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Abstract

In this thesis we study the deformations of special Lagrangian submanifolds X ⊆ M sitting inside
a Calabi-Yau manifold (M, g, J,Ω). Let N be the normal bundle of X, and identify N ∼= T ∗X via
the complex structure J and induced metric on X. Then using the exponential map one can identify
small 1-forms ξ on X with submanifolds Xξ ⊆M close to X.

In the case that X is compact, McLean [50, Theorem 3-6], showed that the small 1-forms ξ
parameterising special Lagrangian submanifolds Xξ ⊆ M form a smooth manifold M ⊆ C∞(T ∗X)
of dimension b1(X), the first Betti number of X. We give a full proof of this result, including the
necessary details which were absent from [50]. In fact our result Theorem 3.21 is an extension of the
original McLean theorem, in that we show that the special Lagrangian deformations M persist under
(certain types of) perturbations of the ambient Calabi-Yau structure.

We then go on to consider the situation when X ⊆ Cn is non-compact, but asymptotic to a
cone C ⊆ Cn at a specified rate α̃ < 1 of decay. Provided that α̃ is not too negative, it turns out
that for almost all α̃ there is again a smooth manifold Mα̃ ⊆ C∞(T ∗X) parameterising the special
Lagrangian submanifolds Xξ ⊆ Cn which are near to X and decay towards C at rate α̃. The main
result here is Theorem 6.45, which also gives the dimensions of the smooth manifold Mα̃. It turns
out that for small rates of decay, dimMα̃ depends only on the topology of X, whereas for higher
rates dimMα̃ will also depend on analytic data got from the link Σ := S2n−1 ∩ C of the cone C.
Along the way to proving Theorem 6.45 we develop a theory of analysis for asymptotically conical
Riemannian manifolds, expanding on the existing theory of Lockhart and McOwen [46] and Lockhart
[45] for damped Sobolev spaces. In particular, in Section 6.1.1 we give the relevant details for damped
Hölder spaces. We finish in Section 6.3 by applying our theory to some specific examples, and prove
the existence of special Lagrangian submanifolds in Xξ ⊆ Cn which were previously unknown.
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Chapter 1

Introduction

1.1 Motivation and previous work

The notion of calibrated geometry was first introduced by Harvey and Lawson in the foundational
paper [21]. They define a calibration to be a closed r-form φ on a Riemannian manifold (M, g) such
that the length of φ|V is less than or equal to 1 for all r-planes V in TM . Then an r-dimensional
submanifold X ⊆ M is calibrated when

∣∣φ|TxX

∣∣
g

= 1 for all x ∈ X. It follows quickly from the

definitions that calibrated submanifolds X ⊆ M are minimal , and this fact makes the subject of
calibrated geometry worthy of serious study.

The basic example of a calibration is the 2l-form 1
l!ω

l on a Kähler manifold (M,J, g) with Kähler
form ω. It turns out that the calibrated submanifolds in this case are the complex submanifolds
X ⊆ M of complex dimension l. One may then ask if there are any further interesting examples
of calibrations, and indeed Harvey and Lawson [21] provide us with some. The special Lagrangian
calibration on Calabi-Yau manifolds is the first they consider: it turns out that if (M,J, g,Ω) is a
Calabi-Yau manifold of real dimension 2n, then the n-form Re Ω is a calibration on M , and the
calibrated submanifolds X ⊆M are called special Lagrangian.

To any Riemannian manifold (M, g) of dimension m we can associate the holonomy group Hol(g) 6

O(m). Supposing that there exists a non-zero φ0 ∈ Λr(Rm)∗ which is fixed by the action of Hol(g), we
can, by rescaling φ0 if necessary, easily construct using parallel translation an r-form φ on M which
is covariant constant and has length less than or equal to 1 on each r-plane V in TM . It follows
that φ will be a calibration on (M, g). In practice, all of the calibrations that one meets come from
some reduced holonomy group in this way. Applying this general principle to the above examples,
note that: a Kähler manifold is precisely a Riemannian manifold with holonomy group contained in
U(n), where n = 2m, and a Calabi-Yau manifold is precisely a Riemannian manifold with holonomy
group contained in SU(n). The other calibrations that Harvey and Lawson consider also live on
Riemannian manifolds with reduced holonomy: namely the associative and coassociative calibrations
on a 7-manifold of holonomy G2, which have respectively r = 3, 4, and the Cayley calibration on an
8-manifold with holonomy Spin(7), which has r = 4.

Although the full theory of calibrated geometry is very important, the special Lagrangian calibra-
tion itself has received a great deal of attention over the past few years. One of the main reasons for
this has been the attempt by Strominger, Yau and Zaslow [58] to explain the idea of mirror symmetry
in terms of special Lagrangian submanifolds. We shall briefly explain some of the ideas involved.

String theory is a branch of theoretical physics in which particles are modelled not as points but as
1-dimensional loops, or “strings” propagating in some ambient space N . In the most popular version
of string theory, the space N has 10 dimensions, and locally looks like R4 ×M where R4 is Minkowski
4-space and M is a compact, 6-dimensional Calabi-Yau manifold. The physics of the space N is
encapsulated in a complicated mathematical object one can associate to M called a superconformal
field theory , or SCFT for short, and then the properties of the Calabi-Yau manifold M get translated
over to properties of the SCFT.

1



2 Chapter 1: Introduction

It turns out that there is a simple automorphism which one can apply to a given SCFT, and we say
that Calabi-Yau manifoldsM , M̂ are a mirror pair if their SCFTs are associated by this automorphism.
Using physical arguments, one can now deduce all sorts of miraculous relations between the Calabi-
Yau manifolds M and M̂ , because their SCFTs can be identified in the way described above. This is
the phenomenon of mirror symmetry. We now give an example of the sort of thing physicists believe
to be true. Denote the Hodge numbers of a compact complex manifold by hp,q. Then the Hodge
diamond of a compact, 6-dimensional Calabi-Yau manifold M has the form

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

so that the only independent Hodge numbers of M are h1,1 and h2,1. Mirror symmetry predicts that if
M and M̂ are a mirror pair of Calabi-Yau manifolds then h1,1(M) = h2,1(M̂) and h1,1(M̂) = h2,1(M),
so that the mirror transform M 7→ M̂ interchanges odd and even cohomology. That is an intriguing
result.

Unfortunately, the transition between a Calabi-Yau manifold M and its SCFT is not yet a process
which is mathematically understood, and so the whole theory of mirror symmetry as explained in the
previous paragraph is lacking any rigorous proof. As mathematicians, we would like to fill this gap,
and in particular, given a compact, 6-dimensional Calabi-Yau manifold M , we would like to know
how to build a second compact, 6-dimensional Calabi-Yau manifold M̂ , with M and M̂ related in the
ways the physicists predict. One (among others: see for example [39]) conjectural recipe is that given
in [58].

Strominger, Yau and Zaslow argue using physics that certain compact 6-dimensional Calabi-Yau
manifolds M (those “near the large complex structure limit”) should admit a fibration M → B,
with generic fibre a special Lagrangian 3-torus T 3 → M , and then the mirror Calabi-Yau manifold
M̂ is got by “dualising” these fibres T 3 → M in some way. The proposal of Strominger, Yau and
Zaslow has come to be known as the SYZ Conjecture, and even its precise formulation has not yet
been worked out. In any case, to make some progress towards understanding mirror symmetry via
the SYZ Conjecture, we need to understand fibrations of Calabi-Yau manifolds by special Lagrangian
submanifolds, and in particular, tori. The cases we are most interested in have Hol(M, g) = SU(3).
It turns out that in this situation, if π : M → B is a fibration as above, then there must exist fibres
π−1(b) ⊆ M which are singular. If we let B0 ⊆ B denote the subset of b ∈ B such that π−1(b) is
non-singular, then one part of understanding the global properties of the fibration π : M → B is to
work out what happens to the fibres π−1(b) as b ∈ B0 approaches the singular locus B \B0 ⊆ B.

Joyce, in a recent series of articles [28], [31], [33], [37] has begun a programme to help understand
the issues raised in the previous paragraph, and we now outline some of that programme. For a more
detailed description of the following discussion, see in particular [31]. Suppose that M is any Calabi-
Yau manifold, and that X ⊆ M is a compact special Lagrangian submanifold. Then by the McLean
Theorem ([50, Theorem 3-6], [5, Theorem 2.2.27] and Section 3.2 below) the submanifold X ⊆ M
is contained in a smooth, connected, moduli space M of compact special Lagrangian submanifolds
Xξ ⊆ M , and the dimension of M is b1(X), the first Betti number of X. We now think about
compactifying the manifold M, by adding a boundary ∂M consisting of singular special Lagrangian
submanifolds Xsing ⊆M , and ask what happens to the non-singular elements of M as they approach
the singular elements of the boundary ∂M.

If dimM = 2n then the manifold Cn is itself (non-compact) Calabi-Yau, and is an approximate
local model for the Calabi-Yau manifold M . Let Xsing ⊆M be an element of ∂M, and pick a singular
point p ∈ Xsing. Using Geometric Measure Theory, as in the book [17] of Federer, we can define the
tangent cone C ⊆ Cn to Xsing at p, and moreover, C will be a special Lagrangian cone in Cn. Provided
the singularity at p is not too badly behaved, there will be an open neighbourhood U of p ∈ M such
that U ∩Xsing looks approximately like the cone C ⊆ Cn. We further assume, for simplicity, that p
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is the only singular point of Xsing, so that in particular, p is isolated, and therefore 0 ∈ C is also an
isolated singular point.

In vague terms, we expect to be able to desingularise Xsing ⊆ M by cutting out the open subset
U ∩Xsing ⊆ Xsing, and gluing back in its place a submanifold Xac ⊆ Cn which is asymptotic to the
cone C in some way. The result after this gluing process will be a non-singular special Lagrangian
submanifold Xξ ⊆M , an element of the moduli space M which is close to Xsing in M = M∪ ∂M.

Suppose that there is a smooth portion W of the boundary ∂M whose elements have 1 isolated
singularity, modelled on a cone C as above. Then we expect that, near W , the smooth manifold
M looks like W × Mac

Cn , where Mac is some moduli space of special Lagrangian submanifolds in Cn,
which are asymptotic to the cone C, at some prescribed decay rate, and Cn acts on this space via
translations. In particular, we would have

b1(Xξ) = dimM = dim ∂M + dimMac − 2n

for special Lagrangian submanifolds Xξ ∈ M near the open subset W of the boundary ∂M.

It follows from the above discussion that, for a given special Lagrangian cone C ⊆ Cn, possibly
singular at 0, but elsewhere smooth, we are interested in the set Mac of special Lagrangian submani-
folds in Cn which are asymptotic to the cone C, with some prescribed rate of decay. In particular, we
hope to prove that this set Mac is a smooth manifold, and then to calculate the dimension dimMac.
These issues provide the primary motivation for this thesis.

1.2 The main results

Our first result is a rigorous proof of McLean’s Theorem, which tells us that compact special La-
grangian submanifolds live in smooth moduli spaces. No doubt McLean was aware of the details of
his proof, but these are lacking in the published version [50, Theorem 3-6]. The purpose of providing
an explicit proof is therefore to fill an existing gap in the literature, but also the version we shall give
is an extension of the original theorem, in that we take into account perturbations of the ambient
Calabi-Yau structure. Our result is given as Theorem 3.21, and we include here a brief version.

Theorem 1.1 (Extended McLean Theorem) Let M be a manifold and
(
J(p), g(p),Ω(p)

)
a smooth

family of Calabi-Yau structures on M , parameterised by p ∈ Rm, and suppose that X ⊆ M is a
compact submanifold which is special Lagrangian with respect to

(
J(0), g(0),Ω(0)

)
. If [ω(p)|X ] =

[Im Ω(p)|X ] = 0 in H∗(X) for all p ∈ Rm then there exist an open subset W ⊆ Rm containing 0, and
a family (Mp)p∈W of smooth manifolds, each with dimension dimMp = b1(X), such that for each
p ∈W , Mp parameterised the smooth submanifolds Xξ ⊆M near to X which are special Lagrangian
with respect to

(
J(p), g(p),Ω(p)

)
. Moreover the total space M :=

⋃
p∈W Mp is smooth.

Another reason for giving a detailed proof of Theorem 1.1 is that, at least conceptually, it can be
carried straight over to the asymptotically conical case that we shall consider later in Chapter 6.

We note here that Baier [5] has also provided a proof of the original theorem of McLean, but he
uses a different method to ours in Section 3.2 below. Also, there have been versions of McLean’s
Theorem for compact special Lagrangian submanifolds X, with boundary ∂X 6= ∅ satisfying certain
conditions: see the article [9, Main Theorem] of Butscher.

Before stating our main result, we shall give some definitions. Let Σ be a compact manifold, with
connected components

Σ = Σ1 ∪ · · · ∪ ΣL.

By a manifold with ends we mean a connected manifold X which off some compact subset X0 ⊆ X
is diffeomorphic to the product (T,∞) × Σ, where T ∈ R. We shall always consider X \ X0 and
(T,∞)×Σ as being identified by some fixed diffeomorphism. For the purposes of this thesis, we shall
always insist that a manifold X with ends has dimension dimX =: n > 3. In the theory we give, this
condition is important, and we explain why in the description of Chapter 6 below.
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Suppose further that C ⊆ Cn is a cone, smooth away from 0, and that Σ = S2n−1∩C. Then there
is an embedding

iC : R × Σ → Cn

(t, σ) 7→ etσ

with image C \ {0}, a smooth submanifold of Cn. If α̃ = (α̃1, . . . , α̃L) ∈ RL, with α̃j < 1 for each
1 6 j 6 L, and X ⊆ Cn is a submanifold, we shall say that X is strongly asymptotically conical with
cone C and rate α̃ if for each 1 6 j 6 L we have

|iX − iC | = O(eα̃jt) (1.1)

on (T,∞) × Σj , together with appropriate decay in the derivatives of iX − iC . In equation (1.1) we
use iX to denote the inclusion X \X0 ⊆ Cn, considered as a map (T,∞) × Σ → Cn.

In the above situation, the link Σ of C inherits a Riemannian metric gΣ from the Euclidean
metric on Cn. For each 1 6 j 6 L, let µj denote the first positive element of the spectrum of the
Laplacian ∆ : C∞(Σj) → C∞(Σj), and then define λj to be the unique positive real number such
that λj(λj + 2 − n) = µj , together with λ = (λ1, . . . , λL). Our main result, Theorem 6.45, can now
be summarised as follows:

Theorem 1.2 (Deformation Theorem for AC special Lagrangians in Cn) Suppose that X ⊆
Cn is special Lagrangian and strongly asymptotically conical with cone C ⊆ Cn and rate α̃ ∈ RL,
where α̃ < 1. Then, provided that α̃ > 1 − n − λ, and α̃ is generic, there is a smooth moduli space
Mα̃ of special Lagrangian submanifolds Xξ ⊆ Cn which are strongly asymptotically conical with cone
C and rate α̃. Moreover,

dimMα̃ =





b1c(X) − L+ 1 if 1 − n− λ < α̃ < 1 − n
b1c(X) if 1 − n < α̃ < −1
b1(X) + L− 1 if −1 < α̃ < λ
b1(X) + L− 1 + χ(α̃+ 1) if λ < α̃ < 1

where χ(α̃ + 1) > 0 is an analytic term got from the spectrum of the Laplacian of the link Σ, acting
on functions, and we write β < δ whenever βj < δj for each 1 6 j 6 L.

Related results have been proved recently by Pacini [55], but this work was carried out indepen-
dently, and nearing completion at the time [55] was published. However, our methods differ somewhat
in that we use different analytic machinery to reach our respective goals. The author’s route is via
a Hölder space version of the Lockhart-McOwen Theory of [45] and [46], and essentially deals with
non-compact manifolds, without boundary. Pacini, on the other hand, uses the pseudo-differential
operator theory of Melrose, as described in [51], where the emphasis is on Sobolev spaces over compact
manifolds with boundary.

In Pacini’s work, the ambient space M containing the submanifold X is taken to be asymptotically
conical, rather than just Cn, so in that respect, is more general than the work of the author. However,
the theory presented here has advantages over that of [55] in that more general growth rates are
considered (he proves the case which, in our notation, is α̃ = −1 + ε for small ε > 0, and states the
corresponding result for the case α̃ = −n

2 when M = Cn). Also, Pacini seems to encounter some kind
of obstruction at the boundary ∂X of his compact manifold X, so that he cannot infer his deformed
submanifolds Xξ have the smoothness one would hope for on their boundary ∂Xξ.

Theorem 1.2 provides us with new examples of special Lagrangian submanifolds of Cn. For exam-
ple, if a1, . . . , a8, b ∈ R with b 6= 0 then the U(1)7-invariant special Lagrangian submanifold

X :=

{
(z1, . . . , z8) ∈ C8 :

|z1|2 − a1 = · · · = |z8|2 − a8

Im(iz1 . . . z8) = b

}

of Harvey and Lawson [21] moves in a smooth moduli space Mα̃ of special Lagrangian submanifolds,
where

dimMα̃ = 376.
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This can be quickly deduced from the relevant example of Section 6.3.4. Here Mα̃ consists of the
special Lagrangian submanifolds Xξ ⊆M which are near X and strongly asymptotically conical with
cone

C :=

{
(z1, . . . , z8) ∈ C8 :

|z1| = · · · = |z8|
Im(iz1 . . . z8) = 0

}

and rate
√

24 − 4 < α̃ < 1.

1.3 An overview of the chapters

Chapter 2

In Section 2.1 we describe some standard material from functional analysis and differential geometry.
The most important results here are the Implicit Function Theorems 2.10 and 2.11, which we use to
show the moduli spaces M and Mα̃ of our main theorems are in fact smooth.

Section 2.2 is a description of some of the relevant aspects of submanifold theory. We start by
stating the Tubular Neighbourhood Theorem 2.15, which gives us our basic method for deforming
submanifolds. The latter half of Section 2.2 is aimed at demonstrating why special Lagrangian sub-
manifolds must necessarily be smooth. The route is via calibrated geometry, minimal submanifolds
and then the usual elliptic regularity results from PDE theory. We need this material to show that
the points of our moduli spaces M and Mα̃ are smooth as maps between manifolds.

In Section 2.3 we outline some of the relevant theory from Calabi-Yau and special Lagrangian
geometry. After some basic definitions and examples, we go on to demonstrate why the infinitesimal
deformations of a special Lagrangian submanifold X ⊆ M may be thought of as the closed and
coclosed 1-forms on X. This gives us a good idea of what the tangent spaces, and hence dimension,
of our moduli spaces M and Mα̃ should be: using the Implicit Function Theorems 2.10 and 2.11 we
aim to write M and Mα̃ as the graph of some smooth map on this tangent space, at least locally.

Chapter 3

In Chapter 3 we give a proof of Theorem 1.1.

The first half, Section 3.1, is again standard. We give it for completeness, and as a model for the
non-compact setting we shall consider. The main results here are the embedding and compactness
results Theorem 3.2 and Theorem 3.3, and then the elliptic estimates of Theorem 3.4. The essential
arguments in each of these theorems come from PDE theory, and yet with them one can prove powerful
results such as the “Fredholm Alternative”, Theorem 3.8, which has many applications in geometry.
We give a proof of Theorem 3.8, our motivation being that the methods used carry over to the
non-compact case we shall consider in Section 4.3.3.

In Section 3.1.3 we give an application of our general theory, and describe Hodge Theory for
compact, Riemannian manifolds (X, g). Then one can deduce, for example, that

dim
{
ξ ∈ C∞(T ∗X) : d∗

gξ = dξ = 0
}
= dimH1(X) =: b1(X) (1.2)

the 1st Betti number of X. We included proofs in Section 3.1.3 so that the reader can see the
techniques required to obtain results such as (1.2). These techniques are simply not available in the
non-compact case, and the corresponding theorems will not hold. We come back to this point in
Section 6.1.3, where we try to establish just what we can say.

Armed with the preliminary material of Chapter 2 and Section 3.1, we go on in Section 3.2 to
prove our McLean-type result. The main result here is Theorem 3.21, which is an expanded, more
precise, version of Theorem 1.1 given above. The general idea is that, if X ⊆ M is a submanifold
which is special Lagrangian with respect to

(
J(0), g(0),Ω(0)

)
, then one can identify small 1-forms ξ

on X with submanifolds Xξ which are close to X. One then defines a “deformation” map F whose
value on a pair (p, ξ) measures how far away the submanifold Xξ is from being special Lagrangian
with respect to

(
J(p), g(p),Ω(p)

)
, so that the fibre F−1(0) is our total space of special Lagrangian
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deformations. We set things up in such a way so that F is a smooth map between open subsets of
Banach spaces, with derivative F ′(0) that is surjective, and with kernel

KerF ′(0) =
{
ξ ∈ C∞(T ∗X) : d∗

gξ = dξ = 0
}
⊕ Rm.

Now applying the Inverse Function Theorem shows that F−1(0) is a smooth manifold in a neighbour-
hood of (0, 0), with dimension b1(X) +m.

Chapter 4

For the rest of the thesis, we leave the compact case behind, and concentrate on the situation in which
X is a manifold with ends, in the sense described above. The general idea of Chapter 4 is to provide
an exposition of some material from the literature, and then to adapt this material to a situation
which shall useful for us later. Section 4.2 only is meant to contain the Fredholm material that we
shall quote, the source being the Lockhart-McOwen Theory of [45] and [46], but also in that section
we include additional useful results, not to be found in these papers.

We begin in Section 4.1 by establishing our basic objects of study, together with notation we shall
use time and again in the sequel. Supposing that X is a manifold with ends, we define the notion
of an admissible vector bundle E on X: these are the basic vector bundles we shall work with. It
turns out that bundles of tensors (⊗sTX) ⊗ (⊗rT ∗X), and forms ΛrT ∗X, are admissible, and this
certainly covers the applications we have in mind. We then go on in Section 4.2.1 to define Banach
spaces W p

k,β(E) and Bk,aβ (E) , consisting of sections of an admissible bundle E. We call these spaces
damped Sobolev spaces and damped Hölder spaces, respectively. The indices p, k, a mean pretty much
what they do in the compact case, and one can think of the index β as imposing a constraint to decay
at rate O(eβt) on the subset X \X0. Actually, β is an L-tuple β = (β1, . . . , βL), and each βj reflects
the order of decay on the component (T,∞) × Σj . We also quote in Section 4.2.1 some embedding

and compactness results from the literature for the spaces W p
k,β(E), Bk,aβ (E). These results are the

first part of our “tool-kit” for analysis on manifolds with ends.

It turns out that one must work with the damped spaces of the previous paragraph if one wishes
to have a good Fredholm theory for differential operators on X: to quote an example of Lockhart [45,
Equation (0.2)], if h is a metric on X, tending towards a cylindrical metric h̃ on the ends X∞ of X,
then

∆r
h : L2

2(Λ
rT ∗X) → L2(ΛrT ∗X) (1.3)

is Fredholm precisely when Hr(Σ) = Hr−1(Σ) = 0, so that the usual L2-Sobolev spaces on X are
too restrictive for Fredholm theory. We will consider similar sorts of issues, for asymptotically conical
metrics, in Section 6.1.2.

In Section 4.2.2 and Section 4.2.3 we describe the core of the Lockhart-McOwen Theory. Suppose
that P is an elliptic differential operator, of order l > 1, acting between admissible bundles E and
F . In the paper [46], Lockhart and McOwen prove that the operator P has a good Fredholm theory,
provided that P tends towards some elliptic, translation invariant operator P∞, on the ends of X.
For such operators, they give elliptic estimates for the maps

P : W p
k+l,β(E) →W p

k,β(F ), (1.4)

together with an explicit characterisation of when the map (1.4) is Fredholm. It turns out that (1.4) is
Fredholm for β in an open, dense, subset RL \D(P ) of RL which is independent of p and k. Lockhart
and McOwen further give a “jumping” formula telling us how the index of (1.4) changes as β moves
from one connected component of RL \ D(P ) to another. It turns out that the subset D(P ) and the
size of these “jumps” can be got in a very explicit way from the limit operator P∞. This theory will be
invaluable for us in Chapter 5. Note that Lockhart and McOwen do not say anything about operators
P as above acting between the damped Hölder spaces. Indeed, in the literature generally there tends
to be a bias towards the use of Sobolev spaces of some type, rather than Hölder spaces. In Section
6.1.1 we attempt to redress the balance, at least for Fredholm theory on manifolds with ends.

In Section 4.3 we convert the Lockhart-McOwen Theory of Section 4.2 over to the case of asymp-
totically conical manifolds, and specialise to the case where the admissible bundles E,F on X are
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made up of tensors or forms. Most of this conversion is nothing more that a change of language, but
we give it anyway because the applications we have in mind are best phrased in this new terminology.
In Section 4.3.1 we define new classes Lpk,β(E), Ck,aβ (E) of Banach spaces of sections. These spaces
can be given a coordinate-free description in terms of an asymptotically conical metric on X. We
therefore refer to the Lpk,β(E), Ck,aβ (E) as conical damped Sobolev spaces and conical damped Hölder
spaces, respectively. As before, the indices p, k, a have their usual significance, and β refers to the
order of growth of our tensors or forms on X, as measured using an asymptotically conical metric g.
It follows that the growth rate β = −n

2 corresponds to the usual L2-Sobolev spaces, built using g.

Our definition of asymptotically conical is quite weak, requiring (for metrics, at least) only rate o(1)
decay: this is all that is needed to apply the material of 4.2. Later, in Section 5.1.4, we shall consider
stronger rates of decay for our asymptotically conical metrics, namely O(eαt), where α < 0. We shall
need these stronger decay rates to deduce certain things which do not seem to be obtainable with mere
o(1) decay. In Section 4.3.2 we define the notion of an asymptotically conical operator Q. Essentially,
this is just an operator corresponding to the asymptotically translation invariant operators of Section
4.2.3, together with an additional damping factor O(e−γt). We call γ the rate of the operator Q.

We end Chapter 4 by giving a useful characterisation of the image of an asymptotically conical
operator

Q : Lpk+l,β+γ(E) → Lpk,β(F ). (1.5)

This is in the literature, at least implicitly: see the paper [10] of Cantor. The method of proof uses the
Lockhart-McOwen material in an essential way. It also turns out that a key part of the proof is the

fact that the Sobolev spaces Lpk,β(F ) are reflexive. Specifically, we can write Lp0,β(F )∗ ∼= Lp
′

0,−β−n(F ),

where 1
p + 1

p′ = 1. Then we can proceed pretty much as for the compact case. Note however that, in
considering the operator

Q : Ck+l,aβ+γ (E) → Ck,aβ (F ) (1.6)

we have neither the Lockhart-McOwen Theory, nor the reflexivity we require.

Chapter 5

Here we give some applications of the machinery from the previous chapter. We suppose that g is
an asymptotically conical metric on our manifold with ends X, and start by looking at the Laplacian
∆0
g of g, acting on functions. It turns out that this operator is asymptotically conical, with rate 2, so

that we have a map
∆0
g : Lpk+2,β+2(X) → Lpk,β(X). (1.7)

A key issue shall be when the map (1.7) is Fredholm, and this boils down to working out the exceptional
set D(∆0

g) ⊆ RL that is mentioned above. It turns out that

D(∆0
g) =

(
D(P∞, 1) × RL−1

)
∪
(
R ×D(P∞, 2) × RL−2

)
∪ · · · ∪

(
RL−1 ×D(P∞, L)

)

where each D(P∞, j) consists of points βj+2 ∈ R such that (βj+2)(βj+n) lies in the spectrum of the
Laplacian on component Σj of Σ. We then compute the relevant index “jumps”, and these turn out
to be equal to the dimensions of the corresponding eigenspaces. Next, using the Maximum Principle,
together with elliptic regularity and the embedding theorems, we show that (1.7) is injective for all
β+2 < 0, and then the material of Section 4.3.3 shows that (1.7) is surjective for all β+2 ∈ RL\D(∆0

g)
with β + 2 > 2 − n. It follows that proving the existence of g-harmonic functions on X, with growth
rates β + 2 > 0, comes down to finding eigenfunctions for the Laplacian on the compact Riemannian
manifold (Σ, gΣ).

The main reason for the interest in the Laplacian ∆0
g is that, if h is a harmonic function, then

dh is a closed and coclosed 1-form on X: we shall be interested in these objects in the sequel, where
X ⊆ Cn is a special Lagrangian submanifold. Actually, we must take growth rates β+2 into account,
and so consider

Kβ+1 :=
{
ξ ∈ C∞

β+1(T
∗X) : d∗

gξ = 0 and dξ = 0
}
,

a finite-dimensional vector space, containing dh for all h in the kernel of the map (1.7).
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Much of Chapter 5 is aimed at acquiring a good understanding of the space Kβ+1, for as large
a range of β + 1 as is possible. The exact elements of Kβ+1 will be the of the form dh for some
harmonic function h : X → R. It turns out that most of these harmonic functions will be in the
kernel of the map (1.7), but there will be others if 2 − n < β + 2 < 0: there exist non-constant
harmonic functions h1, . . . , hL : X → R such that each hj tends to δjk on the kth end of X, at rate
O(e(β+2)t), for any 2 − n < β + 2 < 0. Therefore the exterior derivatives dhj have decay β + 1 for
each 2 − n < β + 2 < 0. Essentially, the vector space Span{dh1, . . . ,dhL} is the kernel of the natural
map φ1 : H1

c (X) → H1(X).

The number of non-exact elements of Kβ+1 is measured by how much of the cohomology H1(X)
the space Kβ+1 represents. We prove that this is the whole group if β + 2 > 0, and the image of the
natural map H1

c (X) → H1(X) if 2 − n < β + 2 < 0.

Using the above facts, together with some additional considerations, we build up a detailed picture
of Kβ+1 for a large range of β + 2. It turns out that for β + 2 < 2 − n, or for β + 2 in D(∆0

g), we
need to assume stronger decay assumptions on our metric g, and we introduce the notion of strongly
asymptotically conical metrics in Section 5.1.4, together with some useful consequences. The final
results for the chapter are then given in Section 5.2.3.

Chapter 6

In Chapter 6 we bring together all of the above results, to deduce the deformation theorem for strongly
asymptotically conical special Lagrangian submanifolds X ⊆ Cn. The corresponding result in Chapter
6 is Theorem 6.45, which is a more accurate and complete version of the Theorem 1.2 given above.
Besides the deformation theorem, we also give some Hodge-theoretic results which should have useful
applications in the analysis of Laplacians, and related operators, on asymptotically conical Riemannian
manifolds.

We begin in Section 6.1.1 by deriving a Fredholm theory for asymptotically conical operators

Q : Ck+l,aβ+γ (E) → Ck,aγ (F ).

The results we obtain are very general, and so should have many applications. It is nice to know that
the conical damped Hölder spaces admit a good Fredholm theory, as in the case of the Lpk,β(E) spaces.
Note that we cannot find this material in the literature. The main issue is the existence of a Green’s
function for the corresponding limit operator Q∞ on the full cone R×Σ, and this is given in [49]. The
Fredholm theory for (conical) damped Hölder spaces can then be deduced using the techniques that
are normally only applied in the situation of (conical) damped Sobolev spaces, as in [6]. Because of
the differences between the two types of spaces, we need to adapt some of the techniques for our own
ends.

We also see in Section 6.1.1 why we have insisted on X having dimension at least 3. This is
essentially because the Green’s function for the Laplacian on Rn has different behaviour in the cases
n = 2 and n > 3. If we allow dimX = 2, then many of the results of Chapter 5 will fail to hold.

Note that the material of Section 6.1.1 could also have been placed at the end of Chapter 4, but
we prefer its present location: our particular methods for Chapter 5 do not rely on the material of
Section 6.1.1, which we view as a second, separate, application of the material of Chapter 4. The
main place we need the Fredholm results for conical damped Hölder spaces is Section 6.2, and so we
keep the relevant theory nearby.

In Section 6.1.2 we give the results of some explicit details that have been worked out privately by
the author, and we hope they will have useful applications in the future. They are the calculations
of the exceptional sets D(Q) ⊆ RL for certain asymptotically conical operators Q. We give these
exceptional sets in the cases where Q is taken to be the Laplacian ∆r

g of an asymptotically conical
metric g, on the bundle of r-forms ΛrT ∗X, and also where Q is the operator d∗

g + d on the odd, even
and total exterior bundles over X. The results we obtain are analogous to the example of Lockhart
given in equation (1.3) above.

Other applications of the material on exceptional sets are given in Section 6.1.3. Here we attempt
to develop Hodge theoretic results for our non-compact manifold X, under assumptions which are as
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general as possible. One can think of the results of Section 3.1.3, for compact manifolds, as being a
collection of lemmas which piece together to give grand results such as the Hodge Decomposition, as
in equation (3.31) for example. In Section 6.1.3 we take each of these lemmas, and see how far they
will generalise on an asymptotically conical manifold X. For example, as described in Lemma 6.24,
we deduce that any form C0

β+2(Λ
rT ∗X) which is harmonic must necessarily be closed and coclosed if

β + 2 < −r or β + 2 < r − n. This is a big improvement on the usual integration by parts argument
got from L2-decay, corresponding to growth rate β + 2 = 1 − n

2 .

We now come to the proof of our main result, and this is given in Section 6.2. We begin in Section
6.2.1 by describing our basic objects of study, namely submanifolds X ⊆ Rm, which have some
prescribed rate of convergence towards a cone C ⊆ Rm. We call these types of submanifold X either
asymptotically conical with cone C, or, for α̃ ∈ RL with α̃ < 1, strongly asymptotically conical with cone
C and rate α̃: the latter rate of convergence is stronger than the former. It turns out that the metric g
induced on the submanifold X then decays towards the metric g̃ induced on the cone C. Submanifolds
which are asymptotically conical with cone C have metrics g which are asymptotically conical, so that
we are in the regime of Chapters 4 and 5. Submanifolds which are strongly asymptotically conical, with
cone C and rate α̃, have metrics g which are strongly asymptotically conical, with rate α := α̃−1 < 0,
so that we may apply the additional theory of Section 5.1.4.

In Section 6.2.2 we consider asymptotically conical submanifolds X ⊆ Cn which are Lagrangian.
Then, as in the compact case, we can identify the normal bundle N of X with the cotangent bundle
T ∗X, and take a tubular neighbourhood Ũ ⊆ N of X, corresponding to some U ⊆ T ∗X. The tubular
neighbourhood Ũ ∼= U allows us to identify submanifolds Xξ ⊆ Cn which are “near” to X, with
“small” 1-forms on our submanifold X. Moreover, we can relate the decay rate of the form ξ in the
conical damped Hölder spaces Ck,aβ (T ∗X) with the decay of the submanifold Xξ towards the cone C.

Finally, in Section 6.2.3, we consider strongly asymptotically conical special Lagrangian submani-
folds. We bring together the results of the previous chapters to prove our main result, Theorem 6.45,
which is a more complete and accurate version of Theorem 1.2 given above. The ideas here are exactly
as for the compact case, the difference being that the details are harder. Using the Implicit Function
Theorem 2.11, we write our moduli space Mα̃, in a neighbourhood of X, as the graph of a smooth
function defined on an open subset of Kα̃ = Kα+1. This further provides the dimension dimKα+1 of
Mα̃, which we have computed in Chapter 5.

We round off in Section 6.3 by applying our main theorem to examples of strongly asymptotically
conical submanifolds X ⊆ Cn. Due to the work of Joyce [26], [27], [28], [29], [30], [32], [34], [35], [36],
[37], and others, there is a plethora of examples to apply our theory to. As we have indicated above,
we show the existence of new families of asymptotically conical special Lagrangian submanifolds in
Cn, as well as proving results which show that other examples are, in certain circumstances, isolated ,
say modulo translations if we are considering growth rates α+ 1 > 0.

1.4 Further work

We briefly outline some directions in which our deformation theory could be extended or improved.

1. As mentioned above, we could consider the situation in which the ambient manifold is not Cn,
but a general asymptotically conical Calabi-Yau manifold. Although Pacini [55] has proved a
theorem along these lines, he only considers the growth rate α + 1 = −1 + ε. The proof of a
result with a more general ambient space should not be too arduous, as the material of Chapter
4 and Chapter 5 will carry through unchanged. Of course, Section 6.2 will need modifying.

2. We could consider the deformation theory of singular special Lagrangian submanifolds in Cn,
with singularities modelled on special Lagrangian cones C ⊆ Cn with an isolated singularity at
0. This theory would share certain features with the material we present here, but there would
be some additional issues to deal with.

3. We could investigate the deformations of asymptotically conical submanifolds got from the other
Harvey and Lawson calibrations, mentioned in Section 1.1. Note that our class of asymptotically



10 Chapter 1: Introduction

conical operators is large enough for the theory of Chapter 4 and Chapter 5 to be applied in
these situations also. A good place to start would be the coassociative case, whose deformation
theory would have certain similarities with the special Lagrangian case we consider in this thesis.

4. Last (and probably least!) we could consider extending our deformation theory to more negative
growth rates, and give dimension formulae as in Table 5.1 for growth rates β+1 less than 1−n−λ,
to use the notation of that chapter. In the same vein, but with entirely different methods of
attack, we could attempt to remove the hypothesis α+ 2 /∈ D(∆0

g) in the statement of Theorem
6.45.

1.5 Notation and conventions

Here are some conventions we adopt. We also give, in Table 1.1, a selection of the notation we shall
use for the rest of this thesis. We urge the reader to consult Table 1.1 when confronted with a piece
of notation they have not met, especially since some of these notations are not explicitly defined in
the text.

1. All manifolds are smooth, connected and have empty boundary, unless explicitly stated other-
wise.

2. If W is a vector space then we embed ΛrW inside ⊗rW via the map

w1 ∧ . . . ∧ wr =
1

r!
·
∑

σ∈Sr

Sign(σ) · wσ(1) ⊗ · · · ⊗ wσ(r) =: Alt(ω1 ⊗ · · · ⊗ ωr)

for all w1, . . . , wr ∈ W . We denote the rth symmetric power of W by SymrW , and embed
SymrW inside ⊗rW via the map

w1 ⊙ · · · ⊙ wr =
1

r!
·
∑

σ∈Sr

wσ(1) ⊗ · · · ⊗ wσ(r) =: Sym(ω1 ⊗ · · · ⊗ ωr)

for all w1, . . . , wr ∈ W . These conventions extends to vector bundles over manifolds, especially
when we view r-forms as multilinear mappings on tangent spaces.

3. Suppose that βj , T ∈ R and f : [T,∞) → R is some function. We write f(t) = O(eβjt) to mean
that |e−βjtf(t)| is bounded on [T,∞). A stronger requirement is f(t) = o(eβjt) which means
that e−βjtf(t) → 0 as t→ ∞.

4. When β = (β1, . . . , βL), δ = (δ1, . . . , δL) are elements of RL we write β 6 δ if βj 6 δj for each
1 6 j 6 L, and similarly for the strict inequality. Also, if u ∈ R we sometimes abuse notation
and write β + u to mean the L-tuple with jth entry βj + u.

5. If 1 < p <∞ we define the dual exponent 1 < p′ <∞ by 1
p + 1

p′ = 1.

6. If (X, g) is a Riemannian manifold we denote the Laplace operator, acting on r-forms, by ∆r
g.

If (Σ, gΣ) is a compact, Riemannian manifold, we denote the spectrum of the operator ∆r
gΣ by

Spec(Σ, gΣ, r), which is a discrete, countable subset of [0,∞).

7. Suppose an open subset G ⊆ Rn has coordinates (x1, . . . , xn). Given 1 6 j 6 n we define
∂j := ∂

∂xj
a differential operator on functions G → R. A multi-index is some n-tuple of non-

negative integers λ = (λ1, . . . , λn). Given such a λ we define |λ| =
∑n
j=1 λj and ∂λ := ∂λ1

1 . . . ∂λn
n

a differential operator of order |λ|. If w ∈ Rn we denote by |w| the usual Euclidean norm of w,
and further define the product wλ := wλ1

1 . . . wλn
n , with the convention that 00 = 1.

8. If X is a manifold with dimension dimX = n we use the notation Λ∗T ∗X := ⊕nr=0Λ
rT ∗X

to denote the full exterior bundle over X. Also, we write ΛoddT ∗X := ⊕k>0Λ
2k+1T ∗X and

ΛevenT ∗X := ⊕k>0Λ
2kT ∗X to denote odd and even exterior bundles over X.
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9. If X is a manifold we denote the rth de Rham cohomology group of X by

Hr(X) :=
Ker

(
d : C∞(ΛrT ∗X) → C∞(Λr+1T ∗X)

)

Im
(
d : C∞(Λr−1T ∗X) → C∞(ΛrT ∗X)

)

and the rth compactly supported de Rham cohomology group of X by X by

Hr
c (X) :=

Ker
(
d : C∞

c (ΛrT ∗X) → C∞
c (Λr+1T ∗X)

)

Im
(
d : C∞

c (Λr−1T ∗X) → C∞
c (ΛrT ∗X)

) .

10. If X is a topological space we denote the rth real singular homology group of X by Hr(X) and if
A ⊆ X is a subset the rth real singular relative homology group of the pair (X,A) by Hr(X,A).
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Notation Meaning Definition

Global notation

λ multi-index 1.5
|λ| size of a multi-index λ 1.5

∂λ differential operator, of order |λ| 1.5
p, q elements of (1,∞) —
p′, q′ dual exponents 1.5
a, b elements of (0, 1) —
i, j, k,m non-negative integers —
l order of a differential operator —
Y, Z arbitrary manifolds —
M Calabi-Yau manifold —
2n dimM —
(J, g,Ω) Calabi-Yau structure on M —
ω Kähler form on M —
X special Lagrangian submanifold of M —
Hr(X) de Rham cohomology of X 1.5
Hr

c (X) compactly supported de Rham cohomology of X 1.5
Hr(X) real singular homology of X —
Hr(X,A) real singular relative homology of (X,A) —
r covariant degree of a tensor on X —
s contravariant degree of a tensor on X —

Ck(E) class Ck sections of a vector bundle E —

Ck
c (E) compactly supported elements of Ck(E) —

ι(·) interior product on a differential form —
σP (·) symbol of a differential operator P 2.1.2
∇g Levi-Civita connection of a metric g —
∆r

g Laplacian of a metric g, acting on r-forms 2.1.2
| · |g fibre metric on a bundle got from g 2.1.2
♭g isomorphism T ∗X ∼= TX got via a metric g —
∗g Hodge star of a metric g —
d exterior derivative —
d∗

g formal adjoint of the exterior derivative got via a metric g 2.1.2
L1(E) integrable sections of a vector bundle E 2.1.2
L1

loc(E) locally integrable sections of a vector bundle E 2.1.2
L2(E) L2-integrable sections of a vector bundle E 2.1.2
N normal bundle of a submanifold 2.2.1
fξ submanifold got from a normal vector field ξ 2.2.1
exp exponential map 2.2.1
ξt infinitesimal variation 2.2.2

Table 1.1: List of selected notation
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Notation Meaning Definition

Chapter 4 onwards

α, β, γ, δ elements of RL —
T an element of R —
Σ compact manifold, dim Σ = n− 1 —
L number of connected components Σj of Σ —
gΣ a metric on Σ —
X manifold with ends 4.1
βt special function on X 4.1
XS compact core of X at distance S > 0 from X0 4.1
X∞ the L ends X \X0

∼= (T,∞) × Σ of X 4.1
n dimX > 3 —
E,F admissible vector bundles on X 4.1

e(r−s)t special operator on tensors 4.1

h̃ cylindrical metric on X 4.2.1
h asymptotically cylindrical metric on X 4.2.1
W p

k,β(E) damped Sobolev space for admissible bundles E → X 4.2.1

Bk,a

β (E) damped Hölder space for admissible bundles E → X 4.2.1

P∞ translation invariant operator on X 4.2.2
P∞(w) operator pencil got from P∞ 4.2.2
C(P∞, j) ⊆ C eigenvalues of P∞(w) on jth end 4.2.2
D(P∞, j) ⊆ R real parts of C(P∞, j) 4.2.2
d(j, w) multiplicity for a point w ∈ C(P∞, j) 4.2.2
N(β, δ) index jump between δ and β 4.2.2
P asymptotically translation invariant operator 4.2.3
g̃ conical metric on X 4.3.1
g asymptotically conical metric on X 4.3.1
Lp

k,β(E) conical damped Sobolev space for tensor or exterior bundles E → X 4.3.1

Ck,a

β (E) conical damped Hölder space for tensor or exterior bundles E → X 4.3.1

Q asymptotically conical operator on X 4.3.2
γ rate of an asymptotically conical operator 4.3.2
Ker(†)sup

sub kernel of (†), where sup,sub are indices for the domain 4.2.2, 4.2.3, 4.3.2
Im(†)sup

sub image of (†), where sup,sub are indices for the domain 4.2.2, 4.2.3, 4.3.2
Coker(†)sup

sub cokernel of (†), where sup,sub are indices for the domain 4.2.2, 4.2.3, 4.3.2
Ind(†)sup

sub index of (†), where sup,sub are indices for the domain 4.2.2, 4.2.3, 4.3.2
D(†) ⊆ RL exceptional set of the operator (†) 4.2.2, 4.2.3, 4.3.2(
RL \ D(†)

)
∗

connected component of RL \ D(†) containing ∗ 4.2.2, 4.2.3, 4.3.2
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Notation Meaning Definition

Chapter 3 only

X compact manifold —
W p

k (E) Sobolev space for vector bundles E → X 3.1.1

Ck,a(E) Hölder space for vector bundles E → X 3.1.1
Hr harmonic r-forms on a compact Riemannian manifold 3.1.3

(Ĵ , ĝ, Ω̂) variation of Calabi-Yau structures on M 3.2.1(
J(p), g(p),Ω(p)

)
a point of (Ĵ , ĝ, Ω̂) 3.2.1

Chapter 5 onwards

Spec(Σ, gΣ, r) spectrum of the operator ∆r
gΣ

on a compact Riemannian manifold (Σ, gΣ) —
µ typical eigenvalue of ∆0

gΣ
—

µj,i elements of Spec(Σj , gΣ, 0) 5.1.1
µj the first positive eigenvalue µj,1 of ∆0

gΣ
on Σj 5.1.1

λ > 0 L-tuple of first exceptional growth rates 5.1.1

χ(β + 2) eigenvalue counter for rates 6 O(e(β+2)t) 5.1.1

χ̂(β + 2) eigenvalue counter for rates 6 o(e(β+2)t) 5.1.1
β + 2 growth rate of a typical function —
β + 1 growth rate of a typical 1-form —
φr, pr, ∂r linear maps in a certain long exact sequence 5.1.2
fc for c ∈ RL, a function constant on the ends of X 5.1.2
hj g-harmonic function on X, tends to δjk on kth end of X 5.1.3
h1

j g̃-harmonic function on X, equal to δjk on kth end of X 5.1.3

h2
j g̃-harmonic function on X, equal to e(2−n)tδjk on kth end of X 5.1.3

(ajk) special L× L matrix 5.1.3
(bjk) special L× L matrix 5.1.4
α < 0 decay rate of a strongly asymptotically conical metric 5.1.4
fj special function on X 5.1.4

Kβ+1 smooth closed and coclosed 1-forms with growth rate O(e(β+1)t) 5.2
ψβ+1 representation map on Kβ+1 5.2

K̂β+1 smooth closed and coclosed 1-forms with growth rate o(e(β+1)t) 5.2.3

ψ̂β+1 representation map on K̂β+1 5.2.3

Chapter 6

X̃ = R × Σ full cylinder on Σ 6.1.1

Ẽ, F̃ admissible bundles on X̃ 6.1.1

W p

k,β(Ẽ), Bk,a

β (Ẽ) Banach spaces of sections of Ẽ 6.1.1

B̂k,a

β (Ẽ) closure of C∞
c (Ẽ) in Bk,a

β (Ẽ) 6.1.1

Ir ⊆ (2 − n, 0) good growth rate interval for the operator ∆r
g 6.1.2

C cone in Rm or Cn 6.2.1
α̃ = α+ 1 decay rate of a strongly asymptotically conical submanifold 6.2.1
dtr(Σ) dimension of deformations of X got from the Cn moment map 6.3
drot(Σ) dimension of deformations of X got from the SU(n) moment map 6.3



Chapter 2

Background material

2.1 Analytic result for general manifolds

2.1.1 Banach space theory

We state here the definitions and results we shall need from the theory of Banach spaces. All the
results are proved in the books [43] of Lang, [54] of Murphy, or [56] of Rudin.

General theory

If X ,Y are Banach spaces we denote the Banach space of continuous linear maps X → Y by B(X ,Y).
We denote the Banach space of continuous multilinear maps

X × · · · × X︸ ︷︷ ︸
k factors

→ Y

by Bk(X ,Y). Note that a multilinear map T : X × · · · × X → Y is continuous precisely when there
exists a C > 0 such that

‖T (x1, . . . , xk)‖ 6 C‖x1‖X . . . ‖xk‖X
for all (x1, . . . , xk) ∈ X × · · · × X . Furthermore, there is a canonical isomorphism

Bk(X ,Y) ∼= B
(
X ,B(X , . . .B(X ,B(X ,Y)) . . . )

)
. (2.1)

If X is a Banach space we define X ∗ := B(X ,R). Besides the usual norm topology T ∗, there is
a topology T w−∗ on X ∗ called the weak-* topology which is uniquely characterised by the fact that
φj → φ in T w−∗ precisely when φj(x) → φ(x) for all x ∈ X . Note that the weak-* topology is
weaker than the usual norm topology on X ∗ in that T w−∗ ⊆ T ∗. Given x ∈ X we define an element
τ(x) ∈ (X ∗)∗ by τ(x)φ = φ(x) for all φ ∈ X ∗. Then τ : X → (X ∗)∗ is an isometric isomorphism
onto a closed subspace of (X ∗)∗. In fact the image of τ consists precisely of those linear functionals
T : X ∗ → R which are continuous relative to the weak-* topology on X ∗. We say that X is reflexive
if τ has image (X ∗)∗, and in this case we normally identify X with (X ∗)∗ via the map τ . Note that a
closed subspace of a reflexive space is always reflexive. If A1 ⊆ X we define

A◦
1 := {φ ∈ X ∗ : φ(x) = 0 for all x ∈ A1}

which is a weak-* closed linear subspace of X ∗, and if A2 ⊆ X ∗ we define

A◦
2 := {x ∈ X : φ(x) = 0 for all φ ∈ A2}

which is a closed linear subspace of X . We then have the following result.

Proposition 2.1 Let A1 6 X be a linear subspace of a Banach space X . Then (A◦
1)

◦ = A1 the norm

closure of A1 in X . Also if A2 6 X ∗ is a linear subspace of X ∗ then (A◦
2)

◦ = A2
w−∗

the weak-*
closure of A2 in X ∗.

15



16 Chapter 2: Background material

We also have the following useful result.

Proposition 2.2 Let X ,Y be Banach spaces and T ∈ B(X ,Y). Then

1. KerT ∗ = (ImT )◦ in Y∗, and hence (KerT ∗)◦ = ImT in Y.

2. KerT = (ImT ∗)◦ in X , and hence (KerT )◦ = ImT ∗w−∗
in X ∗.

Let X ,Y be Banach spaces with B := {x ∈ X : ‖x‖X 6 1} the closed unit ball in X . We say that
a linear map T : X → Y is compact if T (B) is a compact subset of Y. The following lemma is then
entirely straightforward.

Lemma 2.3 Let X ,Y be Banach spaces. Let T : X → Y be linear. Then T is compact if and only if
for every bounded sequence (xj) ⊆ X the sequence (Txj) ⊆ Y has a convergent subsequence.

If X ,Y are Banach spaces then a continuous embedding from X into Y is a continuous, injective map
T : X → Y. A compact embedding from X into Y is a compact, injective map T : X → Y. Note that
any compact embedding is a continuous embedding, so that one notion is stronger than the other. In
the sequel, quite often Y will be a vector subspace of X and the map T will simply be the inclusion.
In this situation we shall write Y 6 X .

Finally for this section, we have the following result:

Proposition 2.4 Let X ,Y be Banach spaces. If T ∈ B(X ,Y) and ImT 6 Y has finite codimension
then ImT 6 Y is closed.

Differential calculus

The theory we give here is an extension of the usual calculus techniques in Euclidean space to the
possibly infinite-dimensional case of Banach spaces.

Let X ,Y be Banach spaces, U ⊆ X an open subset and F : U → Y a C0 (ie. continuous) map.
Given x ∈ U we say that F is differentiable at x if there exists T ∈ B(X ,Y) such that

∥∥F (x+ h) − F (x) − Th
∥∥
Y = o

(
‖h‖X

)

as ‖h‖X → 0. Now such a T must be unique if it exists and we usually write F ′(x) := T the derivative
of F at x. If F ′(x) exists for each x ∈ U then we have a map

U → B(X ,Y)

x 7→ F ′(x)

and we say that F is of class C1 if this map is continuous. Clearly if S : X → Y is a bounded linear
map then S is of class C1 and S′(x) = S for all x ∈ X .

Continuing inductively, for k > 1 we say that F is of class Ck+1 if F is of class Ck and the
continuous map

U → B
(
X ,B(X , . . .B(X ,B(X ,Y)) . . . )

) ∼= Bk(X ,Y)

is of class C1. Here we are using the identification (2.1). We say F is smooth or C∞ if F is of class
Ck for each k > 0.

Let X1,X2 be Banach spaces, with open subsets U1 ⊆ X1,U2 ⊆ X2 and F : U1 × U2 → Y a map.
Let (x1, x2) ∈ U1 × U2. If the map

U1 → Y
u 7→ F (u, x2)

is differentiable at x1 we shall write its derivative as F ′
1(x1, x2) ∈ B(X1,Y) the partial derivative of F

at (x1, x2) in the X1 direction. If F ′
1(x1, x2) exists for each (x1, x2) ∈ U1 × U2 we have a map

F ′
1 : U1 × U2 → B(X1,Y)

(x1, x2) 7→ F ′
1(x1, x2)
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the first partial derivative of F . Similarly we have the notion of F ′
2 : U1 × U2 → B(X2,Y), the second

partial derivative of F .

For the rest of Section 2.1.1 we fix a 1 6 k 6 ∞. We now have the usual differential calculus
theorems, extended to the situation of Banach spaces. All results are proved in Lang [43].

Theorem 2.5 (Chain Rule) Let X ,Y,Z be Banach spaces and U ⊆ X ,V ⊆ Y open subsets. Let
F : U → V and G : V → Z be maps. If F and G are of class Ck then G ◦ F : U → Z is of class Ck

and (G ◦ F )′(x) = G′(F (x)) ◦ F ′(x) for all x ∈ U .

Theorem 2.6 (Product Rule) Let X1,X2,Y be Banach spaces with open subsets U1 ⊆ X1,U2 ⊆ X2.
If F : U1 × U2 → Y is a map then F is of class Ck precisely when both partial derivatives

F ′
1 : U1 × U2 → B(X1,Y)

F ′
2 : U1 × U2 → B(X2,Y)

exist and are of class Ck−1. In this case the bounded linear map F ′(x1, x2) : X1 ⊕X2 → Y acts as

F ′(x1, x2)(v1, v2) = F ′
1(x1, x2)v1 + F ′

2(x1, x2)v2

for each (x1, x2) ∈ U1 × U2 and (v1, v2) ∈ X1 ⊕X2.

The last part of the Product Rule 2.6 is saying

F ′
1(x1, x2) = F ′(x1, x2)

∣∣
X1

F ′
2(x1, x2) = F ′(x1, x2)

∣∣
X2

for each (x1, x2) ∈ U1 × U2.

Let X ,Y be Banach spaces and U ⊆ X ,V ⊆ Y be open subsets. We shall say that a map F : U → V
is a Ck-diffeomorphism if F is bijective and the mappings F : U → Y, F−1 : V → X are of class Ck.
The following result is very useful.

Theorem 2.7 (Inverse Function Theorem) Let X and Y be Banach spaces with U ⊆ X an open
neighbourhood of 0. If F : U → Y is a map of class Ck, such that the bounded linear map

F ′(0) : X → Y

is a topological linear isomorphism of Banach spaces, then there exists an open subset 0 ∈ V ⊆ U with
F (V) ⊆ Y open, such that F |V : V → F (V) is a Ck-diffeomorphism.

The Inverse Function Theorem 2.7 has the following immediate corollary:

Corollary 2.8 Let X ,Y be Banach spaces and U ⊆ X ,V ⊆ Y be open subsets. If F : U → V is a
C1-diffeomorphism and is of class Ck then F is a Ck-diffeomorphism.

Also, the following theorem can be useful to help invoke the Inverse Function Theorem 2.7.

Theorem 2.9 (Open Mapping Theorem) Let T : X → Y be a bounded linear map between Ba-
nach spaces.

1. If T is surjective then T is an open mapping.

2. If T is bijective then T : X → Y is a topological linear isomorphism.

Closely related to the Inverse Function Theorem 2.7 is the following result.
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Theorem 2.10 (Implicit Function Theorem: version 1) Let X1,X2,Y be Banach spaces and
U1 ⊆ X1,U2 ⊆ X2 open subsets both containing 0. Let

F : U1 × U2 → Y
(0, 0) 7→ 0

be a map of class Ck such that the bounded linear map F ′
2(0, 0) : X2 → Y is a topological, linear

isomorphism. Then there exist open subsets W1 ⊆ U1,W2 ⊆ U2 both containing 0 and a unique map
χ : W1 → W2 such that

F−1(0) ∩ (W1 ×W2) =
{(
x1, χ(x1)

)
: x1 ∈ W1

}
. (2.2)

Moreover, the map χ is of class Ck.

Proof: Consider the Ck map G : U1 × U2 → X1 ⊕ Y defined G(x1, x2) :=
(
x1, F (x1, x2)

)
. Then the

derivative G′(0, 0) : X1 ⊕X2 → X1 ⊕ Y acts as the matrix

G′(0, 0) =

(
id 0

F ′
1(0, 0) F ′

2(0, 0)

)
(2.3)

on vectors (v1, v2)
t ∈ X1 ⊕X2. Now, the bounded linear map (2.3) is easily seen to be invertible, and

therefore must be a homeomorphism by the Open Mapping Theorem 2.9. So by the Inverse Function
Theorem 2.7 there exist open subsets V1 ⊆ U1,V2 ⊆ U2 both containing 0 such that G|V1×V2

:
V1 × V2 → X1 ⊕ Y is a Ck-diffeomorphism onto an open subset Ω ⊆ X1 ⊕ Y containing 0. It follows
that G−1 : Ω → V1 × V2 is of class Ck and there exists a unique map h : Ω → V2 such that
G−1(x1, y) =

(
x1, h(x1, y)

)
for all (x1, y) ∈ Ω, and h is class Ck. Now put

W1 =
{
x1 ∈ V1 : (x1, 0) ∈ Ω

}

W2 = V2

and define the class Ck map χ : W1 → W2 by χ(x1) = h(x1, 0) for all x1 ∈ W1, so that equation (2.2)
holds as required. Note that equation (2.2) determines χ uniquely on W1.

For the purposes of the next result, if X is a Banach space we say that a closed subspace K 6 X
splits X if there exists a closed subspace A 6 X such that X = K⊕A as vector spaces (and hence as
topological vector spaces, by the Open Mapping Theorem 2.9). We call A a complementary subspace
for K. Note that any finite-dimensional subspace will always split X . This can be proved using the
Hahn-Banach Theorem.

Theorem 2.11 (Implicit Function Theorem: version 2) Let X and Y be Banach spaces with
U ⊆ X an open neighbourhood of 0. Let F : U → Y be a map of class Ck, with F (0) = 0. Suppose
the bounded linear map F ′(0) : X → Y is surjective and has a kernel K 6 X which splits X with a
complementary subspace A. Then there exist open subsets W1 ⊆ K, W2 ⊆ A both containing 0 with
W1 ×W2 ⊆ U and a unique map χ : W1 → W2 such that

F−1(0) ∩ (W1 ×W2) =
{(
x, χ(x)

)
: x ∈ W1

}

in X = K ⊕A. Moreover, the map χ is of class Ck.

Note that Theorem 2.11 follows quickly from Theorem 2.10.
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2.1.2 Differential operators

Let E,F → X be a vector bundles over a manifold X and U = {Uν : ν ∈ Λ} an open covering of X
such that X,E, F are trivial over each U ∈ U . A smooth, linear, differential operator of order l > 1
from E to F is a linear map

P : C∞
c (E) → C∞

c (F )

such that for each ν ∈ Λ, 1 6 j 6 rankE, 1 6 i 6 rankF and multi-index λ with 0 6 |λ| 6 l there
exists a P νλij ∈ C∞(Uν) such that

(Pξ)νi =

rankE∑

j=1

∑

06|λ|6l
P νλij ∂

λξνj (2.4)

for each ξ ∈ C∞
c (E), ν ∈ Λ and 1 6 i 6 rankF . We require that not all the P νλij with |λ| = l be zero.

In (2.4) the (ξνj ) are the components of ξ in the given trivialisations of E,X over Uν . By the Chain
Rule 2.5 the above definition does not depend on our choice of open cover U of X.

A Riemannian metric g equips X with a Lebesgue measure dVg and we have the corresponding
space L1(X) of integrable functions X → R. Suppose we choose some fibre metric ( , )E on the
bundle E, which induces a pointwise norm | |E on the fibres of E. We define L1(E) to be the vector
space of sections ξ of E such that |ξ|E ∈ L1(X), and further define L1

loc(E) to be the vector space of
sections ξ of E such that φξ ∈ L1(E) for all φ ∈ C∞

c (X). Then L1(E) is equipped with the norm

‖ξ‖L1(E) :=

∫

X

|ξ|EdVg. (2.5)

We follow the usual convention of identifying sections of E that are equal almost everywhere.

Given ξ1, ξ2 ∈ C∞
c (E) we may form the continuous, compactly supported function (ξ1, ξ2)E on X,

which lies in L1(X). We define the L2-inner product of ξ1 and ξ2 to be

〈ξ1|ξ2〉L2(E) =

∫

X

(ξ1, ξ2)EdVg. (2.6)

The induced norm on C∞
c (E) is denoted ‖ · ‖L2(E) and the completion of C∞

c (E) with respect to this
norm is the Hilbert space L2(E), which will depend upon our choices of metric g and fibre metric
( , )E .

Suppose now the bundle F is also equipped with a fibre metric ( , )F . If P : C∞
c (E) → C∞

c (F ) is
a smooth, linear differential operator of order l > 1, there exists a unique map

P ∗ : C∞
c (F ) → C∞

c (E)

with the property
〈ξ|P ∗η〉L2(E) = 〈Pξ|η〉L2(F ) (2.7)

for all ξ ∈ C∞
c (E) and η ∈ C∞

c (F ). The map P ∗ is also a smooth, linear differential operator of order
l and is called the formal adjoint of the operator P . Note that the map P ∗ depends upon the choice of
Riemannian metric on X and the fibre metrics on E,F . The process of taking formal adjoints satisfies
the usual properties

(µ1P1 + µ2Q2)
∗ = µ1P

∗
1 + µ2P

∗
2

(P1P2)
∗ = P ∗

2 P
∗
1

(P ∗)∗ = P

for all real µ1, µ2 and all suitable smooth, linear differential operators P1, P2, P . We say that an
operator P is self-adjoint if E = F and P = P ∗ as linear maps C∞

c (E) → C∞
c (E).

Suppose that ξ ∈ L1
loc(E) and η ∈ L1

loc(F ). We say that ξ is a weak solution of the equation
Pξ = η when

〈η|ψ〉L2(F ) = 〈ξ|P ∗ψ〉L2(E) (2.8)
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for all ψ ∈ C∞
c (F ). This definition is motivated by the fact that equation (2.8) obviously holds for all

ψ ∈ C∞
c (F ) when ξ ∈ C∞

c (E), η ∈ C∞
c (F ) and Pξ = η in the usual way.

An example of a smooth, linear differential operator is the usual exterior derivative

d : C∞
c (ΛrT ∗X) → C∞

c (Λr+1T ∗X) (2.9)

on the manifold X. The exterior derivative has order l = 1. A Riemannian metric g on X endows
the bundles ΛrT ∗X with a fibre metric and we denote the formal adjoint of d in this situation by d∗

g.
One can easily check that

d∗
gξ = (−1)nr+n+1 ∗g d ∗g ξ (2.10)

for all ξ ∈ C∞
c (ΛrT ∗X). Here ∗g is the Hodge star operator on the Riemannian manifold (X, g). Note

that we do not require X to be oriented for equation (2.10) to make sense, as any sign ambiguity in
the Hodge star ∗g : ΛrT ∗X → Λn−rT ∗X will be counted twice and therefore cancel. We now define
the Laplacian on the Riemannian manifold (X, g) by

∆ := dd∗
g + d∗

gd : C∞
c (ΛrT ∗X) → C∞

c (ΛrT ∗X) (2.11)

which is a smooth, linear, differential operator of order 2 that is self-adjoint. When we wish to indicate
the metric g and the degree r of the forms on which the Laplacian acts we denote the operator (2.11)
by ∆r

g.

Suppose that P is a smooth, linear differential operator of order l > 1 which is given by equation
(2.4) in the cover U of X. Define

Lνij(x,w) :=
∑

|λ|=l
P νλij (x) · wλ

for each ν ∈ Λ, 1 6 i 6 rankF , 1 6 j 6 rankE, x ∈ Uν and w ∈ Rn. When rankE = rankF and

det
(
Lνij(x,w)

)
6= 0

for each ν ∈ Λ, x ∈ Uν and w ∈ Rn \ {0} we say that the differential operator P is elliptic. This
definition does not depend on our choice trivialisation U , as can be seen by applying the Chain Rule
2.5.

The notion of ellipticity may be formulated in a coordinate free manner as we shall now describe.
Given a smooth, linear, differential operator P : C∞

c (E) → C∞
c (F ) of order l > 1 we can construct

an object called the symbol σP of P . Now σP is a smooth section of the vector bundle SymlTX ⊗
Hom(E,F ) and given η ∈ C∞(T ∗X) we can form σP (η) ∈ C∞(Hom(E,F )

)
by substitution into

the first factor. In fact if P is given as in equation (2.4) in the local trivialisation Uν then σP (η) ∈
C∞(Hom(E,F )

)
acts as the rankF × rankE matrix with (i, j) entry

∑

|λ|=l
P νλij η

λ (2.12)

where we consider η as the n-tuple (η1, . . . , ηn) with respect to the basis {dx1, . . . ,dxn} of covectors
on Uν .

The symbol operation σ satisfies various desirable properties: for any η ∈ C∞(T ∗X) we have

σµ1P1+µ2P2
(η) = µ1σP1

(η) + µ2σP2
(η) (2.13)

σP1
(η)σP2

(η) = σP1P2
(η) (2.14)

for any real µ1, µ2 and suitable smooth, linear differential operators P1, P2. Note that for equation
(2.13) to be valid P1 and P2 must have the same order. Also, if we equip X with a Riemannian metric
and vector bundles E,F with fibre metrics then

σP (η)∗ = σP∗(η) (2.15)
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in C∞(Hom(F,E)
)

for all η ∈ C∞(T ∗X) and differential operators P : C∞
c (E) → C∞

c (F ).

The symbol σP encodes the highest order data in P and in fact P is elliptic if and only if for each
x ∈ X and non-zero ηx ∈ T ∗

xX the linear map σP (ηx) : Ex → Fx is an isomorphism. We can now
deduce from simple linear algebra various lemmas about ellipticity, for example: P is elliptic if and
only if P ∗ is elliptic. Also, it is easy to check that the Laplacian defined in equation (2.11) is elliptic.
This follows from the following lemma of linear algebra.

Lemma 2.12 If U
S−→ V

T−→W is an exact sequence of finite-dimensional inner product spaces and
linear maps then SS∗ + T ∗T : V → V is a linear isomorphism.

Proof: If v ∈ V with SS∗v + T ∗Tv = 0 then

‖S∗v‖2 + ‖Tv‖2 = 〈SS∗v + T ∗Tv|v〉 = 0

so that S∗v = 0 in U and Tv = 0 in W . Then by exactness there exists u ∈ U with Su = v so that
S∗Su = 0. This implies that v = Su = 0.

Corollary 2.13 The Laplacian ∆ : C∞
c (ΛrT ∗X) → C∞

c (ΛrT ∗X) is elliptic.

Proof: Let x ∈ X and η ∈ C∞(T ∗X). Then from the properties (2.13), (2.14), (2.15) of the symbol
given above the linear map σ∆(η)x : ΛrT ∗

xX → ΛrT ∗
xX acts as

σ∆(η)x = σdd∗

g+d∗

gd(η)x = σd(η)xσd(η)∗x + σd(η)∗xσd(η)x. (2.16)

Now, it is easy to show that the symbol of the exterior derivative (2.9) acts as

σd(η)x : ΛrT ∗
xX → Λr+1T ∗

xX

ξx 7→ ηx ∧ ξx

for all η ∈ C∞(T ∗X), x ∈ X and ξx ∈ ΛrT ∗
xX. But the sequence of linear maps

Λr−1T ∗
xX

ηx∧−→ ΛrT ∗
xX

ηx∧−→ Λr+1T ∗
xX

is exact whenever ηx 6= 0, and so from Lemma 2.12 we deduce that (2.16) is a linear isomorphism
whenever ηx 6= 0. Consequently ∆ is elliptic, as required.

Corollary 2.14 The operator d∗
g + d : C∞

c (Λ∗T ∗X) → C∞
c (Λ∗T ∗X) is elliptic.

Proof: If we consider the Laplacian ∆ acting on the whole exterior bundle Λ∗T ∗X then we have
(d∗
g + d)2 = ∆, an elliptic operator. The result now follows from property (2.14) of the symbol σ.

2.2 Submanifolds

From now on, we adopt the convention that a submanifold of a manifold Z is a manifold Y together
with an injective immersion k : Y → Z that is a homeomorphism onto its image. Then we can cover
k(Y ) ⊆ Z with charts for Z that restrict to dimY slices on k(Y ). This gives k(Y ) the structure of a
manifold such that k : Y → k(Y ) is a diffeomorphism.

We shall identify the submanifolds k1 : Y1 → Z and k2 : Y2 → Z of Z if there exists a diffeo-
morphism φ : Y1 → Y2 such that k1 = k2 ◦ φ. In each equivalence class of submanifolds there is a
unique representative i : A→ Z where i is the inclusion of some subset A ⊆ Z, and the differentiable
structure on A comes from slices of charts for Z.
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2.2.1 Tubular neighbourhoods

Let k : Y → Z be a submanifold of a manifold Z. Then we have the pulled-back tangent bundle
k∗TZ → Y and the quotient

N :=
k∗TZ

TY

is called the normal bundle of Y in Z. Suppose that Z is equipped with a Riemannian metric g. Then
we can identify canonically the fibre Ny of N over y ∈ Y with the gk(y)-orthogonal complement (TyY )⊥

of TyY 6 Tk(y)Z, and hence the bundle N with (TY )⊥ the subbundle g-orthogonal to TY 6 k∗TZ.

Now for each y ∈ Y we have – using our metric g – the exponential map expk(y) which maps a
sufficiently small open neighbourhood of 0 ∈ Tk(y)Z diffeomorphically onto an open neighbourhood of
k(y) ∈ Z, and this certainly restricts to a diffeomorphism defined on the tangent vectors gk(y)-normal
to TyY . Moreover, this normal geodesic flow can be pieced together to form a global diffeomorphism
from an open subset of the normal bundle N onto an open subset of Z. This fact is the content of
the following theorem, which is proved in the book [42, Chapter IV, Theorem 9] of Lang.

Theorem 2.15 (Tubular Neighbourhood Theorem) Let k : Y → Z be a submanifold of a Rie-
mannian manifold (Z, g) with k(Y ) ⊆ Z a closed subspace. Let N be the normal bundle of Y in
Z. Then there exists an open subset Ũ ⊆ N containing the image of the zero section, such that the
restriction

exp |Ũ : Ũ → Z

is a diffeomorphism onto an open subset of Z.

It follows from Theorem 2.15 that if k(Y ) is closed in Z then any normal vector field ξ ∈ C∞(N)
with ξy ∈ Ũ for all y ∈ Y defines a submanifold kξ : Y → Z of Z where

kξ(y) := expk(y)(ξy)

for each y ∈ Y . In this way we view “small” normal vector fields ξ as giving rise to submanifolds
kξ : Y → Z that are “near” to k : Y → Z. Note that k0 = k.

2.2.2 Variations

Let I ⊆ R be an open interval and V : I × Y → Z a map of manifolds. Suppose the maps vt : Y → Z
are defined by

vt(y) := V (t, y)

for all t ∈ I and y ∈ Y . Then we call V a variation of each vt. In this situation it follows by definition
that for all s ∈ I and all forms θ on Z we have

L ∂
∂t

(
V ∗θ

)∣∣∣
Ys

=
∂

∂t

(
v∗t θ
)∣∣∣∣
t=s

where on the left hand side L denotes Lie derivative, t is the canonical coordinate on I and Ys :=
{s} × Y ∼= Y . On the right hand side the derivatives are calculated pointwise on Y . Given s ∈ I we
define ξs ∈ C∞(v∗sTZ) by

ξsy := dV(s,y)

(
∂

∂t

)

for all y ∈ Y . We call ξs the infinitesimal variation of V at s ∈ I. The following lemma will be useful
later, and is proved in the book [19, Proposition (I.b.5)] of Griffiths.

Lemma 2.16 Refer to the above notation. Suppose s ∈ I is such that the map vs : Y → Z is a
submanifold. Then

L ∂
∂t

(
V ∗θ

)∣∣∣
Ys

= v∗s
(
ι(ξs)dθ + d(ι(ξs)θ)

)

for all θ ∈ C∞(ΛrT ∗Z). Here ξs is extended to any vector field on a small neighbourhood of vs(Y ) in
Z. The resulting right hand side is independent of our choice of extension.
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2.2.3 Minimal submanifolds

In this section we describe the theory of minimal submanifolds that we shall need. The book [24] of
Jost contains a more detailed treatment of this theory.

Let Y,Z be manifolds and I ⊆ R an open interval containing 0. Let

K : I × Y → Z

be a map with K(t, y) =: kt(y) for all t ∈ I and y ∈ Y . Then K is a variation of each map kt : Y → Z,
in the sense of Section 2.2.2. We say that K is a local variation of k0 if

supp0K := {y ∈ Y : K(t, y) 6= K(0, y) for some t ∈ I}
is compact.

Suppose now that Z has a Riemannian metric g and the mapping k0 : Y → Z is an immersion
over supp0K. Then there exists an ε > 0 such that kt : Y → Z is an immersion over supp0K for each
|t| < ε, and consequently we have a metric k∗t g on supp0K ⊆ Y for each |t| < ε. Define the variation
of volume for K at 0 to be

Var0(K) =
d

dt

(∫

supp0K

dVt

)∣∣∣∣∣
t=0

where dVt is the Lebesgue measure on supp0K coming from k∗t g. Now if k : Y → Z is a submanifold
we shall say that k is minimal if

Var0(K) = 0

for all local variations K of k0 := k. Note that composing k with a diffeomorphism Y → Y does
not change whether or not a submanifold k : Y → Z is minimal. The following result gives a useful
characterisation of minimal submanifolds, and is proved in [24, Section 3.6].

Proposition 2.17 Let k : Y → Z be a submanifold of a Riemannian manifold (Z, g). Then k is
minimal if and only if for all local coordinates (y1, . . . , yn) on Y and (z1, . . . , zm) on Z we have

∆kj −
n∑

α,β=1

m∑

i,l=1

(k∗g)αβ(Γjil ◦ k)
∂ki
∂yα

∂kl
∂yβ

= 0 (2.17)

for j = 1, . . . ,m. Here ∆ is the Laplacian of the metric k∗g on Y and the Γjil are the Christoffel
symbols of the metric g on Z.

In Proposition 2.17 the two conditions are equivalent to the mean curvature of the submanifold k :
Y → Z vanishing in all normal directions, but we shall not need this fact here. Also, maps k :
Y → Z satisfying equations (2.17) are called harmonic. The m equations (2.17) above form a system
of non-linear partial differential equations in the unknowns (k1, . . . , km) which are functions of the
independent variables (x1, . . . , xn). This system has special properties, as we shall see below. A
computation of the Laplacian ∆kj in local coordinates gives

∆kj =
−1√

det(k∗g)

n∑

α,β=1

∂

∂yβ

(√
det(k∗g)(k∗g)αβ

∂kj
∂yα

)
(2.18)

= −
n∑

α,β=1

(
(k∗g)αβ

∂2kj
∂yα∂yβ

+
1√

det(k∗g)

∂

∂yβ

(√
det(k∗g)(k∗g)αβ

) ∂kj
∂yα

)

which contains terms
∂

∂yβ

(√
det(k∗g)(k∗g)αβ

)
. (2.19)

In actual fact, the terms in (2.19) are linear in the second order derivatives of k1, . . . , km, so that (2.17)
is a quasi-linear set of equations. However, these equations cannot be quasi-linear elliptic because then
regularity theory as in Morrey [52, Theorem 9.1] would imply that all solutions k would be smooth.
This clearly cannot be the case as composing k with a C2, but not smooth, diffeomorphism Y → Y
would show.
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2.2.4 Harmonic coordinates and regularity results

Although all the manifolds and mappings we have considered so far in Section 2.2 were smooth,
the definitions given in Section 2.2.3 above will still make sense when the objects concerned have
lower degrees of differentiability, and the corresponding propositions will remain true in these lower
regularity cases. Given this, we now go on to describe why any minimal submanifold can in fact
be given a smooth parameterisation. The material of this section is similar to that of DeTurck and
Kazdan [15].

We say that a non-empty open subset U ⊆ Rn is a domain if U is bounded and convex. Let us fix
a domain G ⊆ Rn. If D ⊆ Rn is a domain we shall write

D ⊂⊂ G

to mean D ⊆ G.

We define Ck(G) to be the vector space of functions G → R which are k times continuously
differentiable. We then put

Ck(G) :=
{
u ∈ Ck(G) : u = v|G for some v ∈ Ck(W ) where G ⊂⊂W

}

so that elements of Ck(G) could tend to infinity at the boundary of G whereas elements of Ck(G) do
not. Note that if u : G→ R then u ∈ Ck(G) precisely when u ∈ Ck(D) for all D ⊂⊂ G. We put

C∞(G) :=
⋂

k>0

Ck(G)

C∞(G) :=
{
u ∈ C∞(G) : u = v|G for some v ∈ C∞(W ) where G ⊂⊂W

}

the smooth versions of the spaces defined above.

Given u ∈ Ck(G) we define

‖u‖Ck(G) :=
∑

06|λ|6k
sup
G

∣∣∂λu
∣∣

where the sum is taken over all multi-indices λ as given. With this norm Ck(G) becomes a Banach
space. For obvious reasons we call this Banach space a Ck-space.

Fix some small ε > 0. Then given a subset A ⊆ Rn and a function u : A→ R we define

[u]a;A := sup

{ |u(x) − u(y)|
|x− y|a : x, y ∈ A with 0 < |x− y| < ε

}

which may, or may not, be finite. We also define the Hölder spaces

Ck,a(G) :=
{
u ∈ Ck(G) : [∂λu]a;G <∞ for all |λ| = k

}

Ck,a(G) :=
{
u ∈ Ck(G) : u ∈ Ck,a(D) for all D ⊂⊂ G

}
.

Note that Ck,a(G) is equipped with a norm

‖u‖Ck,a(G) := ‖u‖Ck(G) +
∑

|λ|=k
[∂λu]a;G

which, it turns out, makes Ck,a(G) into a Banach space. This Banach space is independent as a
topological vector space of our choice of ε > 0. Also, functions G → R which lie in Ck,a(G) are said
to be of class Ck,a or having regularity Ck,a.

Let (Z, g) be a Riemannian manifold of class C2, with Laplace operator ∆ acting on functions.
We say that local coordinates (x1, . . . , xn) on Z are harmonic if

∆xj = 0 (2.20)
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for each j = 1, . . . , n. In the local coordinates (x1, . . . , xn) these equations become

n∑

i=1

∂

∂xi

(√
det(g) · gji

)
= 0 (2.21)

for j = 1, . . . , n. The following lemma, proved in [15, Lemma 1.2], tells us that harmonic coordinates
always exist, and gives useful information about their regularity.

Lemma 2.18 Let (Z, g) be a Riemannian manifold of class C2. Let k > 2 and (y1, . . . , yn) be coor-
dinates about a point p ∈ Z such that the metric g has coefficients of class Ck,a with respect to the
(yj). Then in a neighbourhood of p there exist harmonic coordinates (xj) which are of class Ck+1,a

with respect to the coordinates (yj). Moreover any harmonic coordinates about p have this regularity
with respect to the coordinate system (yj).

Suppose now Y is a second C2 manifold and the map k : Y → Z is a submanifold of class C2. If
k : Y → Z is minimal then we have equations (2.17) holding, which become

n∑

α,β=1


(k∗g)αβ

∂2kj
∂xαxβ

+
m∑

i,l=1

(k∗g)αβ(Γjil ◦ k)
∂ki
∂xα

∂kl
∂xβ


 = 0 (2.22)

for j = 1, . . . ,m in (k∗g)-harmonic coordinates (xα) on Y . This is by equations (2.21) and the usual
expression (2.18) for the Laplacian on functions in local coordinates.

The whole point of introducing harmonic coordinates on Y was to reduce the minimality equations
(2.17) to the simpler form (2.22): we now observe that the equations (2.22) form a second order quasi-
linear elliptic system, as in the article [52] of Morrey. We can now give the following regularity result,
whose proof we give to indicate the ideas involved.

Proposition 2.19 Let Y1, Z be smooth manifolds and let g be a smooth metric on Z. Let k1 : Y1 → Z
be a minimal submanifold with k1 of class Cl,a for some l > 3. Then there exists a smooth manifold
Y2 and a diffeomorphism φ : Y1 → Y2 of class Cl such that the mapping k2 : Y2 → Z defined by

Z
id−−−−→ Z

k1

x
xk2

Y1 −−−−→
φ

Y2

is smooth.

It follows that k1(Y1) ⊆ Z has the structure of a smooth manifold got from taking slices of charts for
Z and the inclusion i : k1(Y1) → Z is a C∞ submanifold.

Proof: Let Y1 have the metric k∗1g, which will have regularity Cl−1,a in arbitrary coordinates (y1, . . . , yn)
for Y1. By Lemma 2.18 there exist harmonic coordinates (x1, . . . , xn) about each point p ∈ Y which
have regularity of class Cl,a when expressed in terms of the (yα). So the (xα) don’t necessarily lie
in the same C∞-structure as the (yα), but they do lie in the same Cl-structure. We now attempt to
build a new C∞-structure on Y containing the harmonic coordinates (xα). The components (k1,j)
of k1 with respect to the coordinates (xα) on Y and arbitrary coordinates on Z satisfy equations
(2.22). These equations form a second order quasi-linear elliptic system which has smooth data com-
ing from g on Z. Therefore by Morrey’s regularity results [52, Theorem 9.1] we can conclude that
the (k1,j) must be smooth. So with respect to any harmonic coordinates on Y , the metric k∗1g on
Y is smooth. Now if (x̃1, . . . , x̃n) is a second set of harmonic coordinates on Y then the transition
functions xα = xα(x̃1, . . . , x̃n) will satisfy the linear elliptic equations (2.20) which we now know have
smooth data coming from the metric k∗1g with respect to harmonic coordinates. Therefore by Morrey’s
regularity results for linear elliptic equations [53, Theorem 6.4.8] we can conclude transition functions
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between harmonic coordinates on Y1 are smooth. We could also have seen this by applying the last
part of Lemma 2.18.

Now we are done: let Y2 be the set Y1 with smooth structure the maximal smooth atlas containing
all (k∗1g)-harmonic coordinate systems, and define φ = id, k2 = k1 as functions between sets.

Of course more general versions of Proposition 2.19 can be proved, but we shall not need them
here.

2.2.5 Calibrations and calibrated submanifolds

The notion of calibrated geometry was first introduced by Harvey and Lawson in their foundational
paper [21]. We include in this section the theory from calibrated geometry that we shall be needing
later.

If W is a real vector space then an r-plane in W is a vector subspace V 6 W such that dimV = r.
Suppose that (Z, g) is a Riemannian manifold. Given z ∈ Z and an oriented r-plane V 6 TzZ the
metric and orientation on V induces a linear isomorphism

ΛrV ∗ ∼= R

dVg ↔ 1

where dVg is the volume form on V . In particular, we now have an order relation on ΛrV ∗. We say
φ ∈ C∞(ΛrT ∗Z) is a calibration on (Z, g) if dφ = 0 and

φz|V 6 dVg (2.23)

for all z ∈ Z and oriented r-planes V 6 TzZ. We then refer to the triple (Z, g, φ) as a Riemannian
manifold with calibration. A closed r-form φ on Z is a calibration if and only if

∣∣φz|V
∣∣
g

6 1

for all z ∈ Z and r-planes V 6 TzZ, where | · |g is the norm induced on ΛrV ∗ by g.

Let φ ∈ C∞(ΛrT ∗Z) be a calibration on (Z, g). Let k : Y → Z be an oriented submanifold with
dimY = r. We say that k : Y → Z is a calibrated submanifold of (Z, g, φ) if

k∗φ = dVg

in C∞(ΛrT ∗Y ). Here dVg is the volume form on Y got from the orientation on Y and the restriction
of the metric g to Y . This condition means that we have equality in the inequality (2.23) for each of
the oriented r-planes V = TyY 6 Tk(y)Z.

Suppose that the r-form φ is a calibration on (Z, g), and that k : Y → Z is a compact oriented
submanifold with dimY = r. Then φ defines a class [φ] in the rth de Rham cohomology group Hr(Z)
of Z and k : Y → Z defines a class [k(Y )] in the rth real singular homology group Hr(Z) of Z. If we
denote the usual pairing of [φ] and [k(Y )] by

[φ] · [k(Y )] :=

∫

Y

k∗φ

then we have
Vol(Y ) =

∫
Y

dVg >
∫
Y
k∗φ = [φ] · [k(Y )]

with equality if and only if k : Y → Z is a calibrated submanifold of (Z, g, φ). It follows that any
compact calibrated submanifold k : Y → Z of (Z, g, φ) has minimal volume amongst the compact
oriented submanifolds representing the homology class [k(Y )] ∈ Hr(Z), and therefore k : Y → Z will
be a minimal submanifold of the Riemannian manifold (Z, g). In fact, any calibrated submanifold of
a Riemannian manifold with calibration will automatically be minimal, and this fact is the content of
the following proposition.
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Proposition 2.20 Let (Z, g, φ) be a Riemannian manifold with calibration. Let k : Y → Z be a
calibrated submanifold. Then k is a minimal submanifold of (Z, g).

Proof: As k : Y → Z is calibrated, Y must be oriented and we can integrate top degree compactly
supported forms over Y . If K : I × Y → Z is any local variation of k0 := k then we have

∫

supp0K

dV0 =

∫

supp0K

k∗0φ (2.24)

since the submanifold k0 : Y → Z is calibrated with respect to φ. Here dV0 is Lebesgue measure on
supp0K coming from the metric k∗0g. Also, given t ∈ I the map K defines a homotopy between kt
and k0, in the sense of Bott and Tu [8]. Since φ is closed it follows that there exist forms θt on Y such
that

k∗t φ = k∗0φ+ dθt (2.25)

for each t ∈ I. This is by the homotopy invariance of cohomology. In fact, we may take

θt =

∫ t

0

k∗s
(
ι(ξs)φ

)
ds (2.26)

where the integrations are carried out pointwise on Y . To see this, consider

k∗t φ− k∗0φ =

∫ t

0

∂

∂t

(
k∗t φ

)∣∣∣∣
t=s

ds

=

∫ t

0

d
(
k∗s(ι(ξ

s)φ)
)
ds

= d

(∫ t

0

k∗s
(
ι(ξs)φ

)
ds

)

using the material of Section 2.2.2. Here ξs is the infinitesimal variation associated to K at s ∈ I,
which vanishes on the boundary of supp0K, since K(t, x) = K(t, 0) for all t ∈ I and x ∈ ∂(supp0K).

Now let us fix any small |t| so that we have a metric k∗t g on supp0K. Let dVt be the associated
Lebesgue measure on supp0K. Then by equations (2.24) and (2.25) we have

∫

supp0K

dV0 =

∫

supp0K

k∗t φ−
∫

supp0K

dθt 6

∫

supp0K

dVt −
∫

supp0K

dθt

since φ is a calibration on (Z, g). But now

∫

supp0K

dθt =

∫

∂(supp0K)

θt = 0

by Stokes’ Theorem and the fact θt vanishes on the boundary of supp0K. It follows that Var0(K) = 0
and hence we are done.

2.3 Calabi-Yau and special Lagrangian geometry

2.3.1 Basic definitions and examples

We approach the subject from the point of view of Riemannian geometry, and therefore define a
Calabi-Yau manifold to be a Riemannian manifold (M, g) with holonomy group

Hol(g) 6 SU(n)
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where dimM = 2n the real dimension of M . This means that firstly M admits a complex structure
J with respect to which g is a Kähler metric. In particular if the non-degenerate 2-form ω on M is
defined by

ω(ξ1, ξ2) :=
1

2
g(Jξ1, ξ2) (2.27)

for all ξ1, ξ2 ∈ C∞(TM), then ω is closed. We call ω the Kähler form. Secondly, the complex manifold
(M,J) admits a nowhere vanishing type (n, 0)-form Ω that is covariant constant. Clearly any such Ω
is unique up to scaling by non-zero complex numbers. Given this freedom we may in fact choose Ω so
that

ωn

n!
= (−1)

n(n−1)
2

in

2n
· Ω ∧ Ω (2.28)

and in this case, it turns out that Re Ω ∈ C∞(ΛnT ∗M) is a calibration on the Riemannian manifold
(M, g). Since the Levi-Civita connection ∇g of g is torsion-free, the condition ∇gΩ = 0 implies that
Ω is closed, and therefore holomorphic. It follows that the canonical bundle KM of (M,J) is trivial.

In the above situation (in particular with equations (2.27) and (2.28) holding) we shall say that
(J, g,Ω) is a Calabi-Yau structure on M .

It is a well-known fact – see [38, Chapter IX, Theorem 4.6] for example – that a Kähler manifold
(M,J, g) of dimension 2n is Ricci-flat precisely when the restricted holonomy group Hol0(g) 6 Hol(g)
of (M, g) is contained inside SU(n). It follows that all Calabi-Yau manifolds are Ricci-flat. Compact
Riemannian manifolds with holonomy in SU(n) were shown to exist in reasonable numbers by Yau’s
proof of the Calabi Conjecture [59], and hence the name Calabi-Yau as given above. Specifically, Yau’s
theorem implies that if (M,J) is a compact, complex manifold which admits Kähler metrics and has
first Chern class c1(M) = 0 then in each Kähler class there exists a unique metric g which is Ricci-
flat, so that Hol0(g) 6 SU(n). If M is simply-connected we can then deduce that Hol(g) 6 SU(n).
Examples include non-singular hypersurfaces in CPn+1 defined by the vanishing of a homogeneous
polynomial of degree n+ 2. In particular when n = 3 we have the quintic hypersurface in CP 4.

We should note here that in the definition of Calabi-Yau manifold some authors require M to be
compact. One reason for this is that M being compact is specifically the case in which the Calabi
Conjecture applies. Another reason is that the applications of Calabi-Yau geometry in physics –
specifically string theory – all require compactness of the manifold M . However, we will not be too
concerned about these issues: M being compact will not be needed in any of the theory we consider,
and so we shall relax this condition.

Let (J, g,Ω) be a Calabi-Yau structure on a manifold M with dimM = 2n. Let ω be the Kähler
form. We say that a submanifold f : X → M of dimension n is special Lagrangian with respect to
(J, g,Ω) if

f∗ω = 0 (2.29)

f∗ Im Ω = 0 (2.30)

in C∞(Λ∗T ∗X). When the ambient Calabi-Yau structure is clear we shall simply speak of “special
Lagrangian submanifolds”. The following proposition relates special Lagrangian submanifolds with
the theory of calibrated submanifolds as given in Section 2.2.5, and is proved in the Harvey and
Lawson paper [21, Chapter III, Corollary 1.11].

Proposition 2.21 Let (J, g,Ω) be a Calabi-Yau structure on a manifold M and suppose f : X →M
is a submanifold.

1. If f : X → M is special Lagrangian then X has a unique orientation such that f : X → M is
calibrated with respect to ReΩ.

2. If X is oriented and f : X → M is calibrated with respect to ReΩ then f : X → M is special
Lagrangian.

It follows by the theory given in Section 2.2.5 that special Lagrangian submanifolds will always be
minimal submanifolds of the ambient Riemannian manifold (M, g).

We now give some examples of special Lagrangian submanifolds.
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Example 2.22 If we take M = Cn with its usual complex structure and metric then we have our most
basic example of a Calabi-Yau manifold. The following examples of special Lagrangian submanifolds
of Cn all have a large degree (cohomogeneity 1) of symmetry, which made them easy to find.

1. Given a1, . . . , an, b ∈ R with b 6= 0 the subset

Xa1,...,an,b :=

{
(z1, . . . , zn) ∈ Cn :

|z1|2 − a1 = · · · = |zn|2 − an
Im(in+1z1 . . . zn) = b

}

is invariant under the group of diagonal matrices U(1)n−1 6 SU(n). Moreover, Xa1,...,an,b is a
special Lagrangian submanifold, with topology R × U(1)n−1. Note that this family of examples
has n real parameters.

2. Let a ∈ R be non-zero and let SO(n) 6 SU(n) denote the subgroup of real matrices. Then

Xa := SO(n) ·
{

(z, 0, . . . , 0) ∈ Cn : Im(zn) = a and 0 < arg(z) < 2π
n

}

is an SO(n)-invariant special Lagrangian submanifold of Cn with topology R×Sn−1. When a = 0
the above subset Xa becomes a union of special Lagrangian n-planes Vj 6 Cn with Vi ∩Vj = {0}
for i 6= j, so 0 is the only singular point of X0. Note that this family of examples has 1 real
parameter.

These were first examples of special Lagrangian submanifolds to be found, back in the Harvey and
Lawson paper [21]. More examples of this kind are constructed in the author’s dissertation [47] where
other symmetry groups G 6 SU(n) are also considered.

The examples from both families above are non-compact. This is not just a coincidence: for if φ
is a calibration on Rm and f : X → Rm is a compact submanifold calibrated with respect to φ then
noting Hr(Rm) is trivial we have by Stokes’ Theorem

0 =

∫

X

f∗φ =

∫

X

dVg = Vol(X, g) > 0

a contradiction. Therefore no special Lagrangian submanifold f : X → Cn can be compact. Another
way of seeing this is to observe that no minimal submanifold of Rm can be compact (as performing
dilations shows) and then we may appeal to Proposition 2.20 and Proposition 2.21.

Besides the examples given above, other more complicated special Lagrangian submanifolds of Cn

have been constructed recently by Joyce: see the papers [26], [27], [28], [29], [30], [32], [34], [35], [36],
[37] already cited in the introduction.

The remaining examples are taken from the paper [23] of Hitchin.

Example 2.23 Suppose that (J, g,Ω) is a Calabi-Yau structure on M with Kähler form ω. Suppose
further that σ : M → M is an anti-holomorphic involution (so σ2 = id and σ is holomorphic as a
map M →M where M is the differentiable manifold M endowed with the complex structure −J) such
that σ∗ω = −ω and σ∗Ω = Ω. Then the fixed point set

{
p ∈ M : σ(p) = p

}
is a special Lagrangian

submanifold of M .

Example 2.24 For each n > 1 the manifold T ∗Sn admits the structure of a Calabi-Yau manifold for
which the zero section is a special Lagrangian submanifold. The complex structure on T ∗Sn comes
from an embedding into Cn+1 as an affine quadric

Q =
{
(z0, . . . , zn) ∈ Cn+1 : z2

0 + · · · + z2
n = 1

}
.

See the paper [57] of Stenzel for further details.
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Example 2.25 Let (M, g) be a hyperkähler manifold, of dimension 4k. So g is Kähler with respect to
three complex structures I, J,K on M and furthermore IJK = −id. Let the Kähler forms of I, J,K
be ωI , ωJ , ωK respectively. Put Ω := (ωI + iωJ)k, which is a nowhere vanishing form that is covariant
constant, and of type (2k, 0) with respect to the complex structure K on M . So when Ω is suitably
normalised, both (K, g,Ω) and (K, g, iΩ) become Calabi-Yau structures on M .

Let f : X →M be a submanifold of dimension 2k. Then any two of the conditions

1. f : X →M is a complex submanifold with respect to J

2. f∗ωI = 0

3. f∗ωK = 0

holding implies the third, and when these conditions hold we shall say that f : X → M is complex
Lagrangian. If f : X →M is complex Lagrangian, we obviously have f∗ωK = 0, and also

f∗Ω = (f∗ωI + if∗ωJ)k = ik(f∗ωJ)k

so that f∗ Im Ω = 0 if k is even and f∗ Im(iΩ) = 0 if k is odd. So in hyperkähler manifolds, com-
plex Lagrangian submanifolds are special Lagrangian submanifolds with respect to some Calabi-Yau
structure on M .

Conversely, when k = 1 we have iΩ = iωI − ωJ so that if f : X → M is special Lagrangian with
respect to (K, g, iΩ) we have f∗ωK = 0 and f∗ωI = f∗ Im(iΩ) = 0 so that f : X → M is complex
Lagrangian as defined above.

2.3.2 Regularity of special Lagrangian submanifolds

In this section we bring together some of the material of Section 2.2 as applied to a special Lagrangian
submanifold got from a tubular neighbourhood.

Suppose (J, g,Ω) is a Calabi-Yau structure on a manifold M and that f : X → M is a special
Lagrangian submanifold with normal bundle N → X. Suppose also that f(X) ⊆ M is a closed sub-
space. Then using Theorem 2.15 we have a tubular neighbourhood Ũ ⊆ N such that the exponential
map restricts to a diffeomorphism from Ũ onto an open subset of M . Let ξ be a section of N with
ξx ∈ Ũ for all x ∈ X. Then ξ induces a submanifold fξ : X →M where

fξ(x) := expf(x)(ξx)

for each x ∈ X.

However, now suppose that ξ is only of class Cl,a for some integer l > 3. Then although we have
a submanifold fξ : X → M the map fξ will a priori only be of class Cl,a and not smooth. But if we
suppose further that the submanifold fξ : X → M is special Lagrangian then Proposition 2.19 and
the fact that special Lagrangian submanifolds are minimal implies that the subset fξ(X) ⊆ M has a
smooth structure coming from slices of charts for M , so that the inclusion fξ(X) → M is a smooth
submanifold. We now use the fact that our submanifold fξ comes from a tubular neighbourhood:
translating over to the normal bundle we have an inclusion i : ξ(X) → N that is smooth and a
commuting diagram

ξ(X)
i−−−−→ N

ξ

x
yπN

X −−−−→
id

X.

Since the projection πN : N → X is smooth it follows that ξ−1 = πN ◦ i : ξ(X) → X is a smooth
map which is a Cl-diffeomorphism. Hence by Corollary 2.8 we see that ξ : X → ξ(X) is a C∞-
diffeomorphism, so that ξ : X → N is a smooth submanifold. Consequently fξ : X →M is a smooth
submanifold, too.
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2.3.3 Some pointwise calculations

In this section we give some elementary results concerning the objects that live on Calabi-Yau mani-
folds. These results will be needed in Lemma 2.29.

Let
(
∂
∂x1

, . . . , ∂
∂xn

, ∂
∂y1

, . . . , ∂
∂yn

)
be the standard basis for the real vector space Cn with dual basis

(dx1, . . . ,dxn,dy1, . . . ,dyn). Then we have the following relevant objects

g0 =

n∑

j=1

(dxj ⊗ dxj + dyj ⊗ dyj)

ω0 =

n∑

j=1

dxj ∧ dyj

Ω0 = (dx1 + idy1) ∧ . . . ∧ (dxn + idyn)

that are respectively the metric, Kähler form and the holomorphic volume form. The endomorphism
J0 : Cn → Cn defined as in equation (2.27) is then multiplication by i ∈ C.

Lemma 2.26 Let V 6 Cn be an n-plane with ω0|V = 0 and Im Ω0|V = 0. Given ξ ∈ V ⊥ we have

(
ι(ξ)ω0

)∣∣
V

= (♭0J0)ξ, (2.31)
(
ι(ξ) Im Ω0

)∣∣
V

= − ∗0 (♭0J0)ξ (2.32)

where ♭0 : V → V ∗ is the usual isomorphism induced by the restriction of g0 to V and ∗0 : Λ∗V ∗ →
Λ∗V ∗ is the Hodge star isomorphism got from the restriction of g0 to V and the orientation induced
on V by Re Ω0|V . Moreover, for arbitrary ξ ∈ Cn we have

(
ι(ξ) Im Ω0

)∣∣
V

= − ∗0

((
ι(ξ)ω0

))∣∣∣
V
. (2.33)

Proof: Because the first two equations are SU(n)-invariant and SU(n) acts transitively on the set of
all n-planes V 6 Cn with ω0|V = Im Ω0|V = 0 we need only check (2.31) and (2.32) in the case that
V = Rn. Then we must have ξ =

∑n
j=1 v

j ∂
∂yj

for some v1, . . . , vn ∈ R. In fact, as both sides of each

equation are linear in ξ we can assume that ξ = ∂
∂yk

for some k = 1, . . . , n. Then for (2.31) we have

(
ι( ∂
∂yk

)ω0

)∣∣∣
V

= ι( ∂
∂yk

)




n∑

j=1

dxj ∧ dyj



∣∣∣∣∣∣
V

= −
(
dxk

)∣∣
V

= (♭0J0)
∂
∂yk

as required, and for (2.32)

(
ι( ∂
∂yk

) Im Ω0

)∣∣∣
V

=
(
ι( ∂
∂yk

) Im
[
(dx1 + idy1) ∧ . . . ∧ (dxn + idyn)

])∣∣∣
V

= (−1)k+1 · dx1 ∧ . . . ∧ dxk−1 ∧ dxk+1 ∧ . . . ∧ dxn

= ∗0(dxk)

= − ∗0 (♭0J0)
∂
∂yk

as required. To prove the third equation note that Cn = V ⊕ V ⊥ and clearly (2.33) holds for all
ξ ∈ V ⊥: this follows from equations (2.31) and (2.32). Also (2.33) holds for all ξ ∈ V because
ω0|V = 0 and Im Ω0|V = 0.

We would like a result for Calabi-Yau manifolds that is analogous to Lemma 2.26. For this we
need the following result.
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Proposition 2.27 Let (M,J, g,Ω) be a Calabi-Yau manifold, with Kähler form ω. Then given x ∈M
there exists an open subset U ⊆M containing x and local orthonormal frames (e1, . . . , en, f1, . . . , fn)
for TM |U such that

ω =
n∑

j=1

ej ∧ f j

Ω = (e1 + if1) ∧ . . . ∧ (en + ifn)

where dimM = 2n and (e1, . . . , en, f1, . . . , fn) is the dual frame for T ∗M |U .

Proof: By an inductive argument for k = 1, 2, . . . , n we can find local orthonormal vector fields
(e1, . . . , ek, Je1, . . . , Jek), since the metric g is Hermitian. So now fix k = n, and set fj := Jej for
j = 1, . . . , n. Then we have g, ω and J in the form needed. Also, by equation (2.28) we see that

Ω = λ · (e1 + if1) ∧ . . . ∧ (en + ifn)

for some S1 ⊆ C valued function λ. Now by rotating (say) the pair of vectors e1 + if1 by λ throws Ω
into the form required, whilst preserving g, ω and J .

Corollary 2.28 Let (M,J, g,Ω) be a Calabi-Yau manifold, with Kähler form ω. Let f : X → M be
a special Lagrangian submanifold with normal bundle N → X. If ξ ∈ C∞(N) then we have

f∗
(
ι(ξ)ω

)
= (♭gJ)ξ (2.34)

f∗
(
ι(ξ) Im Ω

)
= − ∗g (♭gJ)ξ (2.35)

where ♭g : TX → T ∗X is the usual isomorphism induced by the restriction of g to X and ∗g :
Λ∗T ∗X → Λ∗T ∗X is the Hodge star X induced by the restriction of g to X and the orientation on X
induced by f∗ ReΩ. Moreover, for arbitrary ξ ∈ C∞(f∗TM) we have

f∗
(
ι(ξ) Im Ω

)
= − ∗g

(
f∗
(
ι(ξ)ω

))
. (2.36)

Proof: The equations (2.34), (2.35) and (2.36) can be checked pointwise, and at each point x ∈M we
have by Proposition 2.27 an isomorphism TxM ∼= Cm compatible with the relevant structure. Hence
the result follows from Lemma 2.26.

2.3.4 Infinitesimal deformations of special Lagrangian submanifolds

Suppose that (J, g,Ω) is a Calabi-Yau structure on a manifold M2n with Kähler form ω and that
f : X → M is a special Lagrangian submanifold. Since f∗ω = 0 it follows from equation (2.27) that
the complex structure J defines a vector bundle isomorphism

J : N → TX

where N → X is the normal bundle of X in M . Also using the restriction of the metric g to X we
have as usual the vector bundle isomorphism

♭g : TX → T ∗X

so that ♭gJ identifies normal vector fields on X with 1-forms on X.

When f(X) is a closed subset of M we may apply the Tubular Neighbourhood Theorem 2.15 to
f : X → M and obtain an open neighbourhood Ũ ⊆ N of the zero section such that the exponential
map defines a diffeomorphism

exp |Ũ : Ũ →M
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onto an open subset of M . By shrinking Ũ if necessary we may suppose further that for each x ∈ X
the subset Ũ ∩Nx ⊆ Nx is star-shaped with respect to 0. Let us define

U := (♭gJ)Ũ

an open subset of T ∗X containing the zero section, and correspondingly

Ũ∞ := {ξ ∈ C∞(N) : ξx ∈ Ũ for all x ∈ X} (2.37)

U∞ := {η ∈ C∞(T ∗X) : ηx ∈ U for all x ∈ X}. (2.38)

Then both Ũ∞ and U∞ are star-shaped with respect to 0.

Suppose that ξ ∈ C∞(N) and ε > 0 are such that tξ ∈ Ũ∞ for all |t| < ε. It follows by the comment
after Theorem 2.15 that we have a 1-parameter family of submanifolds ftξ : X → M parameterised
by t ∈ (−ε, ε) where

ftξ(x) = expf(x)(tξx)

for each x ∈ X. Note that f0 = f . We would like to know whether or not deforming the special
Lagrangian submanifold f : X →M in the direction ξ ∈ C∞(N) keeps X special Lagrangian, at least
infinitesimally. Now the condition that ftξ : X →M be special Lagrangian is

f∗tξω = 0

f∗tξ ImΩ = 0

in C∞(Λ∗T ∗X), so that in order to answer our question we perform the following pointwise compu-
tations on X.

Lemma 2.29 Refer to the above notation. Let η = (♭gJ)ξ be the 1-form corresponding to ξ. Then

∂

∂t

(
f∗tξω

)∣∣∣∣
t=0

= dη

∂

∂t

(
f∗tξ Im Ω

)∣∣∣∣
t=0

= −d(∗gη)

where the derivatives on the left hand sides of these equations are calculated pointwise on X, and we
use the restriction of the metric g on X and the orientation on X induced by f∗ ReΩ to define the
Hodge star operator ∗g.

Proof: Define Fξ : (−ε, ε) ×X → M by Fξ(t, x) = ftξ(x) for all |t| < ε and x ∈ X. Then Corollary
2.28, the results of Section 2.2.2, and the fact ω is closed give

∂

∂t

(
f∗tξω

)∣∣∣∣
t=0

= L ∂
∂t

(
F ∗
ξ ω
)∣∣∣
X0

= f∗
(
ι(ξ0)dω + d(ι(ξ0)ω)

)

= d
(
f∗(ι(ξ0)ω)

)

= dη.

In the above ξ0 is any extension of ξ to a neighbourhood of f(X) in M . Similarly we have

∂

∂t

(
f∗tξ Im Ω

)∣∣∣∣
t=0

= d
(
f∗(ι(ξ0) Im Ω)

)

= −d(∗gη)

and we are done.
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Deformations of compact special

Lagrangian submanifolds

3.1 Analysis on compact manifolds

In this section we give a brief description of some analytic tools for compact manifolds. Useful
references for this section are the books of Adams [2], Aubin [4, Chapters 2,3,4], Besse [7, Appendix],
Gilbarg and Trudinger [18] and Joyce [25, Chapter 1]. As for the notation we shall use, we refer the
reader to Table 1.1, so that for instance, throughout Section 3.1 we have p > 1, 0 < a, b < 1 and
i, j, k,m non-negative integers.

3.1.1 Construction of suitable Banach spaces

Let E be a vector bundle over a compact manifold X, where dimX = n. Our primary method of
constructing Banach spaces of sections of E is via coordinate charts. To this end, pick any finite open
covering U = {U1, . . . , UN} of X such that both E and X are trivial over each Uν and each Uν is
a domain when considered as a subset of Rn. If ξ is a section of E we denote by ξν1 , . . . , ξ

ν
rankE the

components of ξ in the open set Uν . We also fix a partition of unity {ρ1, . . . , ρN} subordinate to the
open covering U of X.

Sobolev spaces

Considering each Uν as being a subset of Euclidean space Rn, we have the usual Euclidean measure
dVe defined on each Uν . So given u ∈ C∞(X) with suppu ⊆ Uν we may define

‖u‖Lp(Uν) :=

(∫

Uν

|u|pdVe
) 1
p

the usual Lp-norm of u. For ξ ∈ C∞(E) we also have the Sobolev norm defined by

‖ξ‖Wp
k
(E) :=




N∑

ν=1

rankE∑

j=1

∑

06|λ|6k

∥∥ρν
(
∂λξνj

)∥∥p
Lp(Uν)




1
p

. (3.1)

We define W p
k (E) to be the vector space completion of C∞(E) with respect to the norm (3.1). We

call the Banach space W p
k (E) a Sobolev space. Note that, additionally, each W 2

k (E) is a Hilbert space.

As a topological vector space W p
k (E) is independent of all choices Uj , ρj . Additionally, we can

view elements of W p
k (E) as genuine sections of E, whose components in the various trivialisations Uν

are k times weakly differentiable, with all derivatives Lp-integrable.

34
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An alternative, coordinate free method for constructing the Sobolev spaces W p
k (E) is to endow

the manifold X with a Riemannian metric g, and the vector bundle E with a fibre metric ( , )E and
a compatible connection ∇E . Then the norm (3.1) is equivalent to the norm on C∞(E) defined by

‖ξ‖ :=




k∑

j=0

∫

X

∣∣∇j
Eξ
∣∣p
E

dVg




1
p

for all ξ ∈ C∞(E). Then W 2
0 (E) is simply the Hilbert space L2(E) defined as in Section 2.1.2.

Note that there is a constant C > 0 such that
∣∣〈ξ1|ξ2〉L2(E)

∣∣ 6 C‖ξ1‖Wp
0 (E)‖ξ2‖Wp′

0 (E)

for all ξ1, ξ2 ∈ C∞(E). It follows that the L2-inner product defined in Section 2.1.2 extends to a
continuous bilinear map

〈 | 〉L2(E) : W p
0 (E) ×W p′

0 (E) → R (3.2)

and in fact the pairing (3.2) induces a Banach space isomorphism

Φ : W p
0 (E) →W p′

0 (E)∗ (3.3)

defined by Φ(ξ)(η) := 〈ξ|η〉L2(E) for all ξ ∈ W p
0 (E) and η ∈ W p′

0 (E). See the book [2, Section 3.4] of
Adams for further details, where the following useful result is also proved.

Proposition 3.1 The Banach spaces W p
k (E) are reflexive.

The important point in Proposition 3.1 is that p > 1.

Hölder spaces

Given ξ ∈ Ck(E) we define

‖ξ‖Ck(E) :=

N∑

ν=1

rankE∑

j=1

∑

06|λ|6k
sup
Uν

∣∣ρν
(
∂λξνj

)∣∣ . (3.4)

The norm (3.4) makes Ck(E) into a Banach space, which we call a Ck-space. We also define

‖ξ‖Ck,a(E) = ‖ξ‖Ck(E) +
N∑

ν=1

rankE∑

j=1

∑

|λ|=k

[
ρν
(
∂λξνj

)]
a;Uν

(3.5)

which may, or may not, be finite: refer to Section 2.2.4 for the definition of [·]a,A. We now put

Ck,a(E) :=
{
ξ ∈ Ck(E) : ‖ξ‖Ck,a(E) <∞

}

which becomes a Banach space when equipped with the norm (3.5). This Banach space is called a
Hölder space.

The Ck and Hölder spaces can also be constructed in a coordinate free manner, as we now describe.
Suppose that X is equipped with a Riemannian metric g and E is equipped with a fibre metric and
compatible connection. Then given ξ ∈ Ck(E) and 0 6 j 6 k we may form the jth covariant
derivative ∇j

Eξ ∈ C0
(
(⊗jT ∗X) ⊗ E

)
of ξ using the Levi-Civita connection of g and the connection

on E. Furthermore, using g and the fibre metric on E we may compute the pointwise norm of ∇j
Eξ,

which we write as
∣∣∣∇j

Eξ
∣∣∣
E

∈ C0(X). It turns out that the norm (3.4) on Ck(E) defined above is

equivalent to the norm on Ck(E) defined by

‖ξ‖ :=

k∑

j=0

sup
X

∣∣∣∇j
Eξ
∣∣∣
E
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for each ξ ∈ Ck(E).

To construct the Hölder norm (3.5) in a coordinate free manner we first need a preliminary discus-
sion. Suppose V is any vector bundle over a manifold Y which is endowed with a connection. Then
given any piecewise-smooth curve which joins points x, y ∈ Y we may define a linear isomorphism
Vx → Vy using parallel transport along this curve. If further V is equipped with a fibre metric which
is compatible with the connection, then the parallel transport map will be an isometry.

Suppose Y has a Riemannian metric h and the injectivity radius inj(Y, h) is positive. Then we
may choose some 0 < ε 6 inj(Y, h). Let dh(x, y) denote the distance between two points x, y in the
Riemannian manifold (Y, h). Then given x, y ∈ Y with dh(x, y) < ε there exists a unique geodesic in
(Y, h) of length dh(x, y) which joins x to y.

Consequently, for any A ⊆ Y and section v of V we can define

[v]ha;A := sup

{ |vx − vy|V
dh(x, y)a

: x, y ∈ A with 0 < dh(x, y) < ε

}
(3.6)

which may or may not be finite. In equation (3.6) we make sense of |vx− vy|V by identifying Vx ∼= Vy
isometrically using parallel transport along the unique geodesic in (Y, h) from x to y which has length
dh(x, y), and then applying the fibre metric | · |V on V .

If we return to our compact Riemannian manifold (X, g), then inj(X, g) > 0 and it turns out that

Ck,a(E) =
{
ξ ∈ Ck(E) :

[
∇k
Eξ
]g
a;X

<∞
}

and the norm (3.5) is equivalent to the norm on Ck,a(E) defined by

‖ξ‖ :=




k∑

j=0

sup
X

∣∣∣∇j
Eξ
∣∣∣
E


+

[
∇k
Eξ
]g
a;X

(3.7)

for each ξ ∈ Ck,a(E).

Embedding and Compactness Theorems

The Banach spaces defined above are actually closely related, as we see from the following very useful
results.

Theorem 3.2 (Embedding Theorems) Refer to Section 2.1.1 for the definition of a continuous
embedding between Banach spaces.

1. If k > l > 0 and k − n
p > l − n

q then there is a continuous embedding W p
k (E) 6 W q

l (E).

2. If k + a > l + b then there are continuous embeddings Ck+1(E) 6 Ck,a(E) 6 Cl,b(E) 6 Cl(E)
and Ck(E) 6 Cl(E).

3. If k − n
p > l + a then there are continuous embeddings W p

k (E) 6 Cl,a(E) 6 Cl(E) 6 W q
l (E).

A consequence of Theorem 3.2 is that

∞⋂

k=0

W p
k (E) =

∞⋂

k=0

Ck,a(E) = C∞(E). (3.8)

Theorem 3.3 (Compactness Theorems) Refer to Section 2.1.1 for the definition of a compact
embedding between Banach spaces.

1. The embedding W p
k (E) 6 W q

l (E) is compact when k > l > 0 and k − n
p > l − n

q .

2. The embedding Ck,a(E) 6 Ck(E) is compact.

3. The embedding W p
k (E) 6 Cl,a(E) is compact whenever k − n

p > l + a.

The real substance of Theorem 3.2 and Theorem 3.3 are the corresponding local results from PDE
theory. See for example the book [18, Section 7.7, Section 7.10] of Gilbarg and Trudinger.
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3.1.2 The theory of elliptic operators

We now describe the properties of differential operators when acting between the spaces introduced
above. First of all, if P : C∞(E) → C∞(F ) is a smooth, linear differential operator of order l > 1
then P extends to bounded linear maps

P : W p
k+l(E) → W p

k (F ) (3.9)

P : Ck+l,a(E) → Ck,a(F ). (3.10)

It follows from continuity that the defining identity (2.7) of the formal adjoint P ∗ of P extends to an
identity

〈ξ|P ∗η〉L2(E) = 〈Pξ|η〉L2(F ) (3.11)

valid for all ξ ∈ W p
l (E), η ∈ W p′

l (F ), and hence all ξ ∈ Cl,a(E), η ∈ Cl,a(F ). Use of the extended
identity (3.11) is called integration by parts.

Elliptic operators are very important in the theory of analysis on compact manifolds because of
the usefulness of results such as the following: refer to Section 2.1.2 for the definition of weak solution.

Theorem 3.4 Let X be a compact manifold and E,F → X vector bundles over X. Let P : C∞(E) →
C∞(F ) be an elliptic, smooth, linear differential operator of order l > 1. Suppose that η ∈ L1(F ) and
that ξ ∈ L1(E) is a weak solution of the equation Pξ = η.

1. If η ∈W p
k (F ) then ξ ∈W p

k+l(E) with Pξ = η and

‖ξ‖Wp
k+l

(E) 6 C1

(
‖Pξ‖Wp

k
(F ) + ‖ξ‖L1(E)

)
(3.12)

where the constant C1 > 0 does not depend on ξ.

2. If ξ ∈ C0(E) with η ∈ Ck,a(F ) then ξ ∈ Ck+l,a(E) with Pξ = η and

‖ξ‖Ck+l,a(E) 6 C2

(
‖Pξ‖Ck,a(F ) + ‖ξ‖C0(E)

)
(3.13)

where the constant C2 > 0 does not depend on ξ.

The proof of Theorem 3.4 is best thought of as being in two parts: we firstly deduce that the given
conditions imply that ξ is locally of class W p

k+l in the first case or locally of class Ck+l,a in the second
case. Then one can give local estimates for ξ in terms of the relevant norms, and the passage to the
whole ofX is then entirely straightforward. The relevant theorems are the Morrey interior estimates as
in [53, Theorem 6.4.8] or the Schauder interior estimates as in [16, Theorem 1]. (Actually the Morrey
estimates are stronger as he proves that the C0(E) norm on the right hand side of the inequality
(3.13) can in fact be replaced with the weaker L1(E) norm, but for our purposes the estimate (3.13)
is sufficient.)

It turns out that results such as Theorem 3.4 will fail for the Banach spaces Ck(E): that is why
we have had to introduce the more complicated Sobolev and Hölder spaces.

We now have the following corollary.

Corollary 3.5 Let X be a compact manifold and E,F → X vector bundles over X. Let P : C∞(E) →
C∞(F ) be an elliptic, smooth, linear differential operator of order l > 1. If ξ ∈ L1(E) with Pξ = 0
holding weakly then ξ ∈ C∞(E) and Pξ = 0 holds in the usual sense.

Proof: If ξ ∈ L1(E) with Pξ = 0 holding weakly then by Theorem 3.4 we have ξ ∈ W p
k (E) for all

k > 0. Then ξ ∈ C∞(E) follows from equation (3.8).

It follows that when P is elliptic the kernels of the maps (3.9) and (3.10) coincide and are inde-
pendent of p, k, a. Moreover, this kernel is a subspace of C∞(E).
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Theorem 3.6 Let X be a compact manifold and E,F vector bundles over X. Let P : C∞(E) →
C∞(F ) be an elliptic, smooth, linear differential operator of order l > 1. Then the maps P :
W p
k+l(E) → W p

k (F ) and P : Ck+l,a(E) → Ck,a(F ) both have finite-dimensional kernels and closed
images.

We give a proof of the Ck,a-half of this corollary to illustrate the various techniques that are used in
the theory of elliptic operators, in particular the use of Theorem 3.3 and Theorem 3.4. The method
of proof for is similar to that of Cantor [10], who considers the Sobolev case.

Proof: A Banach space is finite-dimensional precisely when its closed unit ball is compact. Now
KerP is a closed subspace of Ck+l,a(E) and hence is a Banach space. Let B be the closed unit ball
in KerP . Suppose that (ξj) ⊆ B is any sequence. Then (ξj) is bounded in the Ck+l,a-norm, and
by Theorem 3.3 there exists a subsequence (ξjr ) that is Ck+l-Cauchy, and hence C0-Cauchy. Now
applying Theorem 3.4 gives a constant C2 > 0 such that

‖ξjr − ξjs‖Ck+l,a(E) 6 C2 · ‖ξjr − ξjs‖C0(E)

for all r, s > 1 so that (ξjr ) is Ck+l,a-Cauchy. It follows that this sequence has a limit ξ ∈ B. Hence
B is compact, and KerP is finite-dimensional.

To show that ImP 6 Ck,a(F ) is closed we firstly define the closed subspace A := (KerP )⊥ 6

Ck+l,a(E). Here we use the L2-inner product on Ck+l,a(E) to form A. Note that Ck+l,a(E) =
KerP ⊕A, as one can see by picking an L2-orthonormal basis for KerP .

Suppose for a contradiction that there exists a sequence (ξj) ⊆ A with

‖ξj‖Ck+l,a(E) = 1 for all j > 1 (3.14)

‖Pξj‖Ck,a(F ) → 0 as j → ∞. (3.15)

By equation (3.14) and Theorem 3.3 there exists a subsequence (ξjr ) that is Ck+l-Cauchy, and therefore
C0-Cauchy. By equation (3.15) and Theorem 3.4 we deduce (ξjr ) is Ck+l,a-Cauchy and so converges
to some ξ ∈ A. Now by equation (3.15) we have Pξ = 0 so that necessarily ξ = 0. But this contradicts
equation (3.14). It follows from this contradiction that there exists a constant C3 > 0 such that

‖ξ‖Ck+l,a(E) 6 C3‖Pξ‖Ck,a(E) (3.16)

for all ξ ∈ A. We can finally show that ImP 6 Ck,a(F ) is closed. Take a sequence (ηj) ⊆ ImP
converging to η ∈ Ck,a(F ). Then put ηj = Pξj for j > 1 with each ξj ∈ A. By equation (3.16) the
sequence (ξj) ⊆ A is Ck+l,a-Cauchy and thus converges to ξ ∈ A, and moreover Pξ = η. This shows
ImP is a closed subspace of Ck,a(F ).

Theorem 3.6 allows us to prove the following result giving a characterisation of the image of an
elliptic operator acting between Sobolev spaces. The method of proof for Theorem 3.7 is that of
Cantor [10].

Theorem 3.7 Let X be a compact manifold and E,F vector bundles over X. Let P : C∞(E) →
C∞(F ) be an elliptic, smooth, linear differential operator of order l > 1 with formal adjoint P ∗. Then
in the extension P : W p

k+l(E) →W p
k (F ) we have

ImP =
{
η ∈W p

k (F ) : 〈η|h〉L2(F ) = 0 for all h ∈ KerP ∗
}
. (3.17)

Note from Corollary 3.5 that KerP ∗ is a subspace of C∞(F ) and is therefore contained in W p′

0 (F ),
so that the right hand side of equation (3.17) makes sense.

Proof: First note that

ImP 6

{
η ∈W p

k (F ) : 〈η|h〉L2(F ) = 0 for all h ∈ KerP ∗
}
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follows immediately from integration by parts.

Consider now the case k = 0. For the purposes of this proof, denote the Banach space adjoint
of the map P by P ′ : W p

0 (F )∗ → W p
l (E)∗, to distinguish from the formal adjoint P ∗ of P . Identify

W p
0 (F )∗ ∼= W p′

0 (F ) as in (3.3). Then an integration by parts argument shows that

KerP ∗
6 KerP ′

in W p
0 (F )∗. Also, it is a consequence of Theorem 3.4 that

KerP ′
6 KerP ∗ (3.18)

because if η ∈ W p′

0 (F ) with 〈Pφ|η〉L2(F ) = 0 for all φ ∈ W p
l (E) then the equation P ∗η = 0 holds

weakly. (It is at the point of establishing the inclusion (3.18) that the corresponding proof for the
Hölder spaces breaks down, because one does not have a good characterisation of their dual space.)
Now take η ∈W p

0 (F ) such that 〈η|h〉L2(F ) = 0 for all h ∈ KerP ∗. Then η ∈W p
0 (F ) lies in

(KerP ∗)◦ = (KerP ′)◦ = ImP

as required. Here we are using Proposition 2.2 and Theorem 3.6. It follows that we have proved the
result in the case k = 0.

Now suppose that k > 1 and that η ∈ W p
k (F ) with 〈η|h〉L2(F ) = 0 for all h ∈ KerP ∗. A

consequence of the case k = 0 proof is that there exists ξ ∈ W p
l (E) such that Pξ = η. But then

Theorem 3.4 implies ξ ∈W p
k+l(E) and we are done.

Theorem 3.7 is important because it generalises very easily to the non-compact case we shall
consider later. It also allows us to prove our next result, which is again very useful. The method is
that of the author, we do not know if it is in the literature.

Theorem 3.8 Let X be a compact manifold and E,F vector bundles over X. Let P : C∞(E) →
C∞(F ) be an elliptic, smooth, linear differential operator of order l > 1, with formal adjoint P ∗.
Then there are L2-orthogonal decompositions

W p
k (F ) = P

(
W p
k+l(E)

)
⊕ KerP ∗ (3.19)

Ck,a(F ) = P
(
Ck+l,a(E)

)
⊕ KerP ∗. (3.20)

Proof: We first prove the Sobolev decomposition (3.19) which can then be used to prove the Hölder
decomposition (3.20).

From Corollary 3.5 and Theorem 3.6 above we have that KerP ∗ is a finite dimensional subspace
of W p

k (F ) contained inside C∞(F ). Choose an L2-orthonormal basis {h1, . . . , hN} of KerP ∗. Given
η ∈W p

k (F ) we may write

η =


η −

N∑

j=1

〈η|hj〉L2(F )hj


+




N∑

j=1

〈η|hj〉L2(F )hj




and this shows that

W p
k (F ) =

{
η ∈W p

k (F ) : 〈η|h〉L2(F ) = 0 for all h ∈ KerP ∗
}
⊕ KerP ∗

and the Sobolev decomposition now follows from Theorem 3.7.

Note now that Ck,a(F ) 6 W p
k (F ). If we intersect the decomposition (3.19) with Ck,a(F ) we obtain

Ck,a(F ) =
{
η ∈ Ck,a(F ) : η = Pξ for some ξ ∈W p

k+l(E)
}
⊕ KerP ∗.
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Now choose p > 1 so that k + l − a >
n
p so that by Theorem 3.2 we have W p

k+l(E) 6 C0,a(E). Then
Theorem 3.4 implies that

{
η ∈ Ck,a(F ) : η = Pξ for some ξ ∈W p

k+l(E)
}

= P
(
Ck+l,a(E)

)

and we are done.

Given the hypotheses of Theorem 3.8 one may deduce immediately that the linear map P :
C∞(E) → C∞(F ) admits an L2-orthogonal decomposition

C∞(F ) = P
(
C∞(E)

)
⊕ KerP ∗ (3.21)

with a similar orthogonality property. This follows by intersecting both sides of equation (3.20) with
C∞(F ) and using the elliptic regularity results of Theorem 3.4.

3.1.3 An application: Hodge theory

On a compact Riemannian manifold (X, g) we have the exterior derivative d, its formal adjoint d∗
g,

and the elliptic, self-adjoint, smooth, linear differential operator of order 1

d∗
g + d : C∞(Λ∗T ∗X) → C∞(Λ∗T ∗X).

Furthermore we have an elliptic, self-adjoint, smooth, linear differential operator (d∗
g + d)2 = ∆g on

C∞(Λ∗T ∗X). The analysis of the operators d + d∗
g and ∆g is what we shall call Hodge theory on

(X, g). Although in Section 3.1.3 we shall work with Hölder spaces, the corresponding results for
Sobolev spaces also hold.

For the rest of Section 3.1.3 we consider d∗
g + d as a map

d∗
g + d : Ck+1,a(Λ∗T ∗X) → Ck,a(Λ∗T ∗X) (3.22)

which is a bounded linear map of Banach spaces. By Corollary 3.6 the subspace Im(d∗
g + d) 6

Ck,a(Λ∗T ∗X) is closed and Ker(d∗
g + d) is a finite-dimensional subspace of C∞(Λ∗T ∗X). Also, by

Theorem 3.8 and the fact that d∗
g + d is self-adjoint we have a direct sum decomposition

Ck,a(Λ∗T ∗X) = Im(d∗
g + d) ⊕ Ker(d∗

g + d) (3.23)

which is L2-orthogonal.

Proposition 3.9 The bounded linear map of Banach spaces (3.22) has kernel

Ker(d∗
g + d) =

{
ξ ∈ Ck+1,a(Λ∗T ∗X) : d∗

gξ = 0 and dξ = 0
}

and image

Im(d∗
g + d) =

{
d∗
gθ1 + dθ2 : θ1, θ2 ∈ Ck+1,a(Λ∗T ∗X)

}

= d∗
g

(
Ck+1,a(Λ∗T ∗X)

)
⊕ d
(
Ck+1,a(Λ∗T ∗X)

)

a direct sum of vector spaces that is L2-orthogonal.

Proof: It is clear that if ξ ∈ Ck+1,a(Λ∗T ∗X) with d∗
gξ = 0 and dξ = 0 then ξ ∈ Ker(d∗

g +d). Suppose
conversely that ξ ∈ Ker(d∗

g + d). Then d∗
gξ = −dξ and

‖d∗
gξ‖2

L2 = 〈d∗
gξ|d∗

gξ〉L2 = 〈ξ|dd∗
gξ〉L2 = −〈ξ|ddξ〉L2 = 0

where by L2 we mean L2(Λ∗T ∗X) throughout. It follows that d∗
gξ = dξ = 0.
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For the second set of equations we note that clearly Im(d∗
g + d) is contained inside

A :=
{
d∗
gθ1 + dθ2 : θ1, θ2 ∈ Ck+1,a(Λ∗T ∗X)

}

but the problem is to show the reverse inclusion A 6 Im(d∗
g + d). For this take any θ1, θ2 ∈

Ck+1,a(Λ∗T ∗X). Then we have d∗
gθ1 + dθ2 ∈ Ck,a(Λ∗T ∗X) so from the decomposition (3.23) there

exist h ∈ Ker(d∗
g + d) and θ3 ∈ Ck+1,a(Λ∗T ∗X) with

d∗
gθ1 + dθ2 = (d∗

g + d)θ3 + h (3.24)

From the description of Ker(d∗
g + d) obtained above we have

d∗
gd(θ2 − θ3) = 0

dd∗
g(θ1 − θ3) = 0

by respectively applying d∗
g and d to equation (3.24). Then

∥∥d(θ2 − θ3)
∥∥2

L2 =
〈
d(θ2 − θ3)

∣∣d(θ2 − θ3)
〉
L2 =

〈
θ2 − θ3

∣∣d∗
gd(θ2 − θ3)

〉
L2 = 0

so that dθ2 = dθ3, and similarly d∗
gθ1 = d∗

gθ3. Hence h = 0 and (d∗
g + d)θ3 = d∗

gθ1 + dθ2 so we have
proved Im(d∗

g + d) = A. The last remaining equality

A = d∗
g

(
Ck+1,a(Λ∗T ∗X)

)
⊕ d
(
Ck+1,a(Λ∗T ∗X)

)
(3.25)

is obvious: the sum of vector spaces is direct because given any θ1, θ2 ∈ Ck+1,a(Λ∗T ∗X) we have

〈d∗
gθ1|dθ2〉L2 = 〈θ1|ddθ2〉L2 = 0

and this also shows the splitting (3.25) is L2-orthogonal, in that

d∗
g

(
Ck+1,a(Λ∗T ∗X)

)
6
(
d(Ck+1,a(Λ∗T ∗X))

)⊥
.

For the rest of Section 3.1.3 we consider ∆ as a map

∆ : Ck+2,a(Λ∗T ∗X) → Ck,a(Λ∗T ∗X) (3.26)

which is a bounded linear map of Banach spaces. By Corollary 3.6 the subspace Im ∆ 6 Ck,a(Λ∗T ∗X)
is closed and Ker ∆ is a finite-dimensional subspace of C∞(Λ∗T ∗X) 6 Ck+2,a(Λ∗T ∗X). Also, by
Theorem 3.8 and the fact that ∆ is self-adjoint we have a direct sum decomposition

Ck,a(Λ∗T ∗X) = Im ∆ ⊕ Ker ∆ (3.27)

which is L2-orthogonal.

Proposition 3.10 In equation (3.27) we have

Ker ∆ = Ker(d∗
g + d)

Im∆ = Im(d∗
g + d).

Proof: Clearly Ker(d∗
g + d) 6 Ker ∆ as both are subspaces of C∞(Λ∗T ∗X) and (d∗

g + d)2 = ∆. To
show the reverse inclusion, suppose that ξ ∈ Ker ∆. Then

∥∥(d∗
g + d)ξ

∥∥2

L2 =
〈
(d∗
g + d)ξ

∣∣(d∗
g + d)ξ

〉
L2 =

〈
ξ
∣∣(d∗

g + d)2ξ
〉
L2 =

〈
ξ
∣∣∆ξ

〉
L2 = 0

as d∗
g + d is self-adjoint. We conclude that ξ ∈ Ker(d∗

g + d).
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For the second equation, it is obvious that

Im ∆ 6
{
d∗
gθ1 + dθ2 : θ1, θ2 ∈ Ck+1,a(Λ∗T ∗X)

}
= Im(d∗

g + d).

Now suppose that ξ ∈ Im(d∗
g + d) 6 Ck,a(Λ∗T ∗X). Using the splitting (3.27) we write ξ = ξ1 + ξ2

where ξ1 ∈ Im∆ and ξ2 ∈ Ker ∆. But then ξ − ξ1 = ξ2 lies inside

Im(d∗
g + d) ∩ Ker(d∗

g + d) = {0}

so that ξ = ξ1 lies inside Im ∆.

We usually refer to elements of H := Ker ∆ as harmonic forms. If dimX =: n then there is a
grading

Ck,a(Λ∗T ∗X) =

n⊕

r=0

Ck,a(ΛrT ∗X) (3.28)

and we define Hr := H ∩ C∞(ΛrT ∗X) for each 0 6 r 6 n.

Proposition 3.11 There is a decomposition

Ck,a(ΛrT ∗X) = Hr ⊕ d∗
g

(
Ck+1,a(Λr+1T ∗X)

)
⊕ d
(
Ck+1,a(Λr−1T ∗X)

)
(3.29)

which is L2-orthogonal.

Proof: From equation (3.23) and Proposition 3.9 we have an L2-orthogonal decomposition

Ck,a(Λ∗T ∗X) = H⊕ d∗
g

(
Ck+1,a(Λ∗T ∗X)

)
⊕ d
(
Ck+1,a(Λ∗T ∗X)

)

and now intersecting both sides of this equation with Ck,a(ΛrT ∗X) gives the result.

Corollary 3.12 If η ∈ C1(Λr−1T ∗X) with dη ∈ Ck,a(ΛrT ∗X) then there exists ξ ∈ Ck+1,a(Λr−1T ∗X)
with dη = dξ.

Proof: In the direct sum decomposition (3.29) we may write dη = h+d∗
gθ+dξ where θ ∈ Ck+1,a(Λr+1T ∗X)

and ξ ∈ Ck+1,a(Λr−1T ∗X). Now an integration by parts argument as in the proof of Proposition 3.9
shows that h = 0 and d∗

gθ = 0 as required.

There are versions of the grading (3.28) and decomposition (3.29) in the smooth situation:

C∞(Λ∗T ∗X) =

n⊕

r=0

C∞(ΛrT ∗X) (3.30)

C∞(ΛrT ∗X) = Hr ⊕ d∗
g

(
C∞(Λr+1T ∗X)

)
⊕ d
(
C∞(Λr−1T ∗X)

)
. (3.31)

It follows that for each 0 6 r 6 n we have a canonical isomorphism of real vector spaces

Hr → Hr(X)

h 7→ [h]

and this is because the smooth, closed r-forms split as Hr⊕d
(
C∞(Λr−1T ∗X)

)
, from equation (3.31).



Chapter 3: Deformations of compact special Lagrangian submanifolds 43

3.2 The McLean Theorem

As a part of his doctoral thesis, published as [50], McLean showed that whenever X is a compact
special Lagrangian submanifold of a Calabi-Yau manifold we may deform X via normal vector fields
to nearby submanifolds, and the special Lagrangian deformations correspond to a finite-dimensional
smooth submanifold of the total (infinite-dimensional) space of normal deformations. This smooth
submanifold is a manifold modelled locally as an open subset of the affine space H1(X), as is explained
in the paper [23] of Hitchin.

Using the background material we have already discussed, we give a rigorous proof of McLean’s
theorem, and also extend the theorem to the situation where the background Calabi-Yau structure
is being deformed, and ask whether or not compact special Lagrangian submanifolds persist under
deformations of the ambient Calabi-Yau structure. The main result of this section is Theorem 3.21.

3.2.1 Deformations of Calabi-Yau structures

We begin by explaining what we mean by deforming a Calabi-Yau structure.

Let Z be a manifold and let E → Z be a vector bundle. We would like to formalise the notion of
a smoothly varying family of smooth sections of E. For this, let D ⊆ Rm be a domain containing 0
and πZ : D × Z → Z be the projection onto the second factor.

Given ê ∈ C∞(π∗
ZE) and p ∈ D define the section e(p) ∈ C∞(E) by

e(p)z := ê(p,z)

for all z ∈ Z. Here we are identifying Ez ∼= (π∗
ZE)(p,z) in the usual way, for each z ∈ Z. We shall say

that ê is a (smooth, m-dimensional) deformation of e(0). We shall call D the parameter space of the
deformation ê.

Given the above situation, we have for each i = 1, . . . ,m a section ∂̂ie ∈ C∞(π∗
ZE) defined

(∂̂ie)(p,z) :=
∂

∂ri

(
ê(r,z)

)∣∣∣∣
r=p

for each (p, z) ∈ D×Z. In other words, ∂̂ie is just the derivative of ê in the ith direction in D, where
we compute derivatives in each fibre of E separately. We then have sections (∂ie)(p) ∈ C∞(E) for
each 1 6 i 6 m and p ∈ D, as described above.

Suppose now that M is a manifold with a Calabi-Yau structure (J, g,Ω). Then by a deforma-
tion of Calabi-Yau structures of (J, g,Ω) we mean a deformation (Ĵ , ĝ, Ω̂) of (J, g,Ω), such that(
J(p), g(p),Ω(p)

)
is a Calabi-Yau structure on M for each p ∈ D, the common parameter space

of (Ĵ , ĝ, Ω̂).

3.2.2 The deformation map F

For the rest of Section 3.2 let M be a manifold with dimM = 2n and (J, g,Ω) a Calabi-Yau structure
on M with Kähler form ω. Let f : X → M be a compact submanifold which is special Lagrangian
with respect to (J, g,Ω). We let ♭g : TX → T ∗X be the usual bundle isomorphism induced by the
restriction of g to X and ∗g the Hodge star on X induced by the restriction of g to X and the
orientation on X determined by f∗ ReΩ. Also d∗

g denotes the formal adjoint of the exterior derivative
d on X got using the restriction of the metric g to X. Note that f(X) ⊆ M will be a closed subset
as X is compact.

Let N → X be the normal bundle of f : X →M and Ũ , U be tubular neighbourhoods of X, as in
Section 2.3.4, with corresponding smooth sections Ũ∞, U∞ as in equations (2.37) and (2.38). For the
rest of Section 3.2 fix some k > 2 and further define

Ũk+1,a :=
{
ξ ∈ Ck+1,a(N) : ξx ∈ Ũ for all x ∈ X

}

Uk+1,a :=
{
η ∈ Ck+1,a(T ∗X) : ηx ∈ U for all x ∈ X

}
.
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Then both Ũk+1,a ⊆ Ck+1,a(N) and Uk+1,a ⊆ Ck+1,a(T ∗X) are open subsets of Banach spaces,
containing 0. Moreover both Ũk+1,a and Uk+1,a are star-shaped with respect to 0.

Given ξ ∈ Ũk+1,a we have a map fξ : X →M defined as in Section 2.2.1 by

fξ(x) := expf(x)(ξx)

for all x ∈ X. Here fξ will not necessarily be smooth, but instead has components of class Ck+1,a in
local trivialisations for X and M . However the map fξ : X → M still defines a submanifold of M in
that fξ is an injective immersion that is a homeomorphism onto its image. Also, we may pull back
forms θ ∈ C∞(ΛrT ∗M) to obtain forms f∗ξ θ ∈ Ck,a(ΛrT ∗X).

Let us suppose that (Ĵ , ĝ, Ω̂) is a deformation of Calabi-Yau structures of (J, g,Ω) which has a
common parameter space D ⊆ Rm. So J = J(0), g = g(0) and Ω = Ω(0). Also, given p ∈ D we
denote the Kähler form of the Calabi-Yau structure

(
J(p), g(p),Ω(p)

)
by ω(p).

We now consider the problem of which p ∈ D and ξ ∈ Ũk+1,a give rise to submanifolds fξ : X →M
which are special Lagrangian with respect to the Calabi-Yau structure

(
J(p), g(p),Ω(p)

)
. That is,

which (p, ξ) ∈ D × Ũk+1,a satisfy
f∗ξ ω(p) = f∗ξ Im Ω(p) = 0

in Ck,a(Λ∗T ∗X). To this end we define a map

F̃ : D × Ũk+1,a → Ck,a(Λ∗T ∗X)

(p, ξ) 7→ ∗gf∗ξ Im Ω(p) + f∗ξ ω(p)

which is a map between open subsets of Banach spaces. Then clearly we have F̃ (0, 0) = 0 since
f : X → M is special Lagrangian with respect to (J, g,Ω) and more generally the (p, ξ) ∈ F̃−1(0)
correspond precisely to the submanifolds fξ : X → M which are special Lagrangian with respect to(
J(p), g(p),Ω(p)

)
.

A priori the map fξ : X → M will be only have regularity Ck+1,a but the material from Sec-
tion 2.3.2 shows us that the fξ : X → M which are special Lagrangian with respect to some(
J(p), g(p),Ω(p)

)
must in fact be smooth. It follows that we are interested in looking at the structure

of the subset
F̃−1(0) ⊆ D × Ũ∞ ⊆ D × Ũk+1,a

which is precisely the set of (p, ξ) ∈ D × Ũk+1,a such that fξ : X → M is a smooth submanifold

which is special Lagrangian with respect to
(
J(p), g(p),Ω(p)

)
. The right tool to study F̃−1(0) is the

Implicit Function Theorem 2.10, and in order to invoke this theorem we shall need to establish some
facts about the map F̃ . The first such fact is given in the following theorem.

Theorem 3.13 The map F̃ : D× Ũk+1,a → Ck,a(Λ∗T ∗X) is a smooth mapping between open subsets
of Banach spaces.

Theorem 3.13 is proved in the thesis [5, Theorem 2.2.15] of Baier. Essentially, for each l > 1 and
(p, ξ) ∈ D × Ũk+1,a one obtains a candidate: the so-called Gâteaux derivative [1, Corollary 2.4.10],
for the lth order derivative

(DlF̃ )(p,ξ) :
(
Rm ⊕ Ck+1,a(N)

)
× · · · ×

(
Rm ⊕ Ck+1,a(N)

)
︸ ︷︷ ︸

l factors

→ Ck,a(Λ∗T ∗X) (3.32)

where we use the identification (2.1). Straightforward estimates on the components of F̃ show that
the multilinear map (3.32) is bounded for all (p, ξ) ∈ D×Ũk+1,a, and that the map (p, ξ) 7→ (DlF̃ )(p,ξ)
is continuous. So F̃ is of class Cl for each l > 1 and therefore smooth.

For convenience we shall work mainly with the cotangent bundle T ∗X rather that the normal
bundle N : we can interchange the two pictures using the isomorphism ♭gJ . Define the mapping
F : D × Uk+1,a → Ck,a(Λ∗T ∗X) by

F
(
p, (♭gJ)ξ

)
:= F̃ (p, ξ) = ∗gf∗ξ Im Ω(p) + f∗ξ ω(p)
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for all
(
p, (♭gJ)ξ

)
∈ D × Uk+1,a. In other words, F̃ = F ◦

(
id×(♭gJ)

)
. Now ♭gJ : N → T ∗X is a

vector bundle isomorphism and the induced map ♭gJ : Ck+1,a(N) → Ck+1,a(T ∗X) is a topological
linear isomorphism. The Chain Rule 2.5 and the Product Rule 2.6 then imply that the map F is
smooth and moreover

F̃ ′(0, 0) = F ′(0, 0) ◦
(
id×(♭J)

)

as a bounded linear map Rm ⊕ Ck+1,a(N) → Ck,a(Λ∗T ∗X).

Now, the derivative of F at (0, 0) is a bounded linear map

F ′(0, 0) : Rm ⊕ Ck+1,a(T ∗X) → Ck,a(Λ∗T ∗X)

and the decomposition (3.29) of Section 3.1.3 allows us to write

Ck+1,a(T ∗X) = H1 ⊕ d∗
g

(
Ck+2,a(Λ2T ∗X)

)
⊕ d
(
Ck+2,a(X)

)
.

We define

X1 := Rm ⊕H1

X2 := d∗
g

(
Ck+2,a(Λ2T ∗X)

)
⊕ d
(
Ck+2,a(X)

)

and pick open subsets V1 ⊆ H1, V2 ⊆ X2 containing 0 such that V1 × V2 ⊆ Uk+1,a. For the purposes
of applying Theorem 2.10, put U1 := D × V1 and U2 := V2 so that we have a restriction

F : U1 × U2 → Ck,a(Λ∗T ∗X). (3.33)

For the rest of Section 3.2 we consider F as the smooth map (3.33).

Proposition 3.14 The smooth map F : U1 × U2 → Ck,a(Λ∗T ∗X) has partial derivative

F ′
2(0, 0) : X2 → Ck,a(Λ∗T ∗X) (3.34)

at (0, 0) in the X2 direction which acts as d∗
g + d.

Proof: Given x ∈ X let evx : Ck,a(Λ∗T ∗X) → Λ∗T ∗
xX denote the bounded linear map which evaluates

sections at x ∈ X. Also if ξ ∈ Ck+1,a(N) define a bounded linear map

multξ : R → Ck+1,a(N)

t 7→ tξ.

The partial derivative we have to calculate is the derivative at 0 of the map T : U2 → Ck,a(Λ∗T ∗X)
defined by

T
(
(♭gJ)ξ

)
= ∗gf∗ξ Im Ω + f∗ξ ω

for all (♭gJ)ξ ∈ U2. Further define T̃ = T ◦ (♭gJ) and then if η = (♭gJ)ξ ∈ X2 we have

(T ′(0)η)x =
(
T̃ ′(0)ξ

)
x

=
(
evx ◦ T̃ ′(0)

)
ξ

=
(
evx ◦ T̃

)′
(0)ξ

=
(
evx ◦ T̃

)′
(0)multξ(1)

=
(
evx ◦ T̃ ◦ multξ

)′
(0)(1)

where we use the Chain Rule 2.5. It follows that

(
T ′(0)η

)
x

=
∂

∂t

((
∗gf∗tξ ImΩ

)
x

+
(
f∗tξω

)
x

)∣∣∣∣
t=0

(3.35)

= ∗g
∂

∂t

(
(f∗tξ Im Ω)x

)∣∣∣∣
t=0

+
∂

∂t

(
(f∗tξω)x

)∣∣∣∣
t=0

(3.36)

= −(∗gd ∗g η)x + (dη)x

= (d∗
gη + dη)x
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where the derivatives in equations (3.35) and (3.36) are the pointwise derivatives calculated in Lemma
2.29. The result now follows.

Theorem 3.15 The partial derivative F ′
2(0, 0) : X2 → Ck,a(Λ∗T ∗X) is a topological linear isomor-

phism onto the closed subspace

Y := d∗
g

(
Ck+1,a(T ∗X)

)
⊕ d
(
Ck+1,a(T ∗X)

)
(3.37)

of Ck,a(Λ∗T ∗X).

Proof: Recall from Proposition 3.11 that there is an L2-orthogonal decomposition

Ck+1,a(T ∗X) = H1 ⊕X2. (3.38)

Now, any element η ∈ X2 which lies inside KerF ′
2(0, 0) must, by Proposition 3.14, satisfy d∗

gη =
dη = 0 and therefore lie in H1. It follows from the orthogonality of (3.38) that η = 0 and hence
KerF ′

2(0, 0) = {0}.
From Proposition 3.11 with r = 0 and r = 2 we have that both

d∗
g

(
Ck+1,a(T ∗X)

)
6 Ck,a(X)

d
(
Ck+1,a(T ∗X)

)
6 Ck,a(Λ2T ∗X)

are closed subspaces. Therefore

d∗
g

(
Ck+1,a(T ∗X)

)
⊕ d
(
Ck+1,a(T ∗X)

)
6 Ck,a(X) ⊕ Ck,a(Λ2T ∗X) 6 Ck,a(Λ∗T ∗X)

is a sequence of closed inclusions, and Y is closed in Ck,a(Λ∗T ∗X).

It is obvious that ImF ′
2(0, 0) 6 Y. To see the reverse inclusion, take any θ1, θ2 ∈ Ck+1,a(T ∗X).

Then by Proposition 3.9 we have

d∗
gθ1 + dθ2 ∈ d∗

g

(
Ck+1,a(Λ∗T ∗X)

)
⊕ d
(
Ck+1,a(Λ∗T ∗X)

)
= Im(d∗

g + d)

where we consider d∗
g+d as a map on the whole exterior bundle Ck+1,a(Λ∗T ∗X) as in Section 3.1.3. It

follows that there exists η ∈ Ck+1,a(Λ∗T ∗X) with (d∗
g+d)η = d∗

gθ1 +dθ2. Now write η = η0 + · · ·+ηn
where ηr ∈ Ck+1,a(ΛrT ∗X) for each 0 6 r 6 n. Then it is easy to show that

(d∗
g + d)η1 = d∗

gθ1 + dθ2.

Using the decomposition Ck+1,a(T ∗X) = H1 ⊕X2 to write η1 = h+ η̃1, we deduce that d∗
gθ1 + dθ2 ∈

ImF ′
2(0, 0), and hence ImF ′

2(0, 0) = Y.

We have shown that F ′
2(0, 0) is a continuous linear isomorphism from X2 onto Y. But Y is closed

in Ck,a(Λ∗T ∗X) and so must be a Banach space. We then deduce from the Open Mapping Theorem
2.9 that F ′

2(0, 0) is a topological linear isomorphism from X2 onto Y.

3.2.3 The moduli space of compact special Lagrangians

We have nearly completed our task of fulfilling the requirements of the Implicit Function Theorem
2.10. However in the statement of Theorem 2.10 we require the partial derivative of our mapping F
to be a topological linear isomorphism of Banach spaces. But

F : U1 × U2 → Ck,a(Λ∗T ∗X) (3.39)

has partial derivative F ′
2(0, 0) : X1 ⊕X2 → Ck,a(Λ∗T ∗X) which is not surjective. In fact, by Theorem

3.15 we have
ImF ′

2(0, 0) = d∗
g

(
Ck+1,a(T ∗X)

)
⊕ d
(
Ck+1,a(T ∗X)

)

a proper subspace of Ck,a(Λ∗T ∗X). We must somehow get around this problem.
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Lemma 3.16 If p ∈ D is such that there exists ξ ∈ Ũk+1,a with fξ : X →M special Lagrangian with
respect to

(
J(p), g(p),Ω(p)

)
then [f∗ω(p)] = 0 in H2(X) and [f∗ ImΩ(p)] = 0 in Hn(X).

Proof: Firstly note that ξ ∈ Ũ∞. This follows from the regularity of special Lagrangian submanifolds
as described in Section 2.3.2. Then the smooth mappings f, fξ : X →M are homotopic, in the sense
of Bott and Tu [8]. The homotopy H : R ×X →M can be given as

H(t, x) = fχ(t)ξ(x)

where χ ∈ C∞(R) is non-negative with supp(χ) ⊆ (0,∞) and supp(1 − χ) ⊆ (−∞, 1). From the
material of [8] it follows that

[f∗ω(p)] = [f∗ξ ω(p)] = 0

in H2(X). Similarly [f∗ Im Ω(p)] = 0 in Hn(X) and we are done.

As in the proof of Proposition 2.20, we can use the variations theory of Section 2.2.2 and see
explicitly that

f∗ξ ω(p) − f∗ω(p) = d

(∫ 1

0

f∗sξ
(
ι(ξs)ω(p)

)
ds

)
.

We are interested in the (p, ξ) ∈ D × Ũk+1,a such that fξ : X → M is special Lagrangian with
respect to

(
J(p), g(p),Ω(p)

)
. Lemma 3.16 gives us necessary conditions on p ∈ D for this to hold. In

order to prove a kind of converse result to Lemma 3.16 we make the following assumption about our
deformation of Calabi-Yau structures (Ĵ , ĝ, Ω̂).

Assumption 3.17 For each p ∈ D we have

[f∗ω(p)] = 0 (3.40)

in H2(X) and
[f∗ ImΩ(p)] = 0 (3.41)

in Hn(X).

Note that condition (3.41) can always be arranged by rotating the holomorphic volume form Ω(p)
by some S1-valued function of p. An interesting point to consider is whether or not the conditions
(3.40) and (3.41) cut out a subset D′ ⊆ D which is a submanifold in a neighbourhood of 0. For the
rest of Section 3.2 we shall assume that Assumption 3.17 holds.

Proposition 3.18 The mapping F̃ : D × Ũk+1,a → Ck,a(Λ∗T ∗X) has image

Im F̃ ⊆ d∗
g

(
Ck+1,a(T ∗X)

)
⊕ d
(
Ck+1,a(T ∗X)

)
.

Proof: Given (p, ξ) ∈ D × Ũk+1,a we have that

F̃ (p, ξ) = ∗gf∗ξ Im Ω(p) + f∗ξ ω(p).

Now, there exists an ε > 0 such that the map ftξ : X → M defines a submanifold of M for each
−ε < t < 1+ε. These maps will have class Ck+1,a coefficients. Define the mapH : (−ε, 1+ε)×X →M
by

H(t, x) = ftξ(x)

for all t ∈ (−ε, 1 + ε) and x ∈ X. Also for 0 6 t 6 1 define Xt := {t} ×X ∼= X and the vector field
ξt ∈ Ck,a(f∗tξTM) by

ξtx := dH(t,x)

(
∂

∂t

)

for all x ∈ X. We then extend ξt to any neighbourhood of ftξ(X) in M .
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If θ is any closed form on M and 0 6 s 6 1 then as in Section 2.2.2 and the proof of Proposition
2.20, we may compute

∂

∂t

(
f∗tξθ

)∣∣∣∣
t=s

= L ∂
∂t

(
H∗θ

)∣∣∣
Xs

= f∗sξ
(
ι(ξs)dθ + d(ι(ξs)θ)

)

= f∗sξ
(
d(ι(ξs)θ)

)

= d
(
f∗sξ(ι(ξ

s)θ)
)

and then

f∗ξ θ − f∗θ = f∗ξ θ − f∗0 θ

=

∫ 1

0

∂

∂t

(
f∗tξθ

)∣∣∣∣
t=s

ds

=

∫ 1

0

d
(
f∗sξ(ι(ξ

s)θ)
)
ds

= d

(∫ 1

0

f∗sξ
(
ι(ξs)θ

)
ds

)
. (3.42)

Now Assumption 3.17 implies that f∗ω(p) = dφ1 for some φ1 ∈ C∞(T ∗X), so that equation (3.42)
applied with θ = ω(p) yields f∗ξ ω(p) = dφ2 where

φ2 := φ1 +

∫ 1

0

f∗sξ
(
ι(ξs)ω(p)

)
ds

is a 1-form with coefficients of class Ck,a. Unfortunately this is one less derivative than we need, but
we can get around this problem using Lemma 3.12, which implies that there exists φ3 ∈ Ck+1,a(T ∗X)
with f∗ξ ω(p) = dφ3. Similarly, there exists φ4 ∈ Ck+1,a(T ∗X) with ∗gf∗ξ Im Ω(p) = d∗

gφ4. Hence

F̃ (p, ξ) ∈ d∗
g

(
Ck+1,a(T ∗X)

)
⊕ d
(
Ck+1,a(T ∗X)

)

as required.

The following result is a prelude to our main theorem.

Proposition 3.19 There exist open subsets W ⊆ D, W1 ⊆ V1, W2 ⊆ V2 each containing 0, and a
unique map χ : W ×W1 → W2 such that

F−1(0) ∩
(
W ×W1 ×W2

)
=
{(
p, ξ1, χ(p, ξ1)

)
: (p, ξ1) ∈W ×W1

}
(3.43)

in W ×W1 ×W2. Moreover the map χ is smooth.

Proof: By Proposition 3.18 we can consider F as a smooth map U1 × U2 → Y, and then Theorem
3.15 tells us that this map has a partial derivative

F ′
2(0, 0) : X2 → Y

which is a topological linear isomorphism. Now invoking the Implicit Function Theorem 2.10 we see
that there exist open subsets W1 ⊆ U1, W2 ⊆ U2 containing 0 and a unique map χ : W1 → W2 such
that

F−1(0) ∩ (W1 ×W2) =
{(
w1, χ(w1)

)
: w1 ∈ W1

}
.

Moreover χ is smooth.
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Recall now that U1 = D×V1 ⊆ Rm⊕H1 so that we may choose open subsets W ⊆ D and W1 ⊆ V1

containing 0 such that W ×W1 ⊆ W1 and then consider χ as a map defined on W ×W1 to give us the
required result: an inspection of the proof of Theorem 2.10 shows that equation (3.43) characterises
χ uniquely as a function χ : W ×W1 → W2.

One can think of Proposition 3.19 as saying that in the cube W ×W1 ×W2 the zero set F−1(0)
of F is given as the graph of a uniquely determined function χ : W × W1 → W2 that is smooth.
An important point is that W is an open subset of the finite-dimensional space Rm and W1 is a
subset of the finite-dimensional space H1. The open set W ⊆ Rm corresponds to deformations of the
Calabi-Yau structure on M and the open set W1 ⊆ H1 corresponds to deformations of the compact
special Lagrangian submanifold f : X →M .

It follows from Proposition 3.19 that there is a bijection

W ×W1 → F−1(0) ∩
(
W ×W1 ×W2

)
(3.44)

(p, ξ1) 7→
(
p, ξ1, χ(p, ξ1)

)

and we can put the structure of a smooth manifold onto

M := F−1(0) ∩
(
W ×W1 ×W2

)
(3.45)

by declaring that the map (3.44) be a chart in the maximal smooth atlas for M.

Lemma 3.20 1. The manifold M is diffeomorphic to the open subset W ×W1 ⊆ Rm ⊕ H1 and
consequently dimM = m+ b1(X).

2. With the smooth structure on M defined above, the inclusion

i : M →W ×W1 ×W2 (3.46)

is a smooth injective map that is an immersion, and a homeomorphism onto its image. In other
words, the inclusion (3.46) is a smooth submanifold of W ×W1 ×W2.

Of course, here we are extending the notions of immersion and submanifold to the Banach space
situation, in the obvious manner.

Proof: The first part is obvious. For the second part, it is obvious that i is a smooth (as χ is
smooth) injective immersion. Now if G ⊆ W ×W1 is open, the subset G ×W2 is an open subset of
W ×W1 × W2. Consequently M ∩

(
G × W2

)
is open with respect to the subspace topology on M

and i is a homeomorphism onto its image.

Most of the above results are summarised in the following theorem, whose proof is straightforward
given the above discussion.

Theorem 3.21 Let (M,J, g,Ω) be a Calabi-Yau manifold and (Ĵ , ĝ, Ω̂) a deformation of Calabi-Yau
structures of (J, g,Ω), with common parameter space the open subset D ⊆ Rm containing 0. Suppose
that f : X → M is a compact submanifold which is special Lagrangian with respect to (J, g,Ω), and
that (Ĵ , ĝ, Ω̂) satisfies Assumption 3.17. Let N → X be the normal bundle of f : X →M and identify
N ∼= T ∗X via the bundle isomorphism ♭gJ . If k > 2 then there exist open subsets

W ⊆ D

W1 ⊆ H1 =
{
ξ ∈ Ck+1,a(T ∗X) : ∆gξ = 0

}

W2 ⊆ d∗
g

(
Ck+2,a(T ∗X)

)
⊕ d
(
Ck+2,a(T ∗X)

)

all containing 0 and a smooth map χ : W ×W1 → W2 with χ(0) = 0 such that the following holds:
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1. Every

ξ = (ξ1, ξ2) ∈ W1 ×W2

⊆ H1 ⊕ d∗
g

(
Ck+2,a(T ∗X)

)
⊕ d
(
Ck+2,a(T ∗X)

)

= Ck+1,a(T ∗X)
∼= Ck+1,a(N)

gives rise to a submanifold fξ : X →M of class Ck+1,a.

2. For all ξ = (ξ1, ξ2) ∈W1 ×W2 and p ∈W we have

[
fξ : X →M is special Lagrangian wrt

(
J(p), g(p),Ω(p)

)]
⇐⇒

[
ξ2 = χ(p, ξ1)

]

and consequently χ(W ×W1) ⊆ d∗
g

(
C∞(T ∗X)

)
⊕ d
(
C∞(T ∗X)

)
.

3.

M :=
{

(p, ξ) = (p, ξ1, ξ2) ∈W ×W1 ×W2 :

fξ : X →M is special Lagrangian wrt
(
J(p), g(p),Ω(p)

)}

is a smooth manifold with dimension dimM = m+ b1(X). Moreover,

W ×W1 → M
(p, ξ1) 7→

(
p, ξ1, χ(p, ξ1)

)

is a diffeomorphism, and the inclusion M →W ×W1 ×W2 is a smooth submanifold.

4. Given p ∈W

Mp :=
{
ξ = (ξ1, ξ2) ∈W1 ×W2 : fξ : X →M is special Lagrangian wrt

(
J(p), g(p),Ω(p)

)}

is a smooth manifold with dimension dimMp = b1(X). Moreover,

W1 → Mp

ξ1 7→
(
ξ1, χ(p, ξ1)

)

is a diffeomorphism, and the inclusion Mp → M is a smooth submanifold.

5. Given ξ1 ∈W1

Mξ1 :=
{

(p, ξ2) ∈W ×W2 : fξ1+ξ2 : X →M is special Lagrangian wrt
(
J(p), g(p),Ω(p)

)}

is a smooth manifold with dimension dimMξ1 = m. Moreover,

W → Mξ1

p 7→
(
ξ1, χ(p, ξ1)

)

is a diffeomorphism, and the inclusion Mξ1 → M is a smooth submanifold.



Chapter 4

Fredholm theory on non-compact

manifolds

In this chapter we give a description of the analytic theory we shall be needing later. The relevant
sources are the papers of Bartnik [6], Lockhart [45], and Lockhart and McOwen [46]. We begin by
explaining some of the theory from these papers, and in later chapters go on to say how this theory
can be applied in our situation.

The chapter is roughly split into three parts, which correspond to three different types of opera-
tors we shall consider on our non-compact manifold: translation invariant operators, asymptotically
translation invariant operators, and asymptotically conical operators. Although the results in each
section are closely related, the techniques required in the proofs are not, and so we give a separate
exposition for each.

4.1 Manifolds with ends

We begin by describing the type of non-compact manifolds we shall consider. Throughout this chapter,
suppose that X is a non-compact manifold of dimension n > 3 and that Σ is a compact manifold of
dimension n− 1 with L connected components

Σ = Σ1 ∪ · · · ∪ ΣL.

Also suppose that there exists a compact submanifold with boundary X0 ⊆ X and a diffeomorphism

X \X0 → (T,∞) × Σ (4.1)

for some T ∈ R. We shall say that X is a manifold with ends. The sort of thing we have in mind, at
least topologically, is indicated in Figure 4.1. We shall always consider X∞ := X \X0 and (T,∞)×Σ
as being identified via the diffeomorphism (4.1). The canonical coordinate on (T,∞) will be denoted
by t and we denote a typical coordinate on Σ by σ = (x2, . . . , xn). Also π : X∞ → Σ is the projection
onto the link of the cylindrical part of X, got from the identification (4.1). If S > 0 we put

XS := X0 ∪
(
(T, T + S] × Σ

)

which is a compact submanifold of X with boundary. If β = (β1, . . . , βL) ∈ RL then expressions such
as βt refer to smooth functions X → R which are equal to βjt on the jth end (T,∞) × Σj of X.

We now describe the special types of coordinate charts on X we shall need in order to define
Banach spaces of sections of bundles over X. Although there are coordinate independent methods for
defining such spaces with a metric, with coordinate charts one obtains a very explicit description of
the Banach spaces involved, with which one can prove easily results via the standard local results of
PDE theory. Fix any covering U1, . . . , UN of Σ by coordinate charts and put Vν := (T,∞) × Uν for

51
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Figure 4.1: A portion of a manifold X with ends, divided into a compact piece X0 and a non-compact
piece X \X0

each ν = 1, . . . , N . Then V1, . . . , VN is an open cover of X∞ consisting of coordinate charts. Fix any
open covering VN+1, . . . , VN+K of X0 by coordinate charts such that

N+K⋃

ν=N+1

Vν ⊆ X1.

The coordinates on Vν will be denoted x = (x1, . . . , xn). In particular, if 1 6 ν 6 N we put x1 = t
and (x2, . . . , xn) = σ the coordinates on Uν . We also fix a partition of unity ρ1, . . . , ρN+K subordinate
to the open cover V1, . . . , VN+K of X, chosen so that ρν is translation invariant on (T + 1,∞) × Uν
for each 1 6 ν 6 N . In other words,

ρν(s, σ) = ρν(t, σ)

for all 1 6 ν 6 N , s, t > T + 1 and σ ∈ Uν .

We now describe the vector bundles E → X we shall consider to build the Banach spaces mentioned
above. The main requirement is the existence of suitable trivialisations for E over the infinite piece
X∞ of X, and this is certainly no significant restriction for our purposes. Let EΣ → Σ be a vector
bundle which is trivial over each Uν . Then we have induced trivialisations for the vector bundle
π∗EΣ → X∞ over V1, . . . , VN . Suppose that E → X is a vector bundle, trivialised over each Vν so
that E|X∞

= π∗EΣ on X \XS for some large S > 0. We shall call such a bundle E over X admissible,
and the vector bundle EΣ → Σ the slice of E over Σ. Actually, the terminology is a bit misleading,
because being admissible is really a property of the vector bundle E → X together with an additional
piece of data, namely the charts for E|X∞

as described above. However, we shall abuse terminology
and simply refer to the bundle E → X itself as being admissible.

Obviously we can direct sum, exterior product or tensor product admissible bundles to obtain
new admissible bundles. If ξ is a section of an admissible bundle E we denote by ξν1 , . . . , ξ

ν
rankE the

components of ξ in the given trivialisation of E over Vν .

Suppose that E is an admissible vector bundle over X, with slice EΣ. We shall say that a fibre

metric 〈̃ | 〉E on E is translation invariant if there is a fibre metric 〈 | 〉EΣ
on the vector bundle EΣ

such that
π∗〈 | 〉EΣ

= 〈̃ | 〉E
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over X \ XS for some large S > 0. We shall say that a fibre metric 〈 | 〉E on E is asymptotically

translation invariant if there is a translation invariant fibre metric 〈̃ | 〉E on E such that

sup
{t}×Uν

∣∣ρν∂λ
(
eij − ẽij

)∣∣ = o(1) (4.2)

for each 1 6 ν 6 N , 1 6 i, j 6 rankE and |λ| > 0. Here the eij and ẽij are the components of 〈 | 〉E
and 〈̃ | 〉E respectively in the given trivialisations of E and X over each Vν = (T,∞) × Uν .

Examples of admissible bundles are:

1. The tensor bundles
E :=

(
⊗rT ∗X

)
⊗
(
⊗sTX

)
(4.3)

which have slices
⊕

i=r,r−1 j=s,s−1

(
⊗iT ∗Σ

)
⊗
(
⊗jTΣ

)
.

2. The exterior bundles
E := ΛrT ∗X (4.4)

which have slices ΛrT ∗Σ ⊕ Λr−1T ∗Σ.

3. The total exterior bundle
E := Λ∗T ∗X (4.5)

which has slice Λ∗T ∗Σ ⊕ Λ∗T ∗Σ.

To see why the slices are as given, take for example the case E = Λ∗T ∗X. Then given x ∈ X∞
and any ξ ∈ Λ∗T ∗

xX there are unique ψ, φ ∈ Λ∗T ∗
σΣ such that ξ = ψ + dt ∧ φ where x = (t, σ) in

X∞ = (T,∞) × Σ.

Whenever E is one of the three bundles (4.3), (4.4), (4.5) given above, we define a linear operator
e(s−r)t acting on sections ξ of E as follows. The basic idea is that e(s−r)t scales ξ depending on what
type of tensor or form ξ is. If ξ has r covariant (T ∗X) parts and s contravariant (TX) parts we declare
e(s−r)tξ := fr,sξ where fr,s : X → (0,∞) is a smooth function which over X∞ is equal to the function
e(s−r)t. We now extend the operator e(s−r)t by linearity to act on any section ξ of E. Obviously
e(s−r)t is an invertible operator, and will be a topological linear isomorphism between certain Banach
spaces we shall consider in the sequel.

4.2 Fredholm theory on manifolds with cylindrical ends

In order to consider the Fredholmness of various differential operators on X, we need to introduce
suitable classes of Banach spaces between which such operators can act. It turns out that weighted
versions of the usual Sobolev and Hölder spaces on X are the most appropriate. After defining these
spaces we go on to describe the corresponding differential operators and Fredholm results.

4.2.1 Construction of suitable Banach spaces

Let gΣ be a Riemannian metric on Σ. A metric h̃ on X which is of the form

h̃ = dt2 + gΣ

over X \XS for some large S > 0 is called a cylindrical metric on X. We say that a metric h on X is
asymptotically cylindrical if there exists a cylindrical metric h̃ such that

sup
{t}×Uν

∣∣∣ρν∂λ
(
hij − h̃ij

)∣∣∣ = o(1) (4.6)

for each 1 6 ν 6 N , 1 6 i, j 6 n and |λ| > 0. In coordinate free terms, equation (4.6) is the same as
requiring

sup
{t}×Σ

∣∣∣∇j

h̃
(h− h̃)

∣∣∣
h̃

= o(1)

for each j > 0. Any asymptotically cylindrical metric h on X will be complete. Note also that an
(asymptotically) cylindrical metric induces an (asymptotically) translation invariant fibre metric on
each of the admissible bundles (4.3), (4.4), (4.5).



54 Chapter 4: Fredholm theory on non-compact manifolds

Damped Sobolev spaces

Suppose now we have an asymptotically cylindrical metric h on X. Then we have an induced measure
dVh on the space X. It follows that if u ∈ C∞

c (X) with supp(u) ⊆ Vν we may define

‖u‖Lp(Vν) :=

(∫

Vν

|u|pdVh
) 1

p

(4.7)

the usual Lp-norm of u. Given ξ ∈ C∞
c (E) we define the damped Sobolev norm

‖ξ‖Wp
k,β

(E) :=




rankE∑

j=1

∑

06|λ|6k

(
N∑

ν=1

∥∥e−βtρν
(
∂λξνj

)∥∥p
Lp(Vν)

+

N+K∑

ν=N+1

∥∥ρν
(
∂λξνj

)∥∥p
Lp(Vν)

)


1
p

. (4.8)

Let W p
k,β(E) be the vector space completion of C∞

c (E) with respect to the norm (4.8). We call the

Banach space W p
k,β(E) a damped Sobolev space. Note that each W 2

k,β(E) is a Hilbert space, equipped
with the inner product

〈ξ|η〉W 2
k,β

(E) :=

rankE∑

j=1

∑

06|λ|6k

(
N∑

ν=1

∫

Vν

e−2βtρ2
ν(∂

λξνj )(∂
ληνj )dVh +

N+K∑

ν=N+1

∫

Vν

ρ2
ν(∂

λξνj )(∂
ληνj )dVh

)
.

As a topological vector space W p
k,β(E) is independent of all choices Uj , Vj , ρj , h, h̃, gΣ. Additionally, we

can view elements of W p
k,β(E) as genuine sections of E, whose components in the various trivialisations

Vν are k times weakly differentiable, and satisfy appropriate Lp-decay conditions as one goes to infinity
on X∞.

If E is equipped with an asymptotically translation invariant fibre metric then we have L2(E) =
W 2

0,0(E) where we form the space L2(E) as in Section 2.1.2 using the asymptotically cylindrical metric
h. Furthermore, in the case that E is a tensor bundle (4.3) or an exterior bundle (4.4), (4.5) we have
the Levi-Civita connection ∇h and fibre metric | · |h on E induced by the asymptotically translation
invariant metric h, and the norm (4.8) is equivalent to the norm on C∞

c (E) defined by

‖ξ‖ :=




k∑

j=0

∫

X

∣∣∣e−βt∇j
hξ
∣∣∣
p

h
dVh




1
p

for all ξ ∈ C∞
c (E).

Note that there is a constant C > 0 such that

∣∣〈ξ1|ξ2〉W 2
0,δ

(E)

∣∣ 6 C‖ξ1‖Wp
0,δ+β

(E)‖ξ2‖Wp′

0,δ−β
(E)

for all ξ1, ξ2 ∈ C∞
c (E). It follows that the inner product 〈 | 〉W 2

0,δ
(E) extends to a continuous bilinear

map

〈 | 〉W 2
0,δ

: W p
0,δ+β(E) ×W p′

0,δ−β(E) → R (4.9)

and in fact the pairing (4.9) induces a Banach space isomorphism

Φ : W p
0,δ+β(E) →W p′

0,δ−β(E)∗ (4.10)

defined by Φ(ξ)(η) := 〈ξ|η〉W 2
0,δ

(E) for all ξ ∈ W p
0,δ+β(E) and η ∈ W p′

0,δ−β(E). We now have the

following useful result, which can be proved as in the book [2, Section 3.4] of Adams.

Proposition 4.1 The Banach spaces W p
k,β(E) are reflexive.

The important point in Proposition 4.1 is that p > 1.
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Damped Hölder spaces

Besides the damped Sobolev spaces W p
k,β(E) defined above we shall also introduce a class of Banach

spaces Bk,aβ (E) whose elements are forced to decay at rates O(eβt) (as measured, for example, by the
asymptotically cylindrical metric h when E is a bundle of forms or tensors) on the infinite piece X∞
of X.

Define Bkβ(E) to be the vector space consisting of those ξ ∈ Ck(E) such that

sup
{t}×Uν

∣∣ρν
(
∂λξνj

)∣∣ = O(eβt)

for all 1 6 ν 6 N , 1 6 j 6 rankE and 0 6 |λ| 6 k. Given ξ ∈ Bkβ(E) we define

‖ξ‖Bk
β
(E) :=

rankE∑

j=1

∑

06|λ|6k

(
N∑

ν=1

sup
Vν

∣∣e−βtρν
(
∂λξνj

)∣∣+
N+K∑

ν=N+1

sup
Vν

∣∣ρν
(
∂λξνj

)∣∣
)
. (4.11)

Then the norm (4.11) makes Bkβ(E) into a Banach space, which we call a damped Bk-space.

We also define Bk,aβ (E) to be the vector space consisting of those ξ ∈ Bkβ(E) such that

1.
[
e−βtρν

(
∂λξνj

)]
a,Vν

<∞ for all 1 6 ν 6 N , 1 6 j 6 rankE and |λ| = k

2.
[
ρν
(
∂λξνj

)]
a,Vν

<∞ for all N + 1 6 ν 6 N +K, 1 6 j 6 rankE and |λ| = k

where each [ · ]a,Vν
is defined as in Section 2.2.4. Given ξ ∈ Bk,aβ (E) we now put

‖ξ‖Bk,a
β

(E) := ‖ξ‖Bk
β
(E) +

rankE∑

j=1

∑

|λ|=k

(
N∑

ν=1

[
e−βtρν

(
∂λξνj

)]
a,Vν

+
N+K∑

ν=N+1

[
ρν
(
∂λξνj

)]
a,Vν

)
. (4.12)

Then the norm (4.12) makes Bk,aβ (E) into a Banach space, which we call a damped Hölder space. Note

that as topological vector spaces both Bkβ(E) and Bk,aβ (E) are independent of all choices of Uν , Vν , ρν .

In the case that E is one of the bundles (4.3), (4.4), (4.5), we may give an equivalent description
of the norms (4.11) and (4.12) in terms of the connection ∇h and fibre metric | · |h on E got from
the asymptotically cylindrical metric h. Firstly, it is not hard to show that Bkβ(E) consists of those

ξ ∈ Ck(E) such that

sup
{t}×Σ

∣∣∣∇j
hξ
∣∣∣
h

= O(eβt)

for all 0 6 j 6 k. Furthermore the norm (4.11) is equivalent to the norm on Bkβ(E) given by

‖ξ‖ :=

k∑

j=0

sup
X

∣∣∣e−βt∇j
hξ
∣∣∣
h

for all ξ ∈ Bkβ(E).

We secondly deal with the Hölder norm (4.12). For this it turns out that

Bk,aβ (E) =
{
ξ ∈ Bkβ(E) :

[
e−βt∇k

hξ
]h
a,X

<∞
}

(4.13)

and the norm (4.12) is equivalent to the norm on Bk,aβ (E) given by

‖ξ‖ :=




k∑

j=0

sup
X

∣∣∣e−βt∇j
hξ
∣∣∣
h


+

[
e−βt∇k

hξ
]h
a,X

. (4.14)

In equation (4.13) and equation (4.14) we make sense of the quantity
[
e−βt∇k

hξ
]h
a,X

as in the discussion

of Section 3.1.1.
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Embedding and Compactness Theorems

We now state some embedding and compactness theorems for the spaces introduced above.

Theorem 4.2 (Damped Embedding Theorems) Refer to Section 2.1.1 for the definition of a
continuous embedding between Banach spaces.

1. If k > l > 0 and k − n
p > l − n

q and one of the following two conditions holds:

(a) p 6 q and β 6 δ

(b) p > q and β < δ

then there is a continuous embedding W p
k,β(E) 6 W q

l,δ(E).

2. If β 6 δ and k+a > l+b then there are continuous embeddings Bk+1
β (E) 6 Bk,aβ (E) 6 Bl,bδ (E) 6

Blδ(E) and Bkβ(E) 6 Blδ(E).

3. If β < δ and k− n
p > l+a then there are continuous embeddings W p

k,β(E) 6 Bl,aβ (E) 6 W q
l,δ(E).

Part 1 of Theorem 4.2 is proved in the paper [46, Lemma 7.2] of Lockhart and McOwen, part 2 is
proved in the paper [13, Lemma 2] of Chaljub-Simon and Choquet-Bruhat, and part 3 is proved in
the paper [6, Theorem 1.2] of Bartnik. A consequence of Theorem 4.2 is that

W p
∞,β(E) :=

∞⋂

k=0

W p
k,β(E)

B∞
β (E) :=

∞⋂

k=0

Bk,aβ (E)

are both subspaces of C∞(E) with the latter independent of a and

W p
∞,β(E) 6 B∞

β (E) 6 W q
∞,δ(E)

for all β < δ.

We also have results which tell us when the embeddings of Theorem 4.2 are compact.

Theorem 4.3 (Damped Compactness Theorems) Refer to Section 2.1.1 for the definition of a
compact embedding between Banach spaces.

1. The embedding W p
k,β(E) 6 W q

l,δ(E) is compact whenever k > l > 0, k − n
p > l − n

q and β < δ.

2. The embedding Bk,aβ (E) 6 Bkδ (E) is compact whenever β < δ.

Part 1 of Theorem 4.3 is proved in the paper [45, Theorem 4.9] of Lockhart and part 2 is proved in
the paper [13, Lemma 3] of Chaljub-Simon and Choquet-Bruhat.

4.2.2 Translation invariant operators

Suppose that F → X is a second admissible vector bundle over X, with slice FΣ → Σ over Σ. Let
P∞ : C∞

c (E) → C∞
c (F ) be a smooth, linear differential operator of order l > 1. Over each Vν the

operator P∞ acts as a rankF × rankE matrix of operators of the form:

(P∞|Xν
)ij =

∑

06|λ|6l
(P∞)νλij ∂

λ (4.15)
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where each (P∞)νλij : Vν → R is smooth. We shall say that P∞ is translation invariant if for each

1 6 ν 6 N the functions (P∞)νλij got above are translation invariant on (T + S,∞) × Uν for some
large S > 0. In this case we may write

P∞|X\XS
=

l∑

j=0

∂l−j1 Aj (4.16)

where each Aj : C∞(EΣ) → C∞(FΣ) is a smooth, linear differential operator of order 6 j and ∂1 = ∂
∂t .

Whenever we write P ∗
∞ to denote the formal adjoint of a translation invariant differential oper-

ator P∞, we always mean with respect to some translation invariant fibre metrics on E,F and the
cylindrical metric h̃ on X. Having said this, we now give the following basic result:

Lemma 4.4 1. The set of translation invariant differential operators is a subalgebra of the algebra
of all differential operators.

2. For any β ∈ RL and translation invariant differential operator P∞ the differential operator
e−βtP∞eβt is also translation invariant.

3. If P∞ : C∞
c (E) → C∞

c (F ) is a translation invariant differential operator then the formal adjoint
P ∗
∞ : C∞

c (F ) → C∞
c (E) is also translation invariant.

Proof: Although this result is entirely straightforward, we give a few details as some of the formulae
we obtain will be useful later.

The first assertion is quickly verified in local coordinates. For the second assertion, note that if
P∞ is as given in equation (4.16) and β = (β1, . . . , βL) then

e−βtP∞e
βt =

l∑

j=0

(∂1 + βi)
l−j

Aj (4.17)

on the ith end of X. For the third assertion, it is straightforward to check that there is a large S > 0
such that over X \XS the operator P ∗

∞ acts as

P ∗
∞ =

l∑

j=0

(−∂1)
l−jA∗

j

where the formal adjoint of each Aj is computed using the metric gΣ on Σ and the given fibre metrics
on EΣ and FΣ.

Examples of translation invariant operators include the exterior derivative d, its formal adjoint d∗
h̃

and the Laplacian ∆h̃ of any cylindrical metric h̃ on X.

Translation invariant differential operators always extend to bounded linear maps on the Banach
spaces defined above.

Proposition 4.5 Let P∞ : C∞
c (E) → C∞

c (F ) be a translation invariant differential operator of order
l > 1. Then P∞ extends to bounded linear maps

P∞ : W p
k+l,β(E) → W p

k,β(F ) (4.18)

P∞ : Bk+l,aβ (E) → Bk,aβ (F ) (4.19)

Proof: This is straightforward estimation using the given definitions.
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Using Lemma 4.4 and Proposition 4.5 it is easy to show that if P∞ : C∞
c (E) → C∞

c (F ) is a
translation invariant differential operator then the defining identity (2.7) of the formal adjoint P ∗

∞ of
P∞ extends to an identity 〈

ξ
∣∣P ∗

∞η
〉
L2(E)

=
〈
P∞ξ

∣∣η
〉
L2(F )

valid for all ξ ∈W p
l,β(E) and η ∈W p′

l,−β(F ).

We shall denote the kernel of the map (4.18) by Ker(P∞)pk+l,β 6 W p
k+l,β(E), the image of (4.18)

by Im(P∞)pk+l,β 6 W p
k,β(F ) and the cokernel by Coker(P∞)pk+l,β . We also define the index of (4.18)

to be
Ind(P∞)pk+l,β := dim Ker(P∞)pk+l,β − dim Coker(P∞)pk+l,β

whenever this is finite. Similarly the kernel, image, cokernel, index of the map (4.19) are denoted

Ker(P∞)k+l,aβ , Im(P∞)k+l,aβ , Coker(P∞)k+l,aβ , Ind(P∞)k+l,aβ respectively.

Notice the Embedding Theorem 4.2 shows that

Ker(P∞)pk+l,β 6 Ker(P∞)pk+l,δ

Ker(P∞)k+l,aβ 6 Ker(P∞)k+l,aδ

whenever β 6 δ. Also from Theorem 4.2 we have

Ker(P∞)pm+l,β 6 Ker(P∞)k+l,aβ 6 Ker(P∞)qk+l,δ (4.20)

whenever β < δ and m− n
p > k + a.

The following a priori estimates for translation invariant operators are very useful. The Sobolev
estimates are given in the paper [46, inequality (2.4)] of Lockhart and McOwen, and the Hölder parts
are proved in [48, Theorem 3.16].

Theorem 4.6 Suppose that P∞ : C∞
c (E) → C∞

c (F ) is an elliptic, translation invariant differential
operator of order l > 1. Suppose that η ∈ L1

loc(F ) and that ξ ∈ L1
loc(E) is a weak solution of the

equation Pξ = η.

1. If ξ ∈W p
0,β(E) and η ∈W p

k,β(F ) then ξ ∈W p
k+l,β(E) with P∞ξ = η and

‖ξ‖Wp
k+l,β

(E) 6 C1

(
‖P∞ξ‖Wp

k,β
(F ) + ‖ξ‖Wp

0,β
(E)

)

where the constant C1 > 0 is independent of ξ.

2. If ξ ∈ B0
β(E) and η ∈ Bk,aβ (F ) then ξ ∈ Bk+l,aβ (E) with P∞ξ = η and

‖ξ‖Bk+l,a
β

(E) 6 C2

(
‖P∞ξ‖Bk,a

β
(F ) + ‖ξ‖B0

β
(E)

)

where the constant C2 > 0 is independent of ξ.

Results such as Theorem 4.6 rely on some kind of “uniform ellipticity” condition on the operator P∞
as one moves off to infinity on the manifold X. Here this condition is provided by the translation
invariance of P∞ and the usual pointwise ellipticity. As in the estimates Theorem 3.4 for the compact
case, the proof of Theorem 4.6 is best thought of as being in two parts. The first part is the local
elliptic regularity and estimates, which follow just as in Theorem 3.4. The second part is then a passage
to the global estimates, which involves piecing all the local estimates together in a straightforward
manner. The asymptotic behaviour of P∞ ensures the local estimates are kept under control as one
goes off to infinity on X∞.

It follows from Theorem 4.6 that when P∞ is elliptic we have

Ker(P∞)pk+l,β 6 W p
∞,β(E)

Ker(P∞)k+l,aβ 6 B∞
β (E).
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In particular, when P∞ is elliptic we have Ker(P∞)pk+l,β independent of k and Ker(P∞)k+l,aβ indepen-
dent of k and a. Therefore, when P∞ is elliptic we shall write

Ker(P∞)pβ := Ker(P∞)pk+l,β

Ker(P∞)β := Ker(P∞)k+l,aβ .

With this notation, equation (4.20) becomes

Ker(P∞)pβ 6 Ker(P∞)β 6 Ker(P∞)qδ (4.21)

valid for all β < δ whenever P∞ is elliptic.

One of the key questions for us is now: when is the map (4.18) Fredholm? The following theorem,
proved in [46, Theorem 1.1], provides the answer.

Theorem 4.7 Suppose that P∞ : C∞
c (E) → C∞

c (F ) is an elliptic, translation invariant differential
operator. Then there exists a subset D(P∞) ⊆ RL, independent of p, k, such that (4.18) is Fredholm
if and only if β ∈ RL \ D(P∞). Moreover, the subset D(P∞) is of the form

D(P∞) =
(
D(P∞, 1) × RL−1

)
∪
(
R ×D(P∞, 2) × RL−2

)
∪ · · · ∪

(
RL−1 ×D(P∞, L)

)

where each D(P∞, i) ⊆ R is countable and discrete.

In the situation of Theorem 4.7, if β ∈ RL\D(P∞) we denote the connected component of RL\D(P∞)
containing β by

(
RL \ D(P∞)

)
β
. Obviously, one would like to know as much as possible about the

subsets D(P∞, i) ⊆ R. We now give some brief details: a fuller account can again be found in [46].

The idea is to formally substitute w ∈ C for the differential operator ∂1 in the expression (4.16)
for P∞, as a Fourier transform in the t coordinate. Take 1 6 i 6 L and put EΣi

:= EΣ|Σi
and

FΣi
:= FΣ|Σi

. For each w ∈ C we have a smooth, linear differential operator

P∞(w) :=

l∑

j=0

wl−jAj (4.22)

where P∞(w) : C∞(EΣi
⊗ C) → C∞(FΣi

⊗ C) and this extends to a bounded linear map

P∞(w) : W p
k+l(EΣi

⊗ C) →W p
k (FΣi

⊗ C). (4.23)

Note that since P∞ is elliptic we have that Al is an elliptic differential operator of order l. Therefore
P∞(w) is an elliptic differential operator of order l for each w ∈ C. Using this fact and the analyticity
of the map

C → B
(
W p
k+l(EΣi

⊗ C),W p
k (FΣi

⊗ C)
)

(4.24)

w 7→ P∞(w)

one can show that (4.23) is an isomorphism if and only if w ∈ C \ C(P∞, i), where C(P∞, i) ⊆ C is
discrete, countable, and finite in any complex strip {w ∈ C : ε1 < Rew < ε2}: these results are all
proved in the paper [3, Theorem 5.4] of Agmon and Nirenberg. A map of the form (4.24) is called
an operator pencil , which is a much studied object in the theory of PDEs. In fact there is much to
be said about the form of the subset C(P∞, i): see the books [40] and [41] of Kozlov, Maz’ya and
Rossmann for example. However, we shall not go into this here, but instead merely state that the
subsets D(P∞, i) of Theorem 4.7 are given by

D(P∞, i) =
{
Rew : w ∈ C(P∞, i)

}
.

It follows from the proof of Lemma 4.4 that if β = (β1, . . . , βL) ∈ RL then

(e−βtP∞e
βt)(w) =

l∑

j=0

(w + βi)
l−jAj
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so that D(e−βtP∞eβt, i) = D(P∞, i) − βi for each 1 6 i 6 L. Therefore

D(e−βtP∞e
βt) = D(P∞) − β.

We also have from the proof of Lemma 4.4 that

P ∗
∞(w) =

l∑

j=0

(−w)l−jA∗
j

=
(
P∞(−w)

)∗

where the formal adjoint of each P∞(−w) is computed using the metric gΣ on Σ and the induced
hermitian fibre metrics on EΣ ⊗ C and FΣ ⊗ C. It follows that D(P ∗

∞) = −D(P∞).

The next result is a useful corollary of Theorem 4.7.

Corollary 4.8 Suppose that P∞ : C∞
c (E) → C∞

c (F ) is an elliptic, translation invariant differential
operator. Then both

Ker(P∞)pβ 6 W p
k+l,β(E)

Ker(P∞)β 6 Bk+l,aβ (E)

are finite-dimensional.

Proof: Given any β ∈ RL choose δ ∈ RL \ D(P∞) with β < δ, and then appeal to Theorem 4.7 and
the inclusion (4.20).

We now turn to the Fredholm index of the map (4.18). Given 1 6 i 6 L consider the operator
P∞ over (T,∞) × Σi. If w ∈ C(P∞, i) let d(i, w) be the dimension of the (complex) vector space of
solutions of P∞ξ = 0 of the form

ξ(t, σ) = ewtp(t, σ)

where p(t, σ) is a polynomial in t ∈ (T,∞) with coefficients in C∞(EΣi
⊗ C). Now given βi, δi ∈

R \ D(P∞, i) with δi 6 βi define

N(βi, δi, i) :=
∑{

d(i, w) : w ∈ C(P∞, i) with δi < Rew < βi
}

and then if β, δ ∈ RL \ D(P∞) with δ 6 β put

N(β, δ) :=

L∑

i=1

N(βi, δi, i).

We are now in a position to state a theorem regarding the index of the map (4.18) for β ∈ RL\D(P∞).

Theorem 4.9 Suppose P∞ : C∞
c (E) → C∞

c (F ) is an elliptic, translation invariant differential oper-
ator. If β, δ ∈ RL \ D(P∞) with δ 6 β then Ind(P∞)pk+l,β − Ind(P∞)pk+l,δ = N(β, δ).

Theorem 4.9 is also proved in the paper [46, Theorem 1.2] of Lockhart and McOwen, but we shall not
give any details of the proof, as they shall not be required by us in the sequel.

4.2.3 Asymptotically translation invariant operators

In this section we shall extend the theory of Section 4.2.2 to perturbations of translation invariant
operators.
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Let P1, P2 : C∞
c (E) → C∞

c (F ) be smooth, linear differential operator of order l > 1. As in equation
(4.15) the operators P1, P2 acts as a rankF × rankE matrix of operators

(P1|Vν
)ij =

∑

06|λ|6l
(P1)

νλ
ij ∂

λ

(P2|Vν
)ij =

∑

06|λ|6l
(P2)

νλ
ij ∂

λ

on the open subsets Vν of X. We shall say that P1 and P2 are asymptotic and write P1 ∼ P2 if

sup
{t}×Uν

∣∣∣ρν∂λ1
(
(P1)

λ2
ν,ij − (P2)

λ2
ν,ij

)∣∣∣ = o(1)

for all 1 6 i 6 rankF , 1 6 j 6 rankE, 1 6 ν 6 N , |λ1| > 0 and 0 6 |λ2| 6 l. We shall say
that a smooth, linear differential operator P is asymptotically translation invariant if there exists a
translation invariant differential operator P∞ such that P ∼ P∞.

Whenever we write P ∗ to denote the formal adjoint of an asymptotically translation invariant
differential operator P , we always mean with respect to some asymptotically translation invariant
fibre metrics on E and F and the asymptotically cylindrical metric h on X. We now have the
analogue of Lemma 4.4.

Lemma 4.10 1. The set of asymptotically translation invariant differential operators is a subal-
gebra of the algebra of all differential operators.

2. For any β ∈ RL and asymptotically translation invariant operator P the differential operator
e−βtPeβt is asymptotically translation invariant.

3. If P : C∞
c (E) → C∞

c (F ) is an asymptotically translation invariant differential operator then the
formal adjoint P ∗ : C∞

c (F ) → C∞
c (E) is asymptotically translation invariant.

Proof: These assertions follows quickly from Lemma 4.4 and calculations in local coordinates: if
P1 ∼ P1,∞ and P2 ∼ P2,∞ then P1P2 ∼ P1,∞P2,∞. For the second assertion note that if P ∼ P∞ then
e−βtPeβt ∼ e−βtP∞eβt. For the third assertion, if P ∼ P∞ then P ∗ ∼ P ∗

∞ where P ∗
∞ is formed using

the translation invariant metric h̃ on X and the translation invariant fibre metrics on E,F which the
asymptotically translation invariant fibre metrics tend towards.

Just as cylindrical metrics h̃ on X gave rise to translation invariant operators d∗
h̃

and ∆h̃, metrics
h on X which are asymptotically cylindrical give rise to asymptotically translation invariant operators
d∗
h and ∆h, where d∗

h ∼ d∗
h̃

and ∆h ∼ ∆h̃.

As above, asymptotically translation invariant operators always extend to bounded linear maps
on the damped Sobolev and Hölder spaces.

Proposition 4.11 Let P : C∞
c (E) → C∞

c (F ) be an asymptotically translation invariant differential
operator of order l > 1. Then P extends to bounded linear maps

P : W p
k+l,β(E) → W p

k,β(F ) (4.25)

P : Bk+l,aβ (E) → Bk,aβ (F ) (4.26)

Proof: This is another straightforward estimation.

It follows from Lemma 4.10 and Proposition 4.11 that if P : C∞
c (E) → C∞

c (F ) is an asymptotically
translation invariant differential operator then the defining identity (2.7) of the formal adjoint P ∗ of
P extends to an identity

〈ξ|P ∗η〉L2(E) = 〈Pξ|η〉L2(F )
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valid for all ξ ∈W p
l,β(E) and η ∈W p′

l,−β(F ).

Again, we establish notation: the kernel, image, cokernel, index of the map (4.25) are denoted
Ker(P )pk+l,β , Im(P )pk+l,β , Coker(P )pk+l,β , Ind(P )pk+l,β respectively. The kernel, image, cokernel, index

of the map (4.26) are denoted Ker(P )k+l,aβ , Im(P )k+l,aβ , Coker(P )k+l,aβ , Ind(P )k+l,aβ respectively. As
before, the Embedding Theorem 4.2 shows that

Ker(P )pk+l,β 6 Ker(P )pk+l,δ

Ker(P )k+l,aβ 6 Ker(P )k+l,aδ

whenever β 6 δ. Also Theorem 4.2 gives

Ker(P )pm+l,β 6 Ker(P )k+l,aβ 6 Ker(P )qk+l,δ (4.27)

whenever β < δ and m− n
p > k + a.

If both P and P∞ are elliptic then we say that the asymptotically translation invariant operator P
is uniformly elliptic. In this case the regularity and Fredholm theory of the map (4.25) is very similar
to that of the map (4.18) given in the theorems above. We now state the corresponding results.

Theorem 4.12 Suppose that P : C∞
c (E) → C∞

c (F ) is a uniformly elliptic, asymptotically translation
invariant differential operator of order l > 1. Suppose that η ∈ L1

loc(F ) and that ξ ∈ L1
loc(E) is a weak

solution of the equation Pξ = η.

1. If ξ ∈W p
0,β(E) and η ∈W p

k,β(F ) then ξ ∈W p
k+l,β(E) with Pξ = η and

‖ξ‖Wp
k+l,β

(E) 6 C1

(
‖Pξ‖Wp

k,β
(F ) + ‖ξ‖Wp

0,β
(E)

)

where the constant C1 > 0 is independent of ξ.

2. If ξ ∈ B0
β(E) and η ∈ Bk,aβ (F ) then ξ ∈ Bk+l,aβ (E) with Pξ = η and

‖ξ‖Bk+l,a
β

(E) 6 C2

(
‖Pξ‖Bk,a

β
(F ) + ‖ξ‖B0

β
(E)

)

where the constant C2 > 0 is independent of ξ.

The estimates of Theorem 4.12 are proved in a manner similar to those if Theorem 4.6. All of the
comments following Theorem 4.6 apply here also. We note that the Hölder estimate of Theorem 4.12
is proved in [48, Theorem 3.16].

As before, Theorem 4.12 implies that when P is uniformly elliptic we have

Ker(P )pk+l,β 6 W p
∞,β(E)

Ker(P )k+l,aβ 6 B∞
β (E)

so that Ker(P )pk+l,β is independent of k and Ker(P )k+l,aβ is independent of k and a. Therefore,
whenever P is uniformly elliptic we shall write

Ker(P )pβ := Ker(P )pk+l,β

Ker(P )β := Ker(P )k+l,aβ .

With this notation, equation (4.27) becomes

Ker(P )pβ 6 Ker(P )β 6 Ker(P )qδ (4.28)

valid for all β < δ whenever P is uniformly elliptic.

The following theorem tells us when a uniformly elliptic asymptotically translation invariant op-
erator is Fredholm.
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Theorem 4.13 Suppose that P is a uniformly elliptic, asymptotically translation invariant operator
with P ∼ P∞ an elliptic, translation invariant differential operator. Then there exists a subset D(P ) ⊆
RL, independent of p, k, such that (4.25) is Fredholm if and only if β ∈ RL \ D(P ). Moreover
D(P ) = D(P∞).

The proof of Theorem 4.13 can again be found in [46, Theorem 6.1]. It follows that if both P and
P∞ are elliptic then the bounded linear map (4.18) is Fredholm precisely when the bounded linear
map (4.25) is Fredholm. In the situation Theorem 4.13, if β ∈ RL \ D(P ) we denote the connected
component of RL \ D(P ) containing β by

(
RL \ D(P )

)
β
.

Note that if P is asymptotically translation invariant with P ∼ P∞ then e−βtPeβt is uniformly
elliptic precisely when P is uniformly elliptic, and in this situation

D(e−βtPeβt) = D(P ) − β.

Also, if P ∗ is the formal adjoint of P as described above then P ∗ is uniformly elliptic precisely when
P is uniformly elliptic and in this situation we have

D(P ∗) = −D(P ).

The following corollary to Theorem 4.13 is very useful.

Corollary 4.14 Suppose that P : C∞
c (E) → C∞

c (F ) is a uniformly elliptic, asymptotically translation
invariant differential operator of order l > 1. Then both

Ker(P )pβ 6 W p
k+l,β(E)

Ker(P )β 6 Bk+l,aβ (E)

are finite-dimensional.

Proof: Given any β ∈ RL choose δ ∈ RL \ D(P ) with β < δ, and then appeal to Theorem 4.13 and
the inclusion (4.27).

The following theorem tells us that as β crosses over the “bad” points D(P ) = D(P∞) the change
in index for P is the same as for P∞. Again, the proof is in the paper [46, Theorem 6.1] of Lockhart
and McOwen.

Theorem 4.15 Suppose that P is a uniformly elliptic, asymptotically translation invariant operator
with P ∼ P∞ an elliptic, translation invariant differential operator. If β, δ ∈ RL \ D(P ) with δ 6 β
then

Ind(P )pk+l,β − Ind(P )pk+l,δ = N(β, δ) (4.29)

where the quantity N(β, δ) is defined at the end of Section 4.2.2.

It follows from Theorem 4.9 and Theorem 4.15 that if β, δ ∈ RL \ D(P ) with δ 6 β then

Ind(P )pk+l,β − Ind(P∞)pk+l,β = Ind(P )pk+l,δ − Ind(P∞)pk+l,δ (4.30)

and hence the Fredholm indices of (4.18) and (4.25) differ only by a constant as β ∈ RL \D(P ) varies.

4.3 Asymptotically conical Riemannian manifolds

In Section 4.2 we considered a rather general Fredholm theory for asymptotically translation invariant
operators acting between vector bundles over X which had some kind of product structure off a
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compact piece XS of X. We shall now apply this theory to the specific situation where E is one of
the admissible bundles

E :=





(
⊗rT ∗X

)
⊗
(
⊗sTX

)

ΛrT ∗X
Λ∗T ∗X

(4.31)

where r, s > 0 are integers. We shall also consider X as having a metric g which is approximately
of conical form on the infinite piece X∞, and consider Fredholm theory for operators ∆r

g and d + d∗
g

derived from the metric g. Correspondingly, we define new Banach spaces on which these operators
act, describe the relationship with the spaces of Section 4.2, and derive the corresponding Fredholm
theory.

Although it may seem a little perverse to define new classes of Banach spaces in this section we
believe that in the end it gives a cleaner exposition. The Fredholm theory of Section 4.2 is best
described in terms of the cylindrical type spaces W p

k,β(E), Bk,aβ (E) and (asymptotically) translation
invariant operators P∞, P . However, for Riemannian manifolds with conical type metrics, introducing
new types of spaces and operators is more appropriate.

4.3.1 Construction of suitable Banach spaces

Let us suppose that the manifold Σ has a Riemannian metric gΣ. The cone metric on X∞ is then
defined to be

g̃ := e2t(dt2 + gΣ).

The reason for this terminology is clear: for after putting r := et we obtain g̃ = dr2 + r2gΣ, which
is the usual cone metric on the manifold (eT ,∞) × Σ. We prefer the t coordinate rather than the
r coordinate because the 1-forms dt and dσj have the same growth rate e−t on X∞ in the conical
metric g̃, whereas dr has unit length over X∞.

We say that a metric g on X is asymptotically conical if there exists a conical metric g̃ on X such
that

sup
{t}×Uν

∣∣ρν∂λ
(
gij − g̃ij

)∣∣ = o(e2t) (4.32)

for each 1 6 ν 6 N , 1 6 i, j 6 n and |λ| > 0. In coordinate free terms, equation (4.32) is the same as
requiring

sup
{t}×Σ

∣∣∇j
g̃(g − g̃)

∣∣
g̃

= o(e−jt)

for each j > 0. An asymptotically conical metric on X will always be complete.

Conical damped Sobolev spaces

Let us suppose that X is endowed with some asymptotically conical metric g, asymptotic to the
conical metric g̃ on X. It is easy to show that h := e−2tg is asymptotically cylindrical, asymptotic to
the cylindrical metric h̃ := e−2tg̃. Therefore the Lp-norm (4.7) becomes

‖u‖Lp(Vν) =

(∫

Vν

|u|pe−ntdVg
) 1

p

(4.33)

for all 1 6 ν 6 N and u ∈ C∞
c (X) with supp(u) ⊆ Vν . Suppose now that E is one of the bundles

(4.31). As in Section 4.2.1 we can use the Lp-norm (4.33) to construct the Banach space W p
k,β(E),

which has a norm ‖ · ‖Wp
k,β

(E). Given ξ ∈ C∞
c (E) we now define

‖ξ‖Lp
k,β

(E) := ‖e(s−r)tξ‖Wp
k,β

(E) (4.34)

and let Lpk,β(E) be the vector space completion of C∞
c (E) with respect to the norm (4.34). We shall

call Lpk,β(E) a conical damped Sobolev space. Obviously the map e(s−r)t : C∞
c (E) → C∞

c (E) lifts to
an isometric isomorphism

e(s−r)t : Lpk,β(E) →W p
k,β(E). (4.35)



Chapter 4: Fredholm theory on non-compact manifolds 65

The reason we have bothered to introduce a new class of Banach space is the following: the bundle
E comes equipped with a natural connection ∇g and fibre metric | · |g got from the asymptotically
conical metric g on X. Therefore we have a second norm on the vector space C∞

c (E) given by

‖ξ‖ :=




k∑

j=0

∫

X

∣∣e(j−β)t∇j
gξ
∣∣p
g
e−ntdVg




1
p

. (4.36)

The norms (4.34) and (4.36) on C∞
c (E) are equivalent: this is because we have included the correction

factor e(s−r)t into the W p
k,β(E) norm (4.8).

Each L2
k,β(E) is a Hilbert space, and the norm (4.36) is induced by the inner product

〈ξ1|ξ2〉 :=

k∑

j=0

∫

X

e2(j−β)t
〈
∇j
gξ1
∣∣∇j

gξ2
〉
g
e−ntdVg. (4.37)

Note that L2
0,−n

2
(E) = L2(E) where we use the asymptotically conical metric g to define the space

L2(E) as in Section 2.1.2. Note also that there is a constant C > 0 such that
∣∣〈ξ1|ξ2〉L2

0,δ
(E)

∣∣ 6 C‖ξ1‖Lp
0,δ+β

(E)‖ξ2‖Lp′

0,δ−β
(E)

for all ξ1, ξ2 ∈ C∞
c (E). Therefore

∣∣〈ξ1|ξ2〉L2(E)

∣∣ 6 C‖ξ1‖Lp
0,β

(E)‖ξ2‖Lp′

0,−β−n
(E)

for all ξ1, ξ2 ∈ C∞
c (E). It follows that the L2-inner product defined in Section 2.1.2 extends to a

continuous bilinear map

〈 | 〉L2(E) : Lp0,β(E) × Lp
′

0,−β−n(E) → R (4.38)

and in fact the pairing (4.38) induces a Banach space isomorphism

Φ : Lp0,β(E) → Lp
′

0,−β−n(E)∗ (4.39)

defined by Φ(ξ)(η) := 〈ξ|η〉L2(E) for all ξ ∈ Lp0,β(E) and η ∈ Lp
′

0,−β−n(E). The following useful result
can now be proved as in the book [2, Section 3.4] of Adams.

Proposition 4.16 The Banach spaces Lpk,β(E) are reflexive.

The important point in Proposition 4.16 is that p > 1.

Conical damped Hölder spaces

Besides the damped Sobolev spaces Lpk,β(E) defined above we shall also introduce a class of Banach

spaces Ck,aβ (E) whose elements are forced to decay at rates O(eβt) on the infinite piece X∞ of X,

as measured using the asymptotically conical metric g on X. Recall that the spaces Bk,aβ (E) had a
similar decay property, but instead using the asymptotically cylindrical metric h.

We shall call the Ck,aβ (E) spaces conical damped Hölder spaces. Given what we have already said

about the Bk,aβ (E) spaces, their definition is very straightforward. First of all, declare a section ξ of E

to lie in Ckβ(E) precisely when e(s−r)tξ ∈ Bkβ(E), so as vector spaces we have Ckβ(E) := e(r−s)tBkβ(E).

Now given ξ ∈ Ckβ(E) define the norm

‖ξ‖Ck
β
(E) := ‖e(s−r)tξ‖Bk

β
(E) (4.40)

which makes Ckβ(E) into a Banach space, because Bkβ(E) is a Banach space and

e(s−r)t : Ckβ(E) → Bkβ(E)
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is an isometric isomorphism.

Similarly, as a vector space, we define Ck,aβ (E) := e(r−s)tBk,aβ (E), endowed with the norm

‖ξ‖Ck,a
β

(E) := ‖e(s−r)tξ‖Bk,a
β

(E) (4.41)

which makes Ck,aβ (E) a Banach space too.

In fact, we may give an equivalent description of the norms (4.40) and (4.41) in terms of the
connection ∇g and fibre metric | · |g on E got from the asymptotically conical metric g. Firstly, it is
not hard to show that ξ ∈ Ck(E) lies in Ckβ(E) precisely when

sup
{t}×Σ

∣∣∇j
gξ
∣∣
g

= O(e(β−j)t)

for all 0 6 j 6 k, and that the norm (4.40) is equivalent to the norm on Ckβ(E) given by

‖ξ‖ :=
k∑

j=0

sup
X

∣∣∣e(j−β)t∇j
gξ
∣∣∣
g
.

For the Hölder norm (4.41) it turns out that

Ck,aβ (E) =
{
ξ ∈ Ckβ(E) :

[
e(k+a−β)t∇k

gξ
]g
a,X

<∞
}

and the norm (4.41) is equivalent to the norm on Ck,aβ (E) given by

‖ξ‖ :=




k∑

j=0

sup
X

∣∣∣e(j−β)t∇j
gξ
∣∣∣
g


+

[
e(k+a−β)t∇k

gξ
]g
a,X

. (4.42)

The fact that the spaces Ckβ(E) and Ck,aβ (E) are canonically got from the asymptotically conical metric

g is another reason for introducing them. In (4.42) we make sense of the quantity
[
e(k+a−β)t∇k

gξ
]g
a,X

using the arguments of Section 3.1.1.

To see that the isomorphisms e(s−r)t : Ck,aβ (E) → Bk,aβ (E) do what we expect, consider for

example the case s = 0, r = 1. The 1-form etdt lies inside C0
0 (T ∗X) because dt grows like e−t in the

asymptotically conical metric g and as expected we have e−tetdt = dt ∈ B0
0(T ∗X) because dt grows

like 1 in the asymptotically cylindrical metric h.

Embedding and Compactness Theorems

We now state the Embedding and Compactness Theorems for the spaces Lpk,β(E) and Ck,aβ (E) de-

fined above. They all follow immediately after applying the isometric isomorphism e(s−r)t to the
corresponding theorems of Section 4.2.1.

Theorem 4.17 (Conical Damped Embedding Theorems) Refer to Section 2.1.1 for the defini-
tion of a continuous embedding between Banach spaces.

1. If k > l > 0 and k − n
p > l − n

q and one of the following two conditions holds

(a) p 6 q and β 6 δ

(b) p > q and β < δ

then there is a continuous embedding Lpk,β(E) 6 Lql,δ(E).

2. If β 6 δ and k+a > l+b then there are continuous embeddings Ck+1
β (E) 6 Ck,aβ (E) 6 Cl,bδ (E) 6

Clδ(E) and Ckβ(E) 6 Clδ(E).
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3. If β < δ and k − n
p > l+ a then there are continuous embeddings Lpk,β(E) 6 Cl,aβ (E) 6 Lql,δ(E).

A consequence of Theorem 4.17 is that

Lp∞,β(E) :=

∞⋂

k=0

Lpk,β(E) C∞
β (E) :=

∞⋂

k=0

Ck,aβ (E)

are both subspaces of C∞(E) with the latter independent of a and

Lp∞,β(E) 6 C∞
β (E) 6 Lq∞,δ(E)

for all β < δ.

Theorem 4.18 (Conical Damped Compactness Theorems) Refer to Section 2.1.1 for the def-
inition of a compact embedding between Banach spaces.

1. The embedding Lpk,β(E) 6 Lql,δ(E) is compact whenever k > l > 0 and k− n
p > l− n

q and β < δ.

2. The embedding Ck,aβ (E) 6 Ckδ (E) is compact whenever β < δ.

Note that Theorem 4.17 explains the way we have chosen to define our Lpk,β(E) spaces: the index β
genuinely indicates the rate of growth of a section in terms of the asymptotically conical metric.

4.3.2 Asymptotically conical operators

Suppose now that F is a second vector bundle over X, of the form (4.31). Then we have linear
isomorphisms

e(s−r)t : C∞
c (E) → C∞

c (E)

e(s−r)t : C∞
c (F ) → C∞

c (F ).

We shall say that a smooth, linear differential operator Q : C∞
c (E) → C∞

c (F ) of order l > 1 is an
asymptotically conical operator of rate γ ∈ RL if

P : C∞
c (E)

e(r−s)t

−→ C∞
c (E)

Q−→ C∞
c (F )

e(γ+s−r)t

−→ C∞
c (F ) (4.43)

is an asymptotically translation invariant operator. Whenever we take the formal adjoint Q∗ of an
asymptotically conical operator Q we always mean with respect to the asymptotically conical metric
g, which induces fibre metrics on each of the bundles E,F .

Here are some basic properties of asymptotically conical operators:

Lemma 4.19 1. The set of asymptotically conical operators is a subalgebra of the algebra of all
differential operators. Moreover, if Q1, Q2 are asymptotically conical operators of rates γ1, γ2 ∈
RL then Q1Q2 is an asymptotically conical operator of rate γ1 + γ2.

2. For any β ∈ RL and asymptotically conical operator Q of rate γ the differential operator e−βtQeβt

is an asymptotically conical operator of rate γ.

3. If Q : C∞
c (E) → C∞

c (F ) is an asymptotically conical differential operator of rate γ ∈ RL then
the formal adjoint Q∗ : C∞

c (F ) → C∞
c (E) is asymptotically conical of rate γ.

Proof: For the first assertion, suppose that we have asymptotically translation invariant operators

P1 : C∞
c (E)

e(r−s)t

−→ C∞
c (E)

Q1−→ C∞
c (F )

e(γ1+s−r)t

−→ C∞
c (F )

P2 : C∞
c (F )

e(r−s)t

−→ C∞
c (F )

Q2−→ C∞
c (G)

e(γ2+s−r)t

−→ C∞
c (G).
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It follows that

eγ1tP2e
−γ1tP1 : C∞

c (E)
e(r−s)t

−→ C∞
c (E)

Q2Q1−→ C∞
c (G)

e(γ1+γ2+s−r)t

−→ C∞
c (G)

and we are done, after appealing to Lemma 4.10. The second assertion is now a special case of the
first.

To prove the third assertion, we note that if P,Q are as in (4.43) then

e(γ−n)tP ∗e−(γ−n)t = eγte(s−r)tQ∗e(r−s)t

where on the left hand side P ∗ denotes the formal adjoint of P with respect to the asymptotically
cylindrical metric h. Appealing to Lemma 4.10 now completes the proof of the third assertion.

Table 4.1 gives some examples of asymptotically conical differential operators Q : C∞
c (E) →

C∞
c (F ), along with the corresponding asymptotically translation invariant operators P and rates

γ ∈ RL.

Q P γ E F
d e−rtdert 1 ΛrT ∗X Λr+1T ∗X
d∗
g e(2−r)td∗

ge
rt 1 ΛrT ∗X Λr−1T ∗X

∆r
g e(2−r)t∆r

ge
rt 2 ΛrT ∗X ΛrT ∗X

d∗
g + d e−rt(e2td∗

g + d)ert 1 Λ∗T ∗X Λ∗T ∗X

Table 4.1: Examples of asymptotically conical operators: the row for d∗
g + d gives P in terms of the

action on r-forms

Here are some comments on Table 4.1.

1. Clearly the exterior derivative d is asymptotically conical of rate 1, because

d : C∞
c (ΛrT ∗X) → C∞

c (Λr+1T ∗X)

is translation invariant. Now we just conjugate by e−rt and apply Lemma 4.10.

2. To see that d∗
g is asymptotically conical of rate 1, we calculate

e2td∗
gξ = d∗

hξ + (−1)nr+n+1(n− 2r) ∗h
(
dt ∧ (∗hξ)

)
(4.44)

for all r-forms ξ. Here h = e−2tg is the asymptotically cylindrical metric on X. It follows that
e2td∗

g is asymptotically translation invariant: now we can again conjugate by e−rt and apply
Lemma 4.10.

3. Lemma 4.19 then implies that both d∗
g +d and ∆r

g are asymptotically conical, with the required
rates. An alternative way of seeing the Laplacian is asymptotically conical of rate 2 is to consider

e2t∆g = (e2td∗
g)d + (e2tde−2t)(e2td∗

g)

and then appeal to equation (4.44) and Lemma 4.10.

Asymptotically conical operators extend to bounded linear maps between the conical damped Sobolev
and Hölder spaces.

Proposition 4.20 Let Q : C∞
c (E) → C∞

c (F ) be an asymptotically conical differential operator of
order l > 1 and rate γ ∈ RL. Then Q extends to bounded linear maps

Q : Lpk+l,β+γ(E) → Lpk,β(F ) (4.45)

Q : Ck+l,aβ+γ (E) → Ck,aβ (F ). (4.46)
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Proof: This is immediate from the definition of asymptotically conical and Proposition 4.11.

It follows from Lemma 4.19 and Proposition 4.20 that if Q : C∞
c (E) → C∞

c (F ) is an asymptotically
conical differential operator of order l > 1 and rate γ ∈ RL then the defining identity (2.7) of the
formal adjoint Q∗ of Q extends to an identity

〈ξ|Q∗η〉L2(E) = 〈Qξ|η〉L2(F )

valid for all ξ ∈ Lpl,β+γ(E) and η ∈ Lp
′

l,−β−n(F ).

If Q : C∞
c (E) → C∞

c (F ) is an asymptotically conical operator of rate γ ∈ RL then Proposition
4.20 is really saying we have a commutative diagram

W p
k+l,β+γ(E)

P−−−−→ W p
k,β+γ(F )

e(s−r)t

x
xe(γ+s−r)t

Lpk+l,β+γ(E) −−−−→
Q

Lpk,β(F )

(4.47)

where the vertical maps are topological linear isomorphisms. In the situation of the diagram (4.47)
we shall always identify the top row with the bottom row, via the vertical isomorphisms. In particular
we then have Ker(Q)pk+l,β+γ := Ker(P )pk+l,β+γ , Im(Q)pk+l,β+γ := Im(P )pk+l,β+γ , Coker(Q)pk+l,β+γ :=

Coker(P )pk+l,β+γ and when the horizontal maps of (4.47) are Fredholm

Ind(Q)pk+l,β+γ := Ind(P )pk+l,β+γ .

From Theorem 4.17 we see

Ker(Q)pk+l,β+γ 6 Ker(Q)pk+l,δ+γ

Ker(Q)k+l,aβ+γ 6 Ker(Q)k+l,aδ+γ

whenever β 6 δ. Also Theorem 4.17 gives

Ker(Q)pm+l,β+γ 6 Ker(Q)k+l,aβ+γ 6 Ker(Q)qk+l,δ+γ (4.48)

whenever β < δ and m− n
p > k + a.

In the situation of diagram (4.47) we shall say that Q is uniformly elliptic if the corresponding
asymptotically translation invariant operator P is uniformly elliptic. The following theorem is merely
the version of Theorem 4.12 got from identifying the top row of diagram (4.47) with the bottom row.

Theorem 4.21 Suppose that Q : C∞
c (E) → C∞

c (F ) is a uniformly elliptic, asymptotically conical
operator of order l > 1 and rate γ ∈ RL. Suppose that η ∈ L1

loc(F ) and that ξ ∈ L1
loc(E) is a weak

solution of the equation Pξ = η.

1. If ξ ∈ Lp0,β+γ(E) and η ∈ Lpk,β(F ) then ξ ∈ Lpk+l,β+γ(E) with Qξ = η and

‖ξ‖Lp
k+l,β+γ

(E) 6 C1

(
‖Qξ‖Lp

k,β
(F ) + ‖ξ‖Lp

0,β+γ
(E)

)

where the constant C1 > 0 is independent of ξ.

2. If ξ ∈ C0
β+γ(E) and η ∈ Ck,aβ (F ) then ξ ∈ Ck+l,aβ+γ (E) with Qξ = η and

‖ξ‖Ck+l,a
β+γ

(E) 6 C2

(
‖Qξ‖Ck,a

β
(F ) + ‖ξ‖C0

β+γ
(E)

)

where the constant C2 > 0 is independent of ξ.
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Proof: This follows immediately from Theorem 4.12.

As before, Theorem 4.21 implies that when Q is uniformly elliptic we have

Ker(Q)pk+l,β+γ 6 Lp∞,β+γ(E)

Ker(Q)k+l,aβ+γ 6 C∞
β+γ(E)

so that Ker(Q)pk+l,β+γ is independent of k and Ker(Q)k+l,aβ+γ is independent of k and a. We therefore
write

Ker(Q)pβ+γ := Ker(Q)pk+l,β+γ

Ker(Q)β+γ := Ker(Q)k+l,aβ+γ

whenever Q is uniformly elliptic. With this notation, equation (4.48) becomes

Ker(Q)pβ+γ 6 Ker(Q)β+γ 6 Ker(Q)qδ+γ (4.49)

valid for all β < δ.

We now have the first main theorem on Fredholm theory.

Theorem 4.22 Suppose that Q : C∞
c (E) → C∞

c (F ) is a uniformly elliptic, asymptotically conical
operator of rate γ ∈ RL. Then there exists a subset D(Q) ⊆ RL independent of p, k such that (4.45)
is Fredholm if and only if β + γ ∈ RL \ D(Q). Moreover

D(Q) = D(P ) = D(P∞)

where P corresponds to Q as in diagram (4.47) and P ∼ P∞.

Proof: This follows straight from Theorem 4.13.

In the situation of the Theorem 4.22, if β+ γ ∈ RL \D(Q) we denote the connected component of
RL \ D(Q) containing β + γ by

(
RL \ D(Q)

)
β+γ

.

Notice from Lemma 4.19 that if Q is asymptotically conical then Q is uniformly elliptic precisely
when e−βtQeβt is uniformly elliptic, and in this situation

D(e−βtQeβt) = D(Q) − β.

Furthermore, Q is uniformly elliptic precisely when Q∗ is uniformly elliptic, and in this situation

D(Q∗) = γ − n−D(Q)

so that β + γ ∈ D(Q) precisely when −β − n ∈ D(Q∗).

Another useful corollary:

Corollary 4.23 Suppose that Q : C∞
c (E) → C∞

c (F ) is a uniformly elliptic, asymptotically conical
differential operator of order l > 1 and rate γ ∈ RL. Then both

Ker(Q)pβ+γ 6 Lpk+l,β+γ(E)

Ker(Q)β+γ 6 Ck+l,aβ+γ (E)

are finite-dimensional.

Proof: This follows straight from the corresponding Corollary 4.14 and the commutative diagram
(4.47).

The second main theorem on Fredholm theory is now:
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Theorem 4.24 Suppose that Q : C∞
c (E) → C∞

c (F ) is a uniformly elliptic, asymptotically conical
operator of rate γ ∈ RL. If β + γ, δ + γ ∈ RL \ D(Q) and δ + γ 6 β + γ then

Ind(Q)pk+l,β+γ − Ind(Q)pk+l,δ+γ = N(β, δ).

Proof: This is immediate from Theorem 4.15.

4.3.3 The images of asymptotically conical operators

In Section 3.1 we stated that the useful characterisation Theorem 3.7 of the image of an elliptic operator
on a compact manifold has an extension to the non-compact case. We now give that extension.

Theorem 4.25 Let Q : C∞
c (E) → C∞

c (F ) be a uniformly elliptic, asymptotically conical operator of
order l > 1 and rate γ ∈ RL. Suppose that β + γ ∈ RL \ D(Q) so that the bounded linear map

Q : Lpk+l,β+γ(E) → Lpk,β(F ) (4.50)

is Fredholm. Then the image of the map (4.50) is given by

Im(Q)pk+l,β+γ =
{
η ∈ Lpk,β(F ) : 〈η|h〉L2(F ) = 0 for all h ∈ Ker(Q∗)p

′

−β−n

}
. (4.51)

Proof: First note that

Im(Q)pk+l,β+γ 6

{
η ∈ Lpk,β(F ) : 〈η|h〉L2(F ) = 0 for all h ∈ Ker(Q∗)p

′

−β−n

}

follows immediately from integration by parts.

Consider now the case k = 0. For the purposes of this proof, denote the Banach space adjoint
of the map (4.50) by Q′ : Lp0,β(F )∗ → Lpl,β+γ(E)∗ to distinguish from the formal adjoint Q∗ of Q.

If we identify Lp0,β(F )∗ ∼= Lp
′

0,−β−n(F ) as in (4.39) then it is a consequence of Theorem 4.21 that

KerQ′ = KerQ∗ in Lp0,β(F )∗. To see this, note that if η ∈ Lp
′

0,−β−n(F ) with 〈Qφ|η〉L2(F ) = 0 for all

φ ∈ Lpl,β+γ(E) then the equation Q∗η = 0 holds weakly.

Now take η ∈ Lp0,β(F ) such that 〈η|h〉L2(F ) = 0 for all h ∈ Ker(Q∗)p
′

−β−n. Then we have that

η ∈ Lp0,β(F ) lies in

(KerQ∗)◦ = (KerQ′)◦ = ImQ

as required. Here we are using the fact that (4.50) has closed image, together with Proposition 2.2.
We have now proved the result in the case k = 0.

Now suppose that k > 1 and that η ∈ Lpk,β(F ) with 〈η|h〉L2(F ) = 0 for all h ∈ Ker(Q∗)p
′

−β−n. A

consequence of the case k = 0 proof is that there exists ξ ∈ Lpl,β+γ(E) such that Qξ = η. But then

Theorem 4.21 implies ξ ∈ Lpk+l,β+γ(E) and we are done.

Corollary 4.26 Let Q : C∞
c (E) → C∞

c (F ) be a uniformly elliptic, asymptotically conical operator of
order l > 1 and rate γ ∈ RL. Suppose that β + γ ∈ RL \ D(Q). Then we may write

Lpk,β(F ) = Im(Q)pk+l,β+γ ⊕ V

where V 6 Lpk,β(F ) is a subspace of finite dimension dimV = dim Ker(Q∗)p
′

−β−n, and in particular,

dim Coker(Q)pk+l,β+γ = dim Ker(Q∗)p
′

−β−n. If Ker(Q∗)p
′

−β−n 6 Lpk,β(F ) then we may take V to be

equal to Ker(Q∗)p
′

−β−n.
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Proof: The first part is straightforward: using Theorem 4.25 we have

dim Coker(Q)pk+l,β+γ := codim Im(Q)pk+l,β+γ = dim Ker(Q∗)p
′

−β−n

as required, and the existence of the subspace V is trivial to establish.

For the second part, suppose Ker(Q∗)p
′

−β−n 6 Lpk,β(F ) and pick an L2(F )-orthonormal basis

{e1, . . . , eK} for Ker(Q∗)p
′

−β−n. Given η ∈ Lpk,β(F ) we may observe

η −
K∑

k=1

〈η|ek〉L2(F )ek ∈ Im(Q)pk+l,β+γ

and we are done.

It follows that if Q : C∞
c (E) → C∞

c (F ) is a uniformly elliptic, asymptotically conical operator of
order l > 1 and rate γ ∈ RL and β, δ ∈ RL with β + γ, δ + γ ∈ RL \ D(Q) and δ 6 β then

dim Coker(Q)pk+l,β+γ 6 dim Coker(Q)pk+l,δ+γ . (4.52)

But now if β + γ and δ+ γ lie in the same connected component of RL \D(Q) then by Theorem 4.24
we have Ind(Q)pk+l,β+γ = Ind(Q)pk+l,δ+γ so that by equation (4.49) and equation (4.52)

dim Ker(Q)pβ+γ = dim Ker(Q)pδ+γ

dim Coker(Q)pk+l,β+γ = dim Coker(Q)pk+l,δ+γ

hold. Since Ker(Q)pδ+γ 6 Ker(Q)pβ+γ we deduce that

Ker(Q)pδ+γ = Ker(Q)pβ+γ . (4.53)

Corollary 4.27 Let Q : C∞
c (E) → C∞

c (F ) be a uniformly elliptic, asymptotically conical operator of
order l > 1 and rate γ ∈ RL. If β ∈ RL with β + γ ∈ RL \ D(Q) then

Ker(Q)β+γ = Ker(Q)pβ+γ .

Proof: Choose some small ε > 0 so that δ+ γ := β + γ + ε lies in RL \D(Q). The result now follows
from the inclusions (4.49) and equation (4.53).

It follows from Corollary 4.26 and Corollary 4.27 that dim Coker(Q)pk+l,β+γ and hence Ind(Q)pk+l,β+γ

are independent of p and k, provided that β+γ ∈ RL\D(Q). This is because −β−n ∈ D(Q∗) precisely
when β + γ ∈ D(Q). Similar remarks hold for asymptotically translation invariant operators P .



Chapter 5

Infinitesimal deformations of AC

special Lagrangians

In this chapter we give applications of the material of Chapter 4.

5.1 A study of ∆0
g

5.1.1 Analytic properties of ∆0
g

In this section we apply some of the results of Chapter 4 to the Laplacian ∆0
g of an asymptotically

conical metric g on X, acting on functions. The resulting theory will give many of the analytic results
we shall need later.

Recall that ∆0
g : C∞

c (X) → C∞
c (X) is an asymptotically conical operator of order 2 and rate 2.

Our first task is to determine the set of β + 2 ∈ RL such that

∆0
g : Lpk+2,β+2(X) → Lpk,β(X) (5.1)

fails to be Fredholm. In other words, we are computing the subset D(∆0
g) ⊆ RL and then (5.1) fails

to be Fredholm precisely when β + 2 ∈ D(∆0
g). Recall from Theorem 4.22 that this subset is of the

form D(∆0
g) = D(P ) = D(P∞) where

D(P∞) =
(
D(P∞, 1) × RL−1

)
∪
(
R ×D(P∞, 2) × RL−2

)
∪ · · · ∪

(
RL−1 ×D(P∞, L)

)

and P = e2t∆0
g is the asymptotically translation invariant operator corresponding to ∆0

g, and P∞ is
the translation invariant operator with P ∼ P∞. Here we have P∞ = e2t∆0

g̃.

If u : X∞ → R is a twice differentiable function then a brief calculation in local coordinates shows
that

e2t∆0
g̃u = ∆0

h̃
u− (n− 2)(dt,du)h̃ = ∆0

gΣu− ∂2u

∂t2
− (n− 2)

∂u

∂t

where ∆0
gΣ is the Laplacian of the metric gΣ on the manifold Σ, acting on functions. Referring back

to Section 4.2.2 and in particular the discussion after Theorem 4.7, we replace each ∂
∂t in the operator

P∞ by w ∈ C, and then for each 1 6 j 6 L we have an operator

P∞(w) : W p
k+2(Σj ⊗ C) → W p

k (Σj ⊗ C) (5.2)

ξ 7→ ∆0
gΣξ − w(w + n− 2)ξ.

We now have:

Lemma 5.1 If w ∈ C then (5.2) is not an isomorphism precisely when

w(w + n− 2) ∈ Spec(Σj , gΣ, 0) ⊆ [0,∞)

and the set of such w ∈ C is a subset of R.

73
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Proof: Firstly, suppose that w ∈ C is a complex number such that w(w + n − 2) = µ is real and
non-negative. Then since (

w +
n− 2

2

)2

=

(
n− 2

2

)2

+ µ

we see immediately that w must in fact be real.

Now suppose that w ∈ C. Obviously w(w + n − 2) ∈ Spec(Σj , gΣ, 0) precisely when (5.2) fails to
be injective. If (5.2) is not surjective then by standard Hodge Theory the adjoint operator

P∞(w)∗ = (∆0
gΣ)∗ − w(w + n− 2) = P∞(w)

fails to be injective. Thus w(w + n− 2) ∈ Spec(Σj , g, 0), and w is real, completing the proof.

Following Section 4.2.2 we define

C(P∞, j) :=
{
w ∈ C : (5.2) is not an isomorphism

}

and then D(P∞, j) :=
{
Rew : w ∈ C(P∞, j)

}
. It follows from Lemma 5.1 we have that

D(P∞, j) =



−

(
n− 2

2

)
±
((

n− 2

2

)2

+ µj,i

) 1
2

: i > 0





where 0 = µj,0 < µj,1 < µj,2 < . . . are the points of Spec(Σj , gΣ, 0). In other words, βj+2 ∈ D(P∞, j)
precisely when (βj + 2)(βj + n) = µj,i for some i > 0.

As in the introduction, we put µj = µj,1 the first positive element of Spec(Σj , gΣ, 0), and then
define λj > 0 to be such that λj(λj + n − 2) = µj . We finally put λ = (λ1, . . . , λL). Figure 5.1
shows the quadratic equation (βj + 2)(βj + n) = µ. The horizontal axis corresponds to the growth
rates βj + 2 of the harmonic functions on X, and the vertical axis corresponds to the elements of
Spec(Σj , gΣ, 0). The first positive eigenvalue µj of the Laplacian on Σj is marked, together with the
growth rates λj > 0 and 2− n− λj . By Theorem 4.22 the map ∆0

g : Lpk+2,β+2(X) → Lpk,β(X) fails to
be Fredholm precisely when β + 2 ∈ D(P∞), and these points can now just be read off the quadratic
equation given in Figure 5.1.

The operator ∆0
g is an example of a second order elliptic operator acting on functions. We can

exploit these features of ∆0
g to obtain strong control over the kernels Ker(∆0

g)
p
β+2 and Ker(∆0

g)β+2.
The required ingredient is the Maximum Principle, which does not hold for the operators ∆r

g when
r > 1.

Theorem 5.2 (Maximum Principle) Let G ⊆ Rn be a domain. Define the operator L : C2(G) →
C0(G) by

Lu := aij∂i∂ju+ bi∂iu

where aij = aji, bi : G→ R are functions. For each x ∈ G let m(x) be the least eigenvalue of
(
aij(x)

)
,

so that we have a function m : G→ R. Assume that

1. m > 0 on G

2. The function |bi|
m : G→ R is bounded for each 1 6 i 6 n.

If u ∈ C2(G) ∩ C0(G) with Lu = 0 in G then the maximum and the minimum of u on G are both
attained on ∂G := G \G.

Theorem 5.2 is proved in the book [18, Theorem 3.1] of Gilbarg and Trudinger. We have an immediate
corollary for the operator ∆0

g.

Corollary 5.3 If β + 2 < 0 then Ker(∆0
g)
p
β+2 = Ker(∆0

g)β+2 = {0}.
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µ

(2 − n, 0) (0, 0)(2 − n − λj , 0) (λj , 0)

βj + 2

(0, µj)

Figure 5.1: The quadratic equation (βj + 2)(βj + n) = µ

Proof: From the inclusions (4.49) we need only show that Ker(∆0
g)β+2 = {0}. So suppose for a

contradiction that u ∈ Ker(∆0
g)β+2 and there exists x ∈ X with u(x) 6= 0. Since u ∈ C0

β+2(X) we

have that |u| is bounded by some multiple C > 0 of the function e(β+2)t on X. Also we may choose a
large S > 0 so that x ∈ XS and

e(βj+2)(S+T )C < |u(x)| (5.3)

for each 1 6 j 6 L. It follows that the function u : XS → R cannot attain both its maximum and
minimum on ∂XS , which contradicts the Maximum Principle 5.2.

Corollary 5.4 If β + 2 ∈ RL \ D(∆0
g) and β + 2 > 2− n then the map ∆0

g : Lpk+2,β+2(X) → Lpk,β(X)

is surjective, and therefore d∗
g : Lpk+1,β+1(T

∗X) → Lpk,β(X) is surjective also.

Proof: If β + 2 > 2 − n then −β − n < 0 and the assertion now follows from Theorem 4.25 and
Corollary 5.3.

We now have a fairly explicit description of the kernel and cokernel of the map

∆0
g : Lpk+2,β+2(X) → Lpk,β(X) (5.4)

for various β + 2 ∈ RL. Firstly, the map (5.4) always has finite-dimensional kernel, and is injective
for β + 2 < 0. Therefore the map (5.4) has finite-dimensional cokernel precisely when it is Fredholm,
which is precisely when β + 2 ∈ RL \ D(∆0

g): a set of points we have a very explicit description of.

Furthermore, the map (5.4) is surjective when β + 2 > 2 − n and β + 2 ∈ RL \ D(∆0
g).

When 2 − n < β + 2 < 0 the map (5.4) is an isomorphism, and so

Ind(∆0
g)
p
k+2,β+2 = 0. (5.5)
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Exactly the same arguments as above work for the conical metric g̃ so that Ind(∆0
g̃)
p
k+2,β+2 = 0 for

2 − n < β + 2 < 0, and therefore by equation (4.30) we have

Ind(∆0
g)
p
k+2,β+2 = Ind(∆0

g̃)
p
k+2,β+2 (5.6)

for all β + 2 ∈ RL \ D(∆0
g).

We now turn to evaluating the indices (5.6) for all β + 2 ∈ RL \ D(∆0
g). To do this we use the

“jumping” formula (4.29) and equation (5.5). Take 1 6 j 6 L and w ∈ C(P∞, j), where P∞ = e2t∆0
g̃.

Then w is a real number such that

w(w + n− 2) =: µ ∈ Spec(Σj , gΣ, 0).

We are interested in the dimension d(j, w) of the space of solutions of the equation P∞u = 0 which
have the form

u(t, σ) = ewtp(t, σ)

for some polynomial p(t, σ) in t with coefficients in C∞(Σj). We now appeal to the following lemma.

Lemma 5.5 Let m > 0 and
p(t, σ) := tmfm + · · · + tf1 + f0 (5.7)

be a polynomial in t with coefficients fk ∈ C∞(Σj), where fm 6= 0. Then

P∞(ewtp) = 0 (5.8)

precisely when m = 0 and (∆0
gΣ − µ)f0 = 0.

Proof: Note that

P∞(ewtp) =

(
∆0
gΣ − (n− 2)

∂

∂t
− ∂2

∂t2

)
(ewtp) = ewt

((
∆0
gΣ − µ

)
p−

(
2w + (n− 2)

)∂p
∂t

− ∂2p

∂t2

)
.

Therefore equation (5.8) is equivalent to

(
∆0
gΣ − µ

)
p−

(
2w + (n− 2)

)∂p
∂t

− ∂2p

∂t2
= 0. (5.9)

Clearly when m = 0 and (∆0
gΣ − µ)f0 = 0 we see that p satisfies equation (5.9). For the converse,

suppose that p is as given in equation (5.7) and satisfies (5.9). Then comparing coefficients of tm in
(5.9) gives (∆0

gΣ − µ)fm = 0. Suppose for a contradiction that m > 1. Then comparing coefficients of
tm−1 in (5.9) gives

(∆0
gΣ − µ)fm−1 = m

(
2w + (n− 2)

)
fm. (5.10)

Now the right hand side of (5.10) is non-zero, but lies in the µ-eigenspace of ∆0
gΣ . The operator

(∆0
gΣ −µ) preserves the splitting of C∞(Σj) into eigenspaces of ∆0

gΣ and annihilates the µ-eigenspace.
This is a contradiction, as required.

It follows from Lemma 5.5 that

d(j, w) = dim
(
Ker(∆0

gΣ − µ) ∩ C∞(Σj)
)

(5.11)

whenever w ∈ C(P∞, j) with w(w+n−2) = µ ∈ Spec(Σj , gΣ, 0). In equation (5.11) we are thinking of
C∞(Σj) 6 C∞(Σ) as the functions which vanish on Σk for k 6= j. We can now easily obtain expressions
for dim Ker(∆0

g)β+2 = dim Ker(∆0
g)
p
β+2 and dim Coker(∆0

g)
p
k+2,β+2 for all β + 2 ∈ RL \ D(∆0

g). For

example, if β + 2 ∈ RL \ D(∆0
g) with β + 2 > 0 then

dim Ker(∆0
g)
p
β+2 = L+ χ(β + 2) (5.12)



Chapter 5: Infinitesimal deformations of AC special Lagrangians 77

where for β + 2 ∈ RL with β + 2 > 0 we define

χ(β + 2) :=
L∑

j=1

∑{
dim

(
Ker(∆0

gΣ − µ) ∩ C∞(Σj)
)

:
0 < µ 6 (βj + 2)(βj + n)
µ ∈ Spec(Σj ,∆

0
gΣ , 0)

}
(5.13)

which is an analytic piece of data got from the Riemannian manifold (Σ, gΣ). We also define, for
future reference

χ̂(β + 2) :=
L∑

j=1

∑{
dim

(
Ker(∆0

gΣ − µ) ∩ C∞(Σj)
)

:
0 < µ < (βj + 2)(βj + n)
µ ∈ Spec(Σj ,∆

0
gΣ , 0)

}
(5.14)

for all β + 2 ∈ RL with β + 2 > 0.

5.1.2 Cohomology and homology

For each t > T define a submanifold it : Σ → X by it(σ) := (t, σ) for each σ ∈ Σ. We shall say that a
form ξ defined over X is translation invariant if there exists an S > 0 such that

i∗sξ = i∗t ξ

i∗s
(
ι( ∂∂t )ξ

)
= i∗t

(
ι( ∂∂t )ξ

)

for all s, t > S + T . We shall say that a translation invariant form ξ defined over X is a lift if there
exists an S > 0 such that

i∗t
(
ι( ∂∂t )ξ

)
= 0

for all t > S + T . A form ξ on X is a lift precisely when there exists a form η on Σ such that ξ = π∗η
over X \XS for some S > 0. We shall say that a function f : X → R is constant on the ends of X if
there exists S > 0 and c = (c1, . . . , cL) ∈ RL such that f(t, σ) = cj for all t > S + T and σ ∈ Σj . The
notation we use in this situation is fc := f . So given c ∈ RL we have fc ∈ C∞(X) well-defined up to
elements of C∞

c (X).

On our manifold X we have the usual de Rham cohomology groups Hr(X) and the compactly
supported de Rham cohomology groups Hr

c (X). Moreover, if X is oriented there is a pairing Hr
c (X)×

Hn−r(X) → R defined

[ξ] · [η] :=

∫

X

ξ ∧ η (5.15)

which induces isomorphisms

Hr
c (X) ∼= Hn−r(X)∗ (5.16)

Hr
c (X)∗ ∼= Hn−r(X). (5.17)

We also have the usual real singular homology groups Hr(X), and a pairing Hn−r(X)×Hn−r(X) → R

defined

[τ ] · [η] :=

∫

τ

ξ (5.18)

which induces isomorphisms

Hn−r(X) ∼= Hn−r(X)∗ (5.19)

Hn−r(X)∗ ∼= Hn−r(X).

Now the isomorphisms (5.16) and (5.19) imply

Hn−r(X) ∼= Hr
c (X). (5.20)

In order to obtain homological objects which are isomorphic to the usual de Rham cohomology groups
Hr(X) we need to consider X as the interior of a compact manifold X with boundary ∂X ⊆ X. This is
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certainly no problem because we can pick a homeomorphism (T,∞)×Σ ∼= (T, T +1)×Σ so that ∂X ∼=
Σ. Then we have the relative homology groups Hr(X, ∂X) and a pairing Hr

c (X) ×Hr(X, ∂X) → R

defined

[ξ] · [τ ] :=

∫

τ

ξ (5.21)

which induces isomorphisms

Hr
c (X) ∼= Hr(X, ∂X)∗

Hr
c (X)∗ ∼= Hr(X, ∂X) (5.22)

which combined with (5.17) show that

Hr(X, ∂X) ∼= Hn−r(X). (5.23)

Note further that Hr(X) ∼= Hr(X) for all r > 0.

We now describe how to build a long exact sequence of cohomology groups which shall be useful
later. First of all, we have the natural map

φr : Hr
c (X) → Hr(X) (5.24)

[ξ] 7→ [ξ].

Also, given t > T the embedding it : Σ → X induces a pull-back homomorphism

pr : Hr(X) → Hr(Σ) (5.25)

[ξ] 7→ [i∗t ξ].

Note that by Stokes’ Theorem the map (5.25) is independent of our choice of t > T . We also have a
boundary map

∂r : Hr(Σ) → Hr+1
c (X) (5.26)

which we define as follows. Fix any ρ ∈ C∞(X) such that

ρ(x) = 0 for all x ∈ X0

ρ(x) = 1 for all x ∈ X \X1.

Given ξ ∈ C∞(ΛrT ∗Σ) with dξ = 0 we lift to a translation invariant form π∗ξ ∈ C∞(ΛrT ∗X∞),
which in turn extends to a form ρπ∗ξ ∈ C∞(ΛrT ∗X). We now put ∂r[ξ] := [d(ρπ∗ξ)] and this gives
us a well-defined map (5.26) as required.

Proposition 5.6 The sequence

· · · −→ Hr
c (X)

φr−→ Hr(X)
pr−→ Hr(Σ)

∂r−→ Hr+1
c (X) −→ · · · (5.27)

is exact.

Proof: Under the Poincaré Duality isomorphisms (5.20) and (5.23) defined above the sequence (5.27)
of cohomology groups is isomorphic to the usual long exact sequence for relative homology

· · · −→ Hn−r(X) −→ Hn−r(X, ∂X) −→ Hn−r−1(∂X) −→ Hn−r−1(X) −→ · · · . (5.28)

Lemma 5.7 In the long exact sequence (5.27) we have Kerφ1 =
{
[dfc] : c ∈ RL

}
, and furthermore

dim Kerφ1 = L− 1.
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Proof: Obviously {
[dfc] : c ∈ RL

}
6 Kerφ1.

Now suppose that f ∈ C∞(X) with df ∈ C∞
c (T ∗X). Then f is locally constant off some compact

subset of X, and it follows that f must be constant on the ends of X. Hence

Kerφ1 6
{
[dfc] : c ∈ RL

}
,

as required, and it is easy to show this vector space has dimension L− 1.

An alternative approach is to use the exactness of the sequence

0 −→ H0
c (X)

φ0−→ H0(X)
p0−→ H0(Σ)

∂0−→ H1
c (X)

φ1−→ H1(X) −→ · · ·

and the fact that H0
c (X) = 0, H0(X) ∼= R, H0(Σ) ∼= RL.

If we denote the standard basis of RL by {e1, . . . , eL} then clearly

Kerφ1 = Span
{
[dfe1 ], . . . , [dfeL

]
}

and moreover given (c1, . . . , cL) ∈ RL we have

c1[dfe1 ] + · · · + cL[dfeL
] = 0

in H1
c (X) precisely when c1 = · · · = cL. This is because the map p0 sends c ∈ R to (c, . . . , c) ∈ RL

and the map ∂0 sends c = (c1, . . . , cL) ∈ RL ∼= H0(Σ) to the element [dfc] ∈ H1
c (X).

Proposition 5.8 Let 0 6 r 6 n and [η] ∈ Hr(X) be a cohomology class, so that η ∈ C∞(ΛrT ∗X)
with dη = 0. Then there exists ξ ∈ C∞(ΛrT ∗X) which is a lift such that dξ = 0 and [η] = [ξ].

Proof: We give two proofs. The first method relies on the exactness of the sequence (5.27) and the
second method gives an explicit construction for ξ.

Method 1

Since [η] ∈ Hr(X) we have pr[η] = [i∗t η] ∈ Hr(Σ) for any t > T . Define θ := i∗t η so that θ ∈
C∞(ΛrT ∗Σ) with dθ = 0. By the exactness of (5.27) we have [θ] ∈ Ker ∂r and there exists θ̂ ∈
C∞
c (ΛrT ∗X) with

d(ρπ∗θ) = dθ̂

as ∂r[θ] = 0 in Hr+1
c (X). Consider now the cohomology class [ρπ∗θ − θ̂] ∈ Hr(X). We have

i∗t (ρπ
∗θ − θ̂) = i∗t (π

∗θ) = θ = i∗t η.

It follows by the exactness of (5.27) that

[ρπ∗θ − θ̂ − η] ∈ Ker pr = Imφr ⊆ Hr(X)

and there exists h ∈ C∞(Λr−1T ∗X) and φ ∈ C∞
c (ΛrT ∗X) with dφ = 0 such that

φ+ dh = ρπ∗θ − θ̂ − η,

and then [η] = [ρπ∗θ − θ̂ − φ] in Hr(X) with ρπ∗θ − θ̂ − φ a lift as required.
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Method 2

First of all, work on X∞ = (T,∞) × Σ. Then given t > T we have the embedding

it : Σ → X∞

σ 7→ (t, σ).

Suppose that η ∈ C∞(ΛrT ∗X∞) with dη = 0. Write η = η0 + dt ∧ η1 where η0 ∈ C∞(ΛrT ∗X∞) and
η1 ∈ C∞(Λr−1T ∗X∞) with ι( ∂∂t )η0 = ι( ∂∂t )η1 = 0, so that η0, η1 have no dt component. Since dη = 0
we have dη0 − dt ∧ dη1 = 0 and then

ι( ∂∂t )(dη0) = ι( ∂∂t )(dt ∧ dη1) = dη1

and also i∗tdη0 = i∗tdη = 0 for all t > T . Now given t > T define

σt =

∫ t

0

(i∗sη1)ds ∈ C∞(Λr−1T ∗Σ),

and then define further σ ∈ C∞(Λr−1T ∗X∞) by the equations

ι( ∂∂t )σ = 0

i∗tσ = σt for all t > T .

We now show that ξ := η − dσ is a lift, by looking at the component parts. Firstly

∂

∂t

(
i∗t (η − dσ)

)
=

∂

∂t

(
i∗t η0 − dσt

)

=
∂

∂t

(
i∗t η0 −

∫ t

0

i∗s(dη1)ds

)

=
∂

∂t
(i∗t η0) − i∗tdη1

=
∂

∂t
(i∗t η0) − i∗t

(
ι( ∂∂t )dη0

)

= i∗t

(
L ∂
∂t

η0 − ι( ∂∂t )dη0

)

= i∗t
(
d
(
ι( ∂∂t )η0

))

= 0

and therefore i∗s(η − dσ) = i∗t (η − dσ) for all s, t > T . Secondly, we have

i∗t
(
ι( ∂∂t )(η − dσ)

)
= i∗t

(
η1 − ι( ∂∂t )dσ

)

= i∗t η1 −
(
i∗t

(
L ∂
∂t

σ − d
(
ι( ∂∂t )σ

)))

= i∗t η1 − i∗t

(
L ∂
∂t

σ
)

= i∗t η1 −
∂

∂s

(
i∗sσ
)∣∣∣∣
s=t

= i∗t η1 −
∂

∂s

(∫ s

0

i∗uη1du

)∣∣∣∣
s=t

= 0

and hence ξ is a lift, as required.

Now suppose we are working on the whole manifold X. Given η ∈ C∞(ΛrT ∗X) with dη = 0 put

η̂ := η|X∞
. Then from the above there exists σ̂ ∈ C∞(Λr−1T ∗X∞) such that ξ̂ := η̂ − dσ̂ is a lift on

X∞. Now define σ := ρσ̂ ∈ C∞(Λr−1T ∗X) and then

dσ = dρ ∧ σ̂ + ρdσ̂
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so that η − dσ = (η − ρdσ̂) − (dρ ∧ σ̂), which is a lift.

Corollary 5.9 If 0 6 r 6 n then any cohomology class in Hr(X) can be represented by some closed
form ξ ∈ C∞

−r(Λ
rT ∗X), and moreover ξ can be chosen to be a lift.

Proof: Using Proposition 5.8 we may pick a lift ξ ∈ C∞(ΛrT ∗X) representing the cohomology class.
This form has the required decay properties.

5.1.3 Calculations with functions

Lemma 5.10 Let ξ ∈ Ck+1,a
β+1 (T ∗X) and f ∈ C1(X) with df = ξ.

1. If β + 2 > 0 then f ∈ Ck+2,a
β+2 (X).

2. If β + 2 = 0 then f ∈ Ck+2,a
γ+2 (X) for all γ + 2 > 0.

3. If β+2 < 0 then there exists fc ∈ C∞(X) constant on the ends of X such that f−fc ∈ Ck+2,a
β+2 (X).

Obviously the condition df = ξ determines f uniquely up to constants. Also when β + 2 < 0 the
function f tends to the constants cj ∈ R on the jth end of X, where c = (c1, . . . , cL) ∈ RL.

Proof: We begin by considering the first part. Using the elliptic estimates of Theorem 4.21 applied
to the operator Q = d∗

g + d on C∞
c (Λ∗T ∗X) we observe that we need only show f ∈ C0

β+2(X).

Fix 1 6 j 6 L and some σ̃ ∈ Σj , S > 0. Then for any t > T + S and σ ∈ Σj we have by Stokes’
Theorem

f(t, σ) − f(T + S, σ̃) =

∫

γ1

ξ +

∫

γ2

ξ

where γ1 is the straight line path in (T,∞)×Σj going from (T +S, σ̃) to (t, σ̃) and γ2 is a geodesic of
minimum length in {t}×Σj ⊆ (T +S,∞)×Σj going from (t, σ̃) to (t, σ). Suppose that in coordinates
(s, τ) over (T,∞) × Σ we have ξ(s, τ) = a(s, τ)ds + b(s, τ)dτ . Then since ξ ∈ C0

β+1(T
∗X) we have

a, b ∈ C0
β+2(X), and furthermore

∫

γ1

ξ =

∫ t

T+S

a(s, σ̃)ds

∫

γ2

ξ =

∫

γ3

b(t, τ)dτ

where γ3 is the geodesic in Σj with γ2 = {t}× γ3. Working on the jth end (T,∞)×Σj of X we have

∣∣∣∣
∫

γ1

ξ

∣∣∣∣ 6

∫ t

T+S

|a(s, σ̂)|ds

6 ‖a‖C0
β+2(X)

∫ t

T+S

e(βj+2)sds

=
‖a‖C0

β+2(X)

βj + 2

(
e(βj+2)t − e(βj+2)(T+S)

)

6
‖a‖C0

β+2(X)

βj + 2
e(βj+2)t

and ∣∣∣∣
∫

γ2

ξ

∣∣∣∣ 6 diam(Σj , gΣ)‖b‖C0
β+2(X)e

(βj+2)t
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so that

|f(t, σ)| 6 |f(T + S, σ̃)| + |f(t, σ) − f(T + S, σ̃)|

6 |f(T + S, σ̃)| +
(‖a‖C0

β+2(X)

βj + 2
+ diam(Σj , gΣ)‖b‖C0

β+2(X)

)
e(βj+2)t.

It follows that f ∈ C0
β+2(X), as required.

For the second part we need only show f ∈ C0
γ+2(X) for all γ + 2 > 0. The proof is now very

similar to part 1. Keeping the same notation we compute

∣∣∣∣
∫

γ1

ξ

∣∣∣∣ 6 (t− T − S)‖a‖C0
β+2(X)

from which it follows

|f(t, σ)| 6 |f(T + S, σ̃)| + (t− T − S)‖a‖C0
β+2(X) + diam(Σj , gΣ)‖b‖C0

β+2(X)

and we are done.

In case 3 we need only show that there exists fc ∈ C∞(X) constant on the ends of X such that

f − fc ∈ C0
β+2(X), since then (d∗

g + d)(f − fc) = ξ − dfc ∈ Ck+1,a
β+1 (T ∗X). With notation as in part 1

we have

f(t, σ) − f(T + S, σ̃) −
∫ ∞

T+S

a(s, σ̃)ds = −
∫ ∞

t

a(s, σ̃)ds+

∫

γ3

b(t, σ)dσ

and then
∣∣∣∣
∫ ∞

t

a(t, σ)dt

∣∣∣∣ 6

∫ ∞

t

|a(s, σ)|ds

6 ‖a‖C0
β+2(X)

∫ ∞

t

e(βj+2)sds

= −
‖a‖C0

β+2(X)

βj + 2
e(βj+2)t.

It follows that

∣∣∣∣f(t, σ) − f(T + S, σ̃) −
∫ ∞

T+S

a(s, σ̃)ds

∣∣∣∣ 6
(

diam(Σj , gΣ)‖b‖C0
β+2(X) −

‖a‖C0
β+2(X)

βj + 2

)
e(βj+2)t

and we are done, with fc constant on the ends of X chosen so that

cj := f(T + S, σ̃) +

∫ ∞

T+S

a(s, σ̃)ds. (5.29)

A straightforward application of Stokes’ Theorem shows the right hand side of equation (5.29) is
independent of S > 0 and a similar application together with a convergence argument shows the right
hand side of equation (5.29) is independent of σ̃ ∈ Σj , as we expect.

In the second part of Lemma 5.10 we can never hope to have f ∈ Ck+1,a
0 (X), as the example

f(t, σ) := log t shows. For here we have

ξ := df =
dt

t

which lies in C∞
−1(X), but f /∈ C0

0 (X).
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Lemma 5.11 Let h ∈ C∞(X) be harmonic and fc ∈ C∞(X) be constant on the ends of X. Then

∫

X

(∆0
gfc)hdVg =

L∑

j=1

cj [Σj ] · [∗gdh]

where in the right hand side we use the pairing (5.18).

Proof: Choosing some large S > 0 and noting ∆0
gfc is compactly supported we have

∫

X

(∆0
gfc)hdVg = −

∫

XS

h(d ∗g dfc)

from the definition of ∆0
g. Then Stokes’ Theorem and the fact that

d(h ∗g dfc) = h(d ∗g dfc) + dh ∧ ∗gdfc
gives

∫

X

(∆0
gfc)hdVg =

∫

XS

dh ∧ ∗gdfc −
∫

∂XS

h ∗g dfc =

∫

XS

dfc ∧ ∗gdh =

∫

∂XS

fc ∗g dh,

again using Stokes’ Theorem and the fact that d(fc ∗g dh) = dfc ∧ ∗gdh. We now have

∫

X

(∆0
gfc)hdVg =

L∑

j=1

cj

∫

Σj

∗gdh =

L∑

j=1

cj [Σj ] · [∗gdh]

as required.

Recall the definition of the L-tuple λ = (λ1, . . . , λL) in Section 5.1.1 above. If γ + 2 ∈ RL with

0 < γk + 2 < λj if k = j
2 − n < γk + 2 < 0 if k 6= j

for each 1 6 k 6 L, then a consequence of Theorem 4.24, Corollary 5.4 and Lemma 5.5 is that

dim Ker(∆0
g)γ+2 = 1.

Let hj be a non-zero element of Ker(∆0
g)γ+2. Then by equation (4.53) we have hj ∈ Ker(∆0

g)β+2

for all β + 2 ∈
(
RL \ D(∆0

g)
)
γ+2

, and as hj /∈ Ker(∆0
g)δ+2 = {0} for any δ + 2 < 0, it follows that

{h1, . . . , hL} is a linearly independent set.

Now suppose that γ + 2 ∈ RL with 0 < γ + 2 < λ. Then again using Theorem 4.24, Corollary 5.4
and Lemma 5.5, we see that

dim Ker(∆0
g)γ+2 = L

so that {h1, . . . , hL} is necessarily a basis for Ker(∆0
g)γ+2. Since 1 ∈ Ker(∆0

g)γ+2 there exist a1, . . . , aL ∈
R such that

a1h1 + · · · + aLhL = 1 (5.30)

and each aj 6= 0, as otherwise the left hand side of equation (5.30) tends to zero on some end of X.
We now rescale the hj so that

h1 + · · · + hL = 1 (5.31)

and fix this preferred basis {h1, . . . , hL} for the rest of Chapter 5.

For each 1 6 j 6 L define h1
j ∈ C∞(X) to be a function constant on the ends of X, constantly

equal to 1 on the jth end of X and 0 on the other ends of X. So in the notation of Section 5.1.2,
hj = fej

. Then from equation (5.31) we see that

hj − h1
j ∈ C∞

γ+2(X) (5.32)
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for all γ + 2 > 2 − n and 1 6 j 6 L. Note that a consequence of equation (5.32) is that hj ∈ C∞
0 (X)

for each 1 6 j 6 L, and therefore

Ker(∆0
g)0 = Ker(∆0

g)γ+2 = Span{h1, . . . , hL} (5.33)

for all 0 6 γ + 2 < λ.

Note that dhj ∈ C∞
γ+1(T

∗X) for all γ + 2 > 2 − n and 1 6 j 6 L. Also the vector space

Span{dh1, . . . ,dhL} 6 C∞
γ+1(T

∗X) (5.34)

has dimension L− 1, because the linear map

d : Ker(∆0
g)0 → dKer(∆0

g)0 (5.35)

is surjective and has a 1-dimensional kernel {c1h1 + · · · + cLhL : c1 = · · · = cL}. Note that although

dKer(∆0
g)γ+2 = Span{dh1, . . . ,dhL} (5.36)

for all 0 6 γ + 2 < λ it is not the case (unless L = 1) that

dKer(∆0
g)γ+2 = Span{dh1, . . . ,dhL} (5.37)

for any 2 − n < γ + 2 < 0, because for such γ + 2 the left hand side of equation (5.37) is zero,
whereas the right hand side has dimension L− 1. All we assert is that the dhj lie in C∞

γ+1(T
∗X) for

all 2 − n < γ + 2 < 0.

Lemma 5.12 For each 1 6 j, k 6 L we have
∫

X

dhj ∧ ∗gdhk = [Σj ] · [∗gdhk]

where in the right hand side we use the pairing (5.18).

Proof: This follows from Lemma 5.11 and an integration by parts once we note that, for all S > 0:
∫

XS

d(hj − h1
j ) ∧ ∗gdhk =

∫

XS

d
(
(hj − h1

j ) ∗g dhk
)

=

∫

∂XS

(hj − h1
j ) ∗g dhk → 0

since (hj − h1
j ) ∈ C0

γ+2(X), dhk ∈ C0
γ+1(T

∗X) for all γ + 2 > 2 − n, and furthermore Vol(∂XS , g) =

O(e(n−1)S).

It follows from Lemma 5.12 that the vector space Ker(∆0
g)0 = Span{h1, . . . , hL} is endowed with

a positive, semi-definite bilinear form 〈 , 〉 defined by

〈h, h〉 :=

∫

X

|dh|2gdVg =
L∑

j,k=1

cjck[Σj ] · [∗gdhk]

for all h = c1h1 + · · · + cLhL ∈ Ker(∆0
g)0. Since dh = 0 precisely when c1 = · · · = cL we deduce that

〈 , 〉 becomes the usual L2-inner product on Span{dh1, . . . ,dhL} after we push down using the map
(5.35). If we let A be the symmetric L× L real matrix with entries

ajk := [Σj ] · [∗gdhk] (5.38)

then we have

KerA =
{
(c1, . . . , cL) ∈ RL : c1 = · · · = cL

}

ImA =
{
(a1, . . . , aL) ∈ RL : a1 + · · · + aL = 0

}
,

since A is self-adjoint. These facts will be useful later. In the sequel we shall always let (ajk) ⊆ R

denote the real numbers defined as in equation (5.38) above.

We conclude this section with some integration by parts formulae. For each 1 6 j 6 L we define
h2
j ∈ C∞(X) to be any function equal to e(2−n)t on the jth end of X and 0 on the other ends of X.
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Lemma 5.13 For each 1 6 j, k 6 L we have
∫

X

(∆0
gh

1
j )hkdVg = [Σj ] · [∗gdhk] (5.39)

∫

X

(∆0
gh

2
j )hkdVg =

{
(n− 2)Vol(Σj , gΣ) if j = k
0 if j 6= k

(5.40)

where in the right hand side of equation (5.39) we use the pairing (5.18).

Proof: Equation (5.39) follows straight from Lemma 5.11 as each h1
j is constant on the ends of X.

For equation (5.40) we compute, for S > 0:
∫

XS

(∆0
gh

2
j )hkdVg = −

∫

XS

hk(d ∗g dh2
j )

= −
∫

XS

(
d(hk ∗g dh2

j ) − dhk ∧ ∗gdh2
j

)

=

∫

XS

dhk ∧ ∗gdh2
j −

∫

∂XS

hk(∗gdh2
j ). (5.41)

The first term of (5.41) is
∫

XS

dhk ∧ ∗gdh2
j =

∫

XS

dh2
j ∧ ∗gdhk =

∫

XS

d(h2
j ∗g dhk) =

∫

∂XS

h2
j ∗g dhk

and this tends to 0 as S → ∞, because h2
j ∈ C0

2−n(X), dhk ∈ C0
γ+1(T

∗X) for all γ + 2 > 2 − n, and

Vol(∂XS , g) = O(e(n−1)S).

The second term of (5.41) is
∫

∂XS

hk(∗gdh2
j ) =

∫

∂XS

h1
k(∗gdh2

j ) +

∫

∂XS

(hk − h1
k) ∗g dh2

j

and since dh2
j ∈ C0

1−n(T
∗X), hk − h1

k ∈ C∞
γ+2(X) for all γ + 2 > 2 − n, we deduce that

∫

∂XS

hk(∗gdh2
j ) →

{
(2 − n)Vol(Σj , gΣ) if j = k
0 if j 6= k

as S → ∞. The Dominated Convergence Theorem now implies that the integral (5.40) exists and is
as given.

5.1.4 Strongly asymptotically conical metrics

In order to derive further properties of the harmonic functions Ker(∆0
g)β+2 we shall have to assume

stronger decay conditions on our asymptotically conical metric g on X. Let α ∈ RL with α < 0. We
shall say that the metric g on X is strongly asymptotically conical with rate α if

sup
{t}×Uν

∣∣ρν∂λ
(
gij − g̃ij

)∣∣ = O(e(α+2)t) (5.42)

for each 1 6 ν 6 N , 1 6 i, j 6 n and |λ| > 0. In coordinate-free terms, equation (5.42) is the same as
requiring

sup
{t}×Σ

∣∣∇j
g̃(g − g̃)

∣∣
g̃

= O(e(α−j)t)

for each j > 0. Of course, any strongly asymptotically conical metric is asymptotically conical. For
the rest of this chapter (except for Section 5.2.4) we assume that g is a strongly asymptotically conical
metric on X which has rate α < 0.
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Lemma 5.14 1. The operator d∗
g − d∗

g̃ : C∞
c (ΛrT ∗X) → C∞

c (Λr−1T ∗X) is an asymptotically
conical operator of rate 1 − α.

2. The operator (d∗
g + d) − (d∗

g̃ + d) : C∞
c (ΛT ∗X) → C∞

c (ΛT ∗X) is an asymptotically conical
operator of rate 1 − α.

3. The operator ∆r
g − ∆r

g̃ : C∞
c (ΛrT ∗X) → C∞

c (ΛrT ∗X) is an asymptotically conical operator of
rate 2 − α.

Proof: The first assertion can be established via a local coordinate calculation. The second and third
assertions then follow from the equations

(d∗
g + d) − (d∗

g̃ + d) = d∗
g − d∗

g̃

∆r
g − ∆r

g̃ = d(d∗
g − d∗

g̃) + (d∗
g − d∗

g̃)d

and Lemma 4.19.

One can consider (5.32) as the first in a series of equations giving an asymptotic expansion of
the harmonic functions h1, . . . , hL, in terms of functions which are harmonic on the exactly conical
Riemannian manifold (X∞, g̃). Then the first such approximation to hj is given in equation (5.32)
by h1

j . When the metric g is strongly asymptotically conical we can give the second order terms in

the asymptotic expansion for the hj . For the purposes of the following lemma, if β, δ ∈ RL then we
denote the L-tuple with jth entry max{βj , δj} by max{β, δ}.

Lemma 5.15 For each 1 6 j, k 6 L define

bjk :=
−ajk

(n− 2)Vol(Σk, gΣ)
=

−[Σj ] · [∗gdhk]
(n− 2)Vol(Σk, gΣ)

. (5.43)

Then the functions

fj := hj − h1
j −

L∑

k=1

bjkh
2
k (5.44)

lie in C∞
β+2(X) for all max{2 − n+ α, 2 − n− λ} < β + 2 < 2 − n and 1 6 j 6 L.

Proof: Let 1 6 j 6 L. For arbitrary (bjk) ⊆ R consider

∆0
g

(
hj − h1

j −
L∑

k=1

bjkh
2
k

)
=
(
∆0
g̃ − ∆0

g

)
(

L∑

k=1

bjkh
2
k

)
(5.45)

modulo elements of C∞
c (X). It follows from Lemma 5.14 that

∆0
g

(
hj − h1

j −
L∑

k=1

bjkh
2
k

)
∈ C∞

−n+α(X). (5.46)

Now for each 1 6 l 6 L we have:

∫

X

∆0
g

(
hj − h1

j −
L∑

k=1

bjkh
2
k

)
hldVg = −

∫

X

(∆0
gh

1
j )hldVg −

L∑

k=1

bjk

∫

X

(∆0
gh

2
k)hldVg

= −[Σj ] · [∗gdhl] −
L∑

k=1

bjk(n− 2)Vol(Σk, gΣ)δkl

= −[Σj ] · [∗gdhl] − bjl(n− 2)Vol(Σl, gΣ)
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where we use Lemma 5.13. Now put

bjk :=
−[Σj ] · [∗gdhk]

(n− 2)Vol(Σk, gΣ)
(5.47)

and pick any max{2 − n+ α, 2 − n− λ} < β + 2 < 2 − n. Then from equation (5.46) we have

∆0
g

(
hj − h1

j −
L∑

k=1

bjkh
2
k

)
∈ Lp∞,β(X) (5.48)

and 2 − n− λ < β + 2 < 2 − n so by Theorem 4.25 there exists fj ∈ Lpk+2,β+2(X) such that

∆0
gfj = ∆0

g

(
hj − h1

j −
L∑

k=1

bjkh
2
k

)
.

Now the elliptic regularity Theorem 4.21 together with equation (5.48) tells us that

fj ∈ Lp∞,β+2(X) ⊆ C∞
β+2(X)

and the Maximum Principle 5.2 then gives

fj = hj − h1
j −

L∑

k=1

bjkh
2
k

so we are done.

In the sequel we shall always let (bjk) ⊆ R denote the real numbers defined as in equation (5.43)
above. Also, (fj) ⊆ C∞

β+2(X) will always denote the functions defined in equation (5.44) above.
Using analogues of Lemma 5.13 for g̃-harmonic functions with even stronger decay we could compute
further terms of the asymptotic expansion for the hj in terms of the g̃-harmonic functions on X∞. A
particular consequence of (5.44) is the fact that

hj − h1
j ∈ C∞

2−n(X) (5.49)

with even stronger decay when the bjk given in equation (5.43) vanish. It follows from (5.49) that
dhj ∈ C∞

1−n(T
∗X) for each 1 6 j 6 L.

We can use Lemma 5.15 to deduce further useful information about the Laplacian ∆0
g acting on

functions with low growth rate.

Corollary 5.16 If max{2 − n+ α, 2 − n− λ} < β + 2 < 2 − n and ξ ∈ Lpk+1,β+1(T
∗X) then:

1. There exists f ∈ C∞
2−n(X) and f̃ ∈ Lpk+2,β+2(X) such that

∆0
g(f̃ + f) = d∗

gξ. (5.50)

2. There exists fb ∈ C∞(X) constant on the ends of X and F ∈ Lpk+2,β+2(X) such that

∆0
g(F + fb) = d∗

gξ. (5.51)

Proof: First of all, for arbitrary (aj) ⊆ R and 1 6 l 6 L consider:

〈
d∗
gξ −

L∑

j=1

aj∆
0
gh

2
j

∣∣∣hl
〉
L2(X)

= 〈d∗
gξ|hl〉L2(X) − al(n− 2)Vol(Σl, gΣ)
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by Lemma 5.13. Therefore defining

aj :=
〈d∗
gξ|hj〉L2(X)

(n− 2)Vol(Σj , gΣ)

and using the fact that

d∗
gξ −

L∑

j=1

aj∆
0
gh

2
j ∈ C∞

−n+α(X) ⊆ Lpk,β(X),

where 2 − n − λ < β + 2 < 2 − n, we deduce from Theorem 4.25 that there exists f̃ ∈ Lpk+2,β+2(X)
such that

∆0
g


f̃ +

L∑

j=1

ajh
2
j


 = d∗

gξ

and this proves the first assertion, putting f :=
∑L
j=1 ajh

2
j .

For the second assertion, observe that since

L∑

j=1

(n− 2)Vol(Σj , gΣ)aj =

L∑

j=1

〈d∗
gξ|hj〉L2(X) = 〈d∗

gξ|1〉L2(X) = 0

there exists (bj) ⊆ R such that

L∑

j=1

ajkbj = (n− 2)Vol(Σk, gΣ)ak

for each 1 6 k 6 L, so that
∑L
j=1 bjkbj = −ak for each 1 6 k 6 L. Recall that the real numbers

(ajk) ⊆ R are as defined in Section 5.1.3. Now we have

d∗
gξ = ∆0

g


f̃ +

L∑

j=1

ajh
2
j




= ∆0
g


f̃ +

L∑

j=1

(
ajh

2
j + bjhj

)



= ∆0
g


f̃ +

L∑

j=1

(
ajh

2
j + bj

(
fj + h1

j +
L∑

k=1

bjkh
2
k

))


= ∆0
g


f̃ +

L∑

j=1

bj(fj + h1
j )




and we are done, putting F := f̃ +
∑L
j=1 bjfj , which lies in Lpk+2,β+2(X) by Lemma 5.15.

5.2 The infinitesimal deformation space

The main reason we have developed the theory above is so that the vector space

Kβ+1 :=
{
ξ ∈ C∞

β+1(T
∗X) : dξ = d∗

gξ = 0
}

(5.52)

may be examined more closely. Because of Lemma 2.29 the infinitesimal deformations of a special
Lagrangian submanifold X may be thought of as the space of closed and coclosed 1-forms on the
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manifold X. When X is strongly asymptotically conical, the infinitesimal deformations which preserve
being strongly asymptotically conical and special Lagrangian are precisely those in the vector space
Kβ+1 defined above, for a certain value of β + 1 ∈ RL which corresponds to the decay rate α of the
metric on X (in fact, as we shall see in Chapter 6, the relationship is β = α). This is the reason we
are interested in the Kβ+1 spaces. In particular we are interested in the dimension of the vector space
Kβ+1: we know it has finite dimension because Kβ+1 6 Ker(d∗

g + d)β+1 and we may then appeal to
Corollary 4.23.

Define a map

ψβ+1 : Kβ+1 → H1(X) (5.53)

ξ 7→ [ξ]

for each β + 1 ∈ RL. Then

dimKβ+1 = dim Kerψβ+1 + dim Imψβ+1 (5.54)

where Kerψβ+1 measures the failure of elements of Kβ+1 to represent cohomology classes in H1(X)
uniquely and Imψβ+1 measures the extent to which Kβ+1 represents the whole cohomology group
H1(X). A proper understanding of the kernel and image of the map ψβ+1 requires the use of the
long exact sequence (5.27). Before we begin our calculations we make the trivial observation that
Kβ+1 6 Kγ+1, Kerψβ+1 6 Kerψγ+1 and Imψβ+1 6 Imψγ+1, whenever β + 2 6 γ + 2.

5.2.1 Calculating Kerψβ+1

Lemma 5.17 If β + 2 ∈ RL and β + 2 > 0 then Kerψβ+1 = dKer(∆0
g)β+2.

Proof: Clearly applying the exterior derivative to any harmonic function gives a closed and coclosed
1-form. Therefore dKer(∆0

g)β+2 ⊆ Kerψβ+1. To see the reverse inclusion, take any ξ ∈ Kerψβ+1.
Then there exists f ∈ C∞(X) such that df = ξ and from Lemma 5.10 we deduce that f ∈ C∞

β+2(X).

Since ξ is coclosed we have ∆0
gf = 0 so that f ∈ Ker(∆0

g)β+2 as required.

It follows from Lemma 5.17 and equation (5.36) that

Kerψβ+1 = Span{dh1, . . . ,dhL}

for all 0 6 β + 2 < λ. Since each dhj is a closed and coclosed 1-form lying in C∞
1−n(T

∗X) we deduce
that dhj ∈ K1−n 6 Kβ+1 for all β + 2 > 2 − n. Therefore

Kerψβ+1 = Span{dh1, . . . ,dhL}

for all 2− n 6 β + 2 < λ. There is more to say about this space when 2− n < β + 2 < 0, as we see in
the next lemma.

Lemma 5.18 Recall the definition (5.24) of the map φ1 : H1
c (X) → H1(X). If β + 2 < 0 then there

exists an injective map
θβ+1 : Kerψβ+1 → Kerφ1. (5.55)

When 2 − n < β + 2 < 0 the map (5.55) is onto and acts as

θβ+1(c1dh1 + · · · + cLdhL) = [dfc] (5.56)

for all c = (c1, . . . , cL) ∈ RL.

Proof: Let β+2 < 0 and suppose that ξ ∈ Kerψβ+1. Then there exists f ∈ C∞(X) such that df = ξ
and then from Lemma 5.10 we see that there exists fc ∈ C∞(X) constant on the ends of X such that

f̂ := f − fc ∈ C∞
β+2(X). Define

θβ+1(ξ) := [dfc]
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a class in H1
c (X) lying in Kerφ1. Clearly f is uniquely determined by ξ up to constants and fc is

uniquely determined by f up to elements of C∞
c (X), so that θβ+1 is well-defined as a map into H1

c (X).

To see that the map (5.55) is injective, suppose that there exists f̃ ∈ C∞
c (X) such that df̃ = dfc.

Then f̃ − fc is constant and the entries of the L-tuple c are all equal. Abusing notation we write
c = (c, . . . , c). Then f − c ∈ C∞

β+2(X) and moreover

∆0
g(f − c) = ∆0

gf = d∗
gξ = 0.

The Maximum Principle 5.2 now shows that f = c so that ξ = 0 as required.

Suppose now that 2− n < β + 2 < 0. Let [dfc] ∈ Kerφ1 where c ∈ RL. Then ∆0
gfc ∈ C∞

c (X) and

by Corollary 5.4 we see that there exists f̂ ∈ Lpk+2,β+2(X) such that

∆0
g f̂ = −∆0

gfc. (5.57)

Put f := f̂ + fc and consider now ξ := df . Elliptic regularity for equation (5.57) shows that f̂ and
hence ξ are smooth, and since ξ ∈ Lpk+1,β+1(X) is closed and coclosed we may invoke Theorem 4.21 to
see that ξ ∈ Kerψβ+1. It is clear that θβ+1(ξ) = [dfc]. Also the properties of the harmonic functions
hj established in Section 5.1.3 show that the action of the map (5.55) is as given in (5.56).

Note that Lemma 5.17 provides a good way of evaluating dim Kerψβ+1 when β + 2 ∈ RL \D(∆0
g)

and β + 2 > 0, because in this situation we have

dim Kerψβ+1 = dim
(
dKer(∆0

g)β+2

)
= dim Ker(∆0

g)β+2 − 1 = dim Ker(∆0
g)
p
β+2 − 1

which we compute using the material of Section 5.1.1. The cases β + 2 > 0 and β + 2 ∈ D(∆0
g) can

be similarly dealt with once we prove the following lemma.

Lemma 5.19 Let β + 2 > 0 with β + 2 ∈ D(∆0
g). Then for suitably small ε > 0

Ker(∆0
g)
p
β+2 = Ker(∆0

g)
p
β+2−ε

Ker(∆0
g)β+2 = Ker(∆0

g)β+2+ε.

Proof: Take any small ε > 0 such that β + 2 + tε ∈ RL \ D(∆0
g) for each 0 < |t| 6 1. Then we have

Ker(∆0
g)
p
β+2−ε = Ker(∆0

g)β+2−ε

6 Ker(∆0
g)
p
β+2 (5.58)

6 Ker(∆0
g)β+2 (5.59)

6 Ker(∆0
g)
p
β+2+ε (5.60)

= Ker(∆0
g)β+2+ε

and we wish to show that equality holds in inclusion (5.58) and inclusion (5.60). Since

D(∆0
g) =

(
D(∆0

g, 1) × RL−1
)
∪
(
R ×D(∆0

g, 2) × RL−2
)
∪ · · · ∪

(
RL−1 ×D(∆0

g, L)
)

there exists an 1 6 r 6 L and 1 6 j1 < · · · < jr 6 L such that for each 1 6 j 6 L we have
βj + 2 ∈ D(∆0

g, j) precisely when j = jl for some 1 6 l 6 r. Without loss of generality suppose that
jl = l for each 1 6 l 6 r. Then given 1 6 j 6 r we have

µj := (βj + 2)(βj + n) ∈ Spec(Σj ,∆
0
g, 0).

For each 1 6 j 6 r put
Vj := Ker(∆0

gΣ − µj) ∩ C∞(Σj)
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and choose a basis {k1
j , . . . , k

nj

j } for each Vj . Now for each 1 6 j 6 r and 1 6 i 6 nj define functions

hij ∈ C∞(X) such that hij = e(βj+2)tkij on the jth end of X and hij = 0 on the other ends of X. Then

since each ∆0
g̃h
i
j is compactly supported we deduce

∆0
gh
i
j ∈ C∞

β+α(X)

for each 1 6 j 6 r and 1 6 i 6 nj . Now choose some δ ∈ RL such that 0 < δ < −α, β + 2 + α+ δ ∈
RL \ D(∆0

g) and β + 2 + α+ δ > 2 − n. Then since

∆0
g : Lpk+2,β+2+α+δ(X) → Lpk,β+α+δ(X)

is onto and each ∆0
gh
i
j ∈ C∞

β+α(X) 6 Lpk,β+α+δ(X) we deduce that there exist f ij ∈ Lpk+2,β+2+α+δ(X)
such that

∆0
gf

i
j = ∆0

gh
i
j

for each 1 6 j 6 r and 1 6 i 6 nj . Therefore we have

Span
{
f ij − hij : 1 6 j 6 r and 1 6 i 6 nj

}
6 Ker(∆0

g)β+2 (5.61)

and the left hand side of the inclusion (5.61) is a vector space of dimension n1 + · · · + nr. We also
have

Span
{
f ij − hij : 1 6 j 6 r and 1 6 i 6 nj

}
∩ Ker(∆0

g)
p
β+2 = {0}

and
dim Ker(∆0

g)β+2+ε − dim Ker(∆0
g)β+2−ε = n1 + · · · + nr

so that 0 6 dim Ker(∆0
g)β+2 − dim Ker(∆0

g)
p
β+2 6 n1 + · · · + nr. It now follows that

Ker(∆0
g)β+2 = Span

{
f ij − hij : 1 6 j 6 r and 1 6 i 6 nj

}
⊕ Ker(∆0

g)
p
β+2 (5.62)

and we are done: equality in (5.58) and in (5.60) comes from equation (5.62), because the dimension
jump at (5.59) is as big as it can be.

So Lemma 5.19 is saying that for fixed β + 2 ∈ RL the function t 7→ dim Ker(∆0
g)β+2+tε is upper

semi-continuous, and that t 7→ dim Ker(∆0
g)
p
β+2+tε lower semi-continuous.

The previous results show that for all β + 2 > 0 can choose a suitably small ε > 0 so that
β + 2 + ε ∈ RL \ D(∆0

g) and then we have

dim Kerψβ+1 = dim dKer(∆0
g)β+2

= dim Ker(∆0
g)β+2 − 1

= dim Ker(∆0
g)β+2+ε − 1

= dim Ker(∆0
g)
p
β+2+ε − 1

= L− 1 + χ(β + 2)

where the analytic piece of data χ(β + 2) is defined in equation (5.13).

We end this section on Kerψβ+1 by showing that this space must vanish for small enough growth
rates β + 2.

Lemma 5.20 If β + 2 < 2 − n then Kerψβ+1 = {0}.

Proof: Suppose that β + 2 < 2 − n and ξ ∈ Kerψβ+1. Take some harmonic h ∈ C∞(X) such that
dh = ξ. From Lemma 5.10 we deduce that h must be bounded, and then for S > 0 we may compute

∫

XS

|ξ|2gdVg =

∫

XS

dh ∧ ∗gdh =

∫

∂XS

h(∗gdh) =

∫

∂XS

h(∗gξ) (5.63)

since d(h ∗g dh) = dh∧∗gdh+h(d ∗g dh). But we now observe that Vol(∂XS , g) = O(e(n−1)S) so that
the right hand side of equation (5.63) tends to 0 as S → ∞. Therefore ξ = 0 and we are done.
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5.2.2 Calculating Imψβ+1

Lemma 5.21 If β + 2 < 0 then Imψβ+1 6 Imφ1.

Proof: Suppose that ξ ∈ Kβ+1 and consider the cohomology class [ξ] ∈ H1(X). Refer to the long
exact sequence (5.27). To show that [ξ] ∈ Imφ1 we show that [ξ] ∈ Ker p1 or equivalently that

[i∗t ξ] · [τ ] =

∫

τ

i∗t ξ = 0

for all homology classes [τ ] ∈ H1(Σ). Without loss of generality suppose that τ ⊆ Σj . Since ξ ∈
C∞
β+1(T

∗X) we have that |i∗t ξ|gΣ = O(e(βj+2)t) on the component Σj of Σ. Then there exists a
constant A > 0 such that for suitably large t > T

∣∣∣∣
∫

τ

i∗t ξ

∣∣∣∣ 6 A · e(βj+2)t

and hence we are done.

Lemma 5.22 If β + 2 > 2 − n then Imφ1 6 Imψβ+1.

Proof: Since Imψβ+1 is decreasing with β+1 we may without loss of generality suppose that β+2 ∈
RL \ D(∆0

g). Suppose that ξ ∈ C∞
c (T ∗X) with dξ = 0 and consider [ξ] ∈ H1(X). Then as −d∗

gξ ∈
C∞
c (X) 6 Lp0,β(X) we deduce from Corollary 5.4 that there exists f ∈ Lp2,β+2(X) with ∆0

gf = −d∗
gξ.

Since −d∗
gξ ∈ Lp∞,β(X), elliptic regularity as in Theorem 4.21 shows that f ∈ Lp∞,β+2(X) 6 C∞

β+2(X),
so that ξ + df is an element of Kβ+1 and we are done.

In actual fact, we have Imφ1 6 Imψβ+1 for β + 2 slightly smaller than 2 − n, as we now go on to
prove. Clearly this implies the previous result, but we have included the proof of Lemma 5.22 above
because it is simpler than the proof of Lemma 5.23 below, and Lemma 5.22 does not rely on the strong
decay properties of the asymptotically conical metric g.

Lemma 5.23 If max{2 − n+ α, 2 − n− λ} < β + 2 < 2 − n then Imφ1 6 Imψβ+1.

Proof: Suppose that β+2 ∈ RL with max{2−n+α, 2−n−λ} < β+2 < 2−n. Take any ξ ∈ C∞
c (X)

with dξ = 0. We must find an f ∈ C∞(X) such that df + ξ ∈ Kβ+1, or equivalently df ∈ C∞
β+1(T

∗X)

and ∆0
gf = −d∗

gξ. For this we simply invoke Corollary 5.16: since ξ ∈ Lp1,β+1(T
∗X) there exists

F ∈ Lp2,β+2(X) and fb ∈ C∞(X) constant on the ends of X such that ∆0
g(F + fb) = −d∗

gξ. Elliptic

regularity tells us that since −∆0
gfb − d∗

gξ ∈ C∞
c (X) we have

F ∈ Lp∞,β+2(X) ⊆ C∞
β+2(X)

and then we are done after putting f = F + fb.

It follows from Lemma 5.21 and Lemma 5.23 that Imψβ+1 = Imφ1 for all max{2−n+α, 2−n−λ} <
β + 2 < 0. We now deal with the cases β + 2 > 0.

Lemma 5.24 If β + 2 > 0 then Imψβ+1 = H1(X).

Proof: Since Imψβ+1 is increasing with β+1 we may without loss of generality suppose that β+2 ∈
RL \D(∆0

g). Now, Corollary 5.9 tells us that any class in H1(X) can be represented by a closed form
ξ ∈ C∞

−1(T
∗X). Since

−d∗
gξ ∈ C∞

−2(X) 6 Lp0,β(X)
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we know from Corollary 5.4 that there exists f ∈ Lp2,β+2(X) with ∆0
gf = −d∗

gξ. Now the weighted

regularity Theorem 4.21 implies f ∈ Lp∞,β+2(X) and then the Embedding Theorem 4.17 shows that
f ∈ C∞

β+2(X) so that ξ + df ∈ Kβ+1 as required.

In actual fact, we have Imψ−1 = H1(X), as we now go on to prove. Clearly this implies the
previous result, but we have included the proof of Lemma 5.24 above because it is simpler than the
proof of Lemma 5.25 below, and Lemma 5.24 does not rely on the strong decay properties of the
asymptotically conical metric g.

Lemma 5.25 Imψ−1 = H1(X).

Proof: By Corollary 5.9 any cohomology class in H1(X) can be represented by a closed form η ∈
C∞

−1(T
∗X), and moreover we may suppose that there exists an S > 0 and σ ∈ C∞(T ∗Σ) such that

η = π∗σ over X \ XS . By perturbing σ by an exact 1-form on Σ we may further suppose that σ is
gΣ-harmonic.

We wish to find an f ∈ C∞(X) such that df ∈ C∞
−1(T

∗X) and ∆0
gf = −d∗

gη. Now, a priori
−d∗

gη ∈ C∞
−2(X), but can we do any better? In fact, we can: working over X \XS we have

∗g̃η = −e(n−2)tdt ∧
(
π∗(∗gΣσ)

)

so that
d(∗g̃η) = e(n−2)tdt ∧ d

(
π∗(∗gΣσ)

)
= e(n−2)tdt ∧ π∗(d(∗gΣσ)

)
.

It follows that d∗
g̃η = 0 precisely when d∗

gΣσ = 0, which is evidently the case as σ is gΣ-harmonic
and Σ is compact. Now over X we have −d∗

gη = −(d∗
g − d∗

g̃)η, modulo elements of C∞
c (X) and from

Lemma 5.14 we deduce that −d∗
gη ∈ C∞

−2+α(X). Now choose any ε ∈ RL so that 2 − n < ε + α < 0
and ε > 0 and then

∆0
g : Lpk+2,α+ε(X) → Lpk,−2+α+ε(X)

is an isomorphism, by Corollary 5.3 and Corollary 5.4. Since −d∗
gη ∈ C∞

−2+α(X) 6 Lpk,−2+α+ε(X) we

deduce that there exists f ∈ Lpk+2,α+ε(X) such that ∆0
gf = −d∗

gη, with elliptic regularity showing

f ∈ Lp∞,α+ε(X) 6 C∞
0 (X)

and we are done.

We finish this section on Imψβ+1 by considering the remaining case β + 2 < 2 − n, so that
Imψβ+1 6 Imφ1. In the following lemma we give a condition for an element of Imφ1 to lie in
Imψβ+1. In general, it is quite hard to check explicitly if this condition holds. An exception is the
case L = 1 and β+ 2 is only just smaller that 2−n: in this situation there are no harmonic functions
on X with small positive growth rate other than constants so that dKer(∆0

g)−β−n = 0.

Lemma 5.26 Let β + 2 < 2 − n with β + 2 ∈ RL \ D(∆0
g). Let σ̃ ∈ C∞

c (T ∗X) with dσ̃ = 0 so that
[σ̃] ∈ Imφ1. Then [σ̃] ∈ Imψβ+1 precisely when there exists fc ∈ C∞(X) constant on the ends of X
such that

〈dh|σ̃ − dfc〉L2(T∗X) = 0 (5.64)

for all h ∈ Ker(∆0
g)−β−n.

Proof: Clearly [σ̃] ∈ Imψβ+1 precisely when there exists an f̂ ∈ C∞(X) such that σ̃ + df̂ ∈ Kβ+1,

that is, df̂ ∈ C∞
β+1(T

∗X) and ∆0
g f̂ = −d∗

gσ̃.

Suppose that there exists fc ∈ C∞(X) constant on the ends of X such that equation (5.64) holds
for all h ∈ Ker(∆0

g)−β−n. Then there exists f ∈ Lp2,β(X) such that ∆0
gf = ∆0

gfc − d∗σ̃ and by elliptic

regularity and the embedding theorems f ∈ C∞
β+2(X). Taking f̂ := f − fc shows [σ̃] ∈ Imψβ+1.
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Suppose conversely that there exists an f̂ ∈ C∞(X) such that df̂ ∈ C∞
β+1(T

∗X) and ∆0
g f̂ = −d∗

gσ̃.

Then by Lemma 5.10 there exists fc ∈ C∞(X) constant on the ends of X such that f := f̂ + fc lies
in C∞

β+2(X) and therefore

〈dh|σ̃ − dfc〉L2(T∗X) = 〈h|d∗
gσ̃ − ∆0

g(f − f̂)〉L2(X) = −〈∆0
gh|f〉L2(X) = 0

for all h ∈ Ker(∆0
g)−β−n. Hence we are done.

5.2.3 Results for dimKβ+1

The purpose of this section is merely to summarise the results of Section 5.2.1 and Section 5.2.2
above. We observe that for β + 2 > 0 we have dim dKer(∆0

g)β+2 = dim Ker(∆0
g)β+2 − 1 since the

linear map d : Ker(∆0
g)β+2 → dKer(∆0

g)β+2 is surjective and has kernel the 1-dimensional subspace
of Ker(∆0

g)β+2 consisting of the constant functions. In particular, for small positive β + 2 we have

dim dKer(∆0
g)β+2 = dim Span{dh1, . . . ,dhL} = L− 1.

Also we have
dim Imφ1 = dimH1

c (X) − dim Kerφ1 = b1c(X) − L+ 1.

The various results of Section 5.2 are now summarised in Table 5.1. The definition of the analytic
piece of data χ(β + 2) is given in Section 5.1.1.

Growth rate Kerψβ+1 Imψβ+1 dimKβ+1

β + 2 > 0 d Ker(∆0
g)β+2 H1(X) b1(X) + L− 1 + χ(β + 2)

β + 2 = 0 Span{dh1, . . . , dhL} H1(X) b1(X) + L− 1
2 − n < β + 2 < 0 Span{dh1, . . . , dhL} Imφ1 b1c(X)
β + 2 = 2 − n Span{dh1, . . . , dhL} Imφ1 b1c(X)

max{2 − n+ α, 2 − n− λ} < β + 2 < 2 − n 0 Imφ1 b1c(X) − L+ 1
β + 2 6 max{2 − n+ α, 2 − n− λ} 0 6 Imφ1 6 b1c(X) − L+ 1

Table 5.1: The kernels and images of the representation map ψβ+1, together with the dimensions of
the infinitesimal deformation space Kβ+1, for strongly asymptotically conical Riemannian manifolds
(X, g) with rate α < 0

Suppose that we are interested in the infinitesimal deformations of a strongly asymptotically conical
special Lagrangian submanifold as an asymptotically conical special Lagrangian submanifold. To this
end, define Ĉkβ+1(T

∗X) to be the vector space of 1-forms ξ on X which are of class Ck such that

sup
{t}×Σ

∣∣∇j
gξ
∣∣
g

= o(e(β+1−j)t)

for all 0 6 j 6 k. Then Ĉkβ+1(T
∗X) 6 Ckβ+1(T

∗X) is a closed subspace: in fact Ĉkβ+1(T
∗X) is the

closure of C∞
c (T ∗X) in Ckβ+1(T

∗X). We now put

Ĉ∞
β+1(T

∗X) :=
∞⋂

k=0

Ĉkβ+1(T
∗X)

and then K̂β+1 :=
{
ξ ∈ Ĉ∞

β+1(T
∗X) : dξ = d∗

gξ = 0
}

6 Kβ+1, with a projection ψ̂β+1 := ψβ+1|K̂β+1
.

From the results given in Table 5.1, together with small modifications of the proofs in Section 5.2.1
and Section 5.2.2 above, we can compile a Table 5.2 which gives the dimensions of the spaces K̂β+1

for various β + 2 ∈ RL. The definition of the analytic piece of data χ̂(β + 2) is given in Section 5.1.1.
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Growth rate Ker ψ̂β+1 Im ψ̂β+1 dim K̂β+1

β + 2 > 0 d Ker(∆0
g)p

β+2 H1(X) b1(X) + L− 1 + χ̂(β + 2)

β + 2 = 0 Span{dh1, . . . , dhL} Imφ1 b1c(X)
2 − n < β + 2 < 0 Span{dh1, . . . , dhL} Imφ1 b1c(X)
β + 2 = 2 − n 0 Imφ1 b1c(X) − L+ 1

max{2 − n+ α, 2 − n− λ} < β + 2 < 2 − n 0 Imφ1 b1c(X) − L+ 1
β + 2 6 max{2 − n+ α, 2 − n− λ} 0 6 Imφ1 6 b1c(X) − L+ 1

Table 5.2: The kernels and images of the representation map ψ̂β+1, together with the dimensions of

the infinitesimal deformation space K̂β+1, for strongly asymptotically conical Riemannian manifolds
(X, g) with rate α < 0

If we are interested in the space K̂1 of infinitesimal deformations of X as an asymptotically conical
special Lagrangian submanifold, then we have β + 2 = 2 and

dim K̂1 = b1(X) + L− 1 + χ̂(2)

where

χ̂(2) =
∑{

dim Ker(∆0
gΣ − µ) :

0 < µ < 2n
µ ∈ Spec(Σ,∆0

gΣ , 0)

}
.

5.2.4 Results for non-strong decay

Although it is not our primary concern, we shall note here what happens in the situation that the
metric g on X is merely asymptotically conical, rather than strongly asymptotically conical. In this
case we have Lemmas 5.17, 5.18, 5.20, 5.21, 5.22, 5.24, 5.26 holding and we can go on to fill in a
version of Table 5.2 for asymptotically conical metrics. This is Table 5.3: we have only given proofs
in the case β + 2 ∈ RL \ D(∆0

g).

Growth rate Ker ψ̂β+1 Im ψ̂β+1 dim K̂β+1

β + 2 > 0 and β + 2 ∈ RL \ D(∆0
g) d Ker(∆0

g)p

β+2 H1(X) b1(X) + L− 1 + χ̂(β + 2)

2 − n < β + 2 < 0 Span{dh1, . . . , dhL} Imφ1 b1c(X)
β + 2 < 2 − n 0 6 Imφ1 6 b1c(X) − L+ 1

Table 5.3: The kernels and images of the representation map ψ̂β+1, together with the dimensions of

the infinitesimal deformation space K̂β+1, for asymptotically conical Riemannian manifolds (X, g)



Chapter 6

Deformations of AC special

Lagrangian submanifolds of Cn

In chapter we consider the deformation problem for a certain class of special Lagrangian submanifolds
of Cn, in a manner analogous to the deformation problem for compact special Lagrangian submanifolds
of a general Calabi-Yau manifold, as described in Section 3.2. The main result of this chapter is
Theorem 6.45.

6.1 Further analytic results

6.1.1 Fredholm theory for Hölder spaces on non-compact manifolds

Most of the theory in the literature concerning the Fredholm theory of operators on non-compact
manifolds is given in terms of Sobolev spaces of some type, as in the theory of Lockhart, McOwen
and others presented in Section 4.2. However we shall be phrasing our deformation problem for AC
special Lagrangian submanifolds f : X → Cn in terms of conical damped Hölder spaces Ck,aβ (E) for
bundles E → X. In this section we bridge the gap by deducing Fredholm theory for Hölder spaces
analogous to the material for Sobolev spaces as given in Section 4.2.

For the rest of Section 6.1 we return to the mind-set of Chapter 4 and assume that X is a manifold
with ends, as in Section 4.1. In fact, we shall assume all notation from Chapter 4.

Green’s operators on the full cylinder

For the time being, let’s suppose Σ is connected, so that L = 1, and define X̃ := R×Σ the full cylinder
on Σ. We further put Ẽ := π∗EΣ which is a vector bundle over X̃. In order to define Banach spaces
of sections of Ẽ we work as in Section 4.2.1, except only consider charts of the form Vν = R × Uν for
1 6 ν 6 N , so that V1, . . . , VN is an open cover of X̃. All weight functions eβt are then extended
to the full cylinder X̃, so that we obtain Banach spaces W p

k,β(Ẽ) and Bk,aβ (Ẽ) as in Section 4.2.1 by
omitting the terms with N + 1 6 ν 6 N +K in the norms (4.8), (4.11), (4.12).

Notice that there is an obvious failure for many of the embeddings of Theorem 4.2, the problem
being that for β < δ we have tβ > tδ for t < 0. However, this aside, the Banach spaces W p

k,β(Ẽ)

and Bk,aβ (Ẽ) are very similar to the original spaces W p
k,β(E) and Bk,aβ (E) we defined in Section 4.2.1.

In particular, a translation invariant differential operator P∞ : C∞
c (Ẽ) → C∞

c (F̃ ) of order l > 1 will
extend to bounded linear maps

P∞ : W p
k+l,β(Ẽ) → W p

k,β(F̃ ) (6.1)

P∞ : Bk+l,aβ (Ẽ) → Bk,aβ (F̃ ). (6.2)

We now have a very important result. For the rest of Section 6.1.1 we assume the (uniform) ellipticity
of the operator P∞ (respectively, P ).

96
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Theorem 6.1 (Green’s function for W p
k,β(Ẽ) spaces) If β ∈ R \ D(P∞) then the bounded linear

map (6.1) is a topological linear isomorphism.

Although we did not mention it in Chapter 4, Theorem 6.1 is the key result for proving the Fredholm
theory of that chapter. For a proof of Theorem 6.1 see the paper [49, Theorem 4.1] of Maz’ya and
Plamenevskĭı. The main idea is that given ξ ∈ C∞

c (F̃ ) we can define, for w ∈ C, the Fourier transform

ξ̂(w, σ) :=
1√
2π

∫ ∞

−∞
e−wtξ(t, σ)dt

so that ξ̂(w, ·) is a section of the bundle FΣ ⊗C. Now if β ∈ R \D(P∞) we have P∞(w) invertible for
all w ∈ C with Rew = β so we can define

(Aβξ)(t, σ) :=
1√
2π

∫

Rew=β

ewtP∞(w)−1ξ̂(w, σ)dw.

It turns out that Aβ extends to a bounded linear operator W p
k,β(F̃ ) → W p

k+l,β(Ẽ) which inverts the
bounded linear map (6.1).

In order to deduce Fredholm theory for asymptotically translation invariant operators P on the
Bk,aβ (E) spaces, we shall need a result analogous to Theorem 6.1, valid for the damped Hölder spaces.

Unfortunately, the results given in the literature do not deal with the Banach spaces Bk,aβ (Ẽ) directly,

but only a closed subspace: define B̂k,aβ (Ẽ) to be the closure of C∞
c (Ẽ) in the space Bk,aβ (Ẽ). In

more explicit terms, the space B̂k,aβ (Ẽ) can be defined as those sections ξ of Ẽ which satisfy the decay
conditions

sup
{t}×Uν

∣∣ρν
(
∂λξνj

)∣∣ = o(eβt)

for all 1 6 ν 6 N , 1 6 j 6 rankE and 0 6 |λ| 6 k, together with a corresponding o(eβt) decay
condition on the Hölder norm of the kth derivatives of ξ.

The following result is proved in the paper [49, Theorem 5.1] of Maz’ya and Plamenevskĭı.

Theorem 6.2 (Green’s function for B̂k,aβ (Ẽ) spaces) If β ∈ R \ D(P∞) then the bounded linear
map

P∞ : B̂k+l,aβ (Ẽ) → B̂k,aβ (F̃ ) (6.3)

is a topological linear isomorphism. We denote the inverse of the map (6.3) by Rβ.

We can use Theorem 6.2 to prove various desirable properties of the map (6.2) for β ∈ R \ D(P∞).
We begin with the following lemma:

Lemma 6.3 Let K1 ⊆ R \ D(P∞) be compact. Then there exists an M > 0 such that ‖Rβ‖ 6 M for

all β ∈ K1. Here ‖Rβ‖ denotes the operator norm of the map Rβ : B̂k,aβ (F̃ ) → B̂k+l,aβ (Ẽ).

Proof: Fix any δ ∈ R. Then for all ε ∈ R we have a topological linear isomorphisms

eεt : B̂k,aδ (Ẽ) → B̂k,aδ+ε(Ẽ) (6.4)

Moreover, it is easy to check that one can obtain a bound on the operator norm ‖eεt‖ of the map
(6.4) which is independent of δ and polynomial in ε.

For the purposes of this proof, let (P∞)δ denote P∞ acting on the space B̂k+l,aδ (Ẽ). Then it is
easy to see explicitly from equation (4.17) the map ε 7→ e−εt(P∞)δ+εe

εt is a continuous map

R → B
(
B̂k+l,aδ (Ẽ), B̂k,aδ (F̃ )

)
.

Since inversion is a continuous map we deduce that ε 7→ e−εtRδ+εeεt is a continuous map

{
ε ∈ R : δ + ε ∈ R \ D(P∞)

}
→ B

(
B̂k,aδ (F̃ ), B̂k+l,aδ (Ẽ)

)
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and so there is some M1 > 0 such that ‖e−εtRδ+εeεt‖ 6 M1 for all ε ∈ R with δ + ε ∈ K1. Therefore
for such ε ∈ R we have

‖Rδ+ε‖ = ‖eεte−εtRδ+εeεte−εt‖ 6 M1‖eεt‖‖e−εt‖

and we are done because of the polynomial bound we can obtain on ‖e±εt‖ in terms of ε.

Corollary 6.4 Suppose that K2 ⊆ R \ D(P∞) is compact. Then there exists a C > 0 such that if

1. β ∈ K2 and ξ ∈ Bk+l,aβ+ε (Ẽ) for all ε > 0

2. supp(ξ) ⊆ (T,∞) × Σ for some T ∈ R

3. P∞ξ ∈ Bk,aβ (F̃ )

then ξ ∈ Bk+l,aβ (Ẽ) with

‖ξ‖Bk+l,a
β

(Ẽ) 6 C‖P∞ξ‖Bk,a
β

(F̃ ). (6.5)

Proof: Take a compact subset K1 ⊆ R\D(P∞) such that K2 ⊆ V ⊆ K1 for some open subset V ⊆ R,
and then let M > 0 be as in Lemma 6.3.

Suppose that conditions 1, 2, 3 above hold. Then clearly ξ ∈ B̂k+l,aβ+ε (Ẽ) for all ε > 0 and
furthermore we have

‖ξ‖Bk+l,a
β+ε

(Ẽ) = ‖Rβ+εP∞ξ‖Bk+l,a
β+ε

(Ẽ) 6 ‖Rβ+ε‖‖P∞ξ‖Bk,a
β+ε

(F̃ ) 6 M‖P∞ξ‖Bk,a
β+ε

(F̃ )

for all ε > 0 such that β+ε ∈ V . But now observe that if η ∈ Bk,aβ (F̃ ) is such that supp(η) ⊆ (T,∞)×Σ

then η ∈ Bk,aβ+ε(F̃ ) for all ε > 0 and

‖η‖Bk,a
β+ε

(F̃ ) 6 C ′e−εT ‖η‖Bk,a
β

(F̃ )

for some constant C ′ > 0 independent of T , η, β and ε. We now have

‖ξ‖Bk+l,a
β+ε

(Ẽ) 6 MC ′e−εT ‖P∞ξ‖Bk,a
β

(F̃ )

for all ε > 0 with β + ε ∈ V . It follows quickly that ξ ∈ Bk+l,aβ (Ẽ) and that the inequality (6.5)
holds for some C > 0 independent of T , ξ and β ∈ K2. To see this, take for example 1 6 ν 6 N ,
1 6 j 6 rank Ẽ and 0 6 |λ| 6 k. Then for x = (t, σ) ∈ (T,∞) × Uν we have

∣∣∣e−(β+ε)t
(
ρν∂

λξνj
)
x

∣∣∣ 6 ‖ξ‖Bk+l,a
β+ε

(Ẽ) 6 MC ′e−εT ‖P∞ξ‖Bk,a
β

(F̃ )

and letting ε→ 0 shows ∣∣e−βt
(
ρν∂

λξνj
)
x

∣∣ 6 MC ′‖P∞ξ‖Bk,a
β

(F̃ ). (6.6)

Taking a supremum in the inequality (6.6) over all x = (t, σ) ∈ (T,∞) × Uν , followed by summing
1 6 ν 6 N , 1 6 j 6 rank Ẽ and 0 6 |λ| 6 k, gives the required bound: the Hölder part of the

Bk+l,aβ (Ẽ) norm is handled just as for the Bk+lβ (Ẽ) part. Alternatively, one could just show that

ξ ∈ B0
β(Ẽ) and then appeal to the version of Theorem 4.6 which holds for the bundle Ẽ: it is easy to

show that in results such as Theorem 4.6 the estimating constant C2 can be taken to be independent
of β provided we restrict β to some compact subset of RL.
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Scale broken estimates and Fredholm theory

We now apply the results above to the usual situation of bundles E,F over our manifold X, which
we now assume to have an arbitrary number L > 1 of ends.

Corollary 6.5 Suppose that K2 ⊆ RL \ D(P∞) is compact. Then there exists a C > 0 such that if

1. β ∈ K2 and ξ ∈ Bk+l,aβ+ε (E) for all ε > 0

2. supp(ξ) ⊆ X∞

3. P∞ξ ∈ Bk,aβ (F )

then ξ ∈ Bk+l,aβ (E) and
‖ξ‖Bk+l,a

β
(E) 6 C‖P∞ξ‖Bk,a

β
(F ). (6.7)

Proof: This is immediate if we apply Corollary 6.4 on each end of X.

Note that one would expect the inequality (6.7) to fail for non-zero elements ξ ∈ Ker(P∞)β and
that is what the second condition is meant to rule out. We now give a lemma which we shall need for
the main result of this section, Theorem 6.7.

Lemma 6.6 (Interpolation Inequality) Let S > 0. Then for all ε > 0 there exists C(ε) > 0 such
that

‖ξ‖Ck+1,a(E|XS
) 6 ε‖ξ‖Ck+2,a(E|XS

) + C(ε)‖ξ‖C0(E|XS
) (6.8)

for all ξ ∈ Ck+2,a(E|XS
).

Proof: Define B :=
{
ξ ∈ Ck+2,a(E|XS

) : ‖ξ‖Ck+2,a(E|XS
) = 1 and ‖ξ‖Ck+1,a(E|XS

) > ε
}
. Since

the embedding Ck+2,a(E|XS
) → Ck+1,a(E|XS

) is compact we deduce that the closure B of B in
Ck+1,a(E|XS

) is compact. It follows that the function

B → R

ξ 7→ ‖ξ‖C0(E|XS
)

attains its minimum, which must be strictly positive as ‖ξ‖Ck+1,a(E|XS
) > ε for all ξ ∈ B. Therefore

there exists a C(ε) > 0 such that

‖ξ‖C0(E|XS
) >

1

C(ε)

for all ξ ∈ B, and the result follows: given ξ ∈ Ck+2,a(E|XS
) with ‖ξ‖Ck+2,a(E|XS

) = 1 we have either

ξ ∈ B or ‖ξ‖Ck+1,a(E|XS
) < ε, and in both cases the inequality (6.8) holds.

The main use of interpolation inequalities is to replace norms such as ‖ · ‖Ck+1,a(E|XS
) on the right

hand side of an estimate with weaker norms such as ‖ · ‖C0(E|XS
), when the left hand side of the

estimate is a strong norm such as ‖ · ‖Ck+2,a(E|XS
). We shall do this in Theorem 6.7 below.

We can now move on to prove the following scale-broken estimate for asymptotically translation
invariant differential operators P . Theorem 6.7 is the key result for proving Fredholmness for the
asymptotically translation invariant operator P : Bk+l,aβ (E) → Bk,aβ (F ).

Theorem 6.7 (Scale Broken Estimate) Suppose that K2 ⊆ RL \ D(P ) is compact. Then there
exist C1, S > 0 such that if β ∈ K2 then

‖ξ‖Bk+l,a
β

(E) 6 C1

(
‖Pξ‖Bk,a

β
(F ) + ‖ξ‖C0(E|X2S

)

)

for all ξ ∈ Bk+l,aβ (E).
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Proof: Since K2 ⊆ RL \D(P ) = RL \D(P∞) is compact we may take the C > 0 as given in Corollary
6.5. Now, given S > 0 define

‖P − P∞‖S := sup

{
∥∥(P − P∞)ξ

∥∥
Bk,a

β
(F )

:
ξ ∈ Bk+l,aβ (E) with supp(ξ) ⊆ X \XS

‖ξ‖Bk+l,a
β

(E) 6 1

}

the operator norm of P −P∞ restricted to X \XS . It is easy to show, using the asymptotic conditions
on P − P∞, that ‖P − P∞‖S → 0 as S → ∞. So fix some S > 0 such that

‖P − P∞‖S <
1

C
.

Also, fix some φS ∈ C∞(X) such that supp(φS) ⊆ X2S−ε and supp(1 − φS) ⊆ X \XS+ε where ε > 0
is small.

Now let β ∈ K2. Then given ξ ∈ Bk+l,aβ (E) we can write ξ = ξc + ξ∞ where ξc = φSξ and then

‖ξ∞‖Bk+l,a
β

(E) 6 C‖P∞ξ∞‖Bk,a
β

(F )

by Corollary 6.5. It follows that

‖ξ∞‖Bk+l,a
β

(E) 6 C
(
‖Pξ∞‖Bk,a

β
(F ) + ‖P − P∞‖S‖ξ∞‖Bk+l,a

β
(E)

)

so that
‖ξ∞‖Bk+l,a

β
(E) 6 C2‖Pξ∞‖Bk,a

β
(F ) (6.9)

where C2 = C
1−C‖P−P∞‖S

. We may now estimate

‖Pξ∞‖Bk,a
β

(F ) = ‖P (1 − φS)ξ‖Bk,a
β

(F )

6 ‖Pξ‖Bk,a
β

(F ) + ‖φSPξ‖Bk,a
β

(F ) + ‖[P, φS ]ξ‖Bk,a
β

(F )

6 C3

(
‖Pξ‖Bk,a

β
(F ) + ‖ξ‖Ck+l−1,a(E|X2S

)

)
(6.10)

for some C3 > 0 independent of β and ξ. This is because the commutator [P, φS ] is differential
operator of order l − 1 which is supported on X2S . Now a standard interpolation inequality, such as
in Lemma 6.6, together with inequalities (6.9) and (6.10), allow us to write

‖ξ∞‖Bk+l,a
β

(E) 6 C4

(
‖Pξ‖Bk,a

β
(F ) + ‖ξ‖C0(E|X2S

)

)

for some C4 > 0 independent of β and ξ. The usual Schauder interior estimates [16, Theorem 1] for
ξc on X2S−ε ⊆ X2S now finish the proof of the theorem.

Corollary 6.8 Suppose that β ∈ RL \ D(P ). If A 6 Bk+l,aβ (E) is any closed subspace such that

Bk+l,aβ (E) = A⊕ Ker(P )β (6.11)

then there exists C > 0 such that

‖ξ‖Bk+l,a
β

(E) 6 C‖Pξ‖Bk,a
β

(F ) (6.12)

for all ξ ∈ A.

Proof: Armed with Theorem 6.7 we can proceed as in the compact case of Theorem 3.6.

Take S > 0 as in Theorem 6.7 and consider the composite

Bk+l,aβ (E) → C0,a(E|X2S
) → C0(E|X2S

) (6.13)
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where the first map is restriction, which is a continuous map. By the Arzelà-Ascoli Theorem, the
second map of (6.13) is compact. Therefore the composite (6.13) is compact.

Let A 6 Bk+l,aβ (E) be a closed subspace and suppose for a contradiction that (6.12) fails. Then
there exists a sequence (ξj) ⊆ A such that ‖ξj‖Bk+l,a

β
(E) = 1 for all j > 1 and ‖Pξj‖Bk,a

β
(F ) → 0 as

j → ∞. Then by the compactness of (6.13) there is subsequence (ξjr ) ⊆ (ξj) which is convergent,
and hence Cauchy, in the C0(E|X2S

)-norm. It follows from Theorem 6.7 that (ξjr ) is Cauchy in the

Bk+l,aβ (E)-norm, so there exists ξ ∈ A with ‖ξjr−ξ‖Bk+l,a
β

(E) → 0 as r → ∞. But now ‖ξ‖Bk+l,a
β

(E) = 1

and Pξ = 0 force the required contradiction.

Note that, since Ker(P )β 6 Bk+l,aβ (E) is finite-dimensional we can always find closed subspaces

A 6 Bk+l,aβ (E) such that the decomposition (6.11) holds. It follows from Corollary 6.8 that the image

Im(P )k+l,aβ of the bounded linear map P : Bk+l,aβ (E) → Bk,aβ (F ) must be closed if β ∈ RL \ D(P ). In
fact, we can do even better, as the next theorem shows.

Theorem 6.9 If β ∈ RL \ D(P ) then the bounded linear map

P : Bk+l,aβ (E) → Bk,aβ (F )

is Fredholm and has closed image

Im(P )k+l,aβ =
{
η ∈ Bk,aβ (F ) : 〈η|h〉L2(F ) = 0 for all h ∈ Ker(P ∗)−β

}
.

Proof: An integration by parts argument shows that

Im(P )k+l,aβ 6

{
η ∈ Bk,aβ (F ) : 〈η|h〉L2(F ) = 0 for all h ∈ Ker(P ∗)−β

}
.

but the problem is to show the reverse inclusion. For this, suppose that η ∈ Bk,aβ (F ) is such that

〈η|h〉L2(F ) = 0 for all h ∈ Ker(P ∗)−β . Then, since η ∈W p
k,β+ε(F ) for all ε > 0 we may use the version

of Theorem 4.25 for asymptotically translation invariant operators

P : W p
k+l,β+ε(E) →W p

k,β+ε(F )

to deduce that there exists ξ ∈ ∩ε>0W
p
k+l,β+ε(E) such that Pξ = η. We prove the result by showing

that ξ ∈ Bk+l,aβ (E). For this, pick p > 1 so that k + l − n
p > a. Then from the Embedding Theorem

4.2 we have that ξ ∈ B0,a
β+ε(E) for all ε > 0 and then elliptic regularity as in Theorem 4.12 shows

ξ ∈ Bk+l,aβ+ε (E) for all ε > 0. To show that in fact ξ ∈ Bk+l,aβ (E) we appeal to Theorem 6.7: for then
we see that there exist C1, S > 0 independent of ε > 0 such that

‖ξ‖Bk+l,a
β+ε

(E) 6 C1

(
‖η‖Bk,a

β+ε
(F ) + ‖ξ‖C0(E|X2S

)

)

for all ε > 0. But now as in the proof of Corollary 6.4 we may write ‖η‖Bk,a
β+ε

(F ) 6 C ′e−εT ‖η‖Bk,a
β

(F̃ )

for some C ′ > 0 independent of T , η, β and ε. Then we have

‖ξ‖Bk+l,a
β+ε

(E) 6 C1

(
C ′e−εT ‖η‖Bk,a

β
(F̃ ) + ‖ξ‖C0(E|X2S

)

)

for all ε > 0 and we may show that ξ ∈ Bk+l,aβ (E) using the method of letting ε → 0 at each
x = (t, σ) ∈ X∞ as in the proof of Corollary 6.4. Hence we are done: the Fredholmness of P follows
immediately because the subspace

{
η ∈ Bk,aβ (F ) : 〈η|h〉L2(F ) = 0 for all h ∈ Ker(P ∗)−β

}
6 Bk,aβ (F )

has finite codimension dim Ker(P ∗)−β .

We now state the immediate corollary for asymptotically conical operators acting on the conical
damped Hölder spaces.
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Theorem 6.10 Let Q : C∞
c (E) → C∞

c (F ) be a uniformly elliptic, asymptotically conical operator of
order l > 1 and rate γ ∈ RL. If β + γ ∈ RL \ D(Q) then the map

Q : Ck+l,aβ+γ (E) → Ck,aβ (F )

is Fredholm with image

Im(Q)k+l,aβ+γ =
{
η ∈ Ck,aβ (F ) : 〈η|h〉L2(F ) = 0 for all h ∈ Ker(Q∗)−β−n

}

which is a subspace of finite codimension dim Ker(Q∗)−β−n.

The following corollary of Theorem 6.10 is immediate.

Corollary 6.11 Let Q : C∞
c (E) → C∞

c (F ) be a uniformly elliptic, asymptotically conical operator of
order l > 1 and rate γ ∈ RL. If β + γ ∈ RL \ D(Q) then we may write

Ck,aβ (F ) = Im(Q)k+l,aβ+γ ⊕ V

where V 6 Ck,aβ (F ) is a subspace of finite dimension dimV = dim Ker(Q∗)−β−n. In particular,

dim Coker(Q)k+l,aβ+γ = dim Ker(Q∗)−β−n, and if Ker(Q∗)−β−n 6 Ck,aβ (F ) then we may take V to be
equal to Ker(Q∗)−β−n.

It follows from Corollary 6.11 that for all β + γ ∈ RL \ D(Q) we have

Ind(Q)k+l,aβ+γ = dim Ker(Q)β+γ − dim Ker(Q∗)−β−n = Ind(Q)pk+l,β+γ . (6.14)

It is now easy to see that if β + γ ∈ D(Q) then the bounded linear map Q : Ck+l,aβ+γ (E) → Ck,aβ (F )
cannot be Fredholm: for otherwise Theorem 4.24 and equation (6.14) would imply the existence of a
continuous family of Fredholm maps

(−ε̃, ε̃) → B
(
Ck+l,aβ+γ (E), Ck,aβ (F )

)

ε 7→ e−εtQeεt

whose Fredholm index jumps as ε crosses 0 ∈ (−ε̃, ε̃). This is a contradiction, because, as in [54,
Theorem 1.4.17] and elsewhere, the index is an integer valued continuous function on the set of

Fredholm maps Ck+l,aβ+γ (E) → Ck,aβ (F ).

As in the case of the (conical) damped Sobolev spaces, we now see from Corollary 6.11 that

dim Coker(Q)k+l,aβ+γ and Ind(Q)k+l,aβ+γ are independent of k, a provided that β + γ ∈ RL \ D(Q), and

similarly for asymptotically translation invariant operators on the Bk,aβ (E) spaces.

6.1.2 Exceptional sets for operators derived from AC metrics

Recall that an asymptotically conical metric g on the manifold with ends X induces uniformly elliptic,
asymptotically conical operators ∆r

g and d∗
g+d, acting on the bundles ΛrT ∗X and Λ∗T ∗X respectively.

It is the purpose of this section to give an explicit description of the sets D(∆r
g),D(d∗

g + d) ⊆ RL, so
that we know when the operators ∆r

g and d∗
g + d are Fredholm when acting between conical damped

Sobolev or Hölder spaces. As usual, g̃ denotes the metric on X which is exactly conical on the infinite
piece X∞ of X.

The spectra of compact Riemannian manifolds

We begin with some facts about the spectra Spec(Σ, gΣ, r) of a compact Riemannian manifold (Σ, gΣ)
of dimension dim Σ = n − 1. For each 0 6 r 6 n − 1 we have Spec(Σ, gΣ, r) a discrete, countable
subset of [0,∞). Also, 0 ∈ Spec(Σ, gΣ, r) precisely when Hr(Σ) 6= 0. Given µ > 0 we write

V µr := Ker(∆r
g − µ)
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which is a finite-dimensional subspace of C∞(ΛrT ∗Σ). Moreover, V µr 6= 0 precisely when µ ∈
Spec(Σ, gΣ, r). We further put

Uµr := V µr ∩ dC∞(Λr−1T ∗Σ)

Wµ
r := V µr ∩ d∗

gC
∞(Λr+1T ∗Σ)

so that given 0 6 r 6 n − 1 and µ > 0 we have Uµr 6= 0 (Wµ
r 6= 0) precisely when µ ∈ Spec(Σ, gΣ, r)

and µ has a non-zero (co)exact eigenform. We put

Ur := {µ > 0 : Uµr 6= 0}
Wr := {µ > 0 : Wµ

r 6= 0}
so that each Ur,Wr is a discrete, countable subset of [0,∞) not containing 0. We call Ur the rth
exact spectrum of (Σ, gΣ) and Wr the rth coexact spectrum of (Σ, gΣ). Note that U0 = ∅ and that
W0 ∪ {0} = Spec(Σ, gΣ, 0).

It is easy to show that for all 0 6 r 6 n− 1 and µ > 0 we have

V µr = Uµr ⊕Wµ
r

and that the maps

d∗
gΣ : Uµr → Wµ

r−1 (6.15)

d : Wµ
r → Uµr+1 (6.16)

are linear isomorphisms. Moreover, if Σ is oriented we have a Hodge star operator ∗gΣ and linear
isomorphisms

∗gΣ : Uµr → Wµ
n−r−1 (6.17)

∗gΣ : Wµ
r → Uµn−r−1 (6.18)

∗gΣ : Hr(Σ) → Hn−r−1(Σ). (6.19)

From now on we suppose that Σ is oriented. It follows that Hn−1(Σ) ∼= H0(Σ) 6= 0, and the set of
spectra

{
Spec(Σ, gΣ, r) : 0 6 r 6 n− 1

}
is completely determined by:

1. The cohomology groups H1(Σ),H2(Σ), . . . ,Hr1(Σ) where r1 = n−2
2 if n is even and r1 = n−1

2 if
n is odd.

2. The coexact spectra W0,W1, . . . ,Wr2 where r2 = n−2
2 if n is even and r2 = n−3

2 if n is odd.

Note that both H1(Σ),H2(Σ), . . . ,Hr1(Σ) and W0,W1, . . . ,Wr2 are “independent” sets of data in that
no further identifications can be made using the isomorphisms (6.15), (6.16), (6.17), (6.18), (6.19).

Exceptional sets for ∆r
g

Recall that differential operator ∆r
g : C∞

c (ΛrT ∗X) → C∞
c (ΛrT ∗X) is uniformly elliptic, order 2 and

asymptotically conical with rate 2. Moreover the bounded linear maps

∆r
g : Lpk+2,β+2(Λ

rT ∗X) → Lpk,β(Λ
rT ∗X) (6.20)

∆r
g : Ck+2,a

β+2 (ΛrT ∗X) → Ck,aβ (ΛrT ∗X) (6.21)

are Fredholm precisely when β+2 ∈ RL\D(∆r
g) where D(∆r

g) = D(P∞) is computed as in Section 4.2.2.
As in Table 4.1, the translation invariant operator P∞ : C∞

c (ΛrT ∗X) → C∞
c (ΛrT ∗X) corresponding

to the Laplacian ∆r
g acts as

P∞ = e(2−r)t∆r
g̃e
rt. (6.22)

We view the bundle ΛrT ∗X as being admissible with slice ΛrT ∗Σ⊕Λr−1T ∗Σ got via the vector bundle
isomorphism

π∗(ΛrT ∗Σ) ⊕ π∗(Λr−1T ∗Σ) ∼= ΛrT ∗X∞ (6.23)

(ψ, φ) ↔ ψ + dt ∧ φ
and then we have the following result.
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Lemma 6.12 If we work with the identification (6.23) then the translation invariant operator (6.22)
corresponding to ∆r

g acts as

P∞ =

(
∆r
gΣ −

(
∂
∂t + r

) (
∂
∂t + n− r − 2

)
−2d

−2d∗
gΣ ∆r−1

gΣ −
(
∂
∂t + r − 2

) (
∂
∂t + n− r

)
)

on the bundle π∗(ΛrT ∗Σ) ⊕ π∗(Λr−1T ∗Σ).

The proof of Lemma 6.12 is a long, but entirely straightforward calculation: we omit the details. It
follows from Lemma 6.12 that for each w ∈ C and 1 6 j 6 L the operator P∞(w) acts as

P∞(w) =

(
∆r
gΣ − (w + r)(w + n− r − 2) −2d

−2d∗
gΣ ∆r−1

gΣ − (w + r − 2)(w + n− r)

)
(6.24)

on the complexified bundle (ΛrT ∗Σj ⊗ C) ⊕ (Λr−1T ∗Σj ⊗ C). Given w ∈ C we define

a(w) := (w + r)(w + n− r − 2) b(w) := (w + r − 2)(w + n− r)

c(w) := (w + r)(w + n− r) d(w) := (w + r − 2)(w + n− r − 2) = c(w − 2).

Note that by completing the square in w it is easy to show that if any one of a(w), b(w), c(w), d(w) is
real and non-negative then w ∈ R. We can now state for which w ∈ C the map

P∞(w) : W p
k+2

(
(ΛrT ∗Σj ⊗ C) ⊕ (Λr−1T ∗Σj ⊗ C)

)
→W p

k

(
(ΛrT ∗Σj ⊗ C) ⊕ (Λr−1T ∗Σj ⊗ C)

)

is an isomorphism of Banach spaces: recall the definition of the subsets C(P∞, j) ⊆ C from Section
4.2.2.

Lemma 6.13 Let w ∈ C. Then w ∈ C(P∞, j) precisely when at least one of the following holds:

1. a(w) = 0 and Hr(Σj) 6= 0 2. b(w) = 0 and Hr−1(Σj) 6= 0
3. a(w) ∈Wr 4. b(w) ∈Wr−2

5. c(w) ∈Wr−1 6. d(w) ∈Wr−1

where the coexact spectra are those of the Riemannian manifold (Σj , gΣ).

Note that cases 5 and 6 of are just translates of each other. The proof of Lemma 6.13 is a messy
case by case analysis, whose details we omit. Since each of the cases of Lemma 6.13 give rise to a
real, non-negative w it follows that D(P∞, j) = C(P∞, j) for each 1 6 j 6 L and we now have a very
explicit picture for when the bounded linear maps (6.20) and (6.21) are Fredholm.

Corollary 6.14 Let β + 2 ∈ RL. Then β + 2 ∈ D(∆r
g) precisely when there exists a 1 6 j 6 L such

that βj + 2 = w for some w satisfying at least one of 1, 2, 3, 4, 5, 6 of Lemma 6.13.

Using Lemma 6.13 we can also deduce the existence of open subsets

Ir × · · · × Ir︸ ︷︷ ︸
L factors

⊆ RL \ D(∆r
g) (6.25)

where each Ir ⊆ R is a “good interval” for the growth parameters βj + 2.

Corollary 6.15 If 0 6 r < n
2 −1 define Ir := (r+2−n,−r), an open interval of length n−2−2r > 0

and if n
2 + 1 < r 6 n, define Ir := (2 − r, r − n) an open interval of length 2r − n− 2 > 0. Then the

inclusion (6.25) holds.

Corollary 6.15 is easy to deduce from Lemma 6.13 and the definitions of the polynomials a(w), b(w),
c(w), d(w) given above: we omit the details. Note that for r close to 0 or n the “good interval” Ir
has length close to n− 2, and the length of Ir decreases to 0 as r approaches n

2 .

The following two examples will be particularly useful for us: note we have already calculated
D(∆0

g) in Section 5.1.1.
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Example 6.16 The Laplacian ∆1
g on 1-forms. After some brief calculations we find that if 1 6 j 6 L

then βj + 2 ∈ D(∆1
g, j) precisely when at least one of the following hold:

1. (βj + 3)(βj + n+ 1) ∈ Spec(Σj , gΣ, 0)
2. (βj + 1)(βj + n− 1) ∈W0,

where the coexact spectrum W0 is that of the Riemannian manifold (Σj , gΣ).

Example 6.17 The Laplacian ∆2
g on 2-forms. After some brief calculations we find that if 1 6 j 6 L

then βj + 2 ∈ D(∆2
g, j) precisely when at least one of the following hold:

1. (βj + 2 = −2 or βj + 2 = −n) and H2(Σj) 6= 0 2. (βj + 2 = 0 or βj + 2 = 2 − n) and H1(Σj) 6= 0
3. (βj + 4)(βj + n− 2) ∈W2 4. (βj + 2)(βj + n) ∈W0

5. (βj + 4)(βj + n) ∈W1 6. (βj + 2)(βj + n− 2) ∈W1,

where the coexact spectra are those of the Riemannian manifold (Σj , gΣ). Note that case 4 consists
precisely of the points in D(∆0

g, j) \ {0, 2 − n}.

Exceptional sets for d∗
g + d

Recall that differential operator d∗
g + d : C∞

c (Λ∗T ∗X) → C∞
c (Λ∗T ∗X) is uniformly elliptic, order 1

and asymptotically conical with rate 1. Moreover the bounded linear maps

d∗
g + d : Lpk+1,β+1(Λ

∗T ∗X) → Lpk,β(Λ
∗T ∗X) (6.26)

d∗
g + d : Ck+1,a

β+1 (Λ∗T ∗X) → Ck,aβ (Λ∗T ∗X) (6.27)

are Fredholm precisely when β + 1 ∈ RL \ D(d∗
g + d) where D(d∗

g + d) = D(P∞) is computed as in
Section 4.2.2. As in Table 4.1 the translation invariant operator P∞ : C∞

c (Λ∗T ∗X) → C∞
c (Λ∗T ∗X)

corresponding to d∗
g + d acts as

P∞ = e−rt(e2td∗
g + d)ert (6.28)

on r-forms. We view the bundle Λ∗T ∗X as being admissible with slice Λ∗T ∗Σ ⊕ Λ∗T ∗Σ got via the
vector bundle isomorphism

π∗(Λ∗T ∗Σ) ⊕ π∗(Λ∗T ∗Σ) ∼= Λ∗T ∗X∞ (6.29)

(ψ, φ) ↔ ψ + dt ∧ φ.

We now have the following result.

Lemma 6.18 If we work with the identification (6.29) then the translation invariant operator (6.28)
corresponding to d∗

g + d acts as

P∞ =

(
d∗
gΣ + d −( ∂∂t + n− r − 1)
∂
∂t + r −(d∗

gΣ + d)

)
(6.30)

on the bundle π∗(Λ∗T ∗Σ) ⊕ π∗(Λ∗T ∗Σ). In equation (6.30) r denotes the operator which multiplies
r-forms by r.

The proof of Lemma 6.18 is a long, but entirely straightforward calculation: we omit the details. It
follows from Lemma 6.18 that for each w ∈ C and 1 6 j 6 L the operator P∞(w) acts as

P∞(w) =

(
d∗
gΣ + d −(w + n− r − 1)
w + r −(d∗

gΣ + d)

)
(6.31)

on the complexified bundle (Λ∗T ∗Σj ⊗C)⊕ (Λ∗T ∗Σj ⊗C). Recall the definitions of a(w), b(w), c(w),
d(w) given above. We can now state for which w ∈ C the map

P∞(w) : W p
k+1

(
(Λ∗T ∗Σj ⊗ C) ⊕ (Λ∗T ∗Σj ⊗ C)

)
→W p

k

(
(Λ∗T ∗Σj ⊗ C) ⊕ (Λ∗T ∗Σj ⊗ C)

)

is an isomorphism of Banach spaces.
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Lemma 6.19 Let w ∈ C. Then w ∈ C(P∞, j) precisely when there exists an 0 6 r 6 n such that at
least one of the following holds:

1. w + r = 0 and Hr(Σj) 6= 0 2. w + n− r = 0 and Hr−1(Σj) 6= 0
3. a(w) ∈Wr 4. b(w) ∈Wr−2

5. c(w) ∈Wr−1

where the coexact spectra are those of the Riemannian manifold (Σj , gΣ).

Again, we omit the details. Since each of the cases of Lemma 6.19 give rise to a real, non-negative w
it follows that D(P∞, j) = C(P∞, j) for each 1 6 j 6 L and hence we have a very explicit picture for
when the bounded linear maps (6.26) and (6.27) are Fredholm.

Corollary 6.20 Let β + 1 ∈ RL. Then β + 1 ∈ D(d∗
g + d) precisely when there exist 1 6 j 6 L and

0 6 r 6 n such that βj + 1 = w for some w satisfying at least one of 1, 2, 3, 4, 5 of Lemma 6.19.

Note also from Lemma 6.13 and Lemma 6.19 that

D(d∗
g + d) ⊆

n⋃

r=0

D(∆r
g),

but this is exactly what we should expect, because, for example, the composite map

∆g : Lpk+2,β+2(Λ
∗T ∗X)

d∗

g+d
−→ Lpk+1,β+1(Λ

∗T ∗X)
d∗

g+d
−→ Lpk,β(Λ

∗T ∗X) (6.32)

is Fredholm precisely when

β + 2 ∈ RL \
n⋃

r=0

D(∆r
g),

and if (6.32) has finite dimensional cokernel then so has

d∗
g + d : Lpk+1,β+1(Λ

∗T ∗X) → Lpk,β(Λ
∗T ∗X).

Note that in order to refine some of the above results one could also consider the bundles Λodd/evenT ∗X
over X, which are admissible with slice Λodd/evenT ∗Σ⊕Λeven/oddT ∗Σ. Then the differential operator

(d∗
g + d)odd/even : C∞

c (Λodd/evenT ∗X) → C∞
c (Λeven/oddT ∗X) (6.33)

is uniformly elliptic, order 1 and asymptotically conical with rate 1. Using the techniques described
above, it is easy to work out the exceptional sets of the operators (6.33), and it turns out that in
building these subsets D

(
(d∗
g + d)odd/even

)
⊆ RL one only takes the 0 6 r 6 n in Lemma 6.19 which

are odd or even accordingly. As an application, we give two examples in low dimensions.

Example 6.21 dimX = 3. Note that the only “independent” pieces of data are H1(Σ) and W0.
After some brief calculations we find that if 1 6 j 6 L then βj + 2 ∈ D

(
(d∗
g + d)odd, j

)
precisely when

at least one of the following hold:

1. βj + 1 = −2 or βj + 1 = 0 2. βj + 1 = −1 and H1(Σj) 6= 0
3. (βj + 1)(βj + 2) ∈W0 4. (βj + 2)(βj + 3) ∈W0,

where the coexact spectrum W0 is that of the Riemannian manifold (Σj , gΣ).

Example 6.22 dimX = 4. Note that the only “independent” pieces of data are H1(Σ), W0 and W1.
After some brief calculations we find that if 1 6 j 6 L then βj + 2 ∈ D

(
(d∗
g + d)odd, j

)
precisely when

at least one of the following hold:

1. βj + 1 = −3 2. βj + 1 = −1 and H1(Σj) 6= 0
3. (βj + 2)(βj + 4) ∈W0 4. (βj + 2)2 ∈W1,

where the coexact spectra are those of the Riemannian manifold (Σj , gΣ).
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6.1.3 “Hodge theory” on non-compact manifolds

Although we shall be working with the conical damped Hölder spaces in this section, the material can
be easily converted to the setting of the conical damped Sobolev spaces.

For non-compact Riemannian manifolds (X, g), many of the results of Section 3.1.3 fail to hold.
In particular, if we suppose that X is a manifold with ends equipped with an asymptotically conical
metric g then we have

{
ξ ∈ C1,a

β+2(Λ
rT ∗X) : d∗

gξ = 0 and dξ = 0
}

6 Ker(∆r
g)β+2 (6.34)

but in general the reverse inclusion in (6.34) fails to hold. Indeed, when β + 2 is too large the usual
integration by parts argument is not valid. We can, however, give some useful results, and begin with
the following:

Lemma 6.23 If (β + 1) + (δ + 1) < 2 − n then

d∗
g

(
Ck+1,a
β+1 (Λr+1T ∗X)

)
∩ d
(
Ck+1,a
δ+1 (Λr−1T ∗X)

)
= 0.

Proof: Put 2ε := (2 − n) − (β + 1) − (δ + 1) > 0. If

ξ ∈ Ck+1,a
β+1 (Λr+1T ∗X)

η ∈ Ck+1,a
δ+1 (Λr−1T ∗X)

we use the fact that

ξ ∈ Lp1,(β+ε)+1(Λ
r+1T ∗X)

dη ∈ Lp
′

0,−(β+ε)−n(Λ
rT ∗X)

to write 〈d∗
gξ|dη〉L2(ΛrT∗X) = 〈ξ|ddη〉L2(Λr+1T∗X) = 0, as required.

The following result gives conditions which ensure that the reverse inclusion of (6.34) holds.

Lemma 6.24 If ξ ∈ Ker(∆r
g)β+2 then d∗

gξ = 0 and dξ = 0 whenever either of the following conditions
hold:

1. β + 2 < 1 − n
2

2. β + 2 < −r or β + 2 < r − n.

Proof: Let ξ ∈ Ker(∆r
g)β+2. When condition 1 holds the integration by parts

0 = 〈ξ|∆r
gξ〉L2(ΛrT∗X) = 〈dξ|dξ〉L2(Λr+1T∗X) + 〈d∗

gξ|d∗
gξ〉L2(Λr−1T∗X)

is valid, as in the proof of Lemma 6.23. We now introduce

3. 0 6 r < n
2 − 1 and β + 2 < −r

4. n
2 + 1 < r 6 n and β + 2 < r − n.

If either condition 3 or condition 4 holds then from Corollary 6.15 and equation (4.53) we deduce that
ξ ∈ Ker(∆r

g)δ+2 for some δ+2 < 1− n
2 , since in both cases we have 1− n

2 ∈ Ir and βj +2 < sup Ir for
each 1 6 j 6 L. Therefore the conclusions of the lemma hold under either condition 3 or condition 4.

Supposing that r >
n
2 − 1 and β + 2 < −r, we have

β + 2 < −r 6 1 − n

2

so that d∗
gξ = dξ = 0 by the first case. Similarly, if r 6

n
2 + 1 and β + 2 < r − n then

β + 2 < r − n 6
n

2
+ 1 − n = 1 − n

2

so that, again, d∗
gξ = dξ = 0. The result now follows.
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Corollary 6.25 If β + 2 ∈ RL \ D(∆r
g) then

∆r
g

(
Ck+2,a
β+2 (ΛrT ∗X)

)
= d∗

g

(
Ck+1,a
β+1 (Λr+1T ∗X)

)
+ d
(
Ck+1,a
β+1 (Λr−1T ∗X)

)

whenever either of the following conditions hold:

1. β + 2 > 1 − n
2

2. β + 2 > r + 2 − n or β + 2 > 2 − r.

Proof: It is obvious that

∆r
g

(
Ck+2,a
β+2 (ΛrT ∗X)

)
6 d∗

g

(
Ck+1,a
β+1 (Λr+1T ∗X)

)
+ d
(
Ck+1,a
β+1 (Λr−1T ∗X)

)

always. In order to prove the reverse inclusion, take ξ ∈ Ck+1,a
β+1 (Λr+1T ∗X) and η ∈ Ck+1,a

β+1 (Λr−1T ∗X).

Then d∗
gξ+dη ∈ ∆r

gC
k+2,a
β+2 (ΛrT ∗X) precisely when 〈d∗

gξ+dη|h〉L2(ΛrT∗X) = 0 for all h ∈ Ker(∆r
g)−β−n.

But from Lemma 6.24 this is clearly the case whenever one of

3. −β − n < 1 − n
2

4. −β − n < −r or −β − n < r − n

hold, and these conditions are exactly those given.

Lemma 6.26 If either of the following conditions hold:

1. β + 2 > 2 − n
2

2. β + 2 > r + 4 − n or β + 2 > 4 − r

then Ker(∆r
g)−β−n 6 Ck,aβ (ΛrT ∗X).

Proof: If the first condition holds then −β−n 6 β and we are done. Suppose now, for example, that
β + 2 > r+ 4− n. If r < n

2 − 1 then we have Ir = (r+ 2− n,−r) and we are done since −β − n < −r
and β > r + 2 − n. If, on the other hand r >

n
2 − 1 then

β + 2 > r + 4 − n >
n
2 − 1 + 4 − n = 3 − n

2 > 2 − n
2

so that the first condition holds, and we are also done. The case β + 2 > 4 − r is handled similarly,
proving the lemma.

Using Corollary 6.11, Lemma 6.23, Lemma 6.24, Corollary 6.25 and Lemma 6.26 one can prove
various Hodge decomposition theorems analogous to those of Section 3.1.3 which hold in the compact
case, for example: Proposition 3.11.

Another typical failure in the asymptotically conical setting is that although we always have

(d∗
g + d)

(
Ck+1,a
β+1 (ΛrT ∗X)

)
6 d∗

g

(
Ck+1,a
β+1 (ΛrT ∗X)

)
⊕ d
(
Ck+1,a
β+1 (ΛrT ∗X)

)

the reverse inclusion will in general not hold. However, in the case of most interest to us, namely
r = 1, we can employ a device to get round this. The point in the proof of the following result is that
the Laplacian on functions is only d∗

gd, rather than d∗
gd + dd∗

g.

Lemma 6.27 If β + 2 ∈ RL \ D(∆0
g) and β + 2 > 2 − n then

(d∗
g + d)

(
Ck+1,a
β+1 (T ∗X)

)
= d∗

g

(
Ck+1,a
β+1 (T ∗X)

)
⊕ d
(
Ck+1,a
β+1 (T ∗X)

)
(6.35)

and furthermore d∗
g

(
Ck+1,a
β+1 (T ∗X)

)
= Ck,aβ (X).
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Proof: As noted above, one inclusion of equation (6.35) is obvious. To prove the other inclusion, take

ξ1, ξ2 ∈ Ck+1,a
β+1 (T ∗X). Since the map

∆0
g : Ck+2,a

β+2 (X) → Ck,aβ (X) (6.36)

is surjective there exists f ∈ Ck+2,a
β+2 (X) such that ∆0

gf = d∗
gξ1 − d∗

gξ2. Putting ξ = ξ2 + df we see
that (d∗

g + d)ξ = d∗
gξ1 + dξ2 and we have proved (6.35). The final equation follows from the fact that

(6.36) is surjective.

When the metric g has a stronger decay rate than merely being asymptotically conical we can
actually say more than Lemma 6.27. But we first give an intermediate result.

Lemma 6.28 Suppose that the metric g is strongly asymptotically conical with rate α < 0. If max{2−
n+ α, 2 − n− λ} < β + 2 < 2 − n and ξ ∈ Ck+1,a

β+1 (T ∗X) then:

1. There exists f ∈ C∞
2−n(X) and f̃ ∈ Ck+2,a

β+2 (X) such that

∆0
g(f̃ + f) = d∗

gξ. (6.37)

2. There exists fb ∈ C∞(X) constant on the ends of X and F ∈ Ck+2,a
β+2 (X) such that

∆0
g(F + fb) = d∗

gξ. (6.38)

Proof: The proof of this result is just as for its Sobolev counterpart Corollary 5.16: the important
point is that we now have Theorem 6.10 at our disposal.

Corollary 6.29 Suppose that the metric g is strongly asymptotically conical with rate α < 0. If
max{2 − n+ α, 2 − n− λ} < β + 2 < 2 − n then

(d∗
g + d)

(
Ck+1,a
β+1 (T ∗X)

)
= d∗

g

(
Ck+1,a
β+1 (T ∗X)

)
⊕ d
(
Ck+1,a
β+1 (T ∗X)

)
. (6.39)

Proof: Take β + 2 ∈ RL as given. It is clear that the left hand side of (6.39) is contained inside the

right hand side. To prove the reverse inclusion, take ξ1, ξ2 ∈ Ck+1,a
β+1 (T ∗X). By Lemma 6.28 there

exists fb ∈ C∞(X) constant on the ends of X and F ∈ Ck+2,a
β+2 (X) such that ∆0

g(F +fb) = d∗
gξ1−d∗

gξ2.

Putting ξ := ξ2 + dF + dfb ∈ Ck+1,a
β+1 (T ∗X) we have (d∗

g + d)ξ = d∗
gξ1 + dξ2, so that we are done.

For applications in the sequel we now consider when the linear subspace

(d∗
g + d)

(
Ck+1,a
β+1 (T ∗X)

)
6 Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X) (6.40)

is closed. Note that since d∗
g

(
Ck+1,a
β+1 (T ∗X)

)
6 Ck,aβ (X) is closed whenever β + 2 ∈ RL \ D(∆0

g) it

follows from Lemma 6.27 that for β + 2 ∈ RL \ D(∆0
g) with β + 2 > 2 − n we have (6.40) a closed

subspace whenever
d
(
Ck+1,a
β+1 (T ∗X)

)
6 Ck,aβ (Λ2T ∗X) (6.41)

is closed. Using Corollary 6.39 we see a similar remark applies for max{2−n+α, 2−n−λ} < β+2 <
2 − n when the metric g on X is strongly asymptotically conical with rate α < 0. Unfortunately the
closure of the subspace (6.41) is not something that can be decided using the Laplacian on functions
alone. Instead the operators ∆1

g, ∆2
g or d∗

g + d must be introduced. This is, for example, one use of
the computations of the relevant exceptional subsets in Section 6.1.2.
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Proposition 6.30 The bounded linear map

d∗
g + d : Ck+1,a

β+1 (T ∗X) → Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X) (6.42)

has closed image whenever any of the following conditions hold:

1. β + 1 ∈ RL \ D
(
(d∗
g + d)odd

)

2. k > 1, β + 2 ∈ RL \ D(∆2
g), β + 2 > 2 − n and no coordinate of β + 2 is 0

3. k > 1, β + 1 ∈ RL \ D(∆1
g) and β + 2 < 0.

Proof: If condition 1 holds pick any closed linear subspace A1 6 Ck+1,a
β+1 (ΛoddT ∗X) such that

Ck+1,a
β+1 (ΛoddT ∗X) = A1 ⊕ Ker

(
(d∗
g + d)odd

)
β+1

and then by conical damped version of Corollary 6.8 there exists a C > 0 such that

‖η‖Ck+1,a
β+1 (Λ∗T∗X) 6 C‖d∗

gη + dη‖Ck,a
β

(Λ∗T∗X)

for all η ∈ A1. Now define Ã1 := A1 ∩ Ck+1,a
β+1 (T ∗X) and we have

Ck+1,a
β+1 (T ∗X) = Ã1 ⊕

{
ξ ∈ Ck+1,a

β+1 (T ∗X) : d∗
gη = 0 and dη = 0

}

with
‖η‖Ck+1,a

β+1 (T∗X) 6 C‖d∗
gη + dη‖Ck,a

β
(Λ∗T∗X) (6.43)

for all η ∈ Ã1. Suppose now that f ∈ Ck,aβ (X) and ξ ∈ Ck,aβ (Λ2T ∗X) are such that f + ξ lies in the

closure of the image of the map (6.42). Then there exist (ηj) ⊆ Ã1 such that d∗
gηj → f in Ck,aβ (X)

and dηj → ξ in Ck,aβ (Λ2T ∗X). It follows that (d∗
gηj + dηj) ⊆ Ck,aβ (Λ∗T ∗X) is Cauchy and hence

from the inequality (6.43) we see that (ηj) ⊆ Ck+1,a
β+1 (T ∗X) is Cauchy, and hence convergent to some

η ∈ Ã1. Clearly d∗
gη = f and dη = ξ so that f + ξ lies in the image of the map (6.42). Therefore

(6.42) has closed image.

If condition 2 holds, then note from Example 6.17 that β + 2 ∈ RL \ D(∆0
g). Let

W1 :=
{
ξ ∈ Ck,aβ (Λ2T ∗X) : d∗

gξ = 0 and dξ = 0
}

which is a finite-dimensional vector space. Also let W2 denote the image of the map (6.42). We begin

by showing that W1 +W2 is closed in Ck,aβ (X)⊕Ck,aβ (Λ2T ∗X). For this take any (ηj) ⊆ Ck+1,a
β+1 (T ∗X)

and (wj) ⊆ W1 such that d∗
gηj → f in Ck,aβ (X) and dηj + wj → ξ in Ck,aβ (Λ2T ∗X). Now since the

map ∆2
g : Ck+2,a

β+2 (Λ2T ∗X) → Ck,aβ (Λ2T ∗X) is Fredholm we see

V :=
{

d∗
gθ + dη : θ ∈ Ck+1,a

β+1 (Λ3T ∗X) and η ∈ Ck+1,a
β+1 (T ∗X)

}

has finite codimension in Ck,aβ (Λ2T ∗X), and so from Proposition 2.4 we deduce that V is closed

in Ck,aβ (Λ2T ∗X). As W1 is finite-dimensional, V + W1 must be closed in Ck,aβ (Λ2T ∗X), and since

dηj + wj ∈ V +W1 for all j > 1 there exist η ∈ Ck+1,a
β+1 (T ∗X), θ ∈ Ck+1,a

β+1 (Λ3T ∗X) and ξ̃ ∈ W1 such

that ξ = d∗
gθ+ dη + ξ̃. Now, it is easy to show that ξ − dη = d∗

gθ+ ξ̃ is closed and coclosed using the

fact that k > 1, and therefore ξ−dη ∈W1. Since β+2 ∈ RL \D(∆0
g) and β+2 > 2−n we also know

that there exists u ∈ Ck+2,a
β+2 (X) such that ∆0

gu = f − d∗
gη and then

f + ξ = (ξ − dη) + d∗
g(du+ η) + d(du+ η)
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shows that f + ξ ∈ W1 + W2 so that W1 + W2 is closed in Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X). We can now
quickly deduce that the image W2 of the map (6.42) must be closed. For this simply observe that W2

has finite codimension in W1 +W2 and so by Proposition 2.4 must be closed in W1 +W2. It follows
that W2 is closed in Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X).

Finally, suppose that condition 3 holds. Pick any closed subspace A2 6 Ck+1,a
β+1 (T ∗X) such that

Ck+1,a
β+1 (T ∗X) = A2 ⊕ Ker(∆1

g)β+1

and then by the conical damped version of Corollary 6.8 there exists a C > 0 such that

‖η‖Ck+1,a
β+1 (T∗X) 6 C‖∆1

gη‖Ck−1,1
β−1 (T∗X) (6.44)

for all η ∈ A2. Now if f ∈ Ck,aβ (X) and ξ ∈ Ck,aβ (Λ2T ∗X) are such that f + ξ lie in the closure of

the image of the map (6.42) then there exist (ηj) ⊆ Ck+1,a
β+1 (T ∗X) such that d∗

gηj → f in Ck,aβ (X) and

dηj → ξ in Ck,aβ (Λ2T ∗X). Therefore

∆1
gηj → df + d∗

gξ

in Ck−1,a
β−1 (T ∗X). Using Lemma 6.24 together with the fact that β + 2 < 0 it is easy to deduce that

every element of Ker(∆1
g)β+1 is closed and coclosed, and therefore we may without loss of generality

take the (ηj) above to lie in A2. Then the inequality (6.44) above implies that (ηj) is Cauchy in

Ck+1,a
β+1 (T ∗X) so that there exists an η ∈ A2 with ηj → η in Ck+1,a

β+1 (T ∗X). It follows that d∗
gη = f

and dη = ξ and we have shown that (6.42) has closed image, as required.

There are various good and bad features of the three conditions given in Proposition 6.30: the
first condition is good because it holds for almost all β + 1 ∈ RL, but is bad because on many of the
non-generic points β+1 ∈ D

(
(d∗
g +d)odd

)
the map (6.42) will in fact have a closed image. The degree

of this badness will increase with n, but for small n the set D
(
(d∗
g + d)odd

)
is a close approximation

to the set of points β + 1 for which the map (6.42) does not have a closed image. The good and bad
features of conditions 2 and 3 are: there are fewer non-generic points, but we must restrict the values
of β + 1 with some inequality.

6.2 The Deformation Theorem

6.2.1 Asymptotically conical submanifolds of Rm

A cone in Rm is a non-empty closed subset C ⊆ Rm such that the inclusion C \{0} → Rm is a smooth
submanifold and et · C = C for all t ∈ R. It follows that 0 ∈ C always. If Sm−1 denotes the unit
sphere in Rm then we define Σ := C ∩ Sm−1 which is a smooth, compact submanifold of C \ {0},
Sm−1 and Rm. If C \ {0} has dimension n then Σ has dimension n − 1. We call Σ the link of the
cone C, and sometimes say that C is a cone on Σ. Note that C itself is smooth precisely when C is
a linear subspace of Rm. When m = 2n and we identify Rm ∼= Cn we abuse notation and say that a
cone C is (special) Lagrangian when the submanifold C \ {0} → Cn is (special) Lagrangian.

The Euclidean metric e on Rm endows the manifold C \ {0} with a metric we denote g̃ and the
manifold Σ with a metric we denote gΣ. There is a diffeomorphism

i : R × Σ → C \ {0} ⊆ Rm (6.45)

(t, σ) 7→ etσ

and we identify g̃ with the pulled-back metric

i∗g̃ = e2t(dt2 + gΣ) (6.46)

on R × Σ. The metric (6.46) is called the cone metric on R × Σ.
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Suppose for the rest of Section 6.2 that C ⊆ Rm is a fixed cone with link Σ ⊆ Sm−1 and that the
metrics gΣ, g̃ are as described above. We also fix X a manifold with ends, as in Section 4.1, built
using the link Σ of C, so that there exists a compact submanifold with boundary X0 ⊆ X, and a fixed
diffeomorphism

X \X0 → (T,∞) × Σ (6.47)

for some T ∈ R. Now, using the metric gΣ (or indeed any metric) on Σ we can build the Banach

spaces Lpk,β(E) and Ck,aβ (E) when E is a bundle of the form (4.3), (4.4), (4.5) on X. Moreover, as
topological vector spaces, these Banach spaces are independent of gΣ, asymptotically conical metric,
open cover, and partition of unity satisfying the conditions given in Section 4.1. Define Ĉkβ(E) to be

the closure of C∞
c (E) in Ckβ(E) and similarly define Ĉk,aβ (E) to be the closure of C∞

c (E) in Ck,aβ (E),
so that the “hat” spaces replace O(·) decay conditions with the stronger o(·) decay conditions. We
also put

Ĉ∞
β (E) :=

⋂

k>0

Ĉkβ(E).

If f : X → Rm is a map we write f ∈ Ckβ(X,Rm) whenever the components f1, . . . , fm : X → R all

lie in Ckβ(X), and adopt similar conventions for the other vector spaces mentioned above.

Recall the definition (6.45) of the map i. Using the identification (6.47) we can extend the restricted
map i : (T,∞) × Σ → Rm to a smooth map i : X → Rm. In other words, the image of X \X0 under
i is an infinite portion of the cone C ⊆ Rm. It is easy to see that i ∈ C∞

1 (X,Rm). In a similar way,
we can consider the cone metric g̃ as being a metric on X, and indeed build our Banach spaces of
sections using this metric. The fact that i ∈ C∞

1 (X,Rm) is equivalent to

sup
{t}×Uν

∣∣ρν(∂λik)
∣∣ = O(et)

for all 1 6 ν 6 N , multi-indices |λ| > 0 and 1 6 k 6 m, and this in turn is equivalent to the fact that

sup
{t}×Σ

∣∣∣∇j
g̃ik

∣∣∣
g̃

= O(e(1−j)t)

for all j > 0 and 1 6 k 6 m.

We shall say that a submanifold f : X → Rm is asymptotically conical with cone C if f − i ∈
Ĉ∞

1 (X,Rm). This condition is equivalent to either of the following:

1. sup{t}×Uν

∣∣ρν∂λ(fk − ik)
∣∣ = o(et) for all 1 6 ν 6 N , |λ| > 0, 1 6 k 6 m

2. sup{t}×Σ

∣∣∣∇j
g̃(fk − ik)

∣∣∣
g̃

= o(e(1−j)t) for all j > 0, 1 6 k 6 m.

Obviously if f : X → Rm is asymptotically conical with cone C then f ∈ C∞
1 (X,Rm), which is again

equivalent to either of

1. sup{t}×Uν

∣∣ρν(∂λfk)
∣∣ = O(et) for all 1 6 ν 6 N , |λ| > 0, 1 6 k 6 m

2. sup{t}×Σ

∣∣∣∇j
g̃fk

∣∣∣
g̃

= O(e(1−j)t) for all j > 0, 1 6 k 6 m.

If X is a manifold with ends then there are various rates of decay at which a submanifold f :
X → Rm might tend towards a cone i : C → Rm, and we shall now go on to consider rates which are
stronger than the o(et) decay given by the condition f−i ∈ Ĉ∞

1 (X,Rm) above. However, f : X → Rm

being asymptotically conical with cone C is the weakest useful rate at which f : X → Rm could decay
towards C: any weaker decay rates for f−i mean a loss of control which makes the analysis of Chapter
4 and Chapter 5 impossible to implement: see Corollary 6.33 below. Also, if f − i ∈ Ĉ∞

1 (X,Rm) then
the cone C to which f : X → Rm is asymptotic is uniquely determined, but this is not the case for
growth rates f − i ∈ C∞

1 (X,Rm) or higher.

Let α̃ ∈ RL with α̃ < 1. We shall say that a submanifold f : X → Rm is strongly asymptotically
conical with cone C and rate α̃ if f − i ∈ C∞

α̃ (X,Rm). This is equivalent to either of the conditions
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1. sup{t}×Uν

∣∣ρν∂λ(fk − ik)
∣∣ = O(eα̃t) for all 1 6 ν 6 N , |λ| > 0, 1 6 k 6 m

2. sup{t}×Σ

∣∣∣∇j
g̃(fk − ik)

∣∣∣
g̃

= O(e(α̃−j)t) for all j > 0, 1 6 k 6 m

Clearly if a submanifold f : X → Rm is strongly asymptotically conical with cone C and rate α̃ < 1
then f : X → Rm is asymptotically conical with cone C, since C∞

α̃ (X,Rm) 6 Ĉ∞
1 (X,Rm).

We now give a result which shall be useful later, and demonstrates a typical application of the
above asymptotic decay conditions.

Proposition 6.31 Let (e1, . . . , em) be the usual coframe on Rm and suppose that

θ =

m∑

j1,...,jr=1

θj1...jrej1 ⊗ · · · ⊗ ejr

is a covariant tensor of degree r > 0 on Rm such that each θj1...jr : Rm → R is a homogeneous
polynomial of degree δ > 0.

1. If f, f̃ : X → Rm lie in Ck+1
γ (X,Rm) and f − f̃ ∈ Ck+1

β (X,Rm) (respectively f − f̃ ∈
Ĉk+1
β (X,Rm)) then f∗θ−f̃∗θ ∈ Ck(r+δ−1)γ+β−r(⊗rT ∗X) (respectively f∗θ−f̃∗θ ∈ Ĉk(r+δ−1)γ+β−r(⊗rT ∗X)).

2. If f, f̃ : X → Rm lie in Ck+1,a
γ (X,Rm) and f − f̃ ∈ Ck+1,a

β (X,Rm) (respectively f − f̃ ∈
Ĉk+1,a
β (X,Rm)) then f∗θ−f̃∗θ ∈ Ck,a(r+δ−1)γ+β−r(⊗rT ∗X) (respectively f∗θ−f̃∗θ ∈ Ĉk,a(r+δ−1)γ+β−r(⊗rT ∗X)).

Proof: We assume that δ + r > 1 because in the case δ = r = 0 we just have a constant function θ
on Rm and f∗θ = f̃∗θ.

Suppose firstly that f, f̃ ∈ Ck+1
γ (X,Rm) and that f − f̃ ∈ Ck+1

β (X,Rm). Then we have, in our
usual coordinates x = (t, σ) over each (T,∞) × Uν :

f∗θ =
n∑

k1,...,kr=1




m∑

j1,...,jr=1

(θj1...jr ◦ f)
∂fj1
∂xk1

. . .
∂fjr
∂xkr


dxk1 ⊗ · · · ⊗ dxkr

f̃∗θ =
n∑

k1,...,kr=1




m∑

j1,...,jr=1

(θj1...jr ◦ f̃)
∂f̃j1
∂xk1

. . .
∂f̃jr
∂xkr


dxk1 ⊗ · · · ⊗ dxkr

and for each 1 6 j1, . . . , jr 6 m we may write:

θj1...jr ◦ f =
∑

16i1,...,iδ6m

ci1...iδfi1 . . . fiδ

θj1...jr ◦ f̃ =
∑

16i1,...,iδ6m

ci1...iδ f̃i1 . . . f̃iδ

for some ci1...iδ ∈ R. Using the given decay conditions it is easy to see that f∗θ−f̃∗θ ∈ Ck(r+δ−1)γ+β−r(⊗rT ∗X):

each fi, f̃i and ∂kfj , ∂kf̃j has decay O(eγt) in the first k derivatives, each fi − f̃i and ∂kfj − ∂kf̃j has
decay O(eβt) in the first k derivatives and each dxk1 ⊗ · · · ⊗ dxkr

has decay O(e−rt) in the cone
metric. Using a telescoping argument we see that the total decay rate of f∗θ − f̃∗θ is therefore
O(e((r+δ−1)γ+β−r)t) in the first k derivatives, as required. When f − f̃ ∈ Ĉk+1

β (X,Rm) each fi − f̃i

and ∂kfj − ∂kf̃j have decay o(eβt) in the first k derivatives so that the total decay rate of f∗θ − f̃∗θ

is o(e((r+δ−1)γ+β−r)t) in the first k derivatives, and f∗θ − f̃∗θ ∈ Ĉk(r+δ−1)γ+β−r(⊗rT ∗X) as required.

The case of Hölder decay follows similarly: we omit the details.

Proposition 6.31 has many useful consequences:
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Corollary 6.32 Suppose f : X → Rm is an asymptotically conical submanifold with cone C. If θ is
a covariant tensor on Rm which is constant in the usual coordinate system and f∗θ = 0 then i∗θ = 0
viewing i as a map C → Rm. Consequently, if f : X → Cn is a (special) Lagrangian submanifold
which is asymptotically conical with cone C then C is (special) Lagrangian.

Proof: Suppose that θ ∈ C∞(⊗rT ∗Rm). Since i, f ∈ C∞
1 (X,Rm) and i − f ∈ Ĉ∞

1 (X,Rm) we have,
applying Proposition 6.31 with β = γ = 1 and δ = 0:

i∗θ = i∗θ − f∗θ (6.48)

lying in Ĉ∞
0 (⊗rT ∗X). In equation (6.48) we view i as a map i : X → Rm, but it follows immediately

that if we view i as a map i : C → Rm we have

sup
{t}×Σ

|i∗θ|g̃ = o(1). (6.49)

Now pick any σ ∈ Σ and any gΣ-orthonormal frame (f2, . . . , fn) for T ∗
σΣ. Then

(etdt, etf2, . . . , e
tfm)

is a g̃-orthonormal frame for the cotangent space of R × Σ at each (t, σ) in which the form i∗θ is
independent of t. It follows from equation (6.49) that we must have i∗θ = 0 on R × Σ.

The second assertion now follows from the first because the forms ω and Im Ω are constant in the
usual coframe for Cn.

If f : X → Rm is a submanifold we shall always denote the metric induced on X by g := f∗e. The
following result relates the decay of f towards i with the decay of g towards the cone metric g̃.

Corollary 6.33 If f : X → Rm is a (strongly) asymptotically conical submanifold with cone C (and
rate α̃ < 1) then the metric g on X is (strongly) asymptotically conical (with rate α = α̃− 1 < 0).

Proof: Suppose that f : X → Rm is asymptotically conical with cone C. Applying Proposition 6.31
with r = 2, δ = 0 and β = γ = 1 yields g − g̃ ∈ Ĉ∞

0 (⊗2T ∗X) and that is the same thing as saying

sup
{t}×Σ

∣∣∇j
g̃(g − g̃)

∣∣
g̃

= o(e−jt)

for all j > 0, which means that g is asymptotically conical. The case of strong decay follows similarly.

6.2.2 Deforming AC Lagrangian submanifolds of Cn

Suppose now for the rest of Section 6.2 that f : X → Rm is a (strongly) asymptotically conical
submanifold with cone C ⊆ Rm (and rate α̃ < 1), and let N → X be the normal bundle of X in Rm.
We would like to deform f : X → Rm to “nearby” submanifolds fξ : X → Rm. By the Hopf-Rinow
Theorem [24, Theorem 1.4.8] the subset f(X) ⊆ Rm is complete as a metric space and therefore closed
in Rm, so by the Tubular Neighbourhood Theorem 2.15 there exists an open subset Ũ ⊆ N containing
the zero section such that the exponential map

exp |Ũ : Ũ → Rm (6.50)

is a diffeomorphism onto an open subset of Rm. Recall that for each

ξ ∈ Ũ∞ :=
{
ξ ∈ C∞(N) : ξx ∈ Ũ for all x ∈ X

}

we have a submanifold fξ : X → Rm got by identifying Ũ ∼= exp(Ũ) via the diffeomorphism (6.50),
and then the normal vector field ξ becomes identified with the map fξ.
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One can think of a normal vector field ξ ∈ C∞(N) as a function ξ : X → Rm such that ξx ∈ Rm

lies in (TxX)⊥ 6 TxR
m ∼= Rm for each x ∈ X, and then since the metric e on Rm is flat we have

fξ := f + ξ (6.51)

for all ξ ∈ Ũ∞.

If ξ ∈ Ũ∞ then there is obviously a relationship between the growth rate of ξ and its derivatives
and whether or not the submanifold fξ is (strongly) asymptotically conical with cone C (and rate
α̃ < 1). However, we have not defined the notion of conical damped Ck-spaces or conical damped
Hölder spaces for the bundle N . Also, we shall primarily be concerned with the case m = 2n with a
fixed identification Rm ∼= Cn, and then only Lagrangian submanifolds of Cn. Therefore, for the rest
of Section 6.2 we assume that m = 2n, and we have a fixed identification Rm ∼= Cn, and (in addition
to the previous assumptions on f) that f : X → Cn is a Lagrangian submanifold. It follows from
Corollary 6.32 that the cone C must be Lagrangian also.

We have a bundle isomorphism ♭gJ : N → T ∗X as in Section 2.3.4. Put U := (♭gJ)Ũ , which is an

open subset of T ∗X containing the zero section. We also define U∞ := (♭gJ)Ũ∞ ⊆ C∞(T ∗X) as in
Section 2.3.4, and further put

Ukβ :=
{
ξ ∈ Ckβ(T ∗X) : ξx ∈ U for all x ∈ X

}

Uk,aβ :=
{
ξ ∈ Ck,aβ (T ∗X) : ξx ∈ U for all x ∈ X

}

U∞
β :=

{
ξ ∈ C∞

β (T ∗X) : ξx ∈ U for all x ∈ X
}

which each contain 0. Note that the subsets Ukβ ⊆ Ckβ(T ∗X) and Uk,aβ ⊆ Ck,aβ (T ∗X) need not be
open. We do, however, have the following useful result, which tells us that we may pick our tubular
neighbourhood Ũ of f : X → Cn in such a way that the submanifold f : X → Cn has “room to move”
within Ũ in a manner we should like.

Theorem 6.34 We can always choose the above tubular neighbourhood Ũ ⊆ N so that there exists
an ε > 0 with

V 0
1 :=

{
η ∈ C0

1 (T ∗X) : ‖η‖C0
1 (T∗X) < ε

}
⊆ U0

1 .

Proof: Recall the statement of the Inverse Function Theorem 2.7. It turns out that the open subset
V of Theorem 2.7 can be made to contain balls of a certain size determined by the operator norms of
F ′(0), F ′(0)−1 and F ′′(x) for ‖x‖ small. Estimates of this kind are, for example, to be found in the
book [1, Proposition 2.5.6] of Abraham, Marsden and Ratiu.

Suppose that k : Y → Z is a submanifold of a (complete, say) Riemannian manifold (Z, e), with
k(Y ) ⊆ Z a closed subset. Let N be the normal bundle of k : Y → Z. The Tubular Neighbourhood
Theorem 2.15 is proved by showing that the exponential map exp : N → Z is a local diffeomorphism
at each point y ∈ Y , so by the Inverse Function Theorem 2.7 one has a neighbourhood Vy ⊆ N of
each y ∈ Y on which the exponential map is a diffeomorphism. If follows that

V :=
⋃

y∈Y
Vy

exp−→ N (6.52)

is an immersion, and as in Lang [42, Chapter IV, Theorem 9], there is a refinement {Uy : y ∈ Y } of

{Vy : y ∈ Y } such that exp is a diffeomorphism on Ũ :=
⋃
y∈Y Uy.

In our situation, with an asymptotically conical submanifold f : X → Cn, one can show that there
exists a C > 0 such that the open subsets {Vx : x ∈ X} can be chosen so to contain a ball of radius Cet

about each x = (t, σ) ∈ X∞. The method here is to use an explicit coordinate description of the map
exp : N → Cn, and then the estimates of [1] mentioned above. This gives us an immersion as in (6.52)
where V has the required growth properties, and one can show that the refinement {Ux : x ∈ X} can
be taken so as not to destroy this growth.
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For the rest of Section 6.2 we fix the ε > 0 and Ũ ⊆ N as given in Theorem 6.34. The point of the
theorem is that if (♭gJ)ξ is any section of T ∗X which has C0

1 norm less than ε > 0 then the image of

ξ lies inside the tubular neighbourhood Ũ and therefore fξ : X → Cn defines a submanifold (provided
ξ is smooth, say).

It follows immediately that we have

V kβ :=
{
η ∈ Ckβ(T ∗X) : ‖η‖C0

1 (T∗X) < ε
}

⊆ Ukβ

V k,aβ :=
{
η ∈ Ck,aβ (T ∗X) : ‖η‖C0

1 (T∗X) < ε
}

⊆ Uk,aβ

V∞
β :=

{
η ∈ C∞

β (T ∗X) : ‖η‖C0
1 (T∗X) < ε

}
⊆ U∞

β

for all β 6 1. Obviously V kβ ⊆ Ckβ(T ∗X) and V k,aβ ⊆ Ck,aβ (T ∗X) are open subsets each containing 0.

We now relate the growth rate of a normal vector field ξ in the Euclidean norm with the growth
rate of the 1-form (♭gJ)ξ on X.

Proposition 6.35 Let ξ be a section of the normal bundle N , considered as a map ξ : X → Cn.
Then

1. ξ ∈ Ckβ(X,Cn) precisely when (♭gJ)ξ ∈ Ckβ(T ∗X)

2. ξ ∈ Ĉkβ(X,Cn) precisely when (♭gJ)ξ ∈ Ĉkβ(T ∗X)

3. ξ ∈ Ck,aβ (X,Cn) precisely when (♭gJ)ξ ∈ Ck,aβ (T ∗X)

4. ξ ∈ Ĉk,aβ (X,Cn) precisely when (♭gJ)ξ ∈ Ĉk,aβ (T ∗X).

Proof: Write ξ =:
∑2n
j=1 ξjej where (e1, . . . , e2n) is the standard real frame for Cn and each ξ1, . . . , ξ2n :

X → R. Then Jξ =
∑n
j=1(ξjej+n − ξj+nej). Suppose that x = (t, σ) are the usual coordinates on a

patch (T,∞) × Uν ⊆ X∞. It is easy to show that

(♭gJ)ξ =

n∑

j,k=1

(
− ∂fj
∂xk

ξj+n +
∂fj+n
∂xk

ξj

)
dxk (6.53)

in the coordinates x = (t, σ). Working over (T,∞) × Uν , let (df)t be the n × 2n matrix whose

(k, j)-entry is
∂fj

∂xk
and let J be the 2n× 2n matrix

J =

(
0 −I
I 0

)

in (n+ n) × (n+ n)-block form. Now define A to be the 2n× 2n matrix

A =

(
(df)tJ
(df)t

)

in (n+n)×(2n)-block form. Since f : X → Cn is a Lagrangian submanifold, the matrix A is invertible
at each point of (T,∞) × Uν . Moreover, equation (6.53) can be neatly summarised as

(
(♭gJ)ξ

0

)
= Aξ (6.54)

and therefore the proof of this proposition comes down to controlling the decay in the derivatives of
the entries of A,A−1.
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Since we have f ∈ C∞
1 (X) it is clear that the derivatives of the entries of the matrix A decay at

rate O(et) on the patches (T,∞) × Uν , and this is enough to prove the left implies right parts of the
above assertions, because the dxk parts of the 1-form (6.53) decay at rate O(e−t) in the cone metric
g̃.

To examine the properties of the matrix A−1, consider the map i : X → Cn and define

B =

(
(di)tJ
(di)t

)

over the patch (T,∞) × Uν . Then B is invertible at each point of (T,∞) × Uν since the cone C is
Lagrangian. Further define

h := A−B D := e−tB E := e−th

and then it is easy to check that sup{t}×Uν

∣∣ρν∂λ(D−1)
∣∣ = O(1) and sup{t}×Uν

∣∣ρν∂λE
∣∣ = o(1) for each

1 6 ν 6 N and |λ| > 0. After a brief calculation we have

A−1 −B−1 = −e−tD−1E

∞∑

k=0

(
−D−1E

)k
D−1

for each 1 6 ν 6 N , where the power series converges on (T + S,∞) × Uν for some large S > 0. It
follows that

sup
{t}×Uν

∣∣ρν∂λ(A−1 −B−1)
∣∣ = o(e−t)

for all 1 6 ν 6 N , |λ| > 0 and hence

sup
{t}×Uν

∣∣ρν∂λ(A−1)
∣∣ = O(e−t) (6.55)

for all 1 6 ν 6 N , |λ| > 0. Now we are done: the right implies left parts of the above assertions follow
from equation (6.54) and equation (6.55).

The following corollary is now immediate because fξ = f + ξ for (♭gJ)ξ ∈ U∞, from equation
(6.51).

Corollary 6.36 Let (♭gJ)ξ ∈ U∞. Then fξ : X → Cn is (strongly) asymptotically conical with cone

C (and rate α̃) precisely when (♭gJ)ξ ∈ Ĉ∞
1 (T ∗X) (respectively (♭gJ)ξ ∈ C∞

α̃ (T ∗X)).

6.2.3 The moduli space of AC special Lagrangian submanifolds of Cn

We now establish the deformation problem for asymptotically conical special Lagrangian submanifolds
of Cn: the material is conceptually very similar to that of Section 3.2.

As well as the assumptions we have already made in Section 6.2, we shall further assume that the
submanifold f : X → Cn is special Lagrangian and strongly asymptotically conical with cone C and
rate α̃ < 1. It follows from Corollary 6.32 that C is special Lagrangian. We put α := α̃ − 1. Also
(J, e,Ω) denotes the standard Calabi-Yau structure on Cn, with Kähler form denoted ω.

We are interested in the submanifolds of Cn which are near to f : X → Cn in some sense. For us,
“near” shall mean a submanifold of the form fξ : X → Cn where (♭gJ)ξ lies in V 0

1 . However, we shall
only be interested in submanifolds fξ : X → Cn which are strongly asymptotically conical with cone
C and rate α̃ = α+1. Because of Corollary 6.36 we shall therefore restrict ourselves to contemplating
submanifolds fξ : X → Cn such that (♭gJ)ξ ∈ V∞

α+1. We now consider which of the (♭gJ)ξ ∈ V∞
α+1

give rise to submanifolds fξ : X → Cn that are special Lagrangian.

To this end, fix some k > 2. Let β + 1 ∈ RL with β + 1 < 1 and define a map Fβ+1 : V k+1,a
β+1 →

C0(Λ∗T ∗X) by
Fβ+1

(
(♭gJ)ξ

)
= ∗gf∗ξ Im Ω + f∗ξ ω (6.56)
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for all (♭gJ)ξ ∈ V k+1,a
β+1 . Note that F (0) = 0 as f : X → Cn is special Lagrangian, and furthermore

F−1
β+1(0) =

{
(♭gJ)ξ ∈ V k+1,a

β+1 : fξ : X → Cn is special Lagrangian
}
.

It follows that we are interested in the structure of the subset F−1
β+1(0) ⊆ V k+1,a

β+1 and as in Section
3.2 the right tool to use is the Implicit Function Theorem 2.11. To invoke this theorem we need some
further results.

Proposition 6.37 The image of the map

Fβ+1 : V k+1,a
β+1 → C0(Λ∗T ∗X)

lies inside Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X).

Proof: If (♭gJ)ξ ∈ V k+1,a
β+1 ⊆ Ck+1,a

β+1 (T ∗X) then from Proposition 6.35 we have ξ ∈ Ck+1,a
β+1 (X,Cn) if

we consider ξ as a map X → Cn. But since fξ − f = f + ξ − f = ξ and fξ, f ∈ Ck+1,a
1 (X,Cn) we

deduce from Proposition 6.31 that

f∗ξ ω = f∗ξ ω − f∗ω ∈ Ck,aβ (Λ2T ∗X).

The function ∗gf∗ξ ImΩ is handled similarly.

Theorem 6.38 The map Fβ+1 : V k+1,a
β+1 → Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X) is smooth.

Proof: This result is very similar to Theorem 3.13, whose proof from Baier [5, Theorem 2.2.15] we
explained there. We therefore omit the details.

Proposition 6.39 The smooth map Fβ+1 : V k+1,a
β+1 → Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X) has derivative

F ′
β+1(0) : Ck+1,a

β+1 (T ∗X) → Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X)

at 0 which acts as d∗
g + d.

Proof: Given x ∈ X let
evx : Ck,aβ (Λ∗T ∗X) → Λ∗T ∗

xX (6.57)

denote the linear map which evaluates sections at x ∈ X. For η ∈ Ck,aβ (Λ∗T ∗X) we have

|evx(η)| = |ηx| 6 C · ‖η‖C0
β
(Λ∗T∗X) 6 C · ‖η‖Ck,a

β
(Λ∗T∗X)

where C > 0 is a constant independent of η (but not x). It follows that the map (6.57) is bounded.
The rest of the proof is now identical to that of Proposition 3.14.

Proposition 6.40 The derivative F ′
β+1(0) : Ck+1,a

β+1 (T ∗X) → Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X) has a closed
image in any of the following three situations:

1. β + 1 ∈ RL \ D
(
(d∗
g + d)odd

)

2. β + 2 ∈ RL \ D(∆2
g), β + 2 > 2 − n and no coordinate of β + 2 is 0

3. β + 1 ∈ RL \ D(∆1
g) and β + 2 < 0.
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Proof: This follows immediately from Proposition 6.30.

If any of the conditions 1, 2, 3 of Proposition 6.40 hold we shall say that β + 2 ∈ RL is generic.
Clearly β + 2 is generic for almost all β + 2 ∈ RL.

Proposition 6.41 If β + 2 ∈ RL \ D(∆0
g) with β + 2 > max{2 − n + α, 2 − n − λ} then the image

Fβ+1

(
V k+1,a
β+1

)
of the map Fβ+1 : V k+1,a

β+1 → Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X) is contained inside

F ′
β+1(0)

(
Ck+1,a
β+1 (T ∗X)

)
= d∗

g

(
Ck+1,a
β+1 (T ∗X)

)
⊕ d
(
Ck+1,a
β+1 (T ∗X)

)
. (6.58)

Recall that the equality (6.58) is not automatic: we are using the fact that β + 2 ∈ RL \ D(∆0
g) with

β + 2 > max{2 − n+ α, 2 − n− λ}, together with Lemma 6.27 and Corollary 6.29.

Proof: Write ImΩ = dθn−1, ω = dθ1, where θ1 ∈ C∞(T ∗Cn) and θn−1 ∈ C∞(Λn−1T ∗Cn) are forms

whose components with respect to the usual coframe on Cn are linear functions. Let (♭gJ)ξ ∈ V k+1,a
β+1 .

Then it is easy to check that

d∗
g

(
(−1)n ∗g (f∗ξ θn−1 − f∗θn−1)

)
= ∗gf∗ξ Im Ω

d(f∗ξ θ1 − f∗θ1) = f∗ξ ω.

Now, by Proposition 6.31 we have

(−1)n ∗g (f∗ξ θn−1 − f∗θn−1) ∈ Ck,aβ+1(T
∗X)

f∗ξ θ1 − f∗θ1 ∈ Ck,aβ+1(T
∗X)

since fξ − f = f + ξ − f = ξ ∈ Ck+1,a
β+1 (X,Cn), fξ, f ∈ Ck+1,a

1 (X,Cn) and the components of θ1, θn−1

are linear. It follows that

∗gf∗ξ Im Ω + f∗ξ ω ∈ d∗
g

(
Ck,aβ+1(T

∗X)
)
⊕ d
(
Ck,aβ+1(T

∗X)
)

and so by Lemma 6.27 and Corollary 6.29 there exists η ∈ Ck,aβ+1(T
∗X) with (d∗

g + d)η = ∗gf∗ξ Im Ω +
f∗ξ ω. Unfortunately this is one less derivative than we need, but we can infer immediately that in

fact we must have η ∈ Ck+1,a
β+1 (T ∗X) from the elliptic regularity Theorem 4.21 and the fact that

η ∈ C1,a
β+1(T

∗X) and ∗gf∗ξ Im Ω + f∗ξ ω ∈ Ck,aβ (Λ∗T ∗X). Hence we are done.

From now on we shall consider the bundles N and T ∗X as being identified via the vector bundle
isomorphism ♭gJ . Pick any closed subspace Aβ+1 6 Ck+1,a

β+1 (T ∗X) such that

Ck+1,a
β+1 (T ∗X) = Kβ+1 ⊕Aβ+1

where Kβ+1 = KerF ′
β+1(0) is finite dimensional, with dimension as given in Table 5.1. Now suppose

that β + 2 ∈ RL \ D(∆0
g) and that β + 2 > max{2 − n+ α, 2 − n− λ}. Further suppose that β + 2 is

generic. Considering Fβ+1 as a smooth map

Fβ+1 : V k+1,a
β+1 → d∗

g

(
Ck+1,a
β+1 (T ∗X)

)
⊕ d
(
Ck+1,a
β+1 (T ∗X)

)

between open subsets of Banach spaces we see that F ′
β+1(0) is surjective. From the Implicit Function

Theorem 2.11 there exist open subsets W β+1
1 ⊆ Kβ+1, Wβ+1

2 ⊆ Aβ+1 both containing 0, and a unique

map χβ+1 : W β+1
1 → Wβ+1

2 such that

1. Each ξ = (ξ1, ξ2) ∈W β+1
1 ×Wβ+1

2 gives a submanifold fξ : X → Cn of class Ck+1,a.

2.
F−1
β+1(0) ∩

(
W β+1

1 ×Wβ+1
2

)
=
{(
ξ1, χβ+1(ξ1)

)
: ξ1 ∈W β+1

1

}

in W β+1
1 ×Wβ+1

2 . Furthermore, the map χβ+1 is smooth, and χβ+1(0) = 0.
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It follows that there is a bijection

W β+1
1 → F−1

β+1(0) ∩
(
W β+1

1 ×Wβ+1
2

)
(6.59)

ξ1 7→
(
ξ1, χβ+1(ξ1)

)

and we can put the structure of a smooth manifold onto

M̃β+1 := F−1
β+1(0) ∩

(
W β+1

1 ×Wβ+1
2

)
(6.60)

by declaring that the map (6.59) be a chart in the maximal smooth atlas for M̃β+1. The following
lemma is now almost immediate.

Lemma 6.42 1. The manifold M̃β+1 is diffeomorphic to an open subset of Kβ+1 and consequently

dimM̃β+1 = dimKβ+1 where the dimensions dimKβ+1 are as given in Table 5.1.

2. With the smooth structure on M̃β+1 defined above, the inclusion

M̃β+1 →W β+1
1 ×Wβ+1

2 (6.61)

is a smooth injective map that is an immersion, and a homeomorphism onto its image. In other
words, the inclusion (6.61) is a smooth submanifold of W β+1

1 ×Wβ+1
2 .

Note that for all ξ = (ξ1, ξ2) ∈W β+1
1 ×Wβ+1

2 we have
[
fξ : X → Cn is special Lagrangian

]
⇐⇒

[
ξ ∈ M̃β+1

]
⇐⇒

[
ξ2 = χβ+1(ξ1)

]
.

The reason for the tilde on the smooth manifold M̃β+1 is that for ξ ∈ M̃β+1 the submanifold
fξ : X → Cn need not be strongly asymptotically conical with cone C and rate β + 1: all we

know is that the 1-form (♭gJ)ξ lies in Ck+1,a
β+1 (T ∗X), so that ξ ∈ Ck+1,a

β+1 (X,Cn), and furthermore
f − i ∈ C∞

α+1(X,C
n). Therefore

fξ − i = f + ξ − i ∈ Ck+1,a
γ+1 (X,Cn)

where γ = max{α, β}. Of course, we can say that fξ is necessarily smooth, from the regularity results
of Section 2.3.2, but we do not know that fξ has the required decay in its high derivatives. We shall
now address this point.

Theorem 6.43 If ξ ∈ V k+1,a
β+1 is such that

Fβ+1(ξ) := ∗gf∗ξ ImΩ + f∗ξ ω = 0 (6.62)

then ξ ∈ V∞
β+1.

Note that the following argument does not rely on the fact that β + 2 is generic, nor the fact that
β + 2 ∈ RL \ D(∆0

g) with β + 2 > max{2 − n+ α, 2 − n− λ}.
Proof: For the purposes of this proof, we shall denote the map Fβ+1 by F . Recall that we are
identifying the bundles N and T ∗X over X, and then F is a first order differential operator

F : V k+1,a
β+1 → Ck,aβ (X) ⊕ Ck,aβ (Λ2T ∗X) (6.63)

so that we may write F (ξ) = F̂ (ξ,∇ξ) where the value of F̂ (ξ1, ξ2) at x ∈ X depends only on the values
of ξ1 and ξ2 at x. An inspection of the operator F in local coordinates shows that (6.63) is a fully non-
linear operator. For example, in our usual local coordinate system x = (t, σ) on (T,∞) × Uν ⊆ X∞
we have

f∗ξ ω = f∗ξ ω − f∗ω

=
n∑

k1,k2=1

2n∑

j1,j2=1

ωj1j2
(
(∂k1ξj1)(∂k2ξj2) + (∂k1ξj1)(∂k2fj2) + (∂k1fj1)(∂k2ξj2)

)
dxk1 ∧ dxk2



Chapter 6: Deformations of AC special Lagrangian submanifolds of Cn 121

which is obviously not linear in the ∂kξj , and similarly for the quantity ∗gf∗ξ Im Ω. However, note
that applying the differentiation ∂i to each component function

(∂k1ξj1)(∂k2ξj2) + (∂k1ξj1)(∂k2fj2) + (∂k1fj1)(∂k2ξj2)

of the above sum yields

(∂2
ik1ξj1)(∂k2ξj2 + ∂k2fj2) + (∂2

ik2ξj2)(∂k1ξj1 + ∂k1fj1) + (∂2
ik1fj1)(∂k2ξj2) + (∂2

ik2fj2)(∂k1ξj1)

which is linear in the second order derivatives ∂2
ikξj of ξ. It follows that the second order, non-linear

differential operator
G : V k+1,a

β+1 → Ck−1,a
β−1 (T ∗X)

defined by G(ξ) := (d∗
g + d)F (ξ) = d ∗g f∗ξ ImΩ + d∗

gf
∗
ξ ω is quasi-linear.

Now, by the regularity theory of Section 2.3.2, if ξ satisfies equation (6.62), then fξ : X → Cn

is special Lagrangian, so that ξ is smooth. In order to show that all derivatives of ξ decay at order
O(e(β+1)t), and hence prove our theorem, we can employ a standard technique from the theory of
quasi-linear equations. First of all, write

G(ξ) = G1(ξ,∇ξ)∇2ξ +G0(ξ,∇ξ)

where G0(ξ,∇ξ) consists of the parts of G(ξ) which are of order less than or equal to 1, and
G1(ξ,∇ξ)∇2ξ contains the parts of order 2, so that the map

η 7→ G1(ξ,∇ξ)∇2η (6.64)

is linear. Now, one can easily check via a local coordinate calculation that G0(ξ,∇ξ) ∈ Ck,aβ−1(T
∗X),

and moreover that the operator (6.64) is order 2 and uniformly elliptic, asymptotically conical, with
rate 2. Therefore

G1(ξ,∇ξ)∇2ξ = −G0(ξ,∇ξ)
implies that ξ ∈ Ck+2,a

β+1 (T ∗X), and a boot-strapping argument then shows ξ ∈ C∞
β+1(T

∗X), finishing
the proof.

Actually, one must be a little careful, because although the coefficients of the operator (6.64)
are smooth, only their first k + a derivatives will decay at rate O(e−2t), and in our definition of
asymptotically conical operator we require all derivatives decay at the specified rate. However, this
turns out not to be a problem because elliptic estimates, as in Theorem 4.21, for a uniformly elliptic,
asymptotically conical operator

Q : Ck+l,aβ+γ (E) → Ck,aβ (F )

of order l > 1 and rate γ ∈ RL only require the coefficients of Q decay at rate O(e−γt) in their first
k + a derivatives. The previous statement is easily deduced from the corresponding local Schauder
estimates for operators with Hölder continuous coefficients, as in [16, Theorem 1] for example.

It follows from Theorem 6.43 that χβ+1

(
W β+1

1

)
⊆ C∞

β+1(T
∗X), and that

M̃β+1 ⊆ C∞
β+1(T

∗X).

Hence every element ξ ∈ M̃β+1 gives a submanifold fξ : X → Cn which is special Lagrangian and
strongly asymptotically conical with cone C and rate γ + 1 < 1, where γ = max{α, β}.

Let us now look at deformations ξ which have the growth rate we are interested in, namely
α̃ = α + 1 < 1. From now on we assume that α + 2 ∈ RL \ D(∆0

g) with α + 2 > 2 − n − λ. Then

we may choose generic β1 + 1, β2 + 1 ∈ RL with β1 + 1 < α + 1 < β2 + 1 < 1 and α − β1 < n, such
that β1 + 2, α+ 2, β2 + 2 all lie in the same connected component of RL \ D(∆0

g). It follows that the
previous discussion — from (6.56) onwards — applies to each of β + 1 := β1 + 1, β2 + 1 and moreover

Kβ1+1 = Kα+1 = Kβ2+1.
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The subsets of the above discussion can therefore be chosen so that

Aβ1+1 = Ck+1,a
β1+1 (T ∗X) ∩ Aβ2+1

W β1+1
1 = W β2+1

1

Wβ1+1
2 = Aβ1+1 ∩Wβ2+1

2

and the mappings

χβ1+1 : W β1+1
1 → Wβ1+1

2

χβ2+1 : W β2+1
1 → Wβ2+1

2

so that χβ1+1(ξ1) = χβ2+1(ξ1) for all ξ1 ∈W β1+1
1 = W β2+1

1 . It follows that

M̃β1+1 = M̃β2+1

and the smooth structures on M̃β1+1 and M̃β2+1 defined above coincide. Now although α + 2 could
be non-generic, we can still define

Aα+1 := Ck+1,a
α+1 (T ∗X) ∩ Aβ2+1

Wα+1
1 := W β2+1

1

Wα+1
2 := Aα+1 ∩Wβ2+1

2

and then the map
χα+1 : Wα+1

1 → Wα+1
2

by χα+1(ξ1) := χβ1+1(ξ1) = χβ2+1(ξ1) for all ξ1 ∈Wα+1
1 = W β1+1

1 = W β2+1
1 . It follows easily that:

1. Aα+1 6 Ck+1,a
α+1 (T ∗X) is closed and Ck+1,a

α+1 (T ∗X) = Kα+1 ⊕Aα+1.

2. Wα+1
1 ⊆ Kα+1, Wα+1

2 ⊆ Aα+1 are open subsets both containing 0 and the map χα+1 : Wα+1
1 →

Wα+1
2 is smooth, with χα+1(0) = 0.

3. Each ξ = (ξ1, ξ2) ∈Wα+1
1 ×Wα+1

2 gives a submanifold fξ : X → Cn of class Ck+1,a.

4.
F−1
α+1(0) ∩

(
Wα+1

1 ×Wα+1
2

)
=
{(
ξ1, χα+1(ξ1)

)
: ξ1 ∈ Wα+1

1

}

in Wα+1
1 ×Wα+1

2 .

We now see there is a bijection

Wα+1
1 → F−1

α+1(0) ∩
(
Wα+1

1 ×Wα+1
2

)
(6.65)

ξ1 7→
(
ξ1, χα+1(ξ1)

)

and we can put the structure of a smooth manifold onto

Mα+1 := F−1
α+1(0) ∩

(
Wα+1

1 ×Wα+1
2

)
(6.66)

by declaring that the map (6.65) be a chart in the maximal smooth atlas for Mα+1. The following
lemma is now almost immediate.

Lemma 6.44 1. The manifold Mα+1 is diffeomorphic to an open subset of Kα+1 and consequently
dimMα+1 = dimKα+1 where the dimensions dimKα+1 are as given in Table 5.1.

2. With the smooth structure on Mα+1 defined above, the inclusion

Mα+1 →Wα+1
1 ×Wα+1

2 (6.67)

is a smooth injective map that is an immersion, and a homeomorphism onto its image. In other
words, the inclusion (6.67) is a smooth submanifold of Wα+1

1 ×Wα+1
2 .
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Note that

Mα+1 = M̃β1+1 = M̃β2+1

and the smooth structure defined on Mα+1 above coincides with the smooth structures already on
M̃β1+1 and M̃β2+1. Note also that for all ξ = (ξ1, ξ2) ∈Wα+1

1 ×Wα+1
2 we have

[
fξ : X → Cn is special Lagrangian

]
⇐⇒

[
ξ ∈ Mα+1

]
⇐⇒

[
ξ2 = χα+1(ξ1)

]

and any ξ ∈ Wα+1
1 × Wα+1

2 satisfying these conditions lies in V∞
α+1, by Theorem 6.43, so that fξ :

X → Cn is strongly asymptotically conical with cone C and rate α+ 1.

We now summarise some of the results of the above discussion in the following theorem.

Theorem 6.45 Let X be a manifold with ends, as described in Section 4.1. Let f : X → Cn be a
submanifold with normal bundle N , and suppose that f : X → Cn is special Lagrangian and strongly
asymptotically conical with cone C ⊆ Cn and rate α+ 1 < 1. Identify N ∼= T ∗X via the vector bundle
isomorphism ♭gJ . Define

Kα+1 :=
{
ξ1 ∈ C∞

α+1(T
∗X) : d∗

gξ1 = 0 and dξ1 = 0
}
.

Then Kα+1 has finite dimension as given in Table 5.1. Let k > 2 and suppose that α+2 > 2−n−λ with
α+2 ∈ RL \D(∆0

g). Then there exists a closed subspace A 6 Ck+1,a
α+1 (T ∗X) such that Ck+1,a

α+1 (T ∗X) =
Kα+1⊕A, and open subsets W1 ⊆ Kα+1, W2 ⊆ A both containing 0, and a smooth map χ : W1 → W2

such that:

1. Each ξ = (ξ1, ξ2) ∈W1 ×W2 gives a submanifold fξ : X → Cn of class Ck+1,a.

2. For all ξ = (ξ1, ξ2) ∈W1 ×W2 we have

[
fξ : X → Cn is special Lagrangian

]
⇐⇒

[
χ(ξ1) = ξ2

]

so that χ(W1) ⊆ C∞
α+1(T

∗X) and χ(0) = 0.

3.

Mα+1 :=
{
ξ = (ξ1, ξ2) ∈W1 ×W2 : fξ : X → Cn is special Lagrangian

}

is a smooth manifold with dimension dimMα+1 = dimKα+1. Moreover,

W1 → Mα+1

ξ1 7→
(
ξ1, χ(ξ1)

)

is a diffeomorphism and the inclusion Mα+1 → W1 × W2 is a smooth submanifold. Each
element ξ ∈ Mα+1 gives rise to a special Lagrangian submanifold fξ : X → Cn which is strongly
asymptotically conical with cone C and rate α+ 1.

Before applying Theorem 6.45 to some examples in the next section, we note two things:

1. Up to now we have only considered submanifolds which are genuinely embedded in their ambient
space, but the entire proof of Theorem 6.45 carries through to the case of immersed submanifolds
f : X → Cn, so that the theorem holds in this situation also: the moduli space Mα+1 will then
contain ξ such that the submanifolds fξ : X → Cn are immersed.

2. In the proof of the Theorem 6.45 we used the fact that dimKβ+1 is constant for β + 2 in a
connected component of RL \ D(∆0

g), and this allowed us to remove the genericity assumption
on α + 2 for the existence of a smooth moduli space Mα+1. In much the same way, one can
easily show that a smooth moduli space Mα+1 exists for α+2 ∈ D(∆0

g) with α+2 > 2−n−λ,
provided that dimKβ+1 is constant for β + 2 in a small neighbourhood of α+ 2.
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6.3 Applications of the deformation theory

6.3.1 Preliminary discussion

We begin with some general remarks: suppose that X is a manifold with ends as in Section 4.1 and
that f : X → Cn is a special Lagrangian submanifold which is strongly asymptotically conical with
cone C ⊆ Cn and rate α̃ = α + 1 < 1. Then, provided α + 2 ∈ RL \ D(∆0

g) and α + 2 > 2 − n − λ
we have a smooth manifold Mα+1 which parameterizes the nearby special Lagrangian submanifolds
fξ : X → Cn which are strongly asymptotically conical with cone C and rate α + 1. Moreover the
manifold Mα+1 has dimension dimMα+1 = dimKα+1 got from Table 5.1. A study of Table 5.1
reveals that the deformations of f : X → Cn have two sources:

1. The exact parts of Kα+1. These are:

(a) Kerψα+1 = 0 for 2 − n− λ < α+ 2 < 2 − n.

(b) Kerψα+1 = Span{dh1, . . . ,dhL} for 2− n < α+ 2 < λ. Essentially this space is the kernel
of the natural projection φ1 : H1

c (X) → H1(X).

(c) Kerψα+1 = dKer(∆0
g)α+2 for α + 2 > 0. This space always contains dKer(∆0

g)0 =
Span{dh1, . . . ,dhL}. However, for λ < α + 2 < 2 there will also be contributions to
dKer(∆0

g)α+2 coming from non-constant eigenfunctions of the link Laplacian ∆0
gΣ . Recall

that here λ = (λ1, . . . , λL) where for each 1 6 j 6 L we define λj > 0 to be such that
λj(λj + n − 2) is the smallest positive element of Spec(Σj , gΣ, 0). It turns out that λ 6 1
always: we prove this below by constructing eigenfunctions of the Laplacian on each Σj ,
which have eigenvalue n − 1. It is interesting to ask when λ < 1: in this case we can say
that there exist unbounded harmonic functions on X which have sub-linear growth.

2. The “non-exact” parts Kα+1

Kerψα+1

∼= Imψα+1 of Kα+1. These are:

(a) Imφ1 6 H1(X) if 2 − n− λ < α+ 2 < 0

(b) H1(X) if α+ 2 > 0.

Note that there is an overlap in the cases 1(b) and 1(c) above, corresponding to 0 < α + 2 < λ. We
now give an explanation of the claim in case 1(c) that λ 6 1 always: we begin with some standard
theory from symplectic geometry.

Let G be a Lie group with Lie algebra g. If G acts on a symplectic manifold (M,ω) via symplec-
tomorphisms then a moment map for the action is a map m : M → g∗ such that

d〈m, ξ〉 = ι(vξ)ω (6.68)

for all ξ ∈ g. In equation (6.68) 〈 , 〉 is the natural pairing between the vector space g and the dual
space g∗, and vξ is the vector field on M induced by ξ ∈ g and the action of G on M . Note that a
moment map need not exist, nor be unique.

In the case that M = Cn with the usual symplectic form ω there are two actions as above which
are particularly relevant for us:

1. If G = Cn, acting on M via translations

G×M → M

(w, z) 7→ w + z,

then a moment map m : Cn → g∗ exists. Identifying g ∼= Cn in the usual way, we may take m
to be defined by

〈m(z), ξ〉 :=

n∑

j=1

Im(zjξj)

for all z, ξ ∈ Cn, so that the components of m form a basis for the vector space of real linear
maps Cn → R.
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2. If G = SU(n), acting on M via rotations

G×M → M

(A, z) 7→ Az,

then a moment map m : Cn → g∗ exists. Identifying g with the trace-free anti-hermitian n× n
complex matrices we may take m to be defined by

〈m(z), ξ1jk〉 = 1
2 (|zk|2 − |zj |2) (6.69)

〈m(z), ξ2jk〉 = −Re(zkzj) (6.70)

〈m(z), ξ3jk〉 = − Im(zkzj) (6.71)

for all z ∈ Cn. In equations (6.69), (6.70), (6.71) we define, for each 1 6 j < k 6 n:

(a) ξ1jk ∈ g to be the matrix whose only non-zero entries are i in the (j, j) place and −i in the
(k, k) places,

(b) ξ2jk ∈ g to be the matrix whose only non-zero entries are i in the (j, k) and (k, j) places,

(c) ξ3jk ∈ g to be the matrix whose only non-zero entries are 1 in the (j, k) place and −1 in the
(k, j) place.

Note that {ξ11k : 2 6 k 6 n} ∪ {ξ2jk, ξ3jk : 1 6 j < k 6 n} is a basis for g.

In both of the above actions, the group G preserves the standard Calabi-Yau structure on M = Cn.
The following result now allows us to obtain eigenfunctions for our Laplacian on the link Σ.

Proposition 6.46 Let G be a Lie group with Lie algebra g and let (M,J, g,Ω) be a Calabi-Yau
manifold with Kähler form ω. Suppose that G acts on M preserving (J, g,Ω) and that m : M → g∗ is
a moment map for the action of G on the symplectic manifold (M,ω). Then for any special Lagrangian
submanifold f : X →M and ξ ∈ g the function

f∗〈m, ξ〉 : X → R

is harmonic with respect to the induced metric on X.

Proof: It is easy to show that

∆0
g

(
f∗〈m, ξ〉

)
= d∗

g

(
f∗(ι(vξ)ω)

)

from the definition of a moment map. So to prove the proposition we must show that f∗(ι(vξ)ω) is
a coclosed 1-form on X. For this, let exp : g → G denote the exponential map of the Lie group G.
Viewing elements of G as diffeomorphisms M →M define ft := exp(tξ) ◦ f for each t ∈ R, so that

F : R ×X → M

(t, x) 7→ ft(x)

is a variation, in the sense of Section 2.2.2, with each ft : X → M a special Lagrangian submanifold
and f0 = f . Note further that for each t ∈ R we have the infinitesimal variation ξt = f∗t vξ in f∗t TM .
Then we have

0 =
∂

∂t

(
f∗t Im Ω

)∣∣∣∣
t=0

= d
(
f∗(ι(ξ0) Im Ω)

)
= −d

(
∗gf∗(ι(ξ0)ω)

)
(6.72)

as required. In equation (6.72) we are using the variations material of Section 2.2.2 together with
Corollary 2.28.

The following result will also be useful for us:
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Lemma 6.47 Let G be a Lie group with Lie algebra g, and (M,ω) a symplectic manifold. Suppose
that G acts on M via symplectomorphisms and that m : M → g∗ is a moment map for the action.
If f : X → M is a Lagrangian submanifold then f∗m : X → g∗ is constant precisely when (vξ)x is
tangent to X for each x ∈ X and ξ ∈ g.

Proof: Recall our assumption that all manifolds are connected unless explicitly stated otherwise. If
x ∈ X then we have that TxX is equal to the subspace of Tf(x)M which is ωx-perpendicular to TxX:
this is because f : X → M is Lagrangian. Suppose further that ξ ∈ g and v ∈ TxX. Then the
equation

v ·
(
f∗〈m, ξ〉

)
= 2ω(vξ, v)

proves the lemma.

Let Σj be a component of the link Σ of C, and let Cj ⊆ C ⊆ Cn be the cone on Σj . Applying
Proposition 6.46 with M = Cn, acted on by translations, we see that the restriction of any real linear
map T : Cn → R to the special Lagrangian cone Cj ⊆ Cn is harmonic on Cj \{0}. Since any real linear
map T : Cn → R is homogeneous of degree 1, have that T |Σj

is an eigenfunction for ∆0
gΣ restricted to

Σj , with eigenvalue n− 1. In other words

{
T |Σj

: T : Cn → R is linear
}

6 Ker
(
∆0
gΣ − (n− 1)

)
∩ C∞(Σj),

which is a subspace of dimension dtr(Σj), where

dtr(Σj) =

{
n if Σj is a round unit (n− 1)-sphere
2n otherwise.

(6.73)

To see why equation (6.73) holds, suppose that Σj is not a round unit (n−1)-sphere, so that the cone
Cj is not a linear subspace of Cn and has a singularity at 0 ∈ Cn. Let G be the group Cn, acting on
Cn by translations. Any non-trivial translation of Cn must move the submanifold Cj \{0} → Cn, and
it follows that for every non-zero ξ ∈ g there exists an x ∈ Cj \ {0} such that (vξ)x is not tangent to
Cj \{0}. So from Lemma 6.47 we deduce that 〈m, ξ〉 is not constant on Cj \{0}, so that any non-zero
linear function Cn → R is non-zero on Σj , and therefore dtr(Σj) = 2n.

Recall that the eigenvalue n−1 corresponds to the growth rate 0 on the manifold X, so that Kβ+1

increases in dimension by at least

dtr(Σ) :=

L∑

j=1

dtr(Σj) (6.74)

as β + 1 crosses over 0. Because of the equations (6.73) note that dtr(Σ) must be at least n, with
equality precisely when C is a special Lagrangian plane in Cn. Otherwise, C has a singularity at 0, and
we can say that dtr(Σ) is at least 2n. The general idea is that increasing the growth rate β + 1 above
0 picks up all the deformations of the submanifold f : X → Cn which are got from translations: being
special Lagrangian and strongly asymptotically conical with cone C and rate α + 1 > 0 is preserved
by translations. Note that in the cases dtr(Σ) > 2n we have deformations of f : X → Cn which are
not just the usual translations on Cn: one can think of our theory as saying that the ends of X may
be “translated” independently of each other, to yield submanifolds which are still special Lagrangian
and asymptotically conical with cone C and rate α+ 1 > 0. It is also interesting to consider if there
are examples of special Lagrangian cones with link Σ such that dtr(Σ) < dim Ker

(
∆0
gΣ − (n− 1)

)
.

We now look at the action of SU(n) on Cn. Then Proposition 6.46 tells us that each of the functions
on Cn given by equations (6.69), (6.70), (6.71) restrict to the components Σj of the link Σ to be an
eigenfunction for ∆0

gΣ , with eigenvalue 2n. Let Vj 6 Ker(∆0
gΣ − 2n) ∩ C∞(Σj) be the vector space of

eigenfunctions got on the component Σj in this way, so that we have a surjective linear map

su(n) → Vj (6.75)

ξ 7→ 〈m, ξ〉|Σj
.
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The exact dimension drot(Σj) of the space Vj will depend upon the symmetries of the cone Cj under
the group SU(n): for each 1 6 j 6 L define

Hj :=
{
A ∈ SU(n) : A(Cj) = Cj

}

the symmetry group of the cone Cj ⊆ Cn. Then Hj 6 SU(n) is a closed, and therefore Lie, subgroup
of SU(n). Let hj be the Lie algebra of Hj . Using Lemma 6.47, one can show that the kernel of the
linear map (6.75) is hj 6 su(n), so that

drot(Σj) = dimVj = dim SU(n) − dimHj (6.76)

for each 1 6 j 6 L. We shall be less interested in the eigenfunctions with eigenvalue 2n because
the corresponding growth rate is α + 1 = 1, which is just outside the scope of Theorem 6.45. But,
intuitively at least, the closed and coclosed 1-forms on X got from the SU(n) action on Cn and
Proposition 6.46 correspond to rotating f(X) ⊆ Cn by elements of SU(n). As for translations, we
have a contribution of the form (6.76) for each end of X, with a total dimension

drot(Σ) :=
L∑

j=1

drot(Σj)

so that, in vague terms, the ends of X can be “rotated” independently by elements of SU(n). As for
translations, it is interesting to consider if there are examples of special Lagrangian cones with link
Σ such that drot(Σ) < dim Ker(∆0

gΣ − 2n). In actual fact, there are: see [31, Section 10.3], and also
the U(1)n−1-invariant example of Harvey and Lawson [21] in dimension n = 8: the details are given
below in Section 6.3.4.

We shall now look at some concrete examples. Note that in Section 6.3.2 onwards, we tend to use
α̃ = α+1 to refer to the minimal decay rate at which a submanifoldX → Cn is strongly asymptotically
conical, and then use β̃ = β + 1 to refer to decay rates which are larger than α + 1: certainly our
submanifold f : X → Cn will be strongly asymptotically conical with these β + 1 rates, and we can
form the corresponding moduli spaces Mβ+1 accordingly.

6.3.2 Decay α+ 1 = 1 − n− λ

Unfortunately, we only have one example of a special Lagrangian submanifold f : X → Cn which
is strongly asymptotically conical with cone C and rate α + 1 = 1 − n − λ: the special Lagrangian
plane Rn 6 Cn, and this is a degenerate example because the submanifold f : X → Cn obviously has
arbitrarily negative decay. It would be interesting to find examples for which the relevant dimension
dimKα+1 = b1c(X) − L+ 1 is non-zero.

Example 1: special Lagrangian planes

Put X = Rn and define f : X → Cn by

f(x1, . . . , xn) := (x1, . . . , xn).

Then f : X → Cn is special Lagrangian and strongly asymptotically conical with cone C = f(X) and
arbitrarily negative growth rate α+ 1 < 1. We have

b1c(X) = 0

b1(X) = 0.

Clearly C has L = 1 ends, and link the round unit sphere Sn−1 ⊆ Rn. It is a well-known fact that
the spectrum of a round unit (n− 1)-sphere consists of the points

Spec(Sn−1, grd, 0) =
{
µl := l(l + n− 2) : l > 0

}
(6.77)
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and that the full l(l + n − 2)-eigenspace is got from restricting homogeneous, harmonic polynomials
of degree l > 0 on Rn to Sn−1: see [14] for example. Let P ln denote the homogeneous polynomials of
degree l > 0 on Rn, which is a vector space of dimension

dimP ln =

(
n+ l − 1

l

)
.

Also let H l
n 6 P ln be the subspace consisting of those p(x) ∈ P ln which are harmonic. Then, from [11,

Segal, Section 10] we have dimH l
n = dimP ln − dimP l−2

n and a brief calculation yields

dim Ker(∆0
grd

− µl) =
(n− 2 + 2l)(n− 3 + l)!

l!(n− 2)!
(6.78)

for l > 0. Note that the only element of Spec(Sn−1, grd, 0) inside (0, 2n) is n− 1, and that

dim Ker
(
∆0
grd

− (n− 1)
)

= n.

The above collection of facts, together with Table 5.1, yield

dimMβ+1 = 0 for β + 1 < 0
dimMβ+1 = n for 0 < β + 1 < 1.

so that X is rigid up to growth rates β+1 = 0, and then for rates 0 < β+1 < 1 the only deformations
are translations in the normal directions. Moreover, the full (n − 1)-eigenspace is got from the Cn

moment map construction given above.

Note that

dim Ker(∆0
grd

− 2n) =
(n+ 2)(n− 1)

2

is the multiplicity of the eigenvalue corresponding to growth rate β + 1 = 1. Now compare

drot(S
n−1) = dim SU(n) − dim SO(n) = n2 − 1 − n(n− 1)

2
=

(n+ 2)(n− 1)

2

where SO(n) 6 SU(n) is the symmetry group of the special Lagrangian plane Rn 6 Cn. Therefore
the full 2n-eigenspace is got from the SU(n) moment map construction given above.

6.3.3 Decay α+ 1 = 1 − n

Example 2: the cone construction of Castro and Urbano/Haskins/Joyce

We begin by quoting a result proved independently by Castro and Urbano [12, Remark 1, p. 81-82],
Haskins [22, Theorem A] and Joyce [30, Theorem 6.4].

Theorem 6.48 Let C ⊆ Cn be a special Lagrangian cone with link Σ. For each a > 0 define

Xa :=
{
zx : x ∈ Σ and z ∈ C with Im(zn) = a and 0 < arg(z) < π

n

}
.

Then Xa → Cn is an immersed special Lagrangian submanifold, diffeomorphic to R × Σ. Moreover,
Xa is asymptotically conical with cone C̃ := C ∪ e iπ

n C and rate α+ 1 = 1 − n.

Let C ⊆ Cn be a 1-ended special Lagrangian cone with link Σ. Applying Theorem 6.48 we have,
for each a > 0, an immersed, connected special Lagrangian submanifold Xa, with topology Σ × R.
Then

b1c(Xa) = b1c(R × Σ) = b0(Σ) = 1

by Bott and Tu [8, Proposition 4.7] and also

b1(Xa) = b1(R × Σ) = b1(Σ)
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by Bott and Tu [8, Proposition 4.1]. Now Xa is asymptotic to the cone C̃ = C ∪ e iπ
n C, which has

L = 2 ends, and the link Σ̃ has components Σ and e
iπ
n Σ, which are isometric. We therefore have

dimMβ+1 = 1 for 1 − n < β + 1 < −1
dimMβ+1 = 1 + b1(Σ) for −1 < β + 1 < λ− 1

with analytic terms 2χ(β+ 2) from (Σ, gΣ) contributing to dimMβ+1 if λ− 1 < β+ 1 < 1. Note that
if b1(Σ) > 0 then we have new examples of special Lagrangian submanifolds in Cn. More generally, if
Σ is not a round unit (n− 1)-sphere then we have dimMβ+1 > 1 + b1(Σ) + 4n for 0 < β+ 1 < 1: this
is an example of being able to “translate” the two ends of f : X → Cn independently.

If we take C := Rn 6 Cn the standard special Lagrangian plane then the above construction yields
the Xa of Example 2.22 which are SO(n)-invariant. Then b1(Σ) = 0 and using equation (6.77) and
equation (6.78) we deduce that

dimMβ+1 = 1 for 1 − n < β + 1 < 0
dimMβ+1 = 1 + 2n for 0 < β + 1 < 1

because each component of the link Σ̃ is isometric to a round unit (n− 1)-sphere. It follows that the
examples Xa → Cn are isolated, up to perturbations of a > 0 and translations of Cn.

Example 3: Harvey/Joyce/Lawlor examples

The following examples are discussed in Harvey [20, p. 139-143], Joyce [26, Theorem 5.4] and Lawlor
[44].

Let a1, . . . , an > 0 and define a polynomial p(y) ∈ R[y] by

p(y) :=
(1 + a1y

2) . . . (1 + any
2) − 1

y2
.

Now put

rk(y) :=

√
1

ak
+ y2

θk(y) :=

∫ y

0

dy

(1 + aky2)
√
p(y)

zk(y) := rk(y)e
iθk(y)

for each 1 6 k 6 n and y ∈ R. Then from [20, Theorem 7.78] and [26, Section 5.4] we have

X :=
{(
x1z1(y), . . . , xnzn(y)

)
: y ∈ R, x ∈ Sn−1 ⊆ Rn

}

is a submanifold X → Cn which is special Lagrangian (with respect to the calibration Im Ω), diffeo-
morphic to R × Sn−1, and asymptotic to a cone C at rate α+ 1 = 1 − n, where

C = Π1 ∪ Π2

and Π1,Π2 6 Cn are special Lagrangian planes with Π1 ∩ Π2 = {0}. It is now easy complete the
following:

dimMβ+1 = 1 for 1 − n < β + 1 < 0
dimMβ+1 = 1 + 2n for 0 < β + 1 < 1.

(6.79)

The reason why the parameters a1, . . . , an > 0 do not contribute n dimensions to the moduli spaces
Mβ+1 above is that the cone C depends upon the a1, . . . , an. However, it turns out that C is
unchanged under the dilation

(a1, . . . , an) 7→ et(a1, . . . , an) (6.80)

and that is where the 1 comes from in the equations (6.79). It follows that the Harvey/Joyce/Lawlor
examples X → Cn given above are isolated, modulo translations and the re-scaling (6.80).
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6.3.4 Decay α+ 1 = −1

Example 4: Joyce examples by evolving quadrics

The following theorem is proved by Joyce [26, Theorem 5.9]:

Theorem 6.49 Let 1 6 k 6 n − 1. Then there is a countable set ℵ such that for every point of ℵ
there are a1, . . . , an ∈ R and functions u : R → R, θj : R → R such that for every c > 0 the subset








x1eiθ1(t)
√

a1 + u(t)
.
.
.

xkeiθk(t)
√

ak + u(t)

xk+1eiθk+1(t)
√

ak+1 + u(t)
.
.
.

xneiθn(t)
√

an + u(t)




: t ∈ R, x ∈ Rn and x2
1 + · · · + x2

k
− x2

k+1 − · · · − x2
n = c





(6.81)

is an immersed special Lagrangian submanifold Xc → Cn, with Xc diffeomorphic to Sk−1×Rn−k×S1.
Let C be the subset of Cn defined by (6.81) with c = 0. Then C ⊆ Cn is an immersed special Lagrangian
cone with link Σ diffeomorphic to Sk−1×Sn−k−1×S1. Each Xc → C is strongly asymptotically conical
with cone C and rate α+ 1 = −1.

The general idea for proving Theorem 6.49 is to contemplate the subset (6.81) for arbitrary u, θj , aj .
Then Xc being special Lagrangian comes down to the functions u, θj satisfying some first order system
of ODEs. In order for the solutions to be such that u(t) and the eiθj(t) are periodic in t, and hence for
Xc to sit nicely inside Cn, we need to specify certain initial conditions for our ODEs: this restriction
is where the countable set ℵ comes from.

We work out some topological details when n = 3. The first case is k = 1. Then each Xc → C3

is an immersed special Lagrangian submanifold which is diffeomorphic to two copies of S1 × R2,
and strongly asymptotically conical with cone C and rate α + 1 = −1, where the link Σ of C is
diffeomorphic to two copies of S1 × S1. Applying our deformation theory to a connected component
of X ′

c of Xc we have b1(X ′
c) = 1 and L = 1 so that for −1 < β + 1 < −1 + λ we have

dimMβ+1 = b1(X ′
c) + L− 1 = 1.

Of course the second connected component also has dimMβ+1 = 1 for −1 < β+1 < −1+λ, and then
both pieces can be deformed independently, to give a 2 dimensional family of deformations. However,
this is rather explicit in the details of Theorem 6.49 above: the deformations come from the parameter
c > 0 in the expression (6.81) for Xc given above.

The second case is k = 2. Then each Xc → C3 is an immersed special Lagrangian submanifold
which is diffeomorphic to S1 × S1 × R, and strongly asymptotically conical with cone C and rate
α + 1 = −1 where the link Σ of C is diffeomorphic to two copies of S1 × S1. Then b1(Xc) = 2 and
L = 2 so that for −1 < β + 1 < −1 + λ we have

dimMβ+1 = b1(Xc) + L− 1 = 3

so that we have 2 dimensions worth of deformations which are not present in the explicit family given
by Theorem 6.49 above. Note also that for any 0 < β + 1 < 1 we have

dimMβ+1 > 3 + 6 + 6 = 15

where the additional 12 dimensions come from “translating” the 2 ends of Xc independently.

Example 5: Harvey and Lawson U(1)n−1-invariant examples

The following family of special Lagrangian submanifolds are those of Example 2.22 which are U(1)n−1-
invariant, first discovered by Harvey and Lawson in [21].
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Given a1, . . . , an, b ∈ R define

Xa1,...,an,b :=

{
(z1, . . . , zn) ∈ Cn :

|z1|2 − a1 = · · · = |zn|2 − an
Im(in+1z1 . . . zn) = b

}

which is invariant under the group of diagonal matrices U(1)n−1 6 SU(n). Further define C := X0,...,0,0

which is a special Lagrangian cone with link Σ diffeomorphic to 2 copies of Tn−1. We have the following
result, from the author’s dissertation [47, Proposition 3.5], and elsewhere.

Proposition 6.50 Without loss of generality, suppose that min{a1, . . . , an} = 0.

1. If b 6= 0 then Xa1,...,an,b → Cn is a special Lagrangian submanifold diffeomorphic to R × Tn−1.

2. If exactly one ak vanishes then Xa1,...,an,0 → Cn is a special Lagrangian submanifold diffeomor-
phic to R × Tn−1.

3. If exactly two ak vanish then Xa1,...,an,0 is the union of two special Lagrangian submanifolds
X±
a1,...,an,0

→ Cn each diffeomorphic to R2 × Tn−2, with X+
a1,...,an,0

∩X−
a1,...,an,0

∼= Tn−2 being
the singular set of Xa1,...,an,0.

4. C is the union of two special Lagrangian cones C±, each with link Σ± diffeomorphic to Tn−1.
Also, C+ ∩ C− = {0}.

In case 1 and case 2 of Proposition 6.50 it is easy to check that Xa1,...,an,b → Cn is strongly asymp-
totically conical with cone C and rate α+ 1 = −1. Also, in case 3 of Proposition 6.50 one can check
that

X±
a1,...,an,0

:=



(z1, . . . , zn) ∈ Cn :

|z1|2 − a1 = · · · = |zn|2 − an
Im(in+1z1 . . . zn) = 0
±Re(in+1z1 . . . zn) > 0





and that C± = X±
0,...,0,0. Moreover, X±

a1,...,an,0
is strongly asymptotically conical with cone C± and

rate α+ 1 = −1.

We now apply our deformation theory to the above submanifolds. Clearly in cases 1 and 2 we have
b1(Xa1,...,an,b) = n− 1 and C having L = 2 ends. Therefore

dimMβ+1 = n− 1 + 2 − 1 = n

for −1 < β + 1 < λ− 1 in the situation of cases 1 and 2. This is what we expect: there are explicitly
n parameters in the family Xa1,...,an,b defined above. Also, in case 3 we have b1(X±

a1,...,an,0
) = n − 2

and C± has L = 1 ends. Therefore

dimMβ+1 = n− 2 + 1 − 1 = n− 2

for −1 < β + 1 < λ− 1 in the situation of case 3: again what we expected.

In this example we can also compute the spectral data for the links Σ± of the cones C±. Note
that Σ+ and Σ− are isometric and Σ = Σ+ ∪ Σ− so we need only consider Σ+. It is easy to see that

Σ+ =



 (z1, . . . , zn) ∈ Cn :

|z1| = · · · = |zn| = 1√
n

Im(in+1z1 . . . zn) = 0
Re(in+1z1 . . . zn) > 0



 .

Let gΣ+ be the metric on Σ+ induced by the Euclidean metric e on Cn. Consider the map φ : Rn−1 →
Σ+ defined

φ(t1, . . . , tn−1) :=
1√
n

(
eit1 , . . . , eitn−1 , (−i)n+1e−i(t1+···+tn−1)

)
.

Giving Rn−1 the standard Euclidean metric, one can use φ to show that (Σ+, gΣ+) is isometric to the
quotient

Rn−1

L
(6.82)
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where L 6 Rn−1 is the lattice generated over Z by the linearly independent vectors

2π
(√

1
n−1 , 0, . . . , 0,−

√
j

(j+1)n ,
√

1
(j+1)(j+2)n ,

√
1

(j+2)(j+3)n , . . . ,
√

1
(n−2)(n−1)n

)t
(6.83)

for 0 6 j 6 n − 2: these are formed after a diagonalisation process on the usual basis for the lattice

2πZn 6 Rn. When j = 0 there is no −
√

j
(j+1)n term, and no zero terms in the vector (6.83). For

1 6 j 6 n− 2 there are j − 1 zero terms in the vector (6.83). Now define

L∗ :=
{
y ∈ Rn−1 : x · y ∈ Z for all x ∈ L

}
(6.84)

the dual lattice of L. In equation (6.84) we use the usual dot product x · y on Rn−1. It is easy to show
as in [14, Chapter II, Section 2] that if A is the (n−1)× (n−1) matrix whose columns are the vectors
(6.83) then the dual lattice L∗ is generated by the (n− 1) columns of the matrix (AT )−1. After some
algebra, the relevant vectors turn out to be:

ej+1 :=
1

2π

(√
1

n−1 , 0, . . . , 0,−
√

jn
j+1 ,

√
n

(j+1)(j+2) ,
√

n
(j+2)(j+3) , . . . ,

√
n

(n−2)(n−1)

)t
(6.85)

for 0 6 j 6 n− 2, so that {e1, . . . , en−1} is linearly independent and spans L∗ over Z. We denote the

Laplacian on the torus R
n−1

L by ∆0
L. Then, following Chavel [14] we have

dim Ker(∆0
L − µ) =

∣∣∣
{
y ∈ L∗ : µ = 4π2|y|2

}∣∣∣.

for any µ > 0. This fact enables us to compute the spectrum of the Riemannian manifold (6.82),
together with the eigenspace dimensions. We now illustrate the method with a simple example: in
the case n = 3 we have

e1 = 1
2π

(
1√
2
,
√

3√
2

)

e2 = 1
2π

(
1√
2
,−

√
3√
2

)

and then, given m1,m2 ∈ Z we have

4π2 |m1e1 +m2e2|2 =
(m1 +m2)

2

2
+

3(m1 −m2)
2

2

so that 0 < 4π2|m1e1 +m2e2|2 6 2n = 6 precisely when

0 < (m1 +m2)
2 + 3(m1 −m2)

2
6 12. (6.86)

One quickly shows that the integral solutions (m1,m2) of (6.86) are ±(0, 1), ±(1, 0), ±(1, 1) each
yielding eigenvalue µ = 2, and ±(1, 2), ±(2, 1), ±(1,−1) each yielding eigenvalue µ = 6. So when
n = 3 the eigenvalues of ∆0

gΣ+
in the range (0, 2n] = (0, 6] are n − 1 = 2, with multiplicity 6 and

2n = 6, with multiplicity 6 also. Note that we haven’t picked up any points of Spec(Σ+, gΣ+ , 0)∩(0, 2n]
which we didn’t already know about: namely those got from the actions of the groups G = Cn and
G = SU(n) on Cn. In actual fact, this is not typical behaviour: using a computer, one is able to work
out the points of Spec(Σ+, gΣ+ , 0) lying in (0, 2n] for n > 4. We give in Table 6.1 below the results
found for 3 6 n 6 13. Notice there are no eigenfunctions corresponding to growth rates less than 0,
so that λ = 1 in each case. Notice also that for n 6= 8, 9 the Cn and SU(n) moment map constructions
discussed above give the full (n− 1)- and 2n-eigenspaces: in each case we have

dim Ker
(
∆0

Σ+ − (n− 1)
)

= 2n = dtr(Σ
+)

and also

dim Ker
(
∆0

Σ+ − 2n
)

= n(n− 1) = n2 − 1 − (n− 1) = dim SU(n) − dim U(1)n−1 = drot(Σ
+)
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where U(1)n−1 6 SU(n) is the symmetry group of the cone C+. However, in dimensions n = 8, 9 we
see that there are eigenfunctions with eigenvalue 2n on the link Σ+ which are not got from the SU(n)
moment map on Cn, as 56 < 126 in the case n = 8 and 72 < 240 in the case n = 9.

A typical application of the results of Table 6.1 is as follows: when n = 7 and 1
2 (
√

73−7) < β+1 < 1

the submanifold X+
a1,...,a7,0

→ C7 moves in a family Mβ+1 of special Lagrangian submanifolds which
are strongly asymptotically conical with cone C+ and rate β + 1, where

dimMβ+1 = b1(X+
a1,...,a7,0

) + L− 1 + χ(β + 2) = 7 − 2 + 14 + 42 + 70 = 131.

Also, when b 6= 0 the submanifold Xa1,...,a7,b → C7 moves in a family Mβ+1 of special Lagrangian
submanifolds which are strongly asymptotically conical with cone C and rate β + 1, where

dimMβ+1 = b1(Xa1,...,a7,b) + L− 1 + χ(β + 2) = 7 + 2 · (14 + 42 + 70) = 259. (6.87)

The 2 · 14 in equation (6.87) corresponds to being able to “translate” the two ends of Xa1,...,an,b

independently.

6.3.5 Higher decay rates

Example 7: Joyce O(r
1
2 ) decay

The main purpose of this final example is to demonstrate that there are special Lagrangian subman-
ifolds f : X → Cn which are strongly asymptotically conical whose minimal rates α+ 1 are not equal
to 1 − n or −1. The following theorem is proved by Joyce [27, Theorem 11.6]:

Theorem 6.51 For each s ∈ (0, 1
2 ) ∩ Q write s = p

q where p, q ∈ Z are coprime with 0 < 2p < q.
Define

a1 := p2 − q2 a2 := q2 − 2pq a3 := 2pq − p2

and

C :=
{

(ieia1tx1, e
ia2tx2, e

ia3tx3) : x ∈ R3, t ∈ R with x1 > 0 and a1x
2
1 + a2x

2
2 + a3x

2
3 = 0

}
.

Then C ⊆ C3 is a special Lagrangian cone with link Σ diffeomorphic to T 2. Moreover, there are
explicit formulae for a 13-dimensional family of immersed special Lagrangian submanifolds Xa → C3

which are strongly asymptotically conical with cone C̃ a double cover of C, and rate α + 1 = 1
2 . The

manifolds Xa are diffeomorphic to S1 × R2.

Referring to Theorem 6.51, we have Xa → C3 a special Lagrangian submanifold which is strongly
asymptotically conical with cone C̃ and rate 1

2 . Inspecting the proof of Theorem 6.51 we see that the

cone C̃ has L = 1 ends, and is not a special Lagrangian plane in Cn. Recalling definition (6.74) we
deduce that dtr(Σ) = 2n = 6. Also

b1(Xa) = b1(S1 × R2) = b1(S1) = 1

by Bott and Tu [8, Proposition 4.1]. Now, from our deformation result Theorem 6.45 we have

b1(Xa) + L− 1 + χ(β + 2) > 13

for β + 2 ∈ RL \ D(∆0
g) with β + 1 >

1
2 , and taking β + 1 only slightly larger than 1

2 gives
∑

0<µ6µ̂

dim Ker(∆0
gΣ − µ) > 12

where µ̂ = (1
2 +1)(1

2 +2) = 15
4 corresponds to the growth rate α+1 = 1

2 . Taking away the contribution
dtr(Σ) of the eigenfunctions got from the C3 moment map shows that there are 6 eigenvalues (counted
with multiplicities) of the link Laplacian ∆0

gΣ lying in (0, 15
4 ] which we didn’t already know about.

In the previous examples we have used the existence of eigenfunctions on the link Σ to infer the
existence of special Lagrangian deformations. In this example, we turn the argument on its head and
use the existence of special Lagrangian deformations to infer the existence of eigenfunctions of the
link Laplacian.
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Dimension n Eigenvalue µ Eigenspace dimension Growth rate β + 1

3 2 6 0
3 6 6 1

4 3 8 0

4 4 6
√

5 − 2
4 8 12 1

5 4 10 0

5 6 20 1
2
(
√

33 − 5)
5 10 20 1

6 5 12 0

6 8 30
√

12 − 3

6 9 20
√

13 − 3
6 12 30 1

7 6 14 0

7 10 42 1
2
(
√

65 − 7)

7 12 70 1
2
(
√

73 − 7)
7 14 42 1

8 7 16 0

8 12 56
√

21 − 4

8 15 112
√

24 − 4
8 16 126 1

9 8 18 0

9 14 72 1
2
(
√

105 − 9)
9 18 240 1

10 9 20 0

10 16 90
√

32 − 5
10 20 90 1

11 10 22 0

11 18 110 1
2
(
√

153 − 11)
11 22 110 1

12 11 24 0

12 20 132
√

45 − 6
12 24 132 1

13 12 26 0

13 22 156 1
2
(
√

209 − 13)
13 26 156 1

Table 6.1: The points 0 < µ 6 2n of Spec(Σ+, gΣ+ , 0) for each 3 6 n 6 13 together with the
dimensions of the relevant eigenspaces and the corresponding growth rates β + 1
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