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Abstract

This thesis studies derived equivalences between total spaces of vector bundles and dg-quivers.

A dg-quiver is a graded quiver whose path algebra is a dg-algebra. A quiver with superpotential is
a dg-quiver whose differential is determined by a “function” Φ. It is known that the bounded derived
category of representations of quivers with superpotential with finite dimensional cohomology is a Calabi–
Yau triangulated category. Hence quivers with superpotential can be viewed as noncommutative Calabi–
Yau manifolds.

One might then ask if there are derived equivalences between Calabi–Yau manifolds and quivers with
superpotential. In this thesis, we answer this question and, generalizing Bridgeland [15], give a recipe
on how to construct such derived equivalences.

Let π : V → X be an anti-semiample vector bundle over a smooth projective variety X, i.e., SkV ∨ is
globally generated for k � 0. Given a full exceptional sequence E on Db(Coh (X)), under some cohomo-
logical vanishing conditions, we construct a dg-quiver QE in terms of the dual exceptional sequence of E
such that Db(Coh (V )) ∼= Db

fg(Rep(QE)). Moreover, this equivalence restricts to an equivalence between

Db
cs(Coh (V )), the full subcategory containing complexes of compact support, and Db

fd(Rep(QE)), the
full subcategory containing complexes with finite dimensional cohomology. If V is non-compact Calabi–
Yau, we show that QE is equipped with a superpotential Φ, i.e., the differential on QE is determined
by the “function” Φ. In this case, the triangulated categories Db

cs(Coh (V )) and Db
fd(Rep(QE)) are both

Calabi–Yau.

We can also construct derived equivalences equivariantly. Suppose a finite group G acts on X and
this action lifts to V , endowing π : V → X the structure of an equivariant vector bundle. Suppose
further that each object in the exceptional sequence E is equipped with a G-linearization. Then we can
construct a quotient dg-quiver QE/G from QE , generalizing the construction of the McKay quiver, such
that Db(CohG(V )) ∼= Db(Repfg(QE/G)). If V is non-compact Calabi–Yau equivariantly, then QE/G is
also equipped with a superpotential.

We also give a product construction for derived equivalences. Suppose we have vector bundles πV :
V → X and πW : W → Y , with full exceptional sequences E on Db(Coh (V )) (resp. F on Db(Coh (W ))),
then we can construct a product dg-quiver QE×QF such that Db(Coh (V ×W )) ∼= Db(Repfg(QE×QF )).
If both V and W are Calabi–Yau, then QE ×QF is also equipped with a superpotential.

Using these constructions, we can produce a lot of beautiful pictures of quivers with superpotential
derived equivalent to the total spaces of vector bundles which are Calabi–Yau. Examples include T∨P2 ,
KPn , and OP2(−1)⊕OP2(−2) etc.

Finally, we try to connect quivers with superpotential to the recent work by Pantev, Toën, Vaquié
and Vezzosi [58] and Ben-Bassat, Brav, Bussi and Joyce [4] on shifted symplectic structures. We outline
a strategy of proof for the existence of shifted symplectic structures in a standard ‘Darboux form’ on the
derived moduli stack of representations of quivers with superpotential.
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Introduction

In Calabi–Yau geometry, one important object is the category of coherent sheaves. Coherent sheaves
on m-Calabi–Yau manifolds enjoy a special form of Serre duality: for any coherent sheaves E and F ,
Exti(E,F ) ∼= Extm−i(F,E)∨. This property is writtenly solely in terms of the Ext groups and hence
can be axiomatised to a definition of Calabi–Yau abelian categories. As algebraic geometry progresses,
we soon know that it is more flexible to work in the derived category of coherent sheaves (which is a
triangulated category) rather than the abelian category. Kontsevich [46] later modified the definition of
Calabi–Yau abelian categories to give a notion of Calabi–Yau triangulated categories.

The earliest examples of Calabi–Yau categories other than coherent sheaves on Calabi–Yau manifolds
were probably given by physicists Berenstein and Douglas [5], Braun [12], Douglas and Moore [23] and
later by mathematicians Ginzburg [27] and Derksen, Weyman and Zelevinsky [22] as representations of
some quivers with relations coming from the derivatives of a linear sum of closed paths (the superpoten-
tial). One problem of this definition of quivers with superpotential, however, is that they do not always
produce Calabi–Yau categories. This problem was later solved by Ginzburg [27], Keller [41] and van
den Bergh [71] (see also van den Bergh [70]) by adding derived structures, i.e., considering dg-quivers
(graded quivers whose path algebra is endowed with the structure of dg-algebras) rather than quivers
with relations. This new definition of quivers with superpotential as dg-quivers always produces Calabi–
Yau categories and yields the old definition of quivers with superpotential as quivers with relations when
taking the zeroth cohomology of the dg-quiver.

As is well known, using the notion of exceptional sequences, one can construct derived equivalences
between varieties and quivers with relations. One then ask if there are derived equivalences between
Calabi–Yau varieties and quivers with superpotential. This thesis is a study on how to construct such
derived equivalences. There are three major difficulties. To start off, compact Calabi–Yau manifolds
do not have any exceptional sequences due to Serre duality and therefore, one cannot directly employ
exceptional sequences to construct such derived equivalences. Bridgeland [15] found a slick way of getting
around this problem by considering noncompact examples, namely, the total space of vector bundles,
and pulling back exceptional sequences on the base manifolds to produce derived equivalences between
the total spaces of vector bundles with quivers with relations. This is essentially Corollary 5.2.9.

The second difficulty is to resolve quivers with relations by dg-quivers. This is done by using A∞-
Koszul duality. Any dg-quiver can be characterized as the Koszul dual of an augmented Afin-category
(A∞-category with mn = 0 for n � 0). This construction sends an Afin-category A to the quiver
constructed by taking the vertices to be Obj (A) and degree i edges between vertices u and v to be a
basis of Ā1−i(u, v)∨, where Ā denotes the kernel of the augmentation map. The path algebra of the quiver
is then given by the Koszul dual dg-algebra E(A), with differential given by d =

⊕
m∨n . In Theorem

5.4.5, we produce an Afin-category in terms of dual exceptional sequence and show that its Koszul dual
is the desired dg-quiver. Readers familiar with the theory of A∞-algebras would perhaps find it awkward
to work with Afin-categories as the property of being Afin is not invariant under homotopy perturbation.
Indeed, much of the trouble here is to show that we always end up with an Afin-category rather than
just an A∞-category. This is done by considering an additional grading on the A∞-category known as
the Adams grading.

The last difficulty is to show that the dg-quiver built this way is a quiver with superpotential. We use
the characterization that quivers with superpotential are precisely the Koszul dual of positively graded
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Introduction 2

augmented Afin-categories with cyclic structure. We then show the existence of a cyclic structure on our
Afin-category by using a result of van den Bergh [70] characterizing a class of algebras known as exact
Calabi–Yau algebras. This is Proposition 5.5.2.

This yields the following theorem, which is the basis of this thesis and is essentially a generalization
of Bridgeland [15, Proposition 4.1].

Theorem A (Theorem 5.4.5 and Proposition 5.5.2). Let X be a smooth projective variety and π : V → X
be an anti-semiample vector bundle, i.e., SkV ∨ is globally generated for k � 0. Let E = (E0, . . . , En) be
an exceptional sequence on Db(Coh (X)). Suppose the vanishing condition

Hom`(Ei, Ej ⊗ SkV ∨) = 0

is satisfied for all i, j, k and all ` ≥ 1. Denote by F = (Fn, . . . , F0) the dual exceptional sequence to E.
Then there is an Afin-category AE where Obj (AE) = F and

A`E(Fi, Fj) =
⊕
k≥0

Hom`−k(Fi, Fj ⊗ ∧kV )

such that E(AE) is cohomologically Noetherian and Db(Coh (V )) ∼= Db
fg(E(AE)

op). Moreover, this equiv-

alence restricts to a derived equivalence Db
cs(Coh (V )) ∼= Db

fd(E(AE)
op). Furthermore, if V is noncompact

Calabi–Yau, AE has a cyclic structure.

Here, by cohomologically Noetherian, we mean that the algebra H•(E(A)op) is Noetherian. The de-
rived category Db

fg(E(AE)
op) denotes the full triangulated subcategory of Db(E(AE)

op) consisting of com-

plexes whose cohomologies are finitely generated over H•(E(AE)
op); the derived category Db

fd(E(AE)
op)

denotes the full triangulated subcategory of Db(E(AE)
op) consisting of complexes whose cohomologies are

finite dimensional; and Db
cs(Coh (V )) denotes the full triangulated subcategory of Db(Coh (V )) consisting

of complexes whose cohomologies are compactly supported.

In other words, we can produce a dg-quiver derived equivalent to the total space of the vector bundle,
and in the case when the total space of the vector bundle is Calabi–Yau, the dg-quiver is equipped with a
superpotential. The underlying graded quiver can be described explicitly in terms of the dual exceptional
sequence and the vector bundle, although the differential (or the superpotential in the Calabi–Yau case)
is not readily known. However, in the Calabi–Yau examples of dimension no greater than 4, knowing
the classical quiver with relations derived equivalent to the vector bundle is enough to determine the
superpotential, since there are enough constraints. One can generalize Theorem A and remove the
vanishing condition. But then we no longer have a concrete description for the underlying graded quiver.

We can also construct derived equivalences equivariantly. Let G be a finite group and A an Afin-
category, with G acting on A by strict Afin-isomorphisms. Then one can construct a quotient Afin-
category A/G. We have the following

Theorem B (Theorem 5.6.5). In the situation in Theorem A, suppose there is a finite group G act-
ing on X, and this action lifts to V . Assume further that each object Ei ∈ E can be equipped with
a G-linearization. Then there is a G-action on AE by strict Afin-isomorphisms and an equivalence
Db(CohG(V )) ∼= Db

fg(E(AE/G)op). Furthermore, if KV is trivial as an equivariant vector bundle, or
equivalently if detV ∼= KX equivariantly, then AE/G also has a cyclic structure.

In other words, if we know the dg-quiver derived equivalent to V , we can construct the dg-quiver
derived equivalent equivariantly to V . The action of the differential (or the superpotential in the Calabi–
Yau case) on the equivariant dg-quiver is also determined. In fact, this quotient construction on quiver
is a generalization of the McKay quiver.

We also have the following recipe for products. Given two A∞-algebras A and A′, there is an A∞-
tensor product A⊗A′ defined by Amorim [2] which preserves cyclic structures in the sense that if both
A and A′ have cyclic structures, then so does A⊗A′.
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Theorem C (Theorem 5.7.3). Let πV : V → X and πW : W → Y be anti-semiample vector bundles.
Let E be an exceptional sequence on X and F be an exceptional sequence on Y . Suppose they satisfy the
vanishing conditions

Hom`(Ei, Ej ⊗ SkV ∨) = 0 and Hom`(Fi, Fj ⊗ SkW∨) = 0

for all i, j, k and ` ≥ 1. Then the A∞-structure on AE ⊗ AF is Afin and there is an equivalence
Db(Coh (V × W )) ∼= Db

fg(E(AE ⊗ AF )op). If both V and W are Calabi–Yau, then AE ⊗ AF has a
cyclic structure.

In other words, if we know the dg-quivers derived equivalent to vector bundles, we also know the
dg-quiver derived equivalent to their product. However, the differential on this product quiver is not
uniquely determined as tensor product of A∞-categories are only defined up to A∞-quasi-isomorphisms.
In the case when one of the Afin-category has mn = 0 for m ≥ 3, then there is a natural choice of
Afin-structure on the tensor product, and hence a natural choice of differential on the product quiver. In
the Calabi–Yau case, this means that when one of the superpotentials is cubic, then there is a natural
choice of superpotential on the product quiver.

Using these three theorems, we can produce a lot of beautiful pictures of quivers with superpotential
derived equivalent to the total space of vector bundles which are Calabi–Yau. Examples include T∨P2 ,
KPn , and OP2(−1)⊕OP2(−2) etc.

Quivers with superpotential also connect to the recent work by Pantev, Toën, Vaquié and Vezzosi [58]
and Ben-Bassat, Brav, Bussi and Joyce [4] on shifted symplectic structures in that the moduli space of
representations of quiver with superpotential seems to be equipped with a shifted symplectic structure
which is in a standard Darboux form. The precise statement is stated in Conjecture 7.4.1, and an
attempt to prove the conjecture is sketched in Section 7.4. The main difficulty here is finding a way to
describe symplectic forms on the moduli space, which is a quotient stack of a derived scheme by a linear
algebraic group, by invariant symplectic forms on the atlas. We propose a way to do this via Lie algebra
cohomology in Section 7.3.

A Guide to the Chapters

Chapter 1 is a review on noncommutative geometry.

In Section 1.1, we introduce quivers and their representations, and discuss how they can be thought
of as objects in noncommutative geometry.

Section 1.2 reviews some calculus on noncommutative space.

Chapter 2 is a review on the theory of triangulated categories.

Section 2.1-2.3 define triangulated category, derived categories and t-structures.

Section 2.4 defines Serre functors and Calabi–Yau triangulated categories.

Section 2.5-2.7 give a brief review of different notions of compact generators, admissible subcategories
and mutation functors.

Section 2.8-2.9 define exceptional sequences and tilting objects, which are the main ingredients to
construct derived equivalences.

Chapter 3 is a survey on A∞-algebras and operations on them.

In section 3.1, we introduce A∞-algebras and other related notions such as minimal models, A∞-
modules, and their derived categories.

Section 3.2 defines the notion of minimal A∞-algebras, and discusses how to construct minimal models
by using homotopy perturbation.
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Section 3.3 defines the notion of cyclic structure on A∞-algebras and describes how it gives rise to
Calabi–Yau categories.

Section 3.4 defines the Koszul functor, which is essentially a way of producing dg-quivers from A∞-
algebras. There are two versions of this functor: the completed one and the incomplete one. The
completed one is defined on A∞-algebras and yields the completed path algebra of a dg-quiver. The
incomplete one is only defined on Afin-algebras, and yields the incomplete path algebra of a dg-quiver.
The difference between the two versions is similar to the difference between power series and polynomials.
Admittedly, working with Afin-algebras and hence the incomplete Koszul functor is awkward in the world
of A∞-algebras, as being Afin is not a homotopy invariant property. For example, the minimal model
of an Afin-algebra is not necessarily Afin. However, as we will see in Chapter 5, the incomplete Koszul
functor is central to our problem of constructing derived equivalences between dg-quivers and total spaces
of vector bundles.

Section 3.5 defines the quotient of an A∞-algebra by a finite group, and the smash product of an A∞-
algebra by a finite group. Although the definition of quotient construction is straightforward, it appears
to be new. This quotient construction is central to constructing derived equivalences equivariantly as
described in Section 5.6. We then prove a relation between the quotient construction and the smash
product, and shows how these two constructions commute with the Koszul dual functor, i.e., the Koszul
dual of the quotient (resp. smash product) of an Afin-algebra is the quotient (resp. smash product) of
the Koszul dual of an Afin-algebra. This section is inspired by the work of Bocklandt, Schedler, and
Wemyss [7].

Section 3.6 surveys different constructions of A∞-tensor product. Since A∞-tensor products are only
unique up to A∞-quasi-isomorphisms, there is in general no natural formulae for computing the ten-
sor product, although there is one in the case when one of the A∞-algebras is A2, i.e., a dg-algebra.
Particularly important to us is the tensor product constructed by Amorim and Tu [2], since their con-
struction preserves cyclic structures. We then prove that, under some local finiteness conditions, the
Koszul functor commutes with the tensor product, i.e., Koszul dual of tensor product of A∞-algebras is
quasi-isomorphic to tensor product of Koszul duals of A∞-algebras as dg-algebras.

Chapter 4 is devoted to the study of quivers with superpotential.

In section 4.1, we define quivers with superpotentials. Our definition of quivers with superpotential
is taken from van den Bergh [70], where the completed path algebra of a quiver with superpotential is
known as a deformed DG-preprojective algebra there.

Section 4.2 gives a correspondence between quivers with superpotential and the Koszul dual of Afin-
categories with cyclic structures. Using this correspondence, we define the notion of product of quivers
with superpotential and the notion of quotient of quivers with superpotential by finite groups.

In section 4.3, we follow van den Bergh [71] and prove that the path algebras of quivers with superpo-
tential are Calabi–Yau algebras, and hence the categories of representations of quivers with superpotential
are also Calabi–Yau.

Finally, Section 4.4 describes quivers with superpotential of dimensions 1 to 4. In particular, we
describe in dimension 3 how our definition of quivers with superpotential as dg-quivers is connected to
the old definition of quivers with superpotential as quivers with relations given by physicists Berenstein
and Douglas [5], Braun [12], Douglas and Moore [23] and later by mathematicians Ginzburg [27] and
Derksen, Weyman and Zelevinsky [22].

Chapter 5 is the heart of the thesis where we prove our main results.

Section 5.1 gives a review on equivariant sheaves.

In Section 5.2, we generalize a result by Bridgeland [15, Proposition 4.1] and show that if π : V → X
is an anti-semiample vector bundle on a smooth projective manifold with an exceptional poset E , then
under some cohomological vanishing conditions, the total space V is derived equivalent to an algebra ΛE
which is the path algebra of a quiver with relations. If we remove the cohomological vanishing condition,
we end up with an Afin-algebra rather than a quiver with relations.
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Section 5.3 tries to resolve ΛE , the path algebra of a quiver with relations (or more generally the
Afin-algebra) by a dg-quiver QE .

Section 5.4 gives a concrete description of the underlying graded quiver of the dg-quiver QE in terms
of the dual exceptional poset of E .

Section 5.5 proves the existence of a superpotential on QE when V is noncompact Calabi–Yau.

Section 5.6 considers the G-equivariant situation and constructs from QE a quotient quiver QE/G,
generalizing the construction of the McKay quiver, which is derived equivalent to Db(CohG(V )). In the
case when V is equivariantly Calabi–Yau, QE/G is also equipped with a superpotential.

Section 5.7 proves the product construction. We start with two dg-quivers QE and QF derived
equivalent to vector bundles V and W respectively, and construct a product quiver QE × QF which is
derived equivalent to V ×W . When both V and W are Calabi–Yau, we show that the product quiver
QE ×QF is also equipped with a superpotential.

Chapter 6 is a list of examples illustrating theorems in Chapter 5.

Section 6.1 contains examples illustrating Theorem 5.2.9 which produces the quivers with relations
derived equivalent to total space of vector bundles.

Section 6.2 and 6.3 contain examples illustrating Theorem 5.4.5. Section 6.2 introduces a class of
algebras called Koszul algebras whose dg-resolution is particularly easy to describe. We also gives some
examples of vector bundles whose classical tilting algebras are Koszul.

Section 6.3 contains some worked out examples of derived equivalences between total spaces of vector
bundles and dg-quivers, and if the total spaces of vector bundles are Calabi–Yau, quivers with superpo-
tential. These examples are calculated by first determining the classical tilting algebras, then try to work
out the dg-resolutions to determine the dg-quiver. In Calabi–Yau examples of dimension no greater than
4, there are enough constraints and hence the classical tilting algebras determine their dg-resolutions.

Section 6.4 contains a list of examples by applying the product construction in Theorem 5.7.3. Since
the general formulae for the cyclic A∞-tensor product defined by Amorim and Tu [2] is not known, we
only work with the case when one of the A∞-algebras is a classical algebra.

Section 6.5 contains a list of examples illustrating the quotient construction in Theorem 5.6.5.

Chapter 7 contains some unfinished work which aims to make a connection between quivers with
superpotential and the recent work on shifted symplectic structures by Pantev, Toën, Vaquié and Vezzosi
[58], and Ben-Bassat, Brav, Bussi and Joyce [4].

Section 7.1 reviews the theory on derived algebraic geometry developed by Töen and Vezzosi [64, 65,
66] and Pantev, Toën, Vaquié and Vezzosi [58].

Section 7.2 develops the Lie algebra cohomology for dg-modules by modifying the usual Lie algebra
cohomology theory.

Section 7.3 defines the G-invariant de Rham complex of on a derived scheme SpecR by using the
Lie algebra cohomology developed in Section 7.2. We conjecture that the G-invariant de Rham complex
should describe forms and closed forms on the quotient stack [SpecR/G] and outline a strategy of proof.

Section 7.4 describes the moduli space of representations of quiver with superpotential, and outline
a strategy of proof on showing the existence of a shifted symplectic structure which is in a standard
Darboux form by using the G-invariant de Rham complex introduced in Section 7.3.

Chapter 8 discusses possible future research directions following the thesis.

Appendix A gives some cohomological formulae for computing examples in Chapter 6.



Introduction 6

Acknowledgements. The author would like to thank Prof. D. Joyce for his guidance and help
throughout the last three years. The author also wishes to thank Prof. T. Bridgeland for pointing
out to the author his paper [15], and Dr. L. Amorim for his help with A∞-algebras. This work is
supported by the Croucher Foundation.



Chapter 1

Noncommutative Geometry

This chapter is a review on noncommutative geometry. In Section 1.1, we introduce quivers and their
representations, and discuss how they can be viewed as objects in noncommutative geometry. Section
1.2 reviews some calculus on noncommutative space.

1.1 Quivers and Representations

We review the definition of quivers and their representations. The lecture notes by Crawley-Boevey [19]
are a good reference.

Definition 1.1.1 (Quiver). A finite Z-graded quiver Q consists of the following data:

• A finite set of vertices VQ;

• For any vertices v, w ∈ VQ, a finite set of edges

EQ(v, w) =
∐
i∈Z

EiQ(v, w),

If e ∈ EiQ(v, w), v and w are called the tail and head of e, denoted by t(e) and h(e) respectively, and i
is called the degree of e, denoted by deg(e). Pictorially, we view e as an arrow going from v to w

w• e←−v• .

Definition 1.1.2 (Path). A path p of length n in Q is a sequence of edges enen−1 · · · e2e1 with t(ei+1) =
h(ei) for 1 ≤ i ≤ n− 1. The tail of p is t(p) = v0 and the head is h(p) = vn. Pictorially, we view p as a
sequence of arrows going from v0 to vn

vn• en←−
vn−1• ←− · · · ←−v1• e1←−v0•

The degree of path is the sum of degrees of its component edges. Each vertex v will also be viewed as a
path of both length and degree 0 going from v to v.

Definition 1.1.3 (Path Category). Let K be a field. The path category of Q over K, denoted by KQ,
is the K-linear category defined by

• Obj (Q) = V , and

• KQ(v, w) = K{paths going from v to w},

• the composition map ◦ : KQ(u, v)×KQ(v, w)→ KQ(u,w) is given by concatenation of paths, with

• the identity given by the empty path at each vertex.

7



Chapter 1. Noncommutative Geometry 8

Definition 1.1.4 (Path algebra). The path algebra of Q over K, denoted by KQ, is the unital associative
K-algebra spanned over K by all paths of length k ≥ 0, with multiplication of paths p and q given by the
concatenation qp if h(p) = t(q) and zero otherwise. The identity is the sum of empty paths over the set
of vertices. The vector subspace spanned by all paths of length k ≥ n is a two-sided ideal and is denoted
by KQ(n).

The path category and the path algebra are essentially the same thing, as from the path category
we can get the path algebra by taking the direct sum of all morphism spaces and define multiplication
to be composition if two morphisms are composable and zero otherwise. If we view the path algebra as
an algebra over the discrete K-algebra generated by the vertices, one can recover the path category by
defining the morphism space from v to w to be the vector space wKQv and composition of morphism
by multiplication.

Definition 1.1.5 (Quiver with relations). A quiver with relation (Q, I) is a quiver Q with a two-sided
ideal I in KQ with I ⊆ KQ(2). The path algebra of (Q, I) is the unital associative algebra KQ/I.

Definition 1.1.6 (Differential-graded Quiver). A dg-quiver is a graded quiver together with a S-linear
differential d : KQ→ KQ of degree 1.

Path algebras as tensor algebras. Let S be the discrete K-algebra over VQ, i.e., the path algebra of
the quiver with vertex set VQ and no edges, and KEQ be the K-vector space spanned by EQ. Then KEQ
is naturally a S-bimodule with scalar multiplication given by path multiplication and KQ is isomorphic
as a unital associative K-algebra to TS(KEQ).

Path categories as tensor categories. Analogously, path categories can be written in the form of
tensor categories [41, §3.5].

Definition 1.1.7 (Representation of Quiver). Let Q be a quiver. A finite dimensional representation
(W,ρ) of Q consists of finite dimensional K-vector spaces Wv for each vertex v ∈ VQ and linear maps
ρe : Wt(e) → Wh(e) for each edge e ∈ EQ. A finite dimensional representation (W,ρ) of a quiver with
relations (Q, I) is a finite dimensional representation of Q such that for all r =

∑
aen···e1en · · · e1 ∈ I

linear combinations of paths having common head and tail vertices, the corresponding linear maps are
trivial: ∑

aen···e1ρen ◦ · · · ◦ ρe1 = 0.

A morphism of representations φ : (W,ρ)→ (U, σ) consists of linear maps φv : Wv → Uv for each v ∈ VQ
such that φh(e) ◦ ρe = σe ◦ φt(e) for all e ∈ EQ.

Proposition 1.1.8. Let (Q, I) be a quiver with relations. The category of representations of (Q, I) is
equivalent to the category of finite dimensional left KQ/I-module.

Proof. Refer to [19].

Definition 1.1.9 (Representation of dg-quiver). A representation of a dg-quiver consists of chain com-
plexes Wv for each vertex v and graded linear maps ρe : Wt(e) →Wh(e) for each edge e such that for any
m ∈Wt(e), the following identity holds:

dWh(e)
(ρe(m)) = (dKQρe)(m) + (−1)|e|ρe(dWh(e)

m).

Proposition 1.1.10. The category of dg-representations of a dg-quiver (Q, d) is equivalent to the category
of dg-modules over (KQ, d).

Path algebra as noncommutative analogue of affine variety. One may view the path algebra
of a quiver as a noncommutative analogue of a polynomial algebra. For example, let Q be a vertex
with 2 loops x and y, then KQ = K〈x, y〉. Path algebra of a quiver with relations is then analogous to
finitegly generated commutative algebras, for instance, K〈x, y〉/I for some ideal I. Representations of
quivers are then the noncommutative analogue of coherent sheaves. Dg-quivers can be think of as the
noncommutative analogue of derived schemes.
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1.2 Noncommutative Calculus

In this section, we review the tools of noncommutative calculus. Proofs in this section are omitted. For
proofs and further details, please refer to the paper by Crawley-Boevey, Etingof and Ginzburg [20], the
lecture notes by Ginzburg [26] and the paper by van den Bergh [69].

Notation and Convention. We will work in the relative setting. Fix a ground field K. Let S be a
K-algebra, A be a Z-graded unital associative S-algebra and M,N be Z-graded A-bimodules. First, we
fix some notation and convention. Anything unadorned will always mean relative to the ground field K,
e.g., unadorned tensor product ⊗ means ⊗K. The shifted module ΣM is defined by (ΣM)i = M i+1.
Throughout this thesis, the Koszul sign rule will be enforced: when moving an element a past another
element b, the sign (−1)|a||b| will appear. For example, the tensor product ϕ ⊗ φ of two morphisms of
graded A-bimodule is defined as:

(ϕ⊗ φ)(a⊗ b) = (−1)|φ||a|ϕ(a)⊗ φ(b).

We will employ the Sweedler’s notation [63] and write any element b ∈ A⊗A as b = b′⊗b′′ instead of the
more accurate

∑
i b
′
i⊗ b′′i . For instance, if Θ is a K-linear map with target in A⊗A, say Θ : A→ A⊗A,

we will write Θ(a) = Θ′(a)⊗Θ′′(a). The outer and inner A-bimodule structure on the free A-bimodule
A⊗A will be denoted respectively by

a(b′ ⊗ b′′)c = (ab′)⊗ (b′′c)

a ∗ (b′ ⊗ b′′) ∗ c = (−1)|a||b
′|+|c||a|+|c||b′′|(b′c)⊗ (ab′′).

If we denote the interchange operator a ⊗ b 7→ (−1)|a||b|b ⊗ a by σ, the two A-bimodule structures are
then related by

σ(a(b′ ⊗ b′′)c) = a ∗ σ(b′ ⊗ b′′) ∗ c.
The multiplication map a⊗ b 7→ ab will always be denoted by m.

Definition 1.2.1 (Derivations). Let K be a field, S be a K-algebra, A be a Z-graded S-algebra and M
be an Z-graded A-bimodule. A S-linear derivation of degree n from A to M is a S-bimodule morphism
f : A→M of degree n which satisfy Leibnitz’s rule, i.e., for all a, b ∈ A,

f(ab) = f(a)b+ (−1)n|a|af(b).

The set of all S-linear derivations from A to M is denoted by DerS(A,M). In the special case M = A⊗A
with its outer bimodule structure, such a derivation is said to be a S-linear double derivation of A. The
set of all S-linear double derivations of A is denoted by DerS(A).

Remark 1.2.2. In general, DerS(A,M) is only an abelian group. However, for double derivation, Der(A)
is still an A-bimodule due to the inner bimodule structure of A ⊗ A. In other words, for any double
derivation f and a, b ∈ A, we define the double derivation afb by (afb)(−) = a ∗ f(−) ∗ b.

Example 1.2.3. To see how double derivations arise naturally, consider A = KQ for some quiver Q.
For any edge e in Q, we can define a double derivation ∂e acting on any edge f by

∂e(f) =

{
h(e)⊗ t(e) if f = e

0 otherwise.

From the double derivation ∂e, one can define a derivation ∂◦e : KQ → KQ by ∂◦e = m ◦ σ ◦ ∂e. This
derivation vanishes on commutators and hence descends to a derivation ∂◦e : KQ/[KQ,KQ]→ KQ.

Definition 1.2.4 (Noncommutative cotangent bundle). The A-algebra Θ•S(A) = TA(DerS(A)) is called
the S-relative noncommutative cotangent bundle of A.

Definition 1.2.5 (Differential 1-form). The A-bimodule of noncommutative 1-forms relative to S, de-
noted by Ω1

S(A), is the A-bimodule generated by symbols of the form da for any a ∈ A, subject to the
relation

ddR(ab) = (ddRa)b+ a(ddRb).
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Proposition 1.2.6. The functor M 7→ DerS(A,M) is representable by the A-bimodule Ω1
S(A). In other

words, there are canonical isomorphisms

DerS(A,M) ∼= HomA−Bimod(Ω1
S ,M).

Proposition 1.2.7. The following sequence is exact:

0→ Ω1
S(A)

ϕ→ A⊗S A
m→ A→ 0,

where ϕ(da) = a⊗ 1− 1⊗ a and m(a⊗ b) = ab.

Definition 1.2.8 (Noncommutative tangent bundle). The A-algebra Ω•S(A) = TAΩ1
S(A) is called the

S-relative noncommutative tangent bundle of A. The algebra Ω•S(A) is Z × Z-graded, with the first Z-
grading | − | coming from the Z-grading on A, and the second one ‖− ‖ coming from the “form” degree,
i.e., the number of ddR’s appearing in the element. The Koszul sign rule will be enforced according
the following rule: when moving an element α ∈ Ω•S(A) past another element β ∈ Ω•S(A), the sign
(−1)|α||β|+‖α‖‖β‖ will appear. For example, the commutator is defined as

[α, β] = αβ − (−1)|α||β|+‖α‖‖β‖βα.

Proposition 1.2.9. The de Rham differential map ddR : A → Ω1
SA extends to an S-linear derivation

ddR : Ω•S(A)→ Ω•S(A)of degree (0, 1) which satisfies d2
dR = 0 and

ddR(a0ddRa1 · · · ddRan) = ddRa0ddRa1 · · · ddRan.

Definition 1.2.10 (Noncommutative de Rham complex). The S-relative noncommutative de Rham
complex of A is the graded vector space defined by

DR•S(A) = Ω•S(A)/[Ω•S(A),Ω•S(A)].

Definition 1.2.11 (Contraction). Let Θ ∈ DerS(A). The contraction map iΘ : Ω1
S(A)→ A⊗A defined

to be the A-bimodule morphism given by

iΘ(ddRa) = Θ(a).

This map extends to a derivation of degree (−1) iΘ : Ω•S(A)→ Ω•S(A)⊗Ω•S(A). The reduced contraction
map ıΘ : Ω•S(A)→ Ω•S(A) is the degree (−1) derivation defined by ıΘ = m ◦ σ ◦ iΘ.

Definition 1.2.12 (Lie derivative). The Lie derivative LΘ : Ω•S(A)→ Ω•S(A)⊗Ω•S(A) is by the Cartan
formula

LΘ = ddRiΘ + iΘddR.

The reduced Lie derivative LΘ : Ω•S(A)→ Ω•S(A) is defined by LΘ = m ◦ σ ◦ LΘ.

Proposition 1.2.13. Given any double derivation Θ ∈ Der(A), the reduced contraction ıΘ : Ω•S(A) →
Ω•S(A) descends to ıΘ : DR•S(A)→ Ω•S(A)

Definition 1.2.14 (Symplectic 2-form). A closed noncommutative 2-form ω ∈ DR2
S(A) is said to be

sympletic if the map ıω : DerS(A)→ Ω1
S(A) defined by Θ 7→ ıΘω is an isomorphism.

Definition 1.2.15 (Double Poisson bracket). A double Poisson bracket of degree n is a linear map
{{−,−}} : A⊗A→ A⊗A of degree n which satisfies

{{a, b}} = −(−1)(|a|+n)(|b|+n)σ{{b, a}},
{{a, bc}} = {{a, b}}c+ (−1)(|a|+n)|b|b{{a, c}}.

and

0 = {{a, {{b, c}}′}} ⊗ {{b, c}}′′ + (−1)(|a|+n)(|b|+|c|)τ{{b, {{c, a}}′}} ⊗ {{c, a}}′′

+ (−1)(|c|+n)(|a|+|b|)τ2{{c, {{a, b}}′}} ⊗ {{a, b}}′′,

where τ : A ⊗ A ⊗ A → A ⊗ A ⊗ A is the map sending a ⊗ b ⊗ c 7→ (−1)(|a|+|b|)|c|c ⊗ a ⊗ b. If A is a
dg-algebra, then a double Poisson bracket of degree n is a dg-double Poisson bracket of degree n if it
further satisfies

d{{a, b}} = {{da, b}}+ (−1)|a|+n{{a, db}}.
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Remark 1.2.16. Note that a double bracket also satisfies

{{ab, c}} = a ∗ {{b, c}}+ (−1)|b|(|c|+n){{a, c}} ∗ b.

Proposition 1.2.17. Every symplectic 2-form ω give rise to a double Poisson bracket.

Proof. For any a ∈ A, let Ha be the corresponding Hamiltonian double derivation, i.e., Ha is the unique
double derivation satisfying

ıHaω = ddRa.

Define {{a, b}} = Ha(b) = iHa(ddRb) = iHa ıHbω.

Proposition 1.2.18 ([69] Proposition 1.4). A double Poisson bracket of degree n defines a Kontsevich
bracket of degree n

{−,−} = m ◦ {{−,−}} : A⊗A→ A

which satisfy the following properties:

1. {−,−} is a derivation in the second argument, i.e.,

{a, bc} = {a, b}c+ (−1)(|a|+n)|b|b{a, c}.

2. {−,−} vanishes on commutators in the first argument and hence descends to map

{−,−} : A/[A,A]⊗A→ A.

3. {−,−} satisfy the Jacobi identity

{a, {b, c}} = {{a, b}, c}+ (−1)(|a|+n)(|b|+n){b, {a, c}}.

4. {−,−} descends to a Lie bracket

{−,−} : A/[A,A]⊗A/[A,A]→ A/[A,A].

The double Poisson bracket and the Kontsevich bracket are related by the following

Proposition 1.2.19 ([69] Proposition 2.4.2). We have the following identity:

{a, {{b, c}}} = {{{a, b}, c}}+ (−1)|b|+n{{b, {a, c}}}.



Chapter 2

Triangulated Categories

This chapter is a review of the theory on triangulated categories. Sections 2.1-2.3 define triangulated
category, derived categories and t-structures. Section 2.4 defines Serre functors and Calabi–Yau triangu-
lated categories. Sections 2.5-2.7 give a brief review of different notions of compact generators, admissible
subcategories, and mutation functors. Sections 2.8-2.9 define exceptional sequences and tilting objects,
which are the main ingredients to construct derived equivalences.

2.1 Triangulated Categories

We review the definition of triangulated categories. Further details can be found in Gelfand and Manin
[25].

Definition 2.1.1 (K-categories). Let K be a field. A K-category is a category A where for any X,Y ∈
ObjA, A(X,Y ) is endowed with the structure of a K-module such that the composition maps

A(X,Y )×A(Y, Z)→ A(X,Z)

are K-bilinear. A K-category A is said to be K-linear if A has a zero object and the product of any two
objects in A exists.

Definition 2.1.2 (Graded K-categories). A graded K-category (A,Σ) is a k-linear category A together
with an automorphism Σ of A. We define the graded Hom-sets by

Ai(X,Y ) = A(A,ΣiB).

Definition 2.1.3 (Graded functors). A graded functor (F, η) : (A,ΣA) → (B,ΣB) between graded
categories is a k-linear functor F : A → B together with a natural isomorphism η : FΣA → ΣBF .

Definition 2.1.4 (Triangles). A triangle in a graded k-category (A,Σ) is a sequence A
u→ B

v→ C
w→ ΣA.

A morphism between two triangles is a commutative diagram

A
u //

��

B
v //

��

C
w //

��

ΣA

��
A′

u′ // B′
v′ // C ′

w′ // ΣA′

.

Definition 2.1.5 (Triangulated categories). A triangulated k-category is a graded k-linear category
(A,Σ) equipped with a set of distinguished triangles which is stable under isomorphisms and satisfying
the following axioms:

T0. For any A ∈ ObjA, the triangle

A
id−→ A −→ 0 −→ ΣA

is distinguished.

12
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T1. Any morphism φ : A→ B can be completed to a distinguished triangle

A
φ−→ B −→ C −→ ΣA

T2. A triangle
A

u→ B
v−→ C

w−→ ΣA

is distinguished if and only if the triangle

B
v−→ C

w−→ ΣA
−Σu−−−→ ΣB

is distinguished.

T3. If there is a commutative diagram of distinguished triangles with vertical morphisms a : A → A′

and b : B → B′

A //

a

��

B //

b
��

C //

c

��

ΣA

Σa
��

A′ // B′ // C ′ // ΣA′

,

there exists a morphism c : C → C ′ making the diagram commute.

T4. The triangles satisfy the octahedral axiom: Given distinguished triangles

X
u→ Y

j→ Z ′
k→ ΣX,

Y
v→ Z

`→ X ′
i→ ΣY,

X
v◦u→ Z

m→ Y ′
n→ ΣX,

there exists a distinguished triangle

Z ′
f→ Y ′

g→ X ′
h→ ΣZ ′

such that
` = g ◦m, k = n ◦ f, h = Σj ◦ i, i ◦ g = Σu ◦ n, f ◦ j = m ◦ v.

The name “octahedral axiom” comes from the fact that the above distinguished triangles can be
packed into an octahedron:

Y ′

g

  

n

��

Z ′

f

>>

k

��

X ′
Σj◦i

oo

i

��

X

u

  

v◦u // Z

`

OO
m

XX

Y

j

XX

v

>>

.

Remark 2.1.6. Note that we do not assume a priori that two morphisms in a distinguished triangle

A
f→ B

g→ C → ΣA compose to zero. However, it is a consequence of axioms T1 and T3 that they do:
there exists a morphism h making the diagram commutes

A
id // A // 0 //

h

��

ΣA

A
f // B

g // C // ΣA,
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i.e., the composition g ◦ f factors through the zero object, and hence must be a zero morphism.

Remark 2.1.7. Axiom T2 postulates every morphism A
f→ B fits into a distinguished triangle A

f→
B → C → ΣA. It is a consequence of the axioms [25, Corollary IV.1.4] that the object C is unique up
to non-unique isomorphism. This object C is called a cone of the morphism f . We can then rephrase
Axiom T4 in the following way: Let f, g be morphisms in a triangulated category A and C(f), C(g) and
C(g ◦f) be a cone of the morphism f , g and g ◦f respectively. Then there exists a distinguished triangle

C(f)→ C(g ◦ f)→ C(g)→ ΣC(f).

Definition 2.1.8 (Triangle Functor). Let (A,ΣA) and (B,ΣB) be triangulated k-categories. A triangle
functor is a graded k-linear functor (F, η) : (A,ΣA) → (B,ΣB) preserving distinguished triangles, i.e.,
for each distinguished triangle

A
u−→ B

v−→ C
w−→ ΣA,

the triangle

FA
Fu−→ FB

Fv−→ FC
ηC◦(Fw)−−−−−−→ ΣFC

is also distinguished.

Remark 2.1.9. In general, (Σ, idΣ2) is not a triangle functor. However, (Σ,−idΣ2) is a triangle functor.

If A
u→ B

v−→ C
w−→ ΣA is a distinguished triangle, by (T2), so is ΣA

−Σu−−−→ ΣB
−Σv−−−→ ΣC

−Σw−−−→ Σ2A.
The following isomorphism of triangle

ΣA
−Σu //

idΣA

��

ΣB
−Σv //

−idΣB

��

ΣC

idΣC

��

−Σw // Σ2A

ΣidΣA

��
ΣA

Σu // ΣB
Σv // ΣC

−Σw // Σ2A

shows ΣA
Σu−−→ ΣB

Σv−−→ ΣC
−Σw−−−→ Σ2A is a distinguished triangle. Hence (Σ,−idΣ2) is a triangle functor.

Definition 2.1.10 (Morphism of triangle functors). Let (A,ΣA), (B,ΣB) be triangulated category and
(F, φ), (G,ψ) : (A,ΣA) → (B,ΣB) be triangle functors. A morphism of triangle functors α : (F, φ) →
(G,ψ) is a natural transformation α : F → G such that for all X ∈ ObjA, the following square commutes

FΣX
φ //

αΣX

��

ΣFX

ΣαX
��

GΣX
ψ
// ΣGX.

Definition 2.1.11 (Triangulated subcategory). A triangulated subcategory of a triangulated category A
is a subcategory B of A such that the inclusion functor i : B → A is a triangle functor. A triangulated
subcategory B is said to be thick if it is stable under taking direct summands, i.e., A⊕B ∈ ObjB implies
A,B ∈ ObjB.

Definition 2.1.12 (Orthogonal Complement). Let B be a triangulated subcategory of a triangulated
category A. The right orthogonal complement of B is the full subcategory B⊥ of A containing all objects
A ∈ Obj (A) such that Hom(B,A) = 0 for all B ∈ Obj (B). Similarly, the left orthogonal complement of
B is the full subcategory ⊥B of A containing all objects A ∈ Obj (A) such that Hom(A,B) = 0 for all
B ∈ Obj (B).

2.2 Derived Categories

The main examples of triangulated categories come from deriving abelian categories as we will describe
in this section. We will only sketch the constructions. Readers are referred to Gelfand and Manin [25]
for details and proofs.
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Let A be an abelian category. Denote by K(A) the homotopy category of A, whose objects are
chain complexes in A and morphisms are chain maps modulo chain homotopies. The collection of
quasi-isomorphisms in K(A), i.e., chain maps which induce isomorphisms between homology, forms a
multiplication system which satisfies the following three axioms:

1. All identity morphisms are quasi-isomorphisms and compositions of quasi-isomorphisms are quasi-
isomorphisms;

2. If t : Z → Y is a quasi-isomorphism, then for any morphism g : X → Y in K(A), there exists
f : W → Z and a quasi-isomorphism s : W → X making the diagram commutative

W
f //

s

��

Z

t

��
X

g // Y.

Similarly, if s : W → X is a quasi-isomorphism and f : W → Z any morphism in K(A), there
exists g : X → Y and a quasi-isomorphism t : Z → Y making the diagram commutative

W
f //

s

��

Z

t

��
X

g // Y.

3. If f, g : X → Y are morphisms in K(A), then the following two conditions are equivalent:

(a) sf = sg for some quasi-isomorphism s,

(b) ft = gt for some quasi-isomorphism t.

The derived category D(A) is constructed from K(A) by formally inverting all quasi-isomorphisms:
Objects in D(A) are the same as K(A), i.e., chain complexes of objects in A. Morphisms between an
object X and Y are given by equivalence classes of diagrams in the form X ← Z → Y where s : Z → X

is a quasi-isomorphism and f : Z → Y is a chain map. Two diagrams X
s← Z

f→ Y and X
t← W

g→ Y

are equivalent if there is a diagram W
r← U

h→ Z which fits into a commutative diagram

W

t

~~

g

  
X U

r

OO

h
��

Y.

Z

s

``

f

>>

Composition of maps are given by

(X
s← U

f→ Y ) ◦ (Y
t← V

g→ Z) 7→ (X
sr←W

gh→ Z)

where

W
h //

r

��

V

t

��
U

f // Y

is a commutative diagram we get by Axiom 2, with r a quasi-isomorphism. One can check this definition
is well-defined. The set HomD(A)(X,Y ) forms a vector space over K:

1. k · (X s← Z
f→ Y ) = (X

s← Z
kf→ Y ) for any k ∈ K;
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2. (X
s← Z

f→ Y ) + (X
t←W

g→ Y ) = (X
r← Z

fu+gv→ Y ) where

U
v //

u

��

W

t

��
Z

s // X

is a commutative diagram we get by Axiom 2, with u and r = su = tv quasi-isomorphisms.

This shows D(A) is a K-linear category. A triangle X → Y → Z → ΣX in D(A) is said to be

distinguished if it is isomorphic to a triangle of the form A
f→ B → cone (f)→ ΣA. Equipped with this

class of distinguished triangles, D(A) has the structure of a triangulated category. The bounded derived
category Db(A) is defined as the smallest triangulated subcategory of Db(A) containing all bounded
complexes.

Example 2.2.1. Let X be a variety. Then Coh (X) is an abelian category and Db(Coh (X)) is the
bounded derived category of coherent sheaves on X. We will denote by Db

cs(Coh (X)) the full triangulated
subcategory of Db(Coh (X)) consisting of complexes whose cohomologies are compactly supported.

Example 2.2.2. Let A be a dg-algebra. We denote by Db(A) the bounded derived category of dg-
modules over A. We also denote by Db

fd(A) the full subcategory of Db(A) consisting of complexes whose
cohomologies are finite dimensional. A dg-algebra A is called cohomologically Noetherian if H•(A) is
Noetherian. In this case, we denote by Db

fg(A) the full triangulated subcategory of Db(A) consisting
of complexes whose cohomologies are finitely generated modules over H•(A). When A is an ordinary
Noetherian algebra, the category of finitely generated A-modules A-mod is abelian, and we have an
equivalence Db(A-mod) ∼= Db

fg(A).

2.3 t-structures

In this section, we discuss t-structures. We follow Manin [25, §IV.4]. It is known that two different abelian
categories might yield the same triangulated category. The formalism of t-structure was invented to see
different abelian subcategories inside a triangulated category.

Definition 2.3.1. Let T be a triangulated category. A t-structure on T is a pair of strictly full subcat-
egories (T ≤0, T ≥0) satisfying

1. T ≤0 ⊆ T ≤1 and T ≥1 ⊆ T ≥0,

2. Hom(X,Y ) = 0 for X ∈ Obj T ≤0 and Y ∈ Obj T ≥1,

3. For any X ∈ Obj T there exists a distinguished triangle A → X → B → A[1] with A ∈ Obj T ≤0

and B ∈ Obj T ≥1, where T ≤n = T ≤0[−n] and T ≥n = T ≥0[−n].

The full subcategory T ≥0 ∩ T ≤0 is called the heart of the t-structure.

Theorem 2.3.2. The heart of any t-structure on a triangulated category is an abelian category.

Proof. See [25, §IV.4, Theorem 4].

Remark 2.3.3. In general, given a triangulated category T with a t-structure whose heart is A, the
derived category D(A) might not be equivalent to T . Moreover, in general, there is no obvious relation
of T with the category of complexes over A. This is caused by the non-functorality of the cone [25, §IV.4
Remark 13].
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2.4 Serre Functors

We define Serre functors and Calabi–Yau triangulated categories. In this section, all triangulated cat-
egories are assumed to be K-linear and Hom-finite, i.e., all the morphism spaces are finite dimensional
over K. References for this section are the paper by Keller [45, §2] and the book by Huybrechts [34, §1].

Definition 2.4.1 (Serre functor). A Serre functor on a Hom-finite triangulated category A is a triangle
autoequivalence (S, σ) : A → A together with a family of isomorphisms

ηX,Y : A(X,Y )→ A(Y, SX)∨

natural in both X and Y , such that the following diagram commutes:

A(X,Y )
ηX,Y // A(Y, SX)∨

(Σ−1)∗// A(ΣY,ΣSX)∨

(σX)∗

��
A(X,Y )

−Σ // A(ΣX,ΣY )
ηΣX,ΣY// A(ΣY, SΣX)∨.

In other words, for any X,Y ∈ ObjA, f ∈ A(X,Y ) and g ∈ A(ΣY, SΣX), we have

〈ηX,Y (f),Σ−1(σX ◦ g)〉 = −〈ηΣX,ΣY (Σf), g〉.

Proposition 2.4.2. Let (A,ΣA) be a Hom-finite triangulated category and (S, σ) be an autoequivalence.
Then S is a Serre functor if and only if there is a family of linear maps trX : A(X,SX)→ k such that
the family of induced pairings A(X,Y )×A(Y, SX)→ k given by (f, g)→ trX(g ◦ f) are nondegenerate
and they satisfy

trX(g ◦ f) = trY (Sf ◦ g) (2.4.1)

and for all h : ΣX → SΣX
trX(Σ−1(σX ◦ h)) = −trΣX(h). (2.4.2)

Proof. Suppose (S, σ) is a Serre functor. Define trX = ηX,X(idX). By naturality of η, we have the
commutative diagram

A(X,X)
f∗ //

ηX,X

��

A(X,Y )

ηX,Y

��

A(Y, Y )
f∗oo

ηY,Y

��
A(X,SX)∨

f∗

// A(Y, SX)∨ A(Y, SY )∨.
(Sf)∗
oo

Then
trX(g ◦ f) = 〈g ◦ f, ηX,X(idX)〉 = 〈g, ηX,Y (f)〉 = 〈Sf ◦ g, ηY,Y (idY )〉 = trY (Sf ◦ g).

Also, from the above equation, we see that for a fixed f , trX(g ◦ f) = 0 for all g implies ηX,Y (f) = 0
which in turn implies f = 0 since ηX,Y is an isomorphism. Similarly, if for a fixed g, trX(g ◦ f) = 0 for
all f , then g = 0 since ηX,Y is an isomorphism and hence ηX,Y (f) is arbitrary.

For the second equality, by definition, for all h : ΣX → SΣX, we have

〈ηX,X(idX),Σ−1(σX ◦ h)〉 = −〈ηΣX,ΣX(ΣidX), h〉

which implies
trX(Σ−1(σX ◦ h)) = −trΣX(h).

Conversely, we define ηX,Y : A(X,Y ) → A(Y, SX)∨ by ηX,Y (f) = trX(− ◦ f). Since the induced
pairing is assumed to be non-degenerate and both vector spaces are finite dimensional, ηX,Y is an
isomorphism. Naturality of ηX,Y in both X and Y is equivalent to the commutativity of the diagram

A(Z, Y )
h∗−−−−→ A(X,Y )

k∗−−−−→ A(X,W )

ηZ,Y

y ηX,Y

y ηX,W

y
A(Y, SZ)∨

(Sh)∗−−−−→ A(Y, SX)∨
k∗−−−−→ A(W,SX)∨
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for arbitrary W,Z ∈ ObjA and h ∈ A(X,Z) and k ∈ A(Y,W ). This is checked readily by unwinding
the definition: for all u ∈ A(Z, Y )

((Sh)∗ ◦ ηZ,Y )(u) = trZ(Sh ◦ − ◦ u) = trX(− ◦ u ◦ h) = ηX,Y (u ◦ h) = (ηX,Y ◦ h∗)(u)

and for all v ∈ A(X,Y ),

(ηX,W ◦ k∗)(v) = ηX,W (k ◦ v) = trX(− ◦ k ◦ v) = (k∗ ◦ ηX,Y )(v).

Also, by (2.4.2),

〈ηX,Y (f),Σ−1(σX ◦ g)〉 = trX(Σ−1(σX ◦ g) ◦ f)

= trX(Σ−1(σX ◦ g ◦ Σf))

= −trΣX(g ◦ Σf)

= −〈ηΣX,ΣY (Σf), g〉.

Remark 2.4.3. The negative sign in Equation (2.4.2) is explained by van den Bergh in [68, Remark
A.4.2].

Definition 2.4.4 (Calabi–Yau triangulated category). A triangulated category is said to be d-Calabi–
Yau if (Σ,−idΣ2)d is a Serre functor.

Proposition 2.4.5. A triangulated K-category (A,Σ) is d-Calabi–Yau if and only if for each X ∈ ObjA
there is a linear map trX : A(X,ΣdX) → K such that for all X,Y ∈ ObjA, and integers p, q with
p+ q = d, the induced pairings 〈·, ·〉 : A(X,ΣpY )×A(Y,ΣqX)→ K given by (f, g)→ trX((Σpg) ◦ f) are
nondegenerate and they satisfy

trX((Σpg) ◦ f) = (−1)pqtrY ((Σqf) ◦ g).

Proof. Suppose (A,Σ) is d-Calabi–Yau. Without loss of generality, we may assume the Serre functor is
given by (Σ,−id)d = (Σd, (−1)did). Thus (−1)dtrX(Σ−1h) = −trΣX(h) for any h : ΣX → SΣX, and

trX((Σpf) ◦ g) = trX(Σ−q(Σdf ◦ Σqg))

= (−1)dq+qtrΣqX(Σdf ◦ Σqg) by equation (2.4.2) in Proposition 2.4.2

= (−1)pqtrΣqX(Σdf ◦ Σqg)

= (−1)pqtrY ((Σqg) ◦ f) by equation (2.4.1) in Proposition 2.4.2

We show the converse by showing equation (2.4.1) and (2.4.2) in Proposition 2.4.2. Equation (2.4.1) is
a special case for p = 0 and q = d. For equation (2.4.2), given any h : ΣX → Σd+1X, if we put p = −1
and q = d+ 1, and view the identity map on X as idX : X → Σ−1(ΣX), then equation (2.4.2) is verified:

trX(Σ−1((−1)dh)) = (−1)dtrX(Σ−1h ◦ idX)

= (−1)d+d+1trΣX(Σd+1idX ◦ h)

= −trΣX(h).

Example 2.4.6 (Serre duality). Let X be a smooth quasi-projective variety. Denote by Db
cs(Coh (X))

as the smallest full triangulated subcategory of Db(Coh (X)) which contains all complexes with compact
support. Then (−) ⊗ KX [dimX] : Db

cs(Coh (X)) → Db
cs(Coh (X)) is a Serre functor. In particular, if

KX is trivial, Db
cs(Coh (X)) is a Calabi–Yau triangulated category.

Example 2.4.7 ([45], Lemma 4.1). Let A be a dg-algebra which is homologically smooth, i.e., A ∈
Per(Aop ⊗ A). Denote by Db

fd(A) as the full triangulated subcategory of Db(A) which contains all
complexes with finite dimensional cohomologies. Define the dualizing complex Ω = RHomAop⊗A(A,Aop⊗
A). Then (−) ⊗ Ω : Db

fd(A) → Db
fd(A) is a Serre functor. In particular, if we have a isomorphism

Ω ∼= Σ−dA as objects in D(Aop ⊗A), then Db
fd(A) is d-Calabi–Yau.
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2.5 Compact Generators

This section surveys different notions of generators in a triangulated category and results that we will
be using in the remaining thesis. It is essentially a summary of Bondal and van den Bergh [9].

Definition 2.5.1 (Compact Objects). Let D be a triangulated category which admits arbitrary direct
sums. In general, for any object X ∈ Obj (D), the functor Hom(X,−) only commutes with finite direct
sums. An object X is said to be compact if Hom(X,−) commutes with arbitrary direct sums. The full
subcategory containing all compact objects is denoted by Dc.

Example 2.5.2 ([9], Thm 3.1.1). Let X be a projective variety and G a finite group acting on X. The
compact objects in D(QCohG(X)) are precisely the G-equivariant perfect complexes, i.e., complexes
that are locally quasi-isomorphic to a bounded complex of equivariant vector bundles. If X is smooth,
all complexes in Db(CohG(X)) are perfect, hence D(QCohG(X))c = Db(CohG(X)).

Example 2.5.3 ([42], Prop 8.3). Let A be a dg-algebra and D(A) the derived category of dg-modules
over A. Then D(A)c = Per(A), where Per(A) is the smallest thick subcategory in D(A) containing the
free dg-module A.

Definition 2.5.4 (Generators). A set of objects E in D classically generates D if D is the smallest thick
subcategory in D containing E . We say E generates D if E⊥ = 0. We say D is compactly generated if D
is generated by Dc.

Theorem 2.5.5 ([9], Thm 2.1.2). Let D be a compactly generated triangulated category. Then a set of
compact objects in D classically generates Dc if and only if it generates D.

Example 2.5.6 ([9], Thm 3.1.1). Let X be a variety and G be a finite group acting on X. Then
D(QCohG(X)) is compactly generated.

Corollary 2.5.7. Let X be a smooth variety and G be a finite group acting on X by automorphisms.
Then a set of objects E in Db(CohG(X)) classically generates Db(CohG(X)) if and only if E generates
D(QCohG(X)).

Proof. This is a consequence of Example 2.5.2, Theorem 2.5.5 and Example 2.5.6.

2.6 Admissible Subcategories

Definition 2.6.1 (Admissible Subcategories). A full triangulated subcategory B ⊆ D is said to be left
admissible (resp. right admissible) if the inclusion functor B ↪→ D has a left (resp. right) adjoint. A full
triangulated subcategory is said to be admissible if it is both left and right admissible.

Proposition 2.6.2 ([8], Lemma 3.1). Let B be a full triangulated subcategory of D. The following are
equivalent:

1. B and B⊥ classically generate D;

2. For any object X ∈ D, there exists B ∈ B and C ∈ B⊥ and a distinguished triangle

B → X → C → B[1];

3. B is right admissible, and the right adjoint q : D → B sends X to B;

4. B⊥ is left admissible, and the left adjoint p : D → B⊥ sends X to C.

There is of course the similar

Proposition 2.6.3. The following are equivalent:

1. ⊥B and B classically generate D;
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2. For any object X ∈ D, there exists B ∈ B and C ∈ ⊥B and a distinguished triangle

C → X → B → C[1];

3. B is left admissible, and the left adjoint p : D → B sends X to B;

4. B⊥ is right admissible, and the right adjoint q : D → ⊥B sends X to C.

Corollary 2.6.4. Let B be a right (resp. left) admissible subcategory of D. Then B = D if and only if
B⊥ = 0 (resp. ⊥B = 0).

2.7 Mutation Functors

This section defines mutation functors. We follow the convention of Bridgeland and Stern [16], which
differs from the more standard convention of Bondal and Kapranov [8, 10] by a shift functor, but it
simplifies some of our formulae.

Let B be an admissible full triangulated subcategory of D. By Propositions 2.6.2 and 2.6.3, there
are left adjoint p : D → B⊥ to the inclusion i : B⊥ → D, and right adjoint q : D → ⊥B to the inclusion
j : ⊥B → D.

Definition 2.7.1. The left mutation functor LB : ⊥B → B⊥ is defined to be LB = p ◦ j. Similarly, the
right mutation functor RB : B⊥ → ⊥B is defined to be RB = q ◦ i.

⊥B
j
)) D

p
**

q
jj B⊥

i

ii

If E is an object in D, we define LE = L〈E〉 and RE = R〈E〉, where 〈E〉 is the smallest full triangulated
subcategory in D containing E.

Proposition 2.7.2. Let X ∈ ⊥B and Y ∈ B⊥. Then Y = LB(X) if and only if there is an object B ∈ B
and a triangle

B → X → Y → B[1].

Similarly, X = RB(Y ) if and only if there is an object B ∈ B and a triangle

X → Y → B → X[1].

The two mutation functors LB and RB are inverse to each other.

Proof. The first two claims are immediate from Proposition 2.6.2 and 2.6.3. The last claim follows from
the first two claims.

2.8 Exceptional Sequences

This section introduces the notion of exceptional poset in a K-linear triangulated category D. For any
objects A,B ∈ D, we denote Homk(A,B) = Hom(A,B[k]) for k ∈ Z and

Hom•(A,B) =
⊕
k∈Z

Homk(A,B)[−k] (2.8.1)

the chain complex of vector spaces with trivial differential.

Definition 2.8.1 (Exceptional Poset). An object E ∈ D is said to be exceptional if

Hom•(E,E) = K.

Let (I,4) be a finite poset. A finite set of exceptional objects E = {Ei}i∈I in D indexed by (I,4) is an
exceptional poset if

Hom•(Ei, Ej) = 0 unless i 4 j.
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If (I,4) is a totally ordered set, i.e., in the form ({1, . . . , n},≤), we say E is an exceptional sequence. An
exceptional poset is said to be strong if

Homk(Ei, Ej) = 0 for all k ≥ 1 and all i, j ∈ I.

It is said to be full if E classically generates D, i.e., D is the smallest full triangulated category containing
E . We say an exceptional poset E has length n if it has n objects. For any j ∈ I the subset {Ei : i ≺ j} ⊆ E
is also an exceptional poset and will be denoted by E≺j . The exceptional poset E4j and E64j are similarly
defined.

Remark 2.8.2. Note that every poset (I,4) can be refined into a totally ordered set, i.e., there exists a
(non-unique) monotone bijection (I,4)→ ({1, 2, · · · , |I|},≤). Note also that if i and j are incomparable
elements in I, then one can always find total order refinements φ and ψ such that φ(i) < φ(j) whilst
ψ(i) > ψ(j). Hence, by considering exceptional posets with all total order refinements, there is no loss of
generality by considering only exceptional sequences. However, since sometimes we have only a natural
partial order instead of a total order on I, we will stick to the notion of exceptional poset.

The following proposition tells us that the length of a full exceptional poset is an invariant of the
derived category.

Proposition 2.8.3 ([16], Lemma C.2). Let E be a full exceptional poset on D with length n. Then
[E ] = {[Ei]}i∈I form a Z-linear basis of K(D). In particular, length E = rankK(D).

Proposition 2.8.4. The full triangulated subcategory 〈E〉 classically generated by an exceptional poset
E is admissible. Moreover, if E is an exceptional object, then LEX is the cone of the evaluation map

Hom•(E,X)⊗ E → X → LEX.

If E is an exceptional poset and φ : (I,4)→ ({1, . . . , n},≤) is a monotone bijection, then

LE = LEφ−1(1)
· · ·LEφ−1(n)

.

Proof. Without loss of generality, we may assume E is an exceptional sequence. We induct on the length
of exceptional poset E . Suppose n = 1 and E = {E}. For any X ∈ D, we have a natural evaluation map
Hom•(E,X)⊗ E → X. Extending it to a triangle

Hom•(E,X)⊗ E → X → Y

and applying Hom(E,−), we get Y ∈ 〈E〉⊥. By Proposition 2.6.2, 〈E〉 is right admissible and by Propo-
sition 2.7.2, Y = LEX. Left admissibility of 〈E〉 is similarly proven. Now suppose E = {E1, . . . , En}.
By induction assumption, 〈E≥2〉 is admissible, and LE≥2

= LE2
· · ·LEn . By Proposition 2.6.2, for any X,

there are triangles
A→ X

α→ LE≥2
X

Hom•(E1, LE≥2
X)⊗ E1 → LE≥2

X
β→ LE1

LE≥2
X

where A ∈ 〈E≥2〉. Applying Hom•(Ei,−) to the second sequence, we get LE1
LE≥2

X ∈ 〈Ei〉⊥ for all i

and hence in 〈E〉⊥. Extend the map X
β◦α→ LE1

LE≥2
X to a triangle

B → X
β◦α→ LE1

LE≥2
X.

By the octahedral axiom, B ∈ 〈E〉 and by Proposition 2.6.2 〈E〉 is right admissible. By Proposition 2.7.2,
LEX = LE1

LE≥2
X = LE1

· · ·LEnX.

Proposition 2.8.5 (Dual Exceptional Poset). Let E = {Ei}i∈I be a full exceptional poset. Then there
is a unique set of objects F = {Fi}i∈Iop such that

Hom•(Ei, Fj) =

{
K if i = j,

0 otherwise.

Moreover, the object Fi is given by the formula Fi = LE≺iEi, and the set F is a full exceptional poset
which is called the full exceptional poset dual to E.
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Proof. The proof is a simple modification of [16, Lemma 2.5]. First, we show existence: By the definition

of exceptional poset, Ej ∈ 〈E≺j〉⊥, hence Fj = LE≺j (Ej) is well defined and we have a chain of inclusion

Fj ∈ 〈E≺j〉⊥ ⊆ 〈E4j〉 ⊆ 〈E 64j〉⊥.

In particular,
Hom•(Ei, Fj) = 0

whenever i ≺ j or i 64 j, i.e., whenever i 6= j. By Proposition 2.7.2, there exists Y ∈ 〈E≺j〉 and a triangle

Y → Ej → Fj → Y [1].

Applying the exact functor Hom•(Ej ,−), since Hom•(Ej , Y ) = 0, we conclude

Hom•(Ej , Fj) = Hom•(Ej , Ej) = K.

To show F = {Fi}i∈Iop is an exceptional poset, we have to show j 64 i implies Hom•(Fi, Fj) = 0. Since
Fi ∈ 〈E4i〉, we are done if Hom•(Ek, Fj) = 0 for all k 4 i, which is true since j 64 i and k 4 i implies
j 6= k. For uniqueness, choose a nonzero map Ej → Fj and extend it to a triangle

Y → Ej → Fj → Y [1].

Applying the functor Hom•(Ei,−) shows Hom•(Ei, Y ) = 0 for all i 64 j and i = j. Hence Y ∈ 〈E≺j〉.
Proposition 2.7.2 now shows Fj = LE≺j (Ej).

Remark 2.8.6. Note that the partial order on F is reversed. Note also that in general, the dual
exceptional poset of a strong exceptional poset is NOT strong.

Example 2.8.7. Take Pn and the full strong exceptional sequence E = (O, . . . ,O(n)). By computing
cohomologies using the Bott’s formula [11], one can check the dual full exceptional poset is given by

F = (Ωn(n)[n],Ωn−1(n− 1)[n− 1] . . . ,Ω1(1)[1],O),

where Ωi denotes the i-th wedge power of the cotangent sheaf.

Example 2.8.8. Take P1 × P1 and the full strong exceptional poset

E = {O < O(1, 0),O(0, 1) < O(1, 1)}.

By computing cohomologies, one can check the dual full exceptional poset is given by

F = {O(−1,−1)[2] < O(0,−1)[1],O(−1, 0)[1] < O}.

Remark 2.8.9. Exceptional posets do not exist on Db(Coh (X)) for any Calabi–Yau X. This is because
by Serre duality,

HomdimX(E,E) = Hom0(E,E)

which contains at least a copy of K, hence cannot vanish.

2.9 Tilting Objects

In the rest of this thesis, we will be working with algebraic triangulated categories in the sense of Keller
[43, §3.6]. The precise definition of an algebraic triangulated category will not bother us much, but let
me point out that, in Keller’s words, “ ‘all’ triangulated categories occuring in algebra and geometry are
algebraic.” The main examples we have in our mind will be the derived category of equivariant sheaves
on smooth varieties and the derived category of dg-modules over dg-algebras.

Definition 2.9.1 (Tilting Object). An object T in an algebraic triangulated category D is said to be
tilting if it is
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• compact, i.e., the functor Hom(T,−) commutes with arbitrary coproduct, and

• generating, i.e., the only object X with Hom•(T,X) = 0 is the zero object.

A tilting object T is said to be classical if Homk(T, T ) = 0 for all k 6= 0.

Here is the main theorem of the section.

Theorem 2.9.2 ([42], Theorem 8.7). Let T be a tilting object in an algebraic triangulated category
D which admits all set-indexed coproducts. Then there is a dg-algebra RHom(T, T ) with cohomology
Hom•(T, T ) and a triangle equivalence

Φ : D → D(RHom(T, T )op)

which takes T to the free module of rank one, and whose composition with cohomology is given by

H• ◦ Φ : D → Grmod(Hom•(T, T )op), X 7→ Hom•(T,X).

Furthermore, this equivalence restrict to an equivalence between the perfect derived categories

Φ : Per(T )→ Per(RHom(T, T )op).

One way to construct tilting objects is from full exceptional posets.

Proposition 2.9.3. Let E = {Ei}i∈I be a full exceptional poset of compact objects in D. Then E =
⊕
i∈I

Ei

is a tilting object in D. If E is further assumed to be strong, then E is classical tilting.

Proof. Since E is an exceptional poset, 〈E〉 is admissible by Proposition 2.8.4, 〈E〉 = D if and only if

〈E〉⊥ = 0. Hence E is tilting since E is full. If E is strong, then Homk(Ei, Ej) = 0 for all k ≥ 1 and thus
E is classical tilting.
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A∞-Algebras

This chapter is a survey on A∞-algebras and operations on them.

In section 3.1, we introduce A∞-algebras and other related notions such as minimal models, A∞-
modules and their derived categories.

Section 3.2 defines the notion of minimal A∞-algebras, and discusses how to construct minimal models
by using homotopy perturbation.

Section 3.3 defines the notion of cyclic structure on A∞-algebras and describes how it gives rise to
Calabi–Yau categories.

Section 3.4 defines the Koszul functor, which is essentially a way of producing dg-quivers from A∞-
algebras. There are two versions of this functor: the completed one and the incomplete one. The
completed one is defined on A∞-algebras and yields the completed path algebra of a dg-quiver. The
incomplete one is only defined on Afin-algebras, and yields the incompleted path algebra of a dg-quiver.
The difference between the two versions is similar to the difference between power series and polynomials.
Admittedly, working with Afin-algebras and hence the incomplete Koszul functor is awkward in the world
of A∞-algebras as being Afin is not a homotopy invariant property. For example, the minimal model of an
Afin-algebra is not necessarily Afin. However, as we will see in Chapter 5, the incomplete Koszul functor
is central to our problem of constructing derived equivalences between dg-quivers and total spaces of
vector bundles.

Section 3.5 defines the quotient of an A∞-algebra by a finite group, and the smash product of an
A∞-algebra by a finite group. Although the definition of quotient construction is straightforward, it
seems to be new. This quotient construction is central to constructing derived equivalences equivariantly
as described in Section 5.6. We then prove a relation between the quotient construction and the smash
product, and shows how these two constructions commute with the Koszul dual functor, i.e., the Koszul
dual of the quotient (resp. smash product) of an Afin-algebra is the quotient (resp. smash product) of
its Koszul dual. This section is inspired by the work of Bocklandt, Schedler, and Wemyss [7].

Section 3.6 surveys different constructions of A∞-tensor product. Since A∞-tensor products are only
unique up to A∞-quasi-isomorphisms, there is in general no natural formulae for computing the ten-
sor product, although there is one in the case when one of the A∞-algebras is A2, i.e., a dg-algebra.
Particularly important to us is the tensor product constructed by Amorim and Tu [2], since their con-
struction preserves cyclic structures. We then prove that, under some local finiteness conditions, the
Koszul functor commutes with the tensor product, i.e., Koszul dual of tensor product of A∞-algebras is
quasi-isomorphic to tensor product of Koszul duals of A∞-algebras as dg-algebras.

24
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3.1 A∞-Algebras and A∞-Modules

This section introduces A∞-algebras. We follows the sign conventions of Lefèvre-Hasegawa [48]. We
refer to Keller [44] for a short introduction and Lefèvre-Hasegawa [48] for a comprehensive reference.

Definition 3.1.1 (A∞-algebras). Let K be a field and S be a semisimple algebra over K. An A∞-algebra
over S is a Z-graded S-bimodule,

A =
⊕
i∈Z

Ai

together with, for each n ∈ N, an S-bimodule homomorphisms of degree 2− n

mn : A⊗Sn → A

satisfying the the A∞-relations∑
a+b+c=n
b≥1

(−1)ab+cma+1+c ◦ (id⊗a ⊗mb ⊗ id⊗c) = 0.

The first few A∞-relations read as follows:

• When n = 1, we have m1 ◦m1 = 0, i.e., (A,m1) is a chain complex.

• When n = 2, we have m1 ◦m2 = m2 ◦ (m1 ⊗ id + id⊗m1), i.e., m1 is a derivation with respect to
m2.

• When n = 3, we have

m2 ◦ (id⊗m2 −m2 ⊗ id) = m1 ◦m3 +m3 ◦ (m1 ⊗ id⊗ id + id⊗m1 ⊗ id + id⊗ id⊗m1),

i.e., m2 is associative up to homotopy given by m3.

A morphism f : A→ B of A∞-algebras over S is a family of S-bimodule morphisms of degree 1− n

fn : A⊗Sn → B,

satisfying the A∞-relations

∑
a+b+c=n
b≥1

(−1)ab+cfa+1+c ◦ (id⊗a ⊗mb ⊗ id⊗c) =

n∑
r=1

∑
i1+···+ir=n

(−1)smr ◦ (fi1 ⊗ · · · ⊗ fir ),

where s =
r∑

u=2

(
(1− iu)

u∑
v=1

iv

)
. Composition of two morphisms f : B → C and g : A → B is defined

by

(f ◦ g)n =

n∑
r=1

∑
i1+···+ir=n

(−1)sfr ◦ (gi1 ⊗ · · · ⊗ gir ).

A morphism of A∞-algebra is called strict if fn = 0 for n ≥ 2. In this case, the A∞-relations simplifies
to f1mn = mn ◦ f⊗n1 . The identity morphism of an A∞-algebra is the strict A∞-morphism with f1 = id.
An A∞-quasi-isomorphism f is an A∞-morphism whose f1 induce isomorphism on the homology on the
chain complex (A,m1).

An A∞-algebra is strictly unital if there is an element 1A ∈ A of degree 0 such that m2(1A, a) = a =
m2(a, 1A) for all a ∈ A and mn(a1, · · · , an) = 0 whenever n 6= 2 and one of the ai = 1A. A morphism of
strictly unital A∞-algebra f : A→ B is strictly unital if f1(1A) = 1B and fn(a1, · · · , an) = 0 whenever
n 6= 1. Note that for any strictly unital A∞-algebra, there is a canonical strict morphism η : S → A
mapping 1S to 1A. An A∞-algebra is augmented if it is strictly unital and there is a strictly unital
morphism ε : A → S such that ε ◦ η = idS . A morphism of augmented A∞-algebras is a strictly unital
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morphism f : A→ B such that εB ◦f = εA. When an A∞-algebra is augmented, there is a decomposition
A = S ⊕ Ā, where Ā = ker ε is called the augmentation ideal.

An A∞-algebra is said to be Afin if mi = 0 for i� 0. An A∞-algebra is said to be An if mi = 0 for
all i ≥ n. In particular, an A1-algebra is a chain complex, and an A2-algebra is a dg-algebra. Morphisms
between chain complexes (resp. dg-algebras) are the same as strict A∞-morphisms between A1-algebras
(resp. A2-algebras). A morphism is said to be An if fr = 0 for r > n and is said to be Afin if fr = 0 for
r � 0.

Definition 3.1.2 (A∞-homotopy). Let A and B be two A∞-algebras and f, g : A → B be A∞-
morphisms. An A∞-homotopy between f and g is a family of morphisms of degree −n

hn : A⊗n → B

satisfying the equation

fn − gn =
∑

i1+···+ir+k
+j1+···jt=n

(−1)smr+1+t ◦ (fi1 ⊗ · · · ⊗ fir ⊗ hk ⊗ gj1 ⊗ · · · ⊗ gjt)

+
∑

j+k+`=n

(−1)jk+`hj+1+` ◦ (id⊗j ⊗mk ⊗ id⊗`),

where
s = t+

∑
1≤α≤t

(1− jα)(n−
∑
u≥α

ju) + k
∑

1≤u≤r

iu +
∑

2≤α≤r

(1− iα)
∑
u<α

iu.

Similarly, an A∞-homotopy is said to be An if hr = 0 for r > n and Afin if hr = 0 for r � 0.
One of the salient features of A∞-algebras is that all A∞-quasi-isomorphisms are invertible up to

homotopy:

Theorem 3.1.3 ([48] Corollary 1.3.1.3). An A∞-quasi-isomorphism is an A∞-homotopy equivalence.

Definition 3.1.4 (A∞-modules). An A∞-right module over A is a Z-graded S-bimodule M , together
with a family of S-bimodule morphisms of degree 2− n

mM
n : M ⊗S A⊗Sn−1 →M

satisfying the A∞-relations∑
a+b+c=n
a,b≥1

(−1)ab+cmM
a+1+c ◦ (id⊗a ⊗mb ⊗ id⊗c) +

∑
b+c=n
b≥1

(−1)cmM
1+c ◦ (mM

b ⊗ id⊗c) = 0.

Definition 3.1.5 (A∞-morphism). Let A be an A∞-algebra and M , N be A∞-modules. An A∞-
morphism f : M → N is a family of S-bimodule morphisms of degree 1− n

fn : M ⊗S A⊗n−1 → N

which satisfy the equations∑
a+b+c=n
b≥1

(−1)ab+cfa+1+c ◦ (id⊗a ⊗mb ⊗ id⊗c) =
∑
r+s=n

ms+1 ◦ (fr ⊗ id⊗s).

An A∞-morphism is said to be an A∞-quasi-isomorphism if f1 induces an isomorphism on cohomology.
An A∞-morphism is said to be strict if fi = 0 for all i ≥ 2.

Definition 3.1.6 (A∞-homotopy). Let A be an A∞-algebra and M , N be A∞-modules. Let f, g : M →
N be A∞-morphisms. An A∞-homotopy between f and g is a family of morphisms of degree −n

hn : M ⊗A⊗n−1 → N

satisfying the equations

fn − gn =
∑
r+s=n

(−1)sm1+s(hr ⊗ id⊗s) +
∑

a+b+c=n
b≥1

(−1)ab+cha+1+c(id
⊗a ⊗mb ⊗ id⊗c).
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Theorem 3.1.7 ([48] Proposition 2.4.1.1). An A∞-quasi-isomorphism between A∞-modules is an A∞-
homotopy equivalence.

Derived Category of A∞-modules. Recall that for an honest algebra A, the derived category D(A)
is obtained by localizing the homotopy category of A-modules K(A) at the class of quasi-isomorphism.
One would like to define the derived category of an A∞-algebra in a similar way. Since by Theorem
3.1.7, A∞-quasi-isomorphisms are already homotopy equivalence, we have

Definition 3.1.8 (Derived category of A∞-modules). The derived category D∞(A) of an A∞-algebra A
is defined to be the homotopy category of A∞-modules over A, i.e., objects in D∞(A) are A∞-modules
over A and morphisms between two A∞-modules M and N are A∞-morphisms modulo A∞-homotopies.

Definition 3.1.9 (Perfect derived category). Let A be an A∞-algebra. Then A can be regarded as an
A∞-module over itself. The smallest triangulated category generated by the A-module A is called the
perfect derived category of A and is denoted by Per∞(A).

A∞-categories

Definition 3.1.10. An A∞-category A consists of the following data:

1. a set of objects Obj (A),

2. for any X,Y ∈ Obj (A), a Z-graded vector space

A(X,Y ) =
⊕
i∈Z
Ai(X,Y ),

3. for each n = 1, 2, 3, . . . , and any X0, . . . , Xn ∈ Obj (A), a linear map homogeneous of degree 2− n

mn : A(Xn−1, Xn)⊗A(Xn−2, Xn−1)⊗ · · · ⊗ A(X0, X1)→ A(X0, Xn),

satisfying the equations ∑
a+b+c=n

(−1)ab+cma+1+c ◦ (id⊗a ⊗mb ⊗ id⊗c) = 0.

If m1 = 0, then A is said to be minimal. An A∞-category is said to be strictly unital if for each object
X ∈ ObjA, there is eX ∈ A(X,X) such that m2(eX ⊗ b) = b, m2(a⊗ eY ) = a for any a ∈ A(Y,X) and
b ∈ A(X,Y ), and mn(an ⊗ · · · ⊗ a1) = 0 whenever some aj = eX for some X. Let S be the discrete K-
category on ObjA, i.e., ObjS = ObjA and S(X,X) = K and S(X,Y ) = 0 whenever X 6= Y . Then each
strictly unital A∞-category is endowed with an A∞-functor ε : S → A which sends each 1X ∈ S(X,X)
to the identity element eX ∈ A(X,X). If there is an A∞-functor η : A → S such that η ◦ ε = idS , then
A is said to be augmented. An A∞-category is said to be finite if Obj (A) is finite and for any objects
X,Y , A(X,Y ) is finite dimensional.

Conventions. When the base algebra of an A∞-algebra is in the form S = Kr, the data of an A∞-
algebra is the same as an A∞-category A with r objects: Let ei be the vector in S = Kr with 1 in the
i-th place and zero elsewhere. Given an A∞-algebra over S, we can define an A∞-category A by taking
Obj (A) = {e1, . . . , er} and A(ei, ej) = eiAej . Conversely, given an A∞-category with r objects, choose
a bijection between Obj (A) and {e1, . . . , er} and take A =

⊕
i,j A(ei, ej). Each ei acts on left on A by

projecting to the vector subspace
⊕

j A(ei, ej). This define a left S-module structure on A. Right action
is defined similarly. Since in this thesis we will only deal with A∞-category with finite objects, we will
not distinguish A∞-algebras and A∞-categories and will use the two terminologies interchangeably.
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3.2 Minimal Model

An A∞-algebra is said to be minimal if m1 = 0. In this case the multiplication map m2 is associative.
By Kadeishvili’s theorem, every A∞-algebra is quasi-isomorphic to a minimal one:

Theorem 3.2.1 (Kadeishvili [36], see also [48] Corollary 1.4.1.4). Let A be an A∞-algebra. Then the
cohomology H•(A) has a unique (up to isomorphism of A∞-algebras) A∞-structure such that

• m1 = 0 and m2 is induced by mA
2 ,

• there is an A∞-quasi-isomorphism i : H•(A)→ A lifting the identity map on H•(A).

The A∞-structure on the minimal model can be described more explicitly. The following construction
is given by Markl [54, §7] and is known as homotopy perturbation. Denote by B and Z the S-bimodule
of coboundaries and cocycles in A. Since S is semisimple, we can choose a splitting (S-subbimodule) H
and L such that

Z = B ⊕H and A = Z ⊕ L = B ⊕H ⊕ L,

where H(A) ∼= H. Denote by p : A→ H the projection map and by i : H → A the inclusion map. Define
a linear map h : A→ A by h = 0 on L⊕H and h = (mA

1 |L)−1 on B. It follows that hmA
1 (resp. mA

1 h)
is the projection to L (resp. B), and forms a homotopy from idA to i ◦ p i.e., idA − i ◦ p = mA

1 h+ hmA
1 .

A
p //

h 88 H
i

oo

Define a sequence of linear maps λn : A⊗n → A of degree (2− n) for all n ≥ 2 inductively as follow:
Take λ2 = mA

2 , and for n ≥ 3, take

λn =
∑
I

(−1)θ(r1,...,rk)mA
k ◦ ((h ◦ λr1)⊗ · · · ⊗ (h ◦ λrk)), (3.2.1)

where the sum is over the set

I = {(k, r1, · · · , rk) : 2 ≤ k ≤ n, r1, . . . rk ≥ 1, r1 + · · ·+ rk = n},

the sign is given by

θ(r1, . . . , rk) =
∑

1≤α<β≤k

rα(rβ + 1)

and hλ1 is defined formally to be idA. Now, define m
H•(A)
n : H•(A)⊗n → H•(A) of degree 2− n by

mH•(A)
n = p ◦ λn ◦ i⊗n.

These maps satisfy the A∞-relations and H•(A) equipped with linear maps m
H•(A)
i for all i ≥ 2 is the

desired minimal model of A. The A∞-quasi-isomorphism i : H•(A)→ A is given by

in = h ◦ λn ◦ i⊗n.

Remark 3.2.2. As pointed out by Markl [54, §4], the recursive formula in Equation 3.2.1 can be
reformulated as a sum of trees: Let Pn be the set of all rooted planar directed trees with n leaves and
each internal vertex has at least two incoming edges. For each T ∈ Pn, one can assign a linear map
FT : A⊗n → A by interpreting each internal vertex with k incoming edges by mk, and each internal edge
by h. Next, we would like to define a number θ(T ). Let v be an internal vertex of T with k incoming
edges. Denote by ri the number of paths going from any leaves of T to the root of T which passes through
the i-th edge of v. Define θT (v) = θ(r1, · · · , rk) and let θ(T ) =

∑
internal vertices

θT (v). Then Equation 3.2.1

can be rewritten as
λn =

∑
T∈Pn

(−1)θ(T )FT .
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3.3 Cyclic Structure

Let A be a minimal A∞-category whose morphism spaces are finite dimensional. A cyclic structure
of degree d on A consists of, for each X,Y ∈ ObjA, a supersymmetric nondegenerate bilinear form
homogeneous of degree (−d)

〈−,−〉 : A(X,Y )×A(Y,X)→ K

satisfying the Koszul sign rule

〈mn(a1 ⊗ · · · ⊗ an), an+1〉 = (−1)n+|a1|(|a2|+···+|an+1|)〈mn(a2 ⊗ · · · ⊗ an+1), a1〉.

In general, cyclic structure is not preserved by A∞-quasi-isomorphisms, i.e., if A and A′ are A∞-
quasi-isomorphic, and A has a cyclic structure, A′ might not have a cyclic structure. To preserve the
cyclic structure, we need a class of A∞-morphisms which respect the cyclic structure. This gives rise to
the notion of cyclic A∞-morphism, which was first defined by Kajiura [37, Definition 2.13].

Definition 3.3.1 (Cyclic A∞-morphism). Let A and A′ be cyclic algebras. An A∞-morphism f : A→ A′

is said to be cyclic if for all a1, . . . , an ∈ A,

〈a1, a2〉A = 〈f1(a1), f1(a2)〉A′

and for n ≥ 3

∑
i+j=n

(−1)
i+
i=1∑̀
=1

(i−`+1)|a`|+
k−1∑
`=i+1

(k−`)|x`|
〈fi(a1, · · · , ai), fj(ai+1, . . . , an)〉 = 0

Following Keller [45, §5] , we describe a way of producing Calabi–Yau triangulated categories from
A∞-categories with cyclic structure. We denote by D(A) the derived category of A∞-module over A.
The perfect derived category per(A) is the thick triangulated subcategory of D(A) generated by the
representable A∞-modules A(−, X) for all X ∈ ObjA. In other words, per(A) is the smallest full
triangulated subcategory which is stable under taking direct summands which contains all representable
A∞-modules A(−, X). In case A is an ordinary K-algebra, then Per(A) is the full subcategory of D(A)
formed by perfect complexes, i.e., those quasi-isomorphic to a bounded complex of finitely generated
projective modules.

Proposition 3.3.2 ([45], §5). Let A be a Hom-finite minimal A∞-category with a cyclic structure of
degree d. Then Per(A) is Hom-finite d-Calabi–Yau triangulated category.

3.4 Koszul Functor

In this section, we will introduce the Koszul functor which produces quasi-free dg-algebras from A∞-
algebras. There are potentially two ways to do this. The first one is to take the bar construction followed
by taking dual. The second one is to take dual followed by the cobar construction. If we start with an
Afin-algebra, then under some locally finiteness conditions, the two constructions end up giving the same
dg-algebra.

For our purpose, the second approach seems to be conceptually simpler and this is the road we will
take. In this case when our Afin-algebra is finite dimensional, this is all good and product a dg-algebra
which is the path algebra of a dg-quiver. However, it runs into problem as soon as we consider algebras
which are not finite dimensional. This is because in general (V ⊗ V )∗ and V ∗ ⊗ V ∗ are not isomorphic,
and hence taking the dual of an A∞-algebra does not necessarily produce an A∞-coalgebra.

Following Lu, Palmieri, Wu and Zhang [51], it is useful to impose some local finiteness condition by
equipping A∞-algebras with an additional grading, called the Adams grading, by an abelian group G.
We will write the degree of a bihomogeneous element a in the form deg a = (deg1 a,deg2 a) ∈ Z × G.
The (i, j)-th component of A will be denoted by Aij . Henceforth in this section, all A∞-algebra will be

assumed to be locally finite in the sense that each (i, j)-th component Aij is finite dimensional. The
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multiplication maps mn’s will be assumed to preserve the Adams grading, i.e., of degree (2 − n, 0).
A∞-morphisms, A∞-homotopies will also be assumed to preserve the Adams grading. The suspension
functor Σ will only shift the first grading and ignore the Adams grading, i.e., (ΣA)ij = Ai+1

j .

For any Adams graded A∞-algebra, its minimal model H•(A) can be chosen to be Adams graded by
choosing the splitting A = B ⊕H ⊕ L described in Section 3.2 to be Adams graded.

For any locally finite Z × G-graded vector space V =
⊕
V ij , one can take the graded dual V # =⊕

Hom(V −ij ,K) =
⊕

(V −ij )∗. The graded dual is better behaved than the usual dual since they enjoy

the isomorphisms (V #)# ∼= V and (V ⊗n)# ∼= (V #)⊗n.

In what follows, we will assume all A∞-algebras are augmented over the semiample algebra Kn. The
kernel of the augmentation map will be denoted by Ā.

Adams graded Afin-algebras. We will say an Adams graded A∞-algebra Afin if for any j ∈ G in the
Adams grading, there is an rj ∈ N such that the j-th component of the map mn, i.e.,

mn :
⊕

i1,...,in

⊕
j1+···jn=j

Ai1j1 ⊗ · · · ⊗A
in
jn
→
⊕
i

Aij

is zero for n > rj . Similarly, for two A∞-algebras Adams graded by the same abelian group G, an
A∞-morphism f : A → B is said to be Afin if for any j ∈ G, there is an rj ∈ N such that the j-th
component of the map fn is zero for n > rj . The notion of Afin-homotopy is similarly defined.

Taking graded dual followed by cobar construction. Let A be an Adams graded A∞-algebra.
Taking graded dual of the multiplication maps mn’s, we get linear maps of degree (2− n, 0)

m#
n : Ā#−→(Ā⊗Sn)# ∼= (Ā#)⊗Sn.

Shifting degree, we define linear maps bn of degree (1, 0) via the following commutative diagram

(ΣĀ)#
b#n //

Σ#

��

((ΣĀ)#)⊗Sn

(Σ#)⊗n

��
Ā#

m#
n // (Ā#)⊗Sn

Putting them together we get a linear map of degree (1, 0)

d =
∏

b#n : (ΣĀ)#−→
∏

((ΣĀ)#)⊗Sn = T̂S(ΣĀ)#.

which extends to a (continuous) derivation

d : T̂S(ΣĀ)#−→T̂S(ΣĀ)#.

By the A∞-relations of the mn’s, the map d is a differential, i.e., d2 = 0. We thus get a dg-algebra
Ω(A#) = (T̂S(ΣĀ)#, d). This construction can also be applied to A∞-morphisms to get dg-algebra
morphisms. Thus, we have set up a functor, which we call the completed Koszul functor,

Ê : (locally finite A∞-algebras)−→(quasi-free dg-algebras)op.

This functor sends A∞-morphisms to dg-algebra morphisms and A∞-homotopies to dg-homotopies.
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A variant of the Koszul functor. There is a variant of the Koszul functor for Afin-algebras: instead
of taking product, we take direct sum of the bn’s to get a linear map of degree (1, 0)

d =
⊕

b#n : (ΣĀ)#−→
⊕

((ΣĀ)⊗Sn)# = TS(ΣĀ)#,

which extends to a differential
d : TS(ΣĀ)#−→TS(ΣĀ)#.

The component of d which maps ((ΣĀ)#)⊗p → ((ΣĀ)#)⊗q is given by∑
r+1+t=p
r+s+t=q

id⊗r ⊗ b#s ⊗ id⊗t.

This set up a functor

E : (locally finite Afin-algebras)−→(quasi-free dg-algebras)op

which sends Afin-morphisms to dg-algebra morphisms and Afin-homotopies to dg-homotopies. For an
Afin-algebra, the difference between Ê(A) and E(A) is analogous to the difference between formal power
series and polynomials. The dg-algebra E(A) will be called the Koszul dual of A.

Koszul functor as a construction of dg-quiver. Recall that an A∞-category is said to be finite if A
has a finite set of objects and all morphism spaces are finite dimensional. Note that a finite Afin-category
is characterised by the property mn = 0 for n � 0. When the Koszul functor is applied to a finite
augmented Afin-category A, it can be viewed as a construction which produces a dg-quiver QA: Obj (A)
correspond to vertex set of QA; degree i edges between two vertices u and v correspond to a basis of the
vector space Ā1−i(u, v)∨. Then KQA = E(A) and ˆKQA = Ê(A) and the dg-structure on E(A) turns
QA into a dg-quiver. We may sometimes abuse notation and denote QA by E(A), i.e., we are identifying
a quiver with its path algebra.

Conversely, every dg-quiver can be constructed this way. Given a dg-quiver Q, we construct an
augmented Afin-category by taking

Obj (A) = {vertices in Q},

and for any vertices u, v, we take the augmentation ideal Ā to be

Āi(u, v) = K{degree (1− i) edges in Q}∨,

or in other words,

Ai(u, v) =


Kv ⊕K{degree (1− i) edges in Q}∨ if u = v and i = 0,

K{degree (1− i) edges in Q}∨ if u 6= v and i = 0,

K{degree (1− i) edges in Q}∨ if i 6= 0.

We then define the shifted higher multiplication maps bn by

bn(e∨1 , . . . , e
∨
n) =

∑
e edges in Q

(Coefficient of e1 · · · en in de)e∨,

bn(e∨i , . . . , v, . . . , e
∨
n) = 0 for n 6= 2 and

b2(v, e∨) = (−1)|e
∨|b2(e∨, v) = e∨

where ei are edges in Q and v are vertices in Q. The higher multiplication maps mn are then given by

mn(e∨1 , . . . , e
∨
n) = (−1)(n−1)|e∨1 |+···+2|e∨n−2|+|e

∨
n−1|

∑
e edges in Q

(Coefficient of e1 · · · en in de)e∨,

mn(e∨i , . . . , v, . . . , e
∨
n) = 0 for n 6= 2 and

m2(v, e∨) = m2(e∨, v) = e∨.

The A∞-relations follows from d2 = 0, and by construction we have E(A) = KQ.
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Bar construction followed by taking graded dual. As mentioned in the beginning of this section,
there is another approach to produce quasi-free dg-algebras from A∞-algebras. Shifting the degree of the
multiplication map mn, we get a linear map bn of degree (1, 0) by the following commutative diagram

Ā⊗Sn
mn //

Σ⊗n

��

Ā

Σ
��

(ΣĀ)⊗Sn
bn // ΣĀ

In other words, bn : (ΣĀ)⊗Sn−→ΣĀ is the map which sends

a1 ⊗ · · · ⊗ an 7−→ (−1)(n−1)a1+···+2an−2+an−1mn(a1, · · · , an),

where the sign comes from the Koszul sign rule. Putting them together, we get

b =
⊕

bn : TS(ΣĀ) =
⊕

(ΣĀ)⊗Sn−→ΣĀ

which extends to a coderivation map

b : TS(ΣĀ)−→TS(ΣĀ).

whose component mapping (ΣĀ)⊗Sq → (ΣĀ)⊗Sp is given by∑
r+1+t=p
r+s+t=q

id⊗r ⊗ bs ⊗ id⊗t

By the A∞-relations of mn’s, this map is a codifferential, i.e., b2 = 0. We will denote this dg-coalgebra
by BA. Taking graded dual, we get a differential

b# : (BA)#−→(BA)#

and a dg-algebra (BA)#.

Equivalence of the two constructions. Suppose A is Afin and E(A) is locally finite. Then since
E(A)ij is finite dimensional, the right hand side of

[E(A)]ij =
⊕
n≥1

⊕
i1+···+in=i
j1+···+jn=j

[(ΣĀ)#]i1j1 ⊗ · · · ⊗ [(ΣĀ)#]injn

=
⊕
n≥1

⊕
i1+···+in=i
j1+···+jn=j

[(ΣĀ)i1j1 ⊗ · · · ⊗ (ΣĀ)injn ]∗

is a finite sum. Hence

E(A)# =
⊕
i,j

Hom(E(A)ij ,K)

=
⊕
i,j

⊕
n≥1

⊕
i1+···+in=i
j1+···+jn=j

Hom([(ΣĀ)i1j1 ⊗ · · · ⊗ (ΣĀ)injn ]∗,K)

=
⊕
i,j

⊕
n≥1

⊕
i1+···+in=i
j1+···+jn=j

[(ΣĀ)i1j1 ⊗ · · · ⊗ (ΣĀ)injn ]

= TS(ΣĀ)

= BA.

Remark 3.4.1. Note that in general E(A)# 6∼= BA since for infinite sum, we have Hom(
⊕
Vi,W ) =∏

Hom(Vi,W ). Hence the assumption E(A) is locally finite is crucial.
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Comparing the differential, we arrive at

Proposition 3.4.2. Let A be a locally finite Afin-algebra. Suppose E(A) is also locally finite. Then
E(A) = (BA)#.

Proof. We have already shown E(A) = (BA)# as a vector space. To see the two maps b# and d are the
same, it suffices to compare their components mapping ((ΣĀ)#)⊗p → ((ΣĀ)#)⊗q and we are done.

Koszul duality. The following theorem justifies calling E(A) the Koszul dual of A.

Theorem 3.4.3 ([51], Theorem 2.4). 1. Let A be a locally finite Afin-algebra. Suppose E(A) is locally
finite. Then E(E(A)) is A∞-quasi-isomorphic to A.

2. Let A be a locally finite dg-algebra. Suppose E(A) is also locally finite. Then there is a quasi-
isomorphism of dg-algebras E(E(A))→ A.

Proof. Denote by Ω the cobar construction on dg-algebras. Then by definition, E(Λ) = Ω(Λ#) for any
locally finite dg-algebras Λ. By Proposition 3.4.2, E(E(A)) = E((BA)#) = ΩBA. By [48, Lemma
2.3.4.3], ΩBA and A are A∞-quasi-isomorphic and we are done.

Now if A is a dg-algebra, we have a quasi-isomorphism of dg-algebras ΩBA → A by [48, Lemma
1.3.2.3]. By Proposition 3.4.2, we are done.

3.5 Quotient and Smash Product

In this section, we will fix a finite group G and an algebraically closed field K with char(K) - ord(G),
and try to construct a quotient A∞-category. The reason for the assumption on the characteristic of K
is the following theorem which can be found in almost any standard textbooks on representation theory
of finite groups.

Theorem 3.5.1 (Maschke). Every finite dimensional representation over K of G is completely reducible,
i.e., every G-invariant subspace has a G-invariant complement.

Proof. Let V be a finite dimensional representation and W an invariant subspace. Choose a projection
π : V →W . Define a G-equivariant map πG : V →W by

πG(v) =
1

|G|
∑
g∈G

gπ(g−1v).

Take W⊥ = kerπG and we are done.

The set of all isomorphism classes of irreducible representations of G will be denoted by Irr (G), and
irreducible representations by Greek alphabets ρ, σ, τ etc.

Quotient construction. The quotient construction described below is essentially an incarnation of
the McKay quiver. Suppose G acts on an A∞-category A by fixing all objects of A and acting on the
morphism spaces by strict A∞-isomorphisms. One can construct a quotient A∞-category A/G as follows:

Obj (A/G) = Irr (G)×Obj (A)

(A/G)i(ρ× u, σ × v) = HomG(ρ,Ai(u, v)⊗ σ)

To define the multiplication maps m
A/G
n , observe that Ai(ρ × u, σ × v) = [Hom(ρ, σ) ⊗ Ai(u, v)]G. We

have natural maps of degree 2− n

◦ ⊗mAn : [Hom(ρn−1, ρn)⊗A(vn−1, vn)]⊗ · · · ⊗ [Hom(ρ0, ρ1)⊗A(v0, v1)]−→Hom(ρ0, ρn)⊗A(v0, vn)

(αn ⊗ an)⊗ · · · ⊗ (α1 ⊗ a1) 7→ (αn ◦ · · · ◦ α1)⊗mAn (an, · · · , a1),
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which satisfy the A∞-relations. Since G acts on A through strict A∞-isomorphisms,

g · (◦ ⊗mAn )((αn ⊗ an)⊗ · · · ⊗ (α1 ⊗ a1)) = g · [(αn ◦ · · · ◦ α1)⊗mAn (an, · · · , a1)]

= [g · (αn ◦ · · · ◦ α1)]⊗ g ·mAn (an, · · · , a1)

= [(g · αn) ◦ · · · ◦ (g · α1)]⊗mAn (g · an, · · · , g · a1)

= (◦ ⊗mAn )(g · (αn ⊗ an), · · · , g · (α1 ⊗ a1)).

This shows ◦ ⊗mAn descends to the G-invariant part to linear maps of degree 2− n

mA/Gn : (A/G)(ρn−1 × vn−1, ρn × vn)⊗ (A/G)(ρ0 × v0, ρ1 × v1)→ (A/G)(ρ0 × v0, ρn × vn)

satisfying the A∞-relations.
Thus we obtained a new A∞-category A/G. Note that the quotient construction preserves most

properties of the original A∞-category: if A is finite dimensional/An/Afin/unital/augmented/connected,
then so is A/G. If A has a G-invariant cyclic structure of degree m, then so does A/G: the bilinear
forms on A

〈−,−〉A : A(u, v)⊗A(v, u)→ K

induce bilinear forms

〈−,−〉 : [Hom(ρ, σ)⊗A(u, v)]⊗ [Hom(σ, ρ)⊗A(v, u)]→ K

(α⊗ a)⊗ (β ⊗ b) 7→ tr(αβ)〈a, b〉

which restricts to the G-invariant part

〈−,−〉A/G : (A/G)(ρ× u, σ × v)⊗ (A/G)(σ × v, ρ× u)→ K.

These bilinear forms are also non-degenerate and cyclically invariant since the trace maps tr are.

A variant of the quotient construction. There is a variant of the quotient construction. Given an
A∞-algebra A over a semisimple algebra S = Kr, on which G acts by strict A∞-isomorphism, one can
define an A∞-algebra over S ⊗ KG as follows. The underlying Z-graded S ⊗ KG-bimodule is given by
HomG(KG,A⊗KG), with S ⊗KG acting on the left and right by

((u⊗ g)ϕ(v ⊗ h))(−) = uϕ(−g)(v ⊗ h).

The multiplication maps mn are defined similarly as in A/G. Since KG =
⊕

ρ∈Irr (G)

ρ⊕dim ρ, we see that

HomG(KG,A⊗KG) =
⊕

ρ,σ∈Irr (G)

HomG(ρ,A⊗ σ)⊕(dim ρ)(dimσ),

i.e., this construction is a variant of A/G which takes into account the multiplicity of each irreducible
representation in the regular representation of G. Note that when G is abelian, the two constructions
coincide since every irreducible representation of G are 1-dimensional. In general, the two constructions
are related by a Morita functor. Recall that by Maschke’s theorem, KG is a semisimple algebra. In
fact, KG ∼=

⊕
ρ∈Irr (G)

Endρ canonically as an algebra. Denote by eρ the matrix in Endρ with 1 in the

(1, 1)-entry and 0 in all other entries. Then ρ = KGeρ and all the eρ’s are orthogonal idempotents, i.e.,
(eρ)

2 = eρ and eρeσ = 0 if ρ 6= σ. The element e =
∑

ρ∈Irr (G)

eρ ∈ KG is an idempotent element which is

full in the sense that KGeKG = KG. Moreover, the algebra SG := eKGe is commutative and is spanned
by all the eρ’s. Since ẽ = (1S ⊗ e) is also a full idempotent in the semisimple algebra S ⊗ KG with
ẽ(S ⊗KG)ẽ = S ⊗ SG, we have the following
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Theorem 3.5.2 (Morita Equivalence, [7] Lemma 2.2). The functor

F : Bimod (S ⊗KG)→ Bimod (S ⊗ SG)

M 7→ ẽMẽ

is an equivalence which commutes with tensor product in the sense that

F(M ⊗
S⊗KG

N) ∼= F(M) ⊗
S⊗SG

F(N)

are naturally isomorphic through the isomorphism

ẽ(m ⊗
S⊗KG

n)ẽ 7→ ẽmẽ ⊗
S⊗SG

ẽnẽ.

Since the Morita functor F : Bimod S ⊗KG → Bimod S ⊗ SG commutes with tensor product, the
(S ⊗ SG)-bimodule F(HomG(KG,A⊗KG)) has an A∞-structure given by F(mn).

Proposition 3.5.3. The A∞-algebras F(HomG(KG,A⊗KG)) and A/G are strictly A∞-isomorphic.

Proof. This follows by observing that

F(HomG(KG,A⊗KG)) =
⊕

ρ,σ∈Irr (G)

HomG(KGeρ,A⊗KGeσ) =
⊕

ρ,σ∈Irr (G)

Hom(ρ,A⊗ σ) = A/G

and that the mn’s of the two A∞-algebras are defined in the same way.

Quotient of minimal model. We show that if G acts on A by strict A∞-isomorphisms, then it also
acts on its minimal model H•(A) by strict A∞-isomorphisms and moreover, they give A∞-isomorphic
quotient. Recall that in the construction of minimal model (Proposition 3.2.1), one has to choose a
splitting

Z = B ⊕H and A = Z ⊕ L = B ⊕H ⊕ L. (3.5.1)

Since the group action commutes with mA1 , the space of cocycles and coboundaries Z and B are G-
subrepresentations. If we choose the splitting equivariantly, which is possible by the Maschke Theorem
3.5.1, we get the diagram

A
p //

h 88 H
i

oo

where all maps are equivariant. Since the A∞-structure on H•(A) is given by m
H•(A)
n = p ◦ λn ◦ i⊗n,

where λn is defined inductively by λ2 = mA2 and equation 3.2.1

λn =
∑
I

(−1)θ(r1,...,rk)mA
k ◦ ((h ◦ λr1)⊗ · · · ⊗ (h ◦ λrk)),

we see that G also acts on H•(A) by strict A∞-isomorphisms. Hence we can form the quotient H•(A)/G.
We show that one can choose an A∞-structure on H•(A/G) which is strictly A∞-isomorphic to H•(A)/G.

Recall that m
A/G
1 is the restriction of

id⊗mA1 :
⊕

ρ,σ∈Irr (G)

Hom(ρ, σ)⊗A →
⊕

ρ,σ∈Irr (G)

Hom(ρ, σ)⊗A

to its G-invariant part. Hence if we choose the same equivariant splitting (equation 3.5.1), the space of

cocycles and coboundaries of (A/G,mA/G1 ) are

Z/G =
⊕

ρ,σ∈Irr (G)

HomG(ρ, σ ⊗ Z) and B/G =
⊕

ρ,σ∈Irr (G)

HomG(ρ, σ ⊗B)
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respectively. Similarly, if we denote

H/G =
⊕

ρ,σ∈Irr (G)

HomG(ρ, σ ⊗H) and L/G =
⊕

ρ,σ∈Irr (G)

HomG(ρ, σ ⊗ L),

we have splittings

Z/G = B/G⊕H/G and A/G = Z/G⊕ L/G = B/G⊕H/G⊕ L/G

and a diagram

A/G
(id⊗p)G//

(id⊗h)G -- H/G
(id⊗i)G
oo

satisfying

idA/G − (id⊗ i)G ◦ (id⊗ p)G = m
A/G
1 ◦ (id⊗ h)G + (id⊗ h)G ◦mA/G1 .

We then have as in Equation 3.5.1 a family of linear maps λ̃n : (A/G)⊗n → A/G. One can then show
by induction that λ̃n is the restriction of the linear maps

◦ ⊗ λn :

 ⊕
ρ,σ∈Irr (G)

Hom(ρ, σ)⊗A

⊗n → ⊕
ρ,σ∈Irr (G)

Hom(ρ, σ)⊗A

to its G-invariant part. Hence m
H•(A/G)
n is the restriction of ◦ ⊗mH•(A)

n i.e., m
H•(A/G)
n = m

H•(A)/G
n .

We have thus proved the following

Proposition 3.5.4. Let A be an A∞-category on which a finite group G acts by A∞-isomorphisms. Then
one can choose a minimal model H•(A) of A on which G acts by A∞-isomorphisms, and a minimal model
H•(A/G) of A/G, such that there is an A∞-isomorphism H•(A)/G ∼= H•(A/G).

Smash product. Suppose G acts on an A∞-algebra A over S = Kr by strict A∞-isomorphisms. One
can construct the smash product A∞-algebra A#G as follows. As a vector space, A#G = A ⊗ KG.
There is a (S ⊗KG)-bimodule structure on A⊗KG by

(u⊗ g)(a⊗ x)(v ⊗ h) = u(ga)v ⊗ gxh,

for any u, v ∈ SA, g, h ∈ G and x ∈ KG. The multiplication maps mA#G
n are defined by, for gi ∈ G,

mA#G
n (a1 ⊗ g1, . . . , an ⊗ gn) = mAn (a1, g1a2, g1g2a3, . . . , g1 · · · gn−1an)⊗ g1 · · · gn.

Using the isomorphism

(A⊗KG)⊗S⊗KGn → A⊗Sn ⊗KG
(a1 ⊗ g1)⊗ . . .⊗ (an ⊗ gn) 7→ (a1 ⊗ g1a2 ⊗ . . .⊗ g1 · · · gn−1an)⊗ g1 · · · gn,

we have the commutative diagram

(A⊗KG)⊗S⊗KGn
∼= //

mA#G
n

��

A⊗Sn ⊗KG

mAn⊗idG

��
A⊗KG A⊗KG

. (3.5.2)

Again, the smash product preserves most properties of the original A∞-algebra: if A is finite
dimensional/AN/unital/augmented/connected/cyclic of degree m, then so is A#G.

Proposition 3.5.5. The two dg-algebras E(A#G) and E(A)#G are isomorphic. The two algebras
H•(E(A#G)) and H•(E(A))#G are isomorphic.

Proof. The first claim comes from the commutative diagram (3.5.2). Taking cohomology of the first
claim, we have H•(E(A#G)) = H•(E(A)#G). Since the functor (−)⊗KG is exact, and hence preserves
cohomologies, we have H•(E(A)#G) = H•(E(A))#G and the second claim follows.
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Relation between Quotient and Smash Product. The following proposition relates the smash
product and the quotient construction with multiplicities.

Proposition 3.5.6. The A∞-algebras HomG(KG,A⊗KG) and (Aop#G)op are strictly A∞-isomorphic.

Proof. Observe that HomG(KG,A⊗ KG) ∼= A⊗ KG as an SA ⊗ KG-bimodule via the map ϕ 7→ ϕ(1),
with inverse given by sending a⊗ g ∈ A⊗KG to the map (h 7→ ha⊗hg) for all h ∈ G. We wish to write
down the induced A∞-structure on A ⊗ KG under this isomorphism. To do this, we first write down
explicitly the map h 7→ ha⊗ hg ∈ HomG(KG,A⊗KG) as an element in [A⊗ Hom(KG,KG)]G. Define
the K-linear map ϕgk : KG→ KG by

ϕgk(h) =

{
kg if h = k

0 otherwise.

Then the map h 7→ ha ⊗ hg correspond to the element
∑
k∈G

ka ⊗ ϕgk. We will need the following simple

lemma for computation.

Lemma 3.5.7. 1. The group G acts on ϕgk by ` · ϕgk = ϕg`k.

2. Compositions are given by

ϕgk ◦ ϕ
h
` =

{
ϕhg` if k = `h

0 otherwise.

Now we can compute the induced mA⊗KGn on A⊗KG. Since∑
k1,...,kn∈G

mn(knan ⊗ ϕgnkn , . . . , k1a1 ⊗ ϕg1

k1
) =

∑
k1,...,kn∈G

mn(knan, . . . , k1a1)⊗ ϕgnkn ◦ · · · ◦ ϕ
g1

k1

=
∑
k1∈G

mAn (k1g1 · · · gn−1an, . . . , k1a1)⊗ ϕg1···gn
k1

=
∑
k1∈G

k1m
A
n (g1 · · · gn−1an, . . . , a1)⊗ ϕg1···gn

k1
,

we conclude that

mA⊗KGn (an ⊗ gn, . . . , a1 ⊗ g1) = mAn (g1 · · · gn−1an, . . . , a1)⊗ (g1 · · · gn).

Now observe that (Aop#G)op has the same objects and morphism spaces as A ⊗ KG, with A∞-
structure given by

m(Aop#G)op

n (an ⊗ gn, . . . , a1 ⊗ g1) = mA
op#G

n (a1 ⊗ g1, . . . , an ⊗ gn)

= mA
op

n (a1, g1a2, . . . , g1 · · · gn−1an)⊗ (g1 · · · gn)

= mAn (g1 · · · gn−1an, . . . , a1)⊗ (g1 · · · gn)

which is the same as that of A⊗KG, as desired.

Corollary 3.5.8. The A∞-algebras A/G and F((Aop#G)op) are strictly A∞-isomorphic.

Proof. This is immediate since A/G ∼= F(HomG(KG,A⊗KG)) by Proposition 3.5.3.

Proposition 3.5.9. The two dg-algebras E(A/G) and E(A)/G are isomorphic. The two A∞-algebras
H•(E(A/G)) and H•(E(A))/G are A∞-quasi-isomorphic.

Proof. By Corollary 3.5.8, E(A/G) ∼= E(F((Aop#G)op)). Since the Morita equivalence functor F in
Theorem 3.5.2 commutes with tensor product, it also commutes with the Koszul functor E, and we
have E(F((Aop#G)op)) ∼= F(E(Aop#G)op). By Proposition 3.5.5, E(Aop#G)op ∼= (E(A)op#G)op. By
Corollary 3.5.8 again, F((E(A)op#G)op) ∼= E(A)/G and we arrive at the first claim. Taking coho-
mology, we conclude H•(E(A/G)) and H•(E(A)/G) are A∞-quasi-isomorphic. By Proposition 3.5.4,
H•(E(A)/G) and H•(E(A))/G are A∞-quasi-isomorphic and we are done.
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3.6 Tensor Product

In this section, we give a review on how to construct tensor product of A∞-algebras. Except Proposition
3.6.1, this is essentially a summary of Amorim and Tu [2].

Tensor product of a dg-algebra with an A∞-algebra Before looking at the general case, let us
look at the special case where one of them is only a dg-algebra rather than a full-fledged A∞-algebra.
When both of them are dg-algebras, this is well-known and we take

mA⊗A′
1 = mA

1 ⊗ idA′ + idA ⊗mA′

1 and mA⊗A′
2 = mA

2 ⊗mA′

2 (3.6.1)

If A is a dg-algebra and A′ is an A∞-algebra, there is a natural generalization:

mA⊗A′
1 = mA

1 ⊗ id′A + idA ⊗mA′

1 and for n ≥ 2 mA⊗A′
n = mA

2 ◦ (mA
2 ◦ (mA

2 ◦ (· · · )))︸ ︷︷ ︸
n− 1 iterations

⊗mA′

n . (3.6.2)

For simplicity, we will denote the n-th iteration of mA
2 by (mA

2 )◦n. Direct computation using chain rule
on A and the A∞-relations on A′ shows the above definition of mA⊗A′

n satisfies the A∞-relations:∑
a+b+c=n

(−1)ab+cmA⊗A′
a+1+c ◦

(
id⊗aA⊗A′ ⊗m

A⊗A′
b ⊗ id⊗cA⊗A′

)
= mA⊗A′

1 ◦mA⊗A′
n +

∑
a+c=n−1

(−1)n−1mA⊗A′
n ◦

(
id⊗aA⊗A′ ⊗m

A⊗A′
1 ⊗ id⊗cA⊗A′

)
+

∑
a+b+c=n
2≤b≤n−1

(−1)ab+cmA⊗A′
a+1+c ◦

(
id⊗aA⊗A′ ⊗m

A⊗A′
b ⊗ id⊗cA⊗A′

)
=

∑
a+c=n−1

(
mA

1 ◦ (mA
2 )◦n−1 − (mA

2 )◦n−1 ◦ (id⊗aA ⊗m
A
1 ⊗ id⊗cA )

)
⊗mA′

n

+
∑

a+c=n−1

(−1)n−1(mA
2 )◦n−1 ⊗

(
mA′

n ◦ (id⊗aA′ ⊗m
A′

1 ⊗ id⊗cA′ )
)

+
∑

a+b+c=n
2≤b≤n−1

(−1)ab+c(mA
2 )◦n−1 ⊗

(
mA′

n ◦ (id⊗aA′ ⊗m
A′

1 ⊗ id⊗cA′ )
)

= 0.

Tensor product of A∞-algebras. For general A∞-algebras, there is no natural way to define tensor
product. There are various ways to construct an A∞-structure on A⊗A′ which are A∞-quasi-isomorphic
to each other, but in general not strictly A∞-quasi-isomorphic. In the following, we describe some of the
constructions. Saneblidze and Umble [61] were the first to construct an A∞-structure on A⊗ A′ whose
mA⊗A′
n are given by a closed formula in terms of mA

j and mA′

j where j ≤ n. Markl and Shnider [55] later
reformulated their construction as a diagonal map on the A∞-operad A∞: Given a chain complex (A, d),
there is an associated operad EndA. Any A∞-structure mA

n on A with mA
1 = d can then be described

as an operad homomorphism ρ : A∞ → EndA. Now, given any two chain complexes A and A′, there is
a natural map of operads EndA ⊗EndA′ → EndA⊗A′ . The problem of constructing an A∞-structure on
A ⊗ A′ then becomes the problem of constructing a “canonical” diagonal ∆ : A∞ → A∞ ⊗ A∞. For if
such a diagonal exists, one can simply take the composition

ρA⊗A′ : A∞
∆−→ A∞ ⊗A∞

ρA⊗ρA′−→ EndA ⊗ EndA′−→EndA⊗A′

to give an A∞-structure on A⊗A′. Amorim [1] also reformulated the Saneblidze-Umble construction in
terms of dg-algebras: For every A∞-algebra A, one can construct a dg-algebra Hom(A,A) whose space
of cycles are the A∞-endomorphisms of A and whose homology are A∞-endomorphisms of A up to A∞-
homotopy. This dg-algebra Hom(A,A) is A∞-quasi-isomorphic to A. One then forms the tensor product
dg-algebra Hom(A,A) ⊗ Hom(A′, A′) and uses homology perturbation to transfer the dg-structure on
Hom(A,A)⊗ Hom(A′, A′) to an A∞-structure on A⊗ A′. All A∞-structure on tensor products defined
above are A∞-quasi-isomorphic.
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Tensor product for Adams-graded A∞-algebras. In the case of Adams-graded A∞-algebras, the
tensor product A∞-structure also preserves the tensor product Adams-grading on A⊗A′ as mA⊗A′

n are
given by a closed formula in terms of mA

j and mA′

j where j ≤ n.

Cyclic structure. Given two cyclic A∞-algebras A and A′, there is a natural inner product on A⊗A′
defined by

〈a1 ⊗ α1, a2 ⊗ α2〉A⊗A′ = (−1)|α1||a2|〈a1, a2〉A〈α1, α2〉A′ . (3.6.3)

One might ask whether the tensor product constructions described above are cyclic with respect to this
natural inner product. In the special case where one of the A∞-algebra is a dg-algebra, it can be checked
directly that the natural tensor product structure given by Equation 3.6.2 is cyclic. However, for full-
fledged A∞-algebras, all the tensor product constructions described above do not preserve cyclicity in

general. As Tradler pointed out in [67], mA⊗A′
3 in the Saneblidze-Umble construction is already not

cyclic. The first construction of tensor product of cyclic A∞-algebras which respect the natural inner
product as in Equation 3.6.3 seems to be given by Amorim and Tu in [2]. There, they constructed a
cyclic diagonal on the A∞-operad and showed that any tensor product A∞-structure defined by a cyclic
diagonal are cyclically A∞-quasi-isomorphic to each other. As the A∞-structure is constructed by a
diagonal, the mA⊗A′

n can in principle be written as a sum of tensor products and compositions of mA
j

and mA′

j for j ≤ n. However, Amorim and Tu only gave explicit formulae for mA⊗A′
n up to n = 4 and

stated that the general formulae appeared to be a very complicated combinatorial problem.

Convention. As all A∞-structures on tensor products we described above are A∞-quasi-isomorphic,
in principle it makes no difference to which one uses. Hence we will not distinguish them and only write
A⊗A′ to denote A∞-tensor product. However, the two constructions given by Amorim and Tu [2] and
Amorim [1] would be the most important in this thesis as the first one preserves cyclic structures and
the second one reduces tensor product of A∞-algebras to tensor product on dg-algebras.

Koszul functor and tensor product. The following proposition essentially says that under some
locally finite conditions, the Koszul functor commutes with the A∞-tensor product. Recall the bar
construction functor B sending A∞-algebras to dg-coalgebras defined in Section 3.4.

Proposition 3.6.1. 1. Let A and A′ be two A∞-algebras. Then there is a quasi-isomophism of dg-
algebras

B(A⊗A′)# → B(A)# ⊗B(A′)#

and an A∞-quasi-isomorphism of A∞-algebras

H•(B(A⊗A′)#) ∼= H•((BA)#)⊗H•((BA′)#).

2. Let A and A′ be locally finite Adams graded Afin-algebras. Suppose one of the A∞-tensor product
structure on A⊗A′ is Afin and that E(A), E(A′) and E(A⊗A′) are all locally finite. Then there
is a quasi-isomorphism of dg-algebras

E(A⊗A′) ∼= E(A)⊗ E(A′)

and an A∞-quasi-isomorphism of A∞-algebras

H•(E(A⊗A′)) ∼= H•(E(A))⊗H•(E(A′)).

Proof. Using Amorim’s version of A∞-tensor product which reduces A∞-tensor product to dg tensor
product in [1], it suffices to prove the proposition when both A and A′ are dg-algebras. Both

B(A)⊗A⊗B(A′)⊗A′ → SA ⊗ SA′ and B(A⊗A′)⊗A⊗A′ → SA ⊗ SA′

are semi-free resolution of SA ⊗ SA′ . Hence there is a chain homotopy equivalence between

B(A⊗A′)⊗A⊗A′
f //

B(A)⊗A⊗B(A′)⊗A′
g

oo .
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Now,
B(A⊗A′) = B(A⊗A′)⊗ (A⊗A′)A⊗A′(SA ⊗ S′A)

and similarly
B(A)⊗B(A′) = (B(A)⊗A⊗B(A′)⊗A′)A⊗A′(SA ⊗ S′A).

Hence we have a chain homotopy equivalence

B(A⊗A′)
f⊗idA⊗A′//

B(A)⊗B(A′)
g⊗idA⊗A′
oo .

By MacLane [53, Chapter X, Theorem 12.2], the map g⊗ idA⊗A′ is given by inclusion maps followed by
the shuffle product on B(A⊗A′)

B(A)⊗B(A′)→ B(A⊗A′)⊗B(A⊗A′) sh→ B(A⊗A′)

a⊗ a′ 7→ (a⊗ 1)⊗ (1⊗ a′) 7→ (a⊗ 1) ∗ (1⊗ a′)

which is a coalgebra map. Taking dual, we obtain a dg-algebra morphism

φ : B(A⊗A′)# → B(A)# ⊗B(A′)#

which is a quasi-isomorphism. By homology perturbation, we have the following chain of A∞-quasi-
isomorphisms

H•(B(A⊗A′)#) ∼= B(A⊗A′)# ∼= BA# ⊗BA′# ∼= H•(BA#)⊗H•(BA′#).

The second statement follows from the observation that under the assumptions, we have E(A) =
(BA)#, E(A′) = (BA)# and E(A⊗A′) = (B(A⊗A′))# as dg-algebras by Proposition 3.4.2.



Chapter 4

Quivers with Superpotential

This chapter is devoted to the study of quivers with superpotential.

In section 4.1, we define quivers with superpotentials. Our definition of quivers with superpotential
is taken from van den Bergh [70], where the completed path algebra of a quiver with superpotential is
known as a deformed DG-preprojective algebra there.

Section 4.2 gives a correspondence between quivers with superpotential and the Koszul dual of Afin-
categories with cyclic structures. Using this correspondence, we define the notion of product of quivers
with superpotential and the notion of quotient of quivers with superpotential by finite groups.

In section 4.3, we follow van den Bergh [71] and prove that the path algebras of quivers with superpo-
tential are Calabi–Yau algebras, and hence the categories of representations of quivers with superpotential
are also Calabi–Yau.

Finally, Section 4.4 describes quivers with superpotential of dimensions 1 to 4. In particular, we
describe in dimension 3 how our definition of quivers with superpotential as dg-quivers is connected to
the old definition of quivers with superpotential as quivers with relations given by physicists Berenstein
and Douglas [5], Braun [12], Douglas and Moore [23] and later by mathematicians Ginzburg [27] and
Derksen, Weyman and Zelevinsky [22].

4.1 Quivers with Superpotential

In this section, we introduce the notion of quiver with superpotential. The presentation here essentially
follows van den Bergh [70, 71].

Notations and Conventions. We will fix a field K of characteristic zero. By a cycle in a quiver Q,
we will mean a closed path forgetting the starting and ending points, or more precisely, a closed path as
an element in the vector space KQ/[KQ,KQ]. For simplicity, we will write KQcyc = KQ/[KQ,KQ]. For
any edge e in a graded quiver Q, we will denote by ∂e : KQ→ KQ⊗KQ the double derivation of degree
|e| acting on any edge f in Q by

∂ef =

{
h(e)⊗ t(e) if e = f

0 otherwise.

We will also denote by ∂◦e : KQ → KQ the derivation m ◦ σ ◦ ∂e, where m is the multiplication map
in KQ and σ : KQ ⊗ KQ is the interchange operator sending a ⊗ b 7→ (−1)|a||b|b ⊗ a. This derivation
vanishes on commutators and hence descends to a derivation ∂◦e : KQcyc → KQ. For other notions in
noncommutative calculus such as noncommutative symplectic form and double Poisson bracket, please
refer to Chapter 1.

41
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Construction of Quivers with Superpotential. Let Q̃ be a graded quiver with degree of all edges
lying in the interval [2−m, 0]. Suppose Q̃ is equipped with a pairing (−,−) of degree 2−m on the set
of edges in Q̃ such that

• (a, b) = −(−1)|a||b|(b, a)

• (a, b) = 0 unless t(a) = h(b) and t(b) = h(a)

• the matrix {(a, b)} is invertible.

Let 〈−,−〉 denote the dual quadratic form, i.e., the pairing on the dual space of the set of edges in Q̃ such
that the matrix {〈a∨, b∨〉} is given by the inverse of {(a, b)}. Then there is a noncommutative symplectic
2-form of degree 2−m

ω =
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉ddRxddRy.

Proposition 4.1.1. The 2-form ω is a noncommutative symplectic form.

Proof. We show the map ιω : DerS(KQ̃A) → Ω1
S(KQ̃A) defined by Θ 7→ ιΘω is an isomorphism by

exhibiting an inverse. For any edge a ∈ Q̃A,

ιω(∂a) = ι∂aω =
1

2

∑
x,y edges in Q̃A

〈x∨, y∨〉
(

(∂◦ax)ddRy + (−1)1+|a||x|ddRx(∂◦ay)
)

=
∑

y edges in Q̃A

〈a∨, y∨〉ddRy.

By direct calculation, one can see that the inverse of iω is given by

ddRa 7→
∑

b edges in Q̃A

(a, b)∂b.

The symplectic form ω induces a Poisson double bracket {{−,−}} : KQ̃⊗KQ̃→ KQ̃⊗KQ̃.

Proposition 4.1.2. For any edge a ∈ Q̃, we have the formula

{{a,−}} =
∑

b edges in Q̃

(a, b)∂b.

Proof. By definition of the double bracket, this follows from∑
b edges in Q̃

(a, b)ı∂bω

=
∑

b edges in Q̃

∑
x,y edges in Q̃A

1

2
(a, b)〈x∨, y∨〉

(
(∂◦bx)ddRy + (−1)1+|b||x|ddRx(∂◦b y)

)
=

1

2

∑
x,y edges in Q̃A

(a, x)〈x∨, y∨〉ddRy + (a, y)〈y∨, x∨〉ddRx

=
∑

x,y edges in Q̃

(a, x)〈x∨, y∨〉ddRy

= ddRa.
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The double Poisson bracket induces the Kontsevich bracket (c.f. Section 1) {−,−} : KQ̃⊗KQ̃cyc →
KQ̃, which descends to a Lie bracket {−,−} : KQ̃cyc ⊗ KQ̃cyc → KQ̃cyc. Let Φ ∈ KQ̃cyc be a sum of

cycles of degree 3 −m which satisfies the master equation {Φ,Φ} = 0 in KQ̃cyc. Then one can define

d : KQ̃→ KQ̃ by d = {Φ,−}.

Proposition 4.1.3. The linear map d is a differential of degree 1. For any edge a in Q̃, we have

da = (−1)1+a+m
∑

b edges in Q̃

(a, b)∂◦bΦ.

Proof. Since Φ is of degree 3−m and {−,−} is of degree m− 2, d is a map of degree 1. Now, by Jacobi
identity,

d2(a) = {Φ, {Φ, a}} =
1

2
{{Φ,Φ}, a} = 0.

Hence d is a differential. For any edge a, we have

{Φ, a} = m ◦ {{Φ, a}} = −(−1)(|a|+2−m)(|Φ|+2−m)m ◦ σ{{a,Φ}} = (−1)1+a+m
∑

b edges in Q̃A

(a, b)∂◦bΦ

where the last equality is by Proposition 4.1.2.

This differential d on KQ̃ is compatible with the double Poisson bracket.

Proposition 4.1.4. The double Poisson bracket {{−,−}} is a dg-double Poisson bracket of degree m−2,
i.e.,

d{{a, b}} = {{da, b}}+ (−1)|a|+m−2{{a, db}}.

Proof. The proposition follows readily from Proposition 1.2.19 and the definition d = {Φ,−}.

Let Q be the quiver constructed from Q̃ by adding to each vertex v in Q a loop v∗ of degree 1−m.
Define a differential on KQ by

d(v∗) = v`v for any vertex v, where ` =
∑

x,y edges in Q̃

〈x∨, y∨〉xy,

d(a) = {a,Φ} for any edge a with degree a ≤ 2−m.

The following lemma shows that we have indeed defined a differential on KQ.

Lemma 4.1.5. d2(v∗) = 0.

Proof. It suffices to show d` = 0, for then d2(v∗) = d(v`v) = v(d`)v = 0. Using Proposition 4.1.3,

d` =
∑

x,y edges in Q̃

〈x∨, y∨〉
(

(dx)y + (−1)|x|xdy
)

=
∑

b,x,y edges in Q̃

(−1)1+|x||y|+1+m+|x|〈y∨, x∨〉(x, b)(∂◦bΦ)y + (−1)|x|+1+m+|y|〈x∨, y∨〉(y, b)x(∂◦bΦ)

=
∑

y edges in Q̃

(−1)(3−m−|y|)|y|(∂◦yΦ)y −
∑

x edges in Q̃

x(∂◦xΦ)

= (sum of all cyclic permutations of Φ)− (sum of all cyclic permutations of Φ)

= 0.

The dg-quiver Q built in this way is called a quiver with superpotential Φ of dimension m.
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Definition 4.1.6. A quiver with superpotential of dimension m is a dg-quiver Q together with an element
Φ ∈ KQcyc of degree 3−m in the following form:

1. The degrees of all the edges of Q lie in the interval [1−m, 0], i.e.,

EiQ = ∅ unless 1−m ≤ i ≤ 0.

2. For each vertex v there is exactly 1 loop v∗ of degree 1−m at the vertex v, and there are no other
edges of degree 1−m, i.e.,

E1−m
Q =

∐
v∈VQ

E1−m
Q (v, v) with E1−m

Q (v, v) = {v∗}.

3. For any i ∈ [2−m, 0], there is a pairing

(−,−) : EiQ × E2−m−i
Q → K

between edges of degree i and edges of degree 2−m− i such that

• (a, b) = −(−1)|a||b|(b, a)

• (a, b) = 0 unless t(a) = h(b) and t(b) = h(a)

• the matrix {(a, b)} is invertible.

4. For any edge a with deg a ∈ [2−m, 0], the differential is given by

da = {Φ, a}.

5. For any degree 1−m loop v∗,

dv∗ = v

 ∑
x,y edges in Q

deg x,deg y∈[2−m,0]

〈x∨, y∨〉xy

 v,

where 〈−,−〉 is the dual pairing of (−,−).

Remark 4.1.7. Note that the above definition automatically implies that the superpotential Φ satisfies
the master equation {Φ,Φ} = 0 in KQcyc as d2(a) = {Φ, {Φ, a}} = 1

2{{Φ,Φ}, a} = 0 implies ∂◦a{Φ,Φ} = 0

for all edges a in Q. Hence the data of the subquiver Q̃ together with the antisymmetric pairing (−,−)
and the superpotential Φ satisfying the master equation {Φ,Φ} = 0 in KQcyc uniquely determine the
quiver with superpotential Q by the above construction.

4.2 Characterisation of Quivers with Superpotential

In this section, we would like to characterize quivers with superpotential in terms of Afin-algebras. Recall
from Section 3 that for any dg-quiver Q, its path algebra KQ is isomorphic to E(A) for a unique (up to
strict A∞-isomorphism) Afin-algebra A. We would like to show that for a quiver with superpotential Q,
the corresponding Afin-algebra is equipped with a cyclic structure. Conversely, given any Afin-algebra
with cyclic structure, its Koszul dual E(A) is the path algebra of a quiver with superpotential.

All Afin-algebras in this section will be assumed to be augmented, finite (it has finite number of
objects and finite dimensional morphism space) and positively graded (Āi = 0 for i ≤ 0, where Ā is the
kernel of the augmentation map).

Let Q be a quiver with superpotential. Recall the Afin-category A such that KQ = E(A) is con-
structed by

Obj (A) = {vertices in Q}.
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Ai(v, w) =


Kv if i = 0 and v = w

K{degree (1− i) edges in Q from v to w}∨ if i ≥ 1

0 otherwise.

with the A∞-structure given by

m2 : A0(v, v)⊗Ai(v, w)→ Ai(v, w) v ⊗ a 7→ a

m2 : A0(v, w)⊗Ai(w,w)→ Ai(v, w) a⊗ w 7→ a

mn : Ain(vn−1, vn)⊗ · · · ⊗ Ai1(v0, v1)→ Ai1+···+in+2−n(v0, vn) for ij ≥ 1

a∨n ⊗ · · · ⊗ a∨1 7→ (−1)(n−1)|a∨n |+···+2|a∨3 |+|a
∨
2 |

∑
a edges in Q

(Coefficient of an · · · a1 in da)a∨

and zero otherwise. For any edge a ∈ Q, denote by |a∨| the degree of a∨ in the A∞-category, i.e.,
|a∨| = 1− |a|. Define a pairing 〈−,−〉A : A⊗A → K of degree m by

〈a∨, b∨〉A = (−1)|a
∨|〈a∨, b∨〉.

Then for a0, . . . , an edges in Q,

〈mn(a∨n , . . . , a
∨
1 ), a∨0 〉A

= (−1)(n−1)|a∨n |+···+2|a∨3 |+|a
∨
2 |

∑
a edges in Q

(Coefficient of an · · · a1 in da)〈a∨, a∨0 〉A

=
∑

a,b edges in Q

(−1)(n−1)|a∨n |+···+2|a∨3 |+|a
∨
2 |+|a

∨|+1+|a|+m(a, b)(Coefficient of an · · · a1 in ∂◦bΦ)〈a∨, a∨0 〉

= (−1)(n−1)|a∨n |+···+2|a∨3 |+|a
∨
2 |+(m+1)(|a0|+1)(Coefficient of an · · · a1 in ∂◦a0

Φ)

= (−1)(n−1)|a∨n |+···+2|a∨3 |+|a
∨
2 |+(m+1)(|a0|+1)(Coefficient of a0an · · · a1 in Φ̃)

= (−1)(n−1)|a∨n |+···+2|a∨3 |+|a
∨
2 |+1+|a0|+m(Coefficient of an · · · a1a0 in Φ̃),

where Φ̃ = sum of all cyclic permutations of Φ. Similarly,

〈mn(a∨n−1, . . . , a
∨
0 ), a∨n〉A = (−1)(n−1)|an−1|+···+2|a2|+|a1|+(m+1)(|an|+1)(Coefficient of an · · · a1a0 in Φ̃).

Since Φ has degree 3−m, we have 〈mn(a∨n , . . . , a
∨
1 ), a∨0 〉A = 〈mn(a∨n−1, . . . , a

∨
0 ), a∨n〉A = 0 unless |an| +

· · ·+ |a0| = 3−m. If |an|+ · · ·+ |a0| = 3−m, using |a∨| = 1− |a|, we can verify that

〈mn(a∨n , . . . , a
∨
1 ), a∨0 〉A = (−1)n+|a∨n |(|an−1|+···+|a∨0 |)〈mn(a∨n−1, . . . , a

∨
0 ), a∨n〉A.

Hence 〈−,−〉A is a cyclic structure. Recall that an A∞-category is said to be finite if Obj (A) is finite
and A(u, v) is finite dimensional for all u, v ∈ Obj (A). Also, an augmented A∞-category A is said to be
positively graded if Āi = 0 for all i ≤ 0. Summarizing, we have

Proposition 4.2.1. Let Q be a dg-quiver. Then there exists a finite and positively graded Afin-category
A such that KQ = E(A). If Q is a quiver with superpotential of dimension m, then there is a cyclic
structure of degree m on A.

Next, we would like to prove the converse of Proposition 4.2.1. Let us start with a finite and positively
graded Afin-category A with a cyclic structure of degree m. Recall from Section 3 that one can construct
from A a quiver Q as follows: take the vertex set of Q to be Obj (A) and for any vertices u, v, the set
of degree i edges from u to v is given by a fixed basis of Ā1−i(u, v)∨. We will denote elements in the
chosen basis of Ā by a∨, and its dual basis (as elements in Q) by a. The degrees of a and a∨ are related
by |a| = 1− |a∨|. By the cyclic structure of degree m on A, we have Ai ∼= Am−i. Since A is positively
graded, we conclude that the degree of all edges in Q lies in the interval [1 − m, 0], for each vertex v
there is exactly one loop v∗ of degree 1 −m, and that these are precisely all the degree 1 −m edges in
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Q. The cyclic structure 〈−,−〉A on A determines a super-antisymmetric pairing (−,−) of degree 2−m
on the set of edges of Q by defining its dual pairing 〈−,−〉 to be

〈a∨, b∨〉 = (−1)|a
∨|〈a∨, b∨〉A.

Let Q̃ be the subquiver of Q which contains all vertices of Q and all edges in Q with degree in the interval
[2−m, 0]. Proposition 4.1.1 then shows

ω =
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉ddRxddRy

defines a noncommutative symplectic form on Q̃, and the corresponding double Poisson bracket {{−,−}}
is given by Proposition 4.1.2. It remains to show that the differential on Q is in the form of a quiver
with superpotential. Denote by bn the shift of the A∞-structure mn on A. By the cyclic invariance of
〈−,−〉A, we conclude that the quadratic form 〈−,−〉 is invariant under cyclic symmetry:

〈bn(a∨1 , . . . , a
∨
n), a∨n+1〉 = 〈bn(a∨2 , . . . , a

∨
n+1), a∨1 〉.

Define

Φ =
∑
n≥1

∑
a1,...,an+1 edges in Q̃

〈bn(a∨1 , . . . , a
∨
n), a∨n+1〉

n+ 1
a1 · · · an+1,

which is a finite sum of closed paths of since A is Afin, hence bn = 0 for n� 0. Note that Φ is of degree
3−m.

Proposition 4.2.2. We have the following descriptions on the differential d on KQ̃:

1. For any edge a in Q̃, we have

da = (−1)1+a+m
∑

b edges in Q̃

(a, b)∂◦bΦ.

2. The differential can be written in terms of the Kontsevich bracket by

d = {Φ,−}.

3. The differential d is a Hamiltonian vector field with Hamiltonian Φ, i.e.,

ddRΦ = idω.

Proof. Denote by (−,−) the inverse quadratic form of 〈−,−〉. Then

a =
∑

b edges in Q̃

(b, a)〈−, b∨〉.

By definition,

da =
∑
n

b#n (a)

=
∑
n∈N

∑
b,a1,...,an
edges in Q̃

(b, a)〈bn(a∨1 , . . . , a
∨
n), b∨〉a1 · · · an

=
∑

b,a1,...,an
edges in Q̃

(−1)|b|(3−m−|b|)(b, a)
〈bn(a∨1 , . . . , a

∨
n), b∨〉

n+ 1
∂◦b (a1 · · · anb)

=
∑

b edges in Q̃

(−1)m|b|+1+|a||b|(a, b)∂◦bΦ

=
∑

b edges in Q̃

(−1)1+|a|+m(a, b)∂◦bΦ,
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where we have used that (a, b) 6= 0 if and only if |a| = |b| + m mod 2. The third equality perhaps
requires more explanation. If the loop has cyclic symmetry of degree n + 1, i.e., a1 · · · anb = en+1 for
some edge e, then ∂◦e (en+1) = (n + 1)en. Up to cyclic permutation, there is only one such loop in the
sum in the third line hence the (n+ 1) factor in the denominator is cancelled. If the loop has no cyclic
symmetry, then up to cyclic permutation, there are n + 1 such loops in the sum and hence the n + 1
factor in the denominator is also cancelled. In the general case where a loop has a cyclic symmetry of
degree k, then we can write a1 · · · anb = pk, where p has no cyclic symmetry. Up to cyclic permutation
there are (n+ 1)/k such loop in the sum, and ∂◦b (pk) = k(∂

′′

b p)p
k−1(∂

′

bp). Hence the n+ 1 factor in the
denominator is also cancelled. This proves (a). Now, for any edge a, we have

{Φ, a} = m ◦ {{Φ, a}} = −(−1)(|a|+2−m)(|Φ|+2−m)m ◦ σ{{a,Φ}} = (−1)1+a+m
∑

b edges in Q̃

(a, b)∂◦bΦ = da,

where the second last equality is by part (a) of the statement and Proposition 4.1.2. Since both {Φ,−}
and d are derivations, we conclude that d = {Φ,−}. This proves part (b). For part (c), we have

idω =
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉((dx)(ddRy) + (−1)1+|x|(ddRx)(dy))

=
1

2

∑
x,y edges in Q̃

(−1)1+|x||y|+|dx||y|〈y∨, x∨〉(ddRy)(dx) + (−1)1+|x|〈x∨, y∨〉(ddRx)(dy)

=
∑

x,y edges in Q̃

(−1)1+|x|〈x∨, y∨〉(ddRx)(dy)

=
∑

b,x,y edges in Q̃

(−1)1+|x|+1+|y|+m〈x∨, y∨〉(y, b)(ddRx)∂◦bΦ

=
∑

y edges in Q̃

(ddRx)∂◦xΦ

= ddRΦ.

It remains to describe the action of the differential on KQ on the degree 1−m loops attached to each
vertex. For this purpose, we first prove the following

Lemma 4.2.3. Let A be an A∞-category with a cyclic structure of degree m. Then for all n ≥ 3,
degmn(a1, · · · , an) = m implies mn(a1, · · · , an) = 0.

Proof. For any v ∈ A0 and n ≥ 3,

〈mn(a1, . . . , an), v〉A = ±〈mn(v, a1 . . . , an−1), an〉A = 0

since mn(v, a1 . . . , an−1) = 0. Since 〈−,−〉A is nondegenerate, we conclude mn(a1, . . . , an) = 0.

Proposition 4.2.4. Let v∗ be the degree 1− d loop at the vertex v in Q. Then

dv∗ = v`v where ` =
∑

x,y edges in Q̃

〈x∨, y∨〉xy.

Proof. Write t =
∑

v vertices in Q̃

v∗. It suffices to show dt = `, for then dv∗ = d(vtv) = v(dt)v = v`v. We
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have

dt =
∑

v vertices in Q̃

∑
n∈N

b#n (v∗)

=
∑

v vertices in Q̃

∑
a1,...,an edges in Q̃

∑
n∈N
〈v∨, bn(a∨1 , . . . , a

∨
n)〉a1 · · · an

=
∑

v vertices in Q̃

∑
a1,a2 edges in Q̃

〈v∨, b2(a∨1 , a
∨
2 )〉a1a2

=
∑

v vertices in Q̃

∑
a1,a2 edges in Q̃

〈a∨1 , b2(a∨2 , v
∨)〉a1a2

=
∑

a1,a2 edges in Q̃

〈a∨1 , a∨2 〉a1a2

= `

where in the third equality, we have used Lemma 4.2.3.

Remark 4.2.5. Note here that ` is an element homogeneous of degree 2−m.

Summarizing, we have proven the converse of Proposition 4.2.1 and arrived at

Proposition 4.2.6. A dg-quiver Q is a quiver with superpotential if and only if KQ = E(A) for a finite
positively graded cyclic Afin-category A.

With the characterisation of quivers with superpotential by Afin-categories with cyclic structure, we
can define products and quotients of quivers with superpotential.

Products of Quivers. Products of quiver are not always defined. But as we will see in Chapter 5,
they are always defined for quivers arising from exceptional sequences. Recall from Chapter 3 that for
every dg-quiver Q, one can construct an Afin-algebra augmented over the discrete K-algebra spanned by
the vertices of Q, such that KQ = E(A). For any two quivers Q and their associated Afin-algebras A and
A′, one can form the A∞-tensor product A⊗A′. In general, this tensor product is not Afin. If it is, one
can define the product dg-quiver of Q and Q′ to be the dg-quiver arising from A⊗ A′. In other words,
even if the product is well-defined, the product dg-quiver is only defined up to quasi-isomorphism. The
underlying product quiver is given by

{Degree i edge in Q×Q′} = {a⊗ v : a degree i edges in Q and v vertex in Q′}
∪ {a⊗ b : a edge in Q and b edge in Q′ with deg a+ deg b− 1 = i}
∪ {u⊗ b : u vertex in Q′ and b degree i edge in Q′}

The differential, however, is not uniquely determined. If both quivers Q and Q′ admit superpotentials,
then Amorim’s construction of tensor product of A∞-algebras shows that one can choose a differential
on Q×Q′ which comes from a superpotential. In general, to write down the product superpotential, one
has to know an explicit formula for the cyclic tensor product A∞-structure. Unfortunately, the author
does not know of such a general formula. When one of the superpotentials is cubic, i.e., one of the
A∞-algebras involved is A2, i.e., mn = 0 for n ≥ 3, one can use the formula given by Equation (3.6.2).
Examples of product quivers are given in Chapter 6.

Quotients of Quivers. Let G be a finite group and Q be a dg-quiver. Suppose G acts on KQ by dg-
isomorphisms. Write KQ = E(A) for an Afin-algebra. Then G acts on A by strict Afin-isomorphisms and
hence one can form the quotient A/G. The quotient quiver Q/G is by definition the quiver associated to
A/G. Now suppose Q is a quiver with superpotential and the antisymmetric pairing on Q is G-invariant,
then the cyclic structure on A is also G-invariant. Thus A/G also inherits a cyclic structure, making
Q/G a quiver with superpotential. Examples of quotients of quiver with superpotential can be found in
Chapter 6.
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4.3 Quivers with Superpotential are n-Calabi–Yau

In this section, we would like to show that the path algebra of a quiver with superpotential is Calabi–Yau,
and that as a consequence, its derived category is Calabi–Yau.

Calabi–Yau Algebras. Following Kontsevich, Ginzburg defined in [27, §3] the notion of Calabi–Yau
algebras which arise naturally in the geometry of Calabi–Yau manifolds to transplant most of traditional
Calabi–Yau geometry to the noncommutative setting.

Recall that in Example 2.4.7, for a homologically smooth dg-algebra A, we have the notion of dualizing
complex: Denote by Db(A) the bounded derived category of dg-modules over A and Db

fd(A) the full

subcategory of Db(A) consisting of those dg A-modules whose homology is of finite total dimension.
Define the dualizing complex Ω = RHomAop⊗A(A,Aop⊗A). Then (−)⊗Ω : Db

fd(A)→ Db
fd(A) is a Serre

functor. In particular, if we have an isomorphism Ω ∼= Σ−dA as objects in D(Aop ⊗ A), then Db
fd(A) is

d-Calabi–Yau. This motivates the following definition:

Definition 4.3.1 (Calabi–Yau algebras). A dg-algebra A is said to be m-Calabi–Yau if

• A is homologically smooth, i.e., A ∈ Per(A⊗A), and

• there is a quasi-isomorphism of A-bimodules

η : RHomA−Bimod(A,A⊗A)→ Σ−mA.

In the original definition, Ginzburg requires in addition that η is self dual, but it was later shown by
van den Bergh [70, Prop. C.1] that this is automatic. We have the following

Proposition 4.3.2. If A is an m-Calabi–Yau dg-algebra, then Db
fd(A) is a m-Calabi–Yau triangulated

category.

Proof. See [41, Lemma 3.4] and [45, Lemma 4.1].

Let Q be a quiver with superpotential of dimension m. Our proof that KQ is m-Calabi–Yau is a
direct adaptation of van den Bergh’s proof [71] in the 3-Calabi–Yau case. First, we show that KQ is
homologically smooth.

Proposition 4.3.3. Let Q be a quiver and S be the discrete K-algebra on the vertices of Q. The exact
sequence

0→ Ω1
S(KQ)

ϕ→ KQ⊗S KQ m→ KQ→ 0,

where ϕ(dp) = p⊗S 1− 1⊗S p and m(p⊗S q) = pq, is a resolution of KQ by modules in Per(KQ⊗KQ).
In other words, KQ is homologically smooth.

Proof. The sequence in the proposition is exact by Proposition 1.2.7. Let E be the K-vector space
spanned by all edges in Q and Ejk the K-vector space spanned by all edges from k to j. Then

KQ⊗ E ⊗KQ ∼=
⊕

i,j,k,`∈VQ

KQi⊗ Ejk ⊗ `KQ

∼=
⊕
i,`∈VQ

KQi⊗ Ei` ⊗ `KQ⊕
⊕

i 6=j or k 6=`

KQi⊗ Ejk ⊗ `KQ

∼= KQ⊗S E ⊗S KQ⊕
⊕

i 6=j or k 6=`

KQi⊗ Ejk ⊗ `KQ

∼= Ω1
S(KQ)⊕

⊕
i6=j or k 6=`

KQi⊗ Ejk ⊗ `KQ

Hence Ω1
S is a summand of the free KQ-bimodule KQ⊗E⊗KQ, i.e., Ω1

S(KQ) ∈ Per(KQ⊗KQ). Similarly,

KQ⊗KQ ∼=
⊕
i,j∈V

KQi⊗ jKQ ∼= KQi⊗ iKQ⊕
⊕
i 6=j

KQi⊗ jKQ ∼= KQ⊗S KQ⊕
⊕
i6=j

KQi⊗ jKQ
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shows KQ ⊗S KQ is in Per(KQ ⊗ KQ). Since Per(KQ ⊗ KQ) is closed under extension, KQ is also in
Per(KQ⊗KQ), i.e., KQ is homologically smooth.

If we define

dKQ⊗SKQ : KQ⊗S KQ→ KQ⊗S KQ, a⊗S b 7→ d(a)⊗S b+ (−1)|a|a⊗S d(b),

dΩ1
S(KQ) : Ω1

S(KQ)→ Ω1
S(KQ), dΩ1

S(KQ)(ddRa) = ddR(da),

and assign a grading on Ω1
S(KQ) by |ddRa|Ω1

S(KQ) = |a|KQ, then dKQ⊗SKQ and dΩ1
S(KQ) are differentials

of degree (−1) on both spaces, and the resolution becomes a dg-bimodule resolution, i.e., both ϕ and m
are morphisms of dg-bimodules.

Cofibrant replacement of KQ. Denote the subquiver of Q consisting of all edges of degree in the
interval [2−m, 0] by Q̃. Let v∗ be the degree 1−m loop at vertex v and t be the sum of all degree 1−m
loops. The resolution of KQ in Proposition 4.3.3 shows [25, Prop. III.3.5] KQ is quasi-isomorphic to

P = cone(ϕ)

= KQ⊗S KQ⊕ ΣΩ1
S(KQ)

= KQ⊗S KQ⊕ Σ(KQ⊗KQ ΩS(KQ̃)⊗KQ̃ KQ))⊕ Σ(KQ⊗S Ω1
S(S[t])⊗S KQ),

(4.3.1)

which is in Per(KQ⊗KQ). Hence P is a cofibrant replacement of KQ as a KQ-bimodule. The differential
of the cone dP is given by

dP =

(
dKQ⊗KQ 0

Σϕ ΣdΩ1
S(KQ)

)
Observe that |a ⊗ b|P = |a|KQ + |b|KQ and |ddRa|P = |a|KQ − 1 for any a ∈ KQ. To avoid too many
subscripts, in what follows, the subscript in dKQ⊗KQ and dΩ1

S(KQ) will be suppressed, but, to avoid
confusion, the subscript P in dP is always written.

Since P is a cofibrant replacement of KQ, we have

RHomKQ-Bimod(KQ,KQ⊗KQ) = HomKQ-Bimod(P,KQ⊗KQ).

Hence to construct a quasi-isomorphism

η : RHomKQ-Bimod(KQ,KQ⊗KQ)→ Σ−mKQ,

it suffices to construct an isomorphism of dg-modules

HomKQ-Bimod(P,KQ⊗KQ) ∼= Σ−mP.

This is done by constructing a nondegenerate pairing of bimodules in the following sense:

Pairing of Bimodules. We follow the conventions of van den Bergh [71]. A pairing of degree n
between A-bimodules M and N is a bilinear homogeneous map of degree n

〈〈−,−〉〉 : M ×N → A⊗A

such that 〈〈p,−〉〉 is linear for the outer bimodule structure on A ⊗ A and 〈〈−, q〉〉 is linear for the inner
bimodule structure on A⊗A, i.e.,

〈〈apb, q〉〉 = (−1)|b|(|q|+n)a ∗ 〈〈p, q〉〉 ∗ b
〈〈p, aqb〉〉 = (−1)|a|(|p|+n)a〈〈p, q〉〉b.

If M and N modules in Per(A⊗A), we say the pairing is nondegenerate if the map

M → ΣnHomA−Bimod(N,A⊗A), p 7→ 〈〈p,−〉〉
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is an isomorphism. If A is a dg-algebra and M,N are dg-bimodules, then a dg-pairing is a pairing which
satisfy Leibniz’s rule

ξ〈〈p, q〉〉 = 〈〈ξp, q〉〉+ (−1)|p|+n〈〈p, ξq〉〉.

A dg-pairing which is nondegenerate induces an isomorphism of dg-modules

M ∼= ΣnHomA−Bimod(N,A⊗A).

In the special case M = N , a pairing is said to be (super)-symmetric if

〈〈p, q〉〉 = (−1)(n+|p|)(n+|q|)σ〈〈q, p〉〉.

Example 4.3.4. Let Q be a quiver and S be the discrete K-algebra on the vertices of Q. Then
KQ⊗S KQ ∈ Per(KQ⊗KQ) by Proposition 4.3.3. Define a pairing

Σn(KQ⊗S KQ)× (KQ⊗S KQ)→ KQ⊗KQ

by

〈〈1⊗S 1, 1⊗S 1〉〉 =
∑
v∈VQ

v ⊗ v.

Then it is a nondegenerate pairing of degree n. To see this, observe that any KQ-bimodule morphism
ϕ : Σn(KQ⊗S KQ)→ KQ⊗KQ is determined on its value on 1⊗S 1. Let ϕ(1⊗S 1) = a′ ⊗ a′′. Then

ϕ(1⊗S 1) =
∑
v∈VQ

ϕ(v ⊗S v) =
∑
v∈VQ

vϕ(1⊗S 1)v =
∑
v∈VQ

va′ ⊗ a′′v = a′′ ∗

∑
v∈VQ

v ⊗ v

 ∗ a′.
In other words, ϕ = 〈〈a′′(1⊗S 1)a′,−〉〉.

Now, we return to our proof of that path algebra of quiver with superpotential are Calabi–Yau. Recall
from Equation (4.3.1) that P = coneϕ is a cofibrant replacement of KQ. We define a symmetric pairing
〈〈−,−〉〉 : P × P → KQ⊗KQ of degree −m by defining on generators

〈〈ddRv∗, 1⊗S 1〉〉 = (−1)mv ⊗ v
〈〈1⊗S 1, ddRv

∗〉〉 = (−1)mv ⊗ v
〈〈ddRa, ddRb〉〉 = (−1)|ddRa|P {{a, b}}

(4.3.2)

for all a, b edges in KQ̃ and assigning the value zero for all other combinations. Note that the first two
equations of Equation (4.3.2) is equivalent to

〈〈ddRt, 1⊗S 1〉〉 = (−1)m
∑
v∈VQ

v ⊗ v

〈〈1⊗S 1, ddRt〉〉 = (−1)m
∑
v∈VQ

v ⊗ v

by linearity of the pairing.

Proposition 4.3.5. The pairing 〈〈−,−〉〉 is a symmetric nondegenerate dg-pairing of degree −m.

Proof. First, we check symmetry:

〈〈dt, 1⊗S 1〉〉 = (−1)m
∑
v∈VQ

v ⊗ v = (−1)(|1⊗S1|P−m)(|dt|P−m)σ〈1⊗S 1, dt〉

since |ddRt|P = |t|KQ − 1 = −m.

〈〈ddRa, ddRb〉〉 = (−1)|ddRa|P {{a, b}}
= −(−1)|ddRa|P+(|a|KQ−m+2)(|b|KQ−m+2)σ{{b, a}}
= (−1)(|ddRa|P−m)(|ddRb|P−m)σ〈〈ddRb, ddRa〉〉.
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since |ddRa|P + (|a|KQ −m+ 2)(|b|KQ −m+ 2) + 1 + |ddRb|P = (|ddRa|P −m)(|ddRb|P −m) mod 2.
Next we show the pairing is nondegenerate. Since for any edge a,

〈〈ddRa,−〉〉 = (−1)|a|−1{{a,−}} =
∑
b

(−1)|a|−1(a, b)∂b,

we see that the pairing is nondegenerate on Ω1
S(KQ̃). Since KQ ⊗S Ω1

S(S[t]) ⊗S KQ ∼= KQ ⊗S KQ,
together with Example 4.3.4, this shows the pairing is nondegenerate on P .

It remains to check the compatibility of 〈〈−,−〉〉 with dP , i.e., we have the Leibnitz’s rule

d〈〈p, q〉〉 = 〈〈dP p, q〉〉+ (−1)|p|P−m〈〈p, dP q〉〉.

This is a direct calculation divided into six cases.

1. We have
d〈〈ddRt, ddRt〉〉 = 0,

〈〈dP ddRt, ddRt〉〉 = 〈〈t⊗S 1− 1⊗S t− ddR`, ddRt〉〉
= t ∗ 〈〈1⊗S 1, ddRt〉〉 − 〈〈1⊗S 1, ddRt〉〉 ∗ t

= (−1)m
∑

v vertices in Q

(v ⊗ tv − tv ⊗ v)

and

〈〈ddRt, dP ddRt〉〉 = 〈〈ddRt, t⊗S 1− 1⊗S t− ddR`〉〉
= t〈〈ddRt, 1⊗S 1〉〉 − 〈〈ddRt, 1⊗S 1〉〉t

= (−1)m
∑

v vertices in Q

(tv ⊗ v − v ⊗ tv)

Hence
d〈〈ddRt, ddRt〉〉 = 〈〈dP ddRt, ddRt〉〉+ (−1)|ddRt|P−m〈〈ddRt, dP ddRt〉〉.

2. We have for any a ∈ KQ̃,
d〈〈ddRa, ddRt〉〉 = 0,

〈〈dP ddRa, ddRt〉〉 = 〈a⊗S 1− 1⊗S a− ddR(da), ddRt〉
= a ∗ 〈〈1⊗S 1, ddRt〉〉 − 〈〈1⊗S 1, ddRt〉〉 ∗ a

= (−1)m
∑

v vertices in Q

(v ⊗ av − va⊗ v)

= (−1)m(t(a)⊗ a− a⊗ h(a))

and

〈〈ddRa, dP ddRt〉〉 = 〈〈ddRa, t⊗S 1− 1⊗S t− ddR`〉〉
= −〈〈ddRa, ddR`〉〉
= (−1)|ddRa|P−1{{a, `}}.

Now

{{a, `}} =
∑

b edges in Q̃

(a, b)∂b`

=
∑

b,x,y edges in Q̃

(a, b)〈x∨, y∨〉∂b(xy)

=
∑

x,y edges in Q̃

(a, x)〈x∨, y∨〉h(x)⊗ t(x)y + (−1)|x||y|(a, y)〈x∨, y∨〉xh(y)⊗ t(y)

= t(a)⊗ a− a⊗ h(a).

Hence
d〈〈ddRa, ddRt〉〉 = 〈〈dP ddRa, ddRt〉〉+ (−1)|ddRa|P−m〈〈ddRt, dP ddRa〉〉.
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3. We have
ξ〈dt, 1⊗S 1〉 = 0,

〈ξP dt, 1⊗S 1〉 = 〈t⊗S 1− 1⊗S t− d`, 1⊗S 1〉 = 0

and
〈dt, ξ(1⊗S 1)〉 = 0.

Hence Leibnitz’s rule is verified.

4. For a ∈ KQ̄,
d〈〈ddRa, 1⊗S 1〉〉 = 0 = 〈〈ddRa, d(1⊗S 1)〉〉

and
〈〈dP (ddRa), 1⊗S 1〉〉 = 〈〈a⊗S 1− 1⊗S a− d(ddRa), 1⊗S 1〉〉 = 0.

Hence Leibnitz’s rule is verified.

5. The case

d〈〈1⊗S 1, 1⊗S 1〉〉 = 〈〈dP (1⊗S 1), 1⊗S 1〉〉+ (−1)|1⊗S1|+m〈〈1⊗S 1, dP (1⊗S 1)〉〉

is trivial since all terms are zero.

6. We have for a, b ∈ KQ̄, since {{−,−}} is a double dg-bracket,

d〈〈ddRa, ddRb〉〉 = (−1)|ddRa|P d{{a, b}}

= (−1)|ddRa|P {{da, b}}+ (−1)|ddRa|P+|a|KQ̃+m{{a, db}}
= (−1)|ddRa|P {{da, b}}+ (−1)1+m{{a, db}},

〈〈dP ddRa, ddRb〉〉 = 〈〈a⊗S 1− 1⊗S a− ddR(da), ddRb〉〉
= −(−1)|ddRda|P {{ξa, b}}
= (−1)|ddRa|P {{ξa, b}}

and

〈〈ddRa, dP ddRb〉〉 = 〈〈ddRa, b⊗S 1− 1⊗S b− ddR(db)〉〉
= −(−1)|ddRa|P {{a, db}}.

Hence
d〈〈ddRa, ddRb〉〉 = 〈〈dP ddRa, ddRb〉〉+ (−1)|ddRa|P−m〈〈ddRa, dP ddRb〉〉.

Theorem 4.3.6. KQ is a m-Calabi–Yau dg-algebra.

Proof.

RHom(KQ,KQ⊗KQ) ∼= Hom(P,KQ⊗KQ)

∼= Σ−mP

∼= Σ−mKQ,

where the first and third isomorphisms hold since P is a cofibrant replacement for KQ and the second
isomorphism is induced by the nondegenerate dg-pairing 〈〈−,−〉〉.

Theorem 4.3.7. The bounded derived category Db
fd(KQ) with its standard t-structure is a m-Calabi–

Yau triangulated category whose heart is equivalent to the category of finite dimensional modules over
H0(KQ).
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Proof. By Proposition 4.3.2, Db
fd(KQ) is an m-Calabi–Yau triangulated category. The heart of the

standard t-structure on Db
fd(KQ) consists of finite dimensional dg KQ-modules concentrated at degree

0. We show that the action of KQ on such KQ-modules factors through H0(KQ). For any a ∈ (KQ)1,
d(am) = (da)m+ (−1)|a|adm implies (da)m = 0 since the other two terms are of degree (−1) and vanish
automatically. This shows d(KQ)1 acts trivially, and hence the action factors through H0(KQ). This
gives a finite dimensional H0(KQ)-module and yields the required equivalence.

Calabi–Yau algebras not coming from quivers with superpotential. We have shown that every
quiver with superpotential produces a Calabi–Yau algebra. One might be interested in the converse, i.e,
if all Calabi–Yau algebras arise in this way. Davison [21] has shown that fundamental group algebras of
compact hyperbolic manifolds of dimension greater than one are Calabi–Yau algebras which do not arise
in this way. Thus it is not true that every Calabi–Yau algebra comes from a quiver with superpotential.
In fact, van den Bergh [70] has defined a class of Calabi–Yau algebras, which he called exact Calabi–
Yau algebras, using cyclic and Hochschild homology, and characterized them as Calabi–Yau algebras
which are quasi-isomorphic to quivers with superpotential (which he called deformed dg-preprojective
algebras).

4.4 Quivers with Superpotential of Low Dimensions

In this section, we describe quivers with superpotential of dimensions 1 to 4.

Quivers with Superpotential of Dimension 1. Quivers with superpotential of dimension 1 are
given by a finite number of vertices, and for each vertex v, a loop v∗ of degree 0, with trivial differential.

Quivers with Superpotential of Dimension 2. Quiver with superpotential Q of dimension 2 are
in the following form: for each vertex v, there is a loop v∗ of degree −1, and these are all the degree −1
edges in Q. There is an antisymmetric nondegenerate pairing on degree 0 edges (−,−). The symplectic
form on KQ̃ reads

ω =
1

2

∑
e,f edges of degree 0

〈e∨, f∨〉ddReddRf.

The differential reads

d(e) = 0 for any degree 0 edge e;

d(v∗) = v`v for any degree −1 loop v∗, where ` =
∑
〈e∨, f∨〉ef .

Quivers with Superpotential of Dimension 3. We will put quivers with superpotential of di-
mension 3 into a standard form and show that they are precisely the Ginzburg algebras introduced by
Ginzburg in [27]. There is an anti-symmetric nondegenerate pairing between degree 0 edges and degree
−1 edges. By changing basis if necessary, we may assume that for each degree 0 edge e, there is a degree
−1 edge e∗ in the opposite direction, such that the pairing is given by (e, f∗) = δef . The symplectic

form on KQ̃ then reads

ω =
∑

e edges of degree 0 in Q

ddReddRe
∗,

and the superpotential Φ is of degree 0, i.e., only depends on the degree 0 edges e’s. The differential
d : KQ→ KQ reads

d(e) = 0 for any degree 0 edge e;

d(e∗) = −∂eΦ;

d(v∗) = v`v for any degree −2 loop v∗, where ` =
∑

[e, e∗].

(4.4.1)

In particular, the dg-quiver Q is determined by its degree 0 sub-quiver Q? and the superpotential Φ
which is an element in KQ?cyc as follow: Given Q? and Φ, one can construct a 3-Calabi–Yau quiver with
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superpotential Q by first adding to Q? a reversed arrow e∗ of degree −1 for each arrow e and define a
degree 1 map d : KQ → KQ as in equation 4.4.1 using Φ. The map d such defined is a differential as
{Φ,Φ} has degree 1, hence the master equation {Φ,Φ} = 0 is empty. This reverse construction is exactly
the one given by Ginzburg in [27]. Thus our definition of quiver with superpotential is a generalization of
the Ginzburg construction. Note that H0(KQ,Φ) = KQ?/〈 ∂eΦ : e edges in Q?〉 is the so called Jacobi
algebra of (Q?,Φ). Theorem 4.3.7 then readily yields

Theorem 4.4.1. The bounded derived category Db
fd(KQ) with its standard t-structure is a 3-Calabi–

Yau triangulated category whose heart is equivalent to the category of finite dimensional modules over
the Jacobi algebra KQ?/〈 ∂eΦ : e edges in Q?〉.

Quivers with Superpotential of Dimension 4. We give a standard form for 4-Calabi–Yau quiver
with superpotential and a Ginzburg algebra-like construction for dimension 4.

There is an anti-symmetric nondegenerate pairing between degree 0 edges and degree −2 edges. By a
change of basis if necessary, we may assume that for each degree 0 edge e, there is a reversed degree −2
edge e∗, such that the pairing is given by (e, f∗) = δef . There is a symmetric nondegenerate quadratic

form q on the degree −1 edges. The symplectic form on KQ̃A then reads

ω =
∑

e edges in degree 0

ddReddRe
∗ +

1

2

∑
r, s edges of degree −1

q(r, s)ddRrddRs.

and the superpotential Φ is of degree −1, i.e., only depends on the degree 0 edges e’s and the degree −1
edges r’s. If we denote by Ar = dr for degree −1 edges r, then the superpotential Φ can be written in
the form

Φ =
∑

s edges of degree −1

s(∂◦sΦ) =
∑

u,s,r edges of degree −1

(u, r)〈r∨, s∨〉s∂◦sΦ =
∑

r,s edges of degree −1

q(r, s)sAr.

The differential d : KQ→ KQ reads

d(e) = 0 for any degree 0 edge e;

d(r) = Ar;

d(e∗) = ∂eΦ;

d(v∗) = v`v for any degree −3 loop v∗, where

` =
∑

e edges of degree 0

[e, e∗] +
∑

r,s edges of degree −1

q(r, s)rs.

(4.4.2)

The condition d2e∗ = 0 gives rise to an equation:

∂◦e

 ∑
r,s edges of degree −1

q(r, s)ArAs


=

∑
r,s edges of degree −1

q(r, s)(∂′′eAr)As(∂
′
eAr) + q(r, s)(∂′′eAs)Ar(∂

′
eAs)

= d

 ∑
r,s edges of degree −1

q(r, s)(∂′′eAr)s(∂
′
eAr) + q(r, s)(∂′′eAs)r(∂

′
eAs)


= 2d∂◦e

 ∑
r,s edges of degree −1

q(r, s)Ars


= 2d∂◦eΦ = 2d2(e∗) = 0

Since this is true for all degree 0 edges e in Q, we conclude∑
r, s edges of degree −1

q(r, s)ArAs = 0 in KQcyc, i.e., modulo cyclic permutation.
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Note that the above equation is the equation {Φ,Φ} = 0 written out in coordinates. Now, if we take Q?

to be the subquiver of Q consisting of all vertices and all degree 0 edges in Q, R to be the set of degree
−1 edges, we get the following data:

1. A finite quiver Q?,

2. A finite set R (of indices),

3. Maps h : R→ VQ? and t : R→ VQ? (heads and tails),

4. A map A : R→ KQ such that Ar = A(r) ∈ h(r)KQ?t(r),

5. A symmetric function q : R×R→ K with the following properties:

(a) q(r, s) = 0 unless h(r) = t(s) and h(s) = t(r),

(b) q is nondegenerate in the sense that the matrix {q(r, s)}r,s∈R is invertible,

(c)
∑
r,s∈R

q(r, s)ArAs = 0 mod [KQ?,KQ?].

Conversely, if one starts with the above data, one can reverse the construction and produce a quiver
with superpotential Q of dimension 4 as follows: Take Q to be the quiver constructed by adding to Q∗ a
degree −1 edge r from t(r) to h(r) for each element r ∈ R, a degree −2 edge e∗ in the reverse direction
for each edge e in Q?, and a degree −3 loop v∗ for each vertex v in Q?. Let Φ ∈ KQcyc denotes the
element

∑
r,s∈R q(r, s)Ars. Define a degree 1 map d : KQ → KQ by Equation (4.4.2). This map d is a

differential as we have assume our data satisfy the master equation

{Φ,Φ} =
∑
r,s∈R

q(r, s)ArAs = 0 mod [KQ?,KQ?].

Then Q is a quiver with superpotential of dimension 4 with superpotential Φ and a super-antisymmetric
pairing (−,−) on the subquiver Q̃ containing all vertices and all edges with degree 0,−1,−2 given by

(e, e∗) = 1

(r, s) = q(r, s)

(e∗, e)− 1

and zero otherwise. Since H0(KQ) = KQ?/〈Ar : r ∈ R〉, Theorem 4.3.7 readily yields

Theorem 4.4.2. The bounded derived category Db
fd(KQ) with its standard t-structure is a 4-Calabi–

Yau triangulated category whose heart is equivalent to the category of finite dimensional modules over
the algebra KQ?/〈Ar : r ∈ R〉.



Chapter 5

Derived Equivalences between
Vector Bundles and DG-Quivers

This chapter is the heart of the thesis where we prove our main results.

Section 5.1 gives a review on equivariant sheaves.

In Section 5.2, we generalize a result by Bridgeland [15, Proposition 4.1] and show that if π : V → X
is an anti-semiample vector bundle on a smooth projective manifold with an exceptional poset E , then
under some cohomological vanishing conditions, the total space V is derived equivalent to an algebra ΛE
which is the path algebra of a quiver with relations. If we remove the cohomological vanishing condition,
we end up with an Afin-algebra rather than a quiver with relations.

Section 5.3 tries to resolve ΛE , the path algebra of a quiver with relations (or more generally the
Afin-algebra) by a dg-quiver QE .

Section 5.4 gives a concrete description of the underlying graded quiver of the dg-quiver QE in terms
of the dual exceptional poset of E .

Section 5.5 proves the existence of a superpotential on QE when V is noncompact Calabi–Yau.

Section 5.6 considers the G-equivariant situation and constructs from QE a quotient quiver QE/G,
generalizing the construction of the McKay quiver, which is derived equivalent to Db(CohG(V )). In the
case when V is equivariantly Calabi–Yau, QE/G is also equipped with a superpotential.

Section 5.7 proves the product construction. We start with two dg-quivers QE and QF derived
equivalent to vector bundles V and W respectively, and construct a product quiver QE × QF which is
derived equivalent to V ×W . When both V and W are Calabi–Yau, we show that the product quiver
QE ×QF is also equipped with a superpotential.

5.1 Equivariant Sheaves

In this section, we define G-equivariant sheaves. We will fix a finite group G acting on a smooth variety
X of finite type over K by automorphisms, with |G| - char(K). We will denote the multiplication map
on G by µ : G×G→ G and the group action map by σ : G×X → X. We will also need the projection
map πX : G×X → X and the map π23 : G×G×X → G×X projecting onto the last two factors.

Definition 5.1.1 (G-linearization). A G-linearization of a quasi-coherent sheaf E on X is an isomor-
phism λE : π∗XE → σ∗E satisfying the cocycle condition

(µ× idX)∗λ = π∗23λ ◦ (idG × σ)∗λ.

This amounts to the following data: For each g ∈ G, there is an isomorphism λg : E → g∗E, satisfying
the cocycle condition λEhg = g∗(λEh ) ◦ λEg .

57
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Definition 5.1.2 (Equivariant sheaves). A G-equivariant quasi-coherent sheaf (resp. coherent sheaf ) on
X is a quasi-coherent sheaf (resp. coherent sheaf) E on X together with a G-linearization λE . If (E, λE),
(F, λF ) are G-equivariant sheaves, then G acts on HomX(E,F ) by g · φ = (λFg−1)−1 ◦ (g−1)∗φ ◦ λEg−1 .

The Hom space in the categories QCohG(X) and CohG(X) are given by the G-equivariant maps, i.e.,
HomG(E,F ) = [HomX(E,F )]G. In other words, a morphism φ : E → F is equivariant if for all g ∈ G
we have a commutative diagram

E
φ //

λEg
��

F

λFg
��

g∗E
g∗φ // g∗F.

By Grothendieck [30, Proposition 5.1.2], QCohG(X) has enough injectives. Hence we can resolve
any equivariant sheaf by equivariant injective resolution. Moreover, since X is projective and G is
finite, one can find a G-invariant ample line bundle on X, and hence every G-equivariant sheaf has a
G-equivariant locally free resolution. There is a forgetful functor U : QCohG(X) → QCoh (X) which
sends an equivariant sheaf (E, λE) to its underlying sheaf E and a equivariant morphism f to itself,
now regarded as a morphism between sheaves. Clearly, the forgetful functor also restricts to a functor
U : CohG(X)→ Coh (X).

Next, we would like to review how to derive the HomG functor.

Proposition 5.1.3. The functor [−]G : G-Mod→ K-Mod taking G-invariant part is exact.

Proof. Let 0 → U → V → W be an exact sequence of G-representations. By Maschke’s theorem, we
have a decomposition

0→ UG ⊕ U ′ → V G ⊕ V ′ →WG ⊕W ′ → 0

where each summand is a subrepresentation. Thus taking G-invariant part yields an exact sequence.

Corollary 5.1.4. For any (E, λE), (F, λF ) ∈ D(QCohG(X)), we have

RHomG((E, λE), (F, λF )) = RHom(E,F )G.

Proof. Write HomG = [−]G ◦Hom ◦ U . The corollary follows from exactness of [−]G.

Should there be no confusion, from now on we will, by abusing notation, denote an equivariant sheaf
(E, λE) by only its underlying sheaf E.

5.2 Tilting Objects on Equivariant Vector Bundles

In this section, we will be working over the following setting: Let G be a finite group and K be a field
with ord (G) - char(K). Let X be a smooth projective variety over K with G acting by automorphisms.
Let π : V → X be a G-equivariant vector bundle. Unless otherwise stated, throughout this section,
E = {Ei}i∈I will denote a full exceptional poset on Db(CohG(X)). We will also write E =

⊕
i∈I Ei.

Lemma 5.2.1. 1. The map π∗ is exact.

2. The map π∗ is exact.

3. The functor π∗π
∗ is naturally isomorphic to −⊗ S•V ∨.

4. The functor π∗π
∗ preserves injectives.

Proof. Statement 1 follows from flatness of π. For statement 2, by Hartshorne [31, §Ex. II.5.17] and that
π is affine, the map π∗ defines an equivalence between the category of quasi-coherent OV -modules and the
category of quasi-coherent π∗OV -modules, which is a subcategory of quasi-coherent OX -modules. Thus
π∗ is exact. Statement 3 follows from projection formula: For any OX -modules M , we have functorial
isomorphisms

π∗π
∗M = π∗(π

∗M ⊗OV ) = M ⊗ π∗OV = M ⊗ S•V ∨.
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Statement 4 follows from statement 3 since for any injective I and any OX -modules M ,

Exti(M,π∗π
∗I) = Exti(M, I ⊗ S•V ∨) = Exti(M ⊗ S•V, I) = 0

whenever i 6= 0.

Bridgeland pointed out in [15, Prop. 4.1] (see also [16, Thm. 3.6]) that one can construct tilting
objects on vector bundles by pulling back tilting objects on the base variety.

Lemma 5.2.2. If T is a tilting object in D(QCohG(X)), then π∗T is a tilting object in D(QCohG(V )).

Proof. By the adjunction π∗ a π∗, we have Hom•V (π∗T, F ) = Hom•X(T, π∗F ) for all objects F . In
particular, for an arbitrary coproduct

⊕
i∈I Fi,

Hom•V (π∗T,
⊕
i∈I

Fi) = Hom•X(T, π∗
⊕
i∈I

Fi) =
⊕
i∈I

Hom•X(T, π∗Fi) =
⊕
i∈I

Hom•V (π∗T, Fi)

and hence π∗T is compact. To show π∗T is generating, suppose F has the property Hom•V (π∗T, F ) = 0.
Then Hom•X(T, π∗F ) = 0 and hence π∗F = 0. Since π∗ is exact, it preserves cohomologies and this
implies F has no cohomologies, i.e., F = 0 as desired.

Lemma 5.2.3. Suppose a finite set of objects E = {Ei}i∈I in Db(CohG(X)) classically generates
Db(CohG(X)), then the finite set of objects π∗E = {π∗Ei}i∈I classically generates Db(CohG(V )).

Proof. By Example 2.5.2, E are compact objects in D(QCohG(X)). By Corollary 2.5.7, E classically
generates Db(CohG(X)) if and only if E generates D(QCohG(X)). Thus E =

⊕
i∈I Ei is a tilting object

in D(QCohG(X)). By Lemma 5.2.2, π∗E is a tilting object in D(QCohG(V )). By Corollary 2.5.7 again,
the set π∗E classically generates Db(CohG(V )).

The following theorem is a generalization of Bridgeland and Stern [16, Thm. 3.6] and is essentially
an application of Theorem 2.9.2.

Theorem 5.2.4. Let X be a smooth projective variety together with an action by a finite group G.
Let π : V → X be a G-equivariant vector bundle and E = {Ei}i∈I be a full exceptional poset on
Db(CohG(X)). Write E =

⊕
i∈I

Ei. Then there is a dg-algebra R whose underlying chain complex repre-

sents RHomG(E, π∗π
∗E) = RHomG(E,E ⊗ S•V ∨) and an equivalence

Ψ : Db(CohG(V ))→ Per(Rop)

which after composing with the forgetful functor U : Per(Rop) → D(K) yields RHomG(E, π∗(−)), i.e.,
U ◦Ψ = RHomG(E, π∗(−)).

Proof. For each i ∈ I, choose a G-equivariant injective resolution IEi for Ei. Write IE =
⊕

i∈I IEi .
Define a dg-algebra R = HomG(IE , IE ⊗ S•V ∨) as follows: As a chain complex, the i-th graded piece is
given by

Ri = Homi
G(IE , IE ⊗ S•V ∨) =

⊕
p∈Z

HomG(IpE , I
i+p
E ⊗ S•V ∨),

with differential
dR(f) = (dIE ⊗ idS•V ∨) ◦ f − (−1)if ◦ dIE .

The multiplication map on R is given by composing morphisms followed by symmetric product on the
S•V ∨ factor, i.e.,

Ri ⊗Rj → Ri+j

f ⊗ g 7→ (idIE ⊗m)(g ⊗ idS•V ∨) ◦ f,

where the map m : S•V ∨ ⊗ S•V ∨ → S•V ∨ is the symmetric product.
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The underlying chain complex of R represents RHom(E,E ⊗ S•V ∨): Since − ⊗ S•V ∨ is exact,
Hom(E,−⊗ S•V ∨) is a left exact functor. Hence the right derived functor is given by

RHomG(E,E ⊗ S•V ∨) = RHomG(IE , E ⊗ S•V ∨) = HomG(IE , IE ⊗ S•V ∨)

since IE is an injective resolution of E.
Next, we define a functor

Ψ : Db(CohG(V ))→ D(Rop-Mod).

Recall that by the natural isomorphism π∗π
∗ ∼= −⊗ S•V ∨ in Lemma 5.2.1, we have an isomorphism

R = Hom(IE , π∗π
∗IE) as a dg-algebra. For any M ∈ Db(CohG(V )), choose an injective resolution IM .

The chain complex HomG(IE , π∗IM ) has a right dg-module structure over R given by

HomG(IE , π∗IM )⊗HomG(IE , π∗π
∗IE)→ HomG(IE , π∗IM )

(g, f) 7→
(
IE

f−→ π∗π
∗IE

π∗π
∗g−→ π∗π

∗π∗IM ∼= π∗OV ⊗ π∗IM
π∗µM−→ π∗IM

)
,

where µM : OV ⊗ IM → IM is the OV -module structure map on IM .
We then define

Ψ(M) = HomG(IE , π∗IM )

Ψ(M
f→ N) 7→ (HomG(IE , π∗IM )

π∗If→ HomG(IE , π∗IN )).

This functor is exact since it is the composition of the following four exact functors:

I : Db(CohG(V ))→ K(CohG(V )), M 7→ IM

π∗ : Db(CohG(V ))→ Db(CohG(X))

HomG(IE ,−) : K(CohG(X))→ K(Rop-Mod)

and the natural projection functor

Q : K(Rop-Mod)→ D(Rop-Mod).

By the same reason as R represents RHom(E,E ⊗ S•V ∨), we see that U ◦Ψ = RHom(E, π∗(−)). Next,
we show Ψ is fully faithful. Recall that by Lemma 5.2.1, π∗π

∗ preserves injectives. For any Ei, Ej ∈ E ,

HomDb(CohG(V ))(π
∗Ei, π

∗Ej)

= HomDb(CohG(X))(Ei, π∗π
∗Ej)

= HomK(CohG(X))(IEi , π∗π
∗IEj )

= H0(HomG(IEi , π∗π
∗IEj ))

= HomR(HomG(IE , π∗π
∗IEi),HomG(IE , π∗π

∗IEj ))/{homotopy equivalence}
= HomK(Rop-Mod)(HomG(IE , π∗π

∗IEi),HomG(IE , π∗π
∗IEj ))

= HomD(Rop-Mod)(Ψ(π∗Ei),Ψ(π∗Ej))

By Lemma 5.2.3, the set {π∗Ei}i∈I classically generates Db(CohG(V )). Hence Ψ is fully faithful. The
essential image is the triangulated category classically generated by Ψ(π∗Ei). Since each Ψ(π∗Ei) is
a direct summand of Ψ(π∗E) = R, the essential image of Ψ is the triangulated category classically
generated by R, i.e., Per(Rop). Hence we have our desired equivalence Ψ : Db(CohG(V ))→ Per(Rop).

By homology perturbation, we have

Corollary 5.2.5. Let π : V → X be a G-equivariant vector bundle and E a full exceptional collection
on Db(CohG(V )), then there is a minimal Afin-algebra

ΛE = Hom•G(E,E ⊗ S•V ∨)

and an equivalence
Φ : Db(CohG(V ))→ Per∞(Λop

E ).
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Proof. Since the underlying chain complex of R represents RHom(E,E⊗S•V ∨), its cohomology is given
by

ΛE = Hom•G(E,E ⊗ S•V ∨).

By Theorem 3.2.1, there is a minimal A∞-structure on ΛE making it quasi-isomorphic to R as an A∞-
algebra. Lemma 5.3.4 below shows that this A∞-stucture is indeed Afin. Since D(Rop) ∼= D∞(Rop), and
this equivalence restricts to an equivalence between perfect derived categories, we have an equivalence
Db(CohG(V )) ∼= Per(Rop) ∼= Per∞(Λop

E ) as desired.

Definition 5.2.6. Let π : V → X be aG-equivariant vector bundle. A full exceptional poset E = {Ei}i∈I
on Db(CohG(X)) is said to be if Homk

G(Ei, Ej ⊗ S•V ∨) = 0 for all k 6= 0 and all i, j ∈ I.

Remark 5.2.7. Note that a V -geometric exceptional poset is necessarily strong.

Remark 5.2.8. When G is trivial and V = KX is the canonical bundle, a KX -geometric full exceptional
collection is the same as a geometric helix defined in Bridgeland and Stern [16]. This is where our
terminology comes from.

Corollary 5.2.9. Let π : V → X be a G-equivariant vector bundle which is anti-semiample i.e., SkV ∨

is globally generated for k � 0. Let E be a full V -geometric exceptional poset on Db(CohG(V )). Then
ΛE is an ordinary algebra which is Noetherian and there is an equivalence

Φ : Db(CohG(V ))→ Db
fg(Λ

op
E ),

where Db
fg(Λ

op
E ) is the full triangulated subcategory of Db(Λop

E ) consisting of complexes whose cohomologies

are finitely generated Λop
E -modules.

Proof. Since E is V -geometric, ΛE is an ordinary algebra. It remains to show ΛE is Noetherian and of
finite global dimension, for then Per(Λop

E ) = Db(Λop
E -mod) = Db

fg(Λ
op
E ). Since SkV ∨ is globally generated

for k � 0, we have an exact sequence

O ⊗H0(X,SkV ∨)→ SkV ∨ → 0

Taking dual, we see that SkV ↪→ O⊗H0(X,SkV ∨)∨ embeds SkV into a trivial bundle as a subbundle.
Now choose, k, `� 0 and coprime. Then we have an embedding

V ↪→ SkV ⊕ S`V ↪→ O⊗
(
H0(X,SkV ∨)∨ ⊕H0(X,S`V ∨)∨

)
of V into a trivial bundle. Composing this embedding with the map

O ⊗
(
H0(X,SkV ∨)∨ ⊕H0(X,S`V ∨)∨

)
→ H0(X,SkV ∨)∨ ⊕H0(X,S`V ∨)∨

which projects the trivial bundle to its fiber yields a projective morphism

V → H0(X,SkV ∨)∨ ⊕H0(X,S`V ∨)∨.

Thus V is projective over an affine scheme of finite type. The algebra ΛE ∼= EndV (π∗E) is then a finitely
generated module over a finitely generated algebra, thus itself Noetherian. By Hille and van den Bergh
[32, Thm 7.6], ΛE has finite global dimension as desired.

Corollary 5.2.10. The above equivalence restricts to an equivalence

Φ : Db
cs(CohG(V ))→ Db

fd(Λ
op
E ).

Proof. If M ∈ Db
cs(CohG(V )), then Hom•(π∗E,M) is finite dimensional. As

H•(Φ(M)) = Hom•(ΛE ,Φ(M)) = Hom•(π∗E,M),
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we conclude Φ(M) ∈ Db
fd(Λ

op
E ). Now suppose Φ(M) ∈ Db

fd(Λ
op
E ). Then by assumption, Hom•(π∗E,M)

is finite dimensional. Since M lies in the thick category generated by π∗E, we conclude that Hom•(M,M)
is also finite dimensional. Via the multiplication map

S•H0(X,SkV ∨)⊗ S•H0(X,S`V ∨)→
⊕
r≥0

H0(X,SrV ∨) = H0(V,OV ),

Hom•(M,M) becomes a finite dimensional module over S•H0(X,SkV ∨) ⊗ S•H0(X,S`V ∨), and thus
it is supported in finitely many points {p1, . . . , pr} on H0(X,SkV ∨)∨ ⊕ H0(X,S`V ∨)∨. Recall that
we have a projective morphism φ : V → H0(X,SkV ∨)∨ ⊕ H0(X,S`V ∨)∨. We would like to show
suppM ⊆ φ−1({p1, . . . , pr}). If this is true, suppM would be compact as φ is a proper morphism.
Let q 6∈ φ−1({p1, . . . , pr}) be a K-point on the vector bundle V . Then φ(q) 6∈ supp Hom•(M,M).
Since supp Hom•(M,M) is defined by the annihilator ideal of Hom•(M,M), this means there exists
f ∈ S•H0(X,SkV ∨) ⊗ S•H0(X,S`V ∨) with f · idM = 0 but f(φ(q)) 6= 0. In particular, we see that
the identity map on M localizes to the zero map at the point q. Hence M must be supported in
φ−1({p1, . . . , pr}) as desired.

Tilting algebra as quiver with relations. As pointed out by Bridgeland and Stern [16], in the case
when ΛE is an ordinary algebra, one can construct a quiver with relations (Q, I) whose path algebra
is isomorphic to ΛE . The vertex set of Q corresponds to the full exceptional poset E , while the edges
between two vertices v and w corresponding to exceptional object Ev, Ew ∈ E is given by a basis of the
cokernel of the map⊕

Ei∈E:
Ev4Ei4Ew

Hom(Ev, Ei ⊗ S•V ∨)⊗Hom(Ei, Ew ⊗ S•V ∨)→ Hom(Ev, Ew ⊗ S•V ∨).

There is then a natural surjective map ϕ : KQ→ ΛE and we can take our desired quiver with relations
to be (Q, kerϕ).

The following examples are applications of Corollary 5.2.9.

Example 5.2.11. Let X = SpecK and V = Kn. Then E = OX is a V -geometric exceptional collection
on Db(Coh (SpecK)). The classical tilting algebra is given by

ΛE = Hom•(O,O ⊗ S•V ∨) = S•V ∨ = K[x1, . . . , xn]

and the classical tilting quiver is given by one vertex with n loops xi, with relations given by xixj = xjxi.

Example 5.2.12. If we take V to be the zero vector bundle, we recover the tilting quiver for X. In the
case X = Pn, with the full exceptional collection (O,O(1), · · · ,O(n)), we have the Beilinson quiver

•
v0

a10 //

a1n

... //
•
v1

a20 //

a2n

... //
•
v2

· · ·· · ·· · · •
vn−1

an0 //

ann

... //
•
vn

with relations ai+1 jaik = ai+1 kai j . The vertex vi corresponds to the bundle O(i), and the arrows aij
correspond to Hom(O(i),O(j)) ∼= H0(Pn,O(1)), i.e, the homogeneous coordinates on Pn. This also
explain the relations ai+1 j+1aij = ai+1 jai j+1: they correspond to the relation ZjZk = ZkZj in the
homogeneous coordinate ring.

More examples will be given in Section 6.1.

5.3 Quasi-free Resolution of Tilting Algebra

In this section, we will resolve the tilting A∞-algebra ΛE by an augmented quasi-free dg-algebra.

To simplify notations, we will drop the subscript E and write Λ = ΛE . The idea is to use Koszul
duality, which is not new and has been explored by Keller [40], Lu, Palmieri, Wu and Zhang [50], Segal
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[62], and van den Bergh [70]. By Koszul duality, if E(Λ) is locally finite, then E(E(Λ)) is A∞-quasi-
isomorphic to Λ. However, since E(Λ) is a very large dg-algebra, E(E(Λ)) cannot be a minimal dg
model of Λ. To make it smaller, we take its cohomology H•(E(Λ)) and transfer the dg-structure on
E(Λ) to an A∞-structure on H•(E(Λ)). It turns out that H•(E(Λ)) = Ext•Λ(S, S) is finite dimensional
and E(Ext•Λ(S, S)) would be the desired quasi-free dg-algebra resolving Λ. Making all of these rigorous
involves an Adams grading on Λ. In the following, we will denote by S the semisimple algebra Kn, where
n is the length of E . Recall that there is no loss of generality to choose a total order refining the partial
order on E , so we will assume further that E is in fact an exceptional sequence.

Lemma 5.3.1. Let E = {E1, . . . , En} be a full exceptional sequence on Db(CohG(X)). The tilting
A∞-algebra

Λ =

∞⊕
k=0

⊕
`∈Z

n⊕
a=−n

⊕
j−i=a

Hom`
G(Ei, Ej ⊗ SkV ∨)

is Adams graded by (a, k) ∈ Z× Z, and is a locally finite augmented algebra over Λ0,0 = S. The Adams
grading of the augmentation ideal Λ̄ is supported in

J = {(a, b) ∈ Z× Z : −(n− 1) ≤ a ≤ n− 1 and b ≥ 1} ∪ {(a, 0) ∈ Z× Z : 1 ≤ a ≤ n− 1}.

Proof. The tilting algebra Λ is locally finite since Λ`a,k =
⊕
j−i=a

Hom`
G(Ei, Ej⊗SkV ∨) is finite dimensional.

The rest follows from the fact that (E0, . . . , En) is an exceptional sequence.

A partition of j ∈ J is a way of writing j as a finite sum of elements in J . Denote by p(j) the number
of such partitions.

Lemma 5.3.2. The number p(j) is finite.

Proof. A general partition of j = (a, b) ∈ J is in the form

(a, b) = (a1, b1) + · · ·+ (ak, bk) + (c1, 0) + · · ·+ (c`, 0),

where −n ≤ ai ≤ n, bi ≥ 1 and ci ≥ 1. Rewriting, we have

b = b1 + · · ·+ bk

a− a1 − · · · − ak = c1 + · · ·+ c`

which are both partitions of natural numbers. Since 0 ≤ a− a1 − · · · − ak ≤ a+ (n− 1)k ≤ a+ (n− 1)b,
we conclude

p(j) = p(a, b) ≤ (number of partitions of b)(number of partitions of a+ (n− 1)b).

Lemma 5.3.3. Let A and A′ be augmented Adams graded A∞-algebras Adams graded by Z×Z. Suppose
their augmentation ideals are both supported in J . Then

1. A and A′ are both Afin.

2. Any Adams-graded A∞-morphism f : A→ A′ is Afin.

3. Any Adams-graded A∞-homotopy h : A→ A′ between A∞-morphisms f, g : A→ A′ is Afin.

4. The Adams-graded minimal model H•(A) is Afin and is Afin-homotopic to A.
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Proof. For statement 1, since mr preserves the Adams degree, for any fixed j ∈ J ,

mr : A`1j1 ⊗S · · · ⊗S A
`r
jr
→ A`j

can be nonzero only if j = j1 + · · · + jr, with j, j1, . . . , jn ∈ J . By Lemma 5.3.2, there can be only a
finite number of partitions of j. Hence the j-th component of mr vanishes for r � 0, i.e., A is Afin. The
other second and third statement are proven similarly.

For the last statement, observe that the Adams grading on A induce an Adams grading on H•(A),
and recall that by choosing a spliting respecting the Adams grading in Section 3.2, one can get an A∞-
structures on H•(A) preserving the induced Adams grading , and which is A∞-quasi-isomorphic to A.
By Theorem 3.1.3, H•(A) is A∞-homotopic to A. By statement 3, this A∞-homotopy is Afin and we are
done.

Lemma 5.3.4. The A∞-structure on Λ is in an Afin-structure, i.e., mr = 0 for r � 0.

Proof. This is a special case of Lemma 5.3.3.

The Adams grading on Λ induces an Adams grading on its Koszul dual E(Λ), and the combinatorial
Lemma 5.3.2 is crucial in showing the following lemma describing the Adams grading on E(Λ).

Lemma 5.3.5. 1. The dg-algebra E(Λ) is a Z × Z-graded locally finite algebra augmented over S.
The Z× Z-grading of its augmentation ideal is supported in J .

2. The same also holds for the dg-algebra E(E(Λ)).

Proof. The j-th component of the augmentation ideal of E(Λ) is⊕
m

[((ΣΛ̄)#)⊗
m
S ]`j =

⊕
m

⊕
`1+···+`m=`
j1+···+jm=j

ji∈J

[(ΣΛ̄)#]`1j1 ⊗S · · · ⊗S [(ΣΛ̄)#]`mjm

=
⊕
m

⊕
`1+···+`m=`
j1+···+jm=j

ji∈J

(
(ΣΛ̄)`1j1 ⊗S · · · ⊗S (ΣΛ̄)`mjm

)#

.

If j ∈ J , the direct sum on the right hand side is a finite sum since the number of partitions of j ∈ J
is finite. Since Λ is locally finite, each Λ̄ji is finite dimensional and hence the j-th component of the
augmentation ideal of E(Λ) is also finite dimensional.

If j /∈ J , we would like to show the j-th component vanishes, which is equivalent to the vanishing of
each vector space Λ̄j1 ⊗S · · · ⊗S Λ̄jm whenever j1 + · · · + jm /∈ J . We show the case when m = 2, i.e.,
Λ̄j⊗S Λ̄k = 0 whenever j+k /∈ J . The proof for general m is similar. Write j = (j′, j′′) and k = (k′, k′′).
Note that j + k 6∈ J is equivalent to j′ + k′ /∈ [−(n− 1), n− 1], where n is the length of the exceptional
sequence E . Now

Λ̄j ⊗S Λ̄k =
⊕

0≤i,i+j′≤n
0≤`,`+k′≤n

Hom(Ei, Ei+j′ ⊗ Sj
′′
V ∨)⊗S Hom(E`, E`+k′ ⊗ Sk

′′
V ∨)

=
⊕

0≤i,i+j′,i+j′+k′≤n

Hom(Ei, Ei+j′ ⊗ Sj
′′
V ∨)⊗S Hom(Ei+j′ , Ei+j′+k′ ⊗ Sk

′′
V ∨).

If j′ + k′ ≥ n, then i + j′ + k′ ≥ n for all i = 1, . . . , n. If j′ + k′ ≤ −n, then i + j′ + k′ < 0 for all
i = 1, . . . , n. Hence Λ̄j ⊗S Λ̄k = 0. In particular, the support of the augmentation ideal lies in J and we
have proven the first statement.

Now, in proving the first statement, we have only used the fact that Λ is locally finite with Adams
grading of its augmented ideal supported in J . Since this is also true for E(Λ), the same also holds for
E(E(Λ)).
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Lemma 5.3.6 ([52] Lemma 11.1). H•(E(Λ)) = Ext•Λ(S, S).

Proof. By Lemma 5.3.5 and Koszul duality (Theorem 3.4.3), E(E(Λ)) = ΩBΛ is a dg-algebra which
is A∞-quasi-isomorphic to Λ. By Lemma 5.3.3, they are Afin-homotopic. Since the Koszul functor E
sends Afin-homotopies to dg-homotopies, E(ΩBΛ) is dg-homotopic to E(Λ) and hence H•(E(ΩBΛ)) ∼=
H•(E(Λ)). By [48, Lemma 2.3.4.4 and 2.4.2.3], we have an equivalence D(ΩBΛ) ∼= D∞(Λ) which sends
S 7→ S[−1]. Hence Ext•Λ(S, S) = Ext•ΩBA(S, S). Thus, passing to ΩBΛ if necessary, we may assume Λ
is a dg-algebra. Since E(Λ) is locally finite, E(Λ) = (BΛ)#. Now, by [24, Prop. 19.2], B(Λ) ⊗S Λ is a
semi-free resolution of the right Λ-module S. Then

RHom(S, S) = HomΛ(BΛ⊗S Λ, S) = HomS(BΛ, S) = (BΛ)# = E(A).

Taking cohomologies on both sides, we are done.

Lemma 5.3.7. Any A∞-structure on the Yoneda algebra Ext•Λ(S, S) preserving the Adams grading is
Afin. In particular, the Afin-structure obtained on Ext•Λ(S, S) by taking minimal model of E(Λ) is turns
Ext•Λ(S, S) into an augmented Afin-algebra over S which is Afin-homotopic equivalent to E(Λ).

Proof. This is a consequence of Lemma 5.3.3 and 5.3.6.

Henceforth the Yoneda algebra will always be equipped with this natural Afin-structure coming from
taking minimal model of E(Λ).

Proposition 5.3.8. 1. There is a Afin-quasi-isomorphism E(Ext•Λ(S, S)) ∼= Λ.

2. If Λ is a classical algebra, then there is a quasi-isomorphism

E(Ext•Λ(S, S))→ H0(E(Ext•Λ(S, S))) ∼= Λ,

i.e., E(Ext•Λ(S, S)) is a quasi-free dg-algebra resolving Λ.

Proof. By Lemma 5.3.7, Ext•Λ(S, S) is Afin-homotopic equivalent to E(Λ). Since the Koszul functor E
sends Afin-homotopies to dg-homotopies, E(Ext•Λ(S, S)) is dg-homotopic to E(E(Λ)). Now E(E(Λ)) is
A∞-quasi-isomorphic to Λ by Koszul duality (Theorem 3.4.3), and hence Afin-quasi-isomorphic to Λ by
Lemma 5.3.3 and 5.3.5. This proves the first statement.

If Λ is a classical algebra, by the same argument, E(Ext•Λ(S, S)) is dg-homotopic to E(E(Λ)). By
Koszul duality of dg-algebras (Theorem 3.4.3), there is a quasi-isomorphism of dg-algebras E(E(Λ))→ Λ.
Hence there is a quasi-isomorphism as desired.

5.4 Computing Ext•ΛE(S, S)

In this section, we compute Ext•ΛE (S, S) in terms of the dual exceptional sequence to E and the vector
bundle V .

When ΛE is an algebra rather than an A∞-algebra, which happens for example when E is V -geometric,
we can compute Ext•ΛE (S, S) in terms of the dual exceptional sequence F of E . Among all modules
over ΛE , the following projective modules and simple modules are of utmost importance for us as they
correspond to objects in E and F . Let Pi = HomG(E,Ei ⊗ S•V ∨). Then Pi is a right module over
ΛE which is a direct summand of ΛE . Let Si = HomG(Ei, Ei ⊗ S0V ∨) = HomG(Ei, Ei) = K. Then
Si is a simple right module over ΛE . When we write ΛE in the form of a quiver with relations (Q, I),
then Pi corresponds to the vector space of all paths starting at the vertex i, and Si corresponds to
the 1-dimensional vector space sitting at the vertex i. We will denote S =

⊕
i∈I Si. Then ΛE is an

Afin-algebra augmented over S.
The following proposition describes the preimage of the modules Pi and Si under the isomorphism

Φ : Db(CohG(V ))→ Per(Λop
E ).
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Proposition 5.4.1 ([16], Lemma 3.7). Let π : V → X be a G-equivariant vector bundle. Let E = {Ei}i∈I
be a full V -geometric exceptional poset on Db(CohG(X)) and F = {Fi}i∈Iop be the dual exceptional poset
of E. The equivalence Φ : Db(CohG(V ))→ Per(Λop

E ) sends

Φ(π∗Ei) = Pi and Φ(s∗Fi) = Si,

where s : X → V is the zero section.

Proof. The equivalence Ψ : Db(CohG(V ))→ Per(Rop) in Theorem 5.2.4 sends

Ψ(Ei) = Hom(IE , IEi ⊗ S•V ∨).

Now
H•(Hom(IE , IEi ⊗ S•V ∨)) = Hom•(E,Ei ⊗ S•V ∨).

Hence Φ(π∗Ei) = Pi.
Next, we choose an injective resolution IFj for Fj . Then s∗IFj is an injective resolution for s∗Fj

and hence Ψ(s∗Fj) = Hom(IE , π∗s∗IFj ) = Hom(IE , IFj ). Taking cohomology, we conclude Φ(s∗Fj) =
Hom•(E,Fj) = Sj as vector spaces. To show they are isomorphic as ΛE -modules, it suffices to show
that Hom(E,E ⊗ SkV ∨) acts trivially on Φ(s∗Fj) whenever k ≥ 1. The action of R on Ψ(s∗Fj) factors
through the map S•V ∨⊗IFj → IFj which in turns comes from the pushforward under π of theOV -module
structure on s∗Fj . This shows that the action of SkV ∨ on IFj , and hence the action of Hom(IE , IE ⊗
SkV ∨) on Hom(IE , IFj ) is trivial for k ≥ 1. Taking cohomology, we see that Hom(E,E ⊗ SkV ∨) also
acts trivially on Φ(s∗Fj) whenever k ≥ 1, as desired.

Remark 5.4.2. This proposition is the only place where we need ΛE to be an algebra rather than an
A∞-algebra in order to calculate Ext•ΛE (S, S) in terms of the dual exceptional collection of E . In the
general A∞-algebra case, we do not know if the higher multiplication maps acts trivially, and hence we
do not know if Φ(s∗Fj) = Sj .

Proposition 5.4.3. Let s : X → V be the zero section. Then for all E ∈ D(QCoh (X)),

Ls∗s∗E =

rankV⊕
k=0

k∧
V ∨[k]⊗ E = S•(V [−1])∨ ⊗ E.

Proof. Consider X as a subvariety of V via the zero section. Then X is given by the zero locus of the
tautological section σ of the tautological vector bundle π∗V on V . The sheaf s∗OX can be resolved by
the Koszul complex

0→
rankV∧

(π∗V )∨ → · · · → (π∗V )∨ → OV → s∗OX → 0,

where the maps are given by contraction with the section σ. In other words, we have a quasi-isomorphism∧•
(π∗V )∨ ∼= s∗OX . Since

∧•
(π∗V )∨ is locally free, its derived pullback under s is the same as the un-

derived pullback, i.e., restriction to X. Since the maps in the complex
∧•

(π∗V )∨ is given by contraction
with σ, they restrict to zero on X. This yields

s∗s∗OX ∼= s∗(

•∧
(π∗V )∨) =

•∧
(π∗V )∨|X =

rankV⊕
k=0

k∧
V ∨[k].

The general case follows from

s∗s∗E = π∗s∗s
∗s∗E (πs = idX)

= π∗(s∗OX ⊗ s∗E) (Projection formula)
= π∗s∗(s

∗s∗OX ⊗ E) (Projection formula)

=
rankV⊕
k=0

∧k
V ∨[k]⊗ E

= S•(V [−1])∨ ⊗ E.
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Corollary 5.4.4.

Hom•G(s∗E, s∗F ) =
⊕
`∈Z

rankV⊕
k=0

Hom`
G(∧kV ∨[k]⊗ E,F ) =

rankV⊕
k=0

Hom•G(E,F ⊗ S•(V [−1]))

Proof. The first equality is by the adjunction s∗ a s∗, the second by Proposition 5.4.3, the third by
locally-freeness of V .

We therefore arrived at the following

Theorem 5.4.5. Let X be a smooth G-variety and π : V → X be a G-equivariant anti-semiample
vector bundle. Suppose E = {Ei}i∈I is a full V -geometric exceptional poset on Db(CohG(X)) with dual
exceptional poset F = {Fi}i∈Iop . Then there is an Afin-structure on

AE =
⊕
i,j∈I

⊕
`∈Z

rankV⊕
k=0

Hom`−k
G (Fi, Fj ⊗ ∧kV ),

making it a finite dimensional Afin-algebra augmented over S, such that E(AE) is a dg-algebra re-
solving ΛE and hence Db(CohG(V )) ∼= Db

fg(E(AE)
op), where Db

fg(E(AE)
op) denotes the full triangu-

lated subcategory of Db(E(AE)
op) consisting of complexes whose cohomologies are finitely generated over

H•(E(AE)op). Moreover, this equivalence restricts to an equivalence Db
cs(CohG(V )) ∼= Db

fd(E(AE)
op).

Proof. Theorem 5.2.9 gives an Afin-algebra ΛE and a derived equivalence Db(CohG(V )) ∼= Db
fg(Λ

op
E ).

Proposition 5.3.7 and 5.3.8 shows there is an Afin-structure on H•(E(ΛE)) = Ext•Λ(S, S) such that
E(Ext•ΛE (S, S)) is Afin-isomorphic to ΛE . By Proposition 5.4.1 and 5.4.4,

Ext•ΛE (S, S) ∼=
⊕
i,j

Hom•G(s∗Fi, s∗Fj) ∼= AE

as graded S-bimodules. Transferring the Afin-structure on Ext•ΛE (S, S) to AE , we have derived equiva-
lences

Db(CohG(V )) ∼= Db
fg(Λ

op
E ) ∼= Db

fg(E(Ext•ΛE (S, S))op) ∼= Db
fg(E(AE)

op).

The fact that this equivalence restrict to an equivalence Db
cs(CohG(V )) ∼= Db

fd(E(AE)
op) follows from

Corollary 5.2.10.

Remark 5.4.6. One can also transfer the Adams grading on Ext•ΛE (S, S) to AE . A natural guess for
this Adams grading on AE would be given by (j − i, k). Since we will not need this explicit description,
we will not prove the statement.

Recall E(AE) is the path algebra of a dg-quiver QE . Hence we have shown that V is derived equivalent
to a dg-quiver.

Corollary 5.4.7. Let X be a smooth G-variety and π : V → X be a G-equivariant vector bundle. Suppose
E = {Ei}i∈I is a full V -geometric exceptional poset on Db(CohG(X)), then there exists a dg-quiver QE
such that Db(CohG(V )) ∼= Db

fg(QE) and Db
cs(CohG(V )) ∼= Db

fd(QE).

Example 5.4.8. Let X = P2 and V = 0. Let E = (O,O(1),O(2)) be the Beilinson sequence. The
classical tilting quiver is given by

•
v0

a0 //
a1 //
a1

// •
v1

b0 //
b1 //
b2

// •
v2

(5.4.1)

with relations biaj = bjai. Using the cohomology formula in the Appendix (Section A.2), the A∞-
category AE is given by

A`(v0, v0) = Hom`(Ω2(2)[2],Ω2(2)[2]) = H`(P2,O) =

{
C if ` = 0

0 otherwise.



Chapter 5. Derived Equivalences between Vector Bundles and DG-Quivers 68

A`(v0, v1) = Hom`(Ω2(2)[2],Ω(1)[1]) = H`−1(P2,Ω(2)) =

{
C3 if ` = 1

0 otherwise.

A`(v0, v2) = Hom`(Ω2(2)[2],O) = H`−2(P2,O(1)) =

{
C3 if ` = 2

0 otherwise.

A`(v1, v0) = Hom`(Ω(1)[1],Ω2(2)[2]) = H`+1(P2, T (−2)) = 0

A`(v1, v1) = Hom`(Ω(1)[1],Ω(1)[1]) = H`(P2, T ⊗ Ω) =

{
C if ` = 0

0 otherwise.

A`(v1, v2) = Hom`(Ω(1)[1],O) = H`−1(P2, T (−1)) =

{
C3 if ` = 1

0 otherwise.

A`(v2, v0) = Hom`(O,Ω2(2)[2]) = H`+2(P2,O(−1)) = 0.

A`(v2, v1) = Hom`(O,Ω(1)[1]) = H`+1(P2,Ω(1)) = 0.

A`(v2, v2) = Hom`(O,O) = H`(P2,O) =

{
C if ` = 0

0 otherwise.

Hence the dg-quiver is given by

•
v0

p

#.
a

*4 •
v1 b

*4 •
v2

where black edges are of degree 0 and red edges are of degree −1. Next, we would like to determine
the differential. Since H0(KQ) is the classical tilting quiver in Equation (5.4.1), by a change of basis if
necessary, we may assume the differential sends

dpi = bi+1ai+2 − bi+2ai+1, dai = 0, dbi = 0.

More examples will be given in Section 6.3.

5.5 Superpotential

In this section, we construct a superpotential on the dg-tilting quiver QE in the case when the total space
of V is Calabi–Yau.

Serre Functor on Equivariant Derived Category We describe how to obtain equivariant Serre
duality on a equivariant vector bundle V , which the author learnt from Bridgeland-King-Reid [14]. Since
X is projective and G is finite, one can find a G-invariant ample line bundle OX(1) on X. Consider the
embedding i : V ↪→ P(V ⊕OX(1)). Then i∗ embeds Db

cs(CohG(V )) into Db
cs(CohGP(V ⊕OX(1))) as a

full subcategory. The Serre functor (−)⊗KP(V⊕OX(1))[dimV ] on Db
cs(CohGP(V ⊕OX(1))) then restricts

to a Serre functor (−)⊗KV [dimV ] on Db
cs(CohG(V )). In particular, if KV is trivial as a G-equivariant

vector bundle, Db
cs(CohG(V )) becomes a Calabi–Yau category.

Proposition 5.5.1. Let π : V → X be a G-equivariant vector bundle. Then KV is trivial as an
equivariant vector bundle if and only if detV = KX as an equivariant vector bundle. In particular, when
G is trivial, V is (non-compact) Calabi–Yau if and only if detV = KX .

Proof. We have a short exact sequence

0→ π∗V → TV → π∗TX → 0.

We have therefore
detTV = detπ∗V ⊗ detπ∗TX = π∗(detV ⊗K∨X).
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If detV = KX , then detTV = π∗OX which is trivial. If V is Calabi-Yau, we have

OX = OV |X = π∗(detV ⊗K∨X)|X = detV ⊗K∨X .

Hence detV = KX .

Pairing on AE . If V is noncompact Calabi–Yau, there is a pairing on AE as follows: consider the
composition map

Hom`−k(E,F ⊗ ∧kV )⊗HomdimX+k−`(F,E ⊗ ∧rankV−kV )→ HomdimX(E,E ⊗ detV )

f ⊗ g 7→ (id⊗ ∧) ◦ (g ⊗ id∧kV ) ◦ f

Since V is Calabi–Yau, detV = KX . Composing with the trace map of Serre duality

HomdimX(E,E ⊗KX)→ K,

we obtain a pairing on AE of degree dimV

A`E ⊗AdimV−`
E → K.

One might ask whether the Afin-structure on AE comes from a cyclic structure. The following theorem
answers the question:

Proposition 5.5.2. Let π : V → X be an anti-semiample vector bundle which is m-Calabi–Yau. Let
E be a V -geometric exceptional poset on Db(Coh (X)). Then AE has a cyclic structure of degree m and
hence E(A) has a superpotential, i.e., V is derived equivariant to a quiver with superpotential.

Proof. The tilting object
⊕
π∗Ei is classical since

Hom`(π∗E, π∗E) =
⊕
i,j∈I

Hom`(π∗Ei, π
∗Ej) = Hom•(Ei, Ej ⊗ S•V ∨) = 0

By [45, Prop. 3.3.1], ΛE is an Calabi–Yau algebra. Now, since ΛE is graded, by [70, Corollary 9.3,
Theorem 12.1], AE is equipped with a cyclic structure.

Examples of quivers with superpotential constructed this way will be given in Section 6.4.

5.6 Quotient Construction

In the last section, we have shown that if V → X is an anti-semiample vector bundle over a smooth
projective variety, and E is a V -geometric exceptional poset on Db(Coh (X)), then there exists a dg-
quiver QE such that Db(Coh (X)) ∼= Db

fg(QE). In this section we study the following problem: Suppose
there is a finite group G acting on X by automorphisms, and the group action lifts to an action on
the vector bundle V and the exceptional poset E . We ask if we can construct a new quiver QE/G such
that Db(CohG(V )) ∼= Db

fg(QE/G). Theorem 5.6.5 answers this affirmatively: recall the QE is the Koszul
dual of an Afin-algebra AE . The correct construction for QE/G is to apply the quotient construction
of A∞-algebras to AE and take its Koszul dual, i.e., QE/G = E(AE/G). This quotient construction
generalizes the McKay quiver.

Proposition 5.6.1. Let E = {Ei}i∈I be a finite poset of objects on Db(CohG(X)) whose underlying
objects form a full exceptional poset on Db(Coh (X)). Then E ⊗ Irr (G) = {Ei ⊗ ρ}i∈I,ρ∈Irr (G), with the

partial order Ei⊗ρ ≺ Ej⊗σ if and only if i ≺ j, is a full exceptional poset on Db(CohG(X)). Moreover,
if E is strong, then so is E ⊗ Irr (G).
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Proof. From

Homk
G(Ei ⊗ ρ,Ej ⊗ σ) = [Homk

X(Ei ⊗ ρ,Ej ⊗ σ)]G = [Homk
X(Ei, Ej)⊗Hom(ρ, σ)]G,

and Schur’s lemma, we see that each object Ei ⊗ ρ is exceptional, and that Hom•(Ei ⊗ ρ,Ej ⊗ σ)
vanishes unless i 4 j, hence E ⊗ Irr (G) is an exceptional poset. Also, if E is strong, then so is E ⊗
Irr (G). It remains to show E ⊗ Irr (G) classically generates Db(CohG(X)) if E classically generates
Db(CohG(X)). Let F ∈ D(QCoh (X)) be such that Hom•G(Ei ⊗ ρ,F) = 0 for all i ∈ I and ρ ∈ Irr (G).
Then HomG(ρ,Hom•(Ei,F)) = [ρ∗ ⊗ Hom•(Ei,F)]G = Hom•G(Ei ⊗ ρ,F) = 0. Now, decomposing
Hom•(Ei,F) into a direct sum of irreducible representations of G, we see that Hom•(Ei,F) = 0 for all
i ∈ I. Since E is full, this shows F = 0. Hence E ⊗ Irr (G) generates Db(CohG(X)).

Proposition 5.6.2. Let F be the dual sequence to E in Db(Coh (X)). Then F has a natural lift to
Db(CohG(X)) and F ⊗ Irr (G) is the dual sequence to E ⊗ Irr (G) in Db(CohG(X)).

Proof. Without loss of generality, we may assume E is an exceptional sequence. Recall that by Proposition
2.8.5, Fi = LE<iEi = LE1

· · ·LEi−1
Ei. Hence to show Fi has a natural lift to Db(CohG(X)), it suffices

to show that if any E,X ∈ Db(Coh (X)) lift to Db(CohG(X)), then so does LEX. This follows from
G-equivariance of the evaluation map Hom•(E,X)⊗ E → X. Since Fi = LE<iEi, we have a triangle

A→ Ei → Fi → A[1]

where both maps are equivariant and A ∈ 〈E<i〉. Applying Hom•(Ei,−), we see that Hom•(Fi, Fi) =
Hom•(Ei, Ei) = K is the trivial representation. Hence

Hom•G(Ei ⊗ ρ, Fj ⊗ σ) = [Hom•(Ei, Fj)⊗Hom(ρ, σ)]G

=

{
HomG(ρ, σ) if i = j

0 otherwise,

=

{
K if i = j and ρ = σ

0 otherwise.

By uniqueness of dual exceptional sequence in Proposition 2.8.5, F ⊗ Irr (G) is the dual exceptional
sequence to E ⊗ Irr (G).

Corollary 5.6.3. Let E be a finite poset of objects in Db(CohG(V )). Suppose the underlying objects of
E in Db(Coh (V )) form a V -geometric full exceptional poset on Db(Coh (V )), then E ⊗ Irr (G) is a full
V -geometric exceptional poset on Db(CohG(V )).

Proof. It suffices to show Hom`
G(Ei⊗ρ,Ej⊗σ⊗SkV ∗) vanishes for all ` ≥ 1, k ≥ 0 and all ρ, σ ∈ Irr (G).

This follows immediately since

Hom`
G(Ei ⊗ ρ,Ej ⊗ σ ⊗ SkV ∗) = [Hom(ρ, σ)⊗Hom`

X(Ei, Ej ⊗ SkV ∗)]G.

Proposition 5.6.4. Let π : V → X be a G-equivariant vector bundle and E be a finite poset of objects
in Db(CohG(X)) such that the underlying objects in Db(Coh (X)) form a full exceptional poset. Then
there exists an Afin-structure on ΛE such that

1. there is an equivalence Φ : Db(Coh (V )) ∼= Per∞(Λop
E ).

2. If M,N ∈ Db(Coh (V )) lift to Db(CohG(V )), then G acts on Φ(M) and Φ(N) and the isomorphism
Φ : Hom(M,N) ∼= Hom(Φ(M),Φ(N)) is equivariant.

3. The finite group G acts on ΛE by strict A∞-isomorphisms, and there is a derived equivalence
Db(CohG(V )) ∼= Per∞((ΛE/G)op).
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4. If E is V -geometric and V ∨ is semiample, there is an equivalence Db(CohG(V )) ∼= Db
fg((ΛE/G)op).

Moreover, this equivalence restricts to an equivalence Db
cs(CohG(V )) ∼= Db

fd((ΛE/G)op).

Proof. Statement 1 is the content of Proposition 5.2.4. For statement 2, recall that in Theorem 5.2.4,
we constructed a dg-algebra R = Hom(IE , IE ⊗ S•V ∨), IE is a G-equivariant injective resolution for E,
and an equivalence Ψ : Db(Coh (V )) ∼= Per(Rop) by setting

Ψ(M) = Hom(IE , π∗IM )

Ψ(M
φ→ N) = (Hom(IE , π∗IM )

π∗Iφ→ Hom(IE , π∗IN )),

where IM and IN are G-equivariant injective resolution for M and N respectively. Since IE and IM
are both equipped with a G-linearization, Ψ(M) = Hom(IE , π∗IM ) is equipped with a G-action. We
will choose all maps equivariantly: for example, we will choose the lifting IλMg to be λIMg etc. For any

φ ∈ Hom(M,N),

Ψ(g · (M φ−→ N)) = Ψ(M
λM
g−1

−−−→ (g−1)∗M
(g−1)∗φ−−−−−→ (g−1)∗N

(λN
g−1 )−1

−−−−−−→ N)

sends the map h ∈ Hom(IE , π∗IM ) to the morphism in Hom(IE , π∗IN ) given by

IE
h−→ π∗IM

π∗IλM
g−1

−−−−−→ π∗I(g−1)∗M

π∗I(g−1)∗φ−−−−−−−→ π∗I(g−1)∗N

π∗I(λN
g−1

)−1

−−−−−−−−→ π∗IN .

On the other hand, g ·Ψ(M
φ−→ N) sends h ∈ Hom(IE , π∗IM ) to the morphism in Hom(IE , π∗IN ) given

by

g · (IE
g−1·h−−−−→ π∗IM

π∗Iφ−−−→ π∗IN ) = g · (IE
IλEg−−→ g∗IE

g∗h−−→ g∗π∗IM
Iπ∗(λMg )−1

−−−−−−−→ π∗IM
π∗Iφ−−−→ π∗IN )

= (IE

I
λE
g−1

−−−−→ (g−1)∗IE
(g−1)∗IλEg−−−−−−−→ IE

h−→ π∗IM
(g−1)∗I(λMg )−1

−−−−−−−−−−→ (g−1)∗π∗IM

(g−1)∗π∗Iφ−−−−−−−→ (g−1)∗π∗IN
Iπ∗(λNg )−1

−−−−−−−→ π∗IN )

= (IE
h−→ π∗IM

(g−1)∗Iπ∗(λMg )−1

−−−−−−−−−−−→ (g−1)∗π∗IM
(g−1)∗π∗Iφ−−−−−−−→ (g−1)∗π∗IN

Iπ∗(λNg )−1

−−−−−−−→ π∗IN )

= (IE
h−→ π∗IM

π∗IλM
g−1

−−−−−→ π∗I(g−1)∗M

π∗I(g−1)∗φ−−−−−−−→ π∗I(g−1)∗N

π∗I(λN
g−1

)−1

−−−−−−−−→ π∗IN .)

since everything is equivariant. Hence the isomorphism Ψ : Hom(M,N) ∼= Hom(Ψ(M),Ψ(N)) is equiv-
ariant. Taking cohomology, we arrive at statement 2. For statement 3, choose G-invariant injective
resolution IEi for each Ei. Then for any ρ ∈ Irr (G), IEi ⊗ ρ is an injective resolution for Ei ⊗ ρ. Write
IE =

⊕
i∈I IEi and let R = Hom(IE , IE ⊗ S•V ∨). Then

R/G =
⊕

ρ,σ∈Irr (G)

HomG(IE ⊗ ρ, IE ⊗ S•V ∨ ⊗ σ)

and by Theorem 5.2.4 and Corollary 5.6.3, there is an equivalence Db(CohG(V )) ∼= Per((R/G)op).
By Proposition 3.5.4, we can choose minimal models of R/G and R such that there are A∞-quasi-
isomorphisms

R/G ∼= H•(R/G) ∼= H•(R)/G = ΛE/G

and we have the desired equivalence. For statement 4, by Proposition 5.2.9, ΛE is an algebra. It suffices
to show ΛE/G has finite global dimension, for then Per((ΛE/G)op) = Db((ΛE/G)op). By Proposition
5.2.9, ΛE has finite global dimension. By [3, III Theorem 4.4], the global dimension of Λop

E #G is the same
as that of Λop

E , which is the same as that of ΛE , hence also finite. Now by Theorem 3.5.2 and Proposition
3.5.8, (Λop

E #G)op and ΛE/G are Morita equivalent, and hence have the same global dimension. Thus
ΛE/G has finite global dimension.
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G-action on A∞-category. We would like to show G acts on

AE =
⊕
i,j∈I

⊕
`∈Z

rankV⊕
k=0

Hom`−k
G (Fi, Fj ⊗ ∧kV )

by strict A∞-isomorphisms. Recall the Afin-structure on AE comes from Ext•Λ(S, S). Since by Proposition
5.6.4, the isomorphism AE ∼= Hom•Λ(S, S) = Ext•(S, S) is equivariant, it suffices to show that G acts on
Ext•Λ(S, S) by strict A∞-isomorphisms. Now, G acts on ΛE by isomorphisms. By the construction of the
Koszul functor, G acts on E(ΛE) by dg-algebra isomorphisms. By homology perturbation Proposition
3.5.4, G acts on H•(E(ΛE)) by strict A∞-isomorphisms. Since H•(E(ΛE)) ∼= Ext•Λ(S, S) equivariantly,
we are done.

Theorem 5.6.5. Let X be a smooth G-variety and π : V → X be a G-equivariant anti-semiample
vector bundle. Suppose E is a finite set of objects in Db(CohG(X)) such that the underlying objects
form a full exceptional poset on Db(Coh (X)). Then G acts on AE by strict Afin-isomorphisms and
Db(CohG(V )) = Db

fg(E(AE/G)op).

Proof. By Proposition 5.6.4, Db(CohG(V )) ∼= Db
fg((ΛE/G)op). Now by Corollary 3.5.9 and Proposition

3.5.4, H•(E(AE/G)) = H•(E(AE))/G = ΛE/G. Hence E(AE/G) is quasi-isomorphic to ΛE/G and we
have Db(CohG(V )) = Db

fg(E(AE/G)op).

Examples illustrating this section will be given in Section 6.5.

5.7 Product Construction

In this section we study the following problem: Suppose we have vector bundles πV : V → X and
πW : W → Y , together with exceptional poset E on X and F on Y which are respectively V -geometric
and W -geometric. Then we can construct dg-quivers QE = E(AE) and QF = E(AF ) which are derived
equivalent to V and W respectively. We ask if there is a product construction of dg-quivers such that
the product vector bundle πV ×πW : V ×W → X ×Y is derived equivalent to QE ×QF . Theorem 5.7.3
answers this question. The correct product construction should be applied at the A∞-algebra level: We
should set QE ×QF = E(AE ⊗AF ).

Note in the following that the projection map from X × Y to both X and Y are flat, hence pullback
by both maps are exact.

Proposition 5.7.1. Let X and Y be smooth projective varieties and E = {Ei}i∈I and F = {Fj}j∈J be
full exceptional posets on X and Y respectively. Then E�LF = {Ei�LFj}I×J is a full exceptional poset
on X × Y , where the partial order on I × J is given by (i, j) 4 (i′, j′) if and only if i 4 i′ and j 4 j′. If
both E and F are strong, then so is E �L F .

Proof. Using the Künneth formula

RHom(Ei �
L Fj , Ei′ �

L Fj′) = RΓ (X × Y,RHom(Ei �
L Fj , Ei′ �

L Fj′))

= RΓ (X × Y, (E∨i ⊗L Ei′)
∨ �L (F∨j ⊗L Ej′))

= RΓ (X,E∨i ⊗L Ei′))⊗ RΓ (Y, F∨j ⊗L Fj′)

= RΓ (X,RHom(E∨i , Ei′))⊗ RΓ (Y,RHom(F∨j , Fj′))

= RHom(Ei, Ei′)⊗ RHom(Fj , Fj′),

we have
Hom`

X×Y (Ei �
L Fj , Ei′ �

L Fj′) =
⊕
p+q=`

Homp
X(Ei, Ei′)⊗Homq

Y (Fj , Fj′).

Hence E�LF is an exceptional poset. Also, if both E and F are strong, then so is E�LF . Next, we show
E �L F generates D(QCoh (X)). The following proof is given by Bondal and van den Bergh [9, Lemma
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3.4.1]. Write E =
⊕

i∈I Ei and F =
⊕

j∈J Fj . Let A ∈ D(QCoh (X)) be such that Hom•(E�LF,A) = 0.
Let πX and πY be projections of X ×Y on the first and second factor. We have a commutative diagram

X × Y
πX

{{

πY

##
X

##

Y

{{
SpecK

Since

0 = RHom(E �L F,A) = RHom(π∗XE,RHom(π∗Y F,A))) = RHom(E,RπX∗RHom(π∗Y F,A))

and E generates D(QCoh (X)), we have RπX∗RHom(π∗Y F,A) = 0. This implies that

0 = RΓ (X,RπX∗RHom(π∗Y F,A)) = RHom(π∗Y F,A) = RHom(F,RπY ∗A)

and hence RπY ∗A = 0 since F generates D(QCoh (Y )). Now, from

RΓ (X × Y,A) = RΓ (Y,RπY ∗A) = 0,

we conclude A = 0 and hence E �L F generates D(QCoh (X × Y )).

Proposition 5.7.2. Let E and F be full exceptional posets and M and N be their dual exceptional
posets. Then M�L N is the dual exceptional poset of E �L F .

Proof. This follows from the Kunneth theorem

RHom(Ei �
L Fj ,Mk �

L N`) = RHom(Ei,Mk)⊗ RHom(Fj , N`).

Theorem 5.7.3. Let πV : V → X and πW : W → Y be vector bundles. Let E be a V -geometric full
exceptional poset on Db(Coh (X)) and F be a W -geometric full exceptional poset on Y . Then E � F is
V ×W -geometric, the tensor product A∞-structure on AE ⊗AF is Afin, and there is an equivalence

Db(Coh (V ×W )) ∼= Db
fg(E(AE ⊗AF )op).

Proof. Since

Hom•(Ei �
L Fj , Ei′ �

L Fj′ ⊗ S•(V ×W )∨) = Hom•(Ei �
L Fj , Ei′ �

L Fj′ ⊗ S•V ∨ � S•W∨)

= Hom•(Ei, Ei′ ⊗ S•V ∨)⊗Hom•(Fj , Fj′ ⊗ S•W∨)

we conclude that E � F is V ×W -geometric and ΛE�F = ΛE ⊗ ΛF as graded algebras.
By Lemma 5.3.5, ΛE , ΛF and ΛE�F = ΛE ⊗ΛF are all locally finite. Hence by Proposition 3.6.1, we

have a chain of A∞-quasi-isomorphisms

AE�F ∼= H•(E(ΛE�F )) ∼= H•(E(ΛE ⊗ ΛF )) ∼= H•(E(ΛE))⊗H•(E(ΛF )) = AE ⊗AF .

To see that the tensor product A∞-structure on AE⊗AF is Afin, observe that since AE⊗AF is isomorphic
to AE�F as vector spaces, AE⊗AF inherits the same Adams grading on AE�F (which in turns is inherited
from the algebra Ext•ΛE�F (S, S)). Since the tensor product A∞-structure is given by a finite sum of tensor
products and compositions of the two A∞-structures, the tensor product A∞-structures also preserves
the Adams grading and by Lemma 5.3.7, the tensor product A∞-structure is also Afin.

Examples illustrating this theorem will be given in Section 6.4.
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Examples

This chapter is a list of examples illustrating theorems in Chapter 5.

Section 6.1 contains examples illustrating Theorem 5.2.9 which produces quivers with relations derived
equivalent to total spaces of vector bundles.

Section 6.2 introduces a class of algebras called Koszul algebras whose dg-resolution is particularly
easy to describe. We also gives some examples of vector bundles whose classical tilting algebras are
Koszul.

Section 6.3 contains some worked out examples illustrating Theorem 5.4.5, constructing derived
equivalences between total spaces of vector bundles and dg-quivers, and if the total space of vector bundles
are Calabi–Yau, quivers with superpotential. These examples are calculated by first determining the
classical tilting algebras, then try to work out the dg-resolutions to determine the dg-quiver. In Calabi–
Yau examples of dimension no greater than 4, there are enough constraints and hence the classical tilting
algebras determine their dg-resolutions.

Section 6.4 contains a list of examples by applying the product construction in Theorem 5.7.3. Since
the general formulae for the cyclic A∞-tensor product defined by Amorim and Tu [2] are not known, we
only work with the case when one of the A∞-algebras is an honest algebra.

Section 6.5 contains a list of examples illustrating the quotient construction in Theorem 5.6.5.
Unless otherwise specified, all cohomological formulae can be found in the Appendix.

6.1 Classical Tilting Quivers

Example 6.1.1. Take X = Pn, the full exceptional collection E = (O,O(1), · · · ,O(n)) and V = T∨Pn .
Write W = Cn+1. The Euler exact sequence

0→ O →W (1)→ TPn → 0

induces a short exact sequence via Koszul resolution [35, 12.12] for all k ≥ 1

0→ Sk−1W (k − 1)→ SkW (k)→ SkTPn → 0. (6.1.1)

Tensoring the above sequence with O(j − i) and using the vanishing Hi(Pn,O(p)) = 0 whenever i ≥ 1
and p ≥ −n, we conclude that for all k ≥ 0, ` ≥ 1 and 0 ≤ i, j ≤ n

Ext`Pn(O(i),O(j)⊗ SkTPn) = H`(Pn, SkTPn(j − i)) = 0.

Hence E is T∨Pn -geometric. Since TPn is ample, by Corollary 5.2.9, we have a derived equivalence
Db(Coh (T∨Pn)) ∼= Db(Λop

E ), where

ΛE =

n⊕
i,j=0

Hom(O(i),O(j)⊗ S•TPn).

74
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We claim that ΛE is isomorphic to the path algebra of the quiver

•
v0

a10

��
a1n

...
**
•
v1

b10jj

b1n

...
__

a2n

...
**

a20

��

•
v2

b20jj

b2n

...
__

· · ·· · ·· · · •
vn−1

an0

��
ann

...
++
•
vn
.bn0kk

bnn

...cc

with relations
n∑
j=0

aijbij = 0
n∑
j=0

bijaij = 0

ai+1 kaij = ai+1 jaik bi j+1bi+1 j = bi jbi+1 j+1

bi+1 jaik = ai−1 kbij .

First, we show that ΛE is generated as a

n⊕
i=0

Hom(O(i),O(i)) algebra by the vector space

U =

n⊕
i=1

Hom(O(i− 1),O(i))⊕Hom(O(i),O(i− 1)⊗ TPn).

We will need the following lemma.

Lemma 6.1.2. The multiplication map

H0(Pn, SkTPn(`))⊗H0(Pn, Sk
′
TPn(`′))→ H0(Pn, Sk+k′TPn(`+ `′))

is surjective if k + ` ≥ 0 and k′ + `′ ≥ 0.

Proof. Twisting the short exact sequence (6.1.1) by O(`), we get a short exact sequence

0→ Sk−1W (k − 1 + `)→ SkW (k + `)→ SkTPn(`)→ 0.

By naturality, we have the following commutative diagram

H0(Pn, SkW (k + `))⊗H0(Pn, Sk′W (k′ + `′)) //

��

H0(Pn, Sk+k′W (k + k′ + `+ `′))

��
H0(Pn, SkTPn(`))⊗H0(Pn, Sk′TPn(`′)) // H0(Pn, Sk+k′TPn(`+ `′)).

The top horizontal map is surjective since both

SkW ⊗ Sk
′
W → Sk+k′W and H0(Pn,O(k + `))⊗H0(Pn,O(k′ + `′))→ H0(Pn,O(k + k′ + `+ `′))

are surjective maps. The two vertical maps are also surjective since, as k + ` ≥ 0,

H1(Pn, Sk−1W (k − 1 + `)) = Sk−1W ⊗H1(Pn,O(k − 1 + `)) = 0.

Hence the bottom horizontal map is also surjective.

With the lemma, we can show that ΛE is generated by U . We separate the problem into three cases.

Case 1 i = j. By the lemma,

H0(Pn,O(1))⊗H0(Pn, TPn(−1))→ H0(Pn, TPn)

is surjective, and hence so is the multiplication map

Hom(O(i),O(i+ 1))⊗Hom(O(i+ 1), TPn(−1))→ Hom(O(i),O(i)⊗ TPn).
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Again by the lemma, the map

H0(Pn, SkTPn)⊗H0(Pn, TPn)→ H0(Pn, Sk+1TPn)

is surjective, and hence so is

Hom(O(i),O(i)⊗ SkTPn)⊗Hom(O(i),O(i)⊗ TPn)→ Hom(O(i),O(i)⊗ Sk+1TPn).

This shows the vector subspace Hom(O(i),O(i)⊗ SkTPn) is generated by U .

Case 2 i < j. Surjectivity of

H0(Pn, SkTPn)⊗H0(Pn,O(j − i))→ H0(Pn, SkTPn(j − i))

implies surjectivity of

Hom(O(i),O(j))⊗Hom(O(j),O(j)⊗ SkTPn)→ Hom(O(i),O(j)⊗ SkTPn).

Since both Hom(O(i),O(j)) and Hom(O(j),O(j)⊗ SkTPn) are generated by U , so is Hom(O(i),O(j)⊗
SkTPn).

Case 3 i > j. Since

Hom(O(i),O(j)⊗ SkT∨Pn) = H0(Pn, SkT∨Pn(j − i)) = 0,

we may assume k ≥ i− j. If k = i− j, surjectivity of

H0(Pn, Sk−1TPn(−k + 1))⊗H0(Pn, TPn(−1))→ H0(Pn, SkTPn(−k))

implies surjectivity of

Hom(O(i),O(j + 1)⊗ SkTPn)⊗Hom(O(j + 1),O(j)⊗ TPn)→ Hom(O(i),O(j)⊗ SkTPn).

Hence Hom(O(i),O(j)⊗ SkTPn) is generated by U . For general k ≥ i− j, surjectivity of

H0(Pn, Si−jTPn(j − i))⊗H0(Pn, Sk−i+jTPn)→ H0(Pn, SkTPn ⊗O(j − i))

implies surjectivity of

Hom(O(i),O(j)⊗ Si−jTPn)⊗Hom(O(j),O(j)⊗ Sk−i+jTPn)→ Hom(O(i),O(j)⊗ SkTPn).

This implies Hom(O(i),O(j)⊗ SkTPn) is generated by U .

Example 6.1.3. Let us look at the special case X = P2 and V = T∨P2 , which is Calabi–Yau 4. The
tilting quiver becomes

•
v0

a0

**a1 **
a2

**
•
v1

b0jj
b1

jj

b2

jj

c0
**c1 **

c2
**
•
v2

d0jj
d1

jj

d2

jj

with relations
2∑
j=0

ajbj = 0
2∑
j=0

bjaj = 0

2∑
j=0

cjdj = 0
2∑
j=0

djcj = 0

cj+1aj = cjaj+1 bj+1dj = bjdj+1

ajbk = dkcj .

The relations listed above are not all independent: the relations ajbk = dkcj and
2∑
j=0

ajbj = 0 together

imply
2∑
j=0

djcj = 0.
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Example 6.1.4. Take X = Pn, the full strongly exceptional collection E = (O,O(1), · · · ,O(n)) and

V =
p⊕

m=1
O(−am), where 0 ≤ a1 ≤ · · · ≤ am. Since

SkV ∨ =
⊕

∑
km=k
km≥0

O

(
p∑

m=1

kmam

)
for all ` ≥ 1, k ≥ 0 and 1 ≤ i, j ≤ n,

the exceptional collection E is V -geometric:

Ext`(O(i),O(j)⊗ SkV ∨) =
⊕

∑
km=k
km≥0

H`(Pn,O(j − i+

p∑
m=1

kmam)) = 0.

Since am ≥ 0, V ∨ is globally generated. Hence by Corollary 5.2.9, we have a derived equivalence
Db(Coh (V )) ∼= Db

fg(Λ
op
E ), where

ΛE =

n⊕
i,j=0

Hom(O(i),O(j)⊗ S•V ∨)

=
⊕

k1,...,km≥0

n⊕
i,j=0

Hom

(
O(i),O(j)⊗O

(
p∑

m=1

kmam

))
.

Note that ΛE is Z×Zp-graded by (j− i, k1, . . . , kp). Now, let q be such that a1 ≤ · · · ≤ aq ≤ n < aq+1 ≤

· · · ≤ ap. We claim that ΛE is generated as a
n⊕
i=1

Hom(O(i),O(i)) algebra by the vector subspace

U =

n⊕
i=1

Hom(O(i−1),O(i))⊕
p⊕

m=q+1

Hom(O(n),O⊗O(am))⊕
q⊕

m=1

n⊕
j=am

Hom(O(j),O(j−am)⊗O(am)).

First, observe that the multiplication map,

Hom(O(i),O(j))⊗
p⊗

m=1

Hom(O(j),O(j)⊗O(am))⊗km → Hom

(
O(i),O(j)⊗O(

p∑
m=1

kmam)

)
which corresponds to multiplication of homogeneous polynomials, is surjective.

Now, Hom(O(i),O(j)) is generated by
⊕n

i=1 Hom(O(i− 1),O(i)). For am ≥ n, the map

Hom(O(j),O(n))⊗Hom(O(n),O ⊗O(a))→ Hom(O(j),O(j)⊗O(am))

is surjective, and for am ≤ n, the map

Hom(O(j),O(j − a)⊗O(a))⊗Hom(O(j − a),O(a))→ Hom(O(j),O(j)⊗O(a))

is surjective. Hence ΛE is generated by U .

Example 6.1.5. Let us consider the special case V = OPn(−a) over Pn, where a ≥ 0.

Case 1 a ≥ n. The tilting quiver is

•
v0

a10

��
a1n

...
**
•
v1

a2n

...
**

a20

��

•
v2

· · ·· · ·· · · •
vn−1

an0

��
ann

...
**
•
vn

b1

ii

b
(an)

...

ee

with relations ai+1 j+1aij = ai+1 jai j+1 The vertex vi correspond to O(i), the arrows aij corresponds to
Hom(O(i),O(i+ 1)), and the arrows bi correspond to Hom(O(n),O ⊗O(a)).
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Case 2 0 ≤ a ≤ n. The tilting quiver is

•
v0

a10

��
a1n

...
**
•
v1

· · ·· · ·· · · •
va

a10

��
a1n

... ++

ba

ff •
va+1

ba+1

ff · · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · · •
vn−1

an0

��
ann

...
**

bn−1

pp

•
vn
,

bn
pp

b2a

cc

b2a+1

dd

that is, n + 1 arrows from vi to vi+1 and one arrow from vi to vi−a. The vertex vi correspond to O(i),
the arrows aij corresponds to Hom(O(i),O(i + 1)), and the arrows bi correspond to Hom(O(i),O(i −
a)⊗O(a)).

The general case V =
p⊕

m=1
O(−am) is then given by the superposition of the tilting quivers corre-

sponding to O(−a1), · · · ,O(−ap).

Example 6.1.6. Consider the special case V = OPn(−n− 1) = KPn . The tilting quiver becomes

•
v0

a10

��
a1n

...
**
•
v1

a2n

...
**

a20

��

•
v2

· · ·· · ·· · · •
vn−1

an0

��
ann

...
**
•
vn

an+1 0

ii

an+1n

...

ee

with relations ai+1 kaij = ai+1 jaik.

Example 6.1.7. Consider the Hirzebruch surface Fr = P(OP1 ⊕OP1(r)). It is a toric surface defined by
the complete fan in R2 given by u1 = (−1, r), u2 = (0, 1), u3 = (1, 0), u4 = (0,−1). Denote by Di the
divisor defined by ui. Then D1 and D3 are both linearly equivalent to the divisor defined by the fiber of
the projection Fr → P1. The divisor D2 is the exceptional divisor P(O(n)) and D2 is linearly equivalent
to the divisor defined by P(O). We have the linear relation O(D1) = O(D3) and O(D2) = O(D4− rD3).
The picard group Pic (Fr) is thus the free abelian group generated by O(D3) and O(D4). A line bundle
O(a3, a4) = O(a3D3 + a4D4) is globally generated (resp. ample) if and only if ai ≥ 0 (resp. ai > 0) for
i = 3, 4. From the generalized Euler sequence

0→ O⊕2 →
4⊕
i=1

O(Di)→ TFr → 0,

we see that
K−1

Fr = O(D1 +D2 +D3 +D4) = O(2− r, 2).

For all s ≥ −1,
(O,O(1, 0),O(s+ 1, 1),O(s+ 2, 1))

is a strongly full exceptional sequence [33]. In particular, when s = −1, we have the strongly full
exceptional sequence

E = (O,O(1, 0),O(0, 1),O(1, 1)).

We claim that E is geometric with respect to the vector bundle V =
p⊕

m=1
O(−am,−bm), where

am, bm ≥ 0. In particular, it is geometric with respect to KF0
, KF1

and KF2
. Indeed, the vanishing of

higher Ext groups are reduced to the following vanishing of cohomology of line bundles.

Lemma 6.1.8. For ` ≥ 1, H`(Fr,O(a, b)) = 0 whenever a, b ≥ −1.

Proof. The case a, b ≥ 0 follows from Demazure vanishing theorem [18, Theorem 9.2.3]. The case
−1 ≤ a, b ≤ 0 follows from Batyrev-Borisov vanishing theorem [18, Theorem 9.2.7].
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We will draw explicitly the tilting quiver of V = O(−1,−1). It is given by

•
v0

a1

**
a2

**
c 88 •

v1
b1jj

b2

jj
dff

Example 6.1.9. In [38], Kapranov constructed a strongly full exceptional sequence for Grassmannians.
Let G = Gr(k, n) denote the Grassmannian of k-dimensional subspace in a complex vector space W of
dimension n. Denote by U the tautological vector bundle of rank k on G and by Yk,n the set of Young
diagrams inscribed in a rectangle of size k × (n − k). Note that Yk,n is partially ordered by inclusion.
The set E = {ΣλU∨ : λ ∈ Yk,n} is a full strongly exceptional collection on G. In the case G = Gr(2, 4),
the sequence (O, U∨,Σ2,0U∨,Σ1,1U∨,Σ2,1U∨,Σ2,2U∨) = (O, U∨, S2U∨,O(1), U∨(1),O(2)) is full and
strongly exceptional, with tilting quiver

•
v2

d

""""""""•
v0

a //////// •v1

b

<< << << <<

""""""
c

""

•
v4

a // ////// •v5

•
v3

<< << <<

e

<<

Example 6.1.10. Take the vector bundle V =
m⊕
i=1

O(−ai) over Gr(k, n), where ai ≥ 0. Since O(1)

defines the plucker embedding, it is ample. Hence V ∨ is globally generated. To calculate the Ext group,
we need

Lemma 6.1.11. If n− k ≥ α1 ≥ · · · ≥ 0 and β1 ≥ · · · ≥ βk ≥ 0, then for all ` ≥ 1,

Ext`(ΣαU∨,ΣβU∨) = 0.

Proof. Let ᾱ = (α1 − αn, · · · , α1 − α2, 0). Then ΣαU ⊗ ΣβU∨ = ΣᾱU∨ ⊗ ΣβU∨ ⊗ O(−α1). By the
Littlewood-Richardson rule, ΣᾱU∨ ⊗ ΣβU∨ can be decomposed into a direct sum of vector bundles of
the form ΣνU∨, where νi ≥ ᾱi = α1 − αk+1−i. Now, for any such ΣνU∨, we have ΣνU∨ ⊗ O(−α1) =
Σ(ν1−α1,··· ,νn−α1)U∨. Since νi−α1 ≥ −(n−k), by [38, Lemma 3.2], H`(Gr(k, n),Σ(ν1−α1,··· ,νn−α1)U∨) =
0 for all ` ≥ 1 and we get the required vanishing.

Then

Ext`(ΣαU∨,ΣβU∨ ⊗ S•V ∨) =
⊕

k1,··· ,km≥0

Ext`(ΣαU∨,Σ(β1+
∑
kiai,··· ,βk+

∑
kiai)U∨) = 0.

Hence E = {Σλ : λ ∈ Yk,n} is V -geometric. In particular, it is compatible with the canonical bundle
KGr(k,n) = O(−n).

6.2 Koszul Algebras

In section 5.4, we produced an Afin-structure on A = Ext•Λ(S, S) such that E(A) is a quasi-free model of
Λ. This Afin-structure is not readily known in general. In this section, we introduce a class of algebras,
called Koszul algebras, whose Afin-structure on A are readily computable. A good introduction is given
by Mart́ınez-Villa [56].

Definition 6.2.1. A Z-graded algebra Λ over a semisimple algebra S = Kr is called Koszul if there is
a linear graded projective resolution of S, i.e., an exact sequence of Λ-modules

· · · → Pn+1 → Pn → · · · → P1 → P0 → S → 0,

where each Pi is projective and concentrated in degree i.
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It is known that Koszul algebras are always quadratic, so Koszulness is in fact a rather restrictive
property. Below are the main examples of vector bundles producing Koszul algebras we have in mind:

Proposition 6.2.2. Let X be a smooth projective variety whose K−1
X is semi-ample. Let E be a KX-

geometric full exceptional collection on Db(Coh (X)). If length E = dimX + 1, then ΛE is Koszul.

Proof. By Proposition 2.8.3, length E = rank Db(Coh (X)). The rest follows from [15, Proposition 4.2].

Remark 6.2.3. Examples of varieties with full exceptional collection E whose length E = dimX + 1
include projective spaces, odd-dimensional quadrics [39] and certain Fano threefolds [57].

Koszul algebras are stable under taking tensor products and quotients.

Proposition 6.2.4. 1. If both Λ and Λ′ are Koszul, then so is Λ⊗ Λ′.

2. Λop is Koszul.

3. Λ#G is Koszul.

4. Λ/G is Koszul.

Proof. For the first claim, one takes the total complex of the tensor product of the two linear graded
resolutions. The proof for the second statement can be found in Woodcock’s paper [73]. For the third
claim, one smashes the whole linear resolution of S by G. Since tensoring by KG is an exact functor,
this produces a linear resolution of S⊗KG. The last follows from Corollary 3.5.8 by applying the Morita
functor in Theorem 3.5.2 to the linear resolution of that of (Λop#G)op to get a linear resolution for Λ/G.

As a result, if vector bundles V and W produce Koszul algebras, then so does V �W . If V is equipped
with a G-action making it G-equivariant, then its corresponding tilting algebra is also Koszul.

Here is the main proposition which makes the Afin-structure on Ext•Λ(S, S) simple.

Proposition 6.2.5. If Λ is a Koszul algebra, then any A∞-structure on Ext•Λ(S, S) which preserve the
grading induced by Λ is an ordinary algebra structure, i.e., mn = 0 for n 6= 2.

Proof. Each component of ExtiΛ(S, S) is a Z-graded Λ-module. By the definition of Koszulness, ExtiΛ(S, S)
is concentrated in degree i, i.e., ExtiΛ(S, S) = [ExtiΛ(S, S)]i. Since by assumption mn preserve the grading
induced by Λ, it must map

mn : [Exti1Λ (S, S)]i1 ⊗ · · · ⊗ [ExtinΛ (S, S)]in → [Exti1+···in+2−n
Λ (S, S)]i1+···+in .

Hence mn must vanish since the right hand side is zero unless n = 2.

Now, we can determine the Afin-structure in Theorem 5.4.5.

Theorem 6.2.6. Let X be a smooth projective variety and π : V → X be an anti-semiample vector bun-
dle. Suppose E = {Ei}i∈I is a full V -geometric exceptional poset on Db(Coh (X)) with dual exceptional
poset F = {Fi}i∈Iop . If the classical tilting algebra

ΛE =
⊕
i,j∈I

Hom(Ei, Ej ⊗ S•V ∨)

is Koszul, then the Afin-algebra

A`E =
⊕
i,j∈I

rankV⊕
k=0

Hom`−k(Fi, Fj ⊗ ∧kV )

given in Theorem 5.4.5 is an ordinary algebra, i.e., mn = 0 for n 6= 2, with m2 given by composition of
maps.



Chapter 6. Examples 81

Proof. This follows from Theorem 5.4.5 and Proposition 6.2.5.

We can describe the algebra AE ∼= Ext•Λ(S, S) more explicitly. Recall that we can write Λ as a path
algebra with relations KQ/I. If Λ is Koszul, then I is homogeneous and is generated by I2 = I ∩ (KQ)2.
Define a pairing 〈−,−〉 : (KQ)2 × (KQop)2 → K by

〈a, bop〉 =

{
1 if a = b

0 if a 6= b

where a and b are paths of length 2 in Q. The orthogonal subspace of I2 is defined to be

I⊥2 = {b ∈ (KQop)2 : 〈a, b〉 = 0 for all a ∈ I2}.

We have the following

Theorem 6.2.7 ([29] Theorem 2.2). Let KQ/I be a Koszul algebra. Then the Yoneda algebra Ext•Λ(S, S)
of Λ is isomorphic to KQop/〈I⊥2 〉.

Example 6.2.8. Let Q be the quiver with one vertex and n loops. Then KQ = K〈x1, . . . , xn〉. Let I be
the ideal generated by elements in the form xixj −xjxi for all 1 ≤ i, j ≤ n. Then KQ/I = K[x1, . . . , xn].
The orthogonal subspace Iop

2 is spanned by elements in the form xixj + xjxi and x2
i for all 1 ≤ i, j ≤ n.

Hence KQop/〈Iop
2 〉 =

∧•Kn. The standard Koszul resolution

0→ K[x1, . . . , xn]→ K[x1, . . . , xn]⊗Kn → · · · → K[x1, . . . , xn]⊗
n∧
Kn → K,

where the first n maps are given by wedging with the vector (x1, . . . , xn) and the last map given by
evaluation of polynomials at zero, shows that K[x1, . . . , xn] is Koszul. Hence Ext•KQ/I(K,K) =

∧•Kn.
The A∞-structure is given by mi = 0 for i 6= 2, and m2 by the Yoneda product, which is the wedge
product on ∧•Kn.

6.3 DG-Tilting Quivers

In this section, we compute some examples illustrating Theorem 5.4.5 and Proposition 5.5.2. All formulae
for cohomologies can be found in the Appendix A.

Example 6.3.1. Let X = SpecK and V = Kn. Then E = OX is a V -geometric exceptional collection
on Db(Coh (SpecK)). The classical tilting algebra is given by ΛE = K[x1, . . . , xn] and the classical tilting
quiver is given by one vertex with n loops xi, with relations given by xixj = xjxi. By Example 6.2.8,

A`E =
∧`Kn, with m2 given by the wedge product and all other mn = 0. Below is the quasi-free dg-quiver

derived equivalent to Kn for n = 1, 2, 3.
When n = 1, the quasi-free dg-quiver is given by

• xdd

with deg x = 0 and dx = 0.
When n = 2, we have

• x,y`ht ::

with deg x = deg y = 0, deg t = −1, dx = dy = 0 and dt = xy − yx.
When n = 3, we have

• x,y,z\jx∗,y∗,z∗ 4B

t

��

with deg x = deg y = deg z = 0, deg x∗ = deg y∗ = deg z∗ = −1, deg t = −2 and dx = dy = dz = 0,
dx∗ = yz − zy, dy∗ = zx − xz, dz∗ = xy − yx, and dt = [x, x∗] + [y, y∗] + [z, z∗]. This dg-quiver has a
superpotential given by Φ = xyz − xzy.
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When n = 4, we have

• 4©
x

dd4©
x∗ $$

6©r

DD

t

��

where the black edges are of degree 0, red edges are of degree −1, blue edges are of degree −2 and brown
edges are of degree −3. We will denote the four degree 0 (resp. degree −2) edges by xi (resp. by x∗i ),
where 1 ≤ i ≤ 4 and the six degree −1 edges by rij where 1 ≤ i < j < 4. If i > j, by rij we will mean
−rji. The pairing of degree −1 edges is then given by

〈rij , rk`〉 = εijk` =


1 if (i, j, k, `) is an even permutation of (1, 2, 3, 4)

−1 if (i, j, k, `) is an odd permutation of (1, 2, 3, 4)

0 otherwise,

with superpotential given by

Φ =
∑

εijk`(xixj − xjxi)rk`.

Example 6.3.2. Consider X = P1 and V = KP1 which is Calabi–Yau 2. Take the exceptional sequence
E = (O,O(1)) which is KP1-geometric. The classical tilting quiver is given by

•
v0

e0
**

e1
**
•
v1

f0jj

f1

jj

with relations fjei = fiej and ejfi = eifj .
The corresponding A∞-category is given by

A`(v0, v0) = Hom`(O,O)⊕Hom`−1(O,O ⊗KP1)

= H`(P1,O)⊕H`(P1,O(−2))

=

{
C if ` = 0, 1

0 otherwise.

A`(v0, v1) = Hom`(O,O(1))⊕Hom`−1(O,O(1)⊗KP1)

= H`(P1,O(1))⊕H`(P1,O(−1))

=

{
C2 if ` = 1

0 otherwise.

A`(v1, v0) = Hom`(O(1),O)⊕Hom`−1(O(1),O ⊗KP1)

= H`(P1,O(−1))⊕H`(P1,O(−3))

=

{
C2 if ` = 1

0 otherwise.

A`(v1, v1) = Hom`(O(1),O(1))⊕Hom`−1(O(1),O(1)⊗KP1)

= H`(P1,O)⊕H`(P1,O(−2))

=

{
C if ` = 0, 1

0 otherwise.

Thus the dg-tilting quiver is given by

•
v0

e0
**

e1
**

v∗0 88 •
v1

f0jj

f1

jj
v∗1ff
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where black edges are of degree 0 and brown edges are of degree −1. Since H0 of the dg-tilting quiver
gives the classical tilting quiver, by a change of basis if necessary, we may assume the differential sends

dv∗0 = f1e0 − f0e1, dv∗1 = e1f0 − e0f1 and dei = dfi = 0.

The A∞-structure is given by

m2(v0, fi) = m2(fi, v1) = fi m2(v1, ei) = m2(ei, v0) = ei

m2(f1, e0) = −m2(f0, e1) = v∗0 m2(e1, f0) = −m2(e0, f1) = v∗1

m2(v0, v
∗
0) = m2(v∗0 , v0) = v∗0 m2(v1, v

∗
1) = m2(v∗1 , v1) = v∗1

and zero otherwise.

Example 6.3.3. Consider X = P1 and V = O(−1)⊕2 which is Calabi–Yau 3. Take the exceptional
sequence E = (O,O(1)) which is V -geometric. The classical tilting quiver is given by

•
v0

e0
**

e1
**
•
v1

f0jj

f1

jj

with relations e1fje0 = e0fje1 and f1ejf0 = f0ejf1.
The corresponding A∞-category is given by

A(v0, v0) = Hom`(Ω(1)[1],Ω(1)[1])⊕Hom`−1(Ω(1)[1],Ω(1)[1]⊗ V )⊕Hom`−2(Ω(1)[1],Ω(1)[1]⊗ ∧2V )

= H`(P1,O)⊕H`−1(P1,O(−1)⊕2)⊕H`−2(P1,O(−2))

=

{
C if ` = 0, 3

0 otherwise.

A(v0, v1) = Hom`(Ω(1)[1],O)⊕Hom`−1(Ω(1)[1],O ⊗ V )⊕Hom`−2(Ω(1)[1],O ⊗ ∧2V )

= H`−1(P1,O(1))⊕H`−2(P1,O⊕2)⊕H`−3(P1,O(−1))

=

{
C2 if ` = 1, 2

0 otherwise.

A(v1, v0) = Hom`(O,Ω(1)[1])⊕Hom`−1(O,Ω(1)[1]⊗ V )⊕Hom`−2(O,Ω(1)[1]⊗ ∧2V )

= H`+1(P1,O(−1))⊕H`(P1,O(−2)⊕2)⊕H`−1(P1,O(−3))

=

{
C2 if ` = 1, 2

0 otherwise.

A(v1, v1) = Hom`(O,O)⊕Hom`−1(O,O ⊗ V )⊕Hom`−2(O,O ⊗ ∧2V )

= H`(P1,O)⊕H`−1(P1,O(−1)⊕2)⊕H`−2(P1,O(−2))

=

{
C2 if ` = 0, 3

0 otherwise.

Thus the dg-quiver is given by

•
v0

e
&.

e∗

�	
v∗0 88 •

v1
f

fn

f∗

?G
v∗1ff .
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Since H0 of the dg-quiver gives back the classical tilting quiver, by a change of basis, we may assume

de1 = f0e0f1 − f1e0f0, de0 = f1e1f0 − f0e1f1,

df1 = e1f0e0 − e0f0e1, df0 = e0f1e1 − e1f1e0.

The superpotential is thus given by Φ = f1e0f0e1 − f1e1f0e0.

Example 6.3.4. Consider X = P2, V = KP2 which is Calabi–Yau 3, with exceptional sequence E =
(O,O(1),O(2)) which is KP2 -geometric. The classical tilting quiver is given by

•
v1

b

�"
•
v0

a

<J

•
v2

c
jt

with relations bi+1ai = biai+1, ci+1bi = cibi+1, and ai+1ci = aici+1.
The corresponding Afin-category is given by

A`(v0, v0) = Hom`(Ω2(2)[2],Ω2(2)[2])⊕Hom`−1(Ω2(2)[2],Ω2(2)[2]⊗KP2)

= H`(P2,O)⊕H`−1(P2,O(−3))

=


H0(P2,O) if ` = 0

H2(P2,O(−3)) if ` = 3

0 otherwise

=

{
C if ` = 0, 3

0 otherwise.

A`(v0, v1) = Hom`(Ω2(2)[2],Ω(1)[1])⊕Hom`−1(Ω2(2)[2],Ω(1)[1]⊗KP2)

= H`−1(P2,Ω(2))⊕H`−2(P2,Ω(−1))

= H`−1(P2,Ω(2))

=

{
C3 if ` = 1

0 otherwise.

A`(v0, v2) = Hom`(Ω2(2)[2],O)⊕Hom`−1(Ω2(2)[2],O ⊗KP2)

= H`−2(P2,O(1))⊕H`−3(P2,O(−2))

= H`−2(P2,O(1))

=

{
C3 if ` = 2

0 otherwise.

A`(v1, v0) = Hom`(Ω(1)[1],Ω2(2)[2])⊕Hom`−1(Ω(1)[1],Ω2(2)[2]⊗KP2)

= H`+1(P2, T (−2))⊕H`(P2, T (−5))

= H`(P2, T (−5))

=

{
C3 if ` = 2

0 otherwise.
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A`(v1, v1) = Hom`(Ω(1)[1],Ω(1)[1])⊕Hom`−1(Ω(1)[1],Ω(1)[1]⊗KP2)

= H`(P2, T ⊗ Ω)⊕H`−1(P2, T ⊗ Ω(−3))

=


H0(P2, T ⊗ Ω) if ` = 0

H2(P2, T ⊗ Ω(−3)) if ` = 3

0 otherwise

=

{
C if ` = 0, 3

0 otherwise.

A`(v1, v2) = Hom`(Ω(1)[1],O)⊕Hom`−1(Ω(1)[1],O ⊗KP2)

= H`−1(P2, T (−1))⊕H`−2(P2, T (−4))

= H`−1(P2, T (−1))

=

{
C3 if ` = 1

0 otherwise.

A`(v2, v0) = Hom`(O,Ω2(2)[2])⊕Hom`−1(O,Ω2(2)[2]⊗KP2)

= H`+2(P2,O(−1))⊕H`+1(P2,O(−4))

= H`+1(P2,O(−4))

=

{
C3 if ` = 2

0 otherwise.

A`(v2, v1) = Hom`(O,Ω(1)[1])⊕Hom`−1(O,Ω(1)[1]⊗KP2)

= H`+1(P2,Ω(1))⊕H`(P2,Ω(−2))

= H`(P2,Ω(−2))

=

{
C3 if ` = 2

0 otherwise.

A`(v2, v2) = Hom`(O,O)⊕Hom`−1(O,O ⊗KP2)

= H`(P2,O)⊕H`−1(P2,O(−3))

=


H0(P2,O) if ` = 0

H2(P2,O(−3)) if ` = 3

0 otherwise

=

{
C if ` = 0, 3

0 otherwise.

The quiver with superpotential is given by

•
v1

b

�"

b∗

co

v∗1

��

•
v0

a

<J
a∗

��

v∗0

22 •
v2

cjt

c∗

4B

v∗2

\\

(6.3.1)

where black edges are of degree 0, blue edges are of degree −1, brown loops are of degree −2. Since H0

of the quiver must be isomorphic to the quiver with relation in (6.3.4), by a change of basis if necessary,
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we may assume the differential d sends

da∗i = bi+1ci+2 − bi+2ci+1 db∗i = ci+1ai+2 − ci+2ai+1 dc∗i = ai+1bi+2 − ai+2bi+1.

Thus the superpotential is given by Φ =
2∑
i=0

ai(bi+1ci+2 − bi+2ci+1).

Example 6.3.5. Consider V = OP2(−1)⊕OP2(−2) over P2 which is Calabi–Yau 4. The classical tilting
quiver is given by

•
v0

a0 //
a1 //
a2

// •
v1

b0 //
b1 //
b2

//

u

zz

•
v2

v

zz

w

ii

with relations
aiu = vbi ai+1wbi = aiwbi+1

bi+1ai = biai+1 wbiv = uaiw.

We calculate its A∞-category:

A`(v0, v0) = Hom`(Ω2(2)[2],Ω2(2)[2])⊕Hom`−1(Ω2(2)[2],Ω2(2)[2]⊗ V )

⊕Hom`−2(Ω2(2)[2],Ω2(2)[2]⊗ ∧2V )

= H`(P2,O)⊕H`−1(P2,O(−1)⊕O(−2))⊕H`−2(P2,O(−3))

=

{
C if ` = 0, 4

0 otherwise.

A`(v0, v1) = Hom`(Ω2(2)[2],Ω(1)[1])⊕Hom`−1(Ω2(2)[2],Ω(1)[1]⊗ V )

⊕Hom`−2(Ω2(2)[2],Ω(1)[1]⊗ ∧2V )

= H`−1(P2,Ω(2))⊕H`−2(P2,Ω⊕ Ω(1))⊕H`−3(P2,Ω(−1))

=


C3 if ` = 1

C if ` = 3

0 otherwise.

A`(v0, v2) = Hom`(Ω2(2)[2],O)⊕Hom`−1(Ω2(2)[2],O ⊗ V )⊕Hom`−2(Ω2(2)[2],O ⊗ ∧2V )

= H`−2(P2,O(1))⊕H`−3(P2,O ⊕O(−1))⊕H`−4(P2,O(−2))

=


C3 if ` = 2

C if ` = 3

0 otherwise.

A`(v1, v0) = Hom`(Ω(1)[1],Ω2(2)[2])⊕Hom`−1(Ω(1)[1],Ω2(2)[2]⊗ V )

⊕Hom`−2(Ω(1)[1],Ω2(2)[2]⊗ ∧2V )

= H`+1(P2, T (−2))⊕H`(P2, T (−3)⊕ T (−4))⊕H`−1(P2, T (−5))

=


C if ` = 1

C3 if ` = 3

0 otherwise.

A`(v1, v1) = Hom`(Ω(1)[1],Ω(1)[1])⊕Hom`−1(Ω(1)[1],Ω(1)[1]⊗ V )⊕Hom`−2(Ω(1)[1],Ω(1)[1]⊗ ∧2V )

= H`(P2, T ⊗ Ω)⊕H`−1(P2, T ⊗ Ω(−1)⊕ T ⊗ Ω(−2))⊕H`−2(P2, T ⊗ Ω(−3))

=


C if ` = 0, 4

C6 if ` = 2

0 otherwise.
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A`(v1, v2) = Hom`(Ω(1)[1],O)⊕Hom`−1(Ω(1)[1],O ⊗ V )⊕Hom`−2(Ω(1)[1],O ⊗ ∧2V )

= H`−1(P2, T (−1))⊕H`−2(P2, T (−2)⊕ T (−3))⊕H`−3(P2, T (−4))

=


C3 if ` = 1

C if ` = 3

0 otherwise.

A`(v2, v0) = Hom`(O,Ω2(2)[2])⊕Hom`−1(O,Ω2(2)[2]⊗ V )⊕Hom`−2(O,Ω2(2)[2]⊗ ∧2V )

= H`+2(P2,O(−1))⊕H`+1(P2,O(−2)⊕O(−3))⊕H`(P2,O(−4))

=


C if ` = 1

C3 if ` = 2

0 otherwise.

A`(v2, v1) = Hom`(O,Ω(1)[1])⊕Hom`−1(O,Ω(1)[1]⊗ V )⊕Hom`−2(O,Ω(1)[1]⊗ ∧2V )

= H`+1(P2,Ω(1))⊕H`(P2,Ω⊕ Ω(−1))⊕H`−1(P2,Ω(−2))

=


C if ` = 1

C3 if ` = 3

0 otherwise.

A`(v2, v2) = Hom`(O,O)⊕Hom`−1(O,O ⊗ V )⊕Hom`−2(O,O ⊗ ∧2V )

= H`(P2,O)⊕H`−1(P2,O(−1)⊕O(−2))⊕H`−2(P2,O(−3))

=

{
C if ` = 0, 4

0 otherwise.

The underlying graded quiver of E(AE) is given by

•
v0 a

.9
a∗

nyv∗0
%%

•
v1

b

.9
b∗

ny

u

ww

u∗

}}
p

�#

q

OY
v∗1

%%
•
v2

v

ww

v∗

}}

w

ii

w∗

88

r

u�

s

5D

v∗2ff

where black edges are of degree 0, red edges are of degree −1, blue edges are of degree −2 and brown
edges are of degree −3. Since H0(E(AE)) = ΛE , by a linear change of basis if necessary, we may assume
the differential d in E(AE) is given by

dpi = aiu− vbi dqi = ai+2wbi+1 − ai+1wbi+2

dri = wbiv − uaiw dsi = bi+2ai+1 − bi+1ai+2,

where i ∈ Z3. Hence the only nonvanishing maps in the form mn : A1 ⊗ · · · ⊗ A1 → A2 are

m2(ai, u) = pi, m2(v, bi) = −pi, m3(ai+2, w, bi+1) = qi, m3(ai+1, w, bi+2) = −qi

m3(w, bi, v) = ri, m3(u, ai, w) = −ri, m2(bi+2, ai+1) = si, m2(bi+1, ai+2) = −si.

Next, we would like to calculate the cyclic structure 〈−,−〉 : A2 ⊗ A2 → C. Recall that the pairing is
cyclic: 〈mn(e1, . . . , en), en+1〉 = (−1)(|e1|+1)n〈e1,mn(e2, . . . , en+1)〉. We have

〈pi, qj〉 = 〈m2(ai, u),m3(aj+2, w, bj+1)〉 = 〈ai,m2(u,m3(aj+2, w, bj+1))〉 = −〈ai,m2(rj+2, bj+1)〉
= −〈(m2(ai, rj+2), bj+1〉 = 〈bj+1,m2(ai, rj+2)〉 = 〈m2(bj+1, ai), rj+2〉 = δij〈si+2, ri+2〉.
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In particular, this implies 〈pi, qi〉 = 〈si, ri〉 for all i, and

〈pi, pj〉 = 〈m2(ai, u),m2(aj , u)〉 = 〈ai,m2(u,m2(aj , u))〉 = 〈ai,m2(m2(u, aj), u)〉 = 0.

〈qi, qj〉 = 〈m3(ai+2, w, bi+1),m3(aj+2, w, bj+1)〉 = ±〈ai+2,m3(w, bi+1,m3(aj+2, w, bj+1))〉.

By the A∞-relation for n = 5, we get

m3(w, bi+1,m3(aj+2, w, bj+1)) = ±m4(w,m2(bi+1, aj+2), w, bj+1))

since all other terms vanish. Then

〈qi, qj〉 = ±〈ai+2,m4(w,m2(bi+1, aj+2), w, bj+1))〉 = ±〈m2(bi+1, aj+2),m4(w, bj+1, ai+2, w)〉 = 0.

This shows that the only (possibly) nonvanishing pairings are 〈pi, qi〉 = 〈si, ri〉. Since the pairing is
nondegenerate, we may normalize this number to 1. Thus the superpotential is given by

Φ = (ai+2wbi+1 − ai+1wbi+2)pi + (aiu− vbi)qi + (bi+2ai+1 − bi+1ai+2)ri + (wbiv − uaiw)si.

Example 6.3.6. Consider X = P2 and V = T∨P2 which is Calabi–Yau 4. The classical quiver is given by

•
v0

a0

**a1 **
a2

**
•
v1

b0jj
b1

jj

b2

jj

c0
**c1 **

c2
**
•
v2

d0jj
d1

jj

d2

jj

with relations
2∑
j=0

ajbj = 0
2∑
j=0

bjaj = 0

2∑
j=0

cjdj = 0
2∑
j=0

djcj = 0

cj+1aj = cjaj+1 bj+1dj = bjdj+1

ajbk = dkcj .

The relations listed above are not all independent: the relation ajbk = dkcj and
2∑
j=0

ajbj = 0 together

implies
2∑
j=0

djcj = 0.

Next, we would like to calculate AE . Recall the dual sequence to E is given by

F = (Ω2(2)[2],Ω(1)[1],O) = (O(−1)[2],Ω(1)[1],O).

We have

A`(v0, v0) = Hom`(Ω2(2)[2],Ω2(2)[2])⊕Hom`−1(Ω2(2)[2],Ω2(2)[2]⊗ T∨P2)

⊕Hom`−2(Ω2(2)[2],Ω2(2)[2]⊗ ∧2T∨P2)

= H`(P2,O)⊕H`−1(P2,Ω)⊕H`−2(P2,O(−3))

=

{
C if ` = 0, 2, 4

0 otherwise.

A`(v0, v1) = Hom`(Ω2(2)[2],Ω(1)[1])⊕Hom`−1(Ω2(2)[2],Ω(1)[1]⊗ T∨P2)

⊕Hom`−2(Ω2(2)[2],Ω(1)[1]⊗ ∧2T∨P2)

= H`−1(P2,Ω(2))⊕H`−2(P2,Ω⊗ Ω(2))⊕H`−3(P2,Ω(−1))

=

{
C3 if ` = 1, 3

0 otherwise.
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A`(v0, v2) = Hom`(Ω2(2)[2],O)⊕Hom`−1(Ω2(2)[2],O ⊗ T∨P2)⊕Hom`−2(Ω2(2)[2],O ⊗ ∧2T∨P2)

= H`−2(P2,O(1))⊕H`−3(P2,Ω(1))⊕H`−4(P2,O(−2))

=

{
C3 if ` = 2

0 otherwise.

A`(v1, v0) = Hom`(Ω(1)[1],Ω2(2)[2])⊕Hom`−1(Ω(1)[1],Ω2(2)[2]⊗ T∨P2)

⊕Hom`−2(Ω(1)[1],Ω2(2)[2]⊗ ∧2T∨P2)

= H`+1(P2, T (−2))⊕H`(P2, T ⊗ Ω(−2))⊕H`−1(P2, T (−5))

=

{
C3 if ` = 1, 3

0 otherwise.

A`(v1, v1) = Hom`(Ω(1)[1],Ω(1)[1])⊕Hom`−1(Ω(1)[1],Ω(1)[1]⊗ T∨P2)

⊕Hom`−2(Ω(1)[1],Ω(1)[1]⊗ ∧2T∨P2)

= H`(P2, T ⊗ Ω)⊕H`−1(P2, T ⊗ Ω⊗ Ω)⊕H`−2(P2, T ⊗ Ω(−3))

=


C if ` = 0, 4

C10 if ` = 2

0 otherwise.

A`(v1, v2) = Hom`(Ω(1)[1],O)⊕Hom`−1(Ω(1)[1],O ⊗ T∨P2)⊕Hom`−2(Ω(1)[1],O ⊗ ∧2T∨P2)

= H`−1(P2, T (−1))⊕H`−2(P2, T ⊗ Ω(−1))⊕H`−3(P2, T (−4))

=

{
C3 if ` = 1, 3

0 otherwise.

A`(v2, v0) = Hom`(O,Ω2(2)[2])⊕Hom`−1(O,Ω2(2)[2]⊗ T∨P2)⊕Hom`−2(O,Ω2(2)[2]⊗ ∧2T∨P2)

= H`+2(P2,O(−1))⊕H`+1(P2,Ω(−1))⊕H`(P2,O(−4))

=

{
C3 if ` = 2

0 otherwise.

A`(v2, v1) = Hom`(O,Ω(1)[1])⊕Hom`−1(O,Ω(1)[1]⊗ T∨P2)⊕Hom`−2(O,Ω(1)[1]⊗ ∧2T∨P2)

= H`+1(P2,Ω(1))⊕H`(P2,Ω⊗ Ω(1))⊕H`−1(P2,Ω(−2))

=

{
C3 if ` = 1, 3

0 otherwise.

A`(v2, v2) = Hom`(O,O)⊕Hom`−1(O,O ⊗ T∨P2)⊕Hom`−2(O,O ⊗ ∧2T∨P2)

= H`(P2,O)⊕H`−1(P2,Ω)⊕H`−2(P2,O(−3))

=

{
C if ` = 0, 2, 4

0 otherwise.

The underlying graded quiver of the dg-quiver E(AE) is thus given by

•
v0

a *4

a∗

ny

ρ

!-v∗0

,,

r
BB

•
v1b

jt

b∗

.9

c *4

c∗

ny

v∗1
SS

t
KK

τ
9©

��
•
v2d

jt

d∗

.9

σ

am

v∗2

rr

s
\\

where black edges are of degree 0, red edges are of degree −1, blue edges are of degree −2 and brown
edges are of degree −3. The 10 loops at v1 will be labelled by τij for 1 ≤ i, j ≤ 3 and t. Abusing
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notation, we will denote an edge e in the quiver and its corresponding element in the A∞-category AE
by the same symbol e, instead of the more correct e∨. Since T∨P2 is noncompact 4-Calabi–Yau, AE has a
cyclic structure of degree 4. By a linear change of basis if necessary, we may assume

m2(a∗, a) = v∗0 , m2(b∗, b) = m2(c∗, c) = v∗1 , m2(d∗, d) = v∗2 .

Since H0(E(AE)) = ΛE , by a linear change of basis if necessary, we may assume the differential d in
E(AE) sends

dρi = ci+2ai+1 − ci+1ai+2, dσi = bi+2di+1 − bi+1di+2

dr =

2∑
i=0

biai, dt =

2∑
i=0

aibi + dici, ds =

2∑
i=0

cidi

dτij = aibj − djci.

Hence the only nonvanishing maps in the form mn : A1 ⊗ · · · ⊗ A1 → A2 are

m2(ci+2, ai+1) = ρi, m2(ci+1, ai+2) = −ρi,

m2(bi+2, di+1) = σi, m2(bi+1, di+2) = −σi,

m2(bi, ai) = r, m2(ci, di) = s,

m2(ai, bj) = τij + δijt, m2(dj , ci) = −τij + δijt

where δij is the Kronecker delta, i.e., δij = 1 if i = j and δij = 0 if i 6= j.
We would like to calculate the cyclic structure 〈−,−〉 : A2 ⊗ A2 → C. Recall that the pairing is

cyclic: 〈mn(e1, . . . , en), en+1〉 = (−1)(|e1|+1)n〈e1,mn(e2, . . . , en+1)〉. If i 6= j,

2〈t, τij〉 = 〈m2(ak, bk) +m2(dk, ck), τij〉
= 〈m2(ak, bk),m2(ai, bj)〉 − 〈m2(dk, ck),m2(dj , ci)〉
= 〈ak,m2(m2(bk, ai), bj)〉 − 〈dk,m2(m2(ck, dj), ci)〉
= 0

by choosing k 6= i and k 6= j. Also,

4〈t, τii〉 = 〈m2(ak, bk) +m2(dk, ck),m2(ai, bi)−m2(di, ci)〉
= 〈m2(ak, bk),m2(ai, bi)〉+ 〈m2(dk, ck),m2(ai, bi)〉
− 〈m2(ak, bk),m2(di, ci)〉 − 〈m2(dk, ck),m2(di, ci)〉

=

{
〈ai,m2(r, bi)〉 − 〈di,m2(s, ci)〉 if k = i

〈di+1,m2(ρi+2, bi)〉 − 〈ai+1,m2(σi+2, ci)〉 if k = i+ 1

=

{
−〈r,m2(bi, ai)〉+ 〈s,m2(ci, di)〉 if k = i

−〈ρi+2,m2(bi, di+1)〉+ 〈σi+2,m2(ci, ai+1)〉 if k = i+ 1

=

{
−〈r, r〉+ 〈s, s〉 if k = i

−〈ρi+2, σi+2〉+ 〈σi+2, ρi+2〉 if k = i+ 1

=

{
−〈r, r〉+ 〈s, s〉 if k = i

0 if k = i+ 1

Since k is arbitrary, 〈t, τij〉 = 0 for all i, j and 〈r, r〉 = 〈s, s〉.
For i 6= j and k 6= `,

〈τij , τk`〉 = 〈m2(ai, bj),m2(ak, b`)〉 = 〈ai, δjkm2(r, b`)〉 = −δjk〈r,m2(b`, ai)〉 = −δjkδi`〈r, r〉

For i 6= j,

2〈τij , τkk〉 = 〈τij ,m2(ak, bk)−m2(dk, ck)〉 = 〈m2(ai, bj),m2(ak, bk)〉+ 〈m2(dj , ci),m2(dk, ck)〉
= δjk〈ai,m2(r, bk)〉+ δik〈dj ,m2(s, ck)〉 = −δjkδik〈r, r〉 − δjkδik〈s, s〉 = −2δjkδik〈r, r〉 = 0
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since i 6= j. We have

4〈τii, τjj〉 = 〈m2(ai, bi)−m2(di, ci),m2(aj , bj)−m2(dj , cj)〉
= 〈m2(ai, bi),m2(aj , bj)〉 − 〈m2(di, ci),m2(aj , bj)〉
− 〈m2(ai, bi),m2(dj , cj)〉+ 〈m2(di, ci),m2(dj , cj)〉

= 〈ai,m2(m2(bi, aj), bj)〉 − 〈di,m2(m2(ci, aj), bj)〉
− 〈ai,m2(m2(bi, dj), cj)〉+ 〈di,m2(m2(ci, dj), cj)〉

=


−〈m2(bi, ai),m2(bi, ai)〉 − 〈m2(ci, di),m2(ci, di)〉 if j = i

〈m2(ci, ai+1),m2(bi+1, di)〉+ 〈m2(bi, di+1),m2(ci+1, ai)〉 if j = i+ 1

〈m2(ci, ai−1),m2(bi−1, di)〉+ 〈m2(bi, di−1),m2(ci−1, ai)〉 if j = i− 1

=


−〈r, r〉 − 〈s, s〉 if j = i

〈 − ρi+2, σi+2〉+ 〈 − σi+2, ρi+2〉 if j = i+ 1

〈ρi+1,−σi+1〉+ 〈σi+1,−ρi+1〉 if j = i− 1

=


−2〈r, r〉 if j = i

−2〈ρi+2, σi+2〉 if j = i+ 1

−2〈ρi+1, σi+1〉 if j = i− 1

4〈t, t〉 = 〈m2(aj+1, bj+1) +m2(dj+1, cj+1),m2(aj , bj) +m2(dj , cj)〉
= 〈aj+1,m2(m2(bj+1, aj), bj)〉+ 〈aj+1,m2(m2(bj+1, dj), cj)〉
〈dj+2,m2(m2(cj+1, aj), bj)〉+ 〈dj+1,m2(m2(cj+1, dj), cj)〉

= 0 + 〈aj+1,m2(σj+2, cj)〉+ 〈dj+1,m2(ρj+2, bj)〉+ 0

= −2〈ρj+2, σj+2〉

〈ρi, σj〉 = 〈m2(ci+2, ai+1),m2(bj+2, dj+1)〉
= 〈ci+2,m2(ai+1,m2(bj+2, dj+1))〉
= 〈ci+2,m2(m2(ai+1, bj+2), dj+1))〉

=


〈ci+2,m2(τi+1,i+2, di+1)〉 if i = j

〈ci+2,m2(τi+1,i, di+2))〉 if i = j − 1

〈cj ,m2(τj+2,j+2 + t, di+2))〉 if i = j + 1

=


〈τi+1,i+2, τi+2,i+1〉 if i = j

〈τi+1,i,−τi+2,i+2 + t〉 if i = j − 1

〈τj+2,j+2 + t,−τj,j+1〉 if i = j + 1

=


−〈r, r〉 if i = j

0 if i = j − 1

0 if i = j + 1

Summarizing, we conclude

〈r, r〉 = 〈s, s〉 = −2〈t, t〉 = −〈ρi, σi〉 = −〈σi, ρi〉,

〈τij , τji〉 = −〈r, r〉 for i 6= j,

〈τii, τii〉 = 〈t, t〉, 〈τii, τi+1,i+1〉 = 〈τi+1,i+1, τii〉 = −〈t, t〉

and all other pairings are zero. Since the pairing is nondegenerate, we conclude 〈t, t〉 6= 0. Normalizing
if necessary, we may assume 〈t, t〉 = 1. Then the pairing is given by

〈t, t〉 = 1, 〈r, r〉 = 〈s, s〉 = −2, 〈ρi, σi〉 = 〈σi, ρi〉 = 2

〈τij , τji〉 = 2, for i 6= j, 〈τii, τii〉 = 1, 〈τii, τi+1,i+1〉 = 〈τi+1,i+1, τii〉 = −1
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and all other pairings are zero. Thus the superpotential is given by

Φ =

2∑
i=0

(
(aibi + dici) t− 2 (biai) r − 2 (cidi) s+ 2 (ci+2ai+1 − ci+1ai+2)σi + 2 (bi+2di+1 − bi+1di+2) ρi

+ 2 (aibi+1 − di+1ci) τi,i+1 + 2 (aibi−1 − di−1ci) τi,i−1 + (aibi − dici)(τii − τi+1,i+1 − τi−1,i−1)

)
.

The remaining examples are calculated using the same method. We will skip the calculations and
simply state the answers.

Example 6.3.7. Take X = P1 × P1, V = KP1×P1 = O(−2,−2), which is Calabi–Yau 3, and E =
(O,O(0, 1),O(1, 0),O(1, 1)). The classical tilting quiver is given by

•
v01

d +3 •
v11

e 4©

{{
•
v00

a +3

c

KS

•
v10

b

KS

with relations
ei,j+1bj = ei,jbj+1, ei+1,jdi = ei,jdi+1,
ciej,i+1 = ci+1ej,i, ai+1ei,j = aiei+1,j ,

bjai = dicj ,

where the four edges e are indexed by subscript eij , edges a, b, c, d indexed by ai, bi, ci, di, with 0 ≤ i, j ≤ 1.
The quiver with superpotential is given by

•
v01

d +3

d∗

s{

v∗01

��
•
v11

e

4©

ww

e∗

4©

77

v∗11

ss

•
v00

a +3

a∗

ck

c

KS

c∗

��

v∗00

33 •
v10

b

KS

b∗

��

v∗10

\\

with superpotential

Φ = e00(b0a0 − d0c0) + e01(b1a0 − d0c1) + e10(b0a1 − d1c0) + e11(b1a1 − d1c1).

Example 6.3.8. Take X = P2 × P1, V = KP2×P1 which is Calabi–Yau 4, with exceptional sequence
E = (O,O(0, 1),O(1, 0),O(1, 1),O(2, 0),O(2, 1)). The classical tilting quiver is given by

•
v01

c *4 •
v11

d *4 •
v21

h 6©

vv•
v00

a *4

e

KS

•
v10

f

KS

b *4 •
v20

g

KS

with relations

bi+1ai+2 = bi+2ai+1, di+1ci+2 = di+2ci+1,
hi0g1 = hi1g0, e0hi1 = e1hi0,
cieα = fαai, difα = gαbi,

hi+1,αdi+2 = hi+2,αdi+1, ai+1hi+2,α = ai+2hi+1,α,
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where 0 ≤ i ≤ 2 and 0 ≤ α ≤ 1.
The dg-quiver is given by

•
v01

c .9
c∗

ny

r

�,

ρ

v�v∗01

��
•
v11

d .9
d∗

ny
v∗11

��
•
v21

h

6©

vv

v∗21

ss

•
v00

a %0

a∗

ep

e

NV

e∗

��

s

2@

σ

Yh

p6©

BB

φ 6©

��

v∗00

BB
•
v10

q6©

BB

ψ 6©

��

f
NV

f∗

�� b
%0

b∗

ep

v∗10
MM

•
v20

g

NV

g∗

��

v∗20

\\

where black edges are of degree 0, red edges of degree −1, blue of degree −2, and brown of degree −3.
Since by H0 of the dg-tilting quiver is the classical tilting quiver, by a change of basis if necessary, we
may assume the differential reads

dri = di+1ci+2 − di+2ci+1, dρi = e0hi1 − e1hi0,
dsi = bi+1ai+2 − bi+2ai+1, dσi = hi0g1 − hi1g0,

dpiα = cieα − fαai, dφiα = hi+1,α+1di+2 − hi+2,α+1di+1,
dqiα = difα − gαbi, dψiα = ai+1hi+2,α+1 − ai+2hi+1,α+1,

The pairing on degree −1 (red) edges is given by

〈ri, ρi〉 = 〈si, σi〉 = 1 and 〈piα, φiα〉 = 〈qiα, ψiα〉 = (−1)α+1

and zero otherwise. Hence the superpotential is given by

Φ =

2∑
i=0

ri(e0hi1 − e1hi0) + ρi(di+1ci+2 − di+2ci+1) + si(hi0g1 − hi1g0) + σi(bi+1ai+2 − bi+2ai+1)

+

2∑
i=0

1∑
α=0

(−1)α+1piα(hi+1,α+1di+2 − hi+2,α+1di+1) + (−1)α+1φiα(cieα − fαai)

+

2∑
i=0

1∑
α=0

(−1)α+1qiα(ai+1hi+2,α+1 − ai+2hi+1,α+1) + (−1)α+1ψiα(difα − gαbi).

6.4 Product Construction

In this section, we compute some examples illustrating the product construction given in Proposition
5.7.3. The first example is of course the simplest case:

Example 6.4.1. Take V = Cn and W = Cm, both regarded as vector bundle over the point SpecC.
By Example 6.3.1, the A∞-category corresponding to V and W are respectively given by ∧•V and
∧•W with wedge product as the only nonvanishing A∞-structure. The A∞-category corresponding to
V ×W ∼= V ⊕W = Cn+m is given by ∧•(V ⊕W ). This verifies our product construction since

∧•(V ⊕W ) ∼= ∧•V ⊗ ∧•W

as algebras.
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Example 6.4.2. Take X = P1 × P1 and V = 0. This example can be viewed as the product of the zero
vector bundle over P1 with itself. Take the exceptional sequence E = (O,O(1)) on Db(Coh (P1)). The
product sequence is then E � E = (O,O(0, 1),O(1, 0),O(1, 1)) which is strong and full. The dg-tilting
quiver for P1 is given by

•
u0

e +3 •
u1

.

The corresponding A∞-category A for P1 is given by

A0(u0, u0) = span C{u0}, A0(u1, u1) = span C{u1}, A1(u0, u1) = span C{e0, e1}.

and zero otherwise; with the only nonvanishing A∞-structure given by

m2(u1, ei) = m2(ei, u0) = ei, m2(ui, ui) = ui.

We will use the following naming scheme:

vij = ui ⊗ uj , ai = ei ⊗ u0, bi = u1 ⊗ ei, ci = u0 ⊗ ei, di = ei ⊗ u1, rij = ei ⊗ ej

The product dg-tilting quiver, i.e., the dg-tilting quiver for P1 × P1, is thus given by

•
v01

d +3 •
v11

•
v00

r4©

;;

a +3

c

KS

•
v10

b

KS

where black edges are of degree 0, red edges are of degree −1. Since A has only nonvanishing m2, so is
A⊗A. The only nonvanishing m2 : (A⊗A)1 ⊗ (A⊗A)1 → (A⊗A)2 is given by

m2(bj , ai) = −m2(u1, ei)⊗m2(ej , u0) = ei ⊗ ej = −rij ,

m2(di, cj) = m2(ei, u0)⊗m2(u1, ej) = ei ⊗ ej = rij .

Thus the differential d is given by

drij = dicj − bjai and dai = dbi = dci = ddi = 0.

The classical tilting quiver is given by

•
v01

d +3 •
v11

•
v00

a +3

c

KS

•
v10

b

KS

with relations bjai = dicj .

Example 6.4.3. Consider X = P1 and V = OP1 ⊕ OP1 ⊕ OP1(−2) which is Calabi–Yau 4. Then
V can be viewed as the product of the trivial bundle C2 → SpecC over a point and the canonical
bundle KP1 → P1 over the projective line. Take the exceptional sequences OSpecC on Db(Coh (C2)) and
(OP1 ,OP1(1)) on Db(Coh (P1)). Recall from Examples 6.3.1 and 6.3.2 that the quivers with superpotential
derived equivalent to C and KP1 are respectively

•
u

x`hu∗ ::

with deg x0 = deg x1 = 0, deg u∗ = −1, dxi = 0 and du∗ = x1x0 − x0x1; and

•
v0

e
&.

v∗0 88 •
v1

f

fn v∗1ff
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where black edges are of degree 0 and brown edges are of degree −1, with differential given by

dv∗0 = f1e0 − f0e1, dv∗1 = e1f0 − e0f1 and dei = dfi = 0.

Using the A∞-categories corresponding to C2 and KP1 given in Examples 6.3.1 and 6.3.2, we calculate
the tensor product category A. We will use the following naming scheme for simplicity:

wi = u⊗ vi, ci = xi ⊗ v0, di = xi ⊗ v1, ai = u⊗ ei, bi = u⊗ fi,

r0 = u∗ ⊗ v0, r1 = u⊗ v∗0 , s0 = u∗ ⊗ v1, s1 = u⊗ v∗1 , pij = xi ⊗ ej , qij = xi ⊗ fj
a∗i = u∗ ⊗ fi+1, b∗i = u∗ ⊗ ei+1, c∗i = xi+1 ⊗ v∗0 , d∗i = xi+1 ⊗ v∗1 , w∗i = u∗ ⊗ v∗i .

Thus the dg-tilting quiver is given by

•
w0

a

!)

b∗

<D

p
4©

��

w∗0ggr 3;

c

� 

c∗

GO
•
w1

b

ai

a∗

��

q
4©

XX

w∗177 sck

d

~�

d∗

OW

where black edges are of degree 0, red of degree −1, blue of degree −2 and brown of degree −3.
Since mn = 0 for all n 6= 2 for both A∞-category, mn of their tensor product also vanishes for n 6= 2.

The action of m2 : A1 ⊗A1 → A2 is given by

m2(c1, c0) = m2(x1, x0)⊗m2(v0, v0) = u∗ ⊗ v0 = r0,

m2(c0, c1) = m2(x0, x1)⊗m2(v0, v0) = −u∗ ⊗ v0 = −r0,

m2(b0, a1) = m2(u, u)⊗m2(f0, e1) = −u⊗ v∗0 = −r1,

m2(b1, a0) = m2(u, u)⊗m2(f1, e0) = u⊗ v∗0 = r1,

m2(d1, d0) = m2(x1, x0)⊗m2(v1, v1) = u∗ ⊗ v1 = s0,

m2(d0, d1) = m2(x0, x1)⊗m2(v1, v1) = −u∗ ⊗ v1 = −s0,

m2(a0, b1) = m2(u, u)⊗m2(e0, f1) = −u⊗ v∗1 = −s1,

m2(a1, b0) = m2(u, u)⊗m2(e1, f0) = u⊗ v∗1 = s1,

m2(ai, cj) = −m2(u, xj)⊗m2(ei, v0) = −xj ⊗ ei = −pji,
m2(dj , ai) = m2(xj , u)⊗m2(v1, ei) = xj ⊗ ei = pji,

m2(ci, bj) = m2(xi, u)⊗m2(v0, fj) = xi ⊗ fj = qij ,

m2(bj , di) = −m2(u, xi)⊗m2(fj , v1) = −xi ⊗ fj = −qij .

and zero otherwise. Hence the differential in the dg-quiver sends

dr0 = c1c0 − c0c1, dr1 = b1a0 − b0a1,

ds0 = d1d0 − d0d1, ds1 = a1b0 − a0b1,

dpij = diaj − ajci, dqij = cibj − bjdi.

The cyclic structure on the tensor product 〈−,−〉 : A2 ⊗A2 → C is given by

〈pij , qk`〉 = 〈qk`, pij〉 = 〈xk ⊗ f`, xi ⊗ ej〉 = −〈xk, xi〉〈f`, ej〉

=


1 if (i, j, k, `) = (1, 0, 0, 1) or (0, 1, 1, 0)

−1 if (i, j, k, `) = (0, 0, 1, 1) or (1, 1, 0, 0)

0 otherwise.
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〈r1, r0〉 = 〈r0, r1〉 = 〈u∗, u〉〈v0, v
∗
0〉 = 1, 〈s1, s0〉 = 〈s0, s1〉 = 〈u∗, u〉〈v1, v

∗
1〉 = 1

〈r0, r0〉 = 〈u∗, u∗〉〈v0, v0〉 = 0, 〈s0, s0〉 = 〈u∗, u∗〉〈v1, v1〉 = 0

〈r1, r1〉 = 〈u, u〉〈v∗0 , v∗0〉 = 0, 〈s1, s1〉 = 〈u, u〉〈v∗1 , v∗1〉 = 0

and zero otherwise.
Hence the superpotential is given by

Φ = r0(b1a0 − b0a1) + r1(c1c0 − c0c1) + s0(a1b0 − a0b1) + s1(d1d0 − d0d1)

+ p01(c1b0 − b0d1) + q10(d0a1 − a1c0) + p10(c0b1 − b1d0) + q01(d1a0 − a0c1)

− p00(c1b1 − b1d1)− q11(d1a1 − a1c1)− p11(c0b0 − b0d0)− q00(d0a0 − a0c0).

Taking H0 of the dg-quiver, we see that the classical tilting quiver is given by

•
v0

a0

**
a1

**
c0c1 4< •

v1
b0jj

b1

jj
d0 d1bj

with relations
a0b1 = a1b0 d0d1 = d1d0

b0a1 = b1a0 c0c1 = c1c0
aicj = djai cibj = bjdi,

where 0 ≤ i, j ≤ 1.

The remaining examples are calculated using the same method. We will skip the calculations and
simply state the answers.

Example 6.4.4. Consider the vector bundle OP2⊕OP2(−3) which is Calabi–Yau 4. The classical tilting
quiver is given by

•
v1

b

�"

u1

��

•
v0

a

<J

u0

22 •
v2

c
jt

u2

\\

with relations
bi+1ai = biai+1 ciu2 = u0ci
ci+1bi = cibi+1 aiu0 = u1ai
ai+1ci = aici+1 biu1 = u2bi.

Now, we construct a quasi-free resolution of the quiver. Observe that OP2 ⊕ OP2(−3) = C × OP2(−3).
Hence the dg-quiver for OP2 ⊕ OP2(−3) is the product of dg-quivers C and OP2(−3) in Examples 6.3.1
and 6.5.1, which is given by
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•
v1

b

�#

b∗

OZ

s

��

σ

do

u1

��
v∗1

%%
u∗1ff

•
v0

a

;J

a∗

t�

r

4B

ρ

��

u0

22

v∗0

��

u∗0

\\
•
v2

cjt

c∗

#/
t

co

τ

4B

u2

\\
u∗2

22

v∗2

rr

where black edges are of degree 0, red edges are of degree −1, blue edges are of degree −2 and brown
edges are of degree −3. The differential sends

dτi = bi+2ai+1 − bi+1ai+2 dti = ciu2 − u0ci
dρi = ci+2bi+1 − ci+2bi dri = aiu0 − u1ai
dσi = ai+2ci+1 − ai+1ci+2 dsi = biu1 − u2bi

and the symmetric pairing on degree −1 edges is given by

〈τi, ti〉 = 〈si, σi〉 = 〈ρi, ri〉 = 1.

The superpotential is given by

Φ =

3∑
i=1

(
(bi+2ai+1 − bi+1ai+2)ti + (ciu2 − u0ci)τi

+ (ci+2bi+1 − ci+2bi)ri + (aiu0 − u1ai)ρi

+ (ai+2ci+1 − ai+1ci+2)si + (biu1 − u2bi)σi

)
.

Example 6.4.5. Take P1 × P1, V = T ∗P1×P1 which is Calabi–Yau 4. We can view V as the product of

canonical bundle on P1 with itself. Take the exceptional sequence E = (O,O(1)) on Db(Coh (P1)). Then
E� = (O,O(0, 1),O(1, 0),O(1, 1)). The tilting quiver is

•
v01 d

+3

g

��

•
v11

hks

f

��
•
v00

a +3

c

KS

•
v10e

ks

b

KS

with relations
bjai = dicj , gjhi = eifj ,
cjei = hibj , fjdi = aigj ,
ajei = aiej , ejai = eiaj ,
bjfi = bifj , fjbi = fibj ,
cjgi = cigj , gjci = gicj ,
djhi = dihj , hjdi = hidj ,



Chapter 6. Examples 98

where 0 ≤ i, j ≤ 1. The dg-tilting quiver is given by

•
v01 d

+3

d∗
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qq
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FF
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with differential given by
dpij = bjai − dicj dqij = gjhi − eifj
drij = cjei − hibj dsij = fjdi − aigj
du00 = e1a0 − e0a1 dw00 = g1c0 − g0c1
du01 = c1g0 − c0g1 dw01 = h1d0 − h0d1

du10 = f1b0 − f0b1 dw10 = a1e0 − a0e1

du11 = d1h0 − d0h1 dw11 = b1f0 − b0f1

The pairing on degree −1 edges is given by

〈pi,i+1, qi+1,i〉 = 〈ri,i+1, si+1,i〉 = 〈uij , wij〉 = 1,

〈pii, qi+1,i+1〉 = 〈rii, si+1,i+1〉 = −1.

and zero otherwise, where we treat i ∈ Z/2Z. Thus the superpotential is given by

Φ = u00(g1c0 − g0c1) + w00(e1a0 − e0a1) + u01(h1d0 − h0d1) + w01(c1g0 − c0g1)

+ u10(a1e0 − a0e1) + w10(f1b0 − f0b1) + u11(b1f0 − b0f1) + w11(d1h0 − d0h1)

+

1∑
i=0

(
pi,i+1(gihi+1 − ei+1fi) + qi+i,i(bi+1ai − dici+1)

+ ri,i+1(fidi+1 − ai+1gi) + si+1,i(ci+1ei − hibi+1)

)
−

1∑
i=0

(
pii(gi+1hi+1 − ei+1fi+1) + qi+1,i+1(biai − dici)

+ rii(fi+1di+1 − ai+1gi+1) + si+1,i+1(ciei − hibi)
)
.

Example 6.4.6. Take X = P2 × P1 and V = 0. It can be view as the product of the zero vec-
tor bundle on P2 and the zero vector bundle on P1. Take E = (O,O(1),O(2)) an exceptional se-
quence on Db(Coh (P2)) and F = (O,O(1)) an exceptional sequence on Db(Coh (P1)). Then E � F =
(O,O(0, 1),O(1, 0),O(1, 1),O(2, 0),O(2, 1)). The dg-tilting quiver is given by
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where black edges are of degree 0, red edges are of degree −1, blue edges are of degree −2. We will index
edges p, q, u by pαi, qαi, uαi, where 0 ≤ i ≤ 2 and 0 ≤ α ≤ 1. The differential is given by

deα = dfα = dgα = 0, dai = dbi = dci = ddi = 0,
dpαi = cieα − fαai, dqαi = difα − gαbi,

dri = di+1ci+2 − di+2ci+1, dsi = bi+1ai+2 − bi+2ai+1,

duαi = di+1pα,i+2 − di+2pα,i+1 + qα,i+1ai+2 − qα,i+2ai+1 + gαsi − rieα.

The classical tilting quiver is thus given by

•
v01

c *4 •
v11

d *4 •
v21

•
v00

a *4

e

KS

•
v10

f

KS

b *4 •
v20

g

KS

with relations
bjai = biaj , djci = dicj ,
cieα = fαai, difα = gαbi,

where 0 ≤ i, j ≤ 2 and 0 ≤ α, β ≤ 1.

6.5 Quotient Construction

In this section, we compute some examples illustrating the quotient construction given by Proposition
5.6.5.

Example 6.5.1. Consider V = OPn(−n−1) = KPn and X = Pn. By Example 6.1.6, the classical tilting
quiver is

•
v0

a10

��
a1n

...
**
•
v1

a2n

...
**

a20

��

•
v2

· · ·· · ·· · · •
vn−1

an0

��
ann

...
**
•
vn

an+1 0

ii

an+1n

...

ee

with relations ai+1 kaij = ai+1 jaik. Note that this quiver with relations has path algebra isomorphic to

C[x0, . . . , xn]#Zn+1, with Zn+1 acting on each variable by multiplying ω−1, where ω = e
2πi
n+1 is an n-th

root of unity. Hence its corresponding A∞-algebra is A∞-isomorphic to
⊕

ρ,σ∈IrrZn+1

HomZn+1
(ρ,
∧•Kn+1⊗

σ), which is cyclic since
∧•Kn+1 is. This corresponds to the fact that KPn is Calabi-Yau. This example

is an incarnation of the McKay correspondence as given by Bridgeland, King and Reid [14]: KPn →
Kn+1/Zn+1 is a crepant resolution and we have Db(Coh (KPn)) ∼= Db(Coh Zn+1(Kn+1)).

The group Zn+1 has n + 1 irreducible representations ρ0, . . . , ρn, where ρi is the one dimensional
representation on which Zn+1 acts by multiplication by ωi. We will denote by ci a basis for ρi. We will

also choose a basis u1, . . . , un+1 for Kn+1. For any 0 ≤ ` ≤ n + 1, we have isomorphisms ρ
⊕(n+1

` )
j

∼=
∧`Kn+1 ⊗ ρj+` via the sum of the following maps:

xji1...i` : ρj → ∧`Kn+1 ⊗ ρj+`, cj 7→ ui1 ∧ · · · ∧ ui` ⊗ cj+`

where 1 ≤ i1 < i2 < · · · < i`+1 ≤ n+ 1.
Hence the dg-quiver of KPn has n + 1 vertices v0, . . . , vn+1 and

(
n+1
`

)
arrows of degree 1 − ` from

vertex vj to vj+`, where we think of j ∈ Zn+1. If we extend the definition of xji1...i` to all 1 ≤ ik ≤ n+ 1

by setting xji1...i` = (sgnα)xjiα(1)...iα(`)
where α is the permutation such that iα(1) < . . . < iα(`) if all
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the indices ik are distinct and setting xji1...i` = 0 if two indices ik are equal, then we can describe the
A∞-structure by

m2(xj+`k1···k`′
, xji1···i`) = xji1···i`k1···k`′

and all other mn’s are zero.
When n = 2, we recover the quiver with superpotential in (6.3.1):
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(6.5.1)

where black edges are of degree 0, blue edges are of degree −1, brown loops are of degree −2, with

superpotential Φ =
2∑
i=0

ai(bi+1ci+2 − bi+2ci+1).

When n = 3, the dg-tilting quiver is given by
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Here, the black edges are of degree 0, red edges of degree −1, blue edges of degree −2 and brown edges
of degree −3. We will label the red edges by (i, j), where 0 ≤ i < j ≤ 3. The differential in the dg-quiver
sends

dpij = biaj − bjai, dqij = dicj − djci
drij = cibj − cjbi, dsij = aidj − ajdi.

The symmetric pairing between the red (degree −1) edges is given by

〈pij , qk`〉 = 〈rij , sk`〉 = εijk` =


1 if (i, j, k, `) is an even permutation of (1,2,3,4)

−1 if (i, j, k, `) is an odd permutation of (1,2,3,4)

0 otherwise.

The superpotential is given by

Φ =
∑
i,j,k,`

εijk`

(
qij(bka` − b`ak) + pij(dkc` − d`ck) + sij(ckb` − c`bk) + rij(akd` − a`dk)

)
.

Example 6.5.2. Suppose Z3 = Z/3Z acts on P2 by multiplication of e4πi/3 on homogeneous coordinate.
This Z3-action lifts to O(1) and turn O(1) into a Z3-bundle which will be denoted by E. Let ρk be the
irreducible representation of Z3 corresponding to multiplication of e2πik/3. The sequence E = (O, E,E⊗2)
is a sequence of Z3-sheaves whose underlying sequence form an full strong exceptional sequence. To
calculate the corresponding A∞-category, we need the following



Chapter 6. Examples 101

Lemma 6.5.3.

H`(P2,O) =

{
ρ0 if ` = 0

0 otherwise.
H`(P2,O(−3)) =

{
ρ0 if ` = 2

0 otherwise.

H`(P2,O(1)) =

{
ρ⊕3

2 if ` = 0

0 otherwise.
H`(P2,O(−4)) =

{
ρ⊕3

1 if ` = 2

0 otherwise.

H`(P2,Ω(2)) =

{
ρ⊕3

1 if ` = 0

0 otherwise.
H`(P2, T (−5)) =

{
ρ⊕3

2 if ` = 2

0 otherwise.

H`(P2, T (−1)) =

{
ρ⊕3

1 if ` = 0

0 otherwise.
H`(P2,Ω(−2)) =

{
ρ⊕3

2 if ` = 2

0 otherwise.

H`(P2,Ω) =

{
ρ0 if ` = 1

0 otherwise.
H`(P2, T (−3)) =

{
ρ0 if ` = 1

0 otherwise.

H`(P2, T (−1)) =

{
ρ⊕3

1 if ` = 0

0 otherwise.
H`(P2,Ω(−2)) =

{
ρ⊕3

2 if ` = 2

0 otherwise.

H`(P2,Ω) =

{
ρ0 if ` = 1

0 otherwise.
H`(P2, T (−3)) =

{
ρ0 if ` = 1

0 otherwise.

H`(P2, T ⊗ Ω) =

{
ρ0 if ` = 0

0 otherwise.
H`(P2, T ⊗ Ω(−3)) =

{
ρ0 if ` = 2

0 otherwise.

H`(P2, T ⊗ Ω(−1)) =

{
ρ⊕3

1 if ` = 1

0 otherwise.
H`(P2, T ⊗ Ω(−2)) =

{
ρ⊕3

2 if ` = 1

0 otherwise.

Proof. It suffices to show the lemma for the nonvanishing cases. Since O is trivial Z3-equivariantly,
H0(P2,O) = ρ0. By Serre duality, H2(P2,O(−3)) ∼= H0(P2,O)∨ = ρ0. By the definition of the Z3-
action on P2, H0(P2,O(1)) = ρ⊕3

2 . By Serre duality, H2(P2,O(−4)) = H0(P2,O(1))∨ = (ρ⊕3
2 )∨ = ρ⊕3

1 .
Since P2 = P(H0(P2,O(1))∨), we have the short exact sequence

0→ Ω(2)→ O(1)⊗H0(P2,O(1))→ O(2)→ 0,

and hence the exact sequence

0→ H0(P2,Ω(2))→ H0(P2,O(1))⊗H0(P2,O(1))→ H0(P2,O(2))→ 0.

By the isomorphisms

H0(P2,O(2)) ∼= S2H0(P2,O(1)) and H0(P2,O(1))⊗H0(P2,O(1)) ∼= S2H0(P2,O(1))⊕∧2H0(P2,O(1)),

we conclude H0(P2,Ω(2)) ∼= ∧2H0(P2,O(1)) ∼= ρ⊕3
1 . By Serre duality, we have

H0(P2, T (−5)) = ρ⊕3
2 .

From the short exact sequence

0→ O(−1)→ O⊗H0(P2,O(1))∨ → T (−1)→ 0

we conclude H0(P2, T (−1)) ∼= H0(P2,O(1))∨ ∼= ρ⊕3
1 . By Serre duality, we have

H2(P2,Ω(−2)) ∼= H0(P2, T (−1))∨ ∼= ρ⊕3
2 .

From the short exact sequence

0→ Ω→ O(−1)⊗H0(P2,O(1))→ O → 0,
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we have an isomorphism H1(P2,Ω) ∼= H0(P2,O) = ρ0. By Serre duality, we have

H1(P2, T (−3)) ∼= H0(P2,O)∨ = ρ0.

Twisting the Euler sequence with Ω(k), we have a short exact sequence

0→ Ω(k)→ H0(P2,O(1))∨ ⊗ Ω(k + 1)→ T ⊗ Ω(k)→ 0.

We have isomorphisms H0(P2, T ⊗ Ω) ∼= H1(P2,Ω) = ρ0 and

H1(P2, T ⊗ Ω(−1)) ∼= H0(P2,O(1))∨ ⊗H1(P2,Ω) = ρ⊕3
1 ⊗ ρ0 = ρ⊕3

1 .

By Serre duality, we have

H2(P2, T ⊗ (−2)) = H0(P2, T ⊗ Ω)∨ = ρ0 and H1(P2, T ⊗ Ω(−2)) = H1(P2, T ⊗ Ω(−1))∨ = ρ⊕3
2 .

We calculate its A∞-category:

A`(v0α, v0β) = Hom`
G(Ω2(2)[2]⊗ ρα,Ω2(2)[2]⊗ ρβ) = [Hom(ρα, ρβ)⊗H`(P2,O)]G

=

{
C if α = β and ` = 0

0 otherwise.

A`(v0α, v1β) = Hom`
G(Ω2(2)[2]⊗ ρα,Ω(1)[1]⊗ ρβ) = [Hom(ρα, ρβ)⊗H`−1(P2,Ω(2))]G

=

{
C3 if α− 1 = β and ` = 1

0 otherwise.

A`(v0α, v2β) = Hom`
G(Ω2(2)[2]⊗ ρα,O ⊗ ρβ) = [Hom(ρα, ρβ)⊗H`−2(P2,O(1))]G

=


C3 if α+ 1 = β and ` = 2

C if α = β and ` = 3

0 otherwise.

A`(v1α, v0β) = Hom`
G(Ω(1)[1]⊗ ρα,Ω2(2)[2]⊗ ρβ) = [Hom(ρα, ρβ)⊗H`+1(P2, T (−2))]G = 0.

A`(v1α, v1β) = Hom`
G(Ω(1)[1]⊗ ρα,Ω(1)[1]⊗ ρβ) = [Hom(ρα, ρβ)⊗H`(P2, T ⊗ Ω)]G

=

{
C if α = β and ` = 0

0 otherwise.

A`(v1α, v2β) = Hom`
G(Ω(1)[1]⊗ ρα,O ⊗ ρβ) = [Hom(ρα, ρβ)⊗H`−1(P2, T (−1))]G

=

{
C3 if β = α− 1 and ` = 1

0 otherwise.

A`(v2α, v0β) = Hom`
G(O ⊗ ρα,Ω2(2)[2]⊗ ρβ) = [Hom(ρα, ρβ)⊗H`+2(P2,O(−1))]G = 0

A`(v2α, v1β) = Hom`
G(O ⊗ ρα,Ω(1)[1]⊗ ρβ) = [Hom(ρα, ρβ)⊗H`+1(P2,Ω(1))]G = 0.

A`(v2α, v2β) = Hom`
G(O ⊗ ρα,O ⊗ ρβ) = [Hom(ρα, ρβ)⊗H`(P2,O)]G

=

{
C if α = β and ` = 0

0 otherwise.



Chapter 6. Examples 103

•
v02

s2

#/

a2

*4 •
v11 b1

*4 •
v20

•
v01

s1

#/

a1

*4 •
v10 b0

*4 •
v22

•
v00

s0

#/

a0

*4 •
v12 b2

*4 •
v21

with differential dsα,i = bα−1,i+1aα,i+2 − bα−1,i+2aα,i+1. Here the vertex vij corresponds to the bundle
E⊗i ⊗ ρj . Note that this quiver is a disjoint union of three Beilinson quivers of P2 (Example 5.2.12).
This corresponds to the fact that Coh Z3(P2) = Coh (P2)⊕3 since Z3 is acting trivially on P2.

Example 6.5.4. Following Example 6.5.2, we take the vector bundle V = E∨⊕E∨⊗2, which is Calabi–
Yau 4. Since the underlying bundle of E is O(−1)⊕O(−2). This example is the Z3-equivariant version of
Example 6.3.5. Since the underlying sequence of E is compatible with O(−1)⊕O(−2), the Z3-exceptional
sequence E ⊗ Irr (G) is Z3-compatible with V . Using Lemma 6.5.3, we calculate its A∞-category:

A`(v0α, v0β) = Hom`
G(Ω2(2)[2]⊗ ρα,Ω2(2)[2]⊗ ρβ)⊕Hom`−1

G (Ω2(2)[2]⊗ ρα,Ω2(2)[2]⊗ ρβ ⊗ V )

⊕Hom`−2
G (Ω2(2)⊗ ρα[2],Ω2(2)[2]⊗ ρβ ⊗ ∧2V )

= [Hom(ρα, ρβ)⊗H`(P2,O)]G ⊕ [Hom(ρα, ρβ)⊗H`−1(P2,O(−1)⊕O(−2))]G

⊕ [Hom(ρα, ρβ)⊗H`−2(P2,O(−3))]G

=

{
C if α = β and ` = 0, 4

0 otherwise.

A`(v0α, v1β) = Hom`
G(Ω2(2)[2]⊗ ρα,Ω(1)[1]⊗ ρβ)⊕Hom`−1

G (Ω2(2)[2]ρα,Ω(1)[1]⊗ ρβ ⊗ V )

⊕Hom`−2
G (Ω2(2)[2]⊗ ρα,Ω(1)[1]⊗ ρβ ⊗ ∧2V )

= [Hom(ρα, ρβ)⊗H`−1(P2,Ω(2))]G ⊕ [Hom(ρα, ρβ)⊗H`−2(P2,Ω⊕ Ω(1))]G

⊕ [Hom(ρα, ρβ)⊗H`−3(P2,Ω(−1))]G

=


C3 if α− 1 = β and ` = 1

C if α = β and ` = 3

0 otherwise.

A`(v0α, v2β) = Hom`
G(Ω2(2)[2]⊗ ρα,O ⊗ ρβ)⊕Hom`−1

G (Ω2(2)[2]⊗ ρα,O ⊗ ρβ ⊗ V )

⊕Hom`−2
G (Ω2(2)[2]⊗ ρα,O ⊗ ρβ ∧2 V )

= [Hom(ρα, ρβ)⊗H`−2(P2,O(1))]G ⊕ [Hom(ρα, ρβ)⊗H`−3(P2,O ⊕O(−1))]G

⊕ [Hom(ρα, ρβ)⊗H`−4(P2,O(−2))]G

=


C3 if α+ 1 = β and ` = 2

C if α = β and ` = 3

0 otherwise.
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A`(v1α, v0β) = Hom`
G(Ω(1)[1]⊗ ρα,Ω2(2)[2]⊗ ρβ)⊕Hom`−1

G (Ω(1)[1]⊗ ρα,Ω2(2)[2]⊗ ρβ ⊗ V )

⊕Hom`−2
G (Ω(1)[1]⊗ ρα,Ω2(2)[2]⊗ ρβ ⊗ ∧2V )

= [Hom(ρα, ρβ)⊗H`+1(P2, T (−2))]G ⊕ [Hom(ρα, ρβ)⊗H`(P2, T (−3)⊕ T (−4))]G

⊕ [Hom(ρα, ρβ)⊗H`−1(P2, T (−5))]G

=


C if α = β and ` = 1

C3 if α+ 1 = β and ` = 3

0 otherwise.

A`(v1α, v1β) = Hom`
G(Ω(1)[1]⊗ ρα,Ω(1)[1]⊗ ρβ)⊕Hom`−1

G (Ω(1)[1]⊗ ρα,Ω(1)[1]⊗ ρβ ⊗ V )

⊕Hom`−2
G (Ω(1)[1]⊗ ρα,Ω(1)[1]⊗ ρβ ⊗ ∧2V )

= [Hom(ρα, ρβ)⊗H`(P2, T ⊗ Ω)]G

⊕ [Hom(ρα, ρβ)⊗H`−1(P2, T ⊗ Ω(−1)⊕ T ⊗ Ω(−2))]G

⊕ [Hom(ρα, ρβ)⊗H`−2(P2, T ⊗ Ω(−3))]G

=


C if α = β and ` = 0, 4

C3 if ` = 2 and β = α+ 1 or β = α− 1

0 otherwise.

A`(v1α, v2β) = Hom`
G(Ω(1)[1]⊗ ρα,O ⊗ ρβ)⊕Hom`−1

G (Ω(1)[1]⊗ ρα,O ⊗ ρβ ⊗ V )

⊕Hom`−2
G (Ω(1)[1]⊗ ρα,O ⊗ ρβ ⊗ ∧2V )

= [Hom(ρα, ρβ)⊗H`−1(P2, T (−1))]G ⊕ [Hom(ρα, ρβ)⊗H`−2(P2, T (−2)⊕ T (−3))]G

⊕ [Hom(ρα, ρβ)⊗H`−3(P2, T (−4))]G

=


C3 if β = α− 1 and ` = 1

C if α = β and ` = 3

0 otherwise.

A`(v2α, v0β) = Hom`
G(O ⊗ ρα,Ω2(2)[2]⊗ ρβ)⊕Hom`−1

G (O ⊗ ρα,Ω2(2)[2]⊗ ρβ ⊗ V )

⊕Hom`−2
G (O ⊗ ρα,Ω2(2)[2]⊗ ρβ ⊗ ∧2V )

= [Hom(ρα, ρβ)⊗H`+2(P2,O(−1))]G ⊕ [Hom(ρα, ρβ)⊗H`+1(P2,O(−2)⊕O(−3))]G

⊕ [Hom(ρα, ρβ)⊗H`(P2,O(−4))]G

=


C if α = β and ` = 1

C3 if β = α− 1 and ` = 2

0 otherwise.

A`(v2α, v1β) = Hom`
G(O ⊗ ρα,Ω(1)[1]⊗ ρβ)⊕Hom`−1

G (O ⊗ ρα,Ω(1)[1]⊗ ρβ ⊗ V )

⊕Hom`−2
G (O ⊗ ρα,Ω(1)[1]⊗ ρβ ⊗ ∧2V )

= [Hom(ρα, ρβ)⊗H`+1(P2,Ω(1))]G ⊕ [Hom(ρα, ρβ)⊗H`(P2,Ω⊕ Ω(−1))]G

⊕ [Hom(ρα, ρβ)⊗H`−1(P2,Ω(−2))]G

=


C if α = β and ` = 1

C3 if β = α+ 1 and ` = 3

0 otherwise.
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A`(v2α, v2β) = Hom`
G(O ⊗ ρα,O ⊗ ρβ)⊕Hom`−1

G (O ⊗ ρα,O ⊗ ρβ ⊗ V )

⊕Hom`−2
G (O ⊗ ρα,O ⊗ ρβ ⊗ ∧2V )

= [Hom(ρα, ρβ)⊗H`(P2,O)]G ⊕ [Hom(ρα, ρβ)⊗H`−1(P2,O(−1)⊕O(−2))]G

⊕ [Hom(ρα, ρβ)⊗H`−2(P2,O(−3))]G

=

{
C if α = β and ` = 0, 4

0 otherwise.

The tilting quiver is

•
v02

v∗02

&&

s2

.8a2

*4

a∗2jt •
v11 b1

*4

u1

��

u∗1

??

p1

��

b∗1jt
v∗11��

•
v20

v0

��

v∗0

??

r0

nx
v∗20

xx

•
v01

v∗01

&&

s1

.8a1

*4

a∗1jt •
v10 b0

*4

u0

��

u∗0

??

p0

��

q0

O[

b∗0jt
v∗10��

•
v22

v2

��

v∗2

??

w2

gg

w∗2

''

r2

nx
v∗22

xx

•
v00

v∗00

&&

s0

.8a0

*4

a∗0jt •
v12 b2

*4

u1

��

u∗1

??

p2

��

q2

O[

b∗2jt
v∗12��

•
v21

v1

��

v∗1

??

w1

gg

w∗1

''

r2

nx
v∗21

xx

•
v02

v∗02

&&

s2

.8a2

*4

a∗2jt •
v11 b1

*4

b∗1jt

q1

O[

v∗11��
•
v20

w0

gg

w∗0

''

r0

nx
v∗20

xx

where the top and bottom row are identified. The differential sends

dsα,i = bα−1,i+1aα,i+2 − bα−1,i+2aα,i+1 drα,i = wα−1bivα − uα−1biwα

dpα,i = aα,iuα − vα−1bα,i dqα,i = aα−1,i+2wα−1bα,i+1 − aα−1,i+1wα−1bα,i+2.

The pairing on degree −1 edges is given by

〈sα,i, rα+1,i〉 = 〈pα,i, qα−1,i〉 = 1

and zero otherwise. Thus the superpotential is given by

Φ =

2∑
α,i=0

(aα−2,i+2wα−2bα−1,i+1 − aα−2,i+1wα−2bα−1,i+2)pα,i + (aα+1,iuα+1 − vαbα+1,i)qα,i

+ (bα−2,i+1aα−1,i+2 − bα−2,i+2aα−1,i+1)rα,i + (wαbivα+1 − uαbiwα+1)sα,i.
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Example 6.5.5. This example is essentially the dg version of Example 5.5 in Bocklandt, Schedler and
Wemyss [7]. Let G = 〈a, b|a7 = b3 = 1, ab−1 = b−1a4〉. This group has five irreducible representations:

1. ρ0 the trivial one dimensional representation.

2. ρ1 the one dimensional representation where a acts as identity and b by multiplication by η = e2πi/3.

3. ρ2 the one dimensional representation where a acts as identity and b by multiplication by η2 =
e4πi/3.

4. ρ3 the three dimensional representation with

a =

ω 0 0
0 ω2 0
0 0 ω4

 and b =

0 1 0
0 0 1
1 0 0

 ,

where ω = e2πi/7.

5. ρ4 the three dimensional representation with

a =

ω6 0 0
0 ω5 0
0 0 ω3

 and b =

0 1 0
0 0 1
1 0 0

 ,

where ω = e2πi/7.

Now we suppose G acts on C3 through ρ4. Denote C3 with this G-action by V . Then V = ρ4,
∧2V = ρ3 and ∧3V = ρ0. We would like to calculate its quiver by the quotient construction. We have
decompositions

ρ4 ⊗ ρ0 = ρ4 ρ3 ⊗ ρ0 = ρ3

ρ4 ⊗ ρ1 = ρ4 ρ3 ⊗ ρ1 = ρ3

ρ4 ⊗ ρ2 = ρ4 ρ3 ⊗ ρ2 = ρ3

ρ4 ⊗ ρ3 = ρ0 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ ρ4 ρ3 ⊗ ρ3 = ρ3 ⊕ ρ4 ⊕ ρ4

ρ4 ⊗ ρ4 = ρ3 ⊕ ρ3 ⊕ ρ4 ρ3 ⊗ ρ4 = ρ0 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ ρ4

We then have

(A/G)`(ρi, ρj) = HomG(ρi,∧`V ⊗ ρj) =



C if i = j and ` = 0, 3

C if j = 3 and ` = 1

C if i = 3 and ` = 2

C if i = 4 and ` = 1

C if j = 4 and ` = 2

C2 if i = 3, j = 4 and ` = 1

C2 if i = 4, j = 3 and ` = 2

0 otherwise.
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The underlying graded quiver is then given by

•
ρ3

x33{{x∗33 ##

ρ∗3

��

xi34

��

xi∗34

GO

•
ρ0

ρ∗0 88

x03

//

x∗03

zz
•
ρ1

ρ∗1 88

x13

33

x∗13

zz
•
ρ2

ρ∗2 88

x23

;;

x∗23

��

•
ρ4 x44

cc
x∗44

;;

ρ∗4

KK

x40

bb

x∗40

--

x41

``

x∗41

))

x42

ZZ

x∗42

��

x43

ZZ

x∗43

		

Next we would like to calculate the superpotential. For this, we need the following explicit isomor-
phisms of representations. Denote by ci a basis element for the 1-dimensional representation ρi, where
0 ≤ i ≤ 2, let u1, u2, u3 be the standard basis for ρ3, and v1, v2, v3 be the standard basis for ρ4. Then
ρ4
∼= ρ4 ⊗ ρi for 0 ≤ i ≤ 2 via the G-equivariant map

x4i : ρ4 → ρ4 ⊗ ρi, vj 7→ η−ijvj ⊗ ci.

Meanwhile, ρ0 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ ρ4
∼= ρ4 ⊗ ρ3 via the sum of the G-equivariant maps

xi3 : ρi → ρ4 ⊗ ρ3, ci 7→
3∑
j=1

ηijvj ⊗ uj , for 0 ≤ i ≤ 2,

x33 : ρ3 → ρ4 ⊗ ρ3, uj 7→ vj ⊗ uj+1, where j ∈ Z/3Z,

x43 : ρ4 → ρ4 ⊗ ρ3, vj 7→ vj+1 ⊗ uj , where j ∈ Z/3Z.

Also, ρ3 ⊕ ρ3 ⊕ ρ4
∼= ρ4 ⊗ ρ4 via the sum of the G-equivariant maps

x1
34 : ρ3 → ρ4 ⊗ ρ4, ui 7→ vi+1 ⊗ vi−1, where i ∈ Z/3Z,

x2
34 : ρ3 → ρ4 ⊗ ρ4, ui 7→ vi−1 ⊗ vi+1, where i ∈ Z/3Z,

x44 : ρ4 → ρ4 ⊗ ρ4, vi 7→ vi−1 ⊗ vi−1, where i ∈ Z/3Z.

Since ∧•V is A2, i.e., mn = 0 for n ≥ 3, HomG(ρi, ρj ⊗ ∧•V ) is also A2. Thus the superpotential on
the quiver is cubic.

m2(x03, x40) : ρ4 → ∧2V ⊗ ρ3, vj 7→ vj ⊗ c0 7→
3∑
k=1

vj ⊗ vk ⊗ uk 7→
3∑
k=1

vj ∧ vk ⊗ uk

m2(x1
34,m2(x03, x40)) =

(
vj 7→

3∑
k=1

vj ∧ vk ⊗ uk 7→
3∑
k=1

vj ∧ vk ∧ vk+1 ⊗ vk−1 = vj ∧ vj+1 ∧ vj+2 ⊗ vj

)
Thus

〈x1
34,m2(x03, x40)〉 = tr (vj 7→ 〈vj , vj+1 ∧ vj+2〉vj = vj) = 3

m2(x2
34,m2(x03, x40)) =

(
vj 7→

3∑
k=1

vj ∧ vk ⊗ uk 7→
3∑
k=1

vj ∧ vk ∧ vk−1 ⊗ vk+1 = vj ∧ vj−1 ∧ vj−2 ⊗ vj

)
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Thus
〈x2

34,m2(x03, x40)〉 = tr (vj 7→ 〈vj , vj−1 ∧ vj−2〉vj = −vj) = −3

m2(x13, x41) : ρ4 → ∧2V ⊗ ρ3,

(
vj 7→ η−jvj ⊗ c1 7→

3∑
k=1

ηk−jvj ∧ vk ⊗ uk

)

m2(x1
34,m2(x13, x41)) =

(
vj 7→

3∑
k=1

ηk−jvj ∧ vk ⊗ uk 7→ ηvj ∧ vj+1 ∧ vj+2 ⊗ vj

)
〈x1

34,m2(x13, x41)〉 = tr(vj 7→ ηvj) = 3η

m2(x2
34,m2(x13, x41)) =

(
vj 7→

3∑
k=1

ηk−jvj ∧ vk ⊗ uk 7→ η−1vj ∧ vj−1 ∧ vj−2 ⊗ vj

)
〈x2

34,m2(x13, x41)〉 = tr(vj 7→ −η−1vj) = −3η−1 = −3η2

m2(x23, x42) : ρ2 → ∧2V ⊗ ρ3, vj 7→ η−2jvj ⊗ c2 7→
3∑
k=1

η2(k−j)vj ∧ vk ⊗ uk

m2(x1
34,m2(x23, x42)) =

(
vj 7→

3∑
k=1

η2(k−j)vj ∧ vk ⊗ uk 7→ η2vj ∧ vj+1 ∧ vj+2 ⊗ vj

)
〈x1

34,m2(x23, x42)〉 = tr
(
vj 7→ η2vj

)
= 3η2

m2(x2
34,m2(x23, x42)) =

(
vj 7→

3∑
k=1

η2(k−j)vj ∧ vk ⊗ uk 7→ η−2vj ∧ vj−1 ∧ vj−2 ⊗ vj

)
〈x2

34,m2(x23, x42)〉 = tr
(
vj 7→ −η−2vj

)
= −3η−2 = −3η

m2(x33, x43) : ρ4 → ∧2V ⊗ ρ3, (vj 7→ vj+1 ⊗ uj 7→ vj+1 ∧ vj ⊗ uj+1)

m2(x1
34,m2(x33, x43)) = (vj 7→ vj+1 ∧ vj ⊗ uj+1 7→ vj+1 ∧ vj ∧ vj+2 ⊗ vj)

〈x1
34,m2(x33, x43)〉 = tr(vj 7→ −vj) = −3

m2(x2
34,m2(x33, x43)) = (vj 7→ vj+1 ∧ vj ⊗ uj+1 7→ vj+1 ∧ vj ∧ vj ⊗ vj+2 = 0) = 0

〈x2
34,m2(x33, x43)〉 = 0

m2(x43, x44) : ρ4 → ∧2V ⊗ ρ3, (vj 7→ vj−1 ⊗ vj−1 7→ vj−1 ∧ vj ⊗ uj−1)

m2(x1
34,m2(x43, x44)) = (vj 7→ vj−1 ∧ vj ⊗ uj−1 7→ vj−1 ∧ vj ∧ vj ⊗ vj−2 = 0) = 0

〈x1
34,m2(x43, x44)〉 = 0

m2(x2
34,m2(x43, x44)) = (vj 7→ vj−1 ∧ vj ⊗ uj−1 7→ vj−1 ∧ vj ∧ vj−2 ⊗ vj)

〈x2
34,m2(x43, x44)〉 = tr(vj 7→ vj) = 3

m2(x33, x33) : ρ3 → ∧2V ⊗ ρ3, (uj 7→ vj ⊗ uj+1 7→ vj ∧ vj+1 ⊗ uj+2)

m2(x33,m2(x33, x33)) = (uj 7→ vj ∧ vj+1 ⊗ uj+2 7→ vj ∧ vj+1 ∧ vj+2 ⊗ uj)

〈x33,m2(x33, x33)〉 = tr (uj 7→ uj) = 3

m2(x44, x44) : ρ4 → ∧2V ⊗ ρ4, (vj 7→ vj−1 ⊗ vj−1 7→ vj−1 ∧ vj−2 ⊗ vj−2)

m2(x44,m2(x44, x44)) = (vj 7→ vj−1 ∧ vj−2 ⊗ vj−2 7→ vj−1 ∧ vj−2 ∧ vj ⊗ vj)

〈x44,m2(x44, x44)〉 = tr (vj 7→ −vj) = −3
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Therefore the superpotential is given by

Φ = 3x1
34x03x40 − 3x2

34x03x40 + 3ηx1
34x13x41 − 3η2x2

34x13x41 + 3η2x1
34x23x42 − 3ηx2

34x23x42

− 3x1
34x33x43 + 3x2

34x43x44 + x33x33x33 − x44x44x44

= 3x03x40(x1
34 − x2

34) + 3ηx13x41(x1
34 − ηx2

34) + 3ηx23x42(ηx1
34 − x2

34)

− 3x1
34x33x43 + 3x2

34x43x44 + x33x33x33 − x44x44x44.

The classical quiver is thus given by the H0 of the dg-quiver:

•
ρ3

x33

��

xi34

��

•
ρ0

x03 ,,

•
ρ1

x13

//

•
ρ2

x23

88

•
ρ4

x44

KKx40

ee

x41

ee

x42

ff x43

UU

with relation
x40x

1
34 = x40x

2
34 x41x

1
34 = ηx41x

2
34 ηx42x

1
34 = x42x

2
34

x1
34x03 = x2

34x03 x1
34x13 = ηx2

34x13 ηx1
34x23 = x2

34x23

x33x33 = x43x
1
34 x44x44 = x2

34x43

x03x40 + ηx13x41 + η2x23x42 = x33x43 x03x40 + η2x13x41 + ηx23x42 = x43x44

Example 6.5.6. The action of G on C3 induce an action of G on P2 and an equivariant action on O(1).
Take the exceptional sequence E = (O,O(1),O(2)) on Db(Coh (P2)) and take V = O(−3) = KP2 , which
is the canonical bundle on P2 equipped with an G-equivariant action.

Lemma 6.5.7.

H`(P2,O(1)) =

{
ρ3 if ` = 0

0 otherwise.
H`(P2,O(−4)) =

{
ρ4 if ` = 2

0 otherwise.

H`(P2,Ω(2)) =

{
ρ4 if ` = 0

0 otherwise.
H`(P2, T (−5)) =

{
ρ3 if ` = 2

0 otherwise.

H`(P2, T (−1)) =

{
ρ4 if ` = 0

0 otherwise.
H`(P2,Ω(−2)) =

{
ρ3 if ` = 2

0 otherwise.

Proof. It suffices to show the lemma for all the nontrivial cases. Since G acts on P2 through V = ρ4,

H0(P2,O(1)) = ρ∨4 = ρ3.

By Serre duality,
H2(P2,O(−4)) ∼= H0(P2,O(1))∨ = ρ∨3 = ρ4.

From the short exact sequence

0→ Ω(2)→ O(1)⊗ V ∨ → O(2)→ 0,

we have an exact sequence

0→ H0(P2,Ω(2))→ H0(P2,O(1))⊗ V ∨ → H0(P2,O(2))→ 0.
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Since H0(P2,O(1)) ⊗ V ∨ ∼= ρ3 ⊗ ρ3, H0(P2,O(2)) = S2V ∨ = S2ρ3, and ρ3 ⊗ ρ3
∼= ∧2ρ3 ⊕ S2ρ3, we

conclude H0(P2,Ω(2)) ∼= ∧2ρ3
∼= ρ4. By Serre duality, we have

H2(P2, T (−5)) ∼= H0(P2,Ω(2))∨ ∼= ρ3.

From the short exact sequence

0→ O(−1)→ O⊗ V → T (−1)→ 0,

we conclude
H0(P2, T (−1)) ∼= V ∼= ρ4.

By Serre duality,
H2(P2,Ω(−2)) ∼= H0(P2, T (−1))∨ ∼= ρ3

(A/G)`(v0i, v1j) = Hom`
G(Ω2(2)[2]⊗ ρi,Ω(1)[1]⊗ ρj)⊕Hom`−1

G (Ω2(2)[2]⊗ ρi,Ω(1)[1]⊗ ρj ⊗KP2)

= [Hom(ρi, ρj)⊗H`−1(P2,Ω(2))]G ⊕ [Hom(ρi, ρj)⊗H`−2(P2,Ω(−1))]G

= [Hom(ρi, ρj)⊗H`−1(P2,Ω(2))]G

=

{
HomG(ρi, ρ4 ⊗ ρj) if ` = 1

0 otherwise.

=


C if j = 3 and ` = 1

C if i = 4 and ` = 1

C2 if i = 3, j = 4 and ` = 1

0 otherwise.

(A/G)`(v0i, v2j) = Hom`
G(Ω2(2)[2]⊗ ρi,O ⊗ ρj)⊕Hom`−1

G (Ω2(2)[2]⊗ ρi,O ⊗ ρj ⊗KP2)

= [Hom(ρi, ρj)⊗H`−2(P2,O(1))]G ⊕ [Hom(ρi, ρj)⊗H`−3(P2,O(−2))]G

= [Hom(ρi, ρj)⊗H`−2(P2,O(1))]G

=

{
HomG(ρi, ρ3 ⊗ ρj) if ` = 2

0 otherwise.

=


C if i = 3 and ` = 2

C if j = 4 and ` = 2

C2 if i = 4, j = 3 and ` = 2

0 otherwise.

(A/G)`(v1i, v0j) = Hom`
G(Ω(1)[1]⊗ ρi,Ω2(2)[2]⊗ ρj)⊕Hom`−1

G (Ω(1)[1]⊗ ρi,Ω2(2)[2]⊗ ρj ⊗KP2)

= [Hom(ρi, ρj)⊗H`+1(P2, T (−2))]G ⊕ [Hom(ρi, ρj)⊗H`(P2, T (−5))]G

= [Hom(ρi, ρj)⊗H`(P2, T (−5))]G

=

{
HomG(ρi, ρ3 ⊗ ρj) if ` = 2

0 otherwise.

=


C if i = 3 and ` = 2

C if j = 4 and ` = 2

C2 if i = 4, j = 3 and ` = 2

0 otherwise.
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(A/G)`(v1i, v2j) = Hom`
G(Ω(1)[1]⊗ ρi,O ⊗ ρj)⊕Hom`−1

G (Ω(1)[1]⊗ ρi,O ⊗ ρj ⊗KP2)

= [Hom(ρi, ρj)⊗H`−1(P2, T (−1))]G ⊕ [Hom(ρi, ρj)⊗H`−2(P2, T (−4))]G

= [Hom(ρi, ρj)⊗H`−1(P2, T (−1))]G

=

{
HomG(ρi, ρ4 ⊗ ρj) if ` = 1

0 otherwise.

=


C if j = 3 and ` = 1

C if i = 4 and ` = 1

C2 if i = 3, j = 4 and ` = 1

0 otherwise.

(A/G)`(v2i, v0j) = Hom`
G(O ⊗ ρi,Ω2(2)[2]⊗ ρj)⊕Hom`−1

G (O ⊗ ρi,Ω2(2)[2]⊗ ρj ⊗KP2)

= [Hom(ρi, ρj)⊗H`+2(P2,O(−1))]G ⊕ [Hom(ρi, ρj)⊗H`+1(P2,O(−4))]G

= [Hom(ρi, ρj)⊗H`+1(P2,O(−4))]G

=

{
HomG(ρi, ρ4 ⊗ ρj) if ` = 1

0 otherwise.

=


C if j = 3 and ` = 1

C if i = 4 and ` = 1

C2 if i = 3, j = 4 and ` = 1

0 otherwise.

(A/G)`(v2i, v1j) = Hom`
G(O ⊗ ρi,Ω(1)[1]⊗ ρj)⊕Hom`−1

G (O ⊗ ρi,Ω(1)[1]⊗ ρj ⊗KP2)

= [Hom(ρi, ρj)⊗H`+1(P2,Ω(1))]G ⊕ [Hom(ρi, ρj)⊗H`(P2,Ω(−2))]G

= [Hom(ρi, ρj)⊗H`(P2,Ω(−2))]G

=

{
HomG(ρi, ρ3 ⊗ ρj) if ` = 2

0 otherwise.

=


C if i = 3 and ` = 2

C if j = 4 and ` = 2

C2 if i = 4, j = 3 and ` = 2

0 otherwise.
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The dg-quiver is given by

•
v04

�� //oo

&&

ff

��

^^

��

YY

��

VV
•
v14

�� //oo

&&

ff

��

^^

��

YY

��

VV
•
v24

�� //oo

&&

ff

��

^^

��

YY

��

VV
•
v04

��

•
v03

��

4<

t| //oo •
v13

��

4<

t| //oo •
v23

��

4<

t| //oo •
v03

��

•
v02

��

88

xx •
v12

��

88

xx •
v22

��

88

xx •
v02

��

•
v01

��

@@

�� •
v11

��

@@

�� •
v21

��

@@

�� •
v01

��

•
v00

��

EE

�� •
v10

��

EE

�� •
v20

��

EE

�� •
v00

��

where the vertices on the left and that on the right in the same row are identified. We will use the
following scheme to label the edges: the black (degree 0) edges going from vertex vij to vk` will be
denoted by xij,k`. In case there are two arrows, we will denote by x1

ij,k`, x
2
ij,k`. The blue (degree −1)

arrows going from vk` to vij is denoted by x∗ij,k`. The brown (degree −2) loops at vertex vij will be
denoted by v∗ij .

The superpotential is given by

Φ =
∑
i∈Z3

3xi0,(i+1)3x(i+2)4,i0(x1
(i+1)3,(i+2)4 − x

2
(i+1)3,(i+2)4)

+ 3ηxi1,(i+1)3x(i+2)4,01(x1
(i+1)3,(i+2)4 − ηx

2
(i+1)3,(i+2)4)

+ 3ηxi2,(i+1)3x(i+2)4,i2(ηx1
(i+1)3,(i+2)4 − x

2
(i+1)3,(i+2)4)

− 3x1
i3,(i+1)4x(i+2)3,i3x(i+1)4,(i+2)3 + 3x2

i3,(i+1)4x(i+2)4,i3x(i+1)4,(i+2)4

+ xi3,(i+1)3x(i+2)3,i3x(i+1)3,(i+2)3 − xi4,(i+1)4x(i+2)4,i4x(i+1)4,(i+2)4.

The classical quiver is given by

•
v04

//

&&

��

��

��

•
v14

//

&&

��

��

��

•
v24

//

&&

��

��

��

•
v04

•
v03

4<

// •
v13

4<

// •
v23

4<

// •
v03

•
v02

88

•
v12

88

•
v22

88

•
v02

•
v01

AA

•
v11

AA

•
v21

AA

•
v01

•
v00

EE

•
v10

EE

•
v20

EE

•
v00
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where the vertices on the left and that on the right in the same row are identified, with relations

x(i+2)4,(i+1)0x
1
(i+1)3,i4 = x(i+2)4,(i+1)0x

2
(i+1)3,i4 x(i+2)4,(i+1)1x

1
(i+1)3,i4 = ηx(i+2)4,(i+1)1x

2
(i+1)3,i4

ηx(i+2)4,(i+1)2x
1
(i+1)3,i4 = x(i+2)4,(i+1)2x

2
(i+1)3,i4 x1

(i+2)3,(i+1)4x(i+1)0,i3 = x2
(i+2)3,(i+1)4x(i+1)0,i3

x1
(i+2)3,(i+1)4x(i+1)1,i3 = ηx2

(i+2)3,(i+1)4x(i+1)1,i3 ηx1
(i+2)3,(i+1)4x(i+1)2,i3 = x2

(i+2)3,(i+1)4x(i+1)2,i3

x(i+2)3,(i+1)3x(i+1)3,i3 = x(i+2)4,(i+1)3x
1
(i+1)3,i4 x(i+2)4,(i+1)4x(i+1)4,i4 = x2

(i+2)3,(i+1)4x(i+1)4,i3

x(i+2)0,(i+1)3x(i+1)4,i0 + ηx(i+2)1,(i+1)3x(i+1)4,i1 + η2x(i+2)2,(i+1)3x(i+1)4,i2 = x(i+2)3,(i+1)3x(i+1)4,i3

x(i+2)0,(i+1)3x(i+1)4,i0 + η2x(i+2)1,(i+1)3x(i+1)4,i1 + ηx(i+2)2,(i+1)3x(i+1)4,i2 = x(i+2)4,(i+1)3x(i+1)4,i4.



Chapter 7

Shifted Symplectic Structures on
Moduli Spaces

This chapter contains some unfinished work which aims to make a connection between quivers with
superpotential and the recent work on shifted symplectic structures by Pantev, Toën, Vaquié and Vezzosi
[58], and Ben-Bassat, Brav, Bussi and Joyce [4].

Section 7.1 reviews the theory on derived algebraic geometry developed by Töen and Vezzosi [64, 65,
66] and Pantev, Toën, Vaquié and Vezzosi [58].

Section 7.2 develops the Lie algebra cohomology for dg-modules by modifying the usual Lie algebra
cohomology theory.

Section 7.3 defines the G-invariant de Rham complex of on a derived scheme SpecR by using the
Lie algebra cohomology developed in Section 7.2. We conjecture that the G-invariant de Rham complex
should describe forms and closed forms on the quotient stack [SpecR/G] and outline a strategy of proof.

Section 7.4 describes the moduli space of representations of quiver with superpotential, and outline
a strategy of proof on showing the existence of a shifted symplectic structure which is in a standard
Darboux form by using the G-invariant de Rham complex introduced in Section 7.3.

7.1 Derived Schemes

The section is an outline of the theory of derived algebraic geometry needed to state the results in the
next section, and is essentially a summary of Brav, Bussi and Joyce [13, §3]. For our purpose, we would
not need the general definition of derived stacks. The main point here is that an affine derived scheme
is essentially a commutative dg-algebra, in other words, there is a functor

Spec : {commutative dg-algebra}op → {derived stacks}.

For any derived Artin stack X, Toen and Vezzosi constructed a triangulated category Lqcoh(X) with a
t-structure whose heart is the category of quasi-coherent sheaves on X and defined a cotangent complex
LX in Lqcoh(X). If f : X → Y is a morphism of derived Artin stacks, they constructed a morphism
Lf : f∗LY → LX in Lqcoh(X) and a relative cotangent complex LX/Y which fits into a distinguished
triangle

f∗LY → LX → LX/Y → f∗LY [1].

In the case when X is an affine derived scheme, i.e., X ∼= SpecR for some commutative dg-algebra R,
we have a derived equivalence Lqcoh(X) ∼= D(R-mod) which identifies LX ∼= LR. If R is further assumed
to be quasi-free, then the Kähler differential ΩR gives a model for LR. Next, we introduce the notion of
p-forms, closed p-forms, and symplectic forms on a affine derived scheme defined by Toën and Vezzossi,
reinterpreted in the case for quasi-free affine derived scheme as per Brav, Bussi and Joyce [13, §5].

114
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The grading on the dga R induces a grading on Ω1
R, and we denote by (Ω1

R)k the k-th piece. The de
Rham algebra of R is defined to be a doubled graded algebra

DR(A) =

•∧
Ω1
R =

⊕
p,k∈Z

(

p∧
Ω1
R)k,

where each summand
∧p

Ω1
R is of ‘form degree’ p. There are two differential on the de Rham algebra:

the differential induced by the differential on the dg-algebra R

d : (

p∧
Ω1
R)k → (

p∧
Ω1
R)k+1

and the de Rham differential ddR

ddR : (

p∧
Ω1
R)k → (

p+1∧
Ω1
R)k

Definition 7.1.1. A p-form of degree k on SpecR is an element in Hk(
∧p

Ω1
A, d). In other words, a p-

form of degree k can be represented by an element ω ∈ (
∧p

Ω1
R)k with dω = 0. Two such representatives

ω and ω′ are equivalent if there exists α ∈ (
∧p

Ω1
R)k−1 such that ω − ω′ = dα.

Definition 7.1.2. A closed p-form is an element in Hk(
∏
i≥0

∧p+i
Ω1
R[−i], d+ ddR). In other words, a

closed p-form of degree k can be represented by an sequence ω = (ω0, ω1, ω2, . . .) with ωi ∈ (
∧p+i

Ω1
A)k−i

for i = 0, 1, 2, . . . satisfying the equations

dω0 = 0 in (

p∧
Ω1
R)k+1, and

ddRω
i + dωi+1 = 0 in (

p+i+1∧
Ω1
R)k−i for all i ≥ 0.

Two such representations ω, ω′ are equivalent if there exists α = (α0, α1, . . .) with αi ∈ (
∧p+i

Ω1
R)k−i−1

satisfying

ω0 − ω′0 = dα0 in (

p∧
Ω1
R)k, and

ωi+1 − ω′i+1 = ddRα
i + dαi+1 in (

p+i+1∧
Ω1
R)k−i−1 for all i ≥ 0.

Definition 7.1.3. A closed 2-form ω = (ω0, ω1, . . .) of degree k is called k-shifted symplectic if ω0 is a
nondegenerate 2-form of degree k.

7.2 Lie Algebra Cohomology

This section develops the Lie algebra cohomology theory on dg-modules and is essentially an adaptation
of the usual Lie algebra cohomology discussed, for instance, in Weibel [72, Chapter 7].

Let G be a linear algebraic group of finite type over K and (R, dR) be a dg-algebra over K together
with a G-action which is compatible with the dg-algebra structure in the sense that

deg(gm) = degm,

g(rr′) = (gr)(gr′), and

dR(gr) = g(dRr)

for any g ∈ G, r, r′ ∈ R. Let M be an R-module together with a G-action which is compatible with the
dg-module structure in the sense that

deg gm = degm,

g(rm) = (gr)(gm), and

dM (gm) = g(dMm)
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for any g ∈ G, r ∈ R, m ∈ M . Then the Lie algebra g also acts on M as a derivation (Lie derivative)
which satisfies

dM (x ·m) = x · dM (m)

x · (rm) = (x · r)m+ r(x ·m)

for any x ∈ g, r ∈ R and m ∈ M . We will introduce the Chevalley–Eilenberg double-complex
HomK(∧•g,M) with two anticommuting differentials

δM+ : HomK(∧ng,M)→ HomK(∧n+1g,M)

(δM+f)(x1, . . . , xn+1) =

n+1∑
i=1

(−1)i+1xif(x1, . . . , x̂i, . . . , xn+1)

+
∑
i<j

(−1)i+jf([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+1)

and
δM− : HomK(∧ng,M i)→ HomK(∧ng,M i+1)

f 7→ (−1)ndM ◦ f.

Proposition 7.2.1. (HomK(∧•g,M), δM+, δM−) is double complex.
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Proof. First, we show that δ2
+ = 0.

(δ2
M+f)(x1, . . . , xn+2)

=

n+2∑
i=1

(−1)i+1xi(δ+f)(x1, . . . , x̂i, . . . , xn+2) +
∑
i<j

(−1)i+j(δ+f)([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+2)

=
∑
j<i

(−1)i+1+j+1xixjf(x1, . . . , x̂j , . . . , x̂i, . . . , xn+2)

+
∑
i<j

(−1)i+1+jxixjf(x1, . . . , x̂i, . . . , x̂j , . . . , xn+2)

+
∑
j<k<i

(−1)i+1+j+kxif([xj , xk], x1, . . . x̂j , . . . , x̂k, . . . , x̂i, . . . , xn+2)

+
∑
j<i<k

(−1)i+1+j+k−1xif([xj , xk], x1, . . . x̂j , . . . , x̂i, . . . , x̂k, . . . , xn+2)

+
∑
i<j<k

(−1)i+1+j−1+k−1xif([xj , xk], x1, . . . x̂i, . . . , x̂j , . . . , x̂k, . . . , xn+2)

+
∑
i<j

(−1)i+j [xi, xj ]f(x1, . . . , x̂i, . . . , x̂j , . . . , xn+2)

+
∑
k<i<j

(−1)i+j+k+2xkf([xi, xj ], x1, . . . , x̂k . . . , x̂i, . . . , x̂j , . . . , xn+2)

+
∑
i<k<j

(−1)i+j+k+1xkf([xi, xj ], x1, . . . , x̂i . . . , x̂k, . . . , x̂j , . . . , xn+2)

+
∑
i<j<k

(−1)i+j+kxkf([xi, xj ], x1, . . . , x̂i . . . , x̂j , . . . , x̂k, . . . , xn+2)

+
∑
k<i<j

(−1)i+j+1+k+1f([[xi, xj ], xk], x1, . . . , x̂k, . . . , x̂i, . . . , x̂j , . . . , xn+2)

+
∑
i<k<j

(−1)i+j+1+kf([[xi, xj ], xk], x1, . . . , x̂i, . . . , x̂k, . . . , x̂j , . . . , xn+2)

+
∑
i<j<k

(−1)i+j+1+k−1f([[xi, xj ], xk], x1, . . . , x̂i, . . . , x̂j , . . . , x̂k, . . . , xn+2)

+
∑

k<`<i<j

(−1)i+j+k+1+`+1f([xk, x`], [xi, xj ], x1, . . . , x̂k, . . . , x̂`, . . . , x̂i, . . . , x̂j , . . . , xn+2)

+
∑

k<i<`<j

(−1)i+j+k+1+`f([xk, x`], [xi, xj ], x1, . . . , x̂k, . . . , x̂i, . . . , x̂`, . . . , x̂j , . . . , xn+2)

+
∑

k<i<j<`

(−1)i+j+k+1+`−1f([xk, x`], [xi, xj ], x1, . . . , x̂k, . . . , x̂i, . . . , x̂j , . . . , x̂`, . . . , xn+2)

+
∑

i<k<j<`

(−1)i+j+k+`−1f([xk, x`], [xi, xj ], x1, . . . , x̂i, . . . , x̂k, . . . , x̂j , . . . , x̂`, . . . , xn+2)

+
∑

i<k<`<j

(−1)i+j+k+`f([xk, x`], [xi, xj ], x1, . . . , x̂i, . . . , x̂k, . . . , x̂`, . . . , x̂j , . . . , xn+2)

+
∑

i<j<k<`

(−1)i+j+k−1+`−1f([xk, x`], [xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , x̂k, . . . , x̂`, . . . , xn+2)

= 0,

where we have used the Jacobi identity, antisymmetry of f , and that xi(xjm)− xj(xim) = [xi, xj ]m for
any xi, xj ∈ g and m ∈M in the last step.
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Next, we would like to show d and δ anticommute. For any f ∈ Hom(∧ng,M) and xi ∈ g,

(δM−δM+f)(x1, . . . , xn+1)

=

n+1∑
i=1

(−1)n+1+i+1dM (xif(x1, . . . , x̂i, . . . , xn+1))

+
∑
i<j

(−1)n+1+i+jdM (f([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+1))

= −
n+1∑
i=1

(−1)i+1+nxidM (f(x1, . . . , x̂i, . . . , xn+1))

−
∑
i<j

(−1)i+j+ndM (f([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+1))

= −(δM+δM−f)(x1, . . . xn+1)

Hence δM−δM+ + δM+δM− = 0. The last condition δ2
M− = 0 follows immediately from d2

M = 0 and
hence (HomK(∧•g,M), δM+, δM−) is double complex.

The total complex of the double complex (HomK(∧•g,M), δM+, δM−) computes the Lie algebra co-
homology H•(g,M). The total differential of the double complex will be denoted by δM , i.e., δM =
δM+ + δM−.

7.3 G-invariant de Rham Complex

This section aims to define the notion of G-invariant de Rham complex on a derived scheme SpecR,
where R is a quasi-free dg-algebra equipped with a G-action. Towards the end of this section, we outline
a strategy to prove that the G-invariant de Rham complex should describe forms and closed forms on
the quotient stack [SpecR/G].

G-invariant sections. A generalized G-invariant section of degree k of the module M is an element in
the Lie algebra cohomology [α] ∈ Hk(g,M). A generalized G-invariant section [α] is thus represented by
an element α of degree k in (Hom(∧•g,M), δM ), henceforth called the complex of G-invariant sections
of M , which satisfies δMα = (δM+ + δM−)α = 0. If we decompose α into homogeneous terms and write
α = α0 + . . . + αdim g, where αi ∈ HomK(∧ig,Mk−i), then the condition δMα = 0 becomes the system
of equations

δM−α
0 = 0 in HomK(∧0g,Mk+1) = Mk+1, and

δM+α
i + δM−α

i+1 = 0 in HomK(∧i+1g,Mk−i) for i = 0, 1, . . . ,dim g.

From these equations, we can see that in the case when M is concentrated in degree 0 and when k = 0,

H0(g,M) = Mg = {m ∈M : a ·m = 0 for all a ∈ g},

i.e., a generalized G-invariant section is an honest G-invariant section.

G-invariant functions. When M = R, we can endow an associative product structure on the vector
space Hom(∧•g, R), turning it into a dg-algebra, and regard it as the complex of G-invariant functions
on SpecR. To construct such a product, recall that there is a coproduct structure ∆ on ∧•g, which is
the dual of the wedge product on ∧•g∨, defined by

∆ : ∧•g→ ∧•g⊗ ∧•g,

∆(x1 ∧ . . . ∧ xn) =

n∑
k=0

∑
σ∈Shk,n−k

(sgnσ)(xσ(1) ∧ . . . ∧ xσ(i))⊗ (xσ(i+1) ∧ . . . ∧ xσ(i+k)),
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where Shk,n−k denote the set of all (k, n− k)-shuffles. We then define a product on Hom(∧•g, R) by

Hom(∧•g, R)⊗Hom(∧•g, R)→ Hom(∧•g, R)

f · g : ∧•g ∆−→ ∧•g⊗ ∧•g f⊗g−→ R⊗R−→R,

where R ⊗ R → R is the product on R. The product so defined is associative since the product
on R is associative, and the coproduct ∆ is coassociative. Explicitly, when f ∈ Hom(∧ig, Rj) and
g ∈ Hom(∧kg, R`), their product f · g ∈ Hom(∧i+kg, Rj+`) is defined by

(f · g)(x1, . . . , xi+k) = (−1)jk
∑

σ∈Shi,k

(sgnσ)f(xσ(1), . . . , xσ(i))g(xσ(i+1), . . . , xσ(i+k)).

Proposition 7.3.1. (Hom(∧•g, R), δR) is a dg-algebra.

Proof. It remains to check the Leibniz’s rule δR(f · g) = (δRf) · g+ (−1)i+jf · (δRg). Since Hom(∧•g, R)
is generated by Hom(g, R) as an algebra, it suffices to show Leibniz’s rule holds when i = 1, for the
general case follows from induction on i.

(δR+(f · g))(x1, . . . , xk+2)

=

k+2∑
u=1

(−1)u+1xu((f · g)(x1, . . . , x̂u, . . . , xk+2))

+
∑

1≤u<v≤k+2

(−1)u+v(f · g)([xu, xv], x1, . . . , x̂u, . . . , x̂v, . . . , xk+2)

= (−1)jk

(
k+2∑
u=1

∑
v<u

xu((−1)u+vf(xv)g(x1, . . . , x̂v, . . . , x̂u, . . . , xk+2))

+

k+2∑
u=1

∑
v>u

xu((−1)u+v+1f(xv)g(x1, . . . , x̂u, . . . , x̂v, . . . , xk+2))

+
∑

1≤u<v≤k+2

(−1)u+vf([xu, xv])g(x1, . . . , x̂u, . . . , x̂v, . . . , xk+2)

+
∑

1≤w<u<v≤k+2

(−1)u+v+wf(xw)g([xu, xv], x1, . . . , x̂w, . . . , x̂u, . . . , x̂v, . . . , xk+2)

+
∑

1≤u<w<v≤k+2

(−1)u+v+w−1f(xw)g([xu, xv], x1, . . . , x̂u, . . . , x̂w, . . . , x̂v, . . . , xk+2)

+
∑

1≤u<v<w≤k+2

(−1)u+v+wf(xw)g([xu, xv], x1, . . . , x̂u, . . . , x̂v, . . . , x̂w, . . . , xk+2)



((δR+f) · g)(x1, . . . , xk+2)

= (−1)jk

 ∑
1≤u<v≤k+2

(−1)u+v−1(δR+f)(xu, xv)g(x1, . . . , x̂u, . . . , x̂v, . . . , xk+2)


= (−1)jk

 ∑
1≤u<v≤k+2

(−1)u+v−1(xuf(xv)− xvf(xu)− f([xu, xv]))g(x1, . . . , x̂u, . . . , x̂v, . . . , xk+2)


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(f · (δR+g))(x1, . . . , xk+2)

= (−1)j(k+1)
k+2∑
u=1

(−1)u−1f(xu)(δR+g)(x1, . . . , x̂u, . . . , xk+2)

= (−1)j(k+1)

(
k+2∑
u=1

∑
v<u

(−1)u+vf(xu)xvg(x1, . . . , x̂v, . . . , x̂u, . . . , xk+2)

+

k+2∑
u=1

∑
u<v

(−1)u+v−1f(xu)xvg(x1, . . . , x̂u, . . . , x̂v, . . . , xk+2)

+
∑

1≤v<w<u≤k+2

(−1)u+v+w−1f(xu)g([xv, xw], x1, . . . , x̂v, . . . , x̂w, . . . , x̂u, . . . , xk+2)

+
∑

1≤u<v<w≤k+2

(−1)u+v+wf(xu)g([xv, xw], x1, . . . , x̂u, . . . , x̂v, . . . , x̂w, . . . , xk+2)

+
∑

1≤v<w<u≤k+2

(−1)u+v+w−1f(xu)g([xv, xw], x1, . . . , x̂v, . . . , x̂w, . . . , x̂u, . . . , xk+2)


Hence δR+(f · g) = (δR+f) · g + (−1)1+jf · (δR+g). On the other hand,

(δR−(f · g))(x1, . . . , xk+1)

= (−1)jk+1+k
k+1∑
u=1

(−1)u−1dR (f(xu)g(x1, . . . , x̂u, . . . , xk+1))

= (−1)jk+1+k
k+1∑
u=1

(−1)u−1
(
(dRf(xu))g(x1, . . . , x̂u, . . . , xk+1) + (−1)jf(xu)dR(g(x1, . . . , x̂u, . . . , xk+1))

)
= −((dR ◦ f) · g)(x1, . . . , x1+k) + (−1)1+j+k(f · (dR ◦ g))(x1, . . . , x1+k)

= ((δR−f) · g)(x1, . . . , xk+1) + (−1)1+j(f · (δR−g))(x1, . . . , xk+1).

Hence Leibniz’s rule holds.

If R is graded commutative and we endow a grading on Hom(∧•g, R) by declaring f ∈ Hom(∧ig, Rj)
has total degree i+ j, then the product on Hom(∧•g, R) is also graded commutative, i.e.,

f · g = (−1)(i+j)(k+`)g · f,

since the coproduct ∆ is cocommutative and the product on R is graded commutative.
The complex of G-invariant sections of M also acquire a structure of Hom(∧•g,M)-module through

the map
Hom(∧•g, R)⊗Hom(∧•g,M)→ Hom(∧•g,M),

f ·m : ∧•g ∆−→ ∧•g⊗ ∧•g f⊗m−→ R⊗M−→M,

where the map R⊗M →M is given by the R-module structure on M .

G-invariant Kähler differentials. Next, we would like to describe the Kähler differentials of the
dg-algebra Hom(∧•g, R), i.e., the complex of G-invariant functions. If we regard G-invariant functions
on R as “functions” on the stack [SpecR/G], then G-invariant Kähler differentials should correspond to
Kähler differentials on the stack [SpecR/G]. Denote the Kähler differentials on R by Ω1

R. Recall that
since R is a g-module and g acts on R by derivation, the map R → Hom(g, R) sending r 7→ (a 7→ a · r)
is a derivation which factorizes to a R-linear map α : Ω1

R → Hom(g, R) by the universal property of Ω1
R.

Both R-modules Ω1
R and Hom(g, R) have a natural g action which turns α into a g-module morphism:

g acts on the Ω1
R component by

x · ddRr = ddR(x · r)



Chapter 7. Shifted Symplectic Structures on Moduli Spaces 121

and on the Hom(g, R) component by enforcing the Leibniz rule:

(x · f)(y) = x · (f(y))− f([x, y]).

Both g-action commutes with the internal differential on the two R-modules, and α is a g-module
morphism since for all x, y ∈ g and r ∈ R, we have

α(x · ddRr)(y)− (x · α(ddRr))(y) = y · (x · r)− x · (y · r)) + [x, y] · r = 0.

The atlas ϕ : SpecR→ [SpecR/G] is a principal G-bundle. Hence the relative cotangent complex is
given by L[SpecR/G]

∼= g∨ ⊗R ∼= Hom(g, R). We have a distinguished triangle in D(R-mod)

ϕ∗L[SpecR/G] → LR
α→ Hom(g, R)→ ϕ∗L[SpecR/G][1].

Since R is assumed to be quasi-free, the Kähler differentials Ω1
R gives a model for LR. Thus a model

for ϕ∗L[SpecR/G] is given by coneα[−1]. Recall the cone of the map α[−1] is given by the R-module
coneα[−1] = Ω1

R ⊕Hom(g, R)[−1] together with the differential

dcone =

(
dΩ1

R
0

α −dHom(g,R)

)
,

where dHom(g,R) is the differential on Hom(g, R) which maps f 7→ dR ◦ f . The direct sum g-module
structure on coneα[−1] is compatible with the internal differential dcone since dΩ1

R
, dHom(g,R) and α

all commutes with g-action. We are going to construct a universal derivation ddR : Hom(∧•g, R) →
Hom(∧•g, coneα[−1]). Consider the following two maps

ddR+ : Hom(∧`g, R)→ Hom(∧`g,Ω1
R)

f 7→ (−1)`ddR ◦ f,

ddR− : Hom(∧`g, R)→ Hom(∧`−1g,Hom(g, R)[−1]),

(ddR−f)(x1, . . . , x`−1) = (x 7→ −f(x, x1, . . . , x`−1)) .

The direct sum of these two maps defines a map

ddR = ddR+ ⊕ ddR− : Hom(∧•g, R)→ Hom(∧•g, coneα[−1])

of degree 1 satisfying the Leibnitz’s rule which graded-commutes with the internal differentials:

Proposition 7.3.2. The map ddR : Hom(∧•g, R)→ Hom(∧•g, coneα[−1]) is a derivation which satisfies
ddRδR = −δcone ddR.

Proof. First, we check Leibnitz’s rule:

(ddR−(f · g))(x1, . . . , xi+k−1)

= (x0 7→ −(f · g)(x0, x1, . . . , xi+k−1))

=

x0 7→ −(−1)jk
∑

σ∈Shi,k

(sgnσ)f(xσ(0), . . . , xσ(i−1))g(xσ(i), . . . , xσ(i+k−1))


=

x0 7→ −(−1)jk
∑

σ∈Shi−1,k

(sgnσ)f(x0, xσ(1), . . . , xσ(i−1))g(xσ(i), . . . , xσ(i+k−1))


+

x0 7→ −(−1)i+jk
∑

σ∈Shi,k−1

(sgnσ)f(xσ(1), . . . , xσ(i))g(x0, xσ(i+1), . . . , xσ(i+k−1))


= ((ddR−f) · g)(x1, . . . , xi+k) + (−1)i+j(f · (ddR−g))(x1, . . . , xi+k),
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(ddR+(f · g))(x1, . . . , xi+k)

= (−1)i+k+jkddR

 ∑
σ∈Shi,k

(sgnσ)f(xσ(1), . . . , xσ(i))g(xσ(i+1), . . . , xσ(i+k))


= (−1)i+k+jk

∑
σ∈Shi,k

(sgnσ)(ddRf(xσ(1), . . . , xσ(i)))g(xσ(i+1), . . . , xσ(i+k))

+ (−1)i+k+jk+j
∑

σ∈Shi,k

(sgnσ)f(xσ(1), . . . , xσ(i))ddR(g(xσ(i+1), . . . , xσ(i+k)))

= ((ddR+f) · g)(x1, . . . , xi+k) + (−1)i+j(f · (ddR+g))(x1, . . . , xi+k).

Hence ddR is a derivation. The equation ddRδR = −δcone ddR amounts to three equations

ddR+δR+ = −δcone +ddR+,

ddR+δR− + ddR−δR+ = −(δcone +ddR− + δcone−ddR+), and

ddR−δR− = −δcone−ddR−.

Given f ∈ Hom(∧`g, R),

(ddR+δR+f)(x1, . . . , x`+1)

=

`+1∑
i=1

(−1)i+1+`+1ddR(xi(f(x1, . . . , x̂i, . . . , x`+1)))

+
∑
i<j

(−1)i+j+`+1ddR(f([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , x`+1))

= −
`+1∑
i=1

(−1)i+1xi((ddR+f)(x1, . . . , x̂i, . . . , x`+1))

−
∑
i<j

(−1)i+j+`(ddR+f)([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , x`+1)

= −(δcone +ddR+f)(x1, . . . , x`+1),

(ddR−δR−f)(x1, . . . , x`−1) = − (x 7→ (δR−f)(x, x1, . . . , x`−1))

= − (x 7→ (δR−f)(x, x1, . . . , x`−1))

= −
(
x 7→ (−1)`dR(f(x, x1, . . . , x`−1))

)
= (−1)`−1dcone (x 7→ f(x, x1, . . . , x`−1))

= −(−1)`−1dcone ((ddR−f)(x1, . . . , x`−1))

= (−δcone−ddR−f)(x1, . . . , x`−1),

(ddR+δR−f)(x1, . . . , x`) = (ddR ◦ dR ◦ f)(x1, . . . , x`),

(ddR−δR+f)(x1, . . . , x`)

= − (x0 7→ (δR+f)(x0, x1, . . . , x`))

= −

x0 7→
∑̀
i=0

(−1)ixif(x0, x1, . . . , x̂i, . . . , x`) +
∑

0≤i<j≤`

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , x`)

 .
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On the other hand,

− (δcone +ddR−f)(x1, . . . , x`)

= −
∑̀
i=1

(−1)i+1xi((ddR−f)(x1, . . . , x̂i, . . . , x`))

−
∑

1≤i<j≤`

(−1)i+j(ddR−f)([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , x`)

=
∑̀
i=1

(−1)i+1xi (x0 7→ f(x0, x1, . . . , x̂i, . . . , x`))

+

x0 7→
∑

1≤i<j≤`

(−1)i+jf(x0, [xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , x`)


=
∑̀
i=1

(−1)i+1 (x0 7→ xif(x0, . . . , x̂i, . . . , x`)− f([xi, x0], x1, . . . , x̂i, . . . , x`))

−

x0 7→
∑

1≤i<j≤`

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , x`)


= −

x0 7→
∑̀
i=1

(−1)ixif(x0, . . . , x̂i, . . . , x`) +
∑

0≤i<j≤`

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , x`)

 .

−(δcone−ddR+f)(x1, . . . , x`) = −dcone (ddR(f(x0, . . . , x`))

= − (x0 7→ x0 · f(x1, . . . , x`))− dΩ1
R

(ddR(f(x1, . . . , x`))

= − (x0 7→ x0 · f(x1, . . . , x`)) + ddR(dR(f(x1, . . . , x`))

Hence ddR+δR− + ddR−δR+ = −(δcone +ddR− + δcone−ddR+).

Proposition 7.3.3. The Kähler differentials (ΩHom(∧•g,R), dΩ) of the dg-algebra Hom(∧•g, R) is iso-
morphic to (Hom(∧•g, coneα[−1]), δcone ).

Proof. Let d′dR : Hom(∧•g, R)→ ΩHom(∧•g,R) denote the universal derivation. Since

Hom(∧•g, R) = ∧•g∨ ⊗R and Ω1
∧•g∨ = ∧•g∨ ⊗ g∨[−1],

Ω1
Hom(∧•g,R) = Ω1

∧•g∨⊗R = ∧•g∨ ⊗ g∨[−1]⊗R⊕ ∧•g∨ ⊗ Ω1
R = Hom(∧•g,Ω1

R ⊕Hom(g, R)[−1])

as a Hom(∧•g, R)-module. Explicitly, for

f ∈ Hom(g,K) ⊆ Hom(g, R) and r ∈ R ∼= Hom(K, R) ⊆ Hom(∧•g, R),

the isomorphism
Φ : Ω1

Hom(∧•g,R)
∼= Hom(∧•g,Ω1

R ⊕Hom(g, R)[−1])

sends

d′dRf 7→ (k 7→ kf) ∈ Hom(K,Hom(g, R)[−1]) and d′dRr 7→ (k 7→ kddRr) ∈ Hom(K,Ω1
R).

Since Hom(∧•g, R) is generated as an algebra by elements of the form

f ∈ Hom(g,K) ⊆ Hom(g, R) and r ∈ R ∼= Hom(K, R) ⊆ Hom(∧•g, R),

the square

Hom(∧•g, R)
d′dR // Ω1

Hom(∧•g,R)

Φ

��
Hom(∧•g, R)

ddR // Hom(∧•g, coneα[−1])



Chapter 7. Shifted Symplectic Structures on Moduli Spaces 124

commutes. Finally, we would like to show Φ commutes with the internal differentials of Ω1
Hom(∧•g,R) and

Hom(∧•g, coneα[−1]): For any u ∈ Hom(∧•g, R),

ΦdΩ1
Hom(∧•g,R)

(d′dRu) = −Φd′dR(δRu) = −ddR(δRu) = −δcone ddRu = δcone Φd′dRu.

Hence (ΩHom(∧•g,R), dΩ) is isomorphic to (Hom(∧•g, coneα[−1]), δcone ) as desired.

We will call (Hom(∧•g, coneα[−1]), δcone ) the complex of G-invariant 1-forms. Taking the n-th wedge
product, we get the complex of G-invariant n-forms

Hom(∧•g,∧nconeα[−1]) =
⊕
j+k=n

Hom(∧•g,Hom(Sjg,∧kΩ1
R)[−j]).

G-invariant de Rham complex. We would like to extend the de Rham differential to all G-invariant
forms. We define

ddR+ : Hom(∧`g,Hom(Sjg,∧kΩ1
R)[−j]) // Hom(∧`g,Hom(Sjg,∧k+1Ω1

R)[−j])

ddR+ : Hom(∧`g⊗ Sjg,∧kΩ1
R[−j]) // HomK(∧`g⊗ Sjg,∧k+1Ω1

R[−j])

f 7→ (−1)`ddR ◦ f
where here ddR : ∧kΩ1

R → ∧k+1Ω1
R is the de Rham differential on the complex ∧•Ω1

R,

ddR− : Hom(∧`g,Hom(Sjg,∧kΩ1
R)[−j]) // Hom(∧`−1g,Hom(Sj+1g,∧kΩ1

R)[−j − 1])

ddR− : Hom(∧`g⊗ Sjg,∧kΩ1
R[−j]) // Hom(∧`−1g⊗ Sj+1g,∧kΩ1

R[−j − 1])

(ddR−f)(x1, . . . , x`−1, y1, . . . , yj+1) =

j+1∑
i=1

f(yi, x1, . . . , x`−1, y1, . . . , ŷi, . . . , yj+1).

Proposition 7.3.4. (Hom(∧•g,Hom(S∗g,∧•Ω1
R)[−∗]), ddR+, ddR−) is a double complex.

Proof. d2
dR+ = 0 since d2

dR = 0 on ∧•Ω1
R. Given f ∈ Hom(∧`g⊗ Sjg,∧kΩ1

R[−j]),

(d2
dR−f)(x1, . . . , x`−2, y1, . . . , yj+2)

=

j+2∑
u=1

(ddR−f)(yu, x1, . . . , x`−2, y1, . . . , ŷu, . . . , yj+2)

=
∑

1≤u<v≤j+2

f(yv, yu, x1, . . . , x`−2, y1, . . . , ŷu, . . . , ŷv, . . . , yj+2)

+
∑

1≤v<u≤j+2

f(yv, yu, x1, . . . , x`−2, y1, . . . , ŷv, . . . , ŷu, . . . , yj+2)

= 0

since f is antisymmetric in the first two variables.

(ddR+ddR−f)(x1, . . . , x`−1, y1, . . . , yj+1) = (−1)`ddR

(
j+1∑
i=1

f(yi, x1, . . . , x`−1, y1, . . . , ŷi, . . . , yj+1)

)

= −
j+1∑
i=1

(−1)`−1ddR(f(yi, x1, . . . , x`−1, y1, . . . , ŷi, . . . , yj+1))

= −(ddR−ddR+f)(x1, . . . , x`−1, y1, . . . , yj+1).

Hence the ddR+ and ddR− anticommute.



Chapter 7. Shifted Symplectic Structures on Moduli Spaces 125

The total complex of

(Hom(∧•g,∧•coneα[−1]), ddR+, ddR−) = (Hom(∧•g,⊗S∗g,∧•Ω1
R[−∗]), ddR+, ddR−)

is called the G-invariant de Rham complex and the total differential ddR is called the de Rham differential.
There is a wedge product on the de Rham complex

∧ : Hom(∧•g,∧•coneα[−1])⊗Hom(∧•g,∧•coneα[−1])→ Hom(∧•g,∧•coneα[−1])

defined by

f ∧ g : ∧•g ∆−→ ∧•g⊗ ∧•g f⊗g−→ ∧•coneα[−1]⊗ ∧•coneα[−1]
∧−→ ∧•coneα[−1].

Under the isomorphism

∧nconeα[−1] =
⊕
j+k=n

Hom(Sjg,∧kΩ1
R)[−j]),

the wedge product on ∧•coneα[−1] is given by

Hom(Sjg,∧kΩ1
R)[−j]⊗Hom(S`g,∧mΩ1

R)[−`]→ Hom(Sj+`g,∧k+mΩ1
R)[−j − `]

f ∧ g : Sj+`g
∆′−→ Sjg⊗ S`g f⊗g−→ ∧kΩ1

R ⊗ ∧mΩ1
R
∧−→ ∧k+mΩ1

R,

where ∆′ is the coproduct on S•g. Hence, when

f ∈ Hom(∧ig⊗ Sjg,∧kΩ1
R[−j]) ∼= Hom(∧ig,Hom(Sjg,∧kΩ1

R)[−j]) ⊆ Hom(∧ig,∧j+kΩ1
R)

and

g ∈ Hom(∧`g⊗ Smg,∧nΩ1
R[−m]) ∼= Hom(∧`g,Hom(Smg,∧nΩ1

R)[−m]) ⊆ Hom(∧`g,∧m+nΩ1
R)

their wedge product f ∧ g ∈ Hom(∧i+`g⊗ Sj+mg, (∧•Ω1
R)k+n[−j −m]) is explicitly given by

(f ∧ g)(x1, . . . , xi+`, y1, . . . , yj+m)

= (−1)k`
∑

σ∈Shi,`

∑
τ∈Shj,m

(sgnσ)f(xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(j))

∧ g(xσ(i+1), . . . , xσ(i+k), yτ(j+1), . . . , yτ(j+m)).

If we endow a grading on Hom(∧•g,∧•coneα[−1]) by declaring

f ∈ Hom(∧ig⊗ Sjg, (∧•Ω1
R)k[−j]) ⊆ Hom(∧ig, (∧•coneα[−1])j+k)

and
g ∈ Hom(∧`g⊗ Smg, (∧•Ω1

R)n[−m]) ⊆ Hom(∧`g, (∧•coneα[−1])m+n)

has total degree i+ 2j + k and `+ 2m+ n respectively, then the wedge product is graded commutative:
f ∧ g = (−1)(i+2j+k)(`+2m+n)g ∧ f .

Proposition 7.3.5. The de Rham differential satisfies the Leibniz’s rule

ddR(f ∧ g) = (ddRf) ∧ g + (−1)i+2j+kf ∧ (ddRg).

Proof.

(ddR−(f ∧ g))(x1, . . . , xi+`−1, y1, . . . , yj+m+1)

=

j+m+1∑
u=1

(f ∧ g)(yu, x1, . . . , xi+`−1, y1, . . . , ŷu, . . . , yj+m+1)

= (−1)k`
∑

σ∈Shi−1,`

∑
τ∈A

(sgnσ)f(yτ(1), xσ(1), . . . , xσ(i−1), yτ(2), . . . , yτ(j+1))

∧ g(xσ(i), . . . , xσ(i+`−1), yτ(j+2), . . . , yτ(j+m+1))

+ (−1)k`
∑

σ∈Shi,`−1

∑
τ∈B

(−1)i(sgnσ)f(xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(j))

∧ g(yτ(j+1), xσ(i+1), . . . , xσ(i+`−1), yτ(j+2), . . . , yτ(j+m+1)),
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where

A = {τ ∈ Sj+m+1 : τ(2) < · · · τ(j + 1) and τ(j + 2) < · · · < τ(j +m+ 1)}, (7.3.1)

B = {τ ∈ Sj+m+1 : τ(1) < · · · τ(j) and τ(j + 2) < · · · < τ(j +m+ 1)}, (7.3.2)

with Sj+m+1 denoting the symmetric group on j +m+ 1 letters.

((ddR−f) ∧ g)(x1, . . . , xi+`−1, y1, . . . , yj+m+1)

= (−1)k`
∑

σ∈Shi−1,`

∑
τ∈Shj+1,m

(sgnσ)(ddR−f)(xσ(1), . . . , xσ(i−1), yτ(1), . . . , yτ(j+1))

∧ g(xσ(i), . . . , xσ(i+`−1), yτ(j+2), . . . , yτ(j+m+1))

= (−1)k`
∑

σ∈Shi−1,`

∑
τ∈Shj+1,m

(sgnσ)

j+1∑
u=1

f(yτ(u), xσ(1), . . . , xσ(i−1), yτ(1), . . . , ŷτ(u), . . . , yτ(j+1))

∧ g(xσ(i), . . . , xσ(i+`−1), yτ(j+2), . . . , yτ(j+m+1))

= (−1)k`
∑

σ∈Shi−1,`

∑
τ∈A

(sgnσ)f(yτ(1), xσ(1), . . . , xσ(i−1), yτ(2), . . . , ŷτ(u), . . . , yτ(j+1))

∧ g(xσ(i), . . . , xσ(i+`−1), yτ(j+2), . . . , yτ(j+m+1))

(f ∧ (ddR−g))(x1, . . . , xi+`−1, y1, . . . , yj+m+1)

= (−1)k(`−1)
∑

σ∈Shi,`−1

∑
τ∈Shj,m+1

(sgnσ)f(xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(j))

∧ (ddR−g)(xσ(i+1), . . . , xσ(i+`−1), yτ(j+1), . . . , yτ(j+m+1))

= (−1)k(`−1)
∑

σ∈Shi,`−1

∑
τ∈Shj,m+1

j+m+1∑
u=j+1

(sgnσ)f(xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(j))

∧ g(yτ(u), xσ(i+1), . . . , xσ(i+`−1), yτ(j+1), . . . , ŷτ(u), . . . , yτ(j+m+1))

= (−1)k(`−1)
∑

σ∈Shi,`−1

∑
τ∈B

(sgnσ)f(xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(j))

∧ g(yτ(j+1), xσ(i+1), . . . , xσ(i+`−1), yτ(j+2), . . . , yτ(j+m+1))

Hence ddR−(f ∧ g) = (ddR−f) ∧ g + (−1)i+2j+kf ∧ (ddR−g).
Also,

(ddR+(f ∧ g))(x1, . . . , xi+`, y1, . . . , yj+m)

= (−1)i+`ddR

(
(−1)k`

∑
σ∈Shi,`

∑
τ∈Shj,m

(sgnσ)f(xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(j))

∧ g(xσ(i+1), . . . , xσ(i+`), yτ(j+1), . . . , yτ(j+m)

)
= (−1)i+`+k`ddR

( ∑
σ∈Shi,`

∑
τ∈Shj,m

(sgnσ)f(xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(j))

)
∧ g(xσ(i+1), . . . , xσ(i+`), yτ(j+1), . . . , yτ(j+m)

+ (−1)i+`+k+k`
∑

σ∈Shi,`

∑
τ∈Shj,m

(sgnσ)f(xσ(1), . . . , xσ(i), yτ(1), . . . , yτ(j))

∧ ddR
(
g(xσ(i+1), . . . , xσ(i+`), yτ(j+1), . . . , yτ(j+m)

)
=
(
((ddR+f) ∧ g) + (−1)i+2j+kf ∧ ddR+g

)
(x1, . . . , xi+`, y1, . . . , yj+m).

Hence we have the Leibniz’s rule.
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The internal differential δcone on Hom(∧•g, coneα[−1]) also extends to the G-invariant de Rham
complex Hom(∧•g,∧•coneα[−1]) by imposing the Leibniz’s rule

δcone (x ∧ y) = (δcone x) ∧ y + (−1)|x|x ∧ δcone y.

Proposition 7.3.6. The de Rham differential ddR commutes with the internal differential of the de
Rham complex, i.e., δcone ddR + ddRδcone = 0.

Proof. This follows from Leibniz’s rule and Proposition 7.3.3.

We arrive at the following definition, motivated by Pantev, Toën, Vaquié and Vezzosi [58].

Definition 7.3.7 (G-invariant de Rham complex). The double complex

(Hom(∧•g,∧•coneα[−1]), δcone , ddR)

is called the G-invariant de Rham differential complex on SpecR. A G-invariant differential p-form of
degree k on SpecR is an element in the cohomology group Hk(g,∧pconeα[−1], δcone ). In other words,
it is represented by an element

ωk ∈
dim g⊕
i=0

Hom(∧ig, (∧pconeα[−1])k−i) satisfying δcone ω
k = 0.

Two such representations ωk, ω′k are equivalent if there exists αk such that ωk − ω′k = δcone α
k.

A G-invariant closed differential p-form of degree k is an element in the cohomology

Hk(g,
∏
j≥0

(∧p+jconeα[−1])[−j], δcone + ddR).

In other words, it is represented by a sequence ω = (ω0, ω1, . . .), where

ωj ∈
dim g⊕
i=0

Hom(∧ig, (∧p+jconeα[−1])k−i−j)

satisfying (δcone + ddR)ω = 0. Equivalently, the sequence ω satisfies the system of equations

δcone ω
0 = 0 in

dim g⊕
i=0

Hom(∧ig, (∧pconeα[−1])k−i+1), and

ddRω
k + δcone ω

k+1 = 0 in

dim g⊕
i=0

Hom(∧ig, (∧p+jconeα[−1])k−i−j+1) for all k ≥ 0.

Two such representations are equivalent if there exists α = (α0, α1, . . .) such that

ω0 − ω′0 = δcone α
0 in

dim g⊕
i=0

Hom(∧ig, (∧p+jconeα[−1])k−i−j), and

ωk+1 − ω′k+1 = ddRα
k + δcone α

k+1 in

dim g⊕
i=0

Hom(∧ig, (∧p+j+1coneα[−1])k−i−j+1) for all i ≥ 0.

A G-invariant closed 2-form ω = (ω0, ω1, . . .) of degree k is a G-invariant k-shifted symplectic form if ω0

is a nondegenerate G-invariant 2-form of degree k.
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Relations between G-invariant forms and forms on quotient stacks. We conjecture the G-
invariant forms and G-invariant closed forms in Definition 7.3.7 are equivalent to forms and closed forms
on the stack [SpecR/G] in the sense of Pantev, Toën, Vaquié and Vezzosi [58] (c.f. Section 7.1, Definitions
7.1.1 and 7.1.2). A possible way of showing this equivalence is to use the language of simplicial schemes
in the sense of Pridham [59] to describe derived stacks. Presumably the quotient stack [SpecR/G] can
be described as the simplicial scheme

[
//

:

:oo
//
Gn × SpecR

//

:

:oo
//

//

:

:oo
//
G×G× SpecR

∂0 //
∂1

//

∂2

//σ0oo
σ1oo

G× SpecR
∂0 //
σ0oo
∂1

// SpecR

]
,

where

∂i(g1, . . . , gn, x) =


(g2, . . . , gn, x) if i = 0,

(g1, . . . , gigi+1, . . . , gn, x) if 1 ≤ i ≤ n− 1,

(g1, . . . , gn−1, gnx) if i = n, and

σi(g1, . . . , gn, x) = (g1, . . . gi, 1, gi+1, . . . , gn, x).

Pridham [59, Definition 7.7] then gives a chain complex which represents the cotangent complex LSpecR/G

which we expect to be quasi-isomorphic to the G-invariant de Rham complex in Definition 7.3.7.

7.4 Moduli Spaces of Representations of Quivers with Super-
potential

In this section, we study the moduli space of representations of a quiver with superpotential, and outline
a strategy of proof of the existence of a shifted symplectic form which is in a standard Darboux form on
the moduli space.

Let Q be a dg-quiver. A dg-representation of Q consists of chain complexes Wv for each vertex v
in Q and linear maps ρe : Wt(e) → Wh(e) of degree i for each degree i edge e in Q. Let S denote the
K-algebra spanned by the vertices of Q. Then a dg-representation of Q is the same as a chain complex
(W,dW ) over S together with a morphism KQ→ End•S(V ) of dg-algebras over S, where the differential
on End•S(W ) is given by

df = dW f − (−1)deg ffdW .

Thus given a fixed chain complex (W,dW ) over S, we can write down a moduli functor for dg-
representations of Q:

RepW (Q) : {commutative dg-algebras}−→{Sets},
C 7−→ Homdga/S(KQ,End•S(W )⊗ C).

Berest, Khachatryan and Ramadoss proved in [6, Theorem 2.1] that this functor is representable.
In the special case when Q is quasi-free and the chain complex W is concentrated in degree 0 with
dimension vector d, the commutative dg-algebra R representing RepW (Q) can be explicitly described:
the underlying graded algebra of R is the coordinate algebra of the graded vector space [6, Theorem 2.8]:⊕

e edges in Q

Hom(Wt(e),Wh(e))[deg e].

In other words, for each edge e in Q, there is an associated dt(e) × dh(e) matrix Me = (eij), and

R =
⊗

e edges in Q

K[Me] =
⊗

e edges in Q

K[eij ],
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where each eij has degree deg e. If p = e1 · · · en is a path in Q, we write Mp = Me1 · · ·Men where the
product on the right hand side is the matrix product. For general p ∈ KQ, we extend bilinearly as usual
to define Mp. Then the differential on R can be described as

dMe = Mde.

Note also that the differential on R defines a cohomological vector field on the graded vector space⊕
e edges in Q

Hom(Wt(e),Wh(e))[deg e],

and turns it into a dg-manifold.
The moduli stack of dg-representations of Q concentrated in degree 0 and with dimension vector

d = (d(v)) is then given by

Repd(Q) =

 ⊕
e edges in Q

Hom(Wt(e),Wh(e))[deg e], d

/ ∏
v vertices in Q

GL (d(v))


=

SpecR
/ ∏
v vertices in Q

GL (d(v))

 ,
where GL (d(v)) acts on each vector space Wv by conjugation. Notice here that although representa-
tions are concentrated in degree 0, the higher degree edges do not act trivially in the moduli functor,
hence the higher degree edges are not redundant. For simplicity, we will denote the product group∏
v vertices in Q

GL (d(v)) by G and write elements in G in the form g = (gv). In local coordinates, the

G-action on R is described by
g ·Me = g−1

h(e)Megt(e).

The associated g-action on R is then given by, for any ξ = (ξv) ∈
∏

gl(d(v)) = g,

ξ ·Me = −ξh(e)Me +Meξt(e).

Now, suppose our dg-quiver admits Q a superpotential Φ. Then Pantev, Toen, Vaquié and Vezzosi
[58, p.9-10] claimed without proof that Repd(Q) admits a shifted symplectic structure. We outline a
strategy of proof by explicitly writing down a G-invariant shifted symplectic form.

Recall that a quiver with superpotential (Q,Φ) of dimension m has a dg-subquiver Q̃ such that KQ̃
has a noncommutative symplectic 2-form and that Q can be constructed from Q̃ by adding a degree
1−m loop on each vertex on Q̃. Then Q̃ correspond to a dg-subalgebra

R̃ =
⊗

e edges in Q̃

K[Me]
ι
↪→ R,

and we have a diagram

Spec R̃ SpecR
i=Spec ιoo ϕ // Repd(Q) .

Let us choose some good models for the cotangent complexes for these three spaces.

Models for cotangent complexes. The atlas SpecR
ϕ→ Repd(Q) is a principal G-bundle. Hence the

relative cotangent complex LSpecR/Repd(Q)
∼= g∨⊗R. We thus have a distinguished triangle in D(R-mod)

ϕ∗LRepd(Q) → LR
α→ g∨ ⊗R→ ϕ∗LRepd(Q)[1].

On the other hand, we also have a distinguished triangle

i∗LR̃ → LR → LR/R̃ → i∗LR̃[1].
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Since Q and Q̃ are both dg-quivers, both R and R̃ are quasi-free as commutative dg-algebras. Hence
the Kähler differentials Ω1

R (resp. Ω1
R̃

) gives a model for LR (resp. LR̃). For each edge e in Q, we will
denote the matrix of 1-forms ddRMe = (ddReij).

The cone of α[−1] : Ω1
R[−1]→ g∨ ⊗R[−1] then gives a model for ϕ∗LRepd(Q). Recall that

cone(α[−1]) = Ω1
R ⊕ (g∨ ⊗R[−1]) , with differential dcone(α[−1]) =

(
dΩ1

R
0

α id⊗ dR[−1]

)
.

The map α comes from the G-action on R as follows: The G-action on R induces a linear map g⊗R→ R,
ξ ⊗ r 7→ ξ · r which satisfies Leibniz rule ξ · (r1r2) = (ξ · r1)r2 + r1(ξ · r2). The dual map R→ g∨ ⊗R ∼=
HomK(g, R), r 7→ (ξ 7→ ξ · r) is a derivation, hence it factorizes into a linear map α : Ω1

R → g∨ ⊗ R. In
local coordinates, the map α is given by

ddRMe 7→ −ah(e)Me +Meat(e),

where for any vertex v, the (i, j)-th element (av)ij of the matrix av denotes the linear map in gl(d(v))∨

which projects a d(v)× d(v) matrix to its (i, j)-th element.
The g-module structure on coneα[−1] can be described as follows: Let ξ = (ξv) ∈

∏
gl(d(v)) = g.

Then g acts on coneα[−1] = Ω1
R ⊕ g∨ ⊗R[−1] by

ξ · ddRMe = −ξh(e)(ddRMe) + (ddRMe)ξt(e)

ξ · av = −ξvav + avξv.

Symplectic form on Spec R̃. The noncommutative symplectic form ω =
∑

x,y edges in Q̃

〈x, y〉ddRxddRy

on KQ̃ induces a shifted symplectic form ωR̃ = (ω0
R̃
, 0, . . .) on Spec R̃ by

ω0
R̃

=
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉tr(ddRMxddRMy)

=
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉
∑
ij

(ddRxijddRyji),

where ddRMx denotes the matrix of 1-form (ddRxij).
The superpotential Φ on Q also induces a function ΦR = tr(MΦ) which satisfy the equation

idω
0
R̃

= ddRΦR.

With these models for the cotangent complexes, we can proceed to write down some symplectic forms.

Symplectic form on LRepd(Q). Recall G =
∏
v vertices in Q GL (d(v)), where d(v) is the dimension of

the vector space at the vertex v, and gl(d(v)) is given by all d(v)× d(v) matrices. Let (av)ij denote the
linear map in Hom(gl(d(v)), R) which maps a d(v)× d(v) matrix to its (i, j)-th element. Let av denote
a matrix whose (i, j)-th element is given by (av)ij . Define

ω0
ϕ∗LRepd(Q)

= ω0
R̃

+
∑

v vertices in Q

tr(avddRMv∗)

=
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉tr(ddRMxddRMy) +
∑

v vertices in Q

tr(avddRMv∗).
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Now,

δ−ω
0
ϕ∗LRepd(Q)

= dcone (ω0
ϕ∗LRepd(Q)

)

= dΩ1
R
ω0
R̃

+ α(ωR̃) +
∑

v vertices in Q

tr
(
avdΩ1

R
ddRMv∗

)
= α(ωR̃) +

∑
v vertices in Q

∑
x,y edges in Q̃

〈x∨, y∨〉avddR(MxMy)

=
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉tr
((
−ah(x)Mx +Mxat(x)

)
ddRMy + (−1)|x|ddRMx

(
−ah(y)My +Myat(y)

))
+

∑
x,y edges in Q̃

〈x∨, y∨〉tr
(
ah(x)ddR(MxMy)

)
=

1

2

∑
x,y edges in Q̃

(1 + (−1)|x|+1+|x||y|+1+|x|(|y|+1))〈x∨, y∨〉tr
((
−ah(x)Mx +Mxat(x)

)
ddRMy

)
+

∑
x,y edges in Q̃

〈x∨, y∨〉tr
(
ah(x)ddR(MxMy)

)
=

∑
x,y edges in Q̃

〈x∨, y∨〉tr
((
−ah(x)Mx +Mxat(x)

)
ddRMy + ah(x)(ddRMx)My + ah(x)MxddRMy

)
= 0

since |x|+ 1 + |x||y|+ 1 + |x|(|y|+ 1) = 0 mod 2. For any ξ ∈ g,

δ+ωϕ∗LRepd(Q)
(ξ) = ξ · ωϕ∗LRepd(Q)

=
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉tr(ddRMxddRMy) +
∑

v vertices in Q

tr(avddRMv∗)

=
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉tr((−ξh(x)ddRMx + ddRMxξt(x))ddRMy)

+
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉tr(ddRMx(−ξh(y)ddRMy + ddRMyξt(y)))

+
∑

v vertices in Q

tr((−ξvav + avξv)ddRMv∗) +
∑

v vertices in Q

tr(av(−ξvddRMv∗ + ddRMv∗ξv))

= 0.

Hence δωϕ∗LRepd(Q)
= (δ− + δ+)ωϕ∗LRepd(Q)

= 0 and ω0
ϕ∗LRepd(Q)

is a G-invariant 2-form. The sequence

ωϕ∗LRepd(Q)
= (ω0

ϕ∗LRepd(Q)
0, 0, . . .) is then a G-invariant closed 2-form as

ddRωϕ∗LRepd(Q)
= ddR−ωϕ∗LRepd(Q)

+ ddR+ωϕ∗LRepd(Q)
= 0.

Since ω0
ϕ∗LRepd(Q)

is non-degenerate, ωϕ∗LRepd(Q)
= (ω0

ϕ∗LRepd(Q)
, 0, 0, . . .) is a G-invariant symplectic form.

Assuming our definition of G-invariant symplectic forms in Definition 7.3.7 is equivalent to the defi-
nition of symplectic forms on LRepd(Q) in the sense of Pantev, Toën, Vaquié and Vezzosi [58], ωϕ∗LRepd(Q)

is then a shifted symplectic structure on Repd(Q). Observe that the 2-form ω0
ϕ∗LRepd(Q)

on Repd(Q) and

ω0
R̃

on Spec R̃ differ only by a term. A natural guess would be that this extra term would drop out and
the two 2-forms would be equal when both are pulled back to SpecR. The shifted symplectic structure
would then be in the Darboux form described by Ben-Bassat, Brav, Bussi and Joyce [4, Theorem 2.10]
as follows:

Conjecture 7.4.1 (Shifted symplectic structure). The moduli space Repd(Q) of representations of a
quiver with superpotential Q of dimension m has a (2−m)-shifted symplectic structure ωϕ∗LRepd(Q)

such
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that ϕ∗(ωϕ∗LRepd(Q)
) = i∗ωR̃, where i : Spec R̃ → SpecR is the inclusion map. Moreover, SpecR and ω

are in a standard Darboux form in the sense of Ben-Bassat, Brav, Bussi and Joyce [4, Theorem 2.10]
described as follows:

1. The degree 0 part R0 is a smooth algebra of dimension
∑

degree 0 edges in Q

d(t(e))d(h(e)) generated by

the entries of the matrices Me, where deg e = 0, and that entries in ddRMe form a basis of Ω1
R0

over R0.

2. R is freely generated over R0 by the entries of the matrices Me with deg e = −1, . . . , 1−m, and

(i∗ωR̃)0 = i∗(ω0
R̃

) =
1

2

∑
x,y edges in Q̃

〈x∨, y∨〉tr(ddRMxddRMy).

3. The superpotential on Q induces a function ΦR = tr(MΦ) which satisfies the equation known as
the classical master equation {ΦR,ΦR} = 0, with differential d on R̃ given by

daij = (−1)1+|a|+m(a, b)∂bjiΦR,

where aij denotes the (i, j)-th entry of the matrix Ma for any edge a in Q̃.



Chapter 8

Future Directions

This chapter discusses several future research directions.

One possible direction is to generalize Theorem 5.4.5 by removing the vanishing condition (or equiv-
alently the assumption that the exceptional poset E is V -geometric):

Conjecture 8.0.2. Let X be a smooth variety and π : V → X be a vector bundle. Let E be an exceptional
poset on Db(Coh (X)) with dual exceptional poset F . Then there is a natural Afin-structure on

AE =
⊕
i,j∈I

⊕
`∈Z

rankV⊕
k=0

Hom`−k(Fi, Fj ⊗ ∧kV ),

making it a finite dimensional Afin-algebra augmented over S, such that Db(Coh (V )) ∼= Per(E(AE)).

In fact, in Chapter 5, although not explicitly stated, we have already proven a derived equivalence
Db(Coh (X)) ∼= Per(E(Ext•Λ(S, S))). However, we do not know if Ext•Λ(S, S) = AE (see Remark 5.4.2).

In another direction, we might be able to generalize the quotient construction (Theorem 5.6.5) by
relaxing the assumption that each object in the exceptional sequence admits a G-linearization. First,
we outline a way to generalize the quotient construction for A∞-categories in Section 3 by allowing G
to permute the objects in A. Let G be a finite group and A be an A∞-category with a finite set of
objects. Suppose G acts on Obj (A) and for each g ∈ G, the action g : A(u, v)→ A(g · u, g · v) is a strict
A∞-isomorphism. Then Obj (A) is partitioned into G-orbits [u], [v], [w], . . . etc. Denote by Stab (u) the
stabilizer group of the orbit [u]. A candidate for the quotient A∞-category A/G would be given by

Obj (A/G) = {([u], ρ) : [u] is a G-orbit in Obj (A) and ρ is a representation of Stab (u)},

A/G(([u], ρ), ([v], σ)) = HomG(ρ,A(u, v)⊗ σ),

with A∞-structures induced from that of A in a way similar to that described in Section 3. With
this, suppose H is a normal subgroup of G, then we should also have (A/H)/(G/H) ∼= A/G strictly
A∞-isomorphic. On the geometry side, we assume that the finite group G permutes the objects in the
exceptional poset E and partitions E into disjoint G-orbits Eu = {Eu1

, · · · , Euk} where u = (u1, . . . , uk).
Let Eu = Eu1

⊕ · · · ⊕ Euk . Then Eu is equipped with a natural G-linearization. Let

E/G = {Eu ⊗ ρ : Eu is a G-orbit of E and ρ is a representation of Stab (Eu)}.

Then we should be able to define on E/G a partial order by declaring

Eu ≺ Ev if and only if HomG(Eu, Ev) 6= 0 and u 6= v,

making E/G an exceptional poset on Db(CohG(X)). We should be able to prove:

133
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Conjecture 8.0.3. Let G be a finite group, X be a smooth variety with G acting by automorphisms,
and π : V → X an equivariant vector bundle. Let E be an exceptional poset on Db(Coh (X)) and
suppose the action of G on X induces a permutation on the objects in E. Then there is an equivalence
Db(CohG(V )) ∼= Per(E(AE/G)). Furthermore, when V is anti-semiample and Hom(Ei, Ej⊗S•V ∨) = 0,
then the above equivalence becomes Db(CohG(V )) ∼= Db(E(AE/G)).

Thus in this situation, if we know the dg-quiver derived equivalent to Db(Coh (V )), we would also
know the dg-quiver derived equivalent to Db(CohG(V )) by applying the quotient construction. Moreover,
this quotient construction could be factorized: if there is a normal subgroup H in G, we can compute
the quotient by first taking quotient by H, followed by taking quotient by G/H.

One might also try to remove the vanishing condition for the product construction (Theorem 5.7.3).
To do this, recall that in Theorem 5.2.4, we have constructed from the exceptional poset E a dg-algebra

RE = Hom(IE , IE ⊗ S•V ∨),

where E =
⊕
Ei and IE is an injective resolution for E. In the product situation, one starts with two

exceptional posets E and F and ends up with two dg-algebras RE and RF . For the product construction
to work without the vanishing condition, one needs to prove RE ⊗ RF ∼= RE�F as a dg-algebra. One
possible way to do this is to show that IE � IF is an injective resolution for E � F . However, we do not
know how to do this.

The above directions are more or less straightforward generalizations on the results of this thesis. A
more ambitious direction is perhaps the following. Pantev, Toën, Vaquié and Vezzosi has shown in [58,
Theorem 2.9] that if we have an n-shifted symplectic derived stack (X,ω) together with Lagrangians
fi : Li → X, for i = 1, 2, then the derived fiber product L1 ×X L2 has an (n − 1)-shifted symplectic
structure. Suppose Conjecture 7.4.1 is true, then quivers with superpotential correspond to shifted
symplectic derived stacks via the moduli construction. One might then ask if one can define a similar
notion of “Lagrangian” and “fiber product” in the quiver picture, which should be in the following form:
Let (Q,Φ) be a quiver with superpotential of dimension n. A Lagrangian should be given by a quiver
Qi with some additional structures encoding homotopy information, together with a morphism of dg-
algebras fi : KQ → KQi satisfying some compatibility conditions. The “fiber product” Q1 ×(Q,Φ) Q2

should be a quiver with superpotential of dimension n − 1, whose path algebra is given by the “tensor
product” KQ1 ⊗KQ KQ2. All these constructions, after taking moduli, should yield their corresponding
counterparts in the derived stack picture.



Appendix A

Some Cohomological Formulae

This chapter computes some cohomological formulae for computing examples in Chapter 6.

A.1 Cohomologies of Tangent and Cotangent Sheaf of Pn

In this section, we calculate some sheaf cohomologies for the tangent sheaf T and cotangent sheaf Ω of
Pn = P(V ), where V is an (n+ 1)-dimensional vector space. We will write T p = ∧pT and Ωp = ∧pΩ.

Lemma A.1.1. Let 0 → L → U → W → 0 be a sequence of vector bundles with rankL = 1. Then for
p ≥ 1 we have an exact sequence

0→ L⊗
p−1∧

W →
p∧
U →

p∧
W → 0. (A.1.1)

Proof. Taking wedge product of the exact sequence, and since L is a line bundle, we have an exact
sequence

· · · → L⊗2 ⊗
p−2∧

U → L⊗
p−1∧

U →
p∧
U →

p∧
W → 0.

We claim that this exact sequence factorizes into the short exact sequence (A.1.1). We induct on p. The
case p = 1 holds tautologically. For general p, by induction assumption and twisting with L, we have an
exact sequence

0→ L⊗2 ⊗
p−2∧

W → L⊗
p−1∧

U → L⊗
p−1∧

W → 0.

The map L⊗
∧p−1

U →
∧p

U vanishes on L⊗2 ⊗
∧p−2

W and thus descends to form an exact sequence

L⊗
p−1∧

W →
p∧
U →

p∧
W → 0.

To show the above exact sequence is also exact on the left, it suffices to show

ker

(
p∧
U →

p∧
W

)
= coker

(
L⊗2 ⊗

p−2∧
U → L⊗

p−1∧
U

)
= L⊗

p−1∧
W.

This follows since by induction assumption

coker

(
L⊗

p−2∧
U →

p−1∧
U

)
=

p−1∧
W.

135
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Proposition A.1.2. The following sequence of vector bundles on Pn is exact:

0→ T p−1(k)→
p∧
V ⊗O(p+ k)→ T p(k)→ 0.

Proof. Apply Lemma A.1.1 to the Euler exact sequence 0→ O → V ⊗O(1)→ T → 0.

Lemma A.1.3. For 2 ≤ q ≤ n− 1,

Hq(Pn, T p(k)) = Hq−1(Pn, T p+1(k)).

Proof. We have an exact sequence

p∧
V ⊗Hq−1(Pn,O(p+ k))→ Hq−1(Pn, T p(k))→ Hq(Pn, T p−1(k))→

p∧
V ⊗Hq(Pn,O(p+ k)).

For 2 ≤ q ≤ n− 1, the flanking terms vanish and we have the isomorphism as desired.

Lemma A.1.4. For n ≥ 2 and p 6= n− 1, H1(Pn, T p(k)) = 0 for all k.

Proof. We may assume 0 ≤ p ≤ n. For 0 ≤ p ≤ n− 2, applying Lemma A.1.3 repeatedly, we obtain

H1(Pn, T p(k)) = Hp+1(Pn,O(k)) = 0.

For p = n− 1,
H1(Pn, T n(k)) = H1(Pn,O(n+ 1 + k)) = 0.

Lemma A.1.5. For n ≥ 2,

h0(Pn, T p(k)) =


(
n+k
p+k

)(
n+k+p+1

p

)
if 0 ≤ p ≤ n, k ≥ −p,

1 if p = n, k = −n− 1,

0 otherwise.

Proof. For p = 0,

h0(Pn,O(k)) =

{(
n+k
k

)
if k ≥ 0,

0 otherwise.

For p = n,

h0(Pn, T n(k)) = h0(Pn,O(n+ 1 + k)) =

{(
2n+1+k

n

)
if k ≥ −n− 1

0 otherwise.

For 1 ≤ p ≤ n− 1, H1(Pn, T p−1(k)) = 0 by Lemma A.1.4. Hence we have short exact sequences

0→ H0(Pn, T p−1(k))→
p∧
V ⊗H0(Pn,O(p+ k))→ H0(Pn, T p(k))→ 0.

If k < −p, we have H0(Pn, T p(k)) = 0. If k ≥ −p, we use the equation

h0(Pn, T p(k)) =

(
dim

p∧
V

)
h0(Pn,O(p+ k))− h0(Pn, T p−1(k))

=

(
n+ 1

p

)(
n+ p+ k

p+ k

)
− h0(Pn, T p−1(k))

to induct on p and obtain the desired formula.
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Lemma A.1.6. For n ≥ 2,

H1(Pn, T n−1(k)) =

{
C if k = −n− 1,

0 otherwise.

Proof. We have short exact sequences

0→ H0(Pn, T n−1(k))→
n∧
V ⊗H0(Pn,O(n+ k))→ H0(Pn, T n(k))→ H1(Pn, T n−1(k))→ 0.

If k < −n, we have H0(Pn,O(n+ k)) = 0 and hence

H1(Pn, T n−1(k)) = H0(Pn, T n(k)) = H0(Pn,O(n+ 1 + k)) =

{
C if k = −n− 1

0 if k < −n− 1.

If k ≥ −n, using Lemma A.1.5, we have

h1(Pn, T n−1(k)) = h0(Pn, T n(k))−

(
dim

n∧
V

)
h0(Pn,O(n+ k)) + h0(Pn, T n−1(k))

=

(
2n+ 1 + k

n

)
−
(
n+ 1

n

)(
2n+ k

n+ k

)
+

(
n+ k

n− 1 + k

)(
2n+ k

n− 1

)
= 0.

Lemma A.1.7. For 1 ≤ q ≤ n− 1,

Hq(Pn, T p(k)) =

{
C if p+ q = n and k = −n− 1,

0 otherwise.

Proof. This holds by Lemma A.1.3, A.1.4 and A.1.6.

Lemma A.1.8.

hn(Pn, T p(k)) =

{(−n−k−2
p

)(−k−p−1
n−p

)
if 0 ≤ p ≤ n, k ≤ −n− p− 2

0 otherwise.

Proof. By the vanishing Hn−2(Pn,O(p + k)) = 0 and Hn+1(Pn, T p−1(k)) = 0 (since dimPn = n), we
have exact sequences

0→ Hn−1(Pn, T p(k))→ Hn(Pn, T p−1(k))→
p∧
V ⊗Hn(Pn,O(p+ k))→ Hn(Pn, T p(k))→ 0.

If k ≥ −n− p, Hn(Pn,O(p+ k)) = 0, hence Hn(Pn, T p(k)) = 0.
If k ≤ −n− 1− p, then Hn−1(Pn, T p(k)) = 0. We then have the equation

hn(Pn, T p(k)) =

(
dim

p∧
V

)
hn(Pn,O(p+ k))− hn(Pn, T p−1(k))

=

(
n+ 1

p

)(
−p− k − 1

−p− k − 1− n

)
− hn(Pn, T p−1(k))

and induction on p gives us the desired formula.

Putting Lemmas A.1.5, A.1.7 and A.1.8 together, we obtain
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Proposition A.1.9.

hq(Pn, T p(k)) =


(
n+k
p+k

)(
n+k+p+1

p

)
if q = 0, 0 ≤ p ≤ n, k ≥ −p,

1 if p+ q = n, 0 ≤ p, q ≤ n, k = −n− 1,(−n−k−2
p

)(−k−p−1
n−p

)
if q = n, 0 ≤ p ≤ n, k ≤ −n− p− 2,

0 otherwise.

By the isomorphism T p ∼= T n ⊗Ωn−p ∼= Ωn−p(n+ 1), one can calculate the cohomologies of exterior
powers of cotangent sheaf of Pn.

Proposition A.1.10.

hq(Pn,Ωp(k)) =


(
n+k−p

k

)(
k−1
p

)
if q = 0, 0 ≤ p ≤ n, k ≥ p+ 1,

1 if 0 ≤ p = q ≤ n, k = 0,(−k+p
−k
)(−k−1

n−p
)

if q = n, 0 ≤ p ≤ n, k ≤ p− n− 1,

0 otherwise.

A.2 Cohomologies of Tangent and Cotangent Sheaf of P2

In this section, we specialize to P2. Let V be a three dimensional vector space over C. Denote by Ω and
T the cotangent and tangent sheaf on P(V ) = P2. From the last section, we have the formulae

hq(P2,O(k)) =


1
2 (k + 1)(k + 2) if q = 0 and k ≥ 0
1
2 (k + 1)(k + 2) if q = 2 and k ≤ −3

0 otherwise.

hq(P2, T (k)) =


(k + 2)(k + 4) if q = 0 and k ≥ −1

1 if q = 1 and k = −3

(k + 2)(k + 4) if q = 2 and k ≤ −5

0 otherwise.

hq(P2,Ω(k)) =


(k + 1)(k − 1) if q = 0 and k ≥ 2

1 if q = 1 and k = 0

(k + 1)(k − 1) if q = 2 and k ≤ −2

0 otherwise.

Proposition A.2.1.

hq(P2, T ⊗ Ω(k)) =


2k2 + 6k + 1 if q = 0 and k ≥ 0

3 if q = 1 and k = −1 or k = −2

2k2 + 6k + 1 if q = 2 and k ≤ −3

0 otherwise.

Proof. We have a long exact sequence

0→ H0(P2,Ω(k))→ V ⊗H0(P2,Ω(k + 1))→ H0(P2, T ⊗ Ω(k))

→ H1(P2,Ω(k))→ V ⊗H1(P2,Ω(k + 1))→ H1(P2, T ⊗ Ω(k))

→ H2(P2,Ω(k))→ V ⊗H2(P2,Ω(k + 1))→ H2(P2, T ⊗ Ω(k))→ 0.

For k ≥ 1, from the vanishing Hi(P2,Ω(k)) = Hi(P2,Ω(k + 1)) = 0, we immediately have the vanishing
Hi(P2, T ⊗ Ω(k)) = 0 for i ≥ 1. Also, we have

h0(P2, T ⊗ Ω(k)) = 3h0(P2,Ω(k + 1))− h0(P2,Ω(k)) = 2k2 + 6k + 1.
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For k = 0, from Hi(P2,Ω(1)) = 0 for all i, we have

Hi(P2, T ⊗ Ω) = Hi+1(P2,Ω) =

{
C if i = 0

0 otherwise.

For k = −1, from Hi(P2,Ω(−1)) = 0 for all i, we have

Hi(P2, T ⊗ Ω(−1)) = V ⊗Hi(P2,Ω) =

{
C3 if i = 1

0 otherwise.

The rest follows from Serre duality

hi(P2, T ⊗ Ω(k)) = h2−i(P2,Ω⊗ T (−k)⊗O(−3)) = h2−i(P2, T ⊗ Ω(−3− k)).

Using the isomorphism T ∼= Ω(3), we also have

hq(P2,Ω⊗ Ω(k)) = hq(P2, T ⊗ Ω(k − 3)) =


2k2 + 6k + 1 if q = 0 and k ≥ 3

3 if q = 1 and k = 1 or k = 2

2k2 + 6k + 1 if q = 2 and k ≤ 0

0 otherwise.

Twisting and dualizing the Euler sequence again, we get short exact sequences

0→ T ⊗ Ω⊗ Ω(k)→ V ∗ ⊗ T ⊗ Ω(k − 1)→ T ⊗ Ω(k)→ 0

0→ Ω⊗ Ω(k)→ V ⊗ Ω⊗ Ω(k + 1)→ T ⊗ Ω⊗ Ω(k)→ 0.

Proposition A.2.2.

hq(P2, T ⊗ Ω⊗ Ω) =

{
C10 if q = 1

0 otherwise.

Proof. This follows from the long exact sequence

0→ H0(P2,Ω⊗ Ω)→ V ⊗H0(P2,Ω⊗ Ω(1))→ H0(P2, T ⊗ Ω⊗ Ω)

→ H1(P2,Ω⊗ Ω)→ V ⊗H1(P2,Ω⊗ Ω(1))→ H1(P2, T ⊗ Ω⊗ Ω)

→ H2(P2,Ω⊗ Ω)→ V ⊗H2(P2,Ω⊗ Ω(1))→ H2(P2, T ⊗ Ω⊗ Ω)→ 0
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