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The sea of knowledge knows no bounds,
No shore’s in sight even if the sailor turns around.
Anonymous.
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To pursue the unlimited with the limited,
Is it not perilous?

Master Chong, Carving up an Oz.
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Remember not the gains and losses,
Nor the love and hatred.
Remember only the good old days,
Once we’re acquaintances.

Jim Wong, The Giant.
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Looking back at where the winds and rains began,
—I'll go home —
Now there’s no more wind, rain, nor sunshine therein.

So Sik, Calming the Winds and Waves.
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Abstract

This thesis studies derived equivalences between total spaces of vector bundles and dg-quivers.

A dg-quiver is a graded quiver whose path algebra is a dg-algebra. A quiver with superpotential is
a dg-quiver whose differential is determined by a “function” ®. It is known that the bounded derived
category of representations of quivers with superpotential with finite dimensional cohomology is a Calabi—
Yau triangulated category. Hence quivers with superpotential can be viewed as noncommutative Calabi—
Yau manifolds.

One might then ask if there are derived equivalences between Calabi—Yau manifolds and quivers with
superpotential. In this thesis, we answer this question and, generalizing Bridgeland [15], give a recipe
on how to construct such derived equivalences.

Let 7 : V — X be an anti-semiample vector bundle over a smooth projective variety X, i.e., S¥VV is
globally generated for k > 0. Given a full exceptional sequence £ on D?(Coh (X)), under some cohomo-
logical vanishing conditions, we construct a dg-quiver Q¢ in terms of the dual exceptional sequence of £
such that D?(Coh (V)) = D’} ,(Rep(Q¢)). Moreover, this equivalence restricts to an equivalence between
D%, (Coh (V)), the full subcategory containing complexes of compact support, and Dlj’cd(Rep(Qg)), the
full subcategory containing complexes with finite dimensional cohomology. If V' is non-compact Calabi—
Yau, we show that Q¢ is equipped with a superpotential ®, i.e., the differential on Q¢ is determined
by the “function” ®. In this case, the triangulated categories D% (Coh (V')) and Dl}d(Rep(Qg)) are both
Calabi-Yau.

We can also construct derived equivalences equivariantly. Suppose a finite group G acts on X and
this action lifts to V, endowing 7 : V' — X the structure of an equivariant vector bundle. Suppose
further that each object in the exceptional sequence £ is equipped with a G-linearization. Then we can
construct a quotient dg-quiver Q¢ /G from Qg¢, generalizing the construction of the McKay quiver, such
that D?(Coh ¢(V)) = D’(Rep;,(Qe/G)). If V is non-compact Calabi-Yau equivariantly, then Qg /G is
also equipped with a superpotential.

We also give a product construction for derived equivalences. Suppose we have vector bundles 7y :
V — X and my : W — Y, with full exceptional sequences & on D’(Coh (V)) (resp. F on D?(Coh (W))),
then we can construct a product dg-quiver Qg X Q# such that D?(Coh (V x W)) = D*(Rep , (Qs X QF)).
If both V' and W are Calabi—Yau, then Q¢ X Qr is also equipped with a superpotential.

Using these constructions, we can produce a lot of beautiful pictures of quivers with superpotential
derived equivalent to the total spaces of vector bundles which are Calabi-Yau. Examples include T},
KIP’"7 and O]p&(-l) @ Op2(—2) etc.

Finally, we try to connect quivers with superpotential to the recent work by Pantev, Toén, Vaquié
and Vezzosi [58] and Ben-Bassat, Brav, Bussi and Joyce [4] on shifted symplectic structures. We outline
a strategy of proof for the existence of shifted symplectic structures in a standard ‘Darboux form’ on the
derived moduli stack of representations of quivers with superpotential.

11



Acknowledgements

It has been a long journey since I decided to get a D.Phil. Throughout all these years, I have received
a lot of help and encouragements from a lot of people. I shall be forever grateful and indebted to them.

First and foremost, I would like to express my most sincere gratitude to Prof. Dominic Joyce for the
excellent guidance he has provided in the last three years. Without his profound mathematical insights
and valuable comments, this project would not have been started, let alone completed. He has given me
all the freedom I want, and every time I seek advices from him, he is always there and willing to help. 1
must also thank him for his patience, as, judging from the amount of problems that I have, I must have
been a black sheep in his group and must have given him a lot of troubles.

T would also like to thank Prof. T. Bridgeland for pointing out, and explaining his paper [15] to me,
which was the starting point of constructing derived equivalences in this thesis. I hope Prof. Bridgeland
would find this thesis satisfactory.

Dr. L. Amorim has taught me a lot on A..-algebras, for which I am most grateful. His timely
construction of cyclic A.-tensor products and construction of A..-tensor products via dg-algebras are
crucial to the product construction of derived equivalences in this thesis. Without his help, I would not
have finished this project.

I must also give my heartfelt thanks to Prof. N. Mok from the University of Hong Kong, who has been
a role model in my academic life, for teaching me a lot on geometry, and for supporting my application
for the Croucher Scholarship. He has always been very encouraging and I have certainly learnt a lot from
him. T also wish to thank him for inviting me to visit the University of Hong Kong in 2014 summer.

My special thanks also go to Prof. H.F. Chau from the University of Hong Kong, who has enlightened
me during my undergraduate studies, and has taught me to long for the endless immensity of the sea of
knowledge. Without his teaching and encouragements, I would not have embarked on the journey to a
D.Phil. T must also thank him for supporting my application for the Croucher Scholarship.

My time in Oxford has been financially supported by the Croucher Foundation, which has been very
kind and generous. Without their help, I would not have started, let alone finished my D.Phil. I shall
be forever grateful.

On a more personal side, I would like to thank Dr. Rachel Lui, who has spent a lot of time with me
when we were both in Europe, and has always taken good care of me like a little brother. She has given
me a lot of suggestions and advices in life, and a lot of “bailout” plans should I ever failed to finish my
D.Phil, although, like an annoying little brother, I have almost never listened to her.

May I also take this opportunity to thank all my friends, for all the good and bad times we have
spent together, and for ensuring that I never drifted out too far to lose sight of the shores of sanity.
I would particularly like to thank Ronald Lau, who has treated me with a lot of food; Mieke Liu for
spending time doing literally nothing with me, and letting me know that I am not alone being useless
in this world; Di Shen for providing me with food on nearly daily basis; Shermin Goh for all the cakes
that she has baked; Stein Belderock for his guitar and all the intellectual conversations; the three Magi
in Europe for all the men’s talk; Ping Hei Lam, Sam Yue, Vincent So, and the Tingsss in Hong Kong
for keeping in touch and their long distance emotional support; and Fai Li for being my undergraduate
study buddy. I also wish to thank Mr. Chi-Ming Or, my secondary school math teacher, who has given
me a lot of encouragements. I hope he would be proud to see this thesis done.

The writing up period of this thesis saw Hong Kong experienced its most significant political protest

ever — the Umbrella Revolution. I wish to thank all my fellow Hong Kongers who are fighting for freedom
and democracy at this very moment. Without them, I would have lost my beloved home. I am ashamed

v



ACKNOWLEDGEMENTS Vv

of myself not being physically there and can only act as a “keyboard warrior”. I hope everyone stays
safe and takes good care of themselves.

Lastly, but most importantly, I would like to give my heartfelt thanks to my parents for their love and
unconditional support throughout my life. They have provided me an excellent and carefree environment
to grow up, as well as all the freedom I need to pursue whatever I want in life. I must also thank them
for their tolerance and understanding, for in the last twenty-something years, which I am sure, I have not
been very productive, and have not given much back to the family. I promise to be a more responsible
son in the years to come.

May I end this note by quoting a dialogue from the Ashes of Time, one of my favourite movies,
directed by Wong Kar-Wai:

“What’s beyond this desert?”
“Just another desert.”



Contents

Introduction

1

Noncommutative Geometry
1.1 Quivers and Representations . . . . . . . . . ...
1.2 Noncommutative Calculus . . . . . . .. ... ..

Triangulated Categories

2.1 Triangulated Categories . . . . . . . . . . . L e
2.2 Derived Categories . . . . . . . . . oL e e
2.3 t-structures . . . . . . ..
2.4 Serre Functors . . . . . . . . e e
2.5 Compact Generators . . . . . . . . . . ... e
2.6 Admissible Subcategories . . . .. .. L. L
2.7 DMutation Functors . . . . . . . . . .
2.8 Exceptional Sequences . . . . . . . . ...
2.9 Tilting Objects . . . . . . . o e
A.-Algebras

3.1 A, -Algebras and Ao-Modules . . . . . . . .. ...
3.2 Minimal Model . . . . . . . . e
3.3 Cyclic Structure . . . . . . oL e e e
3.4 Koszul Functor . . . . . . . . ..
3.5 Quotient and Smash Product . . . . . . . . .. .o
3.6 Tensor Product . . . . . . . . . .
Quivers with Superpotential

4.1 Quivers with Superpotential . . . . . . . . . .. ...
4.2 Characterisation of Quivers with Superpotential . . . . . . . .. ... ... ... ......
4.3 Quivers with Superpotential are n-Calabi—Yau . . . .. ... ... ... ... .......
4.4 Quivers with Superpotential of Low Dimensions . . . . . . . . . . ... . ... .......

Derived Equivalences between Vector Bundles and DG-Quivers
5.1 Equivariant Sheaves . . . . . . . . . . . .. e

5.2 Tilting Objects on Equivariant Vector Bundles . . . . . . . ... ... ... ... .....
5.3 Quasi-free Resolution of Tilting Algebra . . . . . . . . ... ... ... ... .. ...
54 Computing Exty (S,8) . . ... ...
5.5 Superpotential . . . ..o
5.6 Quotient Construction . . . . . . . . . . . . e
5.7 Product Construction . . . . . . . . . . . .

VI

12
12
14
16
17
19
19
20
20
22

24
25
28
29
29
33
38



CONTENTS VII

6 Examples 74
6.1 Classical Tilting Quivers . . . . . . . . . . . e 74
6.2 Koszul Algebras . . . . . . . L 79
6.3 DG-Tilting Quivers . . . . . . . . . e 81
6.4 Product Construction . . . . . . . . . .. L 93
6.5 Quotient Construction . . . . . . . . . .. L 99

7 Shifted Symplectic Structures on Moduli Spaces 114
7.1 Derived Schemes . . . . . . . . 114
7.2 Lie Algebra Cohomology . . . . . . . . . . . . . . 115
7.3 G-invariant de Rham Complex . . . . . . . . . . . ... .. 118
7.4 Moduli Spaces of Representations of Quivers with Superpotential . . . . . .. .. ... .. 128

8 Future Directions 133

A Some Cohomological Formulae 135
A.1 Cohomologies of Tangent and Cotangent Sheaf of P™ . . . . . . .. ... ... ... .... 135

A.2 Cohomologies of Tangent and Cotangent Sheaf of P2 . . . . . . .. ... ... ....... 138



Introduction

In Calabi-Yau geometry, one important object is the category of coherent sheaves. Coherent sheaves
on m-Calabi—Yau manifolds enjoy a special form of Serre duality: for any coherent sheaves E and F,
Ext'(E, F) = Ext™ (F,E)V. This property is writtenly solely in terms of the Ext groups and hence
can be axiomatised to a definition of Calabi—Yau abelian categories. As algebraic geometry progresses,
we soon know that it is more flexible to work in the derived category of coherent sheaves (which is a
triangulated category) rather than the abelian category. Kontsevich [46] later modified the definition of
Calabi—Yau abelian categories to give a notion of Calabi—Yau triangulated categories.

The earliest examples of Calabi—Yau categories other than coherent sheaves on Calabi—Yau manifolds
were probably given by physicists Berenstein and Douglas [5], Braun [12], Douglas and Moore [23] and
later by mathematicians Ginzburg [27] and Derksen, Weyman and Zelevinsky [22] as representations of
some quivers with relations coming from the derivatives of a linear sum of closed paths (the superpoten-
tial). One problem of this definition of quivers with superpotential, however, is that they do not always
produce Calabi-Yau categories. This problem was later solved by Ginzburg [27], Keller [41] and van
den Bergh [71] (see also van den Bergh [70]) by adding derived structures, i.e., considering dg-quivers
(graded quivers whose path algebra is endowed with the structure of dg-algebras) rather than quivers
with relations. This new definition of quivers with superpotential as dg-quivers always produces Calabi—
Yau categories and yields the old definition of quivers with superpotential as quivers with relations when
taking the zeroth cohomology of the dg-quiver.

As is well known, using the notion of exceptional sequences, one can construct derived equivalences
between varieties and quivers with relations. One then ask if there are derived equivalences between
Calabi—Yau varieties and quivers with superpotential. This thesis is a study on how to construct such
derived equivalences. There are three major difficulties. To start off, compact Calabi—Yau manifolds
do not have any exceptional sequences due to Serre duality and therefore, one cannot directly employ
exceptional sequences to construct such derived equivalences. Bridgeland [15] found a slick way of getting
around this problem by considering noncompact examples, namely, the total space of vector bundles,
and pulling back exceptional sequences on the base manifolds to produce derived equivalences between
the total spaces of vector bundles with quivers with relations. This is essentially Corollary 5.2.9.

The second difficulty is to resolve quivers with relations by dg-quivers. This is done by using A..-
Koszul duality. Any dg-quiver can be characterized as the Koszul dual of an augmented Agy-category
(Aso-category with m,, = 0 for n > 0). This construction sends an Ag,-category A to the quiver
constructed by taking the vertices to be Obj(A) and degree i edges between vertices u and v to be a
basis of A1=%(u,v)V, where A denotes the kernel of the augmentation map. The path algebra of the quiver
is then given by the Koszul dual dg-algebra E(A), with differential given by d = @ m,/. In Theorem
5.4.5, we produce an Ag,-category in terms of dual exceptional sequence and show that its Koszul dual
is the desired dg-quiver. Readers familiar with the theory of A,,-algebras would perhaps find it awkward
to work with Agy,-categories as the property of being Ag, is not invariant under homotopy perturbation.
Indeed, much of the trouble here is to show that we always end up with an Ag,-category rather than
just an A,.-category. This is done by considering an additional grading on the A..-category known as
the Adams grading.

The last difficulty is to show that the dg-quiver built this way is a quiver with superpotential. We use
the characterization that quivers with superpotential are precisely the Koszul dual of positively graded
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augmented Ag,-categories with cyclic structure. We then show the existence of a cyclic structure on our
Agn-category by using a result of van den Bergh [70] characterizing a class of algebras known as exact
Calabi—Yau algebras. This is Proposition 5.5.2.

This yields the following theorem, which is the basis of this thesis and is essentially a generalization
of Bridgeland [15, Proposition 4.1].

Theorem A (Theorem 5.4.5 and Proposition 5.5.2). Let X be a smooth projective variety andw : V — X
be an anti-semiample vector bundle, i.e., S¥V'V is globally generated for k> 0. Let & = (Ey,. .., E,) be
an exceptional sequence on D®(Coh (X)). Suppose the vanishing condition

Hom‘(E;, E; ® S*VV) =0

is satisfied for all i,j,k and all £ > 1. Denote by F = (F,,...,Fy) the dual exceptional sequence to E.
Then there is an Agn-category Ag where Obj (Ag) = F and

A% (F;, Fy) = @D Hom " (F;, Fj @ AFV)
k>0

such that E(Ag) is cohomologically Noetherian and D®(Coh (V)) = Dl}g(E(Ag)Op). Moreover, this equiv-

alence restricts to a derived equivalence D%, (Coh (V)) = Dsjcd(E(Ag)Op). Furthermore, if V is noncompact
Calabi-Yau, Ag has a cyclic structure.

Here, by cohomologically Noetherian, we mean that the algebra H®(FE(A)°P) is Noetherian. The de-
rived category Dl} 4(E(Ag)°P) denotes the full triangulated subcategory of DY(E(Ag)°P) consisting of com-
plexes whose cohomologies are finitely generated over H®(E(Ag)P); the derived category Dl} J(E(Ag)°P)
denotes the full triangulated subcategory of D?(FE(Ag)°P) consisting of complexes whose cohomologies are
finite dimensional; and D%, (Coh (V')) denotes the full triangulated subcategory of D®(Coh (V)) consisting
of complexes whose cohomologies are compactly supported.

In other words, we can produce a dg-quiver derived equivalent to the total space of the vector bundle,
and in the case when the total space of the vector bundle is Calabi—Yau, the dg-quiver is equipped with a
superpotential. The underlying graded quiver can be described explicitly in terms of the dual exceptional
sequence and the vector bundle, although the differential (or the superpotential in the Calabi—Yau case)
is not readily known. However, in the Calabi—Yau examples of dimension no greater than 4, knowing
the classical quiver with relations derived equivalent to the vector bundle is enough to determine the
superpotential, since there are enough constraints. One can generalize Theorem A and remove the
vanishing condition. But then we no longer have a concrete description for the underlying graded quiver.

We can also construct derived equivalences equivariantly. Let G be a finite group and A an Agy-
category, with G acting on A by strict Agy-isomorphisms. Then one can construct a quotient Agy-
category A/G. We have the following

Theorem B (Theorem 5.6.5). In the situation in Theorem A, suppose there is a finite group G act-
ing on X, and this action lifts to V. Assume further that each object E; € £ can be equipped with
a G-linearization. Then there is a G-action on Ag by strict Agp-isomorphisms and an equivalence
D?(Coh @ (V)) = Dl}g(E(Ag/G)Op), Furthermore, if Ky is trivial as an equivariant vector bundle, or
equivalently if det V = Kx equivariantly, then Ag/G also has a cyclic structure.

In other words, if we know the dg-quiver derived equivalent to V', we can construct the dg-quiver
derived equivalent equivariantly to V. The action of the differential (or the superpotential in the Calabi—
Yau case) on the equivariant dg-quiver is also determined. In fact, this quotient construction on quiver
is a generalization of the McKay quiver.

We also have the following recipe for products. Given two As.-algebras A and A’, there is an Ac-
tensor product A ® A’ defined by Amorim [2] which preserves cyclic structures in the sense that if both
A and A’ have cyclic structures, then so does A ® A’.
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Theorem C (Theorem 5.7.3). Let 7y : V — X and 7w : W — Y be anti-semiample vector bundles.
Let £ be an exceptional sequence on X and F be an exceptional sequence on'Y . Suppose they satisfy the
vanishing conditions

Hom‘(E;, E; ® S*VV) =0 and Hom‘(F;, F; @ S*WV) =0

for all i,5,k and £ > 1. Then the Aoo-structure on Ag ® Ar is Agn and there is an equivalence
D?(Coh (V x W)) = DI]’cg(E(Ag ® Ar)°P). If both V and W are Calabi-Yau, then As @ Ar has a
cyclic structure.

In other words, if we know the dg-quivers derived equivalent to vector bundles, we also know the
dg-quiver derived equivalent to their product. However, the differential on this product quiver is not
uniquely determined as tensor product of A..-categories are only defined up to A..-quasi-isomorphisms.
In the case when one of the Ag,-category has m, = 0 for m > 3, then there is a natural choice of
Agn-structure on the tensor product, and hence a natural choice of differential on the product quiver. In
the Calabi—Yau case, this means that when one of the superpotentials is cubic, then there is a natural
choice of superpotential on the product quiver.

Using these three theorems, we can produce a lot of beautiful pictures of quivers with superpotential
derived equivalent to the total space of vector bundles which are Calabi-Yau. Examples include Tp%,
Kpn, and Op2(—1) ® Op2(—2) etc.

Quivers with superpotential also connect to the recent work by Pantev, Toén, Vaquié and Vezzosi [58]
and Ben-Bassat, Brav, Bussi and Joyce [4] on shifted symplectic structures in that the moduli space of
representations of quiver with superpotential seems to be equipped with a shifted symplectic structure
which is in a standard Darboux form. The precise statement is stated in Conjecture 7.4.1, and an
attempt to prove the conjecture is sketched in Section 7.4. The main difficulty here is finding a way to
describe symplectic forms on the moduli space, which is a quotient stack of a derived scheme by a linear
algebraic group, by invariant symplectic forms on the atlas. We propose a way to do this via Lie algebra
cohomology in Section 7.3.

A Guide to the Chapters

Chapter 1 is a review on noncommutative geometry.

In Section 1.1, we introduce quivers and their representations, and discuss how they can be thought
of as objects in noncommutative geometry.

Section 1.2 reviews some calculus on noncommutative space.

Chapter 2 is a review on the theory of triangulated categories.
Section 2.1-2.3 define triangulated category, derived categories and t-structures.
Section 2.4 defines Serre functors and Calabi—Yau triangulated categories.

Section 2.5-2.7 give a brief review of different notions of compact generators, admissible subcategories
and mutation functors.

Section 2.8-2.9 define exceptional sequences and tilting objects, which are the main ingredients to
construct derived equivalences.

Chapter 3 is a survey on A,.-algebras and operations on them.

In section 3.1, we introduce A, ,-algebras and other related notions such as minimal models, A..-
modules, and their derived categories.

Section 3.2 defines the notion of minimal A,.-algebras, and discusses how to construct minimal models
by using homotopy perturbation.
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Section 3.3 defines the notion of cyclic structure on A..,-algebras and describes how it gives rise to
Calabi—Yau categories.

Section 3.4 defines the Koszul functor, which is essentially a way of producing dg-quivers from A..-
algebras. There are two versions of this functor: the completed one and the incomplete one. The
completed one is defined on A, -algebras and yields the completed path algebra of a dg-quiver. The
incomplete one is only defined on Ag,-algebras, and yields the incomplete path algebra of a dg-quiver.
The difference between the two versions is similar to the difference between power series and polynomials.
Admittedly, working with Ag,-algebras and hence the incomplete Koszul functor is awkward in the world
of A..-algebras, as being Ag, is not a homotopy invariant property. For example, the minimal model
of an Agy-algebra is not necessarily Ag,. However, as we will see in Chapter 5, the incomplete Koszul
functor is central to our problem of constructing derived equivalences between dg-quivers and total spaces
of vector bundles.

Section 3.5 defines the quotient of an A,,-algebra by a finite group, and the smash product of an A.-
algebra by a finite group. Although the definition of quotient construction is straightforward, it appears
to be new. This quotient construction is central to constructing derived equivalences equivariantly as
described in Section 5.6. We then prove a relation between the quotient construction and the smash
product, and shows how these two constructions commute with the Koszul dual functor, i.e., the Koszul
dual of the quotient (resp. smash product) of an Ag,-algebra is the quotient (resp. smash product) of
the Koszul dual of an Ag,-algebra. This section is inspired by the work of Bocklandt, Schedler, and
Wemyss [7].

Section 3.6 surveys different constructions of A,,-tensor product. Since A,-tensor products are only
unique up to As.-quasi-isomorphisms, there is in general no natural formulae for computing the ten-
sor product, although there is one in the case when one of the A..-algebras is As, i.e., a dg-algebra.
Particularly important to us is the tensor product constructed by Amorim and Tu [2], since their con-
struction preserves cyclic structures. We then prove that, under some local finiteness conditions, the
Koszul functor commutes with the tensor product, i.e., Koszul dual of tensor product of A..-algebras is
quasi-isomorphic to tensor product of Koszul duals of A, -algebras as dg-algebras.

Chapter 4 is devoted to the study of quivers with superpotential.

In section 4.1, we define quivers with superpotentials. Our definition of quivers with superpotential
is taken from van den Bergh [70], where the completed path algebra of a quiver with superpotential is
known as a deformed DG-preprojective algebra there.

Section 4.2 gives a correspondence between quivers with superpotential and the Koszul dual of Ag),-
categories with cyclic structures. Using this correspondence, we define the notion of product of quivers
with superpotential and the notion of quotient of quivers with superpotential by finite groups.

In section 4.3, we follow van den Bergh [71] and prove that the path algebras of quivers with superpo-
tential are Calabi—Yau algebras, and hence the categories of representations of quivers with superpotential
are also Calabi—Yau.

Finally, Section 4.4 describes quivers with superpotential of dimensions 1 to 4. In particular, we
describe in dimension 3 how our definition of quivers with superpotential as dg-quivers is connected to
the old definition of quivers with superpotential as quivers with relations given by physicists Berenstein
and Douglas [5], Braun [12], Douglas and Moore [23] and later by mathematicians Ginzburg [27] and
Derksen, Weyman and Zelevinsky [22].

Chapter 5 is the heart of the thesis where we prove our main results.
Section 5.1 gives a review on equivariant sheaves.

In Section 5.2, we generalize a result by Bridgeland [15, Proposition 4.1] and show that if 7 : V — X
is an anti-semiample vector bundle on a smooth projective manifold with an exceptional poset &£, then
under some cohomological vanishing conditions, the total space V is derived equivalent to an algebra Ag
which is the path algebra of a quiver with relations. If we remove the cohomological vanishing condition,
we end up with an Ag,-algebra rather than a quiver with relations.
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Section 5.3 tries to resolve Ag, the path algebra of a quiver with relations (or more generally the
Agn-algebra) by a dg-quiver Qg.

Section 5.4 gives a concrete description of the underlying graded quiver of the dg-quiver Q¢ in terms
of the dual exceptional poset of £.

Section 5.5 proves the existence of a superpotential on Q¢ when V' is noncompact Calabi—Yau.

Section 5.6 considers the G-equivariant situation and constructs from Q¢ a quotient quiver Qg/G,
generalizing the construction of the McKay quiver, which is derived equivalent to D?(Coh (V). In the
case when V' is equivariantly Calabi—Yau, Q¢/G is also equipped with a superpotential.

Section 5.7 proves the product construction. We start with two dg-quivers Q¢ and Qz derived
equivalent to vector bundles V' and W respectively, and construct a product quiver Q¢ X Q@ which is
derived equivalent to V' x W. When both V and W are Calabi-Yau, we show that the product quiver
Qs X QF is also equipped with a superpotential.

Chapter 6 is a list of examples illustrating theorems in Chapter 5.

Section 6.1 contains examples illustrating Theorem 5.2.9 which produces the quivers with relations
derived equivalent to total space of vector bundles.

Section 6.2 and 6.3 contain examples illustrating Theorem 5.4.5. Section 6.2 introduces a class of
algebras called Koszul algebras whose dg-resolution is particularly easy to describe. We also gives some
examples of vector bundles whose classical tilting algebras are Koszul.

Section 6.3 contains some worked out examples of derived equivalences between total spaces of vector
bundles and dg-quivers, and if the total spaces of vector bundles are Calabi—Yau, quivers with superpo-
tential. These examples are calculated by first determining the classical tilting algebras, then try to work
out the dg-resolutions to determine the dg-quiver. In Calabi—Yau examples of dimension no greater than
4, there are enough constraints and hence the classical tilting algebras determine their dg-resolutions.

Section 6.4 contains a list of examples by applying the product construction in Theorem 5.7.3. Since
the general formulae for the cyclic A,-tensor product defined by Amorim and Tu [2] is not known, we
only work with the case when one of the A, -algebras is a classical algebra.

Section 6.5 contains a list of examples illustrating the quotient construction in Theorem 5.6.5.

Chapter 7 contains some unfinished work which aims to make a connection between quivers with
superpotential and the recent work on shifted symplectic structures by Pantev, Toén, Vaquié and Vezzosi
[58], and Ben-Bassat, Brav, Bussi and Joyce [4].

Section 7.1 reviews the theory on derived algebraic geometry developed by Téen and Vezzosi [64, 65,
66] and Pantev, Toén, Vaquié and Vezzosi [58].

Section 7.2 develops the Lie algebra cohomology for dg-modules by modifying the usual Lie algebra
cohomology theory.

Section 7.3 defines the G-invariant de Rham complex of on a derived scheme Spec R by using the
Lie algebra cohomology developed in Section 7.2. We conjecture that the G-invariant de Rham complex
should describe forms and closed forms on the quotient stack [Spec R/G] and outline a strategy of proof.

Section 7.4 describes the moduli space of representations of quiver with superpotential, and outline
a strategy of proof on showing the existence of a shifted symplectic structure which is in a standard
Darboux form by using the G-invariant de Rham complex introduced in Section 7.3.

Chapter 8 discusses possible future research directions following the thesis.

Appendix A gives some cohomological formulae for computing examples in Chapter 6.
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Chapter 1

Noncommutative Geometry

This chapter is a review on noncommutative geometry. In Section 1.1, we introduce quivers and their
representations, and discuss how they can be viewed as objects in noncommutative geometry. Section
1.2 reviews some calculus on noncommutative space.

1.1 Quivers and Representations

We review the definition of quivers and their representations. The lecture notes by Crawley-Boevey [19]
are a good reference.

Definition 1.1.1 (Quiver). A finite Z-graded quiver @ consists of the following data:
e A finite set of vertices Vi;
e For any vertices v,w € Vg, a finite set of edges
Eq(v,w) = [[ B (v, w),

i€

Ifee Eé} (v,w), v and w are called the tail and head of e, denoted by t(e) and h(e) respectively, and i
is called the degree of e, denoted by deg(e). Pictorially, we view e as an arrow going from v to w

w e v
oi—eo

Definition 1.1.2 (Path). A path p of length n in Q is a sequence of edges epe,_1 -+ - ege; with t(e;41) =
h(e;) for 1 <14 < n —1. The tail of p is t(p) = vo and the head is h(p) = v,. Pictorially, we view p as a
sequence of arrows going from vy to v,

Un €, Un-—1 V1 e1; Vo

0L @ {— - t—0i—00

The degree of path is the sum of degrees of its component edges. Each vertex v will also be viewed as a
path of both length and degree 0 going from v to v.

Definition 1.1.3 (Path Category). Let K be a field. The path category of @ over K, denoted by KQ,
is the K-linear category defined by

e Obj(Q) =V, and
o KQ(v,w) = K{paths going from v to w},
e the composition map o : KQ(u,v) x KQ(v, w) — KQ(u,w) is given by concatenation of paths, with

e the identity given by the empty path at each vertex.
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Definition 1.1.4 (Path algebra). The path algebra of Q) over K, denoted by K@, is the unital associative
K-algebra spanned over K by all paths of length k£ > 0, with multiplication of paths p and ¢ given by the
concatenation gp if h(p) = t(q) and zero otherwise. The identity is the sum of empty paths over the set
of vertices. The vector subspace spanned by all paths of length & > n is a two-sided ideal and is denoted

by KQ('IL)'

The path category and the path algebra are essentially the same thing, as from the path category
we can get the path algebra by taking the direct sum of all morphism spaces and define multiplication
to be composition if two morphisms are composable and zero otherwise. If we view the path algebra as
an algebra over the discrete K-algebra generated by the vertices, one can recover the path category by
defining the morphism space from v to w to be the vector space wKQv and composition of morphism
by multiplication.

Definition 1.1.5 (Quiver with relations). A quiver with relation (@, I) is a quiver () with a two-sided
ideal I in KQ with I C KQ(q). The path algebra of (Q,I) is the unital associative algebra KQ/I.

Definition 1.1.6 (Differential-graded Quiver). A dg-quiver is a graded quiver together with a S-linear
differential d : KQ — K@ of degree 1.

Path algebras as tensor algebras. Let S be the discrete K-algebra over Vj, i.e., the path algebra of
the quiver with vertex set V5 and no edges, and KEg be the K-vector space spanned by Fq. Then KEg
is naturally a S-bimodule with scalar multiplication given by path multiplication and K@ is isomorphic
as a unital associative K-algebra to Ts(KEq).

Path categories as tensor categories. Analogously, path categories can be written in the form of
tensor categories [41, §3.5].

Definition 1.1.7 (Representation of Quiver). Let @ be a quiver. A finite dimensional representation
(W, p) of Q consists of finite dimensional K-vector spaces W, for each vertex v € Vg and linear maps
pe : Wiey = Wiy for each edge e € Eg. A finite dimensional representation (W, p) of a quiver with
relations (@, I) is a finite dimensional representation of @ such that for all r = > ac ...c;en---€1 € I
linear combinations of paths having common head and tail vertices, the corresponding linear maps are
trivial:

Z Qe,,---e1Pe, O "0 Pe; = 0.

A morphism of representations ¢ : (W, p) — (U, o) consists of linear maps ¢,, : W,, — U, for each v € Vg
such that ¢h(e) O Pe = 0O d)t(e) for all e € EQ.

Proposition 1.1.8. Let (Q,I) be a quiver with relations. The category of representations of (Q,I) is
equivalent to the category of finite dimensional left KQ/I-module.

Proof. Refer to [19]. [ ]

Definition 1.1.9 (Representation of dg-quiver). A representation of a dg-quiver consists of chain com-
plexes W, for each vertex v and graded linear maps p. : Wiy — Wi for each edge e such that for any
m € Wy, the following identity holds:

dw, ., (pe(m)) = (dxqpe) (m) + (=1) pe(dw, ., m).

Proposition 1.1.10. The category of dg-representations of a dg-quiver (Q, d) is equivalent to the category
of dg-modules over (KQ,d).

Path algebra as noncommutative analogue of affine variety. One may view the path algebra
of a quiver as a noncommutative analogue of a polynomial algebra. For example, let @ be a vertex
with 2 loops = and y, then KQ = K(z,y). Path algebra of a quiver with relations is then analogous to
finitegly generated commutative algebras, for instance, K(x,y)/I for some ideal I. Representations of
quivers are then the noncommutative analogue of coherent sheaves. Dg-quivers can be think of as the
noncommutative analogue of derived schemes.
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1.2 Noncommutative Calculus

In this section, we review the tools of noncommutative calculus. Proofs in this section are omitted. For
proofs and further details, please refer to the paper by Crawley-Boevey, Etingof and Ginzburg [20], the
lecture notes by Ginzburg [26] and the paper by van den Bergh [69].

Notation and Convention. We will work in the relative setting. Fix a ground field K. Let S be a
K-algebra, A be a Z-graded unital associative S-algebra and M, N be Z-graded A-bimodules. First, we
fix some notation and convention. Anything unadorned will always mean relative to the ground field K,
e.g., unadorned tensor product ® means ®g. The shifted module XM is defined by (XM)* = M1,
Throughout this thesis, the Koszul sign rule will be enforced: when moving an element a past another
element b, the sign (—1)‘“”1" will appear. For example, the tensor product ¢ ® ¢ of two morphisms of
graded A-bimodule is defined as:

(¢ @ ¢)(a®b) = (=1)"I*lp(a) @ 4(b).

We will employ the Sweedler’s notation [63] and write any element b € A® A as b = b’ @b instead of the
more accurate y ., b, ®@b!. For instance, if © is a K-linear map with target in A® A, say © : A - A® A,
we will write O(a) = ©'(a) ® ©”(a). The outer and inner A-bimodule structure on the free A-bimodule
A ® A will be denoted respectively by

a( @b")e = (ab') @ (V'c)
ax (b @b")xc= (=1)lellVHela+ellb o) @ (ab”).

If we denote the interchange operator a ® b — (—1)'“”"‘1) ® a by o, the two A-bimodule structures are
then related by

ala(V @b")e) =axa(V V") *c.
The multiplication map a ® b — ab will always be denoted by m.

Definition 1.2.1 (Derivations). Let K be a field, S be a K-algebra, A be a Z-graded S-algebra and M
be an Z-graded A-bimodule. A S-linear derivation of degree n from A to M is a S-bimodule morphism
[+ A— M of degree n which satisfy Leibnitz’s rule, i.e., for all a,b € A,

f(ab) = f(a)b + (—=1)"*laf(b).

The set of all S-linear derivations from A to M is denoted by Derg(A, M). In the special case M = A® A
with its outer bimodule structure, such a derivation is said to be a S-linear double derivation of A. The
set of all S-linear double derivations of A is denoted by Derg(A).

Remark 1.2.2. In general, Derg(A, M) is only an abelian group. However, for double derivation, Der(A)
is still an A-bimodule due to the inner bimodule structure of A ® A. In other words, for any double
derivation f and a,b € A, we define the double derivation afb by (afb)(—) = a x f(—) *b.

Example 1.2.3. To see how double derivations arise naturally, consider A = K@ for some quiver Q.
For any edge e in @), we can define a double derivation d, acting on any edge f by

de(f) = {h(e) ®t(e) iff=e

0 otherwise.

From the double derivation 0., one can define a derivation 97 : KQ — K@ by 05 = mo o o d.. This
derivation vanishes on commutators and hence descends to a derivation 92 : KQ/[KQ,KQ] — KQ.

Definition 1.2.4 (Noncommutative cotangent bundle). The A-algebra ©%(A) = T4 (Derg(A)) is called
the S-relative noncommutative cotangent bundle of A.

Definition 1.2.5 (Differential 1-form). The A-bimodule of noncommutative 1-forms relative to S, de-
noted by Q% (A), is the A-bimodule generated by symbols of the form da for any a € A, subject to the
relation

dar(ab) = (dara)b + a(dirb).
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Proposition 1.2.6. The functor M — Derg(A, M) is representable by the A-bimodule Q5(A). In other
words, there are canonical isomorphisms

Derg(A, M) = HomA,Bimod(le, M).
Proposition 1.2.7. The following sequence is exact:
0—-QL(A) 3 Ars A A -0,
where p(da) =a®1—1® a and m(a @ b) = ab.

Definition 1.2.8 (Noncommutative tangent bundle). The A-algebra Q%(A) = TaQ4(A) is called the
S-relative noncommutative tangent bundle of A. The algebra Q%(A) is Z x Z-graded, with the first Z-
grading | — | coming from the Z-grading on A, and the second one || — || coming from the “form” degree,
i.e., the number of dyr’s appearing in the element. The Koszul sign rule will be enforced according
the following rule: when moving an element o € Q%(A) past another element § € Q%(A), the sign
(—=1)lellBI+IallAl will appear. For example, the commutator is defined as

[, B] = a8 — (=1)leliBI+llIBl g,
Proposition 1.2.9. The de Rham differential map dar : A — Q5A extends to an S-linear derivation
dar : Q% (A) = Q%(A)of degree (0,1) which satisfies d2p =0 and
dar(aodaray - - - daran) = daraodaray - - - dagan.

Definition 1.2.10 (Noncommutative de Rham complex). The S-relative noncommutative de Rham
complex of A is the graded vector space defined by

DR(A) = Q5(4)/[Q5(A4), Q5(A)].

Definition 1.2.11 (Contraction). Let © € Derg(A). The contraction map ig : Q5(A4) - A® A defined
to be the A-bimodule morphism given by

i@(ddRa) = G)(a)

This map extends to a derivation of degree (—1) ig : Q%(A4) — Q% (A) ®Q%(A). The reduced contraction
map 1o : QY(A) — QY (A) is the degree (—1) derivation defined by 10 = moooig.

Definition 1.2.12 (Lie derivative). The Lie derivative Lg : Q%(A4) = Q%(A4) ® Q% (A) is by the Cartan
formula

Le = dqrie +ieddr.
The reduced Lie derivative Lg : Q%(A4) — Q%(A) is defined by Lo =moo o Le.

Proposition 1.2.13. Given any double derivation © € Der(A), the reduced contraction g : Q% (A) —
Q% (A) descends to 1o : DRg(A) — Q% (A)

Definition 1.2.14 (Symplectic 2-form). A closed noncommutative 2-form w € DRF(A) is said to be
sympletic if the map 1, : Derg(A) — Q%(A) defined by © — 10w is an isomorphism.

Definition 1.2.15 (Double Poisson bracket). A double Poisson bracket of degree n is a linear map
{—,-}:A® A — A® A of degree n which satisfies

{a,b} = _(_1)(Ia\+n)(\b|+n)ogb7 a},
fa,be} = fa,bYe + (—1)Ual=mllpgq cn.
and

0= {a, £b,c}'} @ {b,c}” + (—1){elrm D g fe a}'} © e, a}”
+ (_1)(Ic\+n)(\a|+\b|)72{c7 {a, b} } @ {a, b},

where 7: AQ A® A - A® A® A is the map sending a ® b® ¢ — (—1)Iel+PDldle @ a @b, If Ais a
dg-algebra, then a double Poisson bracket of degree n is a dg-double Poisson bracket of degree n if it

further satisfies
dfa,b} = {da,b} + (1) " fa, db}.



CHAPTER 1. NONCOMMUTATIVE GEOMETRY 11

Remark 1.2.16. Note that a double bracket also satisfies
flab,c} = ax {b,c} + (—1)PlHFm g cY +b.
Proposition 1.2.17. Every symplectic 2-form w give rise to a double Poisson bracket.

Proof. For any a € A, let H, be the corresponding Hamiltonian double derivation, i.e., H, is the unique
double derivation satisfying
1H,W = ddRa.

Define {a,b} = Hy(b) = ig, (dard) = im, 15, w. [ |

Proposition 1.2.18 ([69] Proposition 1.4). A double Poisson bracket of degree n defines a Kontsevich
bracket of degree n

{_a_}:mo{_7_}} A®A— A
which satisfy the following properties:

1. {—,—} is a derivation in the second argument, i.e.,
{a,bc} = {a,b}c+ (—1)Ual+MblpLg e},
2. {—, =} vanishes on commutators in the first argument and hence descends to map
{—,—-}:A/[AA]® A — A.
3. {—, =} satisfy the Jacobi identity
{a,{b,c}} = {{a,0}, ¢} + (~ )DL {a, e},
4. {—,—} descends to a Lie bracket
{—=,—}:A/[A Al @ A/[A, A] — A/[A, A].

The double Poisson bracket and the Kontsevich bracket are related by the following

Proposition 1.2.19 ([69] Proposition 2.4.2). We have the following identity:

{a, {b,c}} = {{a, b}, c} + (=10, {a,c}}.



Chapter 2

Triangulated Categories

This chapter is a review of the theory on triangulated categories. Sections 2.1-2.3 define triangulated
category, derived categories and t-structures. Section 2.4 defines Serre functors and Calabi—Yau triangu-
lated categories. Sections 2.5-2.7 give a brief review of different notions of compact generators, admissible
subcategories, and mutation functors. Sections 2.8-2.9 define exceptional sequences and tilting objects,
which are the main ingredients to construct derived equivalences.

2.1 Triangulated Categories

We review the definition of triangulated categories. Further details can be found in Gelfand and Manin
[25].

Definition 2.1.1 (K-categories). Let K be a field. A K-category is a category A where for any X,Y €
Obj A, A(X,Y) is endowed with the structure of a K-module such that the composition maps

AX,Y) x A(Y,Z) = A(X, Z)

are K-bilinear. A K-category A is said to be K-linear if A has a zero object and the product of any two
objects in A exists.

Definition 2.1.2 (Graded K-categories). A graded K-category (A,Y) is a k-linear category A together
with an automorphism ¥ of A. We define the graded Hom-sets by

ANX,Y) = A(A,X'B).

Definition 2.1.3 (Graded functors). A graded functor (F,n) : (A,X4) — (B,Xg) between graded
categories is a k-linear functor F': A — B together with a natural isomorphism 7 : FX 4 — XgF.

Definition 2.1.4 (Triangles). A triangle in a graded k-category (A, Y) is a sequence A = B = C' 5 Y A.
A morphism between two triangles is a commutative diagram

A—s>B—Y>(C0—Y-%A.

L

A — =B s (' = A

Definition 2.1.5 (Triangulated categories). A triangulated k-category is a graded k-linear category
(A, X) equipped with a set of distinguished triangles which is stable under isomorphisms and satisfying
the following axioms:

TO. For any A € Obj A, the triangle
A4 —0—34

is distinguished.

12
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T1. Any morphism ¢ : A — B can be completed to a distinguished triangle
A% B—C—3A

T2. A triangle
A5 B-—5C-3%A
is distinguished if and only if the triangle
B-%C-%yA =% B
is distinguished.

T3. If there is a commutative diagram of distinguished triangles with vertical morphisms a : A — A’

and b: B — B’
A B ol YA
R
Y
Al B’ c’ A

there exists a morphism ¢ : C'— C’ making the diagram commute.
T4. The triangles satisfy the octahedral axiom: Given distinguished triangles
x5y 7z Esx,
v 4 z58 x4y,

vou n

X z8y L vXx,
there exists a distinguished triangle
7Ly & x B ong
such that
{=gom, k=nof h=%Xjoi, iog=Xuon, foj=mouw.

The name “octahedral axiom” comes from the fact that the above distinguished triangles can be
packed into an octahedron:

ou

W
N

Y

Z
/
Remark 2.1.6. Note that we do not assume a priori that two morphisms in a distinguished triangle

AL BS% oA compose to zero. However, it is a consequence of axioms 71 and T3 that they do:
there exists a morphism A making the diagram commutes

A9 g 0 YA

h
Y

Al.p_ . ¢ YA,
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i.e., the composition g o f factors through the zero object, and hence must be a zero morphism.

Remark 2.1.7. Axiom T2 postulates every morphism A 4y B fits into a distinguished triangle A EN
B — C — X A. Tt is a consequence of the axioms [25, Corollary IV.1.4] that the object C' is unique up
to non-unique isomorphism. This object C' is called a cone of the morphism f. We can then rephrase
Axiom T4 in the following way: Let f, g be morphisms in a triangulated category A and C(f), C(g) and
C(go f) be a cone of the morphism f, g and go f respectively. Then there exists a distinguished triangle

C(f) = Clge f) = Clg) = XC(f).

Definition 2.1.8 (Triangle Functor). Let (A, 4) and (B, Xg) be triangulated k-categories. A triangle
functor is a graded k-linear functor (F,n) : (A,X4) — (B, Xg) preserving distinguished triangles, i.e.,
for each distinguished triangle
A5 B-L 05 xA,
the triangle
Fuv WCO(FU)

FALY P % PO e,
is also distinguished.
Remark 2.1.9. In general, (¥, ids2) is not a triangle functor. However, (X, —ids2) is a triangle functor.

If A% B C % YA is a distinguished triangle, by (7'2), so is ©A 2 wB Y w0 22 124,
The following isomorphism of triangle

YA vy P w2 w2y
idzAi idzBi idzcl lZidzA
Su P -3

YA YB3 —X 024

shows ¥4 =% $B 2% ©C —2% 224 is a distinguished triangle. Hence (3, —idx:2) is a triangle functor.

Definition 2.1.10 (Morphism of triangle functors). Let (A, ¥ 4), (B,¥3) be triangulated category and
(F,9), (G,¢) : (A, Z4) — (B,Zg) be triangle functors. A morphism of triangle functors o : (F,¢) —
(G, 1) is a natural transformation a : F' — G such that for all X € Obj A, the following square commutes

rex —2 o Srx

ale J/EQX

GXX — YGX.

Definition 2.1.11 (Triangulated subcategory). A triangulated subcategory of a triangulated category A
is a subcategory B of A such that the inclusion functor i : B — A is a triangle functor. A triangulated
subcategory B is said to be thick if it is stable under taking direct summands, i.e., A® B € Obj B implies
A, B € Obj B.

Definition 2.1.12 (Orthogonal Complement). Let B be a triangulated subcategory of a triangulated
category A. The right orthogonal complement of B is the full subcategory B+ of A containing all objects
A € Obj (A) such that Hom(B, A) = 0 for all B € Obj (B). Similarly, the left orthogonal complement of
B is the full subcategory B of A containing all objects A € Obj (A) such that Hom(A, B) = 0 for all
B € Obj (B).

2.2 Derived Categories
The main examples of triangulated categories come from deriving abelian categories as we will describe

in this section. We will only sketch the constructions. Readers are referred to Gelfand and Manin [25]
for details and proofs.
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Let A be an abelian category. Denote by K(A) the homotopy category of A, whose objects are
chain complexes in A and morphisms are chain maps modulo chain homotopies. The collection of
quasi-isomorphisms in K(A), i.e., chain maps which induce isomorphisms between homology, forms a
multiplication system which satisfies the following three axioms:

1. All identity morphisms are quasi-isomorphisms and compositions of quasi-isomorphisms are quasi-
isomorphisms;

2. Ift: Z - Y is a quasi-isomorphism, then for any morphism ¢ : X — Y in K(A), there exists
f: W — Z and a quasi-isomorphism s : W — X making the diagram commutative

W-—-=>=2Z
|

|'s \Lt
Y g

X ——Y.

Similarly, if s : W — X is a quasi-isomorphism and f : W — Z any morphism in K(A), there
exists g : X — Y and a quasi-isomorphism ¢ : Z — Y making the diagram commutative

WL>Z
|
\Ls | ¢
y
xX-Z-v.

3. If f,g: X — Y are morphisms in K(A), then the following two conditions are equivalent:

(a) sf = sg for some quasi-isomorphism s,
(b) ft = gt for some quasi-isomorphism ¢.
The derived category D(A) is constructed from K(A) by formally inverting all quasi-isomorphisms:

Objects in D(A) are the same as K(A), i.e., chain complexes of objects in .A. Morphisms between an
object X and Y are given by equivalence classes of diagrams in the form X <+ Z — Y where s: Z — X

is a quasi-isomorphism and f : Z — Y is a chain map. Two diagrams X < Z i> Yand X £ W Sy

are equivalent if there is a diagram W <& U M 7 which fits into a commutative diagram

where
w-ltsv
\
| r t
Voo
U——Y

is a commutative diagram we get by Axiom 2, with r a quasi-isomorphism. One can check this definition
is well-defined. The set Homp4)(X,Y’) forms a vector space over K:

Lk (X&Ez2hy)=(x & 28 y) for any k € K;
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2 (XEZIV+(x LW SY)=(x L& 2 Y) where
U-2=w
|
-
Y
R o

is a commutative diagram we get by Axiom 2, with u and r = su = tv quasi-isomorphisms.

This shows D(A) is a K-linear category. A triangle X — Y — Z — XX in D(A) is said to be

distinguished if it is isomorphic to a triangle of the form A 4 B = cone (f) = ZA. Equipped with this
class of distinguished triangles, D(.A) has the structure of a triangulated category. The bounded derived
category DY(A) is defined as the smallest triangulated subcategory of D’(A) containing all bounded
complexes.

Example 2.2.1. Let X be a variety. Then Coh (X) is an abelian category and D?(Coh (X)) is the
bounded derived category of coherent sheaves on X. We will denote by D%, (Coh (X)) the full triangulated
subcategory of D?(Coh (X)) consisting of complexes whose cohomologies are compactly supported.

Example 2.2.2. Let A be a dg-algebra. We denote by D?(A) the bounded derived category of dg-
modules over A. We also denote by Dlj’c 4(A) the full subcategory of D?(A) consisting of complexes whose
cohomologies are finite dimensional. A dg-algebra A is called cohomologically Noetherian if H*(A) is
Noetherian. In this case, we denote by DI} g(A) the full triangulated subcategory of D’(A) consisting
of complexes whose cohomologies are finitely generated modules over H*(A). When A is an ordinary
Noetherian algebra, the category of finitely generated A-modules A-mod is abelian, and we have an
equivalence D?(A-mod) = Dl]’cg (4).

2.3 t-structures

In this section, we discuss t-structures. We follow Manin [25, §IV.4]. It is known that two different abelian
categories might yield the same triangulated category. The formalism of ¢-structure was invented to see
different abelian subcategories inside a triangulated category.

Definition 2.3.1. Let 7 be a triangulated category. A t-structure on 7T is a pair of strictly full subcat-
egories (T=Y, T729) satisfying

L 7= CT=!and T2' C 7=,
2. Hom(X,Y) =0 for X € ObjT=" and Y € Obj T=!,

3. For any X € ObjT there exists a distinguished triangle A — X — B — A[1] with A € ObjT=0
and B € Obj 72!, where 75" = T=[—n] and 72" = T=°[—n].

The full subcategory 7=° N T=Y is called the heart of the t-structure.
Theorem 2.3.2. The heart of any t-structure on a triangulated category is an abelian category.

Proof. See [25, §IV.4, Theorem 4]. [ |

Remark 2.3.3. In general, given a triangulated category 7 with a t-structure whose heart is A, the
derived category D(A) might not be equivalent to 7. Moreover, in general, there is no obvious relation
of T with the category of complexes over A. This is caused by the non-functorality of the cone [25, §IV.4
Remark 13].
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2.4 Serre Functors

We define Serre functors and Calabi—Yau triangulated categories. In this section, all triangulated cat-
egories are assumed to be K-linear and Hom-finite, i.e., all the morphism spaces are finite dimensional
over K. References for this section are the paper by Keller [45, §2] and the book by Huybrechts [34, §1].

Definition 2.4.1 (Serre functor). A Serre functor on a Hom-finite triangulated category A is a triangle
autoequivalence (5,0) : A — A together with a family of isomorphisms

nx,y : A(X, Y) — A(Y, SX)\/
natural in both X and Y, such that the following diagram commutes:

v (E_l)*

AX,Y) L Ay, SX) A(ZY, BSX)V
o
AX,Y) —3 A(ZX,3Y) ZX2 Yy, STX)V.

In other words, for any X,Y € Obj A, f € A(X,Y) and g € A(ZY, SEX), we have

(nxy(f), S (ox 0g)) = —(nexxv(Sf),9)-

Proposition 2.4.2. Let (A,X 4) be a Hom-finite triangulated category and (S, o) be an autoequivalence.
Then S is a Serre functor if and only if there is a family of linear maps trx : A(X,SX) — k such that
the family of induced pairings A(X,Y) x A(Y,SX) — k given by (f,9) — trx(go f) are nondegenerate
and they satisfy

trx(go f) =try(Sfog) (2.4.1)

and for all h : XX — SY X
trx (X" (ox o h)) = —trsx (h). (2.4.2)

Proof. Suppose (S,0) is a Serre functor. Define trx = nx x(idx). By naturality of n, we have the
commutative diagram

A(X, X) AX,Y) < A, Y)

WX,X\L i'ﬂx,y lny,y

\% \% \/'
A(X, 5X)Y —— A(Y, SX)" < A(Y, 5Y)

Then
trx(go f) = (90 f,nx x(idx)) = (g, nx,y (f)) = (Sfog,ny,y(idy)) = try(Sf o g).

Also, from the above equation, we see that for a fixed f, trx(go f) = 0 for all g implies nx y(f) =0
which in turn implies f = 0 since nx y is an isomorphism. Similarly, if for a fixed g, trx(go f) = 0 for
all f, then g = 0 since nx,y is an isomorphism and hence nx y (f) is arbitrary.

For the second equality, by definition, for all A : XX — SX.X, we have

(nx.x(idx), S (ox o h)) = —(nex,zx (Tidx), h)
which implies
trx(z_l(ax o h)) = —trgx(h).

Conversely, we define nxy : A(X,Y) — A(Y,SX)Y by nx,y(f) = trx(— o f). Since the induced
pairing is assumed to be non-degenerate and both vector spaces are finite dimensional, nxy is an
isomorphism. Naturality of nx y in both X and Y is equivalent to the commutativity of the diagram

AZY) —Ms Ax)Y) P oAx,w)

le,yl nx,yl nx‘wl

AY, 52" 0 Ay sx)Y —F AW, SX)Y
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for arbitrary W, Z € Obj A and h € A(X,Z) and k € A(Y,W). This is checked readily by unwinding
the definition: for all u € A(Z,Y)

((Sh)" onzy)(u) =trz(Sho —ou) =trx(-ouoh) =nxy(uoh) = (nx,y oh*)(u)
and for all v € A(X,Y),

(mx,w o ks)(v) =nxw(kov) =trx(—okowv) = (ki onx,y)(v).
Also, by (2.4.2),

(nxy (f),2 ox 0g)) = trx (X" (ox 0 g) o f)
= trX(Efl(aX ogoXf))
= —trex(go Xf)
= —(nexzv(2f), 9)-
|

Remark 2.4.3. The negative sign in Equation (2.4.2) is explained by van den Bergh in [68, Remark
A.4.2).

Definition 2.4.4 (Calabi—Yau triangulated category). A triangulated category is said to be d-Calabi-
Yau if (¥, —ids2)? is a Serre functor.

Proposition 2.4.5. A triangulated K-category (A, X) is d-Calabi—Yau if and only if for each X € Obj A
there is a linear map trx : A(X,%?X) — K such that for all X,Y € Obj.A, and integers p,q with
p+q = d, the induced pairings (-,-) : A(X,XPY) x A(Y,29X) — K given by (f,g9) — trx((ZPg) o f) are
nondegenerate and they satisfy

trx((XPg) o f) = (=1)"try (Xf) 0 g).

Proof. Suppose (A,Y) is d-Calabi—Yau. Without loss of generality, we may assume the Serre functor is
given by (¥, —id)? = (24, (—1)%id). Thus (—1)%rx(371h) = —trgx (k) for any h: ©X — SYX, and

trx (57 f) 0 g) = trx (B2 f o Xg))
= (=14 %rg, x (B0 0 Bg) by equation (2.4.2) in Proposition 2.4.2
= (—1)Ptrsax (Ef o £g)
= (—1)Ptry ((X%) o f) by equation (2.4.1) in Proposition 2.4.2

We show the converse by showing equation (2.4.1) and (2.4.2) in Proposition 2.4.2. Equation (2.4.1) is
a special case for p = 0 and ¢ = d. For equation (2.4.2), given any h : ©X — 241X if we put p = —1
and ¢ = d+ 1, and view the identity map on X asidx : X — £71(XX), then equation (2.4.2) is verified:

trx (271 ((=1)?R)) = (1) %trx (Z 7 hoidx)
_ (—1)d+d+1trgx(2d+1idx oh)
= —tryx(h).
|

Example 2.4.6 (Serre duality). Let X be a smooth quasi-projective variety. Denote by D’ (Coh (X))
as the smallest full triangulated subcategory of D?(Coh (X)) which contains all complexes with compact
support. Then (—) ® Kx[dim X] : Db (Coh (X)) — D% (Coh (X)) is a Serre functor. In particular, if
Kx is trivial, D% (Coh (X)) is a Calabi-Yau triangulated category.

Example 2.4.7 ([45], Lemma 4.1). Let A be a dg-algebra which is homologically smooth, i.e., A €
Per(A°? ® A). Denote by D} ,(A) as the full triangulated subcategory of D’(A) which contains all
complexes with finite dimensional cohomologies. Define the dualizing complex Q = RHom gorg 4 (A4, A°P®
A). Then (—) ® Q : D’}d(A) — Dl}d(A) is a Serre functor. In particular, if we have a isomorphism

Q = 2794 as objects in D(A°? ® A), then Dl}d(A) is d-Calabi—Yau.
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2.5 Compact Generators

This section surveys different notions of generators in a triangulated category and results that we will
be using in the remaining thesis. It is essentially a summary of Bondal and van den Bergh [9)].

Definition 2.5.1 (Compact Objects). Let D be a triangulated category which admits arbitrary direct
sums. In general, for any object X € Obj (D), the functor Hom(X, —) only commutes with finite direct
sums. An object X is said to be compact if Hom(X, —) commutes with arbitrary direct sums. The full
subcategory containing all compact objects is denoted by D¢.

Example 2.5.2 ([9], Thm 3.1.1). Let X be a projective variety and G a finite group acting on X. The
compact objects in D(QCoh ¢(X)) are precisely the G-equivariant perfect complexes, i.e., complexes
that are locally quasi-isomorphic to a bounded complex of equivariant vector bundles. If X is smooth,
all complexes in D?(Coh @ (X)) are perfect, hence D(QCoh ¢(X))¢ = D?(Coh ¢(X)).

Example 2.5.3 ([42], Prop 8.3). Let A be a dg-algebra and D(A) the derived category of dg-modules
over A. Then D(A)® = Per(A), where Per(A) is the smallest thick subcategory in D(A) containing the
free dg-module A.

Definition 2.5.4 (Generators). A set of objects £ in D classically generates D if D is the smallest thick
subcategory in D containing £. We say £ generates D if £+ = 0. We say D is compactly generated if D
is generated by D°.

Theorem 2.5.5 ([9], Thm 2.1.2). Let D be a compactly generated triangulated category. Then a set of
compact objects in D classically generates D€ if and only if it generates D.

Example 2.5.6 ([9], Thm 3.1.1). Let X be a variety and G be a finite group acting on X. Then
D(QCoh ¢ (X)) is compactly generated.

Corollary 2.5.7. Let X be a smooth variety and G be a finite group acting on X by automorphisms.
Then a set of objects £ in D?(Coh % (X)) classically generates D*(Coh & (X)) if and only if € generates
D(QCoh ¢(X)).

Proof. This is a consequence of Example 2.5.2, Theorem 2.5.5 and Example 2.5.6. |

2.6 Admissible Subcategories

Definition 2.6.1 (Admissible Subcategories). A full triangulated subcategory B C D is said to be left
admissible (resp. right admissible) if the inclusion functor B < D has a left (resp. right) adjoint. A full
triangulated subcategory is said to be admissible if it is both left and right admissible.

Proposition 2.6.2 ([8], Lemma 3.1). Let B be a full triangulated subcategory of D. The following are
equivalent:

1. B and B+ classically generate D;

2. For any object X € D, there exists B € B and C € B+ and a distinguished triangle

B— X —C— B[]

3. B is right admissible, and the right adjoint q : D — B sends X to B;
4. Bt is left admissible, and the left adjoint p : D — Bt sends X to C.
There is of course the similar

Proposition 2.6.3. The following are equivalent:

1. +B and B classically generate D;
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2. For any object X € D, there exists B € B and C € +B and a distinguished triangle

C— X — B— C[1];

3. B is left admissible, and the left adjoint p : D — B sends X to B;
4. Bt is right admissible, and the right adjoint q : D — +B sends X to C.

Corollary 2.6.4. Let B be a right (resp. left) admissible subcategory of D. Then B = D if and only if
Bt =0 (resp. tB=0).

2.7 Mutation Functors

This section defines mutation functors. We follow the convention of Bridgeland and Stern [16], which
differs from the more standard convention of Bondal and Kapranov [8, 10] by a shift functor, but it
simplifies some of our formulae.

Let B be an admissible full triangulated subcategory of D. By Propositions 2.6.2 and 2.6.3, there
are left adjoint p : D — B+ to the inclusion i : B+ — D, and right adjoint ¢ : D — B to the inclusion
j:1tB—=D.

Definition 2.7.1. The left mutation functor Lg : +B — Bt is defined to be Lg = p o j. Similarly, the
right mutation functor Rp : B+ — LB is defined to be Rg = q o i.

If E is an object in D, we define Lg = L(gy and Rg = R gy, where (E) is the smallest full triangulated
subcategory in D containing F.

Proposition 2.7.2. Let X € tB and Y € B+. ThenY = Lp(X) if and only if there is an object B € B
and a triangle
B— X =Y — B[]

Similarly, X = Rg(Y') if and only if there is an object B € B and a triangle
X —-Y — B— X[1].

The two mutation functors Ly and Rp are inverse to each other.

Proof. The first two claims are immediate from Proposition 2.6.2 and 2.6.3. The last claim follows from
the first two claims. [ ]

2.8 Exceptional Sequences

This section introduces the notion of exceptional poset in a K-linear triangulated category D. For any
objects A, B € D, we denote Hom" (A, B) = Hom(A, B[k]) for k € Z and

Hom* (A, B) = P Hom" (4, B)[—k] (2.8.1)
kEZ
the chain complex of vector spaces with trivial differential.

Definition 2.8.1 (Exceptional Poset). An object E € D is said to be exceptional if
Hom*(E, E) = K.

Let (I, <) be a finite poset. A finite set of exceptional objects £ = {E;};cr in D indexed by (I, <) is an
exceptional poset if
Hom®(E;, Ej) = 0 unless i < j.
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If (I, %) is a totally ordered set, i.e., in the form ({1,...,n}, <), we say £ is an exceptional sequence. An
exceptional poset is said to be strong if

Hom"(E;, E;) = 0 for all k > 1 and all 4,5 € I.

It is said to be full if £ classically generates D, i.e., D is the smallest full triangulated category containing
E. We say an exceptional poset € has length n if it has n objects. For any j € I the subset {F; :i < j} C &
is also an exceptional poset and will be denoted by £.;. The exceptional poset £5; and £4; are similarly
defined.

Remark 2.8.2. Note that every poset (I, <) can be refined into a totally ordered set, i.e., there exists a
(non-unique) monotone bijection (I, <) — ({1,2,---, ||}, <). Note also that if ¢ and j are incomparable
elements in I, then one can always find total order refinements ¢ and v such that ¢(i) < ¢(j) whilst
(i) > (7). Hence, by considering exceptional posets with all total order refinements, there is no loss of
generality by considering only exceptional sequences. However, since sometimes we have only a natural
partial order instead of a total order on I, we will stick to the notion of exceptional poset.

The following proposition tells us that the length of a full exceptional poset is an invariant of the
derived category.

Proposition 2.8.3 ([16], Lemma C.2). Let £ be a full exceptional poset on D with length n. Then
[€] = {[Ei]}ier form a Z-linear basis of K (D). In particular, length £ = rank K (D).

Proposition 2.8.4. The full triangulated subcategory (£) classically generated by an exceptional poset

& is admissible. Moreover, if E is an exceptional object, then Ly X is the cone of the evaluation map
Hom*(E,X)® E — X — LgX.

If € is an exceptional poset and ¢ : (I, ) — ({1,...,n}, <) is a monotone bijection, then

Ls =Lg --Lpg

=1(1) o= l(n)’

Proof. Without loss of generality, we may assume £ is an exceptional sequence. We induct on the length
of exceptional poset £. Suppose n =1 and £ = {E}. For any X € D, we have a natural evaluation map
Hom*®(F, X)® F — X. Extending it to a triangle

Hom®*(E,X)® F - X - Y

and applying Hom(F, —), we get Y € (E)l By Proposition 2.6.2, (E) is right admissible and by Propo-
sition 2.7.2, Y = LgX. Left admissibility of (E) is similarly proven. Now suppose &€ = {Ey,...,E,}.
By induction assumption, (€>2) is admissible, and Lg., = Lp, - - - Lg, . By Proposition 2.6.2, for any X,
there are triangles -

A= X3 Le X

Hom®(Ey, Le.,X) ® By — Le_,X 5 Ly Le_, X
where A € (€>2). Applying Hom®(E;, —) to the second sequence, we get Lp, Le., X € (E;)* for all i
and hence in (£)". Extend the map X fog Lg, Le., X to a triangle
B— X" Ly Le X
By the octahedral axiom, B € (£) and by Proposition 2.6.2 (£) is right admissible. By Proposition 2.7.2,
LeX = Ly, Le.,X = Lp, - Lp, X. n

Proposition 2.8.5 (Dual Exceptional Poset). Let & = {E;}icr be a full exceptional poset. Then there
is a unique set of objects F = {F;};crov such that

K ifi=j,
0 otherwise.

Hom®(E;, Fj) = {

Moreover, the object F; is given by the formula F; = Lg_,E;, and the set F is a full exceptional poset
which is called the full exceptional poset dual to £.
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Proof. The proof is a simple modification of [16, Lemma 2.5]. First, we show existence: By the definition
of exceptional poset, E; € (£4;)", hence F; = Le_;(Ej) is well defined and we have a chain of inclusion

Fj e (E55)" C (Exy) C (Exi) ™

In particular,
HOHI.(EZ', FJ) =0

whenever ¢ < j or ¢ £ j, i.e., whenever i # j. By Proposition 2.7.2, there exists Y € (£4;) and a triangle
Y - E; —» F; = Y[1].
Applying the exact functor Hom®(E;, —), since Hom®(E;,Y) = 0, we conclude
Hom*(E;, F;) = Hom*(E;, E;) = K.

To show F = {F;};cror is an exceptional poset, we have to show j # ¢ implies Hom®(F;, F;) = 0. Since
F; € (E<;), we are done if Hom®(Ey, Fj) = 0 for all £ < 4, which is true since j # ¢ and k < ¢ implies
j # k. For uniqueness, choose a nonzero map E; — F; and extend it to a triangle

Y = E; = F; = Y[1].
Applying the functor Hom®(E;, —) shows Hom®(E;,Y) = 0 for all ¢ £ j and ¢ = j. Hence Y € (£L;).
Proposition 2.7.2 now shows F; = Le_, (Ej). u

Remark 2.8.6. Note that the partial order on F is reversed. Note also that in general, the dual
exceptional poset of a strong exceptional poset is NOT strong.

Example 2.8.7. Take P" and the full strong exceptional sequence £ = (O,...,O(n)). By computing
cohomologies using the Bott’s formula [11], one can check the dual full exceptional poset is given by

F=(Q"(n)[n], Q" (n—-1Dn-1]...,2Y1)[1],0),
where Q! denotes the i-th wedge power of the cotangent sheaf.

Example 2.8.8. Take P! x P! and the full strong exceptional poset
E={0<0(1,0),0(0,1) < O(1,1)}.
By computing cohomologies, one can check the dual full exceptional poset is given by
F={0(-1,-1)[2] < O(0,-1)[1],0(-1,0)[1] < O}.

Remark 2.8.9. Exceptional posets do not exist on D®(Coh (X)) for any Calabi-Yau X. This is because
by Serre duality, 4
Hom"™ X (E, E) = Hom®(E, E)

which contains at least a copy of K, hence cannot vanish.

2.9 Tilting Objects

In the rest of this thesis, we will be working with algebraic triangulated categories in the sense of Keller
[43, §3.6]. The precise definition of an algebraic triangulated category will not bother us much, but let
me point out that, in Keller’s words, “ ‘all’ triangulated categories occuring in algebra and geometry are
algebraic.” The main examples we have in our mind will be the derived category of equivariant sheaves
on smooth varieties and the derived category of dg-modules over dg-algebras.

Definition 2.9.1 (Tilting Object). An object T in an algebraic triangulated category D is said to be
tilting if it is



CHAPTER 2. TRIANGULATED CATEGORIES 23

e compact, i.e., the functor Hom(7, —) commutes with arbitrary coproduct, and
e generating, i.e., the only object X with Hom® (7T, X) = 0 is the zero object.

A tilting object T is said to be classical if Hom" (T,T) =0 for all £ # 0.
Here is the main theorem of the section.

Theorem 2.9.2 ([42], Theorem 8.7). Let T be a tilting object in an algebraic triangulated category
D which admits all set-indexed coproducts. Then there is a dg-algebra RHom(T,T) with cohomology
Hom®(T,T) and a triangle equivalence

® : D — D(RHom(T,T)°P)
which takes T to the free module of rank one, and whose composition with cohomology is given by
H*® o ®:D — Grmod(Hom*(7,T)°?), X — Hom*(T, X).
Furthermore, this equivalence restrict to an equivalence between the perfect derived categories
® : Per(T) — Per(RHom(T, T)°P).
One way to construct tilting objects is from full exceptional posets.
Proposition 2.9.3. Let & = {E;}ic1 be a full exceptional poset of compact objects in D. Then E = @ E;
is a tilting object in D. If € is further assumed to be strong, then E is classical tilting. e

Proof. Since £ is an exceptional poset, (£) is admissible by Proposition 2.8.4, (£) = D if and only if
<5>l = 0. Hence E is tilting since € is full. If € is strong, then Hom" (E;,E;) =0 for all k> 1 and thus
E is classical tilting. [ |



Chapter 3

A~o-Algebras

This chapter is a survey on A.,-algebras and operations on them.

In section 3.1, we introduce A.,-algebras and other related notions such as minimal models, A..-
modules and their derived categories.

Section 3.2 defines the notion of minimal A,.-algebras, and discusses how to construct minimal models
by using homotopy perturbation.

Section 3.3 defines the notion of cyclic structure on A.-algebras and describes how it gives rise to
Calabi—Yau categories.

Section 3.4 defines the Koszul functor, which is essentially a way of producing dg-quivers from A..-
algebras. There are two versions of this functor: the completed one and the incomplete one. The
completed one is defined on A..-algebras and yields the completed path algebra of a dg-quiver. The
incomplete one is only defined on Ag,-algebras, and yields the incompleted path algebra of a dg-quiver.
The difference between the two versions is similar to the difference between power series and polynomials.
Admittedly, working with Ag,-algebras and hence the incomplete Koszul functor is awkward in the world
of A, .-algebras as being Ay, is not a homotopy invariant property. For example, the minimal model of an
Agp-algebra is not necessarily Ag,. However, as we will see in Chapter 5, the incomplete Koszul functor
is central to our problem of constructing derived equivalences between dg-quivers and total spaces of
vector bundles.

Section 3.5 defines the quotient of an A.,-algebra by a finite group, and the smash product of an
A-algebra by a finite group. Although the definition of quotient construction is straightforward, it
seems to be new. This quotient construction is central to constructing derived equivalences equivariantly
as described in Section 5.6. We then prove a relation between the quotient construction and the smash
product, and shows how these two constructions commute with the Koszul dual functor, i.e., the Koszul
dual of the quotient (resp. smash product) of an Ag,-algebra is the quotient (resp. smash product) of
its Koszul dual. This section is inspired by the work of Bocklandt, Schedler, and Wemyss [7].

Section 3.6 surveys different constructions of A,-tensor product. Since A,-tensor products are only
unique up to As.-quasi-isomorphisms, there is in general no natural formulae for computing the ten-
sor product, although there is one in the case when one of the A..-algebras is As, i.e., a dg-algebra.
Particularly important to us is the tensor product constructed by Amorim and Tu [2], since their con-
struction preserves cyclic structures. We then prove that, under some local finiteness conditions, the
Koszul functor commutes with the tensor product, i.e., Koszul dual of tensor product of A..-algebras is
quasi-isomorphic to tensor product of Koszul duals of A.,-algebras as dg-algebras.

24
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3.1 A,-Algebras and A, -Modules

This section introduces As.-algebras. We follows the sign conventions of Lefévre-Hasegawa [48]. We
refer to Keller [44] for a short introduction and Lefevre-Hasegawa [48] for a comprehensive reference.

Definition 3.1.1 (A -algebras). Let K be a field and S be a semisimple algebra over K. An A -algebra
over S is a Z-graded S-bimodule,
A=Pa

€L

together with, for each n € N, an S-bimodule homomorphisms of degree 2 — n
my : A" — A
satisfying the the A -relations

Z (*1)ab+cma+1+c ° (id@a & mp & id®c) =0.
a+b+c=n
b>1

The first few A..-relations read as follows:

e When n =1, we have mj omy =0, i.e., (4,m1) is a chain complex.

e When n = 2, we have mj; o mg = mg o (m; ® id +id ® my), i.e., mq is a derivation with respect to
mao.

e When n = 3, we have
mo o (id®my —me ®id) =mioms+mzo(m; ®IdRid+id ® m; ® id + id ® id ® mq),
i.e., mo is associative up to homotopy given by ms.
A morphism f: A — B of Ay-algebras over S is a family of S-bimodule morphisms of degree 1 —n
fn: A®S™ 5 B,

satisfying the A..-relations

> (D)™ farige 0 (¥ @my ®id®) =Y > (=D)'meo (fi, @ ® fi,),
a+2;i:n r=141++i,=n

whnere s = — 1y Ty |- omposmon of two morphisms : — and g : — 1S denne
h 1—14 ; C iti f hi f:B — C and A — B is defined
v=1

u=2

by
(fog)nzz Z (=1)°fro(gi ®-®@gi,)-

r=14i1+-+i,=n
A morphism of A-algebra is called strict if f,, = 0 for n > 2. In this case, the A, -relations simplifies
to fimy, = my, o f2™. The identity morphism of an A..-algebra is the strict A,.-morphism with f; = id.
An A,-quasi-isomorphism f is an A,.-morphism whose f; induce isomorphism on the homology on the
chain complex (A, myq).

An A -algebra is strictly unital if there is an element 14 € A of degree 0 such that ma(14,a) =a =
ma(a,14) for all a € A and my,(as,- -+ ,a,) =0 whenever n # 2 and one of the a; = 14. A morphism of
strictly unital A.-algebra f: A — B is strictly unital if f1(14) = 15 and f,(a1,--- ,a,) = 0 whenever
n # 1. Note that for any strictly unital A.,-algebra, there is a canonical strict morphism n : S — A
mapping lg to 14. An A, -algebra is augmented if it is strictly unital and there is a strictly unital
morphism € : A — S such that e on = idg. A morphism of augmented A,.-algebras is a strictly unital
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morphism f : A — B such that ego f = €4. When an A-algebra is augmented, there is a decomposition
A=S5® A, where A = kere is called the augmentation ideal.

An A.-algebra is said to be Agy if m; =0 for ¢ > 0. An A..-algebra is said to be A,, if m; = 0 for
all i > n. In particular, an A;-algebra is a chain complex, and an As-algebra is a dg-algebra. Morphisms
between chain complexes (resp. dg-algebras) are the same as strict A,-morphisms between A;-algebras
(resp. Ag-algebras). A morphism is said to be A, if f, =0 for r > n and is said to be Ag, if f, =0 for
r > 0.

Definition 3.1.2 (A.-homotopy). Let A and B be two A-algebras and f,g : A — B be Ay-
morphisms. An A,.-homotopy between f and g is a family of morphisms of degree —n

hy : A" = B
satisfying the equation
fon—gn = Z (1m0 (fi, @@ fi, ®hp @ gj, ® - ® gj,)
T
+j1+-Jer=n
+ > (=) hype0 (1d¥ @ my @1d®),
jt+k+l=n
where
s=t+ > (I=ja)n=Y j)+k > dvt > (1—ia) D i
1<a<t u>ao 1<u<r 2<a<lr u<a

Similarly, an A..-homotopy is said to be A, if h, = 0 for r > n and Ag, if h, =0 for » > 0.
One of the salient features of A.,-algebras is that all A,,-quasi-isomorphisms are invertible up to
homotopy:

Theorem 3.1.3 ([48] Corollary 1.3.1.3). An A.-quasi-isomorphism is an As-homotopy equivalence.

Definition 3.1.4 (A.-modules). An A..-right module over A is a Z-graded S-bimodule M, together
with a family of S-bimodule morphisms of degree 2 —n

mM M ®g A" 5 M
satisfying the A..-relations
> (=n®reml o (¥ @my ®id¥) + Y (—1)mih, o (m)! @id®) = 0.
a+bt+c=n b+c=n
a,b>1 b>1

Definition 3.1.5 (A,-morphism). Let A be an A-algebra and M, N be A.-modules. An A.-
morphism f: M — N is a family of S-bimodule morphisms of degree 1 —n

fo: Mg A"t 5 N
which satisfy the equations

Z (—1)*%€ farre 0 (1d®* @ my @ 1d®°) = Z Msi1 0 (fr @1d®%).

a+b+c=n r+s=n
b>1
An A, .-morphism is said to be an A, -quasi-isomorphism if f; induces an isomorphism on cohomology.
An A,.-morphism is said to be strict if f; =0 for all i > 2.

Definition 3.1.6 (A.-homotopy). Let A be an A-algebra and M, N be A, ,-modules. Let f,g: M —
N be A,.-morphisms. An A..-homotopy between f and g is a family of morphisms of degree —n

hp: M@ A®" L 5 N

satisfying the equations

o —gn= Z (—1)*myys(hy ®1d%%) + Z (=1 Chat14(1d® @ mp @ id®°).
e e
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Theorem 3.1.7 ([48] Proposition 2.4.1.1). An Ay -quasi-isomorphism between A.-modules is an As,-
homotopy equivalence.

Derived Category of A,-modules. Recall that for an honest algebra A, the derived category D(A)
is obtained by localizing the homotopy category of A-modules K(.A) at the class of quasi-isomorphism.
One would like to define the derived category of an A.,-algebra in a similar way. Since by Theorem
3.1.7, A-quasi-isomorphisms are already homotopy equivalence, we have

Definition 3.1.8 (Derived category of A..-modules). The derived category Do, (A) of an A.-algebra A
is defined to be the homotopy category of A..-modules over A, i.e., objects in Do (A4) are Ay-modules
over A and morphisms between two A,-modules M and N are A,.,-morphisms modulo A..,-homotopies.

Definition 3.1.9 (Perfect derived category). Let A be an A.-algebra. Then A can be regarded as an
Ay-module over itself. The smallest triangulated category generated by the A-module A is called the
perfect derived category of A and is denoted by Pery,(A).

A.-categories

Definition 3.1.10. An A_,-category A consists of the following data:
1. a set of objects Obj (A),
2. for any X,Y € Obj(A), a Z-graded vector space

AXY) =P AX,Y),

i€z
3. foreachn =1,2,3,..., and any Xj,...,X,, € Obj(A), a linear map homogeneous of degree 2 —n
Myt A Xn—1,X0) @ A(Xp—2, Xpn1) ® - @ A(Xo, X1) = A(Xo, Xn),
satisfying the equations

Z (_l)ab+cma+1+c © (id@a @ Mmp & id®c) =0.
a+b+c=n

If my = 0, then A is said to be minimal. An A,-category is said to be strictly unital if for each object
X € Obj A, there is ex € A(X,X) such that ma(ex ® b) = b, ma(a ® ey) = a for any a € A(Y, X) and
be A(X,Y), and my(a, ® --- ® a1) = 0 whenever some a; = ex for some X. Let S be the discrete K-
category on Obj A, i.e., ObjS = Obj A and S(X, X) =K and S(X,Y) = 0 whenever X # Y. Then each
strictly unital Ay -category is endowed with an A, -functor € : S — A which sends each 1x € S(X, X)
to the identity element ex € A(X, X). If there is an As-functor 7 : A — S such that 7o e = ids, then
A is said to be augmented. An A -category is said to be finite if Obj(.A) is finite and for any objects
XY, A(X,Y) is finite dimensional.

Conventions. When the base algebra of an A, -algebra is in the form S = K", the data of an A.-
algebra is the same as an A,-category A with r objects: Let e; be the vector in S = K" with 1 in the
i-th place and zero elsewhere. Given an A..-algebra over S, we can define an A,,-category A by taking
Obj (A) ={e1,...,e,} and A(e;, e;) = e;Aej. Conversely, given an A.-category with r objects, choose
a bijection between Obj (A) and {e1,...,e,} and take A = P, ; A(e;, e;). Each e; acts on left on A by
projecting to the vector subspace j A(e;, e;). This define a left S-module structure on A. Right action
is defined similarly. Since in this thesis we will only deal with A..-category with finite objects, we will
not distinguish A..-algebras and A.,-categories and will use the two terminologies interchangeably.
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3.2 Minimal Model

An A,-algebra is said to be minimal if m; = 0. In this case the multiplication map ms is associative.
By Kadeishvili’s theorem, every A,-algebra is quasi-isomorphic to a minimal one:

Theorem 3.2.1 (Kadeishvili [36], see also [48] Corollary 1.4.1.4). Let A be an A -algebra. Then the
cohomology H®(A) has a unique (up to isomorphism of Ax-algebras) Aso-structure such that

e my =0 and mq is induced by m?,
o there is an Ax-quasi-isomorphism i : H*(A) — A lifting the identity map on H®(A).

The A, o-structure on the minimal model can be described more explicitly. The following construction
is given by Markl [54, §7] and is known as homotopy perturbation. Denote by B and Z the S-bimodule
of coboundaries and cocycles in A. Since S is semisimple, we can choose a splitting (S-subbimodule) H
and L such that

Z=B®oHand A=Z®&L=B®H®L,

where H(A) = H. Denote by p : A — H the projection map and by i : H — A the inclusion map. Define
alinear map h: A — Aby h=0o0n L ® H and h = (m{!|)~! on B. It follows that hm7" (resp. m{h)
is the projection to L (resp. B), and forms a homotopy from id4 to iop i.e., ids —iop = mf*h + hms.

hCAi;H

Define a sequence of linear maps A, : A®™ — A of degree (2 — n) for all n > 2 inductively as follow:
Take Ay = m%', and for n > 3, take

A, = Z(_l)é‘(m,...,rk)mﬁ o((hoX,)®---® (hol,)), (3.2.1)

where the sum is over the set
I={(k,r1,--,rg):2<k<n,r,...rp > 1L,r 4+ +7r =n},

the sign is given by

O(ry,...,1,) = Z ro(rg+1)

1<a<B<k
and h)p is defined formally to be id4. Now, define mH A H*(A)®™ — H*(A) of degree 2 — n by

mi* A = po X, 0i®".
These maps satisfy the A.-relations and H®(A) equipped with linear maps mf{.(A) for all ¢ > 2 is the

desired minimal model of A. The A.,-quasi-isomorphism ¢ : H*(A) — A is given by
in =hoM\,0i®"

Remark 3.2.2. As pointed out by Markl [54, §4], the recursive formula in Equation 3.2.1 can be
reformulated as a sum of trees: Let P, be the set of all rooted planar directed trees with n leaves and
each internal vertex has at least two incoming edges. For each T € P,, one can assign a linear map
Fr : A®™ — A by interpreting each internal vertex with k& incoming edges by my, and each internal edge
by h. Next, we would like to define a number §(T"). Let v be an internal vertex of T with k incoming
edges. Denote by r; the number of paths going from any leaves of T' to the root of T' which passes through
the i-th edge of v. Define 7 (v) = 6(r1,--- ,rg) and let 6(T) = > 61 (v). Then Equation 3.2.1

internal vertices

A= Y (=)D Fyp.

TeP,

can be rewritten as
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3.3 Cyclic Structure

Let A be a minimal A,.-category whose morphism spaces are finite dimensional. A cyclic structure
of degree d on A consists of, for each X, Y € Obj.A, a supersymmetric nondegenerate bilinear form
homogeneous of degree (—d)

(—, ) AX)Y) x AV, X) = K

satisfying the Koszul sign rule
(Mn(a1 ® -+ ® an), ans1) = (_1)n+\a1I(\a2\+~~-+|an+1\)<mn(a2 @ @any1),a1).

In general, cyclic structure is not preserved by A.,-quasi-isomorphisms, i.e., if A and A" are A-
quasi-isomorphic, and A has a cyclic structure, A’ might not have a cyclic structure. To preserve the
cyclic structure, we need a class of A,.-morphisms which respect the cyclic structure. This gives rise to
the notion of cyclic As-morphism, which was first defined by Kajiura [37, Definition 2.13].

Definition 3.3.1 (Cyclic Ao-morphism). Let A and A’ be cyclic algebras. An A,-morphism f: A — A’
is said to be cyclic if for all ay,...,a, € A,

(a1,a2) 4 = (f1(a1), f1(az2)) 4

and for n > 3

i=1

k—1
i+ 30 (i—L+D]ael+ 30 (k=0)|ae]
L=i+1

>y

i+j=n

fi g, -+ 7ai)7fj(ai+17-'-7an)> :0

Following Keller [45, §5] , we describe a way of producing Calabi—Yau triangulated categories from
Aso-categories with cyclic structure. We denote by D(A) the derived category of A..-module over A.
The perfect derived category per(.A) is the thick triangulated subcategory of D(A) generated by the
representable A..-modules A(—, X) for all X € Obj.A. In other words, per(.A) is the smallest full
triangulated subcategory which is stable under taking direct summands which contains all representable
Aso-modules A(—, X). In case A is an ordinary K-algebra, then Per(A) is the full subcategory of D(.A)
formed by perfect complexes, i.e., those quasi-isomorphic to a bounded complex of finitely generated
projective modules.

Proposition 3.3.2 ([45], §5). Let A be a Hom-finite minimal A -category with a cyclic structure of
degree d. Then Per(A) is Hom-finite d-Calabi—Yau triangulated category.

3.4 Koszul Functor

In this section, we will introduce the Koszul functor which produces quasi-free dg-algebras from A..-
algebras. There are potentially two ways to do this. The first one is to take the bar construction followed
by taking dual. The second one is to take dual followed by the cobar construction. If we start with an
Agp-algebra, then under some locally finiteness conditions, the two constructions end up giving the same
dg-algebra.

For our purpose, the second approach seems to be conceptually simpler and this is the road we will
take. In this case when our Ag,-algebra is finite dimensional, this is all good and product a dg-algebra
which is the path algebra of a dg-quiver. However, it runs into problem as soon as we consider algebras
which are not finite dimensional. This is because in general (V ® V)* and V* ® V* are not isomorphic,
and hence taking the dual of an A, -algebra does not necessarily produce an A,-coalgebra.

Following Lu, Palmieri, Wu and Zhang [51], it is useful to impose some local finiteness condition by
equipping A..-algebras with an additional grading, called the Adams grading, by an abelian group G.
We will write the degree of a bihomogeneous element a in the form dega = (deg; a,deg,a) € Z x G.
The (7, j)-th component of A will be denoted by A; Henceforth in this section, all A..-algebra will be
assumed to be locally finite in the sense that each (i, 7)-th component A; is finite dimensional. The
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multiplication maps m,’s will be assumed to preserve the Adams grading, i.e., of degree (2 — n,0).
Aoo-morphisms, A-homotopies will also be assumed to preserve the Adams grading. The suspension
functor ¥ will only shift the first grading and ignore the Adams grading, i.e., (ZA);- = A;’H.

For any Adams graded A..-algebra, its minimal model H*(A) can be chosen to be Adams graded by
choosing the splitting A = B ® H @ L described in Section 3.2 to be Adams graded.

For any locally finite Z x G-graded vector space V = € ij'7 one can take the graded dual V# =
@Hom(vj_i, K) = @(V;")*. The graded dual is better behaved than the usual dual since they enjoy

j
the isomorphisms (V#)# 2V and (V®")# = (V#)&",

In what follows, we will assume all A-algebras are augmented over the semiample algebra K". The
kernel of the augmentation map will be denoted by A.

Adams graded Ag,-algebras. We will say an Adams graded A,-algebra Ag, if for any j € G in the
Adams grading, there is an 7; € N such that the j-th component of the map m,, i.e.,

My, : @ @ A§1®~-~®A;Z—>®A§

i1yeeeylbn J1tdn=]

is zero for m > r;. Similarly, for two A-algebras Adams graded by the same abelian group G, an
As-morphism f : A — B is said to be Agy, if for any j € G, there is an 7; € N such that the j-th
component of the map f,, is zero for n > r;. The notion of Ag,-homotopy is similarly defined.

Taking graded dual followed by cobar construction. Let A be an Adams graded A..-algebra.
Taking graded dual of the multiplication maps m,,’s, we get linear maps of degree (2 —n,0)

m#t . A%y (ABsm)# o (f#)®sn,

Shifting degree, we define linear maps b,, of degree (1,0) via the following commutative diagram

(BAy* L (mAyF)Esn

lz# i(zﬁ@"
#

m

A#F (A#)@sn
Putting them together we get a linear map of degree (1,0)
d=[]v#: CAH* —[(EA)#)®" = Ts(SA)*.
which extends to a (continuous) derivation
d: Ts(RA)* —Ts(SA)*.

By the Ao-relations of the m,;,’s, the map d is a differential, i.e., d?> = 0. We thus get a dg-algebra
Q(A#) = (Ts(XA)#,d). This construction can also be applied to A.-morphisms to get dg-algebra
morphisms. Thus, we have set up a functor, which we call the completed Koszul functor,

E : (locally finite Ao-algebras)—s(quasi-free dg-algebras)°P.

This functor sends As.-morphisms to dg-algebra morphisms and A..-homotopies to dg-homotopies.
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A variant of the Koszul functor. There is a variant of the Koszul functor for Ag,-algebras: instead
of taking product, we take direct sum of the b,’s to get a linear map of degree (1,0)

d=@v# : (SAF— PUEAP)# = To(RAY,
which extends to a differential - -
d:Ts(ZA)* —Tg(LA)¥.
The component of d which maps ((ZA4)#)®P — (($A)#)®4 is given by
> d® @bt @id®.

r+1+t=p
r+s+t=q

This set up a functor
E : (locally finite Ag,-algebras)— (quasi-free dg-algebras)°P

which sends Afgn-morphisms to dg-algebra morphisms and Ag,-homotopies to dg-homotopies. For an
Agn-algebra, the difference between F(A) and E(A) is analogous to the difference between formal power
series and polynomials. The dg-algebra F(A) will be called the Koszul dual of A.

Koszul functor as a construction of dg-quiver. Recall that an A -category is said to be finite if A
has a finite set of objects and all morphism spaces are finite dimensional. Note that a finite Agy,-category
is characterised by the property m, = 0 for n > 0. When the Koszul functor is applied to a finite
augmented Agy,-category A, it can be viewed as a construction which produces a dg-quiver @ 4: Obj (A)
correspond to vertex set of @ 4; degree i edges between two vertices u and v correspond to a basis of the
vector space A'~i(u,v)¥. Then KQ4 = E(A) and KQ4 = E(A) and the dg-structure on E(A) turns
Q 4 into a dg-quiver. We may sometimes abuse notation and denote @ 4 by E(A), i.e., we are identifying
a quiver with its path algebra.

Conversely, every dg-quiver can be constructed this way. Given a dg-quiver @), we construct an
augmented Ag,-category by taking

Obj (A) = {vertices in Q},
and for any vertices u, v, we take the augmentation ideal A to be
A’ (u,v) = K{degree (1 — i) edges in Q}",
or in other words,
Kv & K{degree (1 — i) edges in Q}¥ ifu=wvandi=0,

A (u,v) = { K{degree (1 — i) edges in Q} if u#vandi=0,
K{degree (1 — 1) edges in @}V if i £ 0.
We then define the shifted higher multiplication maps b, by
bu(ey,...,en) = Z (Coefficient of e; - - - e, in de)e”,
e edges in @
bu(el,...,v,...,e) =0 forn#2and
by(v,e”) = (=1)l¢ by(e¥, v) = eV

where e; are edges in @ and v are vertices in (). The higher multiplication maps m,, are then given by

— Vv . Vv Vv . .
mn(eY, ... e)l) = (=1) = DleilF+2leqsl+les | E (Coefficient of e; - - - e, in de)e",
e edges in Q
mu(e),...,v,...,e.) =0 forn#2and

ma(v,eY) = ma(e’,v) =e".

The Ao-relations follows from d? = 0, and by construction we have E(4) = KQ.
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Bar construction followed by taking graded dual. As mentioned in the beginning of this section,
there is another approach to produce quasi-free dg-algebras from A.-algebras. Shifting the degree of the
multiplication map m,,, we get a linear map b,, of degree (1,0) by the following commutative diagram

Assn M 4

(zA)@sn A

In other words, b, : (¥A)®s"—¥ A is the map which sends
a4 ® - @ ay — (=1) Dot d 2 atan1y (g o g,
where the sign comes from the Koszul sign rule. Putting them together, we get
b=EPbn: Ts(2A) = P(TA)®*"—3TA
which extends to a coderivation map
b:Ts(XA)—Ts(ZA).

whose component mapping (£A4)®59 — (3 A)®s? is given by

Z id®" @ b, @ id®!

r+14+t=p
r4+s+t=q

By the A..-relations of m,,’s, this map is a codifferential, i.e., b> = 0. We will denote this dg-coalgebra
by BA. Taking graded dual, we get a differential

b . (BA)#* —(BA)*

and a dg-algebra (BA)#.

Equivalence of the two constructions. Suppose A is Ag, and E(A) is locally finite. Then since
E(A)% is finite dimensional, the right hand side of

[E(A); = @ @ (S © - o [(SA)#]r
n>1 d1+-Fin=i
Jittin=j

:EB EB (BA)2 @ @ (SA)r]
n>1 iy tin=i
Jite+in=J

is a finite sum. Hence

E(A)* = P Hom(E(A)},K)

2¥)
PP B (A o0 @A
0, n>21i1+-+in=1
Jitt+in=3

-PD D EAle-eEA]]

i,j n>1 i1+ +in=i
Jite+in=J

= Ts(2A)
= BA.

Remark 3.4.1. Note that in general E(A)# 2 BA since for infinite sum, we have Hom(@ V;, W) =
[THom(V;, W). Hence the assumption E(A) is locally finite is crucial.
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Comparing the differential, we arrive at

Proposition 3.4.2. Let A be a locally finite Agn-algebra. Suppose E(A) is also locally finite. Then
E(A) = (BA)7".

Proof. We have already shown E(A) = (BA)* as a vector space. To see the two maps b* and d are the
same, it suffices to compare their components mapping ((XA)#)®? — ((XA)#)®? and we are done. MW

Koszul duality. The following theorem justifies calling E(A) the Koszul dual of A.

Theorem 3.4.3 ([51], Theorem 2.4). 1. Let A be a locally finite Aan-algebra. Suppose E(A) is locally
finite. Then E(E(A)) is Ax-quasi-isomorphic to A.

2. Let A be a locally finite dg-algebra. Suppose E(A) is also locally finite. Then there is a quasi-
isomorphism of dg-algebras E(E(A)) — A.

Proof. Denote by Q the cobar construction on dg-algebras. Then by definition, F(A) = Q(A#) for any
locally finite dg-algebras A. By Proposition 3.4.2, E(E(A)) = E((BA)#) = QBA. By [48, Lemma
2.3.4.3], QBA and A are A.-quasi-isomorphic and we are done.

Now if A is a dg-algebra, we have a quasi-isomorphism of dg-algebras QBA — A by [48, Lemma
1.3.2.3]. By Proposition 3.4.2, we are done. |

3.5 Quotient and Smash Product

In this section, we will fix a finite group G and an algebraically closed field K with char(K) t ord(G),
and try to construct a quotient A.,-category. The reason for the assumption on the characteristic of K
is the following theorem which can be found in almost any standard textbooks on representation theory
of finite groups.

Theorem 3.5.1 (Maschke). Every finite dimensional representation over K of G is completely reducible,
i.e., every G-invariant subspace has a G-invariant complement.

Proof. Let V be a finite dimensional representation and W an invariant subspace. Choose a projection
w:V — W. Define a G-equivariant map ng : V — W by

1 1
ma(v) = &y > gr(g o).

geG

Take W+ = ker 7 and we are done. [ ]

The set of all isomorphism classes of irreducible representations of G will be denoted by Irr (G), and
irreducible representations by Greek alphabets p, o, T etc.

Quotient construction. The quotient construction described below is essentially an incarnation of
the McKay quiver. Suppose G acts on an A,,-category A by fixing all objects of A and acting on the
morphism spaces by strict A,.-isomorphisms. One can construct a quotient A, -category A/G as follows:

Obj (A/G) = Trr (G) x Obj (A)
(A/G)(p x u,0 x v) = Homg(p, A (u,v) ® o)

To define the multiplication maps m,’f/G7 observe that A*(p x u,o x v) = [Hom(p, o) ® A*(u,v)]%. We
have natural maps of degree 2 — n

°® m;:‘ : [Hom(pn_l, pn) @ A(vn—1, 'Un)] @ ® [Hom(Pm p1) @ A(vo, Ul)]—>Hom(P07 pn) ® A(vo, vn)

(Ozn®an)®..o®(al®a1)+—)(ano...oal)(g)mﬁ(an’... ,ar),
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which satisfy the A -relations. Since G acts on A through strict Aso-isomorphisms,

g-(e@mi) (o ®an) @@ (1 ®a1) =g [(an o 0ar) @mi(an, -, a1)]
[9-(ano-0a)]®@g-m(an, -, a1)
gran)o--o(g )] @my(g-an, - ,g-a1)

[
=(e@m)(g- (an®an), g (a1 ®ay)).

This shows o ® mﬁ descends to the G-invariant part to linear maps of degree 2 — n
m @ (A)G)(pnr X Vn—1, pn X va) ® (A/G)(po X vo, p1 X v1) = (A/G)(po X V0, pn X )

satisfying the A..-relations.

Thus we obtained a new A..-category A/G. Note that the quotient construction preserves most
properties of the original A, -category: if A is finite dimensional/A,, / Ag, /unital /augmented /connected,
then so is A/G. If A has a G-invariant cyclic structure of degree m, then so does A/G: the bilinear
forms on A

(= =) 4 s Alu,v) ® A(v,u) — K

induce bilinear forms
(= =) : Hom(p,0) @ A(u,v)] @ [Hom(o, p) © A(v, u)] = K
(a@a)@ (B@b) > tr(af)(a,b)
which restricts to the G-invariant part
(= ajc (A/G)(pxu,0 xv) @ (A/G)(0 xv,pxu) > K

These bilinear forms are also non-degenerate and cyclically invariant since the trace maps tr are.

A variant of the quotient construction. There is a variant of the quotient construction. Given an
Ao-algebra A over a semisimple algebra S = K", on which G acts by strict A..-isomorphism, one can
define an A,-algebra over S ® KG as follows. The underlying Z-graded S ® KG-bimodule is given by
Homg(KG, A ® KG), with S @ KG acting on the left and right by

(u@g)p(v @ h)) (=) = up(—g)(v& h).

The multiplication maps m,, are defined similarly as in A/G. Since KG = @ p®I™? we see that
pelr (G)

Homg(KG,A®KG) = P Homg(p, A® g)®dime)dima),
p,o€hr (G)

i.e., this construction is a variant of A/G which takes into account the multiplicity of each irreducible
representation in the regular representation of G. Note that when G is abelian, the two constructions
coincide since every irreducible representation of G are 1-dimensional. In general, the two constructions
are related by a Morita functor. Recall that by Maschke’s theorem, KG is a semisimple algebra. In
fact, KG = @ Endp canonically as an algebra. Denote by e, the matrix in Endp with 1 in the

p€lrr (G)
(1,1)-entry and O in all other entries. Then p = KGe, and all the e,’s are orthogonal idempotents, i.e.,
e,)? =e, and e e, = 0 if p # 0. The element e = e, € KG is an idempotent element which is
P P P p

p€lrr (G)
full in the sense that KGeKG = KG. Moreover, the algebra Sg := eKGe is commutative and is spanned
by all the e,’s. Since é = (1g ® e) is also a full idempotent in the semisimple algebra S @ KG with
(S ®KG)é =S5 ® Sg, we have the following
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Theorem 3.5.2 (Morita Equivalence, [7] Lemma 2.2). The functor
F : Bimod (S ® KG) — Bimod (S ® Sg)
M — eMe
is an equivalence which commutes with tensor product in the sense that

F(M @ N)=F(M) ® F(N)
SRKG S®Sa

are naturally isomorphic through the isomorphism

é(m ® mn)é—eémé ® éneé.
S@KG S®Sa

Since the Morita functor F : Bimod S ® KG — Bimod S ® Sg commutes with tensor product, the
(S ® S¢)-bimodule F(Homg(KG, A ® KG)) has an Aoo-structure given by F(m.,).

Proposition 3.5.3. The Ay -algebras F(Homg(KG, A® KG)) and A/G are strictly A -isomorphic.

Proof. This follows by observing that

F(Homg(KG, AR KQG)) = @ Homg(KGe,, A ® KGe,) = @ Hom(p,A® o) =A/G
p,o€lrr (G) p,o€lrr (G)

and that the m,,’s of the two A.,-algebras are defined in the same way. |

Quotient of minimal model. We show that if G acts on A by strict A..-isomorphisms, then it also
acts on its minimal model H®(A) by strict Ay -isomorphisms and moreover, they give Ay -isomorphic
quotient. Recall that in the construction of minimal model (Proposition 3.2.1), one has to choose a
splitting

Z=BeHand A=ZadL=BodH®L. (3.5.1)
Since the group action commutes with ms!, the space of cocycles and coboundaries Z and B are G-

subrepresentations. If we choose the splitting equivariantly, which is possible by the Maschke Theorem
3.5.1, we get the diagram

hCAiH

where all maps are equivariant. Since the Ao-structure on H*®(A) is given by mg A

where ), is defined inductively by Ay = m3' and equation 3.2.1

= po A, 0i®,

A= (1)t o (Ko X)) @ @ (ho Ay,)),
I

we see that G also acts on H*(A) by strict A-isomorphisms. Hence we can form the quotient H*(A)/G.
We show that one can choose an A..-structure on H*(A/G) which is strictly Aoo-isomorphic to H*(A)/G.

Recall that mf‘/ @ is the restriction of

id@mi: @ Hom(p,0) ® A — @ Hom(p,0) ® A
p,0€lrr (G) p,0€lrr (G)

to its G-invariant part. Hence if we choose the same equivariant splitting (equation 3.5.1), the space of

cocycles and coboundaries of (A/G, mf‘/ G) are

Z/G = @ Homg(p,o ® Z) and B/G= @ Homeg(p, 0 ® B)
p,o€lr (G) p,0€lrr (G)
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respectively. Similarly, if we denote
H/G = @ Homg(p,c ® H) and L/G= @ Homeg(p,0 ® L),
p,o€lr (G) p,o€lr (G)

we have splittings
Z/G=B/G®H/Gand A/G=Z/G®L/G=B/G®H/G® L/G

and a diagram

(id®@p)©

(id®@h)® gA/G H/G

(id®i)“

satisfying
id/q — ([d@i)% o (id@p)® =m0 (id@h)® + (id® h)E o my/ 7.

We then have as in Equation 3.5.1 a family of linear maps Aot (A/G)®" — A/G. One can then show
by induction that A, is the restriction of the linear maps

Rn
0R Ay @ Hom(p,0) ® A — @ Hom(p,0) ® A
p,o€lrr (G) p,o€lrr (G)
to its G-invariant part. Hence mnH.(A/G) is the restriction of o ® mnH.(A) ie., mg.(A/G) = mff'(A)/G.

We have thus proved the following

Proposition 3.5.4. Let A be an Ay -category on which a finite group G acts by Aso-isomorphisms. Then
one can choose a minimal model H®(A) of A on which G acts by As-isomorphisms, and a minimal model
H*(A/G) of A/G, such that there is an Ax-isomorphism H*(A)/G = H*(A/G).

Smash product. Suppose G acts on an Ay ,-algebra A over S = K" by strict A,.-isomorphisms. One
can construct the smash product A..-algebra A#G as follows. As a vector space, A#G = A ® KG.
There is a (S @ KG)-bimodule structure on A ® KG by

(u®g)(a®z)(v®h)=u(ga)v ® gzh,
for any u,v € S4, g,h € G and = € KG. The multiplication maps m;*#¢ are defined by, for g; € G,
mp#G (a1 ® g1, ..., a0 @ gn) = My (a1, 9102, 910203, -, 91 Gn—10n) @ g1 Gn-
Using the isomorphism
(AR KG)®seren 5 A®s™ @ KG
(a1 ®91)®...®(an ®gn) = (01 ® G102 @ ... ® g1+ gn—1an) @ g1 " * Gn,

we have the commutative diagram

(AR KG)®soren =5 A®sn @ KG . (3.5.2)
mf#ci lmf@idc

Again, the smash product preserves most properties of the original A..-algebra: if A is finite
dimensional/ A /unital /augmented/connected/cyclic of degree m, then so is A#G.

Proposition 3.5.5. The two dg-algebras E(A#G) and E(A)#G are isomorphic. The two algebras
H*(E(A#Q)) and H*(E(A))#G are isomorphic.

Proof. The first claim comes from the commutative diagram (3.5.2). Taking cohomology of the first
claim, we have H*(E(A#G)) = H*(E(A)#G). Since the functor (—) ® KG is exact, and hence preserves
cohomologies, we have H*(E(A)#G) = H*(E(A))#G and the second claim follows. [ |
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Relation between Quotient and Smash Product. The following proposition relates the smash
product and the quotient construction with multiplicities.

Proposition 3.5.6. The A-algebras Homg(KG, AQKG) and (A°P#G)°P are strictly Aso-isomorphic.

Proof. Observe that Homg(KG, A @ KG) =2 A ®@ KG as an S4 ® KG-bimodule via the map ¢ — ¢(1),
with inverse given by sending a ® g € A® KG to the map (h — ha® hg) for all h € G. We wish to write
down the induced Aq.-structure on A ® KG under this isomorphism. To do this, we first write down
explicitly the map h +— ha ® hg € Homg(KG, A ® KG) as an element in [A ® Hom(KG, KG)]Y. Define
the K-linear map ¢ : KG — KG by

0  otherwise.

kg ifh=k
wi(h)={

Then the map h — ha ® hg correspond to the element > ka ® ¢f. We will need the following simple
keG

lemma for computation.

Lemma 3.5.7. 1. The group G acts on @j, by £ - i = ¢,

2. Compositions are given by

v ifk=th
9oh — e if k=
LR {0 otherwise.

Now we can compute the induced m*®¥% on A ® KG. Since

Z M (knan @ @77, kiar @ o) = Z Mo (ks -, k1a1) ® 9 o -+ 0 i
k1,....kn€G kyokn€G
A tdn
= Z my, (klgl o Gn—10ny .. klal) ® @ii !
ki1€G
A g
= Z klmn (91 Gn—10Gny - . 7a1) ® <‘0Z1 ! ’
k1€G

we conclude that

Mm@ (1 @ g, ... a1 @ g1) =M (g1 Gn-10m, -, 01) @ (g1 gn).
Now observe that (A°P#G)°P has the same objects and morphism spaces as A ® KG, with A-
structure given by

mAHFD (a0 @ gy @ g1) = my N a @ g, an @ g0)

— mﬁ"p(ahglag, ey g1 ~gn_1an) X (91 .. gn)
= mf(gl o On—1Qn, - .- 7a1) X (gl .. gn)

which is the same as that of A ® KG, as desired. [ |

Corollary 3.5.8. The Ay -algebras A/G and F((AP#G)P) are strictly Aoo-isomorphic.
Proof. This is immediate since A/G = F(Homg(KG, A ® KG)) by Proposition 3.5.3. [ |

Proposition 3.5.9. The two dg-algebras E(A/G) and E(A)/G are isomorphic. The two A -algebras
H*(E(A/QG)) and H*(E(A))/G are As-quasi-isomorphic.

Proof. By Corollary 3.5.8, E(A/G) = E(F((A°P#G)°P)). Since the Morita equivalence functor F in
Theorem 3.5.2 commutes with tensor product, it also commutes with the Koszul functor F, and we
have E(F((AP#@G)°P)) =2 F(E(A°P#G)°P). By Proposition 3.5.5, E(A°P#G)°P = (E(A)°P#G)°P. By
Corollary 3.5.8 again, F((E(A)°®#G)°?) = E(A)/G and we arrive at the first claim. Taking coho-
mology, we conclude H*(E(A/G)) and H*(E(A)/G) are As-quasi-isomorphic. By Proposition 3.5.4,
H*(E(A)/G) and H*(E(A))/G are Ax-quasi-isomorphic and we are done. [ |
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3.6 Tensor Product

In this section, we give a review on how to construct tensor product of A..-algebras. Except Proposition
3.6.1, this is essentially a summary of Amorim and Tu [2].

Tensor product of a dg-algebra with an A,-algebra Before looking at the general case, let us
look at the special case where one of them is only a dg-algebra rather than a full-fledged A..-algebra.
When both of them are dg-algebras, this is well-known and we take

mi®Y =mi @idy +ida@mf’  and  mi®Y =mg @ mg” (3.6.1)

If A is a dg-algebra and A’ is an A..-algebra, there is a natural generalization:

mi @4 = mi' @id) +ida@m{’  andforn>2 mi®" =mi o (mf o (mg o () @m;’. (3.6.2)

n — 1 iterations

For simplicity, we will denote the n-th iteration of m4 by (m4')°™. Direct computation using chain rule
on A and the A, -relations on A’ shows the above definition of m,’?®‘4 satisfies the A..-relations:

Z (—1)ab+cmf_§lf}i_b ( dA®A' ® mA®A ® 1dA®A')

a+b+c=n
= m’f@A/ o mfl@A/ + Z (—1)”_1m7‘3®‘4/ o (ldA®A’ ® mA®A ® 1dA®A,>
at+c=n—1
+ Z DremAs o (dA®A’ emi® @ 1dA®A'>
a+b+c=n
2<b<n—1
= Y (mite(mg)n T = (mg)°n o (5 @ mit @id3)) @ my
at+c=n—1
+ Y DT m) T e (md o (4 @ mi @idg))
a+c=n—1
> D)) e (i o (af e mit @idf)
a+b+c=n
2<b<n—1
=0.

Tensor product of A,.-algebras. For general A..-algebras, there is no natural way to define tensor
product. There are various ways to construct an A,.-structure on A® A’ which are A,.-quasi-isomorphic
to each other, but in general not strictly A..-quasi-isomorphic. In the following, we describe some of the
constructions. Saneblidze and Umble [61] were the first to construct an A,.-structure on A ® A" whose
mA®4" are given by a closed formula in terms of mf and mJAI where j < n. Markl and Shnider [55] later
reformulated their construction as a diagonal map on the A,-operad A,: Given a chain complex (A4, d),
there is an associated operad Ends. Any A-structure m2 on A with m{* = d can then be described
as an operad homomorphism p : Ao, — End4. Now, given any two chain complexes A and A’, there is
a natural map of operads End4 ® End s — End g 4/. The problem of constructing an A..-structure on
A ® A’ then becomes the problem of constructing a “canonical” diagonal A : Ay, — As ® As. For if
such a diagonal exists, one can simply take the composition

PARA’ - Aoo A) Aoo ® ./4 pA®pA/ EndA & EndA/ *)EndA(@A/

to give an Aoo-structure on A® A’. Amorim [1] also reformulated the Saneblidze-Umble construction in
terms of dg-algebras: For every A..-algebra A, one can construct a dg-algebra Hom(A, A) whose space
of cycles are the A,.-endomorphisms of A and whose homology are A..-endomorphisms of A up to A-
homotopy. This dg-algebra Hom(A, A) is A-quasi-isomorphic to A. One then forms the tensor product
dg-algebra Hom(A, A) ® Hom(A’, A’) and uses homology perturbation to transfer the dg-structure on
Hom(A, A) ® Hom(A’, A") to an Aeo-structure on A ® A’. All A-structure on tensor products defined
above are A.-quasi-isomorphic.
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Tensor product for Adams-graded A.,-algebras. In the case of Adams-graded A..-algebras, the
tensor product A..-structure also preserves the tensor product Adams-grading on A ® A’ as m;‘l‘@’A are
given by a closed formula in terms of m;‘ and m;‘ where j < n.

Cyclic structure. Given two cyclic A.-algebras A and A’, there is a natural inner product on A® A’
defined by
(a1 ® a1,a2 @ 2) 5 4 = (=1)11192 (a1, a5) (a1, a2) 4 (3.6.3)

One might ask whether the tensor product constructions described above are cyclic with respect to this
natural inner product. In the special case where one of the A..-algebra is a dg-algebra, it can be checked
directly that the natural tensor product structure given by Equation 3.6.2 is cyclic. However, for full-
fledged A.o-algebras, all the tensor product constructions described above do not preserve cyclicity in
general. As Tradler pointed out in [67], m§4®A/ in the Saneblidze-Umble construction is already not
cyclic. The first construction of tensor product of cyclic A.-algebras which respect the natural inner
product as in Equation 3.6.3 seems to be given by Amorim and Tu in [2]. There, they constructed a
cyclic diagonal on the A,.-operad and showed that any tensor product A..-structure defined by a cyclic
diagonal are cyclically A.-quasi-isomorphic to each other. As the A.-structure is constructed by a
diagonal, the mA®4" can in principle be written as a sum of tensor products and compositions of m;-‘

n
and mf/ for j < n. However, Amorim and Tu only gave explicit formulae for mﬁ®A/ up to n = 4 and

stated that the general formulae appeared to be a very complicated combinatorial problem.

Convention. As all A, -structures on tensor products we described above are A,.-quasi-isomorphic,
in principle it makes no difference to which one uses. Hence we will not distinguish them and only write
A® A’ to denote A-tensor product. However, the two constructions given by Amorim and Tu [2] and
Amorim [1] would be the most important in this thesis as the first one preserves cyclic structures and
the second one reduces tensor product of A..-algebras to tensor product on dg-algebras.

Koszul functor and tensor product. The following proposition essentially says that under some
locally finite conditions, the Koszul functor commutes with the A,-tensor product. Recall the bar
construction functor B sending A..-algebras to dg-coalgebras defined in Section 3.4.

Proposition 3.6.1. 1. Let A and A’ be two Ayo-algebras. Then there is a quasi-isomophism of dg-
algebras
B(A® A)# — B(A)* @ B(A")#

and an Ao -quasi-isomorphism of As-algebras
H*(B(A® A'Y#) = H*(BA)#) @ H*((BA)¥).
2. Let A and A’ be locally finite Adams graded Agyn-algebras. Suppose one of the A -tensor product

structure on A® A’ is Agn and that E(A), E(A") and E(A® A') are all locally finite. Then there
18 a quasi-isomorphism of dg-algebras

E(A A= E(A) @ E(A)
and an A -quasi-isomorphism of A..-algebras
H*(E(A® A")) = H*(E(A)) @ H*(E(A")).

Proof. Using Amorim’s version of A,.-tensor product which reduces As-tensor product to dg tensor
product in [1], it suffices to prove the proposition when both A and A’ are dg-algebras. Both

B(A) @ A9 B(A)® A" -+ S4®Sa and BARA)R@ AR A — Sa® Sar

are semi-free resolution of S4 ® Sa/. Hence there is a chain homotopy equivalence between

f
B(A A)@ A A " B(A) @ A B(A)® A'.
g
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Now,
B(A® A)=B(A® A)® (A® A)aga (Sa ® Sy)

and similarly
B(A)® B(A') = (B(A) ® A® B(A") @ A') aga(Sa ® SY).

Hence we have a chain homotopy equivalence

f®idsgar
B(A® A') ~ B(A)® B(4') .

9®id s ar

By MacLane [53, Chapter X, Theorem 12.2], the map g ® idaga is given by inclusion maps followed by
the shuffle product on B(A ® A’)

B(A)® B(A') 5> B(A® A)@ B(A® A') 24 B(A® A))

a®d —~ @) (1®d)— (a®1)*(1®d)
which is a coalgebra map. Taking dual, we obtain a dg-algebra morphism
¢:B(A® A)* - B(A)* @ B(A)*

which is a quasi-isomorphism. By homology perturbation, we have the following chain of A.,-quasi-
isomorphisms

H*(B(A® A#) = B(A® A# = BA* @ BA'# =~ H*(BA*)® H*(BA'#).

The second statement follows from the observation that under the assumptions, we have E(A)
(BA)#, E(A") = (BA)* and E(A® A’) = (B(A® A’))# as dg-algebras by Proposition 3.4.2.



Chapter 4

Quivers with Superpotential

This chapter is devoted to the study of quivers with superpotential.

In section 4.1, we define quivers with superpotentials. Our definition of quivers with superpotential
is taken from van den Bergh [70], where the completed path algebra of a quiver with superpotential is
known as a deformed DG-preprojective algebra there.

Section 4.2 gives a correspondence between quivers with superpotential and the Koszul dual of Agy,-
categories with cyclic structures. Using this correspondence, we define the notion of product of quivers
with superpotential and the notion of quotient of quivers with superpotential by finite groups.

In section 4.3, we follow van den Bergh [71] and prove that the path algebras of quivers with superpo-
tential are Calabi—Yau algebras, and hence the categories of representations of quivers with superpotential
are also Calabi—Yau.

Finally, Section 4.4 describes quivers with superpotential of dimensions 1 to 4. In particular, we
describe in dimension 3 how our definition of quivers with superpotential as dg-quivers is connected to
the old definition of quivers with superpotential as quivers with relations given by physicists Berenstein
and Douglas [5], Braun [12], Douglas and Moore [23] and later by mathematicians Ginzburg [27] and
Derksen, Weyman and Zelevinsky [22].

4.1 Quivers with Superpotential

In this section, we introduce the notion of quiver with superpotential. The presentation here essentially
follows van den Bergh [70, 71].

Notations and Conventions. We will fix a field K of characteristic zero. By a cycle in a quiver @),
we will mean a closed path forgetting the starting and ending points, or more precisely, a closed path as
an element in the vector space KQ/[KQ, KQ]. For simplicity, we will write KQcy. = KQ/[KQ, KQ]. For
any edge e in a graded quiver @, we will denote by 0. : KQ — KQ ® KQ the double derivation of degree
le| acting on any edge f in @ by

Ouf = {h(e) ®tle) ife=f

0 otherwise.

We will also denote by 972 : KQ — K@ the derivation m o ¢ o 0., where m is the multiplication map
in KQ and o : KQ ® KQ is the interchange operator sending a ® b + (—1)1*lb ® a. This derivation
vanishes on commutators and hence descends to a derivation 9y : KQ¢y. — K@Q. For other notions in
noncommutative calculus such as noncommutative symplectic form and double Poisson bracket, please
refer to Chapter 1.

41
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Construction of Quivers with Superpotential. Let Q be a graded quiver with degree of all edges
lying in the interval [2 —m, 0]. Suppose Q is equipped with a pairing (—, —) of degree 2 —m on the set
of edges in @) such that

o (a,b) = —(=1)lell’l(b, a)
e (a,b) =0 unless t(a) = h(b) and t(b) = h(a)
e the matrix {(a,b)} is invertible.

Let (—, —) denote the dual quadratic form, i.e., the pairing on the dual space of the set of edges in Q such
that the matrix {(a",b")} is given by the inverse of {(a,b)}. Then there is a noncommutative symplectic

2-form of degree 2 — m
1

w = 5 Z ) <:Cv,yv>ddR$ddRy.
xz,y edges in Q

Proposition 4.1.1. The 2-form w is a noncommutative symplectic form.

Proof. We show the map ¢, : ]D)ers(KQA) — le(KQA) defined by © — tgw is an isomorphism by
exhibiting an inverse. For any edge a € Q 4,

1
W) =ww=5 Y (@) (0n)dary + (1) dara (2Gy)
z,y edges in Qa

= Z (a”,y")dary.

y edges in QA
By direct calculation, one can see that the inverse of i, is given by

ddRa g Z (a,b)@b.

b edges in Q4

The symplectic form w induces a Poisson double bracket {—, —} : KQ ® KQ — KQ ® KQ.

Proposition 4.1.2. For any edge a € Q, we have the formula

fo.-3= > (a,b)d.

b edges in Q

Proof. By definition of the double bracket, this follows from

Z (a,b)rg,w

b edges in Q

1 o T o
- Z Z 5(0,, b)<xv7yv> ((3bz)ddRy + (*l)lﬂbl‘ lddRI(a},y)>
b edges in Q z,y edges in Q4
1

=3 Z (a,2) (2", y")dary + (a,y)(y", 2" )darz

z,y edges in Q4
= Z (a7m)<xv7yv>ddRy
z,y edges in Q

= ddRa.
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The double Poisson bracket induces the Kontsevich bracket (c.f. Section 1) {—, =} : KQ ® KQcye —
KQ, which descends to a Lie bracket {—,—-}: KQCyC ® KQCyC — KQCyC. Let ® € KQCyC be a sum of
cycles of degree 3 — m which satisfies the master equation {®,®} = 0 in KQCyC. Then one can define
d:KQ — KQ by d={®,—}.

Proposition 4.1.3. The linear map d is a differential of degree 1. For any edge a in Q, we have
da = (=1)"FFm N (a,b)059.
b edges in Q

Proof. Since ® is of degree 3 —m and {—, —} is of degree m — 2, d is a map of degree 1. Now, by Jacobi
identity,

1
d2(a) = {(I)v {<I>,a}} = 5{{<b’ (I)}a a} =0.
Hence d is a differential. For any edge a, we have
{®,a} =mo {®,a} = —(~1)2 T2 o o0 G = (—1) T ST (0, 0)5®
b edges in QA

where the last equality is by Proposition 4.1.2. [ |

This differential d on KQ is compatible with the double Poisson bracket.

Proposition 4.1.4. The double Poisson bracket {—, —} is a dg-double Poisson bracket of degree m — 2,
i.e.,

d{a,b} = {da,b} + (~1)lH™2fa db}.
Proof. The proposition follows readily from Proposition 1.2.19 and the definition d = {®, —}. [ |

Let Q be the quiver constructed from Q by adding to each vertex v in @ a loop v* of degree 1 — m.
Define a differential on K@ by

d(v*) =vlv  for any vertex v, where ¢ = Z (¥, yV )y,
z,y edges in Q
d(a) = {a,®} for any edge a with degree a <2 —m.

The following lemma shows that we have indeed defined a differential on K@Q.
Lemma 4.1.5. d*(v*) = 0.
Proof. Tt suffices to show df = 0, for then d?(v*) = d(vfv) = v(df)v = 0. Using Proposition 4.1.3,

dl = Z (¥, y") ((dx)y + (—1)‘z|xdy)

z,y edges in Q

= Y (DR V) (@ b) (9 R)y + (1) V) (y, b)2 (0] @)

b,x,y edges in Q

> CneTgey - Y a(@ze)

y edges in Q z edges in C:',)

= (sum of all cyclic permutations of ®) — (sum of all cyclic permutations of ®)
=0.

The dg-quiver @) built in this way is called a quiver with superpotential ® of dimension m.
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Definition 4.1.6. A quiver with superpotential of dimension m is a dg-quiver @ together with an element
® € KQcyc of degree 3 —m in the following form:

1. The degrees of all the edges of @ lie in the interval [1 —m,0], i.e.,

Eé:@ unless 1—m <i<0.

2. For each vertex v there is exactly 1 loop v* of degree 1 —m at the vertex v, and there are no other
edges of degree 1 —m, i.e.,

Eé{m = H Eé{m(vm) with Eé{m(v,v) = {v*}.

veVg

3. For any i € [2 — m, 0], there is a pairing
(——):EGgx EZ ™" =K
between edges of degree ¢ and edges of degree 2 — m — 4 such that
b (a> b) = _(_1)‘a“b‘ (b7 a)
e (a,b) = 0 unless t(a) = h(b) and ¢(b) = h(a)
e the matrix {(a,b)} is invertible.

4. For any edge a with dega € [2 —m, 0], the differential is given by

da = {®,a}.

5. For any degree 1 — m loop v*,

dv* =wv E (¥, yV oy | v,
z,y edges in Q
deg z,deg y€[2—m,0]

where (—, —) is the dual pairing of (—, —).

Remark 4.1.7. Note that the above definition automatically implies that the superpotential ® satisfies
the master equation {®, ®} = 0in KQyc as d*(a) = {®, {®,a}} = 1 {{®, ®},a} = 0 implies I{®, @} =0
for all edges a in Q). Hence the data of the subquiver Q together with the antisymmetric pairing (—, —)
and the superpotential ® satisfying the master equation {®, ®} = 0 in KQ.y. uniquely determine the
quiver with superpotential @ by the above construction.

4.2 Characterisation of Quivers with Superpotential

In this section, we would like to characterize quivers with superpotential in terms of Ag,-algebras. Recall
from Section 3 that for any dg-quiver @Q, its path algebra K@ is isomorphic to F(A) for a unique (up to
strict Aso-isomorphism) Ag,-algebra A. We would like to show that for a quiver with superpotential @,
the corresponding Agy-algebra is equipped with a cyclic structure. Conversely, given any Ag,-algebra
with cyclic structure, its Koszul dual E(A) is the path algebra of a quiver with superpotential.

All Agp-algebras in this section will be assumed to be augmented, finite (it has finite number of
objects and finite dimensional morphism space) and positively graded (A* = 0 for ¢ < 0, where A is the
kernel of the augmentation map).

Let Q be a quiver with superpotential. Recall the Ag,-category A such that KQ = E(A) is con-
structed by
Obj (A) = {vertices in Q}.
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Kwv ifi=0andv=w
Al (v,w) = { K{degree (1 — 1) edges in Q from v to w}" ifi>1
0 otherwise.

with the A..-structure given by
my : A(v,v) ® A'(v,w) = A'(v,w) v®a—a

my : A (v, w) @ A(w,w) = A'(v,w) a@w—a
Myt A (0y1,0,) @ -+ @ A (v, v1) — AT T F2T0 (40 ) for ij > 1

0 @ @a) — (—1)Dlanlt+2lag |+ Z (Coefficient of a,, - --a; in da)a"

n
a edges in Q

and zero otherwise. For any edge a € @, denote by |a¥| the degree of @V in the A,-category, i.e.,
la¥| =1 — |a|. Define a pairing (—, —) , : A® A — K of degree m by

<a’v7bv>_,4 = (_1)‘(1 |<av7bv>'
Then for ag,...,a, edges in Q,
<mn(a7\;7 ey ai/)v aPJ/>_A
= (—1)(”_1)‘“7v1|""""'2|‘LBVH"“2v| Z (Coefficient of ay, - --ay in da)(a”,ay) 4

a edges in Q

= Z (—1)("_1)|“X|+”'+2|a5|+|a¥‘+|“v‘+l+|”|+m(a, b)(Coefficient of a,, - --a; in 9y ®){a”, ay)

a,b edges in Q
= (=1)(=Dlaglt-+2lag [ +lag [ +m+1)(laol+1) (Coefficient of ay, - - - a1 in 0°. @)
ao
= (= 1) Dlagl+-+2lag|+aoz [ +(m+1) (a0 +1) (Coefficient of agay, - - - a1 in @)

\% N \ . . =z
= (_1)(n_1)‘an|+'“+2|as ‘—‘1-‘0.2 |+1+‘a0‘+m(coeﬂi(}lent Of Ay -+ Q100 1IN (b)’

where ® = sum of all cyclic permutations of ®. Similarly,

(mn(ay_q,...,a8),a0) 4 = (=1)(m=Dlan—af+-F2az|+larl+(m+D(lanl+1) (Coefficient of ay, - - - arag in ).
Since ® has degree 3 — m, we have (my(a,,,...,ay),ay) 4 = (mn(ay_1,...,a3),a,) 4 = 0 unless |a,|+
co+lagl =3 —m. If |lay| + - - + |ag| = 3 — m, using |a¥| =1 — |a|, we can verify that

(ma(ay, ... aY),ag) 4 = (=1)"Henlanal et i, (ay o ag),a)) 4

Hence (—,—) 4 is a cyclic structure. Recall that an A..-category is said to be finite if Obj (A) is finite
and A(u, v) is finite dimensional for all u,v € Obj (A). Also, an augmented A..-category A is said to be
positively graded if A’ = 0 for all 4 < 0. Summarizing, we have

Proposition 4.2.1. Let Q be a dg-quiver. Then there exists a finite and positively graded Agy,-category
A such that KQ = E(A). If Q is a quiver with superpotential of dimension m, then there is a cyclic
structure of degree m on A.

Next, we would like to prove the converse of Proposition 4.2.1. Let us start with a finite and positively
graded Ag,-category A with a cyclic structure of degree m. Recall from Section 3 that one can construct
from A a quiver @Q as follows: take the vertex set of @ to be Obj(A) and for any vertices u, v, the set
of degree i edges from u to v is given by a fixed basis of A'~%(u,v)Y. We will denote elements in the
chosen basis of A by a¥, and its dual basis (as elements in Q) by a. The degrees of a and a" are related
by |a| = 1 —|a¥|. By the cyclic structure of degree m on A, we have A* = A™~*. Since A is positively
graded, we conclude that the degree of all edges in @ lies in the interval [1 — m,0], for each vertex v
there is exactly one loop v* of degree 1 — m, and that these are precisely all the degree 1 — m edges in
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Q. The cyclic structure (—, —) 4, on A determines a super-antisymmetric pairing (—, —) of degree 2 —m
on the set of edges of @) by defining its dual pairing (—, —) to be

(@v,0") = (=1)l*" (@ bY) ,.

Let Q be the subquiver of @ which contains all vertices of Q and all edges in ( with degree in the interval
[2 —m,0]. Proposition 4.1.1 then shows

1
w=g Z ) (zV,y")darrdary
z,y edges in Q

defines a noncommutative symplectic form on Q, and the corresponding double Poisson bracket {—, —}
is given by Proposition 4.1.2. It remains to show that the differential on @ is in the form of a quiver
with superpotential. Denote by b,, the shift of the A..-structure m,, on A. By the cyclic invariance of
(=, —) 4> we conclude that the quadratic form (—, —) is invariant under cyclic symmetry:

(bl o), 0) = (Bl ). al).

Define

(bn(ay,...,ay),ay1)

n21gy,...,any1 edges in Q

which is a finite sum of closed paths of since A is Agy, hence b, = 0 for n > 0. Note that & is of degree
3—m.

Proposition 4.2.2. We have the following descriptions on the differential d on KQ:
1. For any edge a in Q, we have
da = (=1)"FFm N (a,b)059.
b edges in Q
2. The differential can be written in terms of the Kontsevich bracket by
d={o,-}.
3. The differential d is a Hamiltonian vector field with Hamiltonian ®, i.e.,

ddR(I) = idw.

Proof. Denote by (—, —) the inverse quadratic form of (—, —). Then
a= Z (baa’)<_7b\/>‘
b edges in Q

By definition,

da =} b(a)
=Y Y () balay,....a0),b a1 an

neN b,al,...,an~

edges in Q
3 (bp(ay,...,ay),bY) .
— Z (,1)\b|(5 ‘bl)(b,a) 1 o 5 (a1 - - - apb)
b,ay,...,an
edges in Q
= Z (—1)mIblF1+lallbl (g pYoed
b edges in Q

D R

b edges in Q
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where we have used that (a,b) # 0 if and only if |a|] = |b| + m mod 2. The third equality perhaps
requires more explanation. If the loop has cyclic symmetry of degree n + 1, i.e., ai ---a,b = e"t! for
some edge e, then 92(e"*!) = (n + 1)e™. Up to cyclic permutation, there is only one such loop in the
sum in the third line hence the (n + 1) factor in the denominator is cancelled. If the loop has no cyclic
symmetry, then up to cyclic permutation, there are n 4+ 1 such loops in the sum and hence the n + 1
factor in the denominator is also cancelled. In the general case where a loop has a cyclic symmetry of
degree k, then we can write aj - - - a,b = p¥, where p has no cyclic symmetry. Up to cyclic permutation
there are (n + 1)/k such loop in the sum, and 95 (p*) = k(@;/p)pk_l(al;p). Hence the n + 1 factor in the
denominator is also cancelled. This proves (a). Now, for any edge a, we have

{®,a} = mo {@,a} = —(~1)(al2mUP2my oo fa G =~ ST (a,b)5® = da,
b edges in Q

where the second last equality is by part (a) of the statement and Proposition 4.1.2. Since both {®, —}
and d are derivations, we conclude that d = {®, —}. This proves part (b). For part (c), we have

S @Yy (de)(dary) + (1) (daga) (dy))

z,y edges in Q

=5 X DRI ) gy ) + (1)) (dana) ()

z,y edges in Q

= > (=)"F@Y YY) (dera)(dy)

x,y edges in Q
= > ()RR GY V) (y,b) (dara) O @
b,x,y edges in Q
> (darx)0®

y edges in C:',)
=dqr®.

N =

idw =

It remains to describe the action of the differential on K@ on the degree 1 —m loops attached to each
vertex. For this purpose, we first prove the following

Lemma 4.2.3. Let A be an Ay -category with a cyclic structure of degree m. Then for all n > 3,
degmy (a1, ,a,) = m implies my(ay, - ,a,) = 0.

Proof. For any v € A° and n > 3,

(mp(ai,...,an),v) 4, = £(my(v,a1...,0p-1),an) 4, =0
since mp(v,a1...,a,-1) = 0. Since (—, —) 4 is nondegenerate, we conclude my(a1,...,a,) = 0. [ |
Proposition 4.2.4. Let v* be the degree 1 — d loop at the vertex v in Q. Then
dv* = vlv where (= Z (xV,y")zy.
z,y edges in Q
Proof. Write t = > v*. It suffices to show dt = ¢, for then dv* = d(vtv) = v(dt)v = vlv. We

v vertices in @
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have

dt= > Y o)

v vertices in Q neN

= Z Z Z<vv,bn(a}/,...,ax»a1~~an

v vertices in Q ay,...,a, edges in Q neN

\4 Vv V
E E (vY,ba(ay, a3 ))ajas
v vertices in Q ai,az edges in Q

Z <a';/7b2(a¥’vv)>a1a2

v vertices in Q aj,a2 edges in Q

= > (ay,a3)ara

ai,az edges in Q

=/

where in the third equality, we have used Lemma 4.2.3. |

Remark 4.2.5. Note here that ¢ is an element homogeneous of degree 2 — m.
Summarizing, we have proven the converse of Proposition 4.2.1 and arrived at

Proposition 4.2.6. A dg-quiver Q is a quiver with superpotential if and only if KQ = E(A) for a finite
positively graded cyclic Agy,-category A.

With the characterisation of quivers with superpotential by Ag,-categories with cyclic structure, we
can define products and quotients of quivers with superpotential.

Products of Quivers. Products of quiver are not always defined. But as we will see in Chapter 5,
they are always defined for quivers arising from exceptional sequences. Recall from Chapter 3 that for
every dg-quiver (), one can construct an Agy-algebra augmented over the discrete K-algebra spanned by
the vertices of @, such that KQ = E(A). For any two quivers () and their associated Agy-algebras A and
A’ one can form the A, -tensor product A ® A’. In general, this tensor product is not Agy. If it is, one
can define the product dg-quiver of @ and @’ to be the dg-quiver arising from A ® A’. In other words,
even if the product is well-defined, the product dg-quiver is only defined up to quasi-isomorphism. The
underlying product quiver is given by

{Degree i edge in Q x Q'} = {a @ v : a degree i edges in Q and v vertex in Q'}
U{a®b:aedgein Q and b edge in Q' with dega + degb — 1 =i}
U{u®b:u vertex in Q" and b degree i edge in Q'}

The differential, however, is not uniquely determined. If both quivers ) and Q' admit superpotentials,
then Amorim’s construction of tensor product of A..,-algebras shows that one can choose a differential
on @ x Q' which comes from a superpotential. In general, to write down the product superpotential, one
has to know an explicit formula for the cyclic tensor product A.,-structure. Unfortunately, the author
does not know of such a general formula. When one of the superpotentials is cubic, i.e., one of the
Axo-algebras involved is As, i.e., m, = 0 for n > 3, one can use the formula given by Equation (3.6.2).
Examples of product quivers are given in Chapter 6.

Quotients of Quivers. Let G be a finite group and @ be a dg-quiver. Suppose G acts on KQ by dg-
isomorphisms. Write KQ = FE(A) for an Ag,-algebra. Then G acts on A by strict Ag,-isomorphisms and
hence one can form the quotient A/G. The quotient quiver Q/G is by definition the quiver associated to
A/G. Now suppose @ is a quiver with superpotential and the antisymmetric pairing on @ is G-invariant,
then the cyclic structure on A is also G-invariant. Thus A/G also inherits a cyclic structure, making
Q/G a quiver with superpotential. Examples of quotients of quiver with superpotential can be found in
Chapter 6.



CHAPTER 4. (QUIVERS WITH SUPERPOTENTIAL 49

4.3 Quivers with Superpotential are n-Calabi—Yau

In this section, we would like to show that the path algebra of a quiver with superpotential is Calabi—Yau,
and that as a consequence, its derived category is Calabi—Yau.

Calabi—Yau Algebras. Following Kontsevich, Ginzburg defined in [27, §3] the notion of Calabi—Yau
algebras which arise naturally in the geometry of Calabi—Yau manifolds to transplant most of traditional
Calabi—Yau geometry to the noncommutative setting.

Recall that in Example 2.4.7, for a homologically smooth dg-algebra A, we have the notion of dualizing
complex: Denote by D(A) the bounded derived category of dg-modules over A and D% ,(A) the full

subcategory of DY(A) consisting of those dg A-modules whose homology is of finite total dimension.
Define the dualizing complex @ = RHom gorga (A, AP @ A). Then (—)®Q : Dl}d(A) — Dl}d(A) is a Serre
functor. In particular, if we have an isomorphism © = ¥ ~%A as objects in D(A° ® A), then Dl}d(A) is
d-Calabi—Yau. This motivates the following definition:
Definition 4.3.1 (Calabi-Yau algebras). A dg-algebra A is said to be m-Calabi—Yau if

e A is homologically smooth, i.e., A € Per(A® A), and

e there is a quasi-isomorphism of A-bimodules

n: RHOIHA,BimOd(A, AR® A) — XA,

In the original definition, Ginzburg requires in addition that n is self dual, but it was later shown by
van den Bergh [70, Prop. C.1] that this is automatic. We have the following

Proposition 4.3.2. If A is an m-Calabi—Yau dg-algebra, then Dl}d(A) is @ m-Calabi—Yau triangulated
category.

Proof. See [41, Lemma 3.4] and [45, Lemma 4.1]. [ |

Let @ be a quiver with superpotential of dimension m. Our proof that K@ is m-Calabi—Yau is a
direct adaptation of van den Bergh’s proof [71] in the 3-Calabi—Yau case. First, we show that KQ is
homologically smooth.

Proposition 4.3.3. Let Q be a quiver and S be the discrete K-algebra on the vertices of Q. The exact
sequence

0— Q§(KQ) 5 KQ s KQ B3 KQ — 0,
where p(dp) =p®s1—1®gp and m(p®s q) = pq, s a resolution of KQ by modules in Per(KQ @ KQ).
In other words, KQ is homologically smooth.

Proof. The sequence in the proposition is exact by Proposition 1.2.7. Let E be the K-vector space
spanned by all edges in @) and E;;, the K-vector space spanned by all edges from £ to j. Then

KQ@EoKQ= P KQi®E;j®KQ
i,j,k‘,ZGVQ

P KQicEi2KQo @B KQi®Ej®KQ
i,0€Vg i#j or kL
KQes EosKQo P KQi® Ej e (KQ
i#£j or k#L
~OLKQ) e P KQi®E; e KQ
i#j or k#L

Hence 2} is a summand of the free KQ-bimodule KQ® E®KQ, i.e., Q5(KQ) € Per(KQ®KQ). Similarly,

KQeKQ= P KQi® jKQ =KQiiKQ e (P KQi jKQ = KQ ©s KQ & D KQi @ jKQ

»JEV i#] i#]

1%



CHAPTER 4. (QUIVERS WITH SUPERPOTENTIAL 50

shows KQ ®¢ KQ is in Per(KQ ® KQ). Since Per(KQ ® KQ) is closed under extension, K@ is also in
Per(KQ ® KQ), i.e., KQ is homologically smooth. [ |

If we define
drossko : KQ@sKQ - KQ®sKQ, a®sb— da)®sb+ (1) g d(b),

dQlS(]KQ) : QlS(KQ) - Q}S‘(KQ)v dsz}S(KQ)(ddRa) = dqr(da),

and assign a grading on Q4 (KQ) by |daraloy k) = lalkq, then dxgaske and dqy (kq) are differentials
of degree (—1) on both spaces, and the resolution becomes a dg-bimodule resolution, i.e., both ¢ and m
are morphisms of dg-bimodules.

Cofibrant replacement of KQ. Denote the subquiver of @ consisting of all edges of degree in the
interval [2—m, 0] by Q. Let v* be the degree 1 —m loop at vertex v and ¢ be the sum of all degree 1 —m
loops. The resolution of K@ in Proposition 4.3.3 shows [25, Prop. I11.3.5] K@ is quasi-isomorphic to

P = cone(yp)
=KQ ®s5 KQ @ 2QL(KQ) (4.3.1)
= KQ ®s KQ & B(KQ ®xq 2s(KQ) ®ys KQ)) & B(KQ ®5 Q5(S[t]) ©s KQ),

which is in Per(KQ®KQ). Hence P is a cofibrant replacement of KQ as a KQ-bimodule. The differential

of the cone dp is given by
4o — [ IxQoKQ 0

Observe that |a ® b|p = |a|lkg + |blkg and |d¢ralp = |algkg — 1 for any a € KQ. To avoid too many
subscripts, in what follows, the subscript in drggrg and dgls @) Will be suppressed, but, to avoid
confusion, the subscript P in dp is always written.

Since P is a cofibrant replacement of K@, we have

RHomgg-Bimod (KQ, KQ ® KQ) = Homgg-Bimoa (P, KQ ® KQ).
Hence to construct a quasi-isomorphism
7 : RHomg-Bimod (KQ, KQ ® KQ) — L™ "KQ,
it suffices to construct an isomorphism of dg-modules
Homgg-Bimod (P, KQ ® KQ) = X~ ™P.

This is done by constructing a nondegenerate pairing of bimodules in the following sense:

Pairing of Bimodules. We follow the conventions of van den Bergh [71]. A pairing of degree n
between A-bimodules M and N is a bilinear homogeneous map of degree n

(= —):MxN-=>A®A

such that ((p,—)) is linear for the outer bimodule structure on A ® A and {(—, ¢)) is linear for the inner
bimodule structure on A ® A, i.e.,

{(apb, @) = (—1)P0am g s« (p, q) % b
{(p, agb)) = (—1)“IIPHE™ a(p ghb.

If M and N modules in Per(A ® A), we say the pairing is nondegenerate if the map

M — EnHOHlA—Bimod(]\fa A ® A)a p— <<p7 7>>



CHAPTER 4. (QUIVERS WITH SUPERPOTENTIAL 51

is an isomorphism. If A is a dg-algebra and M, N are dg-bimodules, then a dg-pairing is a pairing which
satisfy Leibniz’s rule

E(p, a) = (€p. a) + (1) (p, &q)).

A dg-pairing which is nondegenerate induces an isomorphism of dg-modules
M = ¥"Homa—Bimod (N, A® A).

In the special case M = N, a pairing is said to be (super)-symmetric if
(p,a) = (1) HPDOFD g (g, p)).

Example 4.3.4. Let @ be a quiver and S be the discrete K-algebra on the vertices of (). Then
KQ ®s KQ € Per(KQ ® KQ) by Proposition 4.3.3. Define a pairing

YMKQ ®s KQ) x (KQ ®s KQ) - KQ @ KQ
by

Then it is a nondegenerate pairing of degree n. To see this, observe that any K@Q-bimodule morphism
v : X"(KQ ®s KQ) — KQ ® KQ is determined on its value on 1 ®g 1. Let (1 ®¢ 1) = a’ ® a’’. Then

P(1®s1) = Z p(v®sv) = Z vp(l ®g 1)v = Z va' @ a’v=a" % Z v | xad.

veVg veVg veVq veVg
In other words, ¢ = {(a”" (1 ®g 1)a’, —)).

Now, we return to our proof of that path algebra of quiver with superpotential are Calabi—Yau. Recall
from Equation (4.3.1) that P = cone p is a cofibrant replacement of K@Q. We define a symmetric pairing
(=, =) : P x P —KQ ®KQ of degree —m by defining on generators

{(darv*,1®gs 1) = (-1)"v®@v
(1®s1l,dgrv™) = (-1)™v®wv (4.3.2)
(dara, darb) = (—1)1“5I" fa, b}

for all a,b edges in KQ and assigning the value zero for all other combinations. Note that the first two
equations of Equation (4.3.2) is equivalent to

{(dart,1 ®g 1)

(=)™ Z VRV

veVg
(1®s 1dagt) = (-1)™ Y v@w
veVg
by linearity of the pairing.
Proposition 4.3.5. The pairing {(—,—)) is a symmetric nondegenerate dg-pairing of degree —m.

Proof. First, we check symmetry:

{(dt,12s1) = (—1)™ Z VRV = (_1)(|1®51|P—M)(|dtlp—m)a<1 ®g 1, dt)
veVgQ

since |dgrt|p = |tlkg — 1 = —m.
(dara, darb) = (=1)'"n*I* {a, b}
= —(=1)ldaralp+(alke—m+2)(blxg—m+2) 5 £} ¢}

= (_1)(lddRalp—m)(ldde‘p—m)a_«dde’ dara).
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since \ddRa|p + (|a|KQ —m+ 2)(|b|KQ -m+ 2) + 1+ |dde|P = (|ddRa\p — m)(|dde‘p — m) mod 2.
Next we show the pairing is nondegenerate. Since for any edge a,

(dara, =) = (1)1 fa, -} = Z )1 (a,0)dy,

we see that the pairing is nondegenerate on QL(KQ). Since KQ ®g Q5(S[t]) ®s KQ = KQ ®s KQ,
together with Example 4.3.4, this shows the pairing is nondegenerate on P.
It remains to check the compatibility of {(—, —)) with dp, i.e., we have the Leibnitz’s rule

d{(p. a)) = (dpp,a) + ()P~ (p, dpq)).

This is a direct calculation divided into six cases.

1. We have
d<<dth, dth>> =0,
{(dpdart,dart)) = (t ©®s 1 —1®st — darl, dart))
=1 <<1 ®s 1, dth>> — <<1 Rg 1,dth>> *t
=(-n" Z (v®t, —t, @)
v vertices in Q
and
(dart,dpdart)) = (dart,t ®s 1 —1®gt — dgrl))
t<<dth 1®g 1>> <<dth, 1®g 1>>t
(=™ Z (ty @V — V@ ty)

v vertices in Q

Hence
d{(dart,dart) = (dpdart,dart)) + (—1)1="1P =" (dypt, dpdapt)).

2. We have for any a € KQ,
d((dara, dart)) =0,
(dpdara,dart) = (a ®s1—1®s a— dar(da), dgrt)
=ax (1®s1,dgrt) — (1 ®s1,dgrt) *a
=(-™ Z (v®av —va ®v)

v vertices in Q

= (=1)"(t(a) ®a —a®h(a))

and
((ddRa, dpdth>> = ((ddRa, t®Rs1l—1®Rgt— dde»
—{(dara, darl))
— (_1)|ddRa|pfl{{a,g}
Now
fa. 03 = D (a,b)dpt
b edges in Q
Y @b,y
b,x,y edges in Q
= > (@) @Y,y k(@) @ t@)y + (=1)" 1 (0, y) (@, y " )h(y) @ ty)
z,y edges in Q
=t(a) ®a—a® h(a).
Hence

d{{dara, dart) = (dpdara, dgrt) + (—1)1rdP=m(d,pt dpdpa)).
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3. We have
§(dt,1®s 1) =0,

Epdt,10s1) =(t®sl—1®st—dl,1R051) =0

and
(dt,£(1®g 1)) =0.

Hence Leibnitz’s rule is verified.

4. For a € KQ,
d{{dara, 1 ®s 1)) = 0 = {(dara,d(1 ®s 1))

and
<<dp(ddR(L), 1 ®S 1>> = <<(L ®S 1-1 ®S a — d(ddRa), 1 ®S 1>> =0.

Hence Leibnitz’s rule is verified.

5. The case
d(1®s1,1®s 1) = (dp(l @5 1),1®s 1) + (—D)IEH™ (1 @5 1,dp(1 @5 1))

is trivial since all terms are zero.

6. We have for a,b € KQ, since {—, —} is a double dg-bracket,

d{(dara, dagb) = (—1)=lr dfa, b}
= (=1)ldarale fq b} + (—1)/darelrFlalotm gy qpy
= (=1)larelr fda, b} + (1) {a, db},

(dpdira,dqrb) = ((a ®s1—1®s a — dar(da), darb))
— (1) andelr fea, bY
= (—1)ldanclr feq by

and
{(dara,dpdqrd)) = (dara,b®s1—1Qgb— dgr(db))
= —(=1)!%nelr fa, db}.

Hence
d{(dara, dagb) = (dpdara, dagb) + (—1)147P =" (dpa, dpdarb)).

Theorem 4.3.6. KQ is a m-Calabi-Yau dg-algebra.
Proof.

RHom(KQ, KQ ® KQ) = Hom(P, KQ ® KQ)
>y "mp
~ ¥omKQ,

where the first and third isomorphisms hold since P is a cofibrant replacement for K@ and the second
isomorphism is induced by the nondegenerate dg-pairing ((—, —)). [ |

Theorem 4.3.7. The bounded derived category D?d(KQ) with its standard t-structure is a m-Calabi-
Yau triangulated category whose heart is equivalent to the category of finite dimensional modules over
HO(KQ).
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Proof. By Proposition 4.3.2, D’]’cd(KQ) is an m-Calabi—Yau triangulated category. The heart of the
standard t-structure on Dl}d(KQ) consists of finite dimensional dg K@Q-modules concentrated at degree
0. We show that the action of K@ on such K@Q-modules factors through H°(KQ). For any a € (KQ)*,
d(am) = (da)m + (—=1)l*ladm implies (da)m = 0 since the other two terms are of degree (—1) and vanish
automatically. This shows d(IKQ)! acts trivially, and hence the action factors through H°(K(Q). This
gives a finite dimensional H°(KQ)-module and yields the required equivalence. [ |

Calabi—Yau algebras not coming from quivers with superpotential. We have shown that every
quiver with superpotential produces a Calabi—Yau algebra. One might be interested in the converse, i.e,
if all Calabi—Yau algebras arise in this way. Davison [21] has shown that fundamental group algebras of
compact hyperbolic manifolds of dimension greater than one are Calabi—Yau algebras which do not arise
in this way. Thus it is not true that every Calabi—Yau algebra comes from a quiver with superpotential.
In fact, van den Bergh [70] has defined a class of Calabi-Yau algebras, which he called exact Calabi—
Yau algebras, using cyclic and Hochschild homology, and characterized them as Calabi—Yau algebras
which are quasi-isomorphic to quivers with superpotential (which he called deformed dg-preprojective
algebras).

4.4 Quivers with Superpotential of Low Dimensions

In this section, we describe quivers with superpotential of dimensions 1 to 4.

Quivers with Superpotential of Dimension 1. Quivers with superpotential of dimension 1 are
given by a finite number of vertices, and for each vertex v, a loop v* of degree 0, with trivial differential.

Quivers with Superpotential of Dimension 2. Quiver with superpotential @) of dimension 2 are
in the following form: for each vertex v, there is a loop v* of degree —1, and these are all the degree —1
edges in Q. There is an antisymmetric nondegenerate pairing on degree 0 edges (—, —). The symplectic
form on K@ reads
1
w = 5 Z <6V, fv>ddR€dde.

e,f edges of degree 0
The differential reads

d(e) =0 for any degree 0 edge ¢;
d(v*) =vflv for any degree —1 loop v*, where ¢ = Z (e¥, fV)ef.

Quivers with Superpotential of Dimension 3. We will put quivers with superpotential of di-
mension 3 into a standard form and show that they are precisely the Ginzburg algebras introduced by
Ginzburg in [27]. There is an anti-symmetric nondegenerate pairing between degree 0 edges and degree
—1 edges. By changing basis if necessary, we may assume that for each degree 0 edge e, there is a degree
—1 edge e* in the opposite direction, such that the pairing is given by (e, f*) = d.y. The symplectic
form on KQ then reads
w= Z daredqre”,
e edges of degree 0 in Q

and the superpotential ® is of degree 0, i.e., only depends on the degree 0 edges e’s. The differential
d : KQ — K@ reads
d(e) =0 for any degree 0 edge ¢;
d(e”) = —0.P; (4.4.1)
d(v*) = vlv for any degree —2 loop v*, where ¢ = Z[e, e*].

In particular, the dg-quiver @ is determined by its degree 0 sub-quiver @* and the superpotential ®

which is an element in KQZ. as follow: Given Q* and ®, one can construct a 3-Calabi-Yau quiver with
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superpotential @ by first adding to Q* a reversed arrow e* of degree —1 for each arrow e and define a
degree 1 map d : KQ — K@ as in equation 4.4.1 using ®. The map d such defined is a differential as
{®, @} has degree 1, hence the master equation {®, @} = 0 is empty. This reverse construction is exactly
the one given by Ginzburg in [27]. Thus our definition of quiver with superpotential is a generalization of
the Ginzburg construction. Note that H(KQ, ®) = KQ*/( 0.® : e edges in Q*) is the so called Jacobi
algebra of (Q*, ®). Theorem 4.3.7 then readily yields

Theorem 4.4.1. The bounded derived category D?d(KQ) with its standard t-structure is a 3-Calabi-
Yau triangulated category whose heart is equivalent to the category of finite dimensional modules over

the Jacobi algebra KQ*/{ 0.P : e edges in Q*).

Quivers with Superpotential of Dimension 4. We give a standard form for 4-Calabi—Yau quiver
with superpotential and a Ginzburg algebra-like construction for dimension 4.

There is an anti-symmetric nondegenerate pairing between degree 0 edges and degree —2 edges. By a
change of basis if necessary, we may assume that for each degree 0 edge e, there is a reversed degree —2
edge e*, such that the pairing is given by (e, f*) = dc¢. There is a symmetric nondegenerate quadratic
form ¢ on the degree —1 edges. The symplectic form on KQ 4 then reads

1
w = Z ddReddRe* + 5 Z q(r, S)ddRTddRS.

e edges in degree 0 r, s edges of degree —1

and the superpotential @ is of degree —1, i.e., only depends on the degree 0 edges e’s and the degree —1
edges 1’s. If we denote by A, = dr for degree —1 edges r, then the superpotential ® can be written in
the form

o= Z s(07®) = Z (u,r)(r",sV)s02® = Z q(r, 8)sA,.

s edges of degree —1 u,s,r edges of degree —1 r,s edges of degree —1

The differential d : KQ — KQ reads

d(e) =0 for any degree 0 edge ¢;
d(r) = A,;
d(e*) = 0. 9;
() = 0c®; (4.4.2)
d(v*) =vlv for any degree —3 loop v*, where
= Z le,e] + Z q(r, s)rs.

e edges of degree 0 r,s edges of degree —1

The condition d?e* = 0 gives rise to an equation:

I Z q(r,s)A, A
r,s edges of degree —1
= Z q(r, 8)(0F Ar) As (0L Ar) + q(r, 5) (07 As) Ar (9, As)

r,s edges of degree —1

=d > q(r, 5)(0¢ Ar)s(0cAr) + q(r, 5)(0F As)r(0.As)

r,s edges of degree —1

= 2d0? Z q(r,s)Ays

r,s edges of degree —1
=2d0°® = 2d*(e*) = 0
Since this is true for all degree 0 edges e in ), we conclude

Z q(r,s)ArAs = 0 in KQqye, i.e., modulo cyclic permutation.

r, s edges of degree —1
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Note that the above equation is the equation {®, ®} = 0 written out in coordinates. Now, if we take Q*
to be the subquiver of ) consisting of all vertices and all degree 0 edges in ), R to be the set of degree
—1 edges, we get the following data:

1. A finite quiver Q*,

[\

. A finite set R (of indices),

. Maps h: R — Vg« and t : R — Vg« (heads and tails),

B~ W

. A map A: R — KQ such that A, = A(r) € h(r)KQ*t(r),

(21

. A symmetric function ¢ : R x R — K with the following properties:
(a) q(r,s) = 0 unless h(r) = t(s) and h(s) = t(r),
(b) ¢ is nondegenerate in the sense that the matrix {q(r, s)}, scr is invertible,

(©) Y q(r,s)A4,A, =0 mod [KQ*, KQ*].

r,sER

Conversely, if one starts with the above data, one can reverse the construction and produce a quiver
with superpotential @) of dimension 4 as follows: Take @) to be the quiver constructed by adding to Q* a
degree —1 edge r from ¢(r) to h(r) for each element r € R, a degree —2 edge e* in the reverse direction
for each edge e in Q*, and a degree —3 loop v* for each vertex v in Q*. Let ® € KQcy. denotes the
element > . pq(r,s)Ars. Define a degree 1 map d : KQ — K@ by Equation (4.4.2). This map d is a
differential as we have assume our data satisfy the master equation

(2,0} = Y q(r.s)4,A4, =0 mod [KQ*, KQ].

r,sER

Then @ is a quiver with superpotential of dimension 4 with superpotential ® and a super-antisymmetric

pairing (—, —) on the subquiver @) containing all vertices and all edges with degree 0, —1, —2 given by
(e,e”) =1
(r,s) =q(r,s)
(e*,e) —1

and zero otherwise. Since H°(KQ) = KQ*/(A, : r € R), Theorem 4.3.7 readily yields

Theorem 4.4.2. The bounded derived category Dl}d(KQ) with its standard t-structure is a 4-Calabi—

Yau triangulated category whose heart is equivalent to the category of finite dimensional modules over
the algebra KQ*/(A, : r € R).



Chapter 5

Derived Equivalences between
Vector Bundles and DG-Quivers

This chapter is the heart of the thesis where we prove our main results.
Section 5.1 gives a review on equivariant sheaves.

In Section 5.2, we generalize a result by Bridgeland [15, Proposition 4.1] and show that if 7 : V — X
is an anti-semiample vector bundle on a smooth projective manifold with an exceptional poset &£, then
under some cohomological vanishing conditions, the total space V is derived equivalent to an algebra Ag
which is the path algebra of a quiver with relations. If we remove the cohomological vanishing condition,
we end up with an Ag,-algebra rather than a quiver with relations.

Section 5.3 tries to resolve Ag, the path algebra of a quiver with relations (or more generally the
Agp-algebra) by a dg-quiver Qg.

Section 5.4 gives a concrete description of the underlying graded quiver of the dg-quiver Q¢ in terms
of the dual exceptional poset of £.

Section 5.5 proves the existence of a superpotential on Q¢ when V' is noncompact Calabi—Yau.

Section 5.6 considers the G-equivariant situation and constructs from Q¢ a quotient quiver Q¢ /G,
generalizing the construction of the McKay quiver, which is derived equivalent to D?(Coh &(V)). In the
case when V is equivariantly Calabi—Yau, Qg /G is also equipped with a superpotential.

Section 5.7 proves the product construction. We start with two dg-quivers Qg and @z derived
equivalent to vector bundles V' and W respectively, and construct a product quiver Q¢ x @ which is
derived equivalent to V' x W. When both V and W are Calabi—Yau, we show that the product quiver
Q¢ x QF is also equipped with a superpotential.

5.1 Equivariant Sheaves

In this section, we define G-equivariant sheaves. We will fix a finite group G acting on a smooth variety
X of finite type over K by automorphisms, with |G| t char(K). We will denote the multiplication map
on G by u: G x G — G and the group action map by 0 : G x X — X. We will also need the projection
map 7x : G X X — X and the map mo3 : G X G x X — G x X projecting onto the last two factors.

Definition 5.1.1 (G-linearization). A G-linearization of a quasi-coherent sheaf F on X is an isomor-
phism A\ : 7% E — o* E satisfying the cocycle condition

(uxidx)* A =migA o (idg x o)*A.
This amounts to the following data: For each g € G, there is an isomorphism A, : £ — ¢g*F, satisfying

the cocycle condition Ap, = g*(Af) o A}

57
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Definition 5.1.2 (Equivariant sheaves). A G-equivariant quasi-coherent sheaf (resp. coherent sheaf) on
X is a quasi-coherent sheaf (resp. coherent sheaf) F on X together with a G-linearization A\Z. If (E, \F),
(F,\I") are G-equivariant sheaves, then G acts on Homx (E,F) by g - ¢ = (/\5,1)_1 o(g7H*¢po /\5,1.
The Hom space in the categories QCoh ¢(X) and Coh ¢(X) are given by the G-equivariant maps, i.e.,
Homg(E, F) = [Homx (FE, F)]¢. In other words, a morphism ¢ : E — F is equivariant if for all g € G
we have a commutative diagram

E—% o F
e
7E L% oF.

By Grothendieck [30, Proposition 5.1.2], QCoh ¢(X) has enough injectives. Hence we can resolve
any equivariant sheaf by equivariant injective resolution. Moreover, since X is projective and G is
finite, one can find a G-invariant ample line bundle on X, and hence every G-equivariant sheaf has a
G-equivariant locally free resolution. There is a forgetful functor U : QCoh ¢(X) — QCoh (X) which
sends an equivariant sheaf (E,\F) to its underlying sheaf F and a equivariant morphism f to itself,
now regarded as a morphism between sheaves. Clearly, the forgetful functor also restricts to a functor
U : Coh“(X) — Coh (X).

Next, we would like to review how to derive the Hom¢ functor.

Proposition 5.1.3. The functor [~]¢ : G-Mod — K-Mod taking G-invariant part is exact.

Proof. Let 0 - U — V — W be an exact sequence of G-representations. By Maschke’s theorem, we
have a decomposition
0-UaU VeV - WeaW -0

where each summand is a subrepresentation. Thus taking G-invariant part yields an exact sequence. W

Corollary 5.1.4. For any (E,\F), (F,\F') € D(QCoh % (X)), we have
RHomg ((E, \F), (F,A\F)) = RHom(E, F)©.

Proof. Write Homg = [—]% o Hom o U. The corollary follows from exactness of [—]¢. |

Should there be no confusion, from now on we will, by abusing notation, denote an equivariant sheaf
(E, \F) by only its underlying sheaf E.

5.2 Tilting Objects on Equivariant Vector Bundles

In this section, we will be working over the following setting: Let G be a finite group and K be a field
with ord (G) 1 char(K). Let X be a smooth projective variety over K with G acting by automorphisms.
Let m : V. — X be a G-equivariant vector bundle. Unless otherwise stated, throughout this section,
& = {E;}ier will denote a full exceptional poset on D?(Coh “(X)). We will also write E = @, E;.

Lemma 5.2.1. 1. The map ©* is exact.

2. The map m, is exact.

*

3. The functor m,m* is naturally isomorphic to — @ S*VV.

4. The functor m,m* preserves injectives.

Proof. Statement 1 follows from flatness of 7. For statement 2, by Hartshorne [31, §Ex. I1.5.17] and that
m is affine, the map 7, defines an equivalence between the category of quasi-coherent Oy -modules and the
category of quasi-coherent 7,0y -modules, which is a subcategory of quasi-coherent O x-modules. Thus
T, is exact. Statement 3 follows from projection formula: For any Ox-modules M, we have functorial
isomorphisms

T M =1 (T"M ®@ Oy) = M @ 7.0y = M ® S*VY.
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Statement 4 follows from statement 3 since for any injective I and any Ox-modules M,
Ext!(M, m,7*I) = Ext'(M,I ® S*VV) = Ext'(M @ S*V,I) =0

whenever i # 0. u

Bridgeland pointed out in [15, Prop. 4.1] (see also [16, Thm. 3.6]) that one can construct tilting
objects on vector bundles by pulling back tilting objects on the base variety.

Lemma 5.2.2. If T is a tilting object in D(QCoh (X)), then 7T is a tilting object in D(QCoh ¢ (V)).

Proof. By the adjunction ©* - ., we have Homy,(7*T, F) = Hom% (T, m.F) for all objects F. In
particular, for an arbitrary coproduct &, F3,

Hom}, (7T, P Fi) = Hom% (T, 7. P F;) = @ Homk (T, 7. F;) = @) Hom}, (T, F;)
i€l el i€l el

and hence 7*T is compact. To show 7*T is generating, suppose F has the property Hom{, (7*T, F') = 0.
Then Hom% (T, 7. F) = 0 and hence m,F = 0. Since m, is exact, it preserves cohomologies and this
implies F' has no cohomologies, i.e., F' = 0 as desired. |

Lemma 5.2.3. Suppose a finite set of objects & = {E;}ier in D?(Coh®(X)) classically generates
D¥(Coh (X)), then the finite set of objects T*E€ = {n*E,;}ics classically generates D*(Coh ¢ (V).

Proof. By Example 2.5.2, £ are compact objects in D(QCoh “(X)). By Corollary 2.5.7, £ classically
generates D?(Coh “(X)) if and only if £ generates D(QCoh “(X)). Thus E = @, E; is a tilting object
in D(QCoh ¢(X)). By Lemma 5.2.2, 7*F is a tilting object in D(QCoh ¢(V)). By Corollary 2.5.7 again,
the set 7*€ classically generates D®(Coh &(V)). ]

The following theorem is a generalization of Bridgeland and Stern [16, Thm. 3.6] and is essentially
an application of Theorem 2.9.2.

Theorem 5.2.4. Let X be a smooth projective variety together with an action by a finite group G.
Let m : V. — X be a G-equivariant vector bundle and €& = {E;};cr be a full exceptional poset on

DY(Coh“(X)). Write E = @ E;. Then there is a dg-algebra R whose underlying chain complex repre-
el
sents RHomg (E, m.m*F) = RHomg(E, E ® S*VY) and an equivalence

T : D’(Coh “(V)) — Per(R°P)

which after composing with the forgetful functor U : Per(R°?) — D(K) yields RHomg(E, 7. (—)), i.e.,
Uo ¥ =RHomg(FE,m(—)).

Proof. For each ¢ € I, choose a G-equivariant injective resolution Ig, for E;. Write Ig = EBZ-G 1B
Define a dg-algebra R = Homg(Ig, I ® S*VV) as follows: As a chain complex, the i-th graded piece is
given by

i

R =Hom(Ig, Ip ® S*VY) = @ Homg (I}, I7" @ S°VY),
PEZ
with differential _
dr(f) = (dr, ®idsevv)o f—(=1)"fody,.

The multiplication map on R is given by composing morphisms followed by symmetric product on the
S*VV factor, i.e.,
R'® R — R
f®gr (dr, ®m)(g ®@idgeyv) o f,
where the map m : S*VY ® S*VV — S*VV is the symmetric product.
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The underlying chain complex of R represents RHom(E, E ® S*VV): Since — ® S*VV is exact,
Hom(E, — ® S*VV) is a left exact functor. Hence the right derived functor is given by

RHomg(E,E ® S*VY) = RHomg(Ig, E® S*VY) = Homg(Ig, [g @ S*VY)

since I is an injective resolution of FE.
Next, we define a functor
¥ : DY(Coh “(V)) — D(R°P-Mod).

Recall that by the natural isomorphism 7,7* = — ® S*VV in Lemma 5.2.1, we have an isomorphism
R = Hom(Ig,n.m*Ig) as a dg-algebra. For any M € D®(Coh (V)), choose an injective resolution Ij;.
The chain complex Homeg(Ig, m«Ipr) has a right dg-module structure over R given by

Homg(IE, W*IM) ® Homg(IE,w*w*IE) — Homg(IEﬂr*IM)

(97 f) = (IE L> 71—*ﬂ—*IE ﬂ-*—ﬂig 71—>!<7-‘—*71—>!<IM = 7T*(QV & 7T*IM ﬂﬂ[ W*IM) 5
where pps - Oy ® Iy — Iy is the Oy -module structure map on Iy;.
We then define
\I/(M) = Homg(IE, W*IM)
V(M L N) s (Homea(Ip, meIns) ™5 Home(I, mdy)).

This functor is exact since it is the composition of the following four exact functors:

I:D(Coh G (V)) = K(Coh % (V)), M Iy

7, : D?(Coh (V) — D¥(Coh ¢ (X))

Homea(Ig, —) : K(Coh (X)) — K(R°P-Mod)

and the natural projection functor
Q : K(R°®-Mod) — D(R°P-Mod).

By the same reason as R represents RHom(E, £ ® S*VV), we see that U o ¥ = RHom(FE, 7, (—)). Next,
we show W is fully faithful. Recall that by Lemma 5.2.1, w7 preserves injectives. For any F;, IJ; € £,
Hompe con o (vy) (7" B, 7 Ej)

= Homps (con o (x)) (L, T E)

= Homg con < (x)) (LB, 7" I ;)

= H(Home (I, mn*Ig,))

= Homp(Homg(Ig, 77" Ig,), Homg(Ig, mam* Ig;))/{homotopy equivalence}

= Homg (gor-mod)(Homa (I, mem* Ik, ), Homa(Ip, mam*Ig;))

= Homp(gor-Moa) (¥ (7" E;), ¥ (7" E;))
By Lemma 5.2.3, the set {7*E;};c; classically generates D?(Coh ¢(V)). Hence ¥ is fully faithful. The
essential image is the triangulated category classically generated by ¥ (7*E;). Since each ¥(r*E;) is

a direct summand of W(7*E) = R, the essential image of ¥ is the triangulated category classically
generated by R, i.e., Per(R°P). Hence we have our desired equivalence ¥ : D*(Coh ¢(V')) — Per(R°P). B

By homology perturbation, we have

Corollary 5.2.5. Let w : V — X be a G-equivariant vector bundle and £ a full exceptional collection
on DY(Coh @ (V)), then there is a minimal Ag,-algebra

Ae = Hom,(E, E @ S*VY)

and an equivalence
® : D’(Coh ©(V)) — Pery, (ASP).
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Proof. Since the underlying chain complex of R represents RHom(E, E® S*V"), its cohomology is given
by
A¢ = Hom(E, E @ S*VY).

By Theorem 3.2.1, there is a minimal A, -structure on Ag making it quasi-isomorphic to R as an A.-
algebra. Lemma 5.3.4 below shows that this A -stucture is indeed Agy. Since D(R°P) = Do, (R°P), and
this equivalence restricts to an equivalence between perfect derived categories, we have an equivalence
D?(Coh (V) = Per(R°P) = Pero (AY) as desired. [ |

Definition 5.2.6. Let 7 : V' — X be a G-equivariant vector bundle. A full exceptional poset &€ = {E; }ier
on D?(Coh ©(X)) is said to be if Homf,(E;, E; ® S*VY) =0 for all k # 0 and all 4, € I.
Remark 5.2.7. Note that a V-geometric exceptional poset is necessarily strong.

Remark 5.2.8. When G is trivial and V' = Kx is the canonical bundle, a K x-geometric full exceptional
collection is the same as a geometric helix defined in Bridgeland and Stern [16]. This is where our
terminology comes from.

Corollary 5.2.9. Let m:V — X be a G-equivariant vector bundle which is anti-semiample i.e., SV
is globally generated for k > 0. Let € be a full V-geometric exceptional poset on D*(Coh % (V)). Then
Ag is an ordinary algebra which is Noetherian and there is an equivalence

® : D*(Coh (V) — DY, (AP),

where Dl}g(Agp) 1s the full triangulated subcategory obe(Agp) consisting of complexes whose cohomologies
are finitely generated A" -modules.

Proof. Since £ is V-geometric, A¢ is an ordinary algebra. It remains to show Ag is Noetherian and of
finite global dimension, for then Per(Ag”) = D*(AgP-mod) = DY (Ag"). Since S¥VV is globally generated
for £ > 0, we have an exact sequence

O HX,S*VVY) = S*VY =0

Taking dual, we see that S¥V — O ® H°(X, S*¥VV)Y embeds S*V into a trivial bundle as a subbundle.
Now choose, k, ¢ > 0 and coprime. Then we have an embedding

Ve SV e sV 0 (HY(X, S VY)Y @ HY(X,S'VY)Y)
of V into a trivial bundle. Composing this embedding with the map
O® (H*(X,S*VY)Y @ H(X,S'VY)Y) —» HY(X,S*VV)Y & H(X,S'VY)V
which projects the trivial bundle to its fiber yields a projective morphism
V — H(X,S*VV)Y @ HY (X, S‘VV)V.

Thus V is projective over an affine scheme of finite type. The algebra Ag = Endy (7*E) is then a finitely
generated module over a finitely generated algebra, thus itself Noetherian. By Hille and van den Bergh
[32, Thm 7.6], Ag has finite global dimension as desired. [ |

Corollary 5.2.10. The above equivalence restricts to an equivalence
@ : DY (Coh “(V)) — DY (AZ).
Proof. 1f M € D%, (Coh ¢(V)), then Hom®(7*E, M) is finite dimensional. As

H*(®(M)) = Hom®(Ag, ®(M)) = Hom® (*E, M),



CHAPTER 5. DERIVED EQUIVALENCES BETWEEN VECTOR BUNDLES AND DG-QUIVERS 62

we conclude ®(M) € DY, (Ag”). Now suppose ®(M) € D4,;(Ag”). Then by assumption, Hom® (7*E, M)
is finite dimensional. Since M lies in the thick category generated by 7*E, we conclude that Hom® (M, M)
is also finite dimensional. Via the multiplication map

S*HO(X,S*VY) @ S*HO(X,S'VY) — P HO(X,57VY) = HO(V,0y),
r>0

Hom® (M, M) becomes a finite dimensional module over S®*H%(X,S*VV) ® S*H°(X,S*VV), and thus
it is supported in finitely many points {pi,...,p,} on H(X,S*VV)V @ H(X,SVV)V. Recall that
we have a projective morphism ¢ : V — H°(X,S*VV)V @ H°(X,SVV)V. We would like to show
suppM C ¢~ ({p1,...,pr}). If this is true, supp M would be compact as ¢ is a proper morphism.
Let ¢ € ¢~ '({p1,...,pr}) be a K-point on the vector bundle V. Then ¢(q) ¢ supp Hom®(M, M).
Since supp Hom® (M, M) is defined by the annihilator ideal of Hom®(M, M), this means there exists
fe S HX,SFVY) @ S*HO(X,SVY) with f -idy, = 0 but f(é(q)) # 0. In particular, we see that
the identity map on M localizes to the zero map at the point q. Hence M must be supported in
o 1({p1,...,pr}) as desired. [ |

Tilting algebra as quiver with relations. As pointed out by Bridgeland and Stern [16], in the case
when Ag is an ordinary algebra, one can construct a quiver with relations (Q,I) whose path algebra
is isomorphic to Ag. The vertex set of @) corresponds to the full exceptional poset £, while the edges
between two vertices v and w corresponding to exceptional object E,, F,, € £ is given by a basis of the
cokernel of the map

P Hom(E,, E; ®S*VY) @ Hom(E;, B, ® S*V") — Hom(E,, E, @ S*V"Y).
£, SEZE,

There is then a natural surjective map ¢ : KQ — Ag and we can take our desired quiver with relations
to be (Q, ker ¢).
The following examples are applications of Corollary 5.2.9.

Example 5.2.11. Let X = SpecK and V = K". Then £ = Ox is a V-geometric exceptional collection
on D®(Coh (SpecK)). The classical tilting algebra is given by

Ag =Hom* (0,0 ® S°VY) = S*°VY =K[z1, ..., 2,]
and the classical tilting quiver is given by one vertex with n loops x;, with relations given by z;z; = x;;.

Example 5.2.12. If we take V to be the zero vector bundle, we recover the tilting quiver for X. In the

case X = P", with the full exceptional collection (O, O(1),---,O(n)), we have the Beilinson quiver
aio a20 ano
_—
° ° @ e ° : °
Vo v1 V2 VUp—1 ————> U
A1n azn Ann

with relations ;41 ;aix = @i+11a:;. The vertex v; corresponds to the bundle O(i), and the arrows a;;
correspond to Hom(O(i), O(j)) = H°(P",O(1)), i.e, the homogeneous coordinates on P". This also
explain the relations a;y1;41ai; = @it1;a:541: they correspond to the relation Z;Z, = Z,Z; in the
homogeneous coordinate ring.

More examples will be given in Section 6.1.

5.3 Quasi-free Resolution of Tilting Algebra
In this section, we will resolve the tilting A,.-algebra Ag by an augmented quasi-free dg-algebra.

To simplify notations, we will drop the subscript £ and write A = Ag. The idea is to use Koszul
duality, which is not new and has been explored by Keller [40], Lu, Palmieri, Wu and Zhang [50], Segal
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[62], and van den Bergh [70]. By Koszul duality, if F(A) is locally finite, then E(E(A)) is Aco-quasi-
isomorphic to A. However, since E(A) is a very large dg-algebra, E(F(A)) cannot be a minimal dg
model of A. To make it smaller, we take its cohomology H®(E(A)) and transfer the dg-structure on
E(A) to an Ag-structure on H*(E(A)). It turns out that H*(E(A)) = Ext} (S, S) is finite dimensional
and E(Ext}(S5,S)) would be the desired quasi-free dg-algebra resolving A. Making all of these rigorous
involves an Adams grading on A. In the following, we will denote by .S the semisimple algebra K", where
n is the length of £. Recall that there is no loss of generality to choose a total order refining the partial
order on &£, so we will assume further that £ is in fact an exceptional sequence.

Lemma 5.3.1. Let £ = {FEy,...,E,} be a full exceptional sequence on D®’(Coh%(X)). The tilting

Ay -algebra
A=PP P P Homy(E;, E; @ SFVY)

k=0 ¢€Z a=—n j—i=a

is Adams graded by (a,k) € Z x Z, and is a locally finite augmented algebra over Ao = S. The Adams
grading of the augmentation ideal A is supported in

J={(a,b) €ZxZ:—(n—1)<a<n—-1andb>1}U{(a,0)€ZxZ:1<a<n-—1}

Proof. The tilting algebra A is locally finite since Ag’k = @ Homb, (E;, E;®S*V") is finite dimensional.
j—i=a
The rest follows from the fact that (Ey,..., E,) is an exceptional sequence. [ |

A partition of j € J is a way of writing j as a finite sum of elements in J. Denote by p(j) the number
of such partitions.

Lemma 5.3.2. The number p(j) is finite.

Proof. A general partition of j = (a,b) € J is in the form
(aab) = (alvbl) +oet (akabk) + (01’0) +oeet (Cz,O),
where —n < a; <n, b; > 1 and ¢; > 1. Rewriting, we have

b=1by+--+ by

afalf...fak:61+...+cé

which are both partitions of natural numbers. Since 0 <a—ay —---—ar <a+(n—1)k <a+(n—1)b,
we conclude

p(j) = p(a,b) < (number of partitions of b)(number of partitions of a + (n — 1)b).

Lemma 5.3.3. Let A and A’ be augmented Adams graded As.-algebras Adams graded by 7. X Z.. Suppose
their augmentation ideals are both supported in J. Then

1. A and A’ are both Agy.
2. Any Adams-graded Aso-morphism f: A — A’ is Agy.
3. Any Adams-graded A-homotopy h: A — A’ between Ao,-morphisms f,g: A — A" is Agay.

4. The Adams-graded minimal model H®(A) is Agn and is Agn-homotopic to A.
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Proof. For statement 1, since m,. preserves the Adams degree, for any fixed j € J,
mr:Agi ®S"’®3A§: %A?

can be nonzero ounly if j = j3 + -+ + j,, with j,j1,...,j, € J. By Lemma 5.3.2, there can be only a
finite number of partitions of j. Hence the j-th component of m, vanishes for r > 0, i.e., A is Ag,. The
other second and third statement are proven similarly.

For the last statement, observe that the Adams grading on A induce an Adams grading on H*(A),
and recall that by choosing a spliting respecting the Adams grading in Section 3.2, one can get an A.-
structures on H*®(A) preserving the induced Adams grading , and which is A,,-quasi-isomorphic to A.
By Theorem 3.1.3, H*(A) is A-homotopic to A. By statement 3, this A.,-homotopy is Ag, and we are
done. |

Lemma 5.3.4. The Ay -structure on A is in an Agy-structure, i.e., m, =0 for r > 0.

Proof. This is a special case of Lemma 5.3.3. |

The Adams grading on A induces an Adams grading on its Koszul dual F(A), and the combinatorial
Lemma 5.3.2 is crucial in showing the following lemma describing the Adams grading on E(A).

Lemma 5.3.5. 1. The dg-algebra E(A) is a Z x Z-graded locally finite algebra augmented over S.
The Z x Z-grading of its augmentation ideal is supported in J.

2. The same also holds for the dg-algebra E(E(A)).

Proof. The j-th component of the augmentation ideal of F(A) is

DU =B G (ENFL os--es(ENHF))

m m LAl =L
Sttim=i
Ji€J

=P P ((m)ﬁ; ®s - s (m)ﬁ;)#.
m byl =L
gitetim=j
ji€d
If j € J, the direct sum on the right hand side is a finite sum since the number of partitions of 7 € J
is finite. Since A is locally finite, each Aj, is finite dimensional and hence the j-th component of the
augmentation ideal of E(A) is also finite dimensional.

If j ¢ J, we would like to show the j-th component vanishes, which is equivalent to the vanishing of
each vector space A;, ®g - ®g A;, whenever j; + -+ + j,, ¢ J. We show the case when m = 2, i.e.,
A; ®s Ar = 0 whenever j+k ¢ J. The proof for general m is similar. Write j = (j,5”) and k = (k', k"').
Note that j + k & J is equivalent to j' + k' ¢ [—(n — 1),n — 1], where n is the length of the exceptional
sequence £. Now

Noshi= @ Hom(E,Eiy©8" V) s Hom(Ey, Epp @ S VY)
0<i,i+j' <n
0<0,0+k'<n
= @ HOIII(E‘i7 Ei+j/ X Sjllvv) ®g HOIH(EH,J-/, Ei+j’+k’ ® Sk/'v\/).

0<i, it i+j'+k' <n

Ifj/+k >n,theni+j +k >nforali=1,....n. If j/+k < —n, then i + 5 + k' < 0 for all
i=1,...,n. Hence A; ®s Ay = 0. In particular, the support of the augmentation ideal lies in J and we
have proven the first statement.

Now, in proving the first statement, we have only used the fact that A is locally finite with Adams

grading of its augmented ideal supported in J. Since this is also true for F(A), the same also holds for
E(E(A)). [ |
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Lemma 5.3.6 ([52] Lemma 11.1). H*(E(A)) = Ext} (S5, S).

Proof. By Lemma 5.3.5 and Koszul duality (Theorem 3.4.3), E(E(A)) = QBA is a dg-algebra which
is Aoo-quasi-isomorphic to A. By Lemma 5.3.3, they are Ag,-homotopic. Since the Koszul functor F
sends Ag,-homotopies to dg-homotopies, E(QBA) is dg-homotopic to F(A) and hence H*(E(Q2BA)) =
H*(E(A)). By [48, Lemma 2.3.4.4 and 2.4.2.3], we have an equivalence D(Q2BA) = D (A) which sends
S+ S[—1]. Hence Ext}(S5,5) = Extgp4(S,S). Thus, passing to QBA if necessary, we may assume A
is a dg-algebra. Since E(A) is locally finite, E(A) = (BA)*#. Now, by [24, Prop. 19.2], B(A) ®s A is a
semi-free resolution of the right A-module S. Then

RHom(S, S) = Homy (BA ®s A, S) = Homg(BA, S) = (BA)# = E(A).

Taking cohomologies on both sides, we are done. [ |

Lemma 5.3.7. Any Ay -structure on the Yoneda algebra Ext}(S,S) preserving the Adams grading is
Agin. In particular, the Agy-structure obtained on Ext} (S, S) by taking minimal model of E(A) is turns
Ext} (S, S) into an augmented Agy-algebra over S which is Agn-homotopic equivalent to E(A).

Proof. This is a consequence of Lemma 5.3.3 and 5.3.6. [ |

Henceforth the Yoneda algebra will always be equipped with this natural Ag,-structure coming from
taking minimal model of E(A).

Proposition 5.3.8. 1. There is a Aan-quasi-isomorphism E(Ext}(S,S)) = A.

2. If A is a classical algebra, then there is a quasi-isomorphism
E(Ext}(S,5)) — H°(E(Ext} (S, 9))) = A,
i.e., E(Ext}(S,S)) is a quasi-free dg-algebra resolving A.

Proof. By Lemma 5.3.7, Ext} (S, S) is Ag,-homotopic equivalent to E(A). Since the Koszul functor E
sends Ag,-homotopies to dg-homotopies, E(Ext}(S,5)) is dg-homotopic to E(E(A)). Now E(E(A)) is
Aso-quasi-isomorphic to A by Koszul duality (Theorem 3.4.3), and hence Ag,-quasi-isomorphic to A by
Lemma 5.3.3 and 5.3.5. This proves the first statement.

If A is a classical algebra, by the same argument, E(Ext}(S5,5)) is dg-homotopic to E(E(A)). By
Koszul duality of dg-algebras (Theorem 3.4.3), there is a quasi-isomorphism of dg-algebras E(E(A)) — A.
Hence there is a quasi-isomorphism as desired. |

5.4 Computing Ext} (S, 5)

In this section, we compute Ext} . (S,8) in terms of the dual exceptional sequence to £ and the vector
bundle V.

When Ag¢ is an algebra rather than an A..-algebra, which happens for example when £ is V-geometric,
we can compute Ext}_(S,S) in terms of the dual exceptional sequence F of £. Among all modules
over Ag, the following projective modules and simple modules are of utmost importance for us as they
correspond to objects in & and F. Let P; = Homg(E, E; ® S*VY). Then P; is a right module over
Ag which is a direct summand of Ag. Let S; = Homg(E;, B; ® S°VY) = Homg(FE;, E;) = K. Then
S; is a simple right module over Ag. When we write Ag in the form of a quiver with relations (Q, I),
then P; corresponds to the vector space of all paths starting at the vertex i, and S; corresponds to
the 1-dimensional vector space sitting at the vertex i. We will denote S = @,_;S;. Then Ag¢ is an
Agp-algebra augmented over S.

The following proposition describes the preimage of the modules P; and S; under the isomorphism
@ : DY(Coh ©(V)) — Per(A).

el
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Proposition 5.4.1 ([16], Lemma 3.7). Let 7 : V — X be a G-equivariant vector bundle. Let &€ = {E;}ier
be a full V-geometric exceptional poset on D?(Coh (X)) and F = {F,};crov be the dual exceptional poset
of €. The equivalence ® : D*(Coh “(V')) — Per(AL") sends

@(F*EZ) = Pl and (I)(S*FZ) = Si,
where s : X — V is the zero section.

Proof. The equivalence W : D?(Coh ¢ (V)) — Per(R°P) in Theorem 5.2.4 sends
U (E;) = Hom(Ip, Ip, @ S*VY).

Now
H*(Hom(Ig,Ig, ® S'VV)) = Hom*®(F, E; ® S'VV).

Hence ®(n*E;) = P,.

Next, we choose an injective resolution I, for Fj. Then s.lp; is an injective resolution for s.F)
and hence V(s F;) = Hom(Ig, mus.dF;) = Hom(IE, Ip]). Taking cohomology, we conclude ®(s.Fj) =
Hom*®(E, F;) = S as vector spaces. To show they are isomorphic as Ag-modules, it suffices to show
that Hom(E E® SkVV) acts trivially on ®(s,F;) whenever k > 1. The action of R on ¥(s,F}) factors
through the map S*VV®I F; — Ip; which in turns comes from the pushforward under 7 of the Oy -module
structure on s, F;. This shows that the action of S*VV on Ip,, and hence the action of Hom(Ig,Ig ®
S*VV) on Hom(Ig,IF,) is trivial for k > 1. Taking cohomology, we see that Hom(E, E ® S*¥VV) also
acts trivially on (I)(S*F ;) whenever k > 1, as desired. [ ]

Remark 5.4.2. This proposition is the only place where we need A¢ to be an algebra rather than an
Axo-algebra in order to calculate Ext}_(S,S) in terms of the dual exceptional collection of £. In the
general A,-algebra case, we do not know if the higher multiplication maps acts trivially, and hence we
do not know if ®(s,.F;) = S;.

Proposition 5.4.3. Let s: X — V be the zero section. Then for all E € D(QCoh (X)),

rank V' k
Ls's.E= P \V'kl@E=S"(V[-1)' o E.
k=0

Proof. Consider X as a subvariety of V' via the zero section. Then X is given by the zero locus of the
tautological section ¢ of the tautological vector bundle 7*V on V. The sheaf s,Ox can be resolved by
the Koszul complex

rank V'
0— /\ (T*V)Y — o = (7*V)Y = Oy = 5.0x — 0,

where the maps are given by contraction with the section . In other words, we have a quasi-isomorphism
A (7*V)Y =2 5,0x. Since \°*(7*V)V is locally free, its derived pullback under s is the same as the un-
derived pullback, i.e., restriction to X. Since the maps in the complex A\*(7*V)V is given by contraction
with o, they restrict to zero on X. This yields

. . rank V' k

§%8,0x & 8*(/\(7T*V)\/) = /\( V)Y @ /\Vv

The general case follows from

s*s, E = m.5,8%s.F (rs =idx)
= T (8.0x @ s.E) (Projection formula)

= T.8:(5%8.0x ® E) (Projection formula)
rank V'

= EB/\VVH
= 5'([ )" ®E.
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Corollary 5.4.4.

rank V' rank V'
Hom,(s.E, s.F) = @ @ Homg(A*VY[k]@ E,F) = @) Hom&(E,F @ S*(V[-1]))
eZ k=0 k=0

Proof. The first equality is by the adjunction s* - s, the second by Proposition 5.4.3, the third by
locally-freeness of V. [ |

We therefore arrived at the following

Theorem 5.4.5. Let X be a smooth G-variety and m : V. — X be a G-equivariant anti-semiample
vector bundle. Suppose & = {E;}icr is a full V-geometric exceptional poset on D?(Coh & (X)) with dual
exceptional poset F = {F;}icroo. Then there is an Agy-structure on

rank V'

Ae =P P @ Homg *(F, F; @ AFY),

i,jel L€Z k=0

making it a finite dimensional Agn-algebra augmented over S, such that E(Ag) is a dg-algebra re-
solving Ag and hence D(Coh @ (V)) = D?Q(E(Ag)()p), where Dl}g(E(Ag)OP) denotes the full triangu-
lated subcategory of DP(E(Ag)°P) consisting of complexzes whose cohomologies are finitely generated over
H*(E(Ag)°P). Moreover, this equivalence restricts to an equivalence D8, (Coh @ (V)) = Dl}d(E(Ag)OP).

Proof. Theorem 5.2.9 gives an Ag,-algebra Ag¢ and a derived equivalence D?(Coh ¢ (V) = D?Q(Agp).
Proposition 5.3.7 and 5.3.8 shows there is an Ag,-structure on H*(E(Ag)) = Ext}(S,S) such that
E(Ext}, (S, 5)) is Agn-isomorphic to Ag. By Proposition 5.4.1 and 5.4.4,

Ext},(S,95) = @Homa(s*Fi, s Fj) = Ag

.3

as graded S-bimodules. Transferring the Ag,-structure on Ext}, (S, S) to Ag, we have derived equiva-

lences
D(Coh “(V)) = DY, (AP) = DY (E(Ext}, (S, S))) = DY, (E(As)P).

The fact that this equivalence restrict to an equivalence D2 (Coh ©(V)) = Dl}d(E(Ag)Op) follows from
Corollary 5.2.10. [ |

Remark 5.4.6. One can also transfer the Adams grading on Ext}_(S,5) to Ag. A natural guess for
this Adams grading on Ag would be given by (j — 4, k). Since we will not need this explicit description,
we will not prove the statement.

Recall E(Ag) is the path algebra of a dg-quiver Q¢. Hence we have shown that V' is derived equivalent
to a dg-quiver.

Corollary 5.4.7. Let X be a smooth G-variety and 7 : V — X be a G-equivariant vector bundle. Suppose
E = {E;}ier is a full V-geometric exceptional poset on DY(Coh @ (X)), then there exists a dg-quiver Qg
such that D®(Coh & (V)) = Dl}g(Qg) and Db, (Coh (V) = Dz}d(Q‘g).

Example 5.4.8. Let X = P2 and V = 0. Let £ = (0,0(1),0(2)) be the Beilinson sequence. The
classical tilting quiver is given by

ag bo
° al—= e bi—= o (5.4.1)
vo a V1 b2 V2

with relations b;a; = bja;. Using the cohomology formula in the Appendix (Section A.2), the A-
category Ag is given by

C ife=0

0  otherwise.

Al (vo,v0) = Hom"(2%(2)[2], 2*(2)[2]) = H(P*,0) = {
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A’ (v, v1) = Hom"(Q%(2)[2], 1)[1]) = H 7 (P*,9(2)) = {C3 = 1‘
0 otherwise.
A (v, v2) = Hom"(2%(2)[2), 0) = H*"*(P*,0(1)) = {SS ftfl;ise.

Al (vy,v0) = Hom*(Q(1)[1], Q%(2)[2]) = H 1 (P?,T(-2)) =0
C ift=0

— Hom" _ _
Af(v1,v1) = Hom (Q(1)[1], Q(1)[1]) = H (P2, T ® Q) = {0 otherwise.

3 ifp=
A (w1, v3) = Hom" (Q(1)[1], 0) = HL(P2, T(—1)) = {;C Oftierwlis&
Al (vg,v0) = Hom“(0,0%(2)[2]) = H2(P?,0(-1)) = 0.
A (v, v1) = Hom* (O, Q(1)[1]) = H1(P2,Q(1)) = 0.
C ifle=0

0  otherwise.

A (vg,v9) = Hom*(0,0) = HY(P?,0) = {

Hence the dg-quiver is given by

L] [ ] [ ]
Vo a U1 b v2

where black edges are of degree 0 and red edges are of degree —1. Next, we would like to determine
the differential. Since H°(KQ) is the classical tilting quiver in Equation (5.4.1), by a change of basis if
necessary, we may assume the differential sends

dp; = biy10542 — bijoai41, da; =0, db;=0.

More examples will be given in Section 6.3.

5.5 Superpotential

In this section, we construct a superpotential on the dg-tilting quiver Q¢ in the case when the total space
of V is Calabi—Yau.

Serre Functor on Equivariant Derived Category We describe how to obtain equivariant Serre
duality on a equivariant vector bundle V', which the author learnt from Bridgeland-King-Reid [14]. Since
X is projective and G is finite, one can find a G-invariant ample line bundle Ox (1) on X. Consider the
embedding i : V < P(V @ Ox(1)). Then i, embeds D%, (Coh ¢(V)) into D%, (Coh “P(V & Ox(1))) as a
full subcategory. The Serre functor (—) ® Kpvaoy (1))[dim V] on D (Coh “P(V & Ox(1))) then restricts
to a Serre functor (—) ® Ky [dim V] on D (Coh & (V)). In particular, if Ky is trivial as a G-equivariant
vector bundle, D% (Coh ¢ (V)) becomes a Calabi-Yau category.

Proposition 5.5.1. Let 7 : V — X be a G-equivariant vector bundle. Then Ky is trivial as an
equivariant vector bundle if and only if det V = Kx as an equivariant vector bundle. In particular, when
G is trivial, V is (non-compact) Calabi-Yau if and only if detV = Kx.

Proof. We have a short exact sequence

07"V =TV - 7*TX — 0.

We have therefore
det TV = det 7"V @ det 7*TX = n*(det V ® KY).
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If det V = Kx, then det TV = 7#*Ox which is trivial. If V' is Calabi-Yau, we have
Ox = Ov|x = w*(detV@K}ﬂX = detV®K}/(.

Hence detV = Kx. [ ]

Pairing on Ag. If V is noncompact Calabi-Yau, there is a pairing on Ag as follows: consider the
composition map

HOInZik(E, F® /\kV) ® HomdimXJrku(F,E ® /\rank\/fkv) N HOmdimX(E,E ® det V)

feg= (idan)o(g@idy)o f
Since V is Calabi—Yau, det V = Kx. Composing with the trace map of Serre duality

Hom"™ X (E,E @ Kx) — K,
we obtain a pairing on Ag¢ of degree dim V'
Ag @ A"V 5 K.

One might ask whether the Ag,-structure on Ag comes from a cyclic structure. The following theorem
answers the question:

Proposition 5.5.2. Let 7 : V. — X be an anti-semiample vector bundle which is m-Calabi-Yau. Let
E be a V-geometric exceptional poset on D(Coh (X)). Then Ag¢ has a cyclic structure of degree m and
hence E(A) has a superpotential, i.e., V is derived equivariant to a quiver with superpotential.

Proof. The tilting object @ 7* E; is classical since

Hom(r*E,n*E) = €P Hom" (" E;, 7" E;) = Hom*(E;, E; ® S*VY) =0
i,5€1

By [45, Prop. 3.3.1], A¢ is an Calabi—Yau algebra. Now, since Ag is graded, by [70, Corollary 9.3,
Theorem 12.1], A¢ is equipped with a cyclic structure. |

Examples of quivers with superpotential constructed this way will be given in Section 6.4.

5.6 Quotient Construction

In the last section, we have shown that if V' — X is an anti-semiample vector bundle over a smooth
projective variety, and £ is a V-geometric exceptional poset on D?(Coh (X)), then there exists a dg-
quiver Q¢ such that D?(Coh (X)) = D’} g (Qg). In this section we study the following problem: Suppose
there is a finite group G acting on X by automorphisms, and the group action lifts to an action on
the vector bundle V' and the exceptional poset £. We ask if we can construct a new quiver Q¢/G such
that D(Coh (V) = Dl;cq(Qg/G). Theorem 5.6.5 answers this affirmatively: recall the Q¢ is the Koszul
dual of an Ag,-algebra Ag. The correct construction for Qg/G is to apply the quotient construction
of A-algebras to Ag and take its Koszul dual, ie., Q¢/G = E(Ag/G). This quotient construction
generalizes the McKay quiver.

Proposition 5.6.1. Let & = {E;}ic; be a finite poset of objects on DY(Coh @ (X)) whose underlying
objects form a full exceptional poset on D*(Coh (X)). Then €@ Irr (G) = {E; @ p}ici pen (c)» with the
partial order E; ® p < E; ®c if and only if i < j, is a full exceptional poset on D®(Coh “(X)). Moreover,
if £ is strong, then so is € @ Irr (G).
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Proof. From
Homg(E; @ p, E; @ 0) = [Homk (E; ® p, E; ® 0)]9 = [Hom (E;, E;) ® Hom(p,0)],

and Schur’s lemma, we see that each object E; ® p is exceptional, and that Hom®(E; ® p, E; ® o)
vanishes unless i < j, hence £ ® Irr (G) is an exceptional poset. Also, if £ is strong, then so is £ ®
Irr (G). It remains to show £ ® Irr (G) classically generates D*(Coh (X)) if € classically generates
D?(Coh “(X)). Let F € D(QCoh (X)) be such that Hom{,(E; ® p, F) = 0 for all i € I and p € Irr (G).
Then Homg(p, Hom®(E;, F)) = [p* ® Hom®*(E;, F)]® = Hom&(E; ® p, F) = 0. Now, decomposing
Hom®(E;, F) into a direct sum of irreducible representations of G, we see that Hom®(E;, F) = 0 for all
i € I. Since & is full, this shows F = 0. Hence & ® Irr (G) generates D®(Coh ¢(X)). |

Proposition 5.6.2. Let F be the dual sequence to £ in D*(Coh (X)). Then F has a natural lift to
D?(Coh (X)) and F ® Irr (G) is the dual sequence to € @ Irr (G) in D?(Coh ¢ (X)).

Proof. Without loss of generality, we may assume & is an exceptional sequence. Recall that by Proposition
2.8.5, F; = L¢_,E; = Lg, -+ Lp, ,F;. Hence to show Fj has a natural lift to D’(Coh ¢(X)), it suffices
to show that if any £, X € D’(Coh (X)) lift to D?(Coh ¢ (X)), then so does LgX. This follows from
G-equiva