < λj

q
1
2
f3f4+ 1

2
ij.

In [Got2], Göttsche derives an expression for generating functions of Hodge polyno-

mials of moduli spaces of µ-stable torsion free sheaves of rank 2 on ruled surfaces X

with −KX effective [Got2, Thm. 4.4]. Assume X = Fa, where a ∈ Z≥0. Recall that X

is naturally a ruled surface over P1 and −KX is effective. In particular, D1 is a fibre

and D2 is a section. Let c1 = ǫD1 + D2 (ǫ ∈ {0, 1}), H an ample divisor and c2 ∈ Z.

Denote by MH,ss
X (2, c1, c2) the moduli space of Gieseker semistable (w.r.t. H) torsion free

sheaves on X of rank 2 with first Chern class c1 and second Chern class c2. Note that in

our case, Num(X) = Pic(X). Göttsche and Qin have proved that the ample cone CX in

Pic(X) ⊗Z R has a chamber/wall structure such that the moduli space MH,ss
X (2, c1, c2)

stays constant while varying H in any fixed chamber of type (c1, c2) [Got2], [Qin]. In

our current example, the non-empty walls of type (c1, c2) are precisely the sets

W ξ = {x ∈ Pic(X) ample | x · ξ = 0},

where ξ = (2n + ǫ)D1 + (2m + 1)D2 ∈ Pic(X) for any integers m,n satisfying m ≥ 0,

n < 0, c2 −m(m+1)a+(2m+1)n+mǫ ≥ 0 [Got2, Sect. 4]. By writing elements of Q>a

as α
β

for α, β ∈ Z>0 coprime, we can identify them with ample divisors H = αD1 + βD2

on X with α, β coprime and without loss of generality we can restrict attention to these

ample divisors. Let Λ be the set of elements in Q>a which can be written as α
β
, where

α, β are coprime positive integers such that (2, c1 ·H) = 1. We denote the complement

by W = Q>a \ Λ and refer to W as the collection of walls12. The elements λ ∈ Λ

12The terminology “wall” in this context might be slightly confusing as W lies dense in Q>a or can
even be equal to Q>a.

131



have corresponding ample divisor H for which there are no strictly µ-semistable torsion

free sheaves of rank 2 and first Chern class c1 on X [HL, Lem. 1.2.13, 1.2.14], in which

case MH,ss
X (2, c1, c2) = MH

X (2, c1, c2) for any c2 ∈ Z. The elements of W are precisely

the rational numbers corresponding to ample divisors lying on a wall of type (c1, c2) for

some c2 ∈ Z. Let H = αD1 +βD2 be an ample divisor, i.e. α, β ∈ Z>0 such that α > aβ.

Assume (α, β) = 1 and define λ = α
β
. If H does not lie on a wall, in other words λ ∈ Λ

(i.e. (2, (α− aβ) + ǫβ) = 1), then applying [Got2, Thm. 4.4] gives

∑

c2∈Z

e(MH
X (2, c1, c2))q

c2 =

1
∏∞

k=1(1 − qk)8

∑

(m,n)∈L(H)

[a+ 2ma− 2(2m+ 2n+ ǫ+ 1)]q(m+1)ma−(2m+1)n−mǫ,

L(H) :=

{

(m,n) ∈ Z2 | m ≥ 0, a− λ >
2n+ ǫ

2m+ 1

}

.

(2.5)

Although Göttsche’s formula (2.5) is equal to the result in Corollary 2.3.3, it does not

seem easy to obtain equality of both formulae by direct manipulations. However, it is

instructive to make expansions of both expressions for various values of a, c1, H with H

not lying on a wall and compare the first few coefficients. One finds a perfect agreement.

We end by simplifying the expression in Corollary 2.3.4 in the case λ = 1 by splitting

up inequalities and using geometric series. Note that by equation (2.3), there are only

four interesting cases (f3, f4) = (0, 0), (0, 1), (1, 0), (1, 1).

Corollary 2.3.5. Let X = P1 × P1, H = D1 +D2 and c1 = f3D3 + f4D4 ∈ H2(X,Z).

Then:

(i) If (f3, f4) = (0, 0), then

∑

c2∈Z

e(MH
X (2, c1, c2))q

c2 =
1

∏∞
k=1(1 − qk)8

(

−
∞∑

m=1

(2m− 1)2q2m2

+
∞∑

m=1

4(2m− 1)q2m(m+1)

1 − q2m

+
∞∑

m=1

2m∑

n=1

4q2m(m−n+2)+1(q(2m+1)n − qn
2
)

(1 − qn)(q2m+1 − qn−1)

+
∞∑

m=1

∞∑

n=1

2m∑

p=1

4q(2m+1)(m−p+2)+n−m((qn+p)p − (qn+p)(2m+1))

1 − qn+p

)
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= −q2 − 8q3 − 40q4 − 160q5 − 538q6 − 1596q7 − 4237q8 − 10160q9 − 21825q10 +O(q11).

(ii) If (f3, f4) = (1, 0) or (0, 1), then

∑

c2∈Z

e(MH
X (2, c1, c2))q

c2 =
1

∏∞
k=1(1 − qk)8

(
∞∑

m=1

2m∑

n=1

4q(2m+3)m−2mn+1(q(2m+1)n − qn
2
)

(1 − qn)(q2m+1 − qn)

+
∞∑

m=1

∞∑

n=1

2m−1∑

p=1

4q(2m+1)m−2mp+1((qn+p−1)p − (qn+p−1)2m)

q − qn+p
+

∞∑

m=1

2(2m− 1)q(2m−1)m

1 − q2m−1

+
∞∑

m=1

4mq(2m+1)m

1 − q2m

)

= 2q + 22q2 + 146q3 + 742q4 + 3174q5 + 11988q6 + 41150q7 + 130834q8 + 390478q9

+ 1104724q10 +O(q11).

(iii) If (f3, f4) = (1, 1), then

∑

c2∈Z

e(MH
X (2, c1, c2))q

c2 =
1

∏∞
k=1(1 − qk)8

(

−
∞∑

m=1

4m2q2m(m+1)+1 +
∞∑

m=1

8mq2(m+1)2

1 − q2m+1

+
∞∑

m=1

2m−1∑

n=1

4q(2m+1)(m−n)+m+2n+1(q2mn − qn
2
)

(1 − qn)(q2m+1 − qn)

+
∞∑

m=1

∞∑

n=1

2m−1∑

p=1

4q(2m+1)(m−p)+m+n+p+1((qn+p)p − (qn+p)2m)

1 − qn+p

)

= 4q4 + 28q5 + 152q6 + 656q7 + 2504q8 + 8620q9 + 27520q10 +O(q11).

2.3.2.3 Wall-Crossing for Rank 2 on Fa

So far we have been applying Theorem 2.2.7 to compute expressions for generating

functions in examples. We can also use Theorem 2.2.7 to get expressions for wall-crossing

formulae in examples. We start with a few simple definitions. Let Z((q)) be the ring of

formal Laurent series. It is clear that for all values λ ∈ Q>a the six sums on the RHS

in Corollary 2.3.3 are all formal Laurent series. Therefore the RHS in Corollary 2.3.3

defines a map Q>a −→ Z((q)). We define the following notion of limit.
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Definition 2.3.6. Let a ∈ Z≥0 and let F : Q>a −→ Z((q)), λ 7→ F (λ) be a map. Let

λ0 ∈ Q>a and let F0 ∈ Z((q)). We define

lim
ǫ,ǫ′ց0

(F (λ0 + ǫ) − F (λ0 − ǫ′)) = F0,

to mean for any N ∈ Z, there are ǫ, ǫ′ ∈ Q>0 such that a < λ0 − ǫ′ and

F (λ0 + ǫ) − F (λ0 − ǫ′) = F0 +O(qN).

Note that if the limit exists, it is unique. We refer to the expression

lim
ǫ,ǫ′ց0

(F (λ0 + ǫ) − F (λ0 − ǫ′)) = F0,

as an infinitesimal wall-crossing formula. ⊘

By using this notion of limit and applying it to the four terms of the expression in

Corollary 2.3.4, it is not difficult to derive the following result.

Corollary 2.3.7. Let X = P1×P1. Let H = α0D1+β0D2 be an ample divisor, i.e. α0, β0

are positive integers and suppose (α0, β0) = 1. Let c1 = f3D3 +f4D4 ∈ H2(X,Z). Define

λ0 = α0

β0
, then

∞∏

k=1

(1 − qk)8 lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

= 4
∑

i, j, k ∈ Z, β0 | k

2 | f3 + i, 2 | f4 + j

2 | i + λ0k, 2 | j + k

0 < λ0k < i, 0 < k < j

q
1
2
f3f4+ 1

4
ij−

λ0
4
jk+ 1

4
ik+

λ0
4
k2

− 4
∑

i, j, k ∈ Z, β0 | k

2 | f3 + i, 2 | f4 + j

2 | i + λ0k, 2 | j + k

−i < λ0k < 0, −j < k < 0

q
1
2
f3f4+ 1

4
ij−

λ0
4
jk+ 1

4
ik+

λ0
4
k2

134



− 4
∑

i, j, k ∈ Z, β0 | k

2 | f3 + λ0k, 2 | f4 + j

2 | i + λ0k, 2 | j + k

−λ0k < i < λ0k, k < −j

q
1
2
f3f4+ 1

4
ij−

λ0
4
jk+ 1

4
ik+

λ0
4
k2

+ 4
∑

i, j, k ∈ Z, β0 | k

2 | f3 + i, 2 | f4 + k

2 | i + λ0k, 2 | j + k

−k < j < k, λ0k < i

q
1
2
f3f4+ 1

4
ij−

λ0
4
jk+ 1

4
ik+

λ0
4
k2

+ 2
∑

i, j ∈ Z, β0 | i

2 | f3 + λ0i, 2 | f4 + i

2 | i + j, −i < j < i

q
1
2
f3f4+

λ0
2
i2 − 4

∑

i, j ∈ Z, β0 | j

2 | f3 + λ0j, 2 | f4 + i

2 | i + j, 0 < j < i

q
1
2
f3f4+

λ0
2
ij

− 2
∑

i, j ∈ Z, α0 | i

2 | f4 + λ−1
0 i, 2 | f3 + i

2 | i + j, −i < j < i

q
1
2
f3f4+

λ
−1
0
2
i2 + 4

∑

i, j ∈ Z, α0 | j

2 | f4 + λ−1
0 j, 2 | f3 + i

2 | i + j, 0 < j < i

q
1
2
f3f4+

λ
−1
0
2
ij.

Roughly, the formula of the previous corollary is obtained by considering all possible

ways of changing in a term of the formula in Corollary 2.3.4 one or more inequalities con-

taining λ into equalities and summing these modified terms with appropriate signs. Note

that the expression is only possibly non-zero in the case 2 | α0f4 + β0f3 or equivalently

(2, c1 ·H) 6= 1, i.e. H lies on a wall. It is easy to derive a nice infinitesimal wall-crossing

formula from Göttsche’s formula (2.5). Let X = Fa (a ∈ Z≥0), c1 = ǫD1+D2 (ǫ ∈ {0, 1})

and H = α0D1 + β0D2 an ample divisor, i.e. α0, β0 ∈ Z>0 such that α0 > aβ0. Assume

(α0, β0) = 1 and define λ0 = α0

β0
. Using Definition 2.3.6, one immediately obtains

lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

=
1

∏∞
k=1(1 − qk)8

∑

m ∈ Z≥1

1

2
(λ0 − a)(2m − 1) − 1

2
ǫ ∈ Z

2
(

1 +
a

2
− λ0

)

(2m− 1) q
1
2
(λ0−

a
2
)(2m−1)2− 1

4
a+ 1

2
ǫ. (2.6)

A priori we derive the above formula for λ0 ∈ Λ, i.e. H not lying on a wall, in which case

there are no strictly µ-semistables and the result is 0. However, equation (2.6) holds for
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any λ0 ∈ Q>a, because Λ ⊂ Q>a lies dense in Q>a.

We can also derive equation (2.6) using Joyce’s machinery for wall-crossing of motivic

invariants counting (semi)stable objects [Joy2]. Joyce gives a wall-crossing formula for

virtual Poincaré polynomials of moduli spaces of Gieseker semistable torsion free sheaves

on an arbitrary nonsingular projective surface X with −KX nef [Joy2, Thm. 6.21]13. The

surfaces X = Fa (a ∈ Z≥0) with anticanonical divisor nef are precisely P1×P1, F1, F2 (as

can be shown by an easy computation using [Ful, Sect. 4.3] and the Nakai–Moishezon

Criterion [Har1, Thm. A.5.1]). However, in our computations, we will keep a ∈ Z≥0

arbitrary. Let c1 = f3D3 + f4D4 ∈ H2(X,Z) and H = α0D1 +β0D2 be a choice of ample

divisor. We take (α0, β0) = 1. Part of Joyce’s philosophy is that one should study wall-

crossing phenomena for motivic invariants of moduli spaces of (semi)stable objects, where

the moduli spaces should be constructed as Artin stacks instead of schemes coming from

a GIT construction. Keeping track of the stabilisers of (semi)stable objects will enable

one to derive nice wall-crossing formulae. Nevertheless, for the purposes of this thesis,

we want to study wall-crossing phenomena of Euler characteristics of moduli spaces of

stable objects defined as schemes coming from a GIT construction. Hence, in order to

use Joyce’s theory for our purposes, we need the following formula. For any nonsingular

projective surface X, ample divisor H on X, r ∈ Z>0, c1 ∈ H2(X,Z) and c2 ∈ Z

e(MH
X (r, c1, c2)) = lim

z→−1

(

(z2 − 1)P (Obj
(r,c1,

1
2
(c1−2c2))

s (µ), z)
)

. (2.7)

Here P is the virtual Poincaré polynomial (see subsection 2.1.1) and Obj
(r,c1,

1
2
(c1−2c2))

s (µ)

the Artin stack of µ-stable torsion free sheaves on X of rank r, first Chern class c1 and

second Chern class c2 (notation of [Joy2]). Joyce proves that one can uniquely extend the

definition of virtual Poincaré polynomial to Artin stacks of finite type over C with affine

geometric stabilisers requiring that for any special algebraic group G acting regularly on

a quasi-projective variety Y one has P ([Y/G], z) = P (Y, z)/P (G, z) [Joy1, Thm. 4.10].

Equation (2.7) can be proved as follows. Recall that MH
X (r, c1, c2) is constructed as the

13Note that the cited theorem also holds for slope stability instead of Gieseker stability.
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geometric quotient ̟ : Rs −→ MH
X (r, c1, c2) of some open subset of the Quot scheme

with a regular action of some PGL(n,C). In fact, ̟ is a principal PGL(n,C)-bundle

[HL, Cor. 4.3.5] and we have isomorphisms of stacks [Gom, Prop. 3.3]

MH
X (r, c1, c2) ∼= [Rs/PGL(n,C)], Obj

(r,c1,
1
2
(c1−2c2))

s (µ) ∼= [Rs/GL(n,C)].

Now the difficulty is that PGL(n,C) is in general not special. Define P((C∗)n) =

(C∗)n/C∗ · id and consider the geometric quotient Rs/P((C∗)n). This gives a morphism

Rs/P((C∗)n) −→ Rs/PGL(n,C), where all fibres on closed points are isomorphic to

F = PGL(n,C)/P((C∗)n). We deduce

e
(
MH

X (r, c1, c2)
)

=
e (Rs/P((C∗)n))

e(F )
=
e (Rs/P((C∗)n))

n!
= lim

z→−1

P (Rs, z)

n!(z2 − 1)n−1

= lim
z→−1

(z2 − 1)P (Rs, z)

P (GL(n,C), z)
·
(z2)

n(n−1)
2

∏n
k=1((z

2)k − 1)

n!(z2 − 1)n
= lim

z→−1
(z2 − 1)P ([Rs/GL(n,C)], z),

where we apply [Joy2, Thm. 2.4], [Joy1, Lem. 4.6, Thm. 4.10] and we use the limit

limz→−1
(z2)

n(n−1)
2

∏n
k=1((z2)k−1)

(z2−1)n = n!. This proves formula (2.7). Combining equation (2.7),

the generating function for the rank 1 case (Corollary 2.3.1) and [Joy2, Thm. 6.21] gives

lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

(2.8)

=
1

∏∞
k=1(1 − qk)8

∑

m ∈ Z> 1

2
f4

1

2
(λ0 − a)(2m − f4) −

1

2
(f3 + af4) ∈ Z

2
(

1 +
a

2
− λ0

)

(2m− f4) q
1
2
(λ0−

a
2
)(2m−f4)2− 1

4
af2

4 + 1
2
(f3+af4)f4 .

The computation is slightly tedious and uses the Bogomolov Inequality [HL, Thm. 3.4.1]

to show that the limit exists and equation (2.3) to split off the rank 1 contributions. Note

that [Joy2, Thm. 6.21] is a wall-crossing formula for Artin stacks of semistable objects,

whereas we have been dealing with Artin stacks of stable objects only. However, we claim

equation (2.8) holds for any λ0 ∈ Q>a. If not both f3 ≡ 0 mod 2 and f4 ≡ 0 mod 2,

then Λ ⊂ Q>a is dense. Since we know there are no strictly µ-semistables for ample
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divisors in Λ, we see equation (2.8) holds in these cases. The case f3 ≡ f4 ≡ 0 mod 2

is harder to see, because this time Λ = ∅. Therefore we consider the following more

general argument to prove this case. Let E be a rank 2 torsion free sheaf on X = Fa

(a ∈ Z≥0) with arbitrary first Chern class c1 and second Chern class c2. Let H,H ′ be

two ample divisors not lying on a wall of type (c1, c2). Then E is strictly µ-semistable

w.r.t. H if and only if E is strictly µ-semistable w.r.t. H ′ (compare [Got2, Thm. 2.9]).

This can be seen as follows. Suppose E is strictly µ-semistable w.r.t. H, then there is

a saturated coherent subsheaf F1 ⊂ E with 0 < rk(F1) < rk(E) such that µHF1
= µHE .

Denote the quotient by F2, then µHF1
= µHE = µHF2

. Since H is not lying on a wall, we

have c1(F1) = c1(F2) so in particular µH
′

F1
= µH

′

E = µH
′

F2
. Since F1,F2 have rank 1, they

are automatically µ-stable and using [HL, Prop. 1.2.7] it is not difficult to see E has to be

µ-semistable w.r.t. H ′. Therefore Obj
(2,c1,

1
2
(c1−2c2))

ss (µ) \ Obj
(2,c1,

1
2
(c1−2c2))

s (µ) is the same

for any ample divisor not on a wall of type (c1, c2) as desired. Note that equations (2.6)

and (2.8) are consistent. In fact, they are even consistent in the case a > 2 suggesting

[Joy2, Thm. 6.21] holds more generally.

Although we have now proved equation (2.8) to coincide with the expression in Corol-

lary 2.3.7 in the case a = 0, it seems difficult to prove equality directly by manipulation

of the formulae. It is instructive to make expansions up to a fixed order for specific

values of c1, λ0 and verify the coefficients of the expansion are the same. More gener-

ally, we know equation (2.6) coincides with infinitesimal wall-crossing of the expression

in Corollary 2.3.3. Various numerical experiments by making expansions up to a fixed

order again show consistency. In order to give an idea of the kind of expressions one

obtains from Corollary 2.3.7, we compute the cases λ0 = 1
2
, λ0 = 1 and λ0 = 2.

Corollary 2.3.8. Let X = P1×P1. Let H = α0D1+β0D2 be an ample divisor, i.e. α0, β0

are positive integers. Assume (α0, β0) = 1 and let c1 = f3D3 + f4D4 ∈ H2(X,Z). Define

λ0 = α0

β0
, then:

(i) If λ0 = 1
2

and (f3, f4) = (0, 0), then
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lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

=
1

∏∞
k=1(1 − qk)8

(
∞∑

m=1

∞∑

n=1

4q4m(m+1)+n

1 − q4m+n
+

∞∑

m=1

∞∑

n=1

−4q2m(2m+n)+n

1 − qn

+
∞∑

m=1

∞∑

n=1

4q2m(2m+n)(1 − q2mn)

1 − qn
+

∞∑

m=1

4mq4m2

+
∞∑

m=1

−4q2m(2m+1)

1 − q2m

+
∞∑

m=1

4q4m(m+1)

1 − q4m

)

= 4q4 + 32q5 + 176q6 + 768q7 + 2904q8 + 9856q9 + 30816q10 +O(q11).

(ii) If λ0 = 1
2

and (f3, f4) = (1, 0), then

lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

=
1

∏∞
k=1(1 − qk)8

(
∞∑

m=1

∞∑

n=1

4q4m2+n+1

q2 − q4m+n
+

∞∑

m=1

∞∑

n=1

−4q(2m−1)2+2mn

1 − qn

+
∞∑

m=1

∞∑

n=1

−4q(2m+1)2+n(1 − q2mn)

1 − qn
+

∞∑

m=1

∞∑

n=1

4q(2m−1)2+n(1 − q(4m−3)n)

1 − qn

+
∞∑

m=1

2(2m− 1)q(2m−1)2 +
∞∑

m=1

−4q4m2−2m+1

q − q2m
+

∞∑

m=1

4q4m2+1

q2 − q4m

)

= 2q + 16q2 + 88q3 + 384q4 + 1452q5 + 4928q6 + 15408q7 + 45056q8 + 124680q9

+ 329168q10 +O(q11).

(iii) If λ0 = 1
2

and (f3, f4) = (0, 1) or (1, 1), then

lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

= 0.

(iv) If λ0 = 1 and (f3, f4) = (0, 0), (1, 0), (0, 1) or (1, 1), then

lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

= 0.
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(v) If λ0 = 2 and (f3, f4) = (0, 0), then

lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

= −

(

formula for λ0 =
1

2
and (f3, f4) = (0, 0)

)

.

(vi) If λ0 = 2 and (f3, f4) = (0, 1), then

lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

= −

(

formula for λ0 =
1

2
and (f3, f4) = (1, 0)

)

.

(vii) If λ0 = 2 and (f3, f4) = (1, 0) or (1, 1), then

lim
ǫ,ǫ′ց0

(
∑

c2∈Z

e(Mλ0+ǫ
X (2, c1, c2))q

c2 −
∑

c2∈Z

e(Mλ0−ǫ′

X (2, c1, c2))q
c2

)

= 0.

Referring to the first three cases and last three cases of the previous corollary, we note

that changing λ0 ↔ 1
λ0

and (f3, f4) ↔ (f4, f3) indeed changes the expression of the

infinitesimal wall-crossing formula by a sign as a priori expected.

2.3.3 Rank 3 on P2

In this subsection, we consider Theorem 2.2.7 for the case14 rank r = 3 and X = P2.

Similar computations can be done in the case X = Fa (a ∈ Z≥0), but the computations

become very lengthy.

In the case X = P2, the expression in Theorem 2.2.7 does not depend on the choice

of ample divisor, so we take ample divisor H = D (see 2.3.2.1). Let c1 = f3D3 = fD ∈

H2(X,Z). Define ∆i = ∆i(1), Γi = ∆i(2) for each i = 1, 2, 3. If ∆1,∆2,∆3,Γ1,Γ2,Γ3 ∈

14During the finishing of subsections 2.1–2.3, the author found out about recent independent work of
Weist [Wei], where he also computes the case rank 3 and X = P2 using techniques of toric geometry
and quivers. Weist has communicated to the author that his results are consistent with Corollary 2.3.9
of this subsection.
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Z>0 and ~δ = (δ1, δ2, δ3) are displays of widths (∆1,Γ1; ∆2,Γ2), (∆2,Γ2; ∆3,Γ3) and

(∆3,Γ3; ∆1,Γ1), then D~δ ⊂ {(p1, p2, p3; q1, q2, q3) | pi ⊂ qi ∀i = 1, 2, 3} ⊂ Gr(1, 3)3 ×

Gr(2, 3)3 = (P2)3 × (P2∨)3. We also consider all degenerations, e.g. ∆1,∆2,∆3,Γ1,Γ2 ∈

Z>0, Γ3 = 0 and ~δ = (δ1, δ2, δ3) displays with widths (∆1,Γ1; ∆2,Γ2), (∆2,Γ2; ∆3,Γ3)

and (∆3,Γ3; ∆1,Γ1), in which case D~δ ⊂ {(p1, p2, p3; q1, q2) | pi ⊂ qi ∀i = 1, 2} ⊂

(P2)3 × (P2∨)2. In a similar way as for the derivations of equations (2.2), (2.4) in 2.3.2.1,

2.3.2.2, let us describe the incidence spaces which contribute to the expression in Theo-

rem 2.2.7. All other incidence spaces can easily seen to never have properly GIT stable

closed points (for ample equivariant line bundles as in subsection 2.2.2). Denote by:

incidence space 1
��������������������� ??

??
??

??
??

??
??

??
??

??
?

• •

•

p1 p2

p3

q1

q2

q3

the incidence space of three lines q1, q2, q3 in P2 and three points p1 ∈ q1, p2 ∈ q2, p3 ∈ q3

on those lines such that q1, q2, q3 are mutually distinct, their intersection points q1 ∩ q2,

q2 ∩ q3, q3 ∩ q1 are mutually distinct, p1, p2, p3 are not equal to q1 ∩ q2, q2 ∩ q3, q3 ∩ q1 and

p1, p2, p3 are not colinear. This is a locally closed subscheme of (P2)3× (P2∨)3. Likewise,

we introduce the incidence spaces:

incidence space 2
��������������������� ??

??
??

??
??

??
??

??
??

??
?

q1

q2

q3 o o o o o

n n n n n n n n n n n

��
��

��
��

��
�

•
•

•

p3

p2

p1
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incidence space 3
��������������������� ??

??
??

??
??

??
??

??
??

??
?

q1q2

q3

•
p1

•
p2

•
p3

incidence spaces 4–9
��������������������� ??

??
??

??
??

??
??

??
??

??
?

•

•

•
pi

pj

pk

qi

qj

qk

incidence spaces 10, 11, 12
��������������������� ??

??
??

??
??

??
??

??
??

??
?

•

•

pj

pk

qi

qj

qk

incidence spaces 13, 14, 15
��������������������� ??

??
??

??
??

??
??

??
??

??
?

• •

•

pi pj

pk

qi

qj

for all {i, j, k} = {1, 2, 3}, where for the first space the points p1, p2, p3 are colinear, as

indicated by the dashed line, and for the second and last space p1, p2, p3 are not colinear.

Take one of these incidence spaces. Suppose we have an ample equivariant line bundle

as in subsection 2.2.2 such that all closed points of the incidence space are properly GIT

stable w.r.t. this ample equivariant line bundle and we form the geometric quotient by

SL(3,C). The resulting Euler characteristics of the geometric quotients are e = −1 for

the first incidence space and e = 1 for the remaining incidence spaces. Here it is useful to

note that any four distinct points x1, x2, x3, x4 in the projective plane no three of which

are colinear can be mapped to respectively [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1]

by an element of SL(3,C) and this element is unique up to multiplication by a 3rd root

of unity. The incidence spaces 4–9 all give the same contribution to the expression of
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Theorem 2.2.7. This also holds for the incidence spaces 10, 11, 12 as well as the incidence

spaces 13, 14, 15. As an aside, note that the first three incidence spaces all give rise to

the same display. We deduce15

q−
1
2
f2

∞∏

k=1

(1 − qk)9
∑

c2∈Z

e(MH
X (3, c1, c2))q

c2 =

−
∑

∆1,∆2,∆3,Γ1,Γ2,Γ3 ∈ Z>0 3 | − f + ∆1 + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3

∆1 + 2Γ1 < 2∆2 + 2∆3 + Γ2 + Γ3 ∆1 + ∆2 < 2∆3 + Γ1 + Γ2 + Γ3

∆2 + 2Γ2 < 2∆1 + 2∆3 + Γ1 + Γ3 ∆2 + ∆3 < 2∆1 + Γ1 + Γ2 + Γ3

∆3 + 2Γ3 < 2∆1 + 2∆2 + Γ1 + Γ2 ∆1 + ∆3 < 2∆2 + Γ1 + Γ2 + Γ3

Γ1 + 2∆1 < 2Γ2 + 2Γ3 + ∆2 + ∆3 Γ1 + Γ2 < 2Γ3 + ∆1 + ∆2 + ∆3

Γ2 + 2∆2 < 2Γ1 + 2Γ3 + ∆1 + ∆3 Γ2 + Γ3 < 2Γ1 + ∆1 + ∆2 + ∆3

Γ3 + 2∆3 < 2Γ1 + 2Γ2 + ∆1 + ∆2 Γ1 + Γ3 < 2Γ2 + ∆1 + ∆2 + ∆3

q

− 1
18

(−f − 2∆1 − 2∆2 − 2∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3)
2

+Γ1Γ2 + Γ2Γ3 + Γ1Γ3 + ∆1Γ2 + ∆2Γ1 + ∆1∆2

+∆2Γ3 + ∆3Γ2 + ∆2∆3 + ∆1Γ3 + ∆3Γ1 + ∆1∆3

+
∑

∆1,∆2,∆3,Γ1,Γ2,Γ3 ∈ Z>0 3 | − f + ∆1 + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3

∆1 + 2Γ1 < 2∆2 + 2∆3 + Γ2 + Γ3 Γ3 + 2∆3 < 2Γ1 + 2Γ2 + ∆1 + ∆2

∆2 + 2Γ2 < 2∆1 + 2∆3 + Γ1 + Γ3 ∆1 + ∆2 + ∆3 < Γ1 + Γ2 + Γ3

∆3 + 2Γ3 < 2∆1 + 2∆2 + Γ1 + Γ2 Γ1 + Γ2 < 2Γ3 + ∆1 + ∆2 + ∆3

Γ1 + 2∆1 < 2Γ2 + 2Γ3 + ∆2 + ∆3 Γ1 + Γ3 < 2Γ2 + ∆1 + ∆2 + ∆3

Γ2 + 2∆2 < 2Γ1 + 2Γ3 + ∆1 + ∆3 Γ2 + Γ3 < 2Γ1 + ∆1 + ∆2 + ∆3

q

− 1
18

(−f − 2∆1 − 2∆2 − 2∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3)
2

+Γ1Γ2 + Γ2Γ3 + Γ1Γ3 + ∆1Γ2 + ∆2Γ1 + ∆1∆2

+∆2Γ3 + ∆3Γ2 + ∆2∆3 + ∆1Γ3 + ∆3Γ1 + ∆1∆3

15Do not be confused by the number of inequalities over which we sum or the number of terms in the
powers of q.
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+
∑

∆1,∆2,∆3,Γ1,Γ2,Γ3 ∈ Z>0 3 | − f + ∆1 + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3

∆1 + 2Γ1 < 2∆2 + 2∆3 + Γ2 + Γ3 Γ3 + 2∆3 < 2Γ1 + 2Γ2 + ∆1 + ∆2

∆2 + 2Γ2 < 2∆1 + 2∆3 + Γ1 + Γ3 ∆1 + ∆2 < 2∆3 + Γ1 + Γ2 + Γ3

∆3 + 2Γ3 < 2∆1 + 2∆2 + Γ1 + Γ2 ∆2 + ∆3 < 2∆1 + Γ1 + Γ2 + Γ3

Γ1 + 2∆1 < 2Γ2 + 2Γ3 + ∆2 + ∆3 ∆1 + ∆3 < 2∆2 + Γ1 + Γ2 + Γ3

Γ2 + 2∆2 < 2Γ1 + 2Γ3 + ∆1 + ∆3 Γ1 + Γ2 + Γ3 < ∆1 + ∆2 + ∆3

q

− 1
18

(−f − 2∆1 − 2∆2 − 2∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3)
2

+Γ1Γ2 + Γ2Γ3 + Γ1Γ3 + ∆1Γ2 + ∆2Γ1 + ∆1∆2

+∆2Γ3 + ∆3Γ2 + ∆2∆3 + ∆1Γ3 + ∆3Γ1 + ∆1∆3

+ 6
∑

∆1,∆2,∆3,Γ1,Γ2,Γ3 ∈ Z>0 3 | − f + ∆1 + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3

∆1 + 2Γ1 < 2∆2 + 2∆3 + Γ2 + Γ3 Γ3 + 2∆3 < 2Γ1 + 2Γ2 + ∆1 + ∆2

∆2 + 2Γ2 < 2∆1 + 2∆3 + Γ1 + Γ3 ∆1 + ∆2 < 2∆3 + Γ1 + Γ2 + Γ3

∆1 + ∆3 + 2Γ3 < 2∆2 + Γ1 + Γ2 ∆2 + ∆3 < 2∆1 + Γ1 + Γ2 + Γ3

Γ1 + Γ3 + 2∆1 < 2Γ2 + ∆2 + ∆3 Γ1 + Γ2 < 2Γ3 + ∆1 + ∆2 + ∆3

Γ2 + 2∆2 < 2Γ1 + 2Γ3 + ∆1 + ∆3 Γ2 + Γ3 < 2Γ1 + ∆1 + ∆2 + ∆3

q

− 1
18

(−f − 2∆1 − 2∆2 − 2∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3)
2

+Γ1Γ2 + Γ2Γ3 + Γ1Γ3 + ∆1Γ2 + ∆2Γ1 + ∆1∆2

+∆2Γ3 + ∆3Γ2 + ∆2∆3 + ∆3Γ1 + ∆1∆3
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+ 3
∑

∆2,∆3,Γ1,Γ2,Γ3 ∈ Z>0 3 | − f + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3

2Γ1 < 2∆2 + 2∆3 + Γ2 + Γ3 ∆2 + ∆3 < Γ1 + Γ2 + Γ3

∆2 + 2Γ2 < 2∆3 + Γ1 + Γ3 Γ1 + Γ2 < 2Γ3 + ∆2 + ∆3

∆3 + 2Γ3 < 2∆2 + Γ1 + Γ2 Γ2 + Γ3 < 2Γ1 + ∆2 + ∆3

Γ2 + 2∆2 < 2Γ1 + 2Γ3 + ∆3 Γ1 + Γ3 < 2Γ2 + ∆2 + ∆3

Γ3 + 2∆3 < 2Γ1 + 2Γ2 + ∆2

q

− 1
18

(−f − 2∆2 − 2∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆2 + ∆3 − Γ1 − Γ2 − Γ3)
2

− 1
18

(−f + ∆2 + ∆3 + 2Γ1 + 2Γ2 + 2Γ3)
2

+Γ1Γ2 + Γ2Γ3 + Γ1Γ3

+∆2Γ1 + ∆2Γ3 + ∆3Γ2 + ∆2∆3 + ∆3Γ1

+ 3
∑

∆1,∆2,∆3,Γ2,Γ3 ∈ Z>0 3 | − f + ∆1 + ∆2 + ∆3 + 2Γ2 + 2Γ3

∆2 + 2Γ2 < 2∆1 + 2∆3 + Γ3 ∆1 + ∆2 < 2∆3 + Γ2 + Γ3

∆3 + 2Γ3 < 2∆1 + 2∆2 + Γ2 ∆2 + ∆3 < 2∆1 + Γ2 + Γ3

2∆1 < 2Γ2 + 2Γ3 + ∆2 + ∆3 ∆1 + ∆3 < 2∆2 + Γ2 + Γ3

Γ2 + 2∆2 < 2Γ3 + ∆1 + ∆3 Γ2 + Γ3 < ∆1 + ∆2 + ∆3

Γ3 + 2∆3 < 2Γ2 + ∆1 + ∆2

q

− 1
18

(−f − 2∆1 − 2∆2 − 2∆3 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 − Γ2 − Γ3)
2

− 1
18

(−f + ∆1 + ∆2 + ∆3 + 2Γ2 + 2Γ3)
2

+∆1∆2 + ∆2∆3 + ∆1∆3

+∆1Γ2 + ∆3Γ2 + ∆2Γ3 + Γ2Γ3 + ∆1Γ3
.

Referring to equation (2.3), we see the only relevant values for f are f = −1, 0, 1. It

is now easy to numerically compute the first ten Euler characteristics for these values.

Corollary 2.3.9. Let X = P2 and let H be an ample divisor on X. Then:

∑

c2∈Z

e(MH
X (3,−1, c2))q

c2 =3q2 + 42q3 + 333q4 + 1968q5 + 9609q6 + 40881q7 + 156486q8

+ 550392q9 + 1805283q10 +O(q11),
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∑

c2∈Z

e(MH
X (3, 0, c2))q

c2 = − q3 − 9q4 − 60q5 − 309q6 − 1362q7 − 5322q8 − 18957q9

− 62574q10 +O(q11),

∑

c2∈Z

e(MH
X (3, 1, c2))q

c2 =3q2 + 42q3 + 333q4 + 1968q5 + 9609q6 + 40881q7 + 156486q8

+ 550392q9 + 1805283q10 +O(q11).

The corollary suggests that the generating functions
∑

c2∈Z
e(MH

X (3,±1, c2))q
c2 are the

same. Indeed, it is not difficult to see that changing ∆i ↔ Γi and f ↔ −f interchanges

terms two and three and terms five and six of the expression for the generating func-

tion, while leaving terms one and four unchanged. This proves the generating functions
∑

c2∈Z
e(MH

X (3,±c1, c2))q
c2 are the same for any c1 ∈ H2(X,Z). This fact can be easily

understood as follows. Let X be a nonsingular projective surface with ample divisor H.

Let r ∈ Z>0, c1 ∈ H2(X,Z), c2 ∈ Z and denote by NH
X (r, c1, c2) the moduli space of

µ-stable vector bundles on X of rank r, first Chern class c1 and second Chern class c2.

Then taking the dual gives an isomorphism

NH
X (r, c1, c2)

∼=
−→ NH

X (r,−c1, c2)

E 7→ E∨.

2.4 Euler Characteristics of Moduli Spaces of Pure

Dimension 1 Sheaves on P2

In Theorem 1.3.9, we gave a combinatorial description of the fixed point locus of an

arbitrary moduli space of Gieseker stable sheaves with fixed Hilbert polynomial on an

arbitrary nonsingular projective toric variety with ample line bundle. The theorem

assumes we can find equivariant line bundles of the GIT problem matching Gieseker and

GIT stability. We have shown the existence of such (ample) equivariant line bundles in

the case of torsion free sheaves in Theorem 1.2.22. In the case of surfaces and torsion free
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sheaves, we used Theorem 1.3.15 to give expressions for the generating functions of Euler

characteristics of moduli spaces of µ-stable torsion free sheaves on arbitrary nonsingular

complete toric surfaces (Theorem 2.2.7). We focused on torsion free sheaves as opposed

to pure sheaves of lower dimension, since this allowed us to compare to many results

in the literature. As we discussed, the results in the literature were mostly obtained by

different means. It is however also interesting to apply Theorem 1.3.9 to surfaces and

pure sheaves of dimension 1. Although we will not study this in a systematic way, we

will compute some generating functions of µ-stable pure dimension 1 sheaves on P2 with

first Chern class c1 fixed. We will treat the cases c1 = 1, 2, 3. The computations of

this section have also been carried out by Jinwon Choi using [Koo1], i.e. chapter 1, and

our results coincide (private communication). Jinwon Choi has also considered the case

c1 = 4 (see section 2.5 for a discussion).

Consider the projective plane X = P2. In this section, we will use the notation

introduced in subsection 2.2.1 and in 2.3.2.1. Let E be a pure dimension 1 equivariant

sheaf on P2. Then its support is one of V (ρ1), V (ρ2), V (ρ3), V (ρ1)∪V (ρ2), V (ρ1)∪V (ρ3),

V (ρ2)∪V (ρ3) or V (ρ1)∪V (ρ2)∪V (ρ3). The pure ∆-family Ê∆ of such a sheaf is described

in Theorems 1.1.10, 1.1.12 and subsection 1.1.2. We draw Eσi(λ1, λ2) for i = 1, 2, 3 in a

copy of Z2 and draw these copies in such a way as to easily encode the gluing conditions

Eσi(∞, λ) = Eσi+1(λ,∞), χσi

j (∞, λ) = χ
σi+1

j (λ,∞), ∀λ ∈ Z, i = 1, 2, 3 mod 3, j = 1, 2.

______
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We can graphically represent the different types of support as follows.
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type 2 : V (ρ2)
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type 3 : V (ρ3)
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type 1 : V (ρ1)
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type 4 : V (ρ1) ∪ V (ρ2)
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type 6 : V (ρ2) ∪ V (ρ3)
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type 5 : V (ρ1) ∪ V (ρ3)
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type 7 : V (ρ1) ∪ V (ρ2) ∪ V (ρ3)
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Recall there is a canonical isomorphism A(X) ∼= Z[D]/(D3), where D is the toric divisor

corresponding to any of the rays. This induces canonical isomorphisms H0(X,Z) ∼=

A0(X) ∼= Z, H2(X,Z) ∼= A1(X) ∼= Z and H4(X,Z) ∼= A2(X) ∼= Z. For a fixed ample

divisor H, first Chern class c1 ∈ Z>0 and second Chern class c2 ∈ Z, let MH
X (0, c1, c2)

be the moduli space of Gieseker stable sheaves on X = P2 of rank 0, first Chern class c1

and second Chern class c2. Note that such sheaves are pure of dimension 1. Also note

that µ-stability and Gieseker stability coincide for dimension 1 coherent sheaves on X

([HL, Def. 1.2.4, Def.–Cor. 1.6.9]). Finally, note that MH
X (0, c1, c2) does not depend on

the choice of ample divisor H. We want to study the generating function

∑

c2∈Z

e(MH
X (0, c1, c2))q

c2 .

We will prove the following theorem.
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Theorem 2.4.1. Let X = P2 and let H be an ample divisor on X, then

∑

c2∈Z

e(MH
X (0, 1, c2))q

c2 =
∑

k∈Z

3qk,

∑

c2∈Z

e(MH
X (0, 2, c2))q

c2 =
∑

k∈Z

6q2k +
∑

k∈Z

0q2k+1,

∑

c2∈Z

e(MH
X (0, 3, c2))q

c2 =
∑

k∈Z

9q3k +
∑

k∈Z

27q3k+1 +
∑

k∈Z

27q3k+2.

Proof. Without loss of generality, we can take H = D. Let L1 be a pure dimension 1

equivariant sheaf on X with corresponding pure ∆-family L̂∆
1 with characteristic function

of the form (A1, A2, A3 ∈ Z arbitrary):

y

x

σ1

(A1, A2)

y

x

σ2

(A2, A3)

y

x

σ3

Let us explain the notation we use for depicting characteristic functions in this proof. A

solid line will mean each lattice point on that line has 1 associated to it and all lattice

points outside the solid line will have 0 associated to it. We will also occasionally use a

solid dot to depict a lattice point with a 2 associated to it (see later in the proof). We

define L̂∆
1 to have complex vector space C on the solid line and identity maps between

them. All other complex vector spaces and C-linear maps are zero. Using Klyachko’s

Formula (Proposition 1.2.16), it is straightforward to compute

ch(L1) = D +

(

−
1

2
− A1 − A2 − A3

)

D2.

Now let L2 be an equivariant coherent sheaf of dimension 0 with corresponding pure

∆-family L̂∆
2 . Then there are only finitely many Lσi

2 (λ1, λ2) 6= 0 (see Proposition 1.1.8).

149



Using Klyachko’s Formula (Proposition 1.2.16), we see

ch(L2) =
3∑

i=1

∑

λ1,λ2∈Z

dim(Lσi

2 (λ1, λ2))D
2.

Using the same trick as in Step 3 of the proof of Proposition 2.2.2, one can easily deduce

the Chern character of any pure dimension 1 equivariant sheaf E on X with explicitly

given characteristic function ~χ. Note in particular that

c1(E) =
3∑

i=1

∑

λ∈Z

dim(Eσi(∞, λ)). (2.9)

We now want to apply Theorem 1.3.9. In each of the cases c1 = 1, 2, 3 and c2 ∈ Z

arbitrarily fixed, we will compute all gauge-fixed characteristic functions ~χ giving rise

to c1, c2, for which there exists a µ-stable pure dimension 1 equivariant sheaf E on X

with characteristic function ~χ. For the definition of gauge-fixed characteristic function,

see subsection 1.3.3. Except in one case, the sheaf E will turn out to be unique up to

equivariant isomorphism. In these cases, the corresponding component of the fixed point

locus is an isolated fixed point Spec C. The one exception will be for c1 = 3 and c2 ≡

0 mod 3, in which case we will get a characteristic function giving rise to a component

C of the fixed point locus for which there is a morphism C∗ −→ C that is bijective

on closed points. This component will not contribute, since e(C) = e(C∗) = 0 (see

subsection 2.1.1). Therefore, counting the isolated fixed points will give the generating

functions by torus localisation (Proposition 2.1.1). Note that the computation of the

relevant characteristic functions uses Proposition 1.2.19, which tells us we only need to

test µ-stability for equivariant coherent subsheaves.

Case 1: c1 = 1. Let c2 ∈ Z. Using equation (2.9), we first list the shapes the charac-

teristic functions a priori can have (up to the obvious symmetries of the problem). The

number indicates the dimension of the limiting complex vector spaces along the axes.
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1

The following is a gauge-fixed characteristic function ~χ giving rise to c1, c2 for which there

exists a µ-stable pure dimension 1 equivariant sheaf on X with characteristic function ~χ:

y

x

σ1

y

x

σ2

B

y

x

σ3

where c2 = B + 1. Here the B in the diagram denotes a position along y-axis, i.e. the

solid line terminates at (0, B). We will use similar notation later in the proof. There

are two more such gauge-fixed characteristic functions obtained from the above by the

obvious symmetries of the problem. For each of these characteristic functions ~χ, there

is precisely one µ-stable pure dimension 1 equivariant sheaf on X with characteristic

function ~χ up to equivariant isomorphism. We obtain e(MH
X (1, c2)) = 3 · 1 = 3.

Case 2: c1 = 2. Let c2 ∈ Z. Referring to equation (2.9), we again start by listing

the shapes of the characteristic functions that are a priori allowed (up to the obvious

symmetries of the problem). As before, the numbers indicate the dimensions of the

limiting complex vector spaces along the axes.

1
1

2 1




















1

Referring to the last type of characteristic function, we note that in the corner where the
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two legs that have 1 as their limit meet, numbers ≤ 2 can occur (see subsection 1.1.2,

in particular condition (1.6)). Not all of these types of characteristic functions will have

a µ-stable pure dimension 1 equivariant sheaf on X with that characteristic function.

In the case of the second type of characteristic function, a pure dimension 1 equivariant

sheaf on X with that characteristic function is always equivariantly decomposable, hence

not µ-stable. The following are all gauge-fixed characteristic functions ~χ giving rise to

c1, c2 for which there exists a µ-stable pure dimension 1 equivariant sheaf on X with

characteristic function ~χ (up to symmetry):

y

x

σ1

1

y

x

σ2

B

1

y

x

σ3

y

x

σ1

y

x

σ2

B

y

x

σ3

B

where B ∈ Z satisfies c2 = 2B + 4. For each such characteristic function ~χ, there

is precisely one µ-stable pure dimension 1 equivariant sheaf on X with characteris-

tic function ~χ up to equivariant isomorphism. In the case c2 ≡ 0 mod 2, we obtain

e(MH
X (2, c2)) = 3·1+3·1 = 6. Note that there are no gauge-fixed characteristic functions

~χ giving rise to c1 = 2, c2 ≡ 1 mod 2, for which there exists a µ-stable pure dimension 1

equivariant sheaf on X with characteristic function ~χ. So in the case c2 ≡ 1 mod 2, we

obtain e(MH
X (2, c2)) = 0.

Case 3: c1 = 3. Let c2 ∈ Z. Again, using equation (2.9), we start by listing the shapes

of the characteristic functions that are a priori allowed (up to the obvious symmetries of

the problem). The numbers again indicate the dimensions of the limiting complex vector
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spaces along the axes.

1
1
1

1
2

2
1

3 
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1 1
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1

1 1

Note that in the corners of the 5th and 7th diagram where the legs that have 1 as

their limit meet, numbers ≤ 2 can occur (see subsection 1.1.2, in particular condition

(1.6)). In the corner of the 6th diagram where the legs with 1 resp. 2 as their limit

meet, numbers ≤ 3 can occur (see subsection 1.1.2, in particular condition (1.6)). Not

for all these types of characteristic functions do there exist µ-stable pure dimension 1

equivariant sheaves on X with that characteristic function. A case by case analysis shows

that we only have to consider characteristic functions of type 1, 5 and 7. We now list

all gauge-fixed characteristic functions ~χ giving rise to c1, c2, for which there exists a

µ-stable pure dimension 1 equivariant sheaf on X with characteristic function ~χ. The

list is only up to the obvious symmetries of the problem. Recall that a solid line means

each lattice point on that line has 1 associated to it, a solid dot depicts a lattice point

with a 2 associated to it and all other lattice points have 0 associated to it. Also recall

that the numbers along the coordinate axes indicate the positions of the solid lines:
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y

x

σ1

1
2

y

x

σ2

B

1 2

y

x

σ3

y

x

σ1

1

y

x

σ2

B

y

x

σ3

B

1

y

x

σ1

y

x

σ2

B

y

x

σ3

B

where B ∈ Z satisfies c2 = 3B + 9. For each such characteristic function ~χ other

than the last, there is precisely one µ-stable pure dimension 1 equivariant sheaf on X

with characteristic function ~χ up to equivariant isomorphism. For the last characteristic

function ~χ and the corresponding component C of the fixed point locus, it is easy to

construct a morphism C∗ −→ C which is bijective on closed points. Since e(C) =

e(C∗) = 0, it does not contribute. We continue the list:

y

x

σ1

1

1
2

y

x

σ2

B

1 2

y

x

σ3
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y

x

σ1

1
2

y

x

σ2

B

1 2

B + 1

y

x

σ3

y

x

σ1

1

1

y

x

σ2

B

y

x

σ3

B

1

y

x

σ1

1

y

x

σ2

B + 1

y

x

σ3

B

1

y

x

σ1

1

y

x

σ2

B

y

x

σ3

B

1

B + 1

y

x

σ1

1

1

y

x

σ2

B

y

x

σ3

B

where B ∈ Z satisfies c2 = 3B + 10. For each such characteristic function ~χ, there

is precisely one µ-stable pure dimension 1 equivariant sheaf on X with characteristic

function ~χ up to equivariant isomorphism. We continue the list:
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y

x

σ1

1

1
2

y

x

σ2

B

1 2

y

x

σ3

y

x

σ1

1
2

y

x

σ2

B

1 2

B + 1

y

x

σ3

y

x

σ1

1

y

x

σ2

B

y

x

σ3

B + 1

1

y

x

σ1

1

y

x

σ2

B + 1

y

x

σ3

B

1

B + 1

y

x

σ1

1

•

y

x

σ2

B + 1

y

x

σ3

B + 1

1
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y

x

σ1

•

y

x

σ2

B + 1

y

x

σ3

B + 1

where B ∈ Z satisfies c2 = 3B + 11. For each such characteristic function ~χ, there

is precisely one µ-stable pure dimension 1 equivariant sheaf on X with characteris-

tic function ~χ up to equivariant isomorphism. In the case c2 ≡ 0 mod 3, we ob-

tain e(MH
X (3, c2)) = 3 · 1 + 6 · 1 + 1 · 0 = 9. In the case c2 ≡ 1 mod 3, we obtain

e(MH
X (3, c2)) = 3 · 1 + 3 · 1 + 6 · 1 + 6 · 1 + 6 · 1 + 3 · 1 = 27. Finally, in the case

c2 ≡ 2 mod 3, we obtain e(MH
X (3, c2)) = 3 · 1 + 3 · 1 + 6 · 1 + 6 · 1 + 6 · 1 + 3 · 1 = 27.

2.5 Application to Donaldson–Thomas Invariants

In this chapter, we have computed various generating functions of Euler characteristics

of moduli spaces of µ-stable pure sheaves on nonsingular complete toric surfaces S. In

the case there are no strictly µ-semistables and assuming some conditions on S, we will

show how these can be seen as generating functions of Donaldson–Thomas invariants

of the canonical bundle X = KS, which is a noncompact Calabi–Yau threefold. The

computations of the previous section will give examples supporting a conjecture by Katz

relating Donaldson–Thomas invariants and genus zero Gopakumar–Vafa invariants.

2.5.1 Generalised Donaldson–Thomas Invariants

Donaldson–Thomas invariants were defined by Thomas [Tho], following a proposal of

Donaldson and Thomas [DT]. The (original) Donaldson–Thomas invariants were only

defined in the case there are no strictly semistables [Tho]. Recent work of Joyce–Song [JS]

and Kontsevich–Soibelman [KoSo] extends the theory to a more general setting including

strictly semistables. Even though we only use (original) Donaldson–Thomas invariants

in the next subsection, we use the opportunity to give a short overview of the main
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properties of generalised Donaldson–Thomas invariants as introduced by Joyce–Song

[JS]. We discuss their relation to genus zero Gopakumar–Vafa invariants following Joyce–

Song [JS] and Katz [Kat]. Since we will be interested in applications to noncompact

Calabi–Yau threefolds in the following subsection, we pay special attention to this case.

Let X be a Calabi–Yau threefold over C, i.e. a nonsingular projective threefold X

over C with trivial canonical bundle ωX ∼= 0 and H1(X,OX) = 0. We also refer to these

as compact Calabi–Yau threefolds. Let OX(1) be a very ample line bundle on X and let

(τ, T,≤) be a Gieseker stability condition induced by OX(1). Let K0(X) = K0(coh(X))

denote the Grothendieck group over the abelian category coh(X) of coherent sheaves on

X. By Serre Duality and the Calabi–Yau property, we have a well-defined antisymmetric

bilinear form

χ(−,−) : K0(X) ×K0(X) −→ Z,

χ([E ], [F ]) =
3∑

i=0

(−1)idim(Exti(E ,F)).

This map is called the Euler form. We define the numerical Grothendieck groupKnum(X)

to be K0(X) modulo the kernel of χ. In this setting, we also denote the numerical

Grothendieck group Knum(X) by K(X). We get an induced non-degenerate antisym-

metric bilinear form

χ(−,−) : K(X) ×K(X) −→ Z,

χ([E ], [F ]) =
3∑

i=0

(−1)idim(Exti(E ,F)).

We define the cone C(X) = {[E ] ∈ K(X) | E ∈ coh(X), E ≇ 0}. Since K(X) can

equivalently be defined as the quotient ofK0(X) by the kernel of the Chern character map

ch : K0(X) −→ Heven(X,Q), we can think of K(X) as a subgroup of Heven(X,Q). Hence

K(X) is a lattice of finite rank and we can write C(X) ⊂ K(X) ≤ Heven(X,Q). For any

α ∈ C(X), denote by Mα
ss(τ) the moduli space of Gieseker semistable (w.r.t. OX(1))
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sheaves E of class [E ] = α ∈ C(X) on X. This is a projective C-scheme of finite type as

discussed in [HL, Ch. 4] and its closed points Mα
ss(τ)(C) are in bijective correspondence

with S-equivalence classes of Gieseker semistable sheaves of class α on X. We denote

the open subscheme of Gieseker stable sheaves of class α on X by Mα
st(τ). Its closed

points Mα
st(τ)(C) are in bijective correspondence with isomorphism classes of Gieseker

stable sheaves of class α on X. Joyce–Song [JS] define generalised Donaldson–Thomas

invariants D̄T
α
(τ) ∈ Q of X for all α ∈ C(X). These generalised Donaldson–Thomas

invariants have the following properties:

(i) In the case Mα
ss(τ) = Mα

st(τ), the generalised Donaldson–Thomas invariant co-

incides with the (original) Donaldson–Thomas invariant D̄T
α
(τ) = DTα(τ) [JS,

Prop. 5.15]. The Donaldson–Thomas invariant was introduced by Thomas [Tho],

in the case Mα
ss(τ) = Mα

st(τ), as the degree of the virtual class [Mα
ss(τ)]

vir ∈

A0(M
α
st(τ))

DTα(τ) =

∫

[Mα
st(τ)]

1. (2.10)

One can express the Donaldson–Thomas invariant DTα(τ) in terms of the Euler

characteristic of Mα
st(τ) weighted by the Behrend function νMα

st(τ)
: Mα

st(τ)(C) −→

Z, which is a Z-valued constructible function on Mα
st(τ)

DTα(τ) =

∫

Mα
st(τ)(C)

νMα
st(τ)

de, (2.11)

where e denotes the Euler characteristic discussed in subsection 2.1.1. This result

was proved by Behrend [Beh]. Note that the Behrend function νX : X(C) −→ Z

is a constructible function that is defined for any C-scheme X of finite type. In

the case p ∈ X is a nonsingular closed point, the Behrend function is given by

νX = (−1)dim(TpX) [JS, Thm. 4.3]. So in the simplest case, where Mα
ss(τ) = Mα

st(τ)

is nonsingular and each connected component has the same dimension, we have

DTα(τ) = (−1)dim(Mα
st(τ))e(Mα

st(τ)).
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(ii) Suppose OX(1)′ is another very ample line bundle on X and (τ ′, T ′,≤) is a Gieseker

stability condition w.r.t. OX(1)′. Then there is an explicit wall-crossing formula

expressing D̄T
α
(τ ′) in terms of various D̄T

β
(τ), where β ∈ C(X) [JS, Thm. 5.16].

The precise statement is a bit more subtle, see [JS, Thm. 5.16, Cor. 5.17].

(iii) The generalised Donaldson–Thomas invariants D̄T
α
(τ) are independent of contin-

uous deformations of X [JS, Cor. 5.25].

We now replace “projective” by “quasi-projective and not projective” in the previous

definition of Calabi–Yau threefolds and drop the condition H1(X,OX) = 0. We refer to

these as noncompact Calabi–Yau threefolds over C. Joyce–Song discuss the extension of

their theory to noncompact Calabi–Yau threefolds over C in [JS, Sect. 6.7]. Let X be a

noncompact Calabi–Yau threefold with very ample line bundle OX(1). In order to have

finite-dimensional Ext groups and Serre Duality, we should consider the abelian category

cohcs(X) of coherent sheaves on X with compact (i.e. proper) support. There exists a

version of Chern character with compact support chcs : K0(cohcs(X)) −→ Heven
cs (X,Q).

We have a well-defined bilinear form called the Euler form

χ(−,−) : K0(coh(X)) ×K0(cohcs(X)) −→ Z,

χ([E ], [F ]) =
3∑

i=0

(−1)idim(Exti(E ,F)),
(2.12)

which is antisymmetric on K0(cohcs(X)) ×K0(cohcs(X)). The numerical Grothendieck

group Knum(cohcs(X)) is K0(cohcs(X)) modulo the kernel of χ(−,−) : K0(cohcs(X)) ×

K0(cohcs(X)) −→ Z, but this group is often too small and can be trivial in important

applications. Therefore, we should consider the group K(cohcs(X)), which we define

to be K0(cohcs(X)) modulo the kernel of the Euler form of equation (2.12) (see [JS,

Sect. 6.7]). In this case, K(cohcs(X)) can also be formed as K0(cohcs(X)) modulo the

kernel of chcs. As before, we define the cone C(cohcs(X)) = {[E ] ∈ K(cohcs(X)) | E ∈

cohcs(X), E ≇ 0}. Hence we have C(cohcs(X)) ⊂ K(cohcs(X)) ≤ Heven
cs (X,Q). For any

nonzero coherent sheaf E with compact support on X, one can now define the Hilbert
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polynomial PE(t) = χ(OX(−t), E), which only depends on the class [E ] ∈ C(cohcs(X)).

Joyce–Song introduce a further technical condition on X [JS, Def. 6.26].

Definition 2.5.1. Let X be a noncompact Calabi–Yau threefold over C. We call X

compactly embeddable if for any compact subsetK ⊂ X in the complex analytic topology,

there exists an open neighbourhood U of K in X in the complex analytic topology, a

compact Calabi–Yau threefold Y over C, an open subset V of Y in the complex analytic

topology and an isomorphism of complex manifolds φ : U −→ V . ⊘

If X is compactly embeddable, the entire discussion of the compact case holds similarly

except for the following notable differences [JS, Sect. 6.7]. The moduli space Mα
ss(τ) can

be defined similarly, but is not necessarily proper. Similarly, certain moduli spaces of

pairs used in the theory of generalised Donaldson–Thomas invariants [JS, Sect. 6.7] do not

have to be proper anymore. As a consequence, one does not have access to virtual cycle

technology. This does not affect the definition of the generalised Donaldson–Thomas

invariants. The pair invariants used in the theory of generalised Donaldson–Thomas

invariants should now be defined using Behrend functions [JS, Sect. 6.7]. Similarly,

equation (2.10) does not make sense, but one can use equation (2.11) as the definition of

(original) Donaldson–Thomas invariants. With these changes, all the above statements

hold similarly in this setting, except that the (generalised) Donaldson–Thomas invariants

and pair invariants are not known to be invariant under continuous deformations of

X, essentially because one cannot use virtual cycle technology anymore. Nevertheless,

the (generalised) Donaldson–Thomas invariants and pair invariants of X are still very

interesting. In short, (i) and (ii) still hold similarly, but we do not expect (iii) to hold.

Let X be a Calabi–Yau threefold (so for the moment compact). For any β ∈ H2(X,Z)

and g ∈ Z≥0, let GWg(β) ∈ Q be the genus g Gromov–Witten invariants of X. They are

conjectured to satisfy the following identity [Kat]

∑

β,g

GWg(β)qβλ2g−2 =
∑

β,g,m

GVg(β)

m

(

2 sin

(
mλ

2

))2g−2

qmβ, (2.13)
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where the GVg(β) are certain integers. These integers are called Gopakumar–Vafa in-

variants and were first introduced as an integer-valued index arising from D-branes and

M2-branes wrapping holomorphic curves in string theory and M-theory. One can use

relation (2.13) as the definition of the Gopakumar–Vafa invariants in which case they are

a priori only known to be rational. The statement that the Gopakumar–Vafa invariants

are integers is then known as the Integrality Conjecture for Gopakumar–Vafa Invariants

[Kat]. From relation (2.13), one deduces that the genus zero Gopakumar–Vafa invariants

satisfy

GW0(β) =
∑

m∈Z≥1,m|β

1

m3
GV0(β/m).

Using the Möbius inversion formula, we can invert this relation and take this as our

definition of the genus zero Gopakumar–Vafa invariants. A priori genus zero Gopakumar–

Vafa invariants are rational numbers and the Integrality Conjecture for Genus Zero

Gopakumar–Vafa Invariants states they are integers. Similarly, for (τ, T,≤) a Gieseker

stability condition on coh(X) w.r.t. a very ample line bundle OX(1) and for any α ∈

C(X), Joyce–Song define BPS invariants D̂T
α
(τ) through the relation

D̄T
α
(τ) =

∑

m∈Z≥1,m|α

1

m2
D̂T

α
m (τ).

A priori BPS invariants are rational numbers and the Integrality Conjecture for BPS

Invariants states they are integers in the case τ is generic [JS, Conj. 6.12]. Here generic

means for all α, β ∈ C(X) satisfying τ(α) = τ(β), one has χ(α, β) = 0. In fact, Katz

conjectures genus zero Gopakumar–Vafa invariants and BPS invariants are related [Kat].

This is phrased by Joyce–Song in the following conjecture [JS, Conj. 6.20].

Conjecture 2.5.2 (Katz’ Conjecture). Let X be a Calabi–Yau threefold and (τ, T,≤) a

Gieseker stability condition on coh(X). Then for any γ ∈ H2(X,Z) with β ∈ H4(X,Z)

Poincaré dual to γ and k ∈ Z, we have D̂T
(0,0,β,k)

(τ) = GV0(γ). In particular, the BPS

invariants D̂T
(0,0,β,k)

(τ) for β ∈ H4(X,Z), k ∈ Z are independent of τ, k.
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Note that this entire discussion of Gopakumar–Vafa invariants, BPS invariants and Katz’

Conjecture (Conjecture 2.5.2) also makes sense similarly for X a noncompact compactly

embeddable Calabi–Yau threefold, where we have to use coherent sheaves with compact

support and (co)homology with compact support everywhere.

In the next subsection, we will be interested in the case X is the canonical bundle KS

of a nonsingular projective surface S. Then X is a noncompact Calabi–Yau threefold.

Although, it is known that X is compactly embeddable for certain surfaces like S = P2

or S = P1 × P1, this is not known for general S [JS, Sect. 6.7]. However, for the

definition of generalised Donaldson–Thomas invariants, BPS invariants, Gromov–Witten

invariants and Gopakumar–Vafa invariants only, we do not need to know whether X is

compactly embeddable. Therefore, we will not address this question. In this setting, the

discussion of (i) still holds similarly except that we have no virtual fundamental class at

our disposal. Hence we take the expression of (original) Donaldson–Thomas invariants

in terms of Behrend functions (2.11) as the definition of (original) Donaldson–Thomas

invariants. In short, (i) still holds similarly, but it is not known whether (ii) holds and

(iii) is not expected to hold in this setting. Also note that Katz’ Conjecture (Conjecture

2.5.2) can still be phrased in this setting.

2.5.2 Some Generating Functions of Donaldson–Thomas In-

variants

LetX be a compact/non-compact Calabi–Yau threefold over C. Let OX(1) be a very am-

ple line bundle on X and (τ, T,≤) a Gieseker stability condition on coh(X) w.r.t. OX(1).

Consider α ∈ C(X) ⊂ K(X) ≤ Heven(X,Q) (or α ∈ C(cohcs(X)) ⊂ K(cohcs(X)) ≤

Heven
cs (X,Q)). We can write α = (ch0, ch1, ch2, ch3). Fixing ch0, ch1, ch2 and varying ch3,

one is interested in the generating function for the BPS invariants D̂T
(ch0,ch1,ch2,ch3)

(τ).

Since knowledge of Chern character ch on the one hand and rank r and Chern class c on

the other hand is equivalent (i.e. (ch0, ch1, ch2, ch3) = (r, c1,
1
2
(c21−2c2),

1
6
(c31−3c1c2+3c3))

[Har1, App. A]), we denote the corresponding BPS invariants by D̂T
(r,c1,c2,c3)

(τ). Fixing
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rank r, first Chern class c1 and second Chern class c2 arbitrary, we are interested in the

generating function of BPS invariants

∑

c3∈Z

D̂T
(c0,c1,c2,c3)

(τ)qc3 .

Note that we use H6(X,Z) ∼= Z (or H6
cs(X,Z) ∼= Z). This generating function is of great

interest to both mathematicians and string theorists. The simplest case to consider is

(r, c1, c2) = (1, 0, 0). In this case, BPS invariants, generalised Donaldson–Thomas invari-

ants and Donaldson–Thomas invariants coincide. In this context, it is somewhat more

natural to consider Donaldson–Thomas invariants Ñn,0 associated to the moduli space

In(X, 0) of ideal sheaves I on compact X determining a subscheme Y of dimension 0

such that χ(OY ) = n. An elegant expression for the generating function was first con-

jectured by Maulik, Nekrasov, Okounkov and Pandharipande [MNOP] and later proved

by Behrend and Fantechi [BF]

∞∑

n=0

Ñn,0q
n = M(−q)e(X),

where M(q) =
∏

k≥1(1 − qk)−k is the MacMahon function counting 3D partitions. Note

that in this case, there is no dependence on choice of stability condition (τ, T,≤). It is

interesting to compute the generating function of BPS invariants for other ranks r = 0

and r > 1. We generically expect a dependence on choice of stability condition (τ, T,≤).

Let X = KS be the canonical bundle of a nonsingular projective surface S. Then X

is a noncompact Calabi–Yau threefold. Consider the map to the base and the inclusion

of the zero section

π : X −→ S,

ι : S →֒ X.
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Using Poincaré Duality PD, we get induced maps on the level of cohomology

PD−1 ◦ ι∗ ◦ PD : H0(S,Z) −→ H2
cs(X,Z),

PD−1 ◦ ι∗ ◦ PD : H2(S,Z) −→ H4
cs(X,Z),

PD−1 ◦ ι∗ ◦ PD : H4(S,Z) −→ H6
cs(X,Z).

Under the canonical isomorphisms H4(S,Z) ∼= Z and H6
cs(X,Z) ∼= Z, the last map is

the identity map. We will be somewhat sloppy in our notation an write ι∗ to mean

PD−1 ◦ ι∗ ◦ PD, unless stated otherwise. Let H be an ample divisor on S, then π∗H

is an ample divisor on X since π is affine [EGA1, Prop. 5.1.12]. Consider µ-stability

(µH ,M,≤) on coh(S) w.r.t H and µ-stability (µπ∗H ,M,≤) on cohcs(X) w.r.t. π∗H. Let

r ∈ Z≥0 and c1 ∈ H2(S,Z) be arbitrary. We are interested in the generating function16

∑

c3∈Z

D̂T
(0,ι∗r,ι∗c1,c3)

(µπ∗H)qc3 .

For a fixed c2 ∈ Z, denote by MH
S (r, c1, c2) the moduli space of µ-stable pure sheaves on S

of rank r, first Chern class c1 and second Chern class c2. In the case r = 0, Gieseker and

µ-stability coincide. For a fixed c3 ∈ Z, denote by Mπ∗H
X (0, ι∗r, ι∗c1, c3) the moduli space

of µ-stable pure sheaves on X of rank 0, first Chern class ι∗r, second Chern class ι∗c1,

third Chern class c3 and with proper support. Recall that the notion of µ-stability for

coherent sheaves in general is defined in [HL, Def.–Cor. 1.6.9] using quotient categories.

The notion of pure is as usual (Definition 1.1.2 and [HL, Def. 1.1.2]). Before we proceed,

we need the following propositions about these moduli spaces.

Proposition 2.5.3. Let S be a nonsingular projective surface. Let r ∈ Z>0, c1 ∈

H2(S,Z), c2 ∈ Z. Let H an ample divisor on S such that −KS · H > 0. Then

MH
S (r, c1, c2) is a nonsingular quasi-projective variety of dimension (1 − r)c21 + 2rc2 −

r2χ(OS) + 1 unless it is empty17.

16Generalised Donaldson–Thomas invariants and BPS invariants are also defined for µ-stability con-
ditions [JS, Sect. 5, 6].

17In this proposition and the next one, varieties are allowed to be reducible. We do not address the
question of irreducibility.
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Proof. This proposition is proved for S = Fa (a ∈ Z≥0) and r = 2 in [Nak, Prop. 1.2].

We proceed similarly. Let [E ] ∈ MH
S (r, c1, c2) be a closed point. It is sufficient to

prove Ext2(E , E) = 0, in which case MH
S (r, c1, c2) is nonsingular at [E ] of dimension

(1− r)c21 + 2rc2 − r2χ(OS) + 1 by [Mar, Prop. 6.9], [HL, Cor. 4.5.2]. By Serre Duality, it

is sufficient to show Hom(E , E ⊗ ωS) = 0, where ωS is the canonical bundle of S. As E

is µ-stable torsion free, it is easy to see that E ⊗ωS is a µ-stable torsion free sheaf on S.

Using the Hirzebruch–Riemann–Roch Theorem [Har1, Thm. A.4.1], we see the Hilbert

polynomials of E , E ⊗ ωS are related by

PE⊗ωS
(t) = PE(t) + (KS ·H)rt+

r

2
K2
S +KS ·

(

c1 +
r

2
c1(TS)

)

,

where TS is the tangent bundle of S and KS denotes the canonical divisor of S. Conse-

quently, µE > µE⊗ωS
and the result follows from [HL, Prop. 1.2.7].

Proposition 2.5.4. Let S = P2 and H an ample divisor on S. Let18 r = 0, c1 ∈ Z>0

and c2 ∈ Z. Then MH
S (r, c1, c2) is a nonsingular quasi-projective variety of dimension

c21 + 1.

Proof. This proposition is proved in [Pot, Prop. 2.3]. We show the proof except for the

computation of the dimension. Let [E ] ∈ MH
S (r, c1, c2) be a closed point. Proceeding as

in the proof of the previous proposition, we see it is sufficient to prove Ext2(E , E) = 0,

in which case MH
S (r, c1, c2) is nonsingular at [E ]. Using Serre Duality, it is sufficient to

show Hom(E , E ⊗ ωS) = 0. For an arbitrary coherent sheaf G of dimension 1 on X,

which consequently satisfies c1(G) ·H > 0, an explicit computation as in the proof of the

previous proposition shows

µG⊗ωS
= µG +

c1(G) ·KS

c1(G) ·H
.

Now let H be α ∈ Z>0 times the class of a hyperplane section. Then µG⊗ωS
= µG − 3c1

α
.

18Here we use the usual isomorphisms H0(S, Z) ∼= Z, H2(S, Z) ∼= Z, H4(S, Z) ∼= Z described in section
2.4.
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From this it is easy to deduce that E⊗ωS is µ-stable with µE > µE⊗ωS
. The result follows

from [HL, Prop. 1.2.7].

Proposition 2.5.5. Let S be a nonsingular projective surface, H an ample divisor on

S, r ∈ Z≥0, c1 ∈ H2(S,Z) and c2 = k ∈ Z. Assume ω∨
S is generated by global sections

and for all closed points [E ] ∈ MH
S (r, c1, k) one has Ext2(E , E) = 0. Then the canonical

regular action σ : C∗ × KS −→ KS on the fibres, lifts to a regular action of C∗ on

Mπ∗H
X (0, ι∗r, ι∗c1, k) and there is an isomorphism of C-schemes

Mπ∗H
X (0, ι∗r, ι∗c1, k)

C∗ ∼= MH
S (r, c1, k).

Moreover, Mπ∗H
X (0, ι∗r, ι∗c1, k)

C∗

is both open and closed in Mπ∗H
X (0, ι∗r, ι∗c1, k).

Proof. We will use the Grothendieck spectral sequence repeatedly in this proof. For any

two coherent sheaves A, B on S, we apply it as follows ([Wbl, Sect. 5.8])

Epq
2 = HpRHom(Lqι

∗ι∗A,B) ⇒ Hp+qRHom(Lι∗ι∗A,B). (2.14)

Here Lqι
∗ι∗A is only nonzero for q = 0, 1, in which case L0ι

∗ι∗A ∼= B and L1ι
∗ι∗A ∼= A⊗

N ∨
S/X [KM, Lem. 1.3.1]. The Calabi–Yau property ωX ∼= OX implies L1ι

∗ι∗A ∼= A⊗ ω∨
S

[Har1, Prop. II.8.20]. We obtain an exact sequence

0 −→ Ext1(A,B)
ι∗−→ Ext1(ι∗A, ι∗B) −→ Hom(A,B ⊗ ωS) −→ · · · ,

where we denote the map Ext1(ι∗A, ι∗B) −→ Hom(A,B ⊗ ωS) by α.

Define abbreviations M = MH
S (r, c1, k) and N = Mπ∗H

X (0, ι∗r, ι∗c1, k) for the moduli

spaces and M = MH
S (r, c1, k) and N = Mπ∗H

X (0, ι∗r, ι∗c1, k) for the moduli functors. We

start by constructing a natural transformation ι∗ on the level of moduli functors

ι∗ : M ⇒ N,

ι∗,B : M(B) −→ N(B), [F ] 7→ [(ι× 1B)∗F ].
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It is easy to verify this is a well-defined natural transformation. Here we use that ι and π

are affine morphisms. Consequently, we have an induced morphism ι∗ : M −→ N , which

on the level of closed points is just push-forward along ι. Now consider the C∗-fixed

point locus, which is a closed subscheme j : NC∗

→֒ N (compare to Proposition 1.3.1).

We claim ι∗ factors as an isomorphism through the fixed point locus. We want to apply

Proposition 1.3.7, i.e. prove that for any local artinian C-algebra with residue field C,

the map ι∗ ◦ − factors bijectively

Hom(A,M)

∼= ((QQQQQQ

ι∗◦− // Hom(A,N)

Hom(A,NC).
?�

j◦−

O

We proceed similarly as in the proof of Theorem 1.3.9, i.e. by induction on the length l

of local artinian C-algebras with residue field C.

Suppose l = 1, then A ∼= C. Since t ◦ ι = ι for all closed points t ∈ C∗, it is clear

that ι∗ ◦ − maps closed points into the fixed point locus. Clearly, ι∗ ◦ − is injective on

closed points since π ◦ ι = idS. We now prove ι∗ ◦ − is surjective on closed points. We

will prove that any simple sheaf E 6= 0 on X with support contained in the zero section

is isomorphic to ι∗F for some coherent sheaf F on S. This suffices since any closed point

[E ] ∈ NC∗

has these properties. Using a trivialisation Uα = Spec Aα of the canonical

bundle, the inclusion ι : Uα →֒ Uα × A1 looks like ι# = ev0 : Aα[x] −→ Aα, where x

corresponds to the coordinate on the fibre. The coherent sheaf E|Uα corresponds to a

finitely generated Aα[x]-module Eα and since the support of E lies in the zero section,

we can form a filtration of Eα

0 ⊂ ker x ⊂ ker x2 ⊂ · · · ⊂ ker xNα = Eα,

for some Nα ∈ Z≥1. We can glue these to a filtration of E

0 = E0 ( E1 ⊂ · · · ⊂ EN = E ,

168



for some N ∈ Z≥1. By throwing out terms, we can assume all inclusions are strict. It

suffices to prove N = 1. Clearly, Ei/Ei−1
∼= ι∗Fi for some coherent sheaf Fi on S for all

i = 1, . . . , N . For any i = 2, . . . , N , consider the extension

0 −→ ι∗Fi−1 −→ Ei/Ei−2 −→ ι∗Fi −→ 0,

which we denote by ǫi. Using the Grothendieck spectral sequence (2.14), we get a

morphism α(ǫi) : Fi −→ Fi−1 ⊗ ωS. We claim α(ǫi) is injective. This can be seen as

follows. Note that the kernel ker α(ǫi) is part of a short exact sequence

0 −→ ι∗Fi−1 −→ Gi/Ei−2 −→ ι∗ker α(ǫi) −→ 0,

for some coherent sheaf Gi containing Ei−1. By construction, this extension maps to

zero under α. Hence we deduce from the Grothendieck spectral sequence (2.14) that

Gi/Ei−2
∼= ι∗Hi for some coherent sheaf Hi on S. From the definition of the Ei, we

deduce ι∗Fi−1
∼= Gi/Ei−2, so ker α(ǫi) = 0. We get morphisms

E ։ ι∗FN →֒ ι∗(FN−1 ⊗ ωS) →֒ · · · →֒ ι∗(F1 ⊗ ωN−1
S )

s
−→ ι∗F1 →֒ E ,

where we take s ∈ Γ(S, ω
−(N−1)
S ) some global section. Here the first morphism is sur-

jective and all other morphisms are injective except the one induced by s. Using the

fact that ω
−(N−1)
S is generated by global sections and choosing the right section s, this

composition E −→ E is non-zero. But since E is simple, this can only be the case when

N = 1.

Now assume we have proved the induction hypothesis for all local artinian C-algebras

with residue field C and length 1, . . . , l. Let A′ be a local artinian C-algebra with residue

field C and length l + 1. Then A′ fits in a small extension 0 −→ J −→ A′ σ
−→ A −→ 0,

where A is a local artinian C-algebra with residue field C and length ≤ l. Using [Fog,

Thm. 2.3], one can show that the image of Hom(A′, NC∗

) in Hom(A′, N) is Hom(A′, N)C∗
cl ,
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where cl means closed points. We drop the subscript cl from now on. It is sufficient to

prove M(A′) −→ N(A′) maps bijectively onto N(A′)C∗

(compare to Proposition 1.3.8).

Recall the notation for deformation functors in the proof of Theorem 1.3.9. We rewrite

the sets M(A′), N(A′) in terms of deformation functors

M(A′) =
∐

[F ]∈M(A)

DF⊗CA(σ)−1([F ]),

N(A′) =
∐

[F ]∈N(A)

DF⊗CA(σ)−1([F ]).

By the induction hypothesis, we know M(A) −→ N(A) maps bijectively onto N(A)C∗

.

Let F ∈ M(A), we have to prove that DF⊗CA(σ)−1([F ]) is non-empty if and only if

Dι∗(F⊗CA)(σ)−1([(ι×1A)∗(F)]) is non-empty and if this is the case DF⊗CA(σ)−1([F ]) maps

canonically bijectively onto Dι∗(F⊗CA)(σ)−1([(ι×1A)∗(F)])C∗

. Consider the commutative

diagram

DF⊗AC(A)
o(σ) //

(ι×1A)∗
��

Ext2(F ⊗A C,F ⊗A C) ⊗C J

ι∗
��

Dι∗(F⊗AC)(A)
o(σ)

// Ext2(ι∗(F ⊗A C), ι∗(F ⊗A C)) ⊗C J.

Here we recall ι∗ is exact, because ι is affine. By assumption, Ext2(F⊗AC,F⊗AC) = 0,

so F and (ι × 1A)∗F are automatically unobstructed. Therefore, DF⊗CA(σ)−1([F ]) and

Dι∗(F⊗CA)(σ)−1([(ι×1A)∗(F)]) are automatically non-empty. The former is an Ext1(F⊗C

A,F ⊗C A)⊗C J-torsor and the latter is a Ext1(ι∗(F ⊗C A), ι∗(F ⊗C A))⊗C J-torsor. It

suffices to construct a canonical isomorphism

Ext1(F ⊗C A,F ⊗C A) ∼= Ext1(ι∗(F ⊗C A), ι∗(F ⊗C A))C∗

.

In fact, for any closed point [E ] ∈MH
S (r, c1, k), the Grothendieck spectral sequence (2.14)

yields an exact sequence

0 −→ Ext1(E , E)
ι∗−→ Ext1(ι∗E , ι∗E) −→ Hom(E , E ⊗ ωS) −→ · · · .
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Serre Duality and the assumption Ext2(E , E) = 0 implies Ext1(E , E) ∼= Ext1(ι∗E , ι∗E)C∗

=

Ext1(ι∗E , ι∗E). As a by-product, we get Ext1(ι∗E , ι∗E) = Ext1(ι∗E , ι∗E)C∗

, since Ext1(E , E)

maps into Ext1(ι∗E , ι∗E)C∗

. This implies NC∗

is not only closed, but also open in N .

Proposition 2.5.6. Let S be a nonsingular projective surface satisfying one of the fol-

lowing two conditions:

(i) Assume ω∨
S is generated by global sections. Let H be an ample divisor on S such

that −KS ·H > 0. Let r ∈ Z>0, c1 ∈ H2(S,Z), c2 = k ∈ Z. Assume (r, c1 ·H) = 1,

so there are no strictly µ-semistable torsion free sheaves on S with rank r, first

Chern class c1 and second Chern class c2.

(ii) Let S = P2 and H an ample divisor on S. Let19 r = 0, c1 ∈ Z>0 and c2 = k ∈ Z.

Then the Hilbert polynomial is (c1 ·H)t + χ, where χ = 1
2
c1(c1 + 3) − c2. Assume

(c1, χ) = 1, so there are no strictly µ-semistable pure sheaves on S with rank r,

first Chern class c1 and second Chern class c2.

Let π : X = KS −→ S be the canonical bundle. Then π∗H is an ample divisor on X and

there are no strictly µ-semistable sheaves on X w.r.t. π∗H with proper support, rank 0,

first Chern class ι∗r, second Chern class ι∗c1 and third Chern class k. Furthermore,

D̂T
(0,ι∗r,ι∗c1,k)

(µπ∗H) = DT (0,ι∗r,ι∗c1,k)(µπ∗H) = (−1)rc1+c1+rχ(OS)+1e(MH
S (r, c1, k)).

Proof. Using the Hirzebruch–Riemann–Roch Theorem [Har1, Thm. A.4.1], it is easy to

see that for numerical reasons there cannot be any strictly µ-semistable pure sheaves on

S with the required topological invariants. If E is a coherent sheaf on X with proper

support, then π∗E is a coherent sheaf on S and PE(t) = Pπ∗E(t) since π is affine and by

the Projection Formula. Using π∗◦ι∗ = (π◦ι)∗ = 1 on singular homology, it is easy to see

that again for numerical reasons there cannot be any strictly µ-semistable pure sheaves

on X with the required topological invariants. Consequently, BPS invariants reduce to

19Here we use the usual isomorphisms H0(S, Z) ∼= Z, H2(S, Z) ∼= Z, H4(S, Z) ∼= Z described in section
2.4.
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Donaldson–Thomas invariants (see subsection 2.5.1, property (i) and [JS, Prop. 6.11]).

Since M = MH
S (r, c1, c2) is a nonsingular projective variety of dimension (1−r)c21+2rc2−

r2χ(OS)+1 (or empty) by Propositions 2.5.3, 2.5.4, its Behrend function is given by νM =

(−1)rc1+c1+rχ(OS)+1 (see subsection 2.5.1, property (i)). Denote N = Mπ∗H
X (0, ι∗r, ι∗c1, k),

then the regular action of C∗ on the fibres of X lifts to a regular action of C∗ on N and

NC∗ ∼= M by Proposition 2.5.5. Since the Behrend function νN is C∗-invariant, we have

D̂T
(0,ι∗r,ι∗c1,k)

(µπ∗H) = DT (0,ι∗r,ι∗c1,k)(µπ∗H) =

∫

N

νNde =

∫

NC∗

νN |NC∗de.

In our case, NC∗

is both open and closed in N by Proposition 2.5.5, so νN |NC∗ = νNC∗ ,

which concludes the proof.

Note that the above proposition gives the following expressions for the generating func-

tions in case (i) resp. case (ii)

∑

c3∈Z

D̂T
(0,ι∗r,ι∗c1,c3)

(µπ∗H)qc3 =
∑

c3∈Z

DT (0,ι∗r,ι∗c1,c3)(µπ∗H)qc3

= (−1)rc1+c1+rχ(OS)+1
∑

c2∈Z

e(MH
S (r, c1, c2))q

c2 ,

∑

c3 ∈ Z

(c1,
1
2
c1(c1 + 3) − c3) = 1

D̂T
(0,0,ι∗c1,c3)

(µπ∗H)qc3 =
∑

c3 ∈ Z

(c1,
1
2
c1(c1 + 3) − c3) = 1

DT (0,0,ι∗c1,c3)(µπ∗H)qc3

= (−1)c1+1
∑

c2 ∈ Z

(c1,
1
2
c1(c1 + 3) − c2) = 1

e(MH
S (0, c1, c2))q

c2 .

Let S be the projective plane P2, P1 × P1 or one of the Hirzebruch surfaces Fa

(a ∈ Z≥1). For P2, take H any ample divisor, (r, c1) = (1, c1) for any c1 ∈ Z, or

(r, c1) = (2, 1), or (r, c1) = (3,±1). This data satisfies the conditions20 of Proposition

2.5.6(i). Consequently, we obtain generating functions for Donaldson–Thomas invariants

of X = KS (Corollaries 2.3.1, 2.3.2, 2.3.9, subsection 2.3.3). These generating functions

20Strictly speaking, in Proposition 2.5.6(i) we need (r, c1D · H) = 1, where D is the class of any
projective line in P2. However for S = P2, Proposition 2.5.6(i) clearly also holds for (r, c1) = 1.
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do not depend on choice of ample divisor H on P2. Using [Ful, Sect. 3.4], Fa (a ∈ Z≥0)

has anticanonical bundle generated by global sections if and only if a = 0, 1, 2 (which

are exactly the cases where the anticanonical divisor is nef). For Fa (a = 0, 1, 2), take

H an ample divisor, (r, c1) = (1, c1) for any c1 ∈ H2(S,Z), or (r, c1) = (2, c1) for any

c1 ∈ H2(S,Z) such that (2, c1 ·H) = 1. Recall that a divisor H = αD1 + βD2 (α, β ∈ Z)

is ample if and only if α > aβ and β > 0 (see 2.3.2.2). Also, for an arbitrary first Chern

class c1 = f3D3 + f4D4 (f3, f4 ∈ Z), the condition (2, c1 ·H) = 1 reads (2, βf3 +αf4) = 1

(see 2.3.2.2). This data satisfies the conditions of Proposition 2.5.6(i). Hence, we obtain

generating functions for Donaldson–Thomas invariants of X = KS and see the explicit

dependence on ample divisor π∗H (Corollaries 2.3.1, 2.3.3, 2.3.4, 2.3.5). Finally, we take

r = 0, S = P2 and c1 = 1, 2, 3 ∈ Z>0. From Proposition 2.5.6(ii) and Theorem 2.4.1, we

obtain

∑

c3∈Z

DT (0,0,ι∗1,c3)(µπ∗H)qc3 =
∑

k∈Z

3qk,

∑

c3∈Z, c3≡0 mod 2

DT (0,0,ι∗2,c3)(µπ∗H)qc3 =
∑

k∈Z

−6q2k,

∑

c3∈Z, c3≡±1 mod 3

DT (0,0,ι∗3,c3)(µπ∗H)qc3 =
∑

k∈Z

27q3k−1 +
∑

k∈Z

27q3k+1.

Katz’ Conjecture (Conjecture 2.5.2) implies these can be seen as generating functions of

genus zero Gopakumar–Vafa invariants of X = KP2

∑

c3 ∈ Z

(c1,
1
2
c1(c1 + 3) − c3) = 1

D̂T
(0,0,ι∗c1,c3)

(µπ∗H)qc3 =
∑

c3 ∈ Z

(c1,
1
2
c1(c1 + 3) − c3) = 1

DT (0,0,ι∗c1,c3)(µπ∗H)qc3 = GV0(ι∗c1)
∑

k∈Z

qk.

Here ι∗c1 in the last generating function actually means its Poincaré dual. Note that

the fact that 27 appears twice in the c1 = 3 case supports part of Katz’ Conjecture as

formulated by Joyce–Song in this example (Conjecture 2.5.2). In the c1 = 3 case, it

is interesting to see how the various fixed points of the moduli space of µ-stable pure
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dimension 1 sheaves on P2 have different types of characteristic functions depending on

c2 ≡ ±1 mod 3. For example, the case c2 ≡ −1 mod 3 has fixed points with a charac-

teristic function with a 2 appearing, whereas the case c2 ≡ 1 mod 3 has no fixed points

with such a characteristic function (see proof of Theorem 2.4.1). Nevertheless, both cases

give rise to 27. In this very specific setting, i.e. X = P2, r = 0, c1 = 3, Le Potier has

proved that the moduli spaces MH
X (0, 3, c2) are isomorphic for all c2 ≡ ±1 mod 3 [Pot,

Thm. 5.1]. This has been pointed out by Jinwon Choi (private communication). He also

pointed out that the numbers 3, −6, 27 are compatible with a list of Gopakumar–Vafa

invariants GVg(ι∗c1) of KP2 for g = 0, . . . , 5, c1 = 1, . . . , 10 appearing in a string theory

paper by Katz, Klemm and Vafa [KKV] (see table 2.1). Jinwon Choi has communicated

to the author that in the case of Hilbert polynomial P = 4t + 1 (which satisfies the

conditions of Proposition 2.5.6(ii)), he uses the methods of chapter 1 (i.e. [Koo1]) to ob-

tain e(MH
X (0, 4, c2)) = 192, which is the next number appearing in the list of [KKV] (see

table 2.1). Unfortunately, these type of computations involve increasingly complicated

combinatorics for increasing c1.
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GVg(ι∗c1) g = 0 1 2 3 4 5

c1 = 1 3 0 0 0 0 0
2 −6 0 0 0 0 0
3 27 −10 0 0 0 0
4 −192 231 −102 15 0 0
5 1695 −4452 5430 −3672 1386 −270
6 −17064 80948 −194022 290853 −290400 196857
7 188454 −1438086 5784837 −15363990 29056614 −40492272
8 −2228160 25301295 −155322234 649358826 −2003386626 4741754985
9 27748899 −443384578 3894455457 −23769907110 109496290149 −396521732268
10 −360012150 7760515332 −93050366010 786400843911 −5094944994204 26383404443193

Table 2.1: List of Gopakumar–Vafa invariants of KP2 from [KKV].
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