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Abstract

In this thesis we study the deformations of special Lagrangian submanifolds X C M sitting inside
a Calabi-Yau manifold (M, g, J,Q). Let N be the normal bundle of X, and identify N = T*X via
the complex structure J and induced metric on X. Then using the exponential map one can identify
small 1-forms £ on X with submanifolds X¢ C M close to X.

In the case that X is compact, McLean [50, Theorem 3-6], showed that the small 1-forms ¢
parameterising special Lagrangian submanifolds X, C M form a smooth manifold M C C*(T*X)
of dimension b'(X), the first Betti number of X. We give a full proof of this result, including the
necessary details which were absent from [50]. In fact our result Theorem 3.21 is an extension of the
original McLean theorem, in that we show that the special Lagrangian deformations M persist under
(certain types of) perturbations of the ambient Calabi-Yau structure.

We then go on to consider the situation when X C C™ is non-compact, but asymptotic to a
cone C' C C™ at a specified rate & < 1 of decay. Provided that & is not too negative, it turns out
that for almost all & there is again a smooth manifold Mz C C°°(T*X) parameterising the special
Lagrangian submanifolds X¢ € C" which are near to X and decay towards C' at rate &. The main
result here is Theorem 6.45, which also gives the dimensions of the smooth manifold Mg. It turns
out that for small rates of decay, dim Mg depends only on the topology of X, whereas for higher
rates dim Mg will also depend on analytic data got from the link ¥ := S?"~1 N C of the cone C.
Along the way to proving Theorem 6.45 we develop a theory of analysis for asymptotically conical
Riemannian manifolds, expanding on the existing theory of Lockhart and McOwen [46] and Lockhart
[45] for damped Sobolev spaces. In particular, in Section 6.1.1 we give the relevant details for damped
Holder spaces. We finish in Section 6.3 by applying our theory to some specific examples, and prove
the existence of special Lagrangian submanifolds in X¢ C C™ which were previously unknown.
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Chapter 1

Introduction

1.1 Motivation and previous work

The notion of calibrated geometry was first introduced by Harvey and Lawson in the foundational
paper [21]. They define a calibration to be a closed r-form ¢ on a Riemannian manifold (M, g) such
that the length of ¢|y is less than or equal to 1 for all r-planes V in TM. Then an r-dimensional
submanifold X C M is calibrated when |¢|Tw X‘g =1 for all z € X. It follows quickly from the
definitions that calibrated submanifolds X C M are minimal, and this fact makes the subject of
calibrated geometry worthy of serious study.

The basic example of a calibration is the 2/-form %wl on a Kahler manifold (M, J, g) with K&hler
form w. It turns out that the calibrated submanifolds in this case are the complex submanifolds
X C M of complex dimension [. One may then ask if there are any further interesting examples
of calibrations, and indeed Harvey and Lawson [21] provide us with some. The special Lagrangian
calibration on Calabi-Yau manifolds is the first they consider: it turns out that if (M, J,g,Q) is a
Calabi-Yau manifold of real dimension 2n, then the n-form Re() is a calibration on M, and the
calibrated submanifolds X C M are called special Lagrangian.

To any Riemannian manifold (M, g) of dimension m we can associate the holonomy group Hol(g) <
O(m). Supposing that there exists a non-zero ¢g € A" (R™)* which is fixed by the action of Hol(g), we
can, by rescaling ¢q if necessary, easily construct using parallel translation an r-form ¢ on M which
is covariant constant and has length less than or equal to 1 on each r-plane V in TM. It follows
that ¢ will be a calibration on (M, g). In practice, all of the calibrations that one meets come from
some reduced holonomy group in this way. Applying this general principle to the above examples,
note that: a Kéhler manifold is precisely a Riemannian manifold with holonomy group contained in
U(n), where n = 2m, and a Calabi-Yau manifold is precisely a Riemannian manifold with holonomy
group contained in SU(n). The other calibrations that Harvey and Lawson consider also live on
Riemannian manifolds with reduced holonomy: namely the associative and coassociative calibrations
on a 7-manifold of holonomy G5, which have respectively r = 3,4, and the Cayley calibration on an
8-manifold with holonomy Spin(7), which has r = 4.

Although the full theory of calibrated geometry is very important, the special Lagrangian calibra-
tion itself has received a great deal of attention over the past few years. One of the main reasons for
this has been the attempt by Strominger, Yau and Zaslow [58] to explain the idea of mirror symmetry
in terms of special Lagrangian submanifolds. We shall briefly explain some of the ideas involved.

String theory is a branch of theoretical physics in which particles are modelled not as points but as
1-dimensional loops, or “strings” propagating in some ambient space IN. In the most popular version
of string theory, the space N has 10 dimensions, and locally looks like R* x M where R* is Minkowski
4-space and M is a compact, 6-dimensional Calabi-Yau manifold. The physics of the space N is
encapsulated in a complicated mathematical object one can associate to M called a superconformal
field theory, or SCFT for short, and then the properties of the Calabi-Yau manifold M get translated
over to properties of the SCFT.
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It turns out that there is a simple automorphism which one can apply to a given SCFT, and we say
that Calabi-Yau manifolds M, M are a mirror pair if their SCFTs are associated by this automorphism.
Using physical arguments, one can now deduce all sorts of miraculous relations between the Calabi-
Yau manifolds M and M, because their SCFTs can be identified in the way described above. This is
the phenomenon of mirror symmetry. We now give an example of the sort of thing physicists believe
to be true. Denote the Hodge numbers of a compact complex manifold by AP'4. Then the Hodge
diamond of a compact, 6-dimensional Calabi-Yau manifold M has the form

1
0 0
0 ! 0
1 h>t h>t 1
0 ! 0
0 0
1

so that the only independent Hodge numbers of M are Y1 and A%, Mirror symmetry predicts that if
M and M are a mirror pair of Calabi-Yau manifolds then h'' (M) = h**' (M) and R* (M) = > (M),
so that the mirror transform M — M interchanges odd and even cohomology. That is an intriguing
result.

Unfortunately, the transition between a Calabi-Yau manifold M and its SCFT is not yet a process
which is mathematically understood, and so the whole theory of mirror symmetry as explained in the
previous paragraph is lacking any rigorous proof. As mathematicians, we would like to fill this gap,
and in particular, given a compact, 6-dimensional Calabi-Yau manifold M, we would like to know
how to build a second compact, 6-dimensional Calabi-Yau manifold M , with M and M related in the
ways the physicists predict. One (among others: see for example [39]) conjectural recipe is that given
in [58].

Strominger, Yau and Zaslow argue using physics that certain compact 6-dimensional Calabi-Yau
manifolds M (those “near the large complex structure limit”) should admit a fibration M — B,
with generic fibre a special Lagrangian 3-torus 7% — M, and then the mirror Calabi-Yau manifold
M is got by “dualising” these fibres 7% — M in some way. The proposal of Strominger, Yau and
Zaslow has come to be known as the SYZ Conjecture, and even its precise formulation has not yet
been worked out. In any case, to make some progress towards understanding mirror symmetry via
the SYZ Conjecture, we need to understand fibrations of Calabi-Yau manifolds by special Lagrangian
submanifolds, and in particular, tori. The cases we are most interested in have Hol(M, g) = SU(3).
It turns out that in this situation, if 7 : M — B is a fibration as above, then there must exist fibres
7-Y(b) € M which are singular. If we let By C B denote the subset of b € B such that 7—1(b) is
non-singular, then one part of understanding the global properties of the fibration 7 : M — B is to
work out what happens to the fibres 7=1(b) as b € By approaches the singular locus B\ By C B.

Joyce, in a recent series of articles [28], [31], [33], [37] has begun a programme to help understand
the issues raised in the previous paragraph, and we now outline some of that programme. For a more
detailed description of the following discussion, see in particular [31]. Suppose that M is any Calabi-
Yau manifold, and that X C M is a compact special Lagrangian submanifold. Then by the McLean
Theorem ([50, Theorem 3-6], [5, Theorem 2.2.27] and Section 3.2 below) the submanifold X C M
is contained in a smooth, connected, moduli space M of compact special Lagrangian submanifolds
X¢ C M, and the dimension of M is b'(X), the first Betti number of X. We now think about
compactifying the manifold M, by adding a boundary dM consisting of singular special Lagrangian
submanifolds Xine € M, and ask what happens to the non-singular elements of M as they approach
the singular elements of the boundary oM.

If dim M = 2n then the manifold C™ is itself (non-compact) Calabi-Yau, and is an approximate
local model for the Calabi-Yau manifold M. Let X, € M be an element of M, and pick a singular
point p € Xgine. Using Geometric Measure Theory, as in the book [17] of Federer, we can define the
tangent cone C' C C" to Xging at p, and moreover, C' will be a special Lagrangian cone in C". Provided
the singularity at p is not too badly behaved, there will be an open neighbourhood U of p € M such
that U N Xging looks approximately like the cone C' C C". We further assume, for simplicity, that p
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is the only singular point of Xgine, so that in particular, p is isolated, and therefore 0 € C is also an
isolated singular point.

In vague terms, we expect to be able to desingularise Xsng € M by cutting out the open subset
U N Xging € Xging, and gluing back in its place a submanifold X,. € C™ which is asymptotic to the
cone C' in some way. The result after this gluing process will be a non-singular special Lagrangian
submanifold X¢ C M, an element of the moduli space M which is close to Xging in M= MUIM.

Suppose that there is a smooth portion W of the boundary M whose elements have 1 isolated
singularity, modelled on a cone C' as above. Then we expect that, near W, the smooth manifold
M looks like W x /?é‘;:C, where M. is some moduli space of special Lagrangian submanifolds in C",
which are asymptotic to the cone C, at some prescribed decay rate, and C™ acts on this space via
translations. In particular, we would have

b (X¢) = dim M = dim OM + dim M, — 2n

for special Lagrangian submanifolds X¢ € M near the open subset W of the boundary oM.

It follows from the above discussion that, for a given special Lagrangian cone C' C C", possibly
singular at 0, but elsewhere smooth, we are interested in the set M, of special Lagrangian submani-
folds in C™ which are asymptotic to the cone C', with some prescribed rate of decay. In particular, we
hope to prove that this set M. is a smooth manifold, and then to calculate the dimension dim M.
These issues provide the primary motivation for this thesis.

1.2 The main results

Our first result is a rigorous proof of McLean’s Theorem, which tells us that compact special La-
grangian submanifolds live in smooth moduli spaces. No doubt McLean was aware of the details of
his proof, but these are lacking in the published version [50, Theorem 3-6]. The purpose of providing
an explicit proof is therefore to fill an existing gap in the literature, but also the version we shall give
is an extension of the original theorem, in that we take into account perturbations of the ambient
Calabi-Yau structure. Our result is given as Theorem 3.21, and we include here a brief version.

Theorem 1.1 (Extended McLean Theorem) Let M be a manifold and (J(p), g(p), Up)) a smooth
family of Calabi-Yau structures on M, parameterised by p € R™, and suppose that X C M is a

compact submanifold which is special Lagrangian with respect to (J(0),g(0),Q(0)). If w(p)|x] =

MmQ(p)|x] =0 in H*(X) for all p € R™ then there exist an open subset W C R™ containing 0, and

a family (My)pew of smooth manifolds, each with dimension dim M, = b'(X), such that for each

p € W, M, parameterised the smooth submanifolds X, C M near to X which are special Lagrangian

with respect to (J(p),g(p), Q(p)) Moreover the total space M = UpeW M, is smooth.

Another reason for giving a detailed proof of Theorem 1.1 is that, at least conceptually, it can be
carried straight over to the asymptotically conical case that we shall consider later in Chapter 6.

We note here that Baier [5] has also provided a proof of the original theorem of McLean, but he
uses a different method to ours in Section 3.2 below. Also, there have been versions of McLean’s
Theorem for compact special Lagrangian submanifolds X, with boundary 0X # () satisfying certain
conditions: see the article [9, Main Theorem] of Butscher.

Before stating our main result, we shall give some definitions. Let ¥ be a compact manifold, with
connected components
Y=X1U---UXp.

By a manifold with ends we mean a connected manifold X which off some compact subset Xy C X
is diffeomorphic to the product (T,00) x X, where T' € R. We shall always consider X \ X, and
(T, 00) x X as being identified by some fixed diffeomorphism. For the purposes of this thesis, we shall
always insist that a manifold X with ends has dimension dim X =: n > 3. In the theory we give, this
condition is important, and we explain why in the description of Chapter 6 below.
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Suppose further that C C C" is a cone, smooth away from 0, and that ¥ = $?"~1NC. Then there
is an embedding

ic:Rx¥Y — C"

(t,o) +— €'o

with image C \ {0}, a smooth submanifold of C". If & = (G1,...,ar) € RL, with &; < 1 for each
1 <7< L,and X C C"” is a submanifold, we shall say that X is strongly asymptotically conical with
cone C and rate & if for each 1 < j < L we have

lix —ic|=0(e™") (1.1)

on (T,00) x 3;, together with appropriate decay in the derivatives of ix —i¢. In equation (1.1) we
use ix to denote the inclusion X \ Xy C C", considered as a map (T, 00) x 3 — C™.

In the above situation, the link ¥ of C inherits a Riemannian metric gs from the Euclidean
metric on C". For each 1 < j < L, let p; denote the first positive element of the spectrum of the
Laplacian A : C*°(X;) — C*°(X;), and then define A; to be the unique positive real number such
that X\j(A; +2 —n) = p;, together with A = (A1,...,Az). Our main result, Theorem 6.45, can now
be summarised as follows:

Theorem 1.2 (Deformation Theorem for AC special Lagrangians in C") Suppose that X C
C" is special Lagrangian and strongly asymptotically conical with cone C C C" and rate & € RE,
where & < 1. Then, provided that @ > 1 —n — A, and & is generic, there is a smooth moduli space
Mg of special Lagrangian submanifolds X C C™ which are strongly asymptotically conical with cone
C and rate &. Moreover,

W(X)-L+1 ifl-n—-A<a<l-n
. ) bl(X) ifl-n<a<-1
dimMa =4 4Tx) 411 if—1<a<A

BUX)+L—1+x(G@+1) ifA<a<1

where x(& + 1) > 0 is an analytic term got from the spectrum of the Laplacian of the link 3, acting
on functions, and we write 3 < § whenever §; < §; for each 1 < j < L.

Related results have been proved recently by Pacini [55], but this work was carried out indepen-
dently, and nearing completion at the time [55] was published. However, our methods differ somewhat
in that we use different analytic machinery to reach our respective goals. The author’s route is via
a Holder space version of the Lockhart-McOwen Theory of [45] and [46], and essentially deals with
non-compact manifolds, without boundary. Pacini, on the other hand, uses the pseudo-differential
operator theory of Melrose, as described in [51], where the emphasis is on Sobolev spaces over compact
manifolds with boundary.

In Pacini’s work, the ambient space M containing the submanifold X is taken to be asymptotically
conical, rather than just C”, so in that respect, is more general than the work of the author. However,
the theory presented here has advantages over that of [55] in that more general growth rates are
considered (he proves the case which, in our notation, is @ = —1 + ¢ for small £ > 0, and states the
corresponding result for the case & = —% when M = C"). Also, Pacini seems to encounter some kind
of obstruction at the boundary d.X of his compact manifold X, so that he cannot infer his deformed
submanifolds X, have the smoothness one would hope for on their boundary 0.X,.

Theorem 1.2 provides us with new examples of special Lagrangian submanifolds of C". For exam-
ple, if a1, ...,ag,b € R with b # 0 then the U(1)"-invariant special Lagrangian submanifold

o1l —ar = = |zs]? — ag }

o 8 .
X = {(zl,...,Zg;) eC®: Im(i21~-~z8):b

of Harvey and Lawson [21] moves in a smooth moduli space Mg of special Lagrangian submanifolds,
where
dim Mg = 376.
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This can be quickly deduced from the relevant example of Section 6.3.4. Here Mg consists of the
special Lagrangian submanifolds X¢ C M which are near X and strongly asymptotically conical with

cone ‘ | |
L 8 . Z1| = e e e — ZS
C.{(Zl,...,Zs)G(C : Im(izl...z'S):O}

and rate v24 —4 < a < 1.

1.3 An overview of the chapters

Chapter 2

In Section 2.1 we describe some standard material from functional analysis and differential geometry.
The most important results here are the Implicit Function Theorems 2.10 and 2.11, which we use to
show the moduli spaces M and Mg of our main theorems are in fact smooth.

Section 2.2 is a description of some of the relevant aspects of submanifold theory. We start by
stating the Tubular Neighbourhood Theorem 2.15, which gives us our basic method for deforming
submanifolds. The latter half of Section 2.2 is aimed at demonstrating why special Lagrangian sub-
manifolds must necessarily be smooth. The route is via calibrated geometry, minimal submanifolds
and then the usual elliptic regularity results from PDE theory. We need this material to show that
the points of our moduli spaces M and Mg are smooth as maps between manifolds.

In Section 2.3 we outline some of the relevant theory from Calabi-Yau and special Lagrangian
geometry. After some basic definitions and examples, we go on to demonstrate why the infinitesimal
deformations of a special Lagrangian submanifold X C M may be thought of as the closed and
coclosed 1-forms on X. This gives us a good idea of what the tangent spaces, and hence dimension,
of our moduli spaces M and Mg should be: using the Implicit Function Theorems 2.10 and 2.11 we
aim to write M and Mg as the graph of some smooth map on this tangent space, at least locally.

Chapter 3

In Chapter 3 we give a proof of Theorem 1.1.

The first half, Section 3.1, is again standard. We give it for completeness, and as a model for the
non-compact setting we shall consider. The main results here are the embedding and compactness
results Theorem 3.2 and Theorem 3.3, and then the elliptic estimates of Theorem 3.4. The essential
arguments in each of these theorems come from PDE theory, and yet with them one can prove powerful
results such as the “Fredholm Alternative”, Theorem 3.8, which has many applications in geometry.
We give a proof of Theorem 3.8, our motivation being that the methods used carry over to the
non-compact case we shall consider in Section 4.3.3.

In Section 3.1.3 we give an application of our general theory, and describe Hodge Theory for
compact, Riemannian manifolds (X, ¢g). Then one can deduce, for example, that

dim{¢ € C™(T*X) : d}¢ = d¢ = 0}=dim H'(X) =: b'(X) (1.2)

the 1st Betti number of X. We included proofs in Section 3.1.3 so that the reader can see the
techniques required to obtain results such as (1.2). These techniques are simply not available in the
non-compact case, and the corresponding theorems will not hold. We come back to this point in
Section 6.1.3, where we try to establish just what we can say.

Armed with the preliminary material of Chapter 2 and Section 3.1, we go on in Section 3.2 to
prove our McLean-type result. The main result here is Theorem 3.21, which is an expanded, more
precise, version of Theorem 1.1 given above. The general idea is that, if X C M is a submanifold
which is special Lagrangian with respect to (J(0), g(0),(0)), then one can identify small 1-forms &
on X with submanifolds X¢ which are close to X. One then defines a “deformation” map F whose
value on a pair (p,&) measures how far away the submanifold X is from being special Lagrangian
with respect to (J(p),g(p)7 Q(p)), so that the fibre F~1(0) is our total space of special Lagrangian
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deformations. We set things up in such a way so that F' is a smooth map between open subsets of
Banach spaces, with derivative F’(0) that is surjective, and with kernel

Ker F'(0) = {¢£ € C®°(T"X) : d}¢ =d¢ =0} R™.

Now applying the Inverse Function Theorem shows that F~1(0) is a smooth manifold in a neighbour-
hood of (0,0), with dimension b'(X) + m.

Chapter 4

For the rest of the thesis, we leave the compact case behind, and concentrate on the situation in which
X is a manifold with ends, in the sense described above. The general idea of Chapter 4 is to provide
an exposition of some material from the literature, and then to adapt this material to a situation
which shall useful for us later. Section 4.2 only is meant to contain the Fredholm material that we
shall quote, the source being the Lockhart-McOwen Theory of [45] and [46], but also in that section
we include additional useful results, not to be found in these papers.

We begin in Section 4.1 by establishing our basic objects of study, together with notation we shall
use time and again in the sequel. Supposing that X is a manifold with ends, we define the notion
of an admissible vector bundle E on X: these are the basic vector bundles we shall work with. It
turns out that bundles of tensors (®°*TX) ® (®"T*X), and forms A"T*X, are admissible, and this
certainly covers the applications we have in mind. We then go on in Section 4.2.1 to define Banach
spaces W,f, ﬁ(E) and BZ’G(E) , consisting of sections of an admissible bundle E. We call these spaces
damped Sobolev spaces and damped Holder spaces, respectively. The indices p, k, @ mean pretty much
what they do in the compact case, and one can think of the index 8 as imposing a constraint to decay
at rate O(e”!) on the subset X \ Xo. Actually, 8 is an L-tuple 3 = (f1,..., 1), and each 3; reflects
the order of decay on the component (T',00) x 3;. We also quote in Section 4.2.1 some embedding
and compactness results from the literature for the spaces W,f, ﬁ(E), Bg’a(E). These results are the
first part of our “tool-kit” for analysis on manifolds with ends.

It turns out that one must work with the damped spaces of the previous paragraph if one wishes
to have a good Fredholm theory for differential operators on X: to quote an example of Lockhart [45,
Equation (0.2)], if h is a metric on X, tending towards a cylindrical metric h on the ends Xo of X ,
then
A LE(ANT*X) — LA(A"T*X) (1.3)
is Fredholm precisely when H"(X) = H" }(X) = 0, so that the usual L?-Sobolev spaces on X are
too restrictive for Fredholm theory. We will consider similar sorts of issues, for asymptotically conical
metrics, in Section 6.1.2.

In Section 4.2.2 and Section 4.2.3 we describe the core of the Lockhart-McOwen Theory. Suppose
that P is an elliptic differential operator, of order [ > 1, acting between admissible bundles E and
F. In the paper [46], Lockhart and McOwen prove that the operator P has a good Fredholm theory,
provided that P tends towards some elliptic, translation invariant operator P, on the ends of X.
For such operators, they give elliptic estimates for the maps

P WP, 4(B) — WP 4(F), (1.4)

together with an explicit characterisation of when the map (1.4) is Fredholm. It turns out that (1.4) is
Fredholm for 3 in an open, dense, subset RY\ D(P) of RY which is independent of p and k. Lockhart
and McOwen further give a “jumping” formula telling us how the index of (1.4) changes as 3 moves
from one connected component of RE \ D(P) to another. It turns out that the subset D(P) and the
size of these “jumps” can be got in a very explicit way from the limit operator P,,. This theory will be
invaluable for us in Chapter 5. Note that Lockhart and McOwen do not say anything about operators
P as above acting between the damped Holder spaces. Indeed, in the literature generally there tends
to be a bias towards the use of Sobolev spaces of some type, rather than Holder spaces. In Section
6.1.1 we attempt to redress the balance, at least for Fredholm theory on manifolds with ends.

In Section 4.3 we convert the Lockhart-McOwen Theory of Section 4.2 over to the case of asymp-
totically conical manifolds, and specialise to the case where the admissible bundles E, F on X are
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made up of tensors or forms. Most of this conversion is nothing more that a change of language, but
we give it anyway because the applications we have in mind are best phrased in this new terminology.
In Section 4.3.1 we define new classes L} ;(E), CS’G(E) of Banach spaces of sections. These spaces
can be given a coordinate-free description in terms of an asymptotically conical metric on X. We
therefore refer to the L} 4(E), C’g’a(E) as conical damped Sobolev spaces and conical damped Hoélder
spaces, respectively. As before, the indices p, k,a have their usual significance, and (3 refers to the
order of growth of our tensors or forms on X, as measured using an asymptotically conical metric g.
It follows that the growth rate 8 = —% corresponds to the usual L2-Sobolev spaces, built using g.

Our definition of asymptotically conical is quite weak, requiring (for metrics, at least) only rate o(1)
decay: this is all that is needed to apply the material of 4.2. Later, in Section 5.1.4, we shall consider
stronger rates of decay for our asymptotically conical metrics, namely O(e“?), where av < 0. We shall
need these stronger decay rates to deduce certain things which do not seem to be obtainable with mere
0(1) decay. In Section 4.3.2 we define the notion of an asymptotically conical operator Q). Essentially,
this is just an operator corresponding to the asymptotically translation invariant operators of Section
4.2.3, together with an additional damping factor O(e~7"). We call y the rate of the operator Q.

We end Chapter 4 by giving a useful characterisation of the image of an asymptotically conical
operator

Q: Li‘”ﬂ'ﬁ"Y(E) — Lﬁﬂ(F). (1.5)

This is in the literature, at least implicitly: see the paper [10] of Cantor. The method of proof uses the
Lockhart-McOwen material in an essential way. It also turns out that a key part of the proof is the
fact that the Sobolev spaces Ly 4(F) are reflevive. Specifically, we can write Lf 5(F)* = Ly _5_,,(F),
where £ + L = 1. Then we can proceed pretty much as for the compact case. Note however that, in
considering the operator

Q: CEh(B) - Ch(F) (1.6)

we have neither the Lockhart-McOwen Theory, nor the reflexivity we require.

Chapter 5

Here we give some applications of the machinery from the previous chapter. We suppose that g is
an asymptotically conical metric on our manifold with ends X, and start by looking at the Laplacian
Ag of g, acting on functions. It turns out that this operator is asymptotically conical, with rate 2, so
that we have a map

Ay Ly g g40(X) = LY 5(X). (1.7)

A key issue shall be when the map (1.7) is Fredholm, and this boils down to working out the exceptional
set D(AY) C R” that is mentioned above. It turns out that

D(A)) = (D(Px,1) x R¥) U (R X D(Pss,2) x RF?)U--- U (R*™! x D(Pws, L))

where each D(Px, j) consists of points 3, +2 € R such that (5; +2)(8; +n) lies in the spectrum of the
Laplacian on component 3; of . We then compute the relevant index “jumps”, and these turn out
to be equal to the dimensions of the corresponding eigenspaces. Next, using the Maximum Principle,
together with elliptic regularity and the embedding theorems, we show that (1.7) is injective for all
B+2 < 0, and then the material of Section 4.3.3 shows that (1.7) is surjective for all 42 € R"\D(A)
with 04+ 2 > 2 — n. It follows that proving the existence of g-harmonic functions on X, with growth
rates 3+ 2 > 0, comes down to finding eigenfunctions for the Laplacian on the compact Riemannian
manifold (3, g5).

The main reason for the interest in the Laplacian Ag is that, if h is a harmonic function, then
dh is a closed and coclosed 1-form on X: we shall be interested in these objects in the sequel, where
X C C" is a special Lagrangian submanifold. Actually, we must take growth rates 3+ 2 into account,
and so consider

Kpy1:={£ € C5,(T"X) : dj¢ = 0 and d€ = 0},

a finite-dimensional vector space, containing dh for all h in the kernel of the map (1.7).
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Much of Chapter 5 is aimed at acquiring a good understanding of the space Kgyi, for as large
a range of B 4 1 as is possible. The exact elements of Kz will be the of the form dh for some
harmonic function h : X — R. It turns out that most of these harmonic functions will be in the
kernel of the map (1.7), but there will be others if 2 —n < §+ 2 < 0: there exist non-constant
harmonic functions hi,...,hz : X — R such that each h; tends to d;; on the kth end of X, at rate
O(eB+2t) for any 2 —n < 4 2 < 0. Therefore the exterior derivatives dh; have decay [+ 1 for
each 2 —n < §+ 2 < 0. Essentially, the vector space Span{dh,...,dhr} is the kernel of the natural
map ¢ : HY(X) — HY(X).

The number of non-exact elements of K1 is measured by how much of the cohomology H!(X)
the space Kgy1 represents. We prove that this is the whole group if 84 2 > 0, and the image of the
natural map H}(X) - H}(X)if2-n< 3+2<0.

Using the above facts, together with some additional considerations, we build up a detailed picture
of Kg4q for a large range of 5+ 2. It turns out that for 8+ 2 < 2 —n, or for 8+ 2 in D(Ag), we
need to assume stronger decay assumptions on our metric g, and we introduce the notion of strongly
asymptotically conical metrics in Section 5.1.4, together with some useful consequences. The final
results for the chapter are then given in Section 5.2.3.

Chapter 6

In Chapter 6 we bring together all of the above results, to deduce the deformation theorem for strongly
asymptotically conical special Lagrangian submanifolds X C C™. The corresponding result in Chapter
6 is Theorem 6.45, which is a more accurate and complete version of the Theorem 1.2 given above.
Besides the deformation theorem, we also give some Hodge-theoretic results which should have useful
applications in the analysis of Laplacians, and related operators, on asymptotically conical Riemannian
manifolds.

We begin in Section 6.1.1 by deriving a Fredholm theory for asymptotically conical operators

Q: Cih(B) — che(p).

The results we obtain are very general, and so should have many applications. It is nice to know that
the conical damped Hélder spaces admit a good Fredholm theory, as in the case of the Li, ﬁ(E) spaces.
Note that we cannot find this material in the literature. The main issue is the existence of a Green’s
function for the corresponding limit operator @, on the full cone R x X, and this is given in [49]. The
Fredholm theory for (conical) damped Holder spaces can then be deduced using the techniques that
are normally only applied in the situation of (conical) damped Sobolev spaces, as in [6]. Because of
the differences between the two types of spaces, we need to adapt some of the techniques for our own
ends.

We also see in Section 6.1.1 why we have insisted on X having dimension at least 3. This is
essentially because the Green’s function for the Laplacian on R™ has different behaviour in the cases
n =2 and n > 3. If we allow dim X = 2, then many of the results of Chapter 5 will fail to hold.

Note that the material of Section 6.1.1 could also have been placed at the end of Chapter 4, but
we prefer its present location: our particular methods for Chapter 5 do not rely on the material of
Section 6.1.1, which we view as a second, separate, application of the material of Chapter 4. The
main place we need the Fredholm results for conical damped Hdolder spaces is Section 6.2, and so we
keep the relevant theory nearby.

In Section 6.1.2 we give the results of some explicit details that have been worked out privately by
the author, and we hope they will have useful applications in the future. They are the calculations
of the exceptional sets D(Q) C RY for certain asymptotically conical operators ). We give these
exceptional sets in the cases where @) is taken to be the Laplacian Ay of an asymptotically conical
metric g, on the bundle of r-forms A"T* X, and also where @ is the operator dj +d on the odd, even
and total exterior bundles over X. The results we obtain are analogous to the example of Lockhart
given in equation (1.3) above.

Other applications of the material on exceptional sets are given in Section 6.1.3. Here we attempt
to develop Hodge theoretic results for our non-compact manifold X, under assumptions which are as
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general as possible. One can think of the results of Section 3.1.3, for compact manifolds, as being a
collection of lemmas which piece together to give grand results such as the Hodge Decomposition, as
in equation (3.31) for example. In Section 6.1.3 we take each of these lemmas, and see how far they
will generalise on an asymptotically conical manifold X. For example, as described in Lemma 6.24,
we deduce that any form C’g 4o(A"T* X)) which is harmonic must necessarily be closed and coclosed if
B+2< —ror+2<r—mn. This is a big improvement on the usual integration by parts argument
got from L2-decay, corresponding to growth rate § +2 =1 — 5

We now come to the proof of our main result, and this is given in Section 6.2. We begin in Section
6.2.1 by describing our basic objects of study, namely submanifolds X C R™, which have some
prescribed rate of convergence towards a cone C' C R™. We call these types of submanifold X either
asymptotically conical with cone C, or, for & € R¥ with & < 1, strongly asymptotically conical with cone
C and rate &: the latter rate of convergence is stronger than the former. It turns out that the metric g
induced on the submanifold X then decays towards the metric g induced on the cone C. Submanifolds
which are asymptotically conical with cone C' have metrics g which are asymptotically conical, so that
we are in the regime of Chapters 4 and 5. Submanifolds which are strongly asymptotically conical, with
cone C and rate &, have metrics g which are strongly asymptotically conical, with rate o := a&—1 < 0,
so that we may apply the additional theory of Section 5.1.4.

In Section 6.2.2 we consider asymptotically conical submanifolds X C C™ which are Lagrangian.
Then, as in the compact case, we can identify the normal bundle N of X with the cotangent bundle
T*X, and take a tubular neighbourhood U C N of X, corresponding to some U C T*X. The tubular
neighbourhood U = U allows us to identify submanifolds X¢ € C" which are “near” to X, with
“small” 1-forms on our submanifold X. Moreover, we can relate the decay rate of the form £ in the
conical damped Holder spaces Cg’a(T *X) with the decay of the submanifold X¢ towards the cone C.

Finally, in Section 6.2.3, we consider strongly asymptotically conical special Lagrangian submani-
folds. We bring together the results of the previous chapters to prove our main result, Theorem 6.45,
which is a more complete and accurate version of Theorem 1.2 given above. The ideas here are exactly
as for the compact case, the difference being that the details are harder. Using the Implicit Function
Theorem 2.11, we write our moduli space Mg, in a neighbourhood of X, as the graph of a smooth
function defined on an open subset of K5 = K,1. This further provides the dimension dim K, of
Mg, which we have computed in Chapter 5.

We round off in Section 6.3 by applying our main theorem to examples of strongly asymptotically
conical submanifolds X C C™. Due to the work of Joyce [26], [27], [28], [29], [30], [32], [34], [35], [36],
[37], and others, there is a plethora of examples to apply our theory to. As we have indicated above,
we show the existence of new families of asymptotically conical special Lagrangian submanifolds in
C™, as well as proving results which show that other examples are, in certain circumstances, isolated,
say modulo translations if we are considering growth rates o +1 > 0.

1.4 Further work

We briefly outline some directions in which our deformation theory could be extended or improved.

1. As mentioned above, we could consider the situation in which the ambient manifold is not C",
but a general asymptotically conical Calabi-Yau manifold. Although Pacini [55] has proved a
theorem along these lines, he only considers the growth rate « + 1 = —1 + . The proof of a
result with a more general ambient space should not be too arduous, as the material of Chapter
4 and Chapter 5 will carry through unchanged. Of course, Section 6.2 will need modifying.

2. We could consider the deformation theory of singular special Lagrangian submanifolds in C",
with singularities modelled on special Lagrangian cones C' C C™ with an isolated singularity at
0. This theory would share certain features with the material we present here, but there would
be some additional issues to deal with.

3. We could investigate the deformations of asymptotically conical submanifolds got from the other
Harvey and Lawson calibrations, mentioned in Section 1.1. Note that our class of asymptotically
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conical operators is large enough for the theory of Chapter 4 and Chapter 5 to be applied in
these situations also. A good place to start would be the coassociative case, whose deformation
theory would have certain similarities with the special Lagrangian case we consider in this thesis.

Last (and probably least!) we could consider extending our deformation theory to more negative
growth rates, and give dimension formulae as in Table 5.1 for growth rates §+1 less than 1—n— A\,
to use the notation of that chapter. In the same vein, but with entirely different methods of
attack, we could attempt to remove the hypothesis a + 2 ¢ D(Ag) in the statement of Theorem
6.45.

1.5 Notation and conventions

Here are some conventions we adopt. We also give, in Table 1.1, a selection of the notation we shall
use for the rest of this thesis. We urge the reader to consult Table 1.1 when confronted with a piece
of notation they have not met, especially since some of these notations are not explicitly defined in
the text.

1.

All manifolds are smooth, connected and have empty boundary, unless explicitly stated other-
wise.

. If W is a vector space then we embed A"W inside ®" W via the map

1 .
wi A AW, = il Z Sign(o) - W) @ -+ @ We(r) =: Alt(w1 ® - @ wy)
€S,

for all wy,...,w, € W. We denote the rth symmetric power of W by Sym"W, and embed
Sym"W inside ® W via the map

1
wl@"'Qwr:ﬁ' z;wa(l)®"'®wa(r) = Sym(w; ® -+ @ wy)
oS,

for all wy,...,w, € W. These conventions extends to vector bundles over manifolds, especially
when we view r-forms as multilinear mappings on tangent spaces.

Suppose that 3;,7 € R and f : [T, 00) — R is some function. We write f(t) = O(e”?) to mean
that |e=%tf(t)| is bounded on [T, 00). A stronger requirement is f(t) = o(e%*) which means
that e At f(t) — 0 as t — oc.

. When 8= (B1,...,01), d = (61,...,91) are elements of RY we write 3 < § if 8; < §; for each

1 < j < L, and similarly for the strict inequality. Also, if u € R we sometimes abuse notation
and write 3 4+ u to mean the L-tuple with jth entry §; + u.

. If 1 < p < 0o we define the dualemponent1<p’<ooby%—i—z%:l.

. If (X,g) is a Riemannian manifold we denote the Laplace operator, acting on r-forms, by Aj.

If (X, gs) is a compact, Riemannian manifold, we denote the spectrum of the operator A7, by
Spec(X, gs, ), which is a discrete, countable subset of [0, 00).

. Suppose an open subset G C R”™ has coordinates (z1,...,2,). Given 1 < j < n we define

0j = % a differential operator on functions G — R. A multi-index is some n-tuple of non-
J

negative integers A = (A1, ..., A,). Given such a A we define |A\| = Z?=1 Ajand 9* := 9t ... M

a differential operator of order |A|. If w € R™ we denote by |w| the usual Euclidean norm of w,

and further define the product w? := wi‘l ...w), with the convention that 0° = 1.

. If X is a manifold with dimension dimX = n we use the notation A*T*X = @r_(A"T*X

to denote the full exterior bundle over X. Also, we write A°¥T*X = @5oA?**1T*X and
AN T* X i= Dp>oAP*T* X to denote odd and even exterior bundles over X.
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9. If X is a manifold we denote the rth de Rham cohomology group of X by

_ Ker(d: C®(A"T*X) — C®(A™'T* X))

H"(X) = Im(d L Co(ATIT*X) — COO(ATT*X))

and the rth compactly supported de Rham cohomology group of X by X by

_ Ker(d: C(A'T*X) — O (AT X))

H'(X):= .
c(X) Im(d O (AT X)) — C’go(ATT*X))

10. If X is a topological space we denote the rth real singular homology group of X by H,.(X) and if
A C X is a subset the rth real singular relative homology group of the pair (X, A) by H,.(X, A).
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Notation | Meaning ‘ Definition
Global notation

A multi-index 1.5
IA| size of a multi-index A 1.5
o differential operator, of order |A| 1.5
D, q elements of (1, c0) —
v,q dual exponents 1.5
a,b elements of (0,1)

i J, k,m non-negative integers —
l order of a differential operator —
Y, Z arbitrary manifolds —
M Calabi-Yau manifold —
2n dim M —
(J,9,9) Calabi-Yau structure on M —
w Kahler form on M —
X special Lagrangian submanifold of M —
H"(X) de Rham cohomology of X 1.5
HI(X) compactly supported de Rham cohomology of X 1.5
H,(X) real singular homology of X —
H,(X,A) | real singular relative homology of (X, A) —
r covariant degree of a tensor on X —
s contravariant degree of a tensor on X —
C*(E) class C* sections of a vector bundle F —
CH(E) compactly supported elements of C*(E) —
o(+) interior product on a differential form —
ap(-) symbol of a differential operator P 2.1.2
Vg Levi-Civita connection of a metric g —
Ag Laplacian of a metric g, acting on r-forms 2.1.2
| g fibre metric on a bundle got from g 2.1.2
by isomorphism 7" X = T'X got via a metric g —
*g Hodge star of a metric g —
d exterior derivative —
dj formal adjoint of the exterior derivative got via a metric g 2.1.2
LY(E) integrable sections of a vector bundle E 2.1.2
Li,.(E) locally integrable sections of a vector bundle E 2.1.2
L*(E) L2-integrable sections of a vector bundle F 2.1.2
N normal bundle of a submanifold 2.2.1
fe submanifold got from a normal vector field £ 2.2.1
exp exponential map 2.2.1
&t infinitesimal variation 2.2.2

Table 1.1: List of selected notation
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Notation Meaning Definition
Chapter 4 onwards
a,3,7,0 elements of RT —
T an element of R —
b compact manifold, dim>¥ =n —1 —
L number of connected components ¥; of X —
gs a metric on X —
X manifold with ends 4.1
Gt special function on X 4.1
Xs compact core of X at distance S > 0 from Xo 4.1
Xoo the L ends X \ Xo 2 (T, 00) X ¥ of X 4.1
n dimX > 3 —
E,F admissible vector bundles on X 4.1
elr—s)t special operator on tensors 4.1
h cylindrical metric on X 4.2.1
h asymptotically cylindrical metric on X 4.2.1
W¢ 5(E) damped Sobolev space for admissible bundles £ — X 4.2.1
BZ’G(E) damped Hélder space for admissible bundles E — X 4.2.1
Pso translation invariant operator on X 4.2.2
Poo(w) operator pencil got from Ps 4.2.2
C(Ps,j) CC | eigenvalues of P (w) on jth end 4.2.2
D(Ps,j) C R | real parts of C(Px,j) 4.2.2
d(j,w) multiplicity for a point w € C(Peo, j) 4.2.2
N(B,0) index jump between ¢ and 3 4.2.2
P asymptotically translation invariant operator 4.2.3
g conical metric on X 4.3.1
g asymptotically conical metric on X 4.3.1
Ly 5(E) conical damped Sobolev space for tensor or exterior bundles £ — X 4.3.1
Cg’a(E) conical damped Holder space for tensor or exterior bundles E — X 4.3.1
Q asymptotically conical operator on X 4.3.2
ol rate of an asymptotically conical operator 4.3.2
Ker(t)ob kernel of (}), where sup,sub are indices for the domain 4.2.2,4.2.3, 4.3.2
Im(t)onp image of (f), where sup,sub are indices for the domain 4.2.2,4.2.3, 4.3.2
Coker(t)up cokernel of (1), where sup,sub are indices for the domain 4.2.2,4.2.3, 4.3.2
Ind(1)200 index of (), where sup,sub are indices for the domain 4.2.2,4.2.3,4.3.2
D(1) C R* exceptional set of the operator (f) 4.2.2,4.2.3,4.3.2
(R” \D(})), | connected component of R” \ D(}) containing * 4.2.2,4.2.3,4.3.2
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Notation [ Meaning Definition
Chapter 3 only
X compact manifold —
WP (E) Sobolev space for vector bundles E — X 3.1.1
ck(E) Hélder space for vector bundles £ — X 3.1.1
H" harmonic r-forms on a compact Riemannian manifold 3.1.3
(J,4,9Q) variation of Calabi-Yau structures on M 3.2.1
(J(p),9(p),2p)) | a point of (J,§,Q) 3.2.1
Chapter 5 onwards
Spec(Z, gs, ) spectrum of the operator Ay on a compact Riemannian manifold (¥, gs) —
m typical eigenvalue of Aj_ —
i elements of Spec(X;, gs,0) 5.1.1
1y the first positive eigenvalue 5,1 of A, on X; 5.1.1
A>0 L-tuple of first exceptional growth rates 5.1.1
x(B8+2) eigenvalue counter for rates < O(e#+2? 5.1.1
xX(B+2) eigenvalue counter for rates < o(e/#+2)?) 5.1.1
B+2 growth rate of a typical function —
6+1 growth rate of a typical 1-form —
Gry Dr, Or linear maps in a certain long exact sequence 5.1.2
fe for ¢ € RE, a function constant on the ends of X 5.1.2
h; g-harmonic function on X, tends to J;x on kth end of X 5.1.3
hjl- g-harmonic function on X, equal to d;; on kth end of X 5.1.3
h? g-harmonic function on X, equal to 6(2771))55]']@ on kth end of X 5.1.3
(ajr) special L x L matrix 5.1.3
(bjk) special L x L matrix 5.1.4
a<0 decay rate of a strongly asymptotically conical metric 5.1.4
fi special function on X 5.1.4
Kg1 smooth closed and coclosed 1-forms with growth rate O(e<5+1>t) 5.2
VB+1 representation map on Kgi1 5.2
Kﬁ+1 smooth closed and coclosed 1-forms with growth rate o(ewﬂ)t) 5.2.3
17@5_,_1 representation map on k5+1 5.2.3
Chapter 6
X=RxX full cylinder on ¥ 6.1.1
E.F admissible bundles on X 6.1.1
W,fﬁ(E), BZ’“(E) Banach spaces of sections of F 6.1.1
Bga(E) closure of C2°(E) in BE“(E) 6.1.1
I. € (2—n,0) good growth rate interval for the operator Aj 6.1.2
C cone in R™ or C" 6.2.1
a=a+1 decay rate of a strongly asymptotically conical submanifold 6.2.1
dex (X) dimension of deformations of X got from the C" moment map 6.3
drot (X) dimension of deformations of X got from the SU(n) moment map 6.3




Chapter 2

Background material

2.1 Analytic result for general manifolds

2.1.1 Banach space theory

We state here the definitions and results we shall need from the theory of Banach spaces. All the
results are proved in the books [43] of Lang, [54] of Murphy, or [56] of Rudin.

General theory

If X, are Banach spaces we denote the Banach space of continuous linear maps X — Y by B(X,)).
We denote the Banach space of continuous multilinear maps

XX XX =Y
~———
k factors

by B¥(X,)). Note that a multilinear map 7': X x --- x X — ) is continuous precisely when there
exists a C' > 0 such that

[T (@1, )| < Clleaflx - llzellx
for all (x1,...,2x) € X X --- x X. Furthermore, there is a canonical isomorphism
BM(X,Y) 2 B(X,B(X,...B(X,B(X,)))...)). (2.1)

If X is a Banach space we define X* := B(X,R). Besides the usual norm topology 7*, there is
a topology 7%~ * on X* called the weak-* topology which is uniquely characterised by the fact that
¢; — ¢ in T¥* precisely when ¢;(x) — ¢(x) for all z € X. Note that the weak-* topology is
weaker than the usual norm topology on X™* in that 7%~* C 7*. Given x € X we define an element
T(x) € (X*)* by 7(x)¢p = ¢(z) for all ¢ € X*. Then 7 : X — (X*)* is an isometric isomorphism
onto a closed subspace of (X*)*. In fact the image of 7 consists precisely of those linear functionals
T : X* — R which are continuous relative to the weak-* topology on X'*. We say that X is reflexive
if 7 has image (X*)*, and in this case we normally identify X with (X*)* via the map 7. Note that a
closed subspace of a reflexive space is always reflexive. If 4; C X we define

T:={peX":p(x)=0forall x € A}
which is a weak-* closed linear subspace of X*, and if Ay C X* we define

s ={zxeX:¢(x)=0forall ¢ € Ay}
which is a closed linear subspace of X. We then have the following result.

Proposition 2.1 Let A; < X be a linear subspace of a Banach space X. Then (A$)° = Ay the norm
closure of Ay in X. Also if Ay < X* is a linear subspace of X* then (A3)° = A" the weak-*
closure of Ay in X*.

15
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We also have the following useful result.

Proposition 2.2 Let X, be Banach spaces and T € B(X,Y). Then

1. KerT* = (ImT)° in Y*, and hence (Ker T*)° =ImT in ).
2. KerT = (ImT*)° in X, and hence (KerT)° =TmT*"  in X*.

Let X, Y be Banach spaces with B := {z € X : ||z||x < 1} the closed unit ball in X. We say that
a linear map T : X — ) is compact if T (B) is a compact subset of ). The following lemma is then
entirely straightforward.

Lemma 2.3 Let X',) be Banach spaces. Let T : X — Y be linear. Then T is compact if and only if
for every bounded sequence (x;) C X the sequence (T'x;) C Y has a convergent subsequence.

If X, are Banach spaces then a continuous embedding from X into ) is a continuous, injective map
T:X — Y. A compact embedding from X into ) is a compact, injective map T : X — ). Note that
any compact embedding is a continuous embedding, so that one notion is stronger than the other. In
the sequel, quite often ) will be a vector subspace of X and the map T will simply be the inclusion.
In this situation we shall write )V < X.

Finally for this section, we have the following result:

Proposition 2.4 Let X,Y be Banach spaces. If T € B(X,Y) and ImT < Y has finite codimension
then ImT <Y is closed.

Differential calculus
The theory we give here is an extension of the usual calculus techniques in Euclidean space to the
possibly infinite-dimensional case of Banach spaces.
Let X, be Banach spaces, Y C X an open subset and F : U — Y a C° (ie. continuous) map.
Given x € U we say that F is differentiable at x if there exists T € B(X,Y) such that
|F(x 4+ h) = F(z) = Th||,, = o(||2]|x)

as ||h|lx — 0. Now such a T' must be unique if it exists and we usually write F’(x) := T the derivative
of F' at x. If F'(z) exists for each x € U then we have a map

u — BXY)
r — F'(x)
and we say that F is of class C'! if this map is continuous. Clearly if S : X — ) is a bounded linear

map then S is of class C! and §'(z) = S for all x € X.

Continuing inductively, for & > 1 we say that F is of class C**! if F is of class C* and the
continuous map

U— B(X,BX,...B(X,B(X,)))...)) =B*Xx,))

is of class C'. Here we are using the identification (2.1). We say F' is smooth or C* if F is of class
C* for each k > 0.

Let X, X5 be Banach spaces, with open subsets Uy C Xy,Us C X and F : Uy X Uy — Y a map.
Let (x1,22) € Uy X Us. If the map

h — Y
u —  F(u,z3)

is differentiable at x; we shall write its derivative as F}(z1,x2) € B(X1,Y) the partial derivative of F
at (x1,z2) in the &) direction. If Fy(x1,xz2) exists for each (x1,22) € Uy X Uz we have a map

Fll U XUy — B(th)

($17$2) — F{(3517902)
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the first partial derivative of F. Similarly we have the notion of Fj : Uy x Uy — B(X3,Y), the second
partial derivative of F.

For the rest of Section 2.1.1 we fix a 1 < k < co. We now have the usual differential calculus
theorems, extended to the situation of Banach spaces. All results are proved in Lang [43].

Theorem 2.5 (Chain Rule) Let X,), Z be Banach spaces and U C X,V C Y open subsets. Let
F:U—-VandG:V — Z be maps. If F and G are of class C* then Go F : U — Z is of class C*
and (Go F) (x) = G'(F(x)) o F'(x) for allz € U.

Theorem 2.6 (Product Rule) Let X;, X2, ) be Banach spaces with open subsets Uy C Xy,Us C Xs.
IfF U, x Uy — Y is a map then F is of class C* precisely when both partial derivatives

Fl Uy xUy — B(X,Y)
FQ':Z/ll XZ/{Q — B(Xg,y)

exist and are of class C*=1. In this case the bounded linear map F'(x1,22) : X1 ® Xy — Y acts as
F'(z1,m2)(v1,v2) = F(21,22)v1 + Fy(x1, 22)02

for each (x1,22) € Uy X Uz and (vi,v2) € Xy ® Xa.

The last part of the Product Rule 2.6 is saying

F{(l’l,xg) = F,($1,$2)|
FQI(.’L‘l,l‘Q) = F/(l‘l, 3’52)’

X1

Xo

for each (z1,x2) € Uy X Us.

Let X, ) be Banach spaces and Y C X,V C Y be open subsets. We shall say that amap F': U — V
is a C*-diffeomorphism if F is bijective and the mappings F : U/ — Y, =1 : V — X are of class C*.
The following result is very useful.

Theorem 2.7 (Inverse Function Theorem) Let X and ) be Banach spaces with Y C X an open
neighbourhood of 0. If F : U — Y is a map of class C*, such that the bounded linear map

F'0): X =Y

is a topological linear isomorphism of Banach spaces, then there exists an open subset 0 € ¥V C U with

F(V) C Y open, such that F|y : V — F(V) is a C*-diffeomorphism.
The Inverse Function Theorem 2.7 has the following immediate corollary:

Corollary 2.8 Let X, be Banach spaces and U C X,V C Y be open subsets. If F : U — V is a
C'-diffeomorphism and is of class C* then F is a C*-diffeomorphism.

Also, the following theorem can be useful to help invoke the Inverse Function Theorem 2.7.

Theorem 2.9 (Open Mapping Theorem) Let T : X — Y be a bounded linear map between Ba-
nach spaces.

1. If T is surjective then T is an open mapping.
2. If T is bijective then T : X — Y is a topological linear isomorphism.

Closely related to the Inverse Function Theorem 2.7 is the following result.
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Theorem 2.10 (Implicit Function Theorem: version 1) Let X7, X,) be Banach spaces and
Uy C X, Uy C Xy open subsets both containing 0. Let

F:UxUs — Y
(0,0) — 0

be a map of class C* such that the bounded linear map F4(0,0) : Xy — Y is a topological, linear
isomorphism. Then there exist open subsets Wi C U1, Ws C Us both containing 0 and a unique map
X : W1 — Ws such that

F7H0) N (W) x Ws) = {(ml,x(xl)) Lz € Wl}. (2.2)

Moreover, the map x is of class C*.

Proof: Consider the C* map G : Uy x Uy — X; @ Y defined G(z1,72) := (ml,F(xl,mg)). Then the
derivative G'(0,0) : X} ® X5 — X; @ Y acts as the matrix

/ id 0
G'(0,0) = ( FI(0,0) F3(0,0) ) (2.3)

on vectors (v1,v2)t € X @ Xa. Now, the bounded linear map (2.3) is easily seen to be invertible, and
therefore must be a homeomorphism by the Open Mapping Theorem 2.9. So by the Inverse Function
Theorem 2.7 there exist open subsets Vi C U;, Vo C Us both containing 0 such that G|y, xy, :
Vi x Vo — X1 @) is a Ck-diffeomorphism onto an open subset  C X; @ ) containing 0. It follows
that G™1 : Q — V; x Vy is of class C* and there exists a unique map h : Q — Vs, such that
G~ w1, y) = (z1,h(z1,y)) for all (z1,y) € Q, and h is class C*. Now put

W1 = {1‘1 S Vl : (ZEl,O) S Q}
Wy = Vs

and define the class C* map x : Wi — Wa by x(x1) = h(x1,0) for all 1 € Wy, so that equation (2.2)
holds as required. Note that equation (2.2) determines x uniquely on Wj.
|

For the purposes of the next result, if X is a Banach space we say that a closed subspace K < X
splits X if there exists a closed subspace A < X such that X = K & A as vector spaces (and hence as
topological vector spaces, by the Open Mapping Theorem 2.9). We call A a complementary subspace
for K. Note that any finite-dimensional subspace will always split X'. This can be proved using the
Hahn-Banach Theorem.

Theorem 2.11 (Implicit Function Theorem: version 2) Let X and ) be Banach spaces with
U C X an open neighbourhood of 0. Let F : U — Y be a map of class C*, with F(0) = 0. Suppose
the bounded linear map F'(0) : X — Y is surjective and has a kernel K < X which splits X with a
complementary subspace A. Then there exist open subsets Wy C K, Wy C A both containing 0 with
Wi X Wo CU and a unique map x : Wi — Wy such that

F7HO) N (W1 x Wy) = {(m,x(x)) S Wl}
in X = K @ A. Moreover, the map x is of class C*.

Note that Theorem 2.11 follows quickly from Theorem 2.10.
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2.1.2 Differential operators

Let E, F — X be a vector bundles over a manifold X and & = {U, : v € A} an open covering of X
such that X, E, F' are trivial over each U € U. A smooth, linear, differential operator of order | > 1
from E to F is a linear map

P:CX*(E)— CX(F)

such that for each v € A, 1 < j <rank E, 1 < ¢ < rank F' and multi-index A with 0 < |A| < [ there
exists a Pj;)‘ € C*°(U,) such that

rank E
-3 ¥ mey (2.4)
Jj=1 o<

for each ¢ € C°(E), v € A and 1 < i < rank F. We require that not all the P;* with [A| = be zero.
In (2.4) the (£}) are the components of € in the given trivialisations of E, X over U,. By the Chain
Rule 2.5 the above definition does not depend on our choice of open cover U of X.

A Riemannian metric g equips X with a Lebesgue measure dV; and we have the corresponding
space L'(X) of integrable functions X — R. Suppose we choose some fibre metric ( , )g on the
bundle E, which induces a pointwise norm | |z on the fibres of E. We define L'(E) to be the vector
space of sections £ of E such that |¢|g € L'(X), and further define L}, .(E) to be the vector space of
sections ¢ of E such that ¢¢ € L}(E) for all ¢ € C°(X). Then Ll(E) is equipped with the norm

el () = /X €]V, (2.5)

We follow the usual convention of identifying sections of E that are equal almost everywhere.

Given &1, & € C°(E) we may form the continuous, compactly supported function (£1,&2)g on X,
which lies in L!(X). We define the L2-inner product of £; and &5 to be

(&1l&2) L2(m) :/X(&,&)Edvg. (2.6)

The induced norm on C2°(E) is denoted || - || 2(g) and the completion of C¢°(E) with respect to this
norm is the Hilbert space L?(E), which will depend upon our choices of metric g and fibre metric
( ) )E

Suppose now the bundle F' is also equipped with a fibre metric (|, )p. If P: C°(E) — CX(F) is
a smooth, linear differential operator of order I > 1, there exists a unique map

P* . C%(F) — C>(E)

with the property
&P ) r2(m) = (P&IN) L2(r) (2.7)

for all £ € C°(F) and n € C°(F). The map P* is also a smooth, linear differential operator of order
[ and is called the formal adjoint of the operator P. Note that the map P* depends upon the choice of
Riemannian metric on X and the fibre metrics on E, F'. The process of taking formal adjoints satisfies
the usual properties

(i Py 4 p2Q2)* = 1Pl + poPy
(PP2)* = PiPf
(P = P

for all real pq,po and all suitable smooth, linear differential operators Py, P, P. We say that an
operator P is self-adjoint if E = F and P = P* as linear maps C°(E) — C°(E).
Suppose that £ € L} (E) and n € L}, .(F). We say that £ is a weak solution of the equation
P¢ = n when
M) L2(ry = EIP" V) 12(m) (2.8)
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for all ¢p € C°(F'). This definition is motivated by the fact that equation (2.8) obviously holds for all
1 € C°(F) when & € C°(E), n € C*(F) and P¢ = 7 in the usual way.

An example of a smooth, linear differential operator is the usual exterior derivative
d:CX(A"T*X) — C(A"TT*X) (2.9)

on the manifold X. The exterior derivative has order [ = 1. A Riemannian metric g on X endows
the bundles A"T™ X with a fibre metric and we denote the formal adjoint of d in this situation by d7.

One can easily check that
dpe = (=)™ g dxg € (2.10)

for all § € Ce°(A"T*X). Here *, is the Hodge star operator on the Riemannian manifold (X, g). Note
that we do not require X to be oriented for equation (2.10) to make sense, as any sign ambiguity in
the Hodge star *, : A"T*X — A"7"T*X will be counted twice and therefore cancel. We now define
the Laplacian on the Riemannian manifold (X, g) by

A= dd} + did : CX(AT*X) — C(ATT*X) (2.11)

which is a smooth, linear, differential operator of order 2 that is self-adjoint. When we wish to indicate
the metric g and the degree r of the forms on which the Laplacian acts we denote the operator (2.11)
by A7.

Suppose that P is a smooth, linear differential operator of order [ > 1 which is given by equation
(2.4) in the cover U of X. Define

Z Pu)\

A=t

foreachve A, 1 <i<rankF,1<j<rankFE, z € U, and w € R". When rank F = rank F' and

det (LY, (z,w)) # 0

for each v € A, z € U, and w € R"™ \ {0} we say that the differential operator P is elliptic. This
definition does not depend on our choice trivialisation U, as can be seen by applying the Chain Rule
2.5.

The notion of ellipticity may be formulated in a coordinate free manner as we shall now describe.
Given a smooth, linear, differential operator P : C°(FE) — C2°(F) of order [ > 1 we can construct
an object called the symbol op of P. Now op is a smooth section of the vector bundle Sym'TX ®
Hom(E, F) and given n € C*®(T*X) we can form op(n) € C*(Hom(E, F)) by substitution into
the first factor. In fact if P is given as in equation (2.4) in the local trivialisation U, then op(n) €
C>°(Hom(E, F)) acts as the rank F' x rank E' matrix with (,) entry

> ppn (2.12)
IN|=l

where we consider 7 as the n-tuple (11, ...,n,) with respect to the basis {dx1,...,dz,} of covectors
on U,.

The symbol operation o satisfies various desirable properties: for any n € C*°(T*X) we have
Op1Pr+pa Py (77) = Kop (77) + 20 p, (77) (213)
op, (U)UPQ (77) = 0pP (77) (214)

for any real ui,pus and suitable smooth, linear differential operators P;, P». Note that for equation
(2.13) to be valid P; and P, must have the same order. Also, if we equip X with a Riemannian metric
and vector bundles F, F’ with fibre metrics then

ap(n)" =op«(n) (2.15)
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in C> (Hom(R E)) for all n € C*°(T*X) and differential operators P : C°(E) — C*(F).

The symbol op encodes the highest order data in P and in fact P is elliptic if and only if for each
x € X and non-zero 7, € Ty X the linear map op(n,) : E, — F, is an isomorphism. We can now
deduce from simple linear algebra various lemmas about ellipticity, for example: P is elliptic if and
only if P* is elliptic. Also, it is easy to check that the Laplacian defined in equation (2.11) is elliptic.
This follows from the following lemma of linear algebra.

Lemma 2.12 IfU S.v LW s an ezact sequence of finite-dimensional inner product spaces and
linear maps then SS* +T*T :V — V is a linear isomorphism.

Proof: If v € V with SS*v + T*Tv = 0 then
|S*v||* + ||Tv||2 = (8S*v+T*Tv|v) =0

so that S*v =0 in U and Tv = 0 in W. Then by exactness there exists v € U with Su = v so that
S*Su = 0. This implies that v = Su = 0.
|

Corollary 2.13 The Laplacian A : C®(A"T*X) — C°(A"T*X) is elliptic.

Proof: Let x € X and n € C*°(T*X). Then from the properties (2.13), (2.14), (2.15) of the symbol
given above the linear map oa (1), : A"T; X — AT X acts as

oa(Maz = oddz+dza(Maz = 0a()eoa(n); + 0a(n)z0a(n)e- (2.16)
Now, it is easy to show that the symbol of the exterior derivative (2.9) acts as

oa()e : N'TEX  — ATTIX
§z = MN&

foralln € C°(T*X), z € X and & € A"T;X. But the sequence of linear maps
ATTIEX S ATTEX S ATHTX

is exact whenever n, # 0, and so from Lemma 2.12 we deduce that (2.16) is a linear isomorphism
whenever 7, # 0. Consequently A is elliptic, as required.

|
Corollary 2.14 The operator d; +d : C2°(A*T*X) — C(A*T*X) is elliptic.

Proof: If we consider the Laplacian A acting on the whole exterior bundle A*T*X then we have

(dy + d)? = A, an elliptic operator. The result now follows from property (2.14) of the symbol o.
|

2.2 Submanifolds

From now on, we adopt the convention that a submanifold of a manifold Z is a manifold Y together
with an injective immersion k : Y — Z that is a homeomorphism onto its image. Then we can cover
k(Y) C Z with charts for Z that restrict to dim Y slices on k(Y). This gives k(Y") the structure of a
manifold such that k: Y — k(Y) is a diffeomorphism.

We shall identify the submanifolds k1 : Y1 — Z and ks : Yo — Z of Z if there exists a diffeo-
morphism ¢ : Y7 — Y5 such that k&1 = ko o ¢. In each equivalence class of submanifolds there is a
unique representative i : A — Z where i is the inclusion of some subset A C Z, and the differentiable
structure on A comes from slices of charts for Z.
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2.2.1 Tubular neighbourhoods

Let £ : Y — Z be a submanifold of a manifold Z. Then we have the pulled-back tangent bundle
k*T'Z — 'Y and the quotient
k*TZ
TY
is called the normal bundle of Y in Z. Suppose that Z is equipped with a Riemannian metric g. Then
we can identify canonically the fibre N, of N over y € Y with the gj,-orthogonal complement (T,Y)*
of T,Y < Ty, Z, and hence the bundle N with (TY)* the subbundle g-orthogonal to TY < k*TZ.

Now for each y € ¥ we have — using our metric g — the exponential map expy,,) which maps a
sufficiently small open neighbourhood of 0 € Tj,,)Z diffeomorphically onto an open neighbourhood of
k(y) € Z, and this certainly restricts to a diffeomorphism defined on the tangent vectors g (,)-normal
to T, Y. Moreover, this normal geodesic flow can be pieced together to form a global diffeomorphism
from an open subset of the normal bundle N onto an open subset of Z. This fact is the content of
the following theorem, which is proved in the book [42, Chapter IV, Theorem 9] of Lang.

N =

Theorem 2.15 (Tubular Neighbourhood Theorem) Let k : Y — Z be a submanifold of a Rie-
mannian manifold (Z,g) with k(Y) C Z a closed subspace. Let N be the normal bundle of Y in
Z. Then there exists an open subset UCN containing the image of the zero section, such that the
restriction

explg:U— Z

s a diffeomorphism onto an open subset of Z.

It follows from Theorem 2.15 that if k(Y") is closed in Z then any normal vector field £ € C°°(N)
with §, € U for all y € Y defines a submanifold k¢ : Y — Z of Z where

ke(y) = expy, (&y)

for each y € Y. In this way we view “small” normal vector fields £ as giving rise to submanifolds
ke : Y — Z that are “near” to k: Y — Z. Note that ko = k.

2.2.2 Variations

Let I C R be an open interval and V' : I X Y — Z a map of manifolds. Suppose the maps v; : Y — Z
are defined by

vi(y) =V (t,y)

forallt € I and y € Y. Then we call V' a variation of each v;. In this situation it follows by definition
that for all s € I and all forms 6 on Z we have

Lo (V*0)

.= w(9)

where on the left hand side £ denotes Lie derivative, t is the canonical coordinate on I and Y; :=
{s} x Y 2 Y. On the right hand side the derivatives are calculated pointwise on Y. Given s € I we

define £* € C*(viTZ) by
s 0
&y = dVisy) ((%)

for all y € Y. We call £° the infinitesimal variation of V at s € I. The following lemma will be useful
later, and is proved in the book [19, Proposition (I.b.5)] of Griffiths.

t=s

Lemma 2.16 Refer to the above notation. Suppose s € I is such that the map vy 1 Y — Z is a
submanifold. Then

= 7 (¢(£7)d0 + d(:(£")0))

for all® € C*(A"T*Z). Here £° is extended to any vector field on a small neighbourhood of vs(Y') in
Z. The resulting right hand side is independent of our choice of extension.

Ly (o)
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2.2.3 Minimal submanifolds

In this section we describe the theory of minimal submanifolds that we shall need. The book [24] of
Jost contains a more detailed treatment of this theory.

Let Y, Z be manifolds and I C R an open interval containing 0. Let
K:IxY —Z

be a map with K (t,y) =: k(y) for allt € I and y € Y. Then K is a variation of each map k; : Y — Z,
in the sense of Section 2.2.2. We say that K is a local variation of kg if

suppoK :={y €Y : K(t,y) # K(0,y) for some ¢t € I'}

is compact.

Suppose now that Z has a Riemannian metric ¢ and the mapping ky : ¥ — Z is an immersion
over suppy K. Then there exists an € > 0 such that k; : ¥ — Z is an immersion over supp, K for each
|t] < e, and consequently we have a metric kfg on supp, K C Y for each |t| < e. Define the variation

of volume for K at 0 to be
d
Varg(K) = — / dvi
de suppy K =0

where dV; is the Lebesgue measure on suppy K coming from k}g. Now if £ : Y — Z is a submanifold
we shall say that k is minimal if

Varo(K) =0

for all local variations K of ky := k. Note that composing k with a diffeomorphism Y — Y does
not change whether or not a submanifold k : Y — Z is minimal. The following result gives a useful
characterisation of minimal submanifolds, and is proved in [24, Section 3.6].

Proposition 2.17 Let k : Y — Z be a submanifold of a Riemannian manifold (Z,g). Then k is

minimal if and only if for all local coordinates (y1,...,yn) on'Y and (z1,...,2m) on Z we have
Ok; Ok;
Ak; — (k*g)*? (T} 0 k)5 —— =0 2.17
a%jl zlzzl ) 9ya Oys ( )

for j = 1,...,m. Here A is the Laplacian of the metric k*g on Y and the Fgl are the Christoffel
symbols of the metric g on Z.

In Proposition 2.17 the two conditions are equivalent to the mean curvature of the submanifold k :
Y — Z vanishing in all normal directions, but we shall not need this fact here. Also, maps k :
Y — Z satisfying equations (2.17) are called harmonic. The m equations (2.17) above form a system
of non-linear partial differential equations in the unknowns (ki,...,k,,) which are functions of the
independent variables (x1,...,2,). This system has special properties, as we shall see below. A
computation of the Laplacian Ak; in local coordinates gives

(«/det k* )(k*g)“ﬁgglz> (2.18)

Ak =

\/det Z 3y
- Dk, 1 d Ok
)™ — (/det(k*g)(k*g)**) L

; ( 0Yya0yp * Vdet(k*g) 9yp ( et(k*9) (k") ) 8ya>

which contains terms

- (
— det(k*g)(k*g aﬁ) . 2.19
5 (Va0 (219)
In actual fact, the terms in (2.19) are linear in the second order derivatives of k1, . .., k., so that (2.17)

is a quasi-linear set of equations. However, these equations cannot be quasi-linear elliptic because then
regularity theory as in Morrey [52, Theorem 9.1] would imply that all solutions k& would be smooth.
This clearly cannot be the case as composing k with a C?, but not smooth, diffeomorphism ¥ — Y
would show.
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2.2.4 Harmonic coordinates and regularity results

Although all the manifolds and mappings we have considered so far in Section 2.2 were smooth,
the definitions given in Section 2.2.3 above will still make sense when the objects concerned have
lower degrees of differentiability, and the corresponding propositions will remain true in these lower
regularity cases. Given this, we now go on to describe why any minimal submanifold can in fact
be given a smooth parameterisation. The material of this section is similar to that of DeTurck and
Kazdan [15].

We say that a non-empty open subset U C R™ is a domain if U is bounded and convex. Let us fix
a domain G C R™. If D C R™ is a domain we shall write

DccdG

to mean D C G.

We define C*¥(G) to be the vector space of functions G — R which are k times continuously
differentiable. We then put

CH(@G) := {u € C*(G) : u = v|g for some v € C¥(W) where G CC W}

so that elements of C*(G) could tend to infinity at the boundary of G whereas elements of C*(@) do
not. Note that if u : G — R then u € C*(G) precisely when u € C*(D) for all D CC G. We put

c>(@G) = (Cc*G)
k>0
C™®(G) = {ueC>®G):u=uv|g for some v € C>(W) where G CC W}

the smooth versions of the spaces defined above.
Given u € C*(G) we define

lull ok ==Y sup [0 ul

0<|AI<k

where the sum is taken over all multi-indices A as given. With this norm C*(G) becomes a Banach
space. For obvious reasons we call this Banach space a C*-space.

Fix some small € > 0. Then given a subset A C R™ and a function u : A — R we define

[ufz) — uly)l

cx,y € AwithO< |z —y| <e
|z —yle

[u]a;4 = sup {

which may, or may not, be finite. We also define the Hdélder spaces

Ck,a(é) — {u c C’“(@) . [3’\U]a;c < oo for all [\ = k}
ck(G) = {ueC*G):ue (D) forall DccC G}.

Note that C’k’“(é) is equipped with a norm

lullgr.a @y = lullor @) + Z [P u]asc
A=k

which, it turns out, makes C*%(G) into a Banach space. This Banach space is independent as a
topological vector space of our choice of ¢ > 0. Also, functions G — R which lie in C*%(G) are said
to be of class C*® or having reqularity C*°.

Let (Z,g) be a Riemannian manifold of class C2, with Laplace operator A acting on functions.
We say that local coordinates (z1,...,2,) on Z are harmonic if

Az; =0 (2.20)
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for each j = 1,...,n. In the local coordinates (z1,...,z,) these equations become

Za ( det(g) - gﬁ):o (2.21)

for j =1,...,n. The following lemma, proved in [15, Lemma 1.2], tells us that harmonic coordinates
always exist, and gives useful information about their regularity.

Lemma 2.18 Let (Z,g) be a Riemannian manifold of class C?. Let k > 2 and (y1,...,yn) be coor-
dinates about a point p € Z such that the metric g has coefficients of class C*% with respect to the
(yj). Then in a neighbourhood of p there exist harmonic coordinates (xj) which are of class Chtla
with respect to the coordinates (y;). Moreover any harmonic coordinates about p have this regularity
with respect to the coordinate system (y;).

Suppose now Y is a second C? manifold and the map k : Y — Z is a submanifold of class C?. If
k:Y — Z is minimal then we have equations (2.17) holding, which become

= 0?k; i Ok; Ok
k*g)*? —L )BT ok)—-—] =0 2.22
Z ( 0za23 Z ° )axa Oz (2:22)
a,f=1 =1
for j =1,...,m in (k*g)-harmonic coordinates (x,) on Y. This is by equations (2.21) and the usual

expression (2.18) for the Laplacian on functions in local coordinates.

The whole point of introducing harmonic coordinates on Y was to reduce the minimality equations
(2.17) to the simpler form (2.22): we now observe that the equations (2.22) form a second order quasi-
linear elliptic system, as in the article [52] of Morrey. We can now give the following regularity result,
whose proof we give to indicate the ideas involved.

Proposition 2.19 Let Y1, Z be smooth manifolds and let g be a smooth metric on Z. Let ki : Y1 — Z
be a minimal submanifold with ki of class C® for some | > 3. Then there exists a smooth manifold
Y, and a diffeomorphism ¢ : Yy — Yy of class C' such that the mapping ko : Yo — Z defined by

z 4, 7

Y17>Y2

is smooth.

It follows that k1(Y7) C Z has the structure of a smooth manifold got from taking slices of charts for
Z and the inclusion i : k1 (Y1) — Z is a C'°° submanifold.

Proof: Let Y; have the metric k7 g, which will have regularity C!~1 in arbitrary coordinates (y1,. .., ¥yn)
for Y;. By Lemma 2.18 there exist harmonic coordinates (x1,...,z,) about each point p € ¥ which
have regularity of class C"*® when expressed in terms of the (y,). So the (z,) don’t necessarily lie
in the same C*-structure as the (y,), but they do lie in the same C'-structure. We now attempt to
build a new C*-structure on Y containing the harmonic coordinates (z,). The components (ki ;)
of ky; with respect to the coordinates (x,) on Y and arbitrary coordinates on Z satisfy equations
(2.22). These equations form a second order quasi-linear elliptic system which has smooth data com-
ing from g on Z. Therefore by Morrey’s regularity results [52, Theorem 9.1] we can conclude that
the (k1;) must be smooth. So with respect to any harmonic coordinates on Y, the metric kjg on
Y is smooth. Now if (Z1,...,%,) is a second set of harmonic coordinates on Y then the transition
functions zo = x4 (Z1,. .., Z,) will satisfy the linear elliptic equations (2.20) which we now know have
smooth data coming from the metric k] g with respect to harmonic coordinates. Therefore by Morrey’s
regularity results for linear elliptic equations [63, Theorem 6.4.8] we can conclude transition functions
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between harmonic coordinates on Y; are smooth. We could also have seen this by applying the last
part of Lemma 2.18.

Now we are done: let Y5 be the set Y7 with smooth structure the maximal smooth atlas containing
all (k] g)-harmonic coordinate systems, and define ¢ = id, ko = k1 as functions between sets.

Of course more general versions of Proposition 2.19 can be proved, but we shall not need them
here.

2.2.5 Calibrations and calibrated submanifolds

The notion of calibrated geometry was first introduced by Harvey and Lawson in their foundational
paper [21]. We include in this section the theory from calibrated geometry that we shall be needing
later.

If W is a real vector space then an r-plane in W is a vector subspace V < W such that dimV = r.
Suppose that (Z, g) is a Riemannian manifold. Given z € Z and an oriented r-plane V' < T,Z the
metric and orientation on V induces a linear isomorphism

ATV =2 R
dVy < 1

where dVj, is the volume form on V. In particular, we now have an order relation on A"V*. We say
¢ € C®(A"T*Z) is a calibration on (Z, g) if d¢ = 0 and

ozlv < dVy (2.23)

for all z € Z and oriented r-planes V' < T,Z. We then refer to the triple (Z, g, ¢) as a Riemannian
manifold with calibration. A closed r-form ¢ on Z is a calibration if and only if

|¢Z|V|g<1

for all z € Z and r-planes V < T,Z, where | - |4 is the norm induced on A"V* by g.

Let ¢ € C°(A"T*Z) be a calibration on (Z,g). Let k : Y — Z be an oriented submanifold with
dimY =r. We say that k : Y — Z is a calibrated submanifold of (Z, g, ¢) if

k¢ = dV,

in C*(A"T*Y). Here dV} is the volume form on Y got from the orientation on Y and the restriction
of the metric g to Y. This condition means that we have equality in the inequality (2.23) for each of
the oriented r-planes V =T}, < Ty, Z.

Suppose that the r-form ¢ is a calibration on (Z, g), and that k : Y — Z is a compact oriented
submanifold with dimY = r. Then ¢ defines a class [¢] in the rth de Rham cohomology group H"(Z)
of Z and k : Y — Z defines a class [k(Y)] in the rth real singular homology group H,.(Z) of Z. If we
denote the usual pairing of [¢] and [k(Y)] by

(6] - [K(V)] = /Y K

then we have
Vol(Y) = [, dV, > [ k' = (6] [k(Y)]

with equality if and only if k£ : Y — Z is a calibrated submanifold of (Z,g,¢). It follows that any
compact calibrated submanifold & : Y — Z of (Z,g,¢) has minimal volume amongst the compact
oriented submanifolds representing the homology class [k(Y)] € H,.(Z), and therefore k : Y — Z will
be a minimal submanifold of the Riemannian manifold (Z, g). In fact, any calibrated submanifold of
a Riemannian manifold with calibration will automatically be minimal, and this fact is the content of
the following proposition.
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Proposition 2.20 Let (Z,g,¢) be a Riemannian manifold with calibration. Let k :' Y — Z be a
calibrated submanifold. Then k is a minimal submanifold of (Z, g).

Proof: As k: Y — Z is calibrated, Y must be oriented and we can integrate top degree compactly
supported forms over Y. If K : [ X Y — Z is any local variation of kq := k then we have

/ avy = / ki (2.24)
suppy K suppgy K

since the submanifold kg : Y — Z is calibrated with respect to ¢. Here dVj is Lebesgue measure on
suppy K coming from the metric kjg. Also, given ¢ € I the map K defines a homotopy between k;
and ko, in the sense of Bott and Tu [8]. Since ¢ is closed it follows that there exist forms 6; on Y such
that

ki¢ = koo + do, (2.25)

for each t € I. This is by the homotopy invariance of cohomology. In fact, we may take

0, = /0 K (u(&°)o)ds (2.26)

where the integrations are carried out pointwise on Y. To see this, consider
ds

t
|, wl)]

| dtsero)as

a( t £ ((e*)0)s)

using the material of Section 2.2.2. Here £ is the infinitesimal variation associated to K at s € I,
which vanishes on the boundary of supp, K, since K (t,z) = K(t,0) for all ¢t € I and x € d(suppy K).

kio — koo

Now let us fix any small |¢| so that we have a metric kg on supp, K. Let dV; be the associated
Lebesgue measure on suppy K. Then by equations (2.24) and (2.25) we have

/ dVy z/ ki¢p— dd; < / dV; —/ dé,
suppg K suppy K suppy K suppy K suppg K

since ¢ is a calibration on (Z, g). But now

/ d6‘t = / 9t = 0
suppg K d(suppy K)

by Stokes’ Theorem and the fact 8; vanishes on the boundary of supp, K. It follows that Varg(K) =0
and hence we are done.

2.3 Calabi-Yau and special Lagrangian geometry

2.3.1 Basic definitions and examples

We approach the subject from the point of view of Riemannian geometry, and therefore define a
Calabi- Yau manifold to be a Riemannian manifold (M, g) with holonomy group

Hol(g) < SU(n)
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where dim M = 2n the real dimension of M. This means that firstly M admits a complex structure
J with respect to which g is a Kéhler metric. In particular if the non-degenerate 2-form w on M is
defined by

wlE1, ) = 59061, 62) (2.27)

for all &1,&, € C°(T' M), then w is closed. We call w the Kdhler form. Secondly, the complex manifold
(M, J) admits a nowhere vanishing type (n,0)-form € that is covariant constant. Clearly any such
is unique up to scaling by non-zero complex numbers. Given this freedom we may in fact choose 2 so
that .

oyt gan (2.28)
n! 2n '
and in this case, it turns out that Re Q € C°(A"T*M) is a calibration on the Riemannian manifold
(M, g). Since the Levi-Civita connection V, of g is torsion-free, the condition V42 = 0 implies that

Q is closed, and therefore holomorphic. It follows that the canonical bundle K of (M, J) is trivial.

In the above situation (in particular with equations (2.27) and (2.28) holding) we shall say that
(J,9,9Q) is a Calabi- Yau structure on M.

It is a well-known fact — see [38, Chapter IX, Theorem 4.6] for example — that a Kéhler manifold
(M, J,g) of dimension 2n is Ricci-flat precisely when the restricted holonomy group Hol"(g) < Hol(g)
of (M, g) is contained inside SU(n). It follows that all Calabi-Yau manifolds are Ricci-flat. Compact
Riemannian manifolds with holonomy in SU(n) were shown to exist in reasonable numbers by Yau’s
proof of the Calabi Conjecture [59], and hence the name Calabi-Yau as given above. Specifically, Yau’s
theorem implies that if (M, J) is a compact, complex manifold which admits Kéhler metrics and has
first Chern class ¢1 (M) = 0 then in each Kéahler class there exists a unique metric g which is Ricci-
flat, so that Hol’(g) < SU(n). If M is simply-connected we can then deduce that Hol(g) < SU(n).
Examples include non-singular hypersurfaces in CP"*! defined by the vanishing of a homogeneous
polynomial of degree n + 2. In particular when n = 3 we have the quintic hypersurface in CP*.

We should note here that in the definition of Calabi-Yau manifold some authors require M to be
compact. One reason for this is that M being compact is specifically the case in which the Calabi
Conjecture applies. Another reason is that the applications of Calabi-Yau geometry in physics —
specifically string theory — all require compactness of the manifold M. However, we will not be too
concerned about these issues: M being compact will not be needed in any of the theory we consider,
and so we shall relax this condition.

Let (J,g,€) be a Calabi-Yau structure on a manifold M with dim M = 2n. Let w be the Kéhler
form. We say that a submanifold f : X — M of dimension n is special Lagrangian with respect to
(/,9,9) if

ffw =0 (2.29)
ffImQ = 0 (2.30)

in C*°(A*T*X). When the ambient Calabi-Yau structure is clear we shall simply speak of “special
Lagrangian submanifolds”. The following proposition relates special Lagrangian submanifolds with
the theory of calibrated submanifolds as given in Section 2.2.5, and is proved in the Harvey and
Lawson paper [21, Chapter III, Corollary 1.11].

Proposition 2.21 Let (J,g,9Q) be a Calabi-Yau structure on a manifold M and suppose f : X — M
is a submanifold.

1. If f: X — M 1is special Lagrangian then X has a unique orientation such that f : X — M is
calibrated with respect to Re (2.

2. If X is oriented and f : X — M is calibrated with respect to ReQ) then f : X — M is special
Lagrangian.

It follows by the theory given in Section 2.2.5 that special Lagrangian submanifolds will always be
minimal submanifolds of the ambient Riemannian manifold (M, g).

We now give some examples of special Lagrangian submanifolds.
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Example 2.22 If we take M = C™ with its usual complex structure and metric then we have our most
basic example of a Calabi-Yau manifold. The following examples of special Lagrangian submanifolds
of C™ all have a large degree (cohomogeneity 1) of symmetry, which made them easy to find.

1. Given ay,...,a,,b € R with b # 0 the subset

|21|27CL1:~~:|Z |2fa
Xal,...,an,b = {(217 .. .7Zn) ceC": Im(in+1zl - Zn) _ g n

is invariant under the group of diagonal matrices U(1)"~1 < SU(n). Moreover, Xa, .4, i5 @
special Lagrangian submanifold, with topology R x U(1)"~1. Note that this family of evamples
has n real parameters.

2. Let a € R be non-zero and let SO(n) < SU(n) denote the subgroup of real matrices. Then

X4 :=50(n) - {(Z,O,...,O) € C": Im(2") = a and 0 < arg(z) < 2%}
is an SO(n)-invariant special Lagrangian submanifold of C™ with topology Rx S"~1. Whena =0
the above subset X, becomes a union of special Lagrangian n-planes V; < C™ with V;NV; = {0}
for i # j, so 0 is the only singular point of Xo. Note that this family of examples has 1 real
parameter.

These were first examples of special Lagrangian submanifolds to be found, back in the Harvey and
Lawson paper [21]. More examples of this kind are constructed in the author’s dissertation [47] where
other symmetry groups G < SU(n) are also considered.

The examples from both families above are non-compact. This is not just a coincidence: for if ¢
is a calibration on R™ and f : X — R™ is a compact submanifold calibrated with respect to ¢ then
noting H™(R™) is trivial we have by Stokes’ Theorem

Oz/Xf*d):/XdVg:Vol(X,g)>0

a contradiction. Therefore no special Lagrangian submanifold f : X — C™ can be compact. Another
way of seeing this is to observe that no minimal submanifold of R™ can be compact (as performing
dilations shows) and then we may appeal to Proposition 2.20 and Proposition 2.21.

Besides the examples given above, other more complicated special Lagrangian submanifolds of C™
have been constructed recently by Joyce: see the papers [26], [27], [28], [29], [30], [32], [34], [35], [36],
[37] already cited in the introduction.

The remaining examples are taken from the paper [23] of Hitchin.

Example 2.23 Suppose that (J, g,Q) is a Calabi-Yau structure on M with Kdhler form w. Suppose
further that o : M — M is an anti-holomorphic involution (so 0 = id and o is holomorphic as a
map M — M where M is the differentiable manifold M endowed with the complex structure —J) such

that c*w = —w and c*Q = Q. Then the fized point set {p eM:o(p) = p} 18 a special Lagrangian
submanifold of M.

Example 2.24 For each n > 1 the manifold T*S™ admits the structure of a Calabi- Yau manifold for
which the zero section is a special Lagrangian submanifold. The complex structure on T*S™ comes
from an embedding into C"t' as an affine quadric

Q:{(Zo,...,zn)E(Cn+1:z§+...+z721:1}.

See the paper [57] of Stenzel for further details.
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Example 2.25 Let (M, g) be a hyperkihler manifold, of dimension 4k. So g is Kdhler with respect to
three complex structures I, J, K on M and furthermore IJK = —id. Let the Kdhler forms of I,J, K
be wr,wy,wk respectively. Put = (wr+ iwy)*, which is a nowhere vanishing form that is covariant
constant, and of type (2k,0) with respect to the complex structure K on M. So when Q is suitably
normalised, both (K, g,Q) and (K, g,iQ) become Calabi-Yau structures on M.

Let f: X — M be a submanifold of dimension 2k. Then any two of the conditions
1. f: X — M is a complex submanifold with respect to J

2. ffwur=0

3. ffwxg =0

holding implies the third, and when these conditions hold we shall say that f : X — M is complex
Lagrangian. If f: X — M 1is complex Lagrangian, we obviously have f*wyx = 0, and also

Q= (fror+ifwy)t =i (fros)”

so that f*ImQ = 0 if k is even and f*Im(iQ) = 0 if k is odd. So in hyperkihler manifolds, com-
plex Lagrangian submanifolds are special Lagrangian submanifolds with respect to some Calabi- Yau
structure on M.

Conversely, when k = 1 we have i) = iw; — wy so that if f : X — M is special Lagrangian with
respect to (K, g,i1Q) we have f*wx = 0 and f*w; = f*Im(iQ2) = 0 so that f : X — M is complex
Lagrangian as defined above.

2.3.2 Regularity of special Lagrangian submanifolds

In this section we bring together some of the material of Section 2.2 as applied to a special Lagrangian
submanifold got from a tubular neighbourhood.

Suppose (J,g,) is a Calabi-Yau structure on a manifold M and that f : X — M is a special
Lagrangian submanifold with normal bundle N — X. Suppose also that f(X) C M is a closed sub-
space. Then using Theorem 2.15 we have a tubular neighbourhood U C N such that the exponential
map restricts to a diffeomorphism from U onto an open subset of M. Let & be a section of N with
& €U for all z € X. Then £ induces a submanifold fe : X — M where

fe(x) := expy(y) (&)

for each x € X.

However, now suppose that ¢ is only of class CH® for some integer I > 3. Then although we have
a submanifold f¢ : X — M the map f¢ will a priori only be of class C%® and not smooth. But if we
suppose further that the submanifold f¢ : X — M is special Lagrangian then Proposition 2.19 and
the fact that special Lagrangian submanifolds are minimal implies that the subset f¢(X) C M has a
smooth structure coming from slices of charts for M, so that the inclusion f¢(X) — M is a smooth
submanifold. We now use the fact that our submanifold fs comes from a tubular neighbourhood:
translating over to the normal bundle we have an inclusion i : £(X) — N that is smooth and a
commuting diagram

(X)) —— N

R
X — X.

Since the projection 7y : N — X is smooth it follows that £~ = 7y 0i : £(X) — X is a smooth

map which is a C!-diffeomorphism. Hence by Corollary 2.8 we see that ¢ : X — £(X) is a C°°-

diffeomorphism, so that £ : X — N is a smooth submanifold. Consequently fe : X — M is a smooth

submanifold, too.
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2.3.3 Some pointwise calculations

In this section we give some elementary results concerning the objects that live on Calabi-Yau mani-
folds. These results will be needed in Lemma 2.29.

Let (8%17 AU 8%”7 6%17 R %) be the standard basis for the real vector space C™ with dual basis

(dxy,...,dz,,dy1,...,dy,). Then we have the following relevant objects

NE

go = (dz; ® dzj + dy; ® dy;)
j=1
n
wog = Zdl‘] A dy;
j=1

that are respectively the metric, Kéahler form and the holomorphic volume form. The endomorphism
Jo : C" — C™ defined as in equation (2.27) is then multiplication by ¢ € C.

Lemma 2.26 Let V < C" be an n-plane with woly = 0 and Im Qp|y = 0. Given £ € V+ we have
(t©wo)], = (odo)e, (2.31)
(O ImQ)[, = —x*o(oSo)¢ (2.32)

where by : V. — V* is the usual isomorphism induced by the restriction of gy to V and x¢ : A*V* —
A*V* is the Hodge star isomorphism got from the restriction of go to V and the orientation induced
on'V by ReQol|yv. Moreover, for arbitrary & € C™ we have

(&) Tm Q) |, = — %o ((L(g)wo)) ‘V. (2.33)

Proof: Because the first two equations are SU(n)-invariant and SU(n) acts transitively on the set of
all n-planes V' < C™ with wg|y = Im Qp|y = 0 we need only check (2.31) and (2.32) in the case that

V =R". Then we must have { = 37", vjaiy for some v!,...,v™ € R. In fact, as both sides of each
J
equation are linear in £ we can assume that £ = % for some k =1,...,n. Then for (2.31) we have

(4%)%) ‘v L(%) dej A dy;
=1

v
= - (dxk”v
= (o) 50~
as required, and for (2.32)

(L(%)Imﬂo) ’V - (L([,%)Im[(dxl Fidyn) A A (dzn + idyn)]) ]V
= (=DFdzy AL Adag g Adaggr AL Aday,
= *o(dfﬁk)
= —% (boJo)%

as required. To prove the third equation note that C* = V @ V+ and clearly (2.33) holds for all
¢ € V+: this follows from equations (2.31) and (2.32). Also (2.33) holds for all £ € V because
w0|V =0 and ImQ()|V =0.

We would like a result for Calabi-Yau manifolds that is analogous to Lemma 2.26. For this we
need the following result.
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Proposition 2.27 Let (M, J, g,) be a Calabi-Yau manifold, with Kéihler form w. Then given x € M
there exists an open subset U C M containing x and local orthonormal frames (e1,...,en, f1,-- ., fn)
for TM|y such that

w = Zej/\fj
j=1
Q = (e +ifH A A(e"+if™)
where dim M = 2n and (e*,...,e", f1,..., f") is the dual frame for T* M|y .

Proof: By an inductive argument for k¥ = 1,2,...,n we can find local orthonormal vector fields
(e1,...,ex, Jer,..., Jey), since the metric g is Hermitian. So now fix k = n, and set f; := Je; for

j=1,...,n. Then we have g, w and J in the form needed. Also, by equation (2.28) we see that
Q=X-(e" +if YN A (e +if™)

for some S C C valued function A\. Now by rotating (say) the pair of vectors e; +if; by A throws
into the form required, whilst preserving g, w and J.

Corollary 2.28 Let (M, J,g,Q) be a Calabi- Yau manifold, with Kdhler form w. Let f : X — M be
a special Lagrangian submanifold with normal bundle N — X. If £ € C*°(N) then we have

Fru&w) = bgJ)E (2.34)

F5(e(€) Im Q) — g (bgJ)E (2.35)

where by : TX — T*X is the usual isomorphism induced by the restriction of g to X and *4 :

ANT*X — AN*T*X is the Hodge star X induced by the restriction of g to X and the orientation on X
induced by f*ReQ. Moreover, for arbitrary & € C*°(f*TM) we have

f* (L(g) ImQ) = — % (f* (L({)w)). (2.36)

Proof: The equations (2.34), (2.35) and (2.36) can be checked pointwise, and at each point z € M we
have by Proposition 2.27 an isomorphism 7, M = C™ compatible with the relevant structure. Hence
the result follows from Lemma 2.26.

2.3.4 Infinitesimal deformations of special Lagrangian submanifolds

Suppose that (J,g,Q) is a Calabi-Yau structure on a manifold M?" with Kihler form w and that
f:+ X — M is a special Lagrangian submanifold. Since f*w = 0 it follows from equation (2.27) that
the complex structure J defines a vector bundle isomorphism

J:N—-TX

where N — X is the normal bundle of X in M. Also using the restriction of the metric g to X we
have as usual the vector bundle isomorphism

g : TX - T°X

so that by J identifies normal vector fields on X with 1-forms on X.
When f(X) is a closed subset of M we may apply the Tubular Neighbourhood Theorem 2.15 to
f X — M and obtain an open neighbourhood U C N of the zero section such that the exponential
map defines a diffeomorphism R
explg:U—M
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onto an open subset of M. By shrinking U if necessary we may suppose further that for each z € X
the subset U N N, C N, is star-shaped with respect to 0. Let us define

U= (byJ)U
an open subset of 7" X containing the zero section, and correspondingly
U* = {£€C®(N):&eUforalze X} (2.37)
U* = {nelC>®T*X):n, €U foralzeX} (2.38)

Then both U and U are star-shaped with respect to 0.

Suppose that &€ € C*°(N) and & > 0 are such that t& € U for all |t| < . It follows by the comment
after Theorem 2.15 that we have a 1-parameter family of submanifolds fi¢ : X — M parameterised
by t € (—¢,¢) where

fre(®) = expy(y) (t&a)
for each x € X. Note that f, = f. We would like to know whether or not deforming the special
Lagrangian submanifold f : X — M in the direction £ € C°°(N) keeps X special Lagrangian, at least
infinitesimally. Now the condition that f;c : X — M be special Lagrangian is

frew =0
fteImQ = 0

in C*°(A*T*X), so that in order to answer our question we perform the following pointwise compu-
tations on X.

Lemma 2.29 Refer to the above notation. Let n = (bgJ)E be the 1-form corresponding to {. Then

5 (i)

.

t=0

= —d(xgn)

t=0

where the derivatives on the left hand sides of these equations are calculated pointwise on X, and we
use the restriction of the metric g on X and the orientation on X induced by f*Re() to define the
Hodge star operator *g.

Proof: Define F¢ : (—¢,e) x X — M by Fe(t,xz) = fie(x) for all |t| < e and x € X. Then Corollary
2.28, the results of Section 2.2.2, and the fact w is closed give

a1 (i)

- C%(Fgw) .
= (&) dw + d(¢(£%)w))

= d(f*(u(E")w))
= dn.

t=0

In the above ¢ is any extension of ¢ to a neighbourhood of f(X) in M. Similarly we have

= d(f* (") TmQ))
= —d(x¢n)

and we are done. [ |

2 )

t=0
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Deformations of compact special
Lagrangian submanifolds

3.1 Analysis on compact manifolds

In this section we give a brief description of some analytic tools for compact manifolds. Useful
references for this section are the books of Adams [2], Aubin [4, Chapters 2,3,4], Besse [7, Appendix],
Gilbarg and Trudinger [18] and Joyce [25, Chapter 1]. As for the notation we shall use, we refer the
reader to Table 1.1, so that for instance, throughout Section 3.1 we have p > 1, 0 < a,b < 1 and
1, j, k, m non-negative integers.

3.1.1 Construction of suitable Banach spaces

Let E be a vector bundle over a compact manifold X, where dim X = n. Our primary method of
constructing Banach spaces of sections of F is via coordinate charts. To this end, pick any finite open
covering U = {Uy,...,Un} of X such that both F and X are trivial over each U, and each U, is
a domain when considered as a subset of R". If £ is a section of I¥ we denote by &7,...,&), g the
components of £ in the open set U,. We also fix a partition of unity {p1,...,pn} subordinate to the
open covering U of X.

Sobolev spaces

Considering each U, as being a subset of Euclidean space R™, we have the usual Euclidean measure
dV, defined on each U,. So given u € C*°(X) with suppu C U, we may define

1
P
Il = ( / |u|pdv;)
U,

the usual LP-norm of u. For £ € C*°(FE) we also have the Sobolev norm defined by

N rank E P

Elwemy =D > D ee@) 0w, | - (3.1)

v=1 j=1 0<PI<k
We define W/ (E) to be the vector space completion of C°°(E) with respect to the norm (3.1). We
call the Banach space W} (E) a Sobolev space. Note that, additionally, each W2(E) is a Hilbert space.

As a topological vector space W} (E) is independent of all choices Uj,p;. Additionally, we can
view elements of W} (E) as genuine sections of E, whose components in the various trivialisations U,
are k times weakly differentiable, with all derivatives LP-integrable.

34
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An alternative, coordinate free method for constructing the Sobolev spaces WY (E) is to endow
the manifold X with a Riemannian metric g, and the vector bundle E with a fibre metric (, ) and
a compatible connection Vg. Then the norm (3.1) is equivalent to the norm on C*°(E) defined by

1

k ,
el =S / VLAV,
j=0"X

for all £ € C°(E). Then WZ(E) is simply the Hilbert space L?(E) defined as in Section 2.1.2.
Note that there is a constant C' > 0 such that

|(€1l&2) L2y | < Cllalwe () 1621l 1)

for all &1,& € C°(E). It follows that the L2-inner product defined in Section 2.1.2 extends to a
continuous bilinear map

(12 Wo(E) x Wi (E) = R (3.2)
and in fact the pairing (3.2) induces a Banach space isomorphism
o WE(E) - WY (E)* (3.3)
defined by ®(£)(n) := (£|n) 12(g) for all £ € W(E) and n € Wé)/(E). See the book [2, Section 3.4] of
Adams for further details, where the following useful result is also proved.
Proposition 3.1 The Banach spaces W} (E) are reflexive.

The important point in Proposition 3.1 is that p > 1.

Holder spaces
Given ¢ € CF(E) we define

T

D

a
J=1 0Nk

N
I€llcr) == sup |p, (9°¢7)] (3.4)
v=1 v

The norm (3.4) makes C*(E) into a Banach space, which we call a C*-space. We also define

nk E
,’: 0

N rank E

I€lcracey = l€lcrm + D > > [0 (0*€)] .00, (3.5)

v=1 j=1 |\|=k

which may, or may not, be finite: refer to Section 2.2.4 for the definition of [-], 4. We now put
CHU(E) = {¢ e CM(E): 1€llca(my < 00}

which becomes a Banach space when equipped with the norm (3.5). This Banach space is called a

Holder space.

The C* and Holder spaces can also be constructed in a coordinate free manner, as we now describe.
Suppose that X is equipped with a Riemannian metric g and E is equipped with a fibre metric and
compatible connection. Then given £ € CF(E) and 0 < j < k we may form the jth covariant
derivative V4¢ € C° ((®j T*X) ® E) of £ using the Levi-Civita connection of g and the connection

on E. Furthermore, using g and the fibre metric on £ we may compute the pointwise norm of V%g,

which we write as ‘V%g‘ € C°%X). Tt turns out that the norm (3.4) on C*(E) defined above is
E
equivalent to the norm on C*(E) defined by

k
el = ;sg{p\vgs]];
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for each ¢ € C*(E).

To construct the Holder norm (3.5) in a coordinate free manner we first need a preliminary discus-
sion. Suppose V is any vector bundle over a manifold Y which is endowed with a connection. Then
given any piecewise-smooth curve which joins points z,y € Y we may define a linear isomorphism
Vz» — V,, using parallel transport along this curve. If further V' is equipped with a fibre metric which
is compatible with the connection, then the parallel transport map will be an isometry.

Suppose Y has a Riemannian metric h and the injectivity radius inj(Y,h) is positive. Then we
may choose some 0 < & < inj(Y,h). Let dp(x,y) denote the distance between two points z,y in the
Riemannian manifold (Y, h). Then given z,y € Y with dj,(z,y) < e there exists a unique geodesic in
(Y, h) of length dj,(x,y) which joins z to y.

Consequently, for any A C Y and section v of V' we can define

h |Um_vy‘v . }
vl 4 i =supy ——— 2,y € A with 0 < dp(x,y) <e 3.6
= sup {22 @.9) (3.6

which may or may not be finite. In equation (3.6) we make sense of |v; — v, |y by identifying V, =V,
isometrically using parallel transport along the unique geodesic in (Y) k) from x to y which has length
dp(z,y), and then applying the fibre metric |- |y on V.

If we return to our compact Riemannian manifold (X, g), then inj(X,g) > 0 and it turns out that
Cha(E) = {g e CH(E): [Vhe)? < oo}

and the norm (3.5) is equivalent to the norm on C**(E) defined by
k
j 9
lell+= { Dosup|Vie| | + [Vhelo (3.7)
=0

for each ¢ € C*2(E).

Embedding and Compactness Theorems

The Banach spaces defined above are actually closely related, as we see from the following very useful
results.

Theorem 3.2 (Embedding Theorems) Refer to Section 2.1.1 for the definition of a continuous
embedding between Banach spaces.

1. Ifk>1>0and k — % >0 — % then there is a continuous embedding W} (E) < W/(E).

2. If k+a > 1+ b then there are continuous embeddings C**1(E) < C**(E) < CW*(E) < CYE)
and C*(E) < CY(E).

3. If k — % > I+ a then there are continuous embeddings W (E) < Che(E) < CHE) < W(E).

A consequence of Theorem 3.2 is that

(WE(E) = () CP*(E) = C™(E). (3.8)
k=0 k=0

Theorem 3.3 (Compactness Theorems) Refer to Section 2.1.1 for the definition of a compact
embedding between Banach spaces.

L. The embedding W} (E) < W/ (E) is compact when k >1>0 and k— % >1— 2.
2. The embedding C**(E) < C*(E) is compact.
3. The embedding W} (E) < CL(E) is compact whenever k — T>l+a

The real substance of Theorem 3.2 and Theorem 3.3 are the corresponding local results from PDE
theory. See for example the book [18, Section 7.7, Section 7.10] of Gilbarg and Trudinger.
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3.1.2 The theory of elliptic operators

We now describe the properties of differential operators when acting between the spaces introduced
above. First of all, if P : C*°(F) — C*°(F) is a smooth, linear differential operator of order I > 1
then P extends to bounded linear maps

P:W; (BE) — W{(F) (3.9)
P:.CMbyE) - ORY(F). (3.10)

It follows from continuity that the defining identity (2.7) of the formal adjoint P* of P extends to an
identity
EIP™ ) 2By = (P&IN) L2 () (3.11)

valid for all £ € WP(E), n € Vle/(F)7 and hence all ¢ € CY(E), n € CH%(F). Use of the extended
identity (3.11) is called integration by parts.

Elliptic operators are very important in the theory of analysis on compact manifolds because of
the usefulness of results such as the following: refer to Section 2.1.2 for the definition of weak solution.

Theorem 3.4 Let X be a compact manifold and E, F' — X vector bundles over X. Let P : C*°(E) —
C°°(F) be an elliptic, smooth, linear differential operator of order | > 1. Suppose that n € L*(F) and
that ¢ € LY(E) is a weak solution of the equation P& = 1.

L. Ifne W{(F) then & € W[, (E) with P§ =1 and

l€llwz. ) < C1 (IPENwzcr) + 1€l (s ) (3.12)
where the constant Cy > 0 does not depend on &.

2. If £ € CO(E) with n € C*(F) then £ € C**b4(E) with P¢ = n and

€]l crramy < Co (1PEllcrery + 1€l co(ry) (3.13)

where the constant Cy > 0 does not depend on &.

The proof of Theorem 3.4 is best thought of as being in two parts: we firstly deduce that the given
conditions imply that £ is locally of class W} 4, in the first case or locally of class C*+ha in the second
case. Then one can give local estimates for £ in terms of the relevant norms, and the passage to the
whole of X is then entirely straightforward. The relevant theorems are the Morrey interior estimates as
in [53, Theorem 6.4.8] or the Schauder interior estimates as in [16, Theorem 1]. (Actually the Morrey
estimates are stronger as he proves that the C°(E) norm on the right hand side of the inequality
(3.13) can in fact be replaced with the weaker L!(E) norm, but for our purposes the estimate (3.13)
is sufficient.)

It turns out that results such as Theorem 3.4 will fail for the Banach spaces C*(E): that is why
we have had to introduce the more complicated Sobolev and Hoélder spaces.

We now have the following corollary.

Corollary 3.5 Let X be a compact manifold and E, F — X vector bundles over X. Let P : C*°(E) —
C°°(F) be an elliptic, smooth, linear differential operator of order 1 > 1. If ¢ € L*(E) with P§ =0
holding weakly then £ € C*°(E) and P§ = 0 holds in the usual sense.

Proof: If ¢ € LY(E) with P¢ = 0 holding weakly then by Theorem 3.4 we have £ € W/ (E) for all
k > 0. Then £ € C*(E) follows from equation (3.8).
|

It follows that when P is elliptic the kernels of the maps (3.9) and (3.10) coincide and are inde-
pendent of p, k,a. Moreover, this kernel is a subspace of C*°(E).
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Theorem 3.6 Let X be a compact manifold and E,F vector bundles over X. Let P : C*(E) —
C>(F) be an elliptic, smooth, linear differential operator of order | > 1. Then the maps P :

WP (E) — WE(F) and P : C**he(E) — C*(F) both have finite-dimensional kernels and closed

1mages.

We give a proof of the C*:%half of this corollary to illustrate the various techniques that are used in
the theory of elliptic operators, in particular the use of Theorem 3.3 and Theorem 3.4. The method
of proof for is similar to that of Cantor [10], who considers the Sobolev case.

Proof: A Banach space is finite-dimensional precisely when its closed unit ball is compact. Now
Ker P is a closed subspace of C**5:2(E) and hence is a Banach space. Let B be the closed unit ball
in Ker P. Suppose that (¢;) C B is any sequence. Then (;) is bounded in the C*¥*l:%norm, and
by Theorem 3.3 there exists a subsequence (¢;,) that is C**\-Cauchy, and hence C°-Cauchy. Now
applying Theorem 3.4 gives a constant Cy > 0 such that

€5, — &llerrtaey < Ca- €5, — & llcor)

for all r,s > 1 so that (&) is C*ktha_Cauchy. It follows that this sequence has a limit & € B. Hence
B is compact, and Ker P is finite-dimensional.

To show that Im P < C*¢(F) is closed we firstly define the closed subspace A := (Ker P)* <
Cktha(E). Here we use the L2-inner product on C*+4(E) to form A. Note that C*+he(E) =
Ker P @ A, as one can see by picking an L2-orthonormal basis for Ker P.

Suppose for a contradiction that there exists a sequence (§;) € A with

I€illerrramy = 1 forall j > 1 (3.14)
[PE&llekery — 0 asj— oc. (3.15)

By equation (3.14) and Theorem 3.3 there exists a subsequence (§;, ) that is C*+!_Cauchy, and therefore
C%-Cauchy. By equation (3.15) and Theorem 3.4 we deduce (;,) is C*+12-Cauchy and so converges
to some £ € A. Now by equation (3.15) we have P¢ = 0 so that necessarily £ = 0. But this contradicts
equation (3.14). It follows from this contradiction that there exists a constant C3 > 0 such that

[€llcrtracey < Csl|PEl|croa(my (3.16)

for all £ € A. We can finally show that Im P < C*¢(F) is closed. Take a sequence (1;) C Im P
converging to 7 € C*2(F). Then put n; = P¢; for j > 1 with each ¢; € A. By equation (3.16) the
sequence (¢;) C A is CFtbe_Cauchy and thus converges to £ € A, and moreover P¢ = 7. This shows
Im P is a closed subspace of C*¢(F).

|

Theorem 3.6 allows us to prove the following result giving a characterisation of the image of an
elliptic operator acting between Sobolev spaces. The method of proof for Theorem 3.7 is that of
Cantor [10].

Theorem 3.7 Let X be a compact manifold and E,F vector bundles over X. Let P : C*(E) —
C(F) be an elliptic, smooth, linear differential operator of order 1 > 1 with formal adjoint P*. Then
in the extension P: W} (E) — W{(F) we have

Im P = {n € WE(F) : (nh)ga(ry = 0 for all h € KerP*}. (3.17)

Note from Corollary 3.5 that Ker P* is a subspace of C°°(F') and is therefore contained in Wé’l (F),
so that the right hand side of equation (3.17) makes sense.

Proof: First note that

ImP < {77 e WE(F) : (n|h)r2(py = 0 for all h € KerP*}
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follows immediately from integration by parts.

Consider now the case k = 0. For the purposes of this proof, denote the Banach space adjoint
of the map P by P’ : WJ(F)* — WF(E)*, to distinguish from the formal adjoint P* of P. Identify

WE(F)* =W /(F) as in (3.3). Then an integration by parts argument shows that
Ker P* < Ker P’
in W (F)*. Also, it is a consequence of Theorem 3.4 that

Ker P’ < Ker P* (3.18)

because if n € Wg/ (F) with (P¢[n)p2py = 0 for all ¢ € W/ (E) then the equation P*n = 0 holds
weakly. (It is at the point of establishing the inclusion (3.18) that the corresponding proof for the
Hélder spaces breaks down, because one does not have a good characterisation of their dual space.)
Now take n € W{(F) such that (n|h)2(py = 0 for all h € Ker P*. Then n € W (F) lies in

(Ker P*)° = (Ker P')° =Im P
as required. Here we are using Proposition 2.2 and Theorem 3.6. It follows that we have proved the

result in the case k = 0.

Now suppose that k& > 1 and that n € W/ (F) with (n|h)2(p) = 0 for all h € Ker P*. A
consequence of the case k = 0 proof is that there exists £ € W/ (E) such that P{ = 7. But then
Theorem 3.4 implies £ € W}, ,(F) and we are done.

Theorem 3.7 is important because it generalises very easily to the non-compact case we shall
consider later. It also allows us to prove our next result, which is again very useful. The method is
that of the author, we do not know if it is in the literature.

Theorem 3.8 Let X be a compact manifold and E,F vector bundles over X. Let P : C*(E) —
C>(F) be an elliptic, smooth, linear differential operator of order | > 1, with formal adjoint P*.
Then there are L?-orthogonal decompositions

WJ(F) = P(W},,(E)) @ XKer P* (3.19)
ck*(F) = P(C*"(E)) @ Ker P*. (3.20)

Proof: We first prove the Sobolev decomposition (3.19) which can then be used to prove the Holder
decomposition (3.20).

From Corollary 3.5 and Theorem 3.6 above we have that Ker P* is a finite dimensional subspace
of W!(F) contained inside C*°(F). Choose an L?-orthonormal basis {h1,..., hx} of Ker P*. Given
n € WF(F) we may write

N N
n=1\n- Z<77|hj>L2(F)hj + Z<n|hj>L2(F)hj
j=1 j=1
and this shows that
WP (F) = {77 e WP(F) : (n|h)r2(py = 0 for all h € KerP*} @ Ker P*

and the Sobolev decomposition now follows from Theorem 3.7.
Note now that C*2(F) < WF(F). If we intersect the decomposition (3.19) with C*(F) we obtain

Ccho(F) = {77 € C*(F) : n= P¢ for some & € W,fH(E)} ® Ker P*.
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Now choose p > 1 sothat k+1—a >
Theorem 3.4 implies that

so that by Theorem 3.2 we have W7

r(E) < C%(E). Then

n
p

{17 € C**(F) : n = P¢ for some & € W,f+l(E)} = P(C*(E))

and we are done.

Given the hypotheses of Theorem 3.8 one may deduce immediately that the linear map P :
C>(E) — C>(F) admits an L?-orthogonal decomposition

C™(F) = P(C*(E)) ® Ker P* (3.21)
with a similar orthogonality property. This follows by intersecting both sides of equation (3.20) with

C*°(F) and using the elliptic regularity results of Theorem 3.4.

3.1.3 An application: Hodge theory

On a compact Riemannian manifold (X, g) we have the exterior derivative d, its formal adjoint dj,
and the elliptic, self-adjoint, smooth, linear differential operator of order 1

At +d: C®(A*T*X) — C®(A*T*X).

Furthermore we have an elliptic, self-adjoint, smooth, linear differential operator (d; +d)? = Ay on
C®°(A*T*X). The analysis of the operators d + dj and A, is what we shall call Hodge theory on
(X, g). Although in Section 3.1.3 we shall work with Holder spaces, the corresponding results for
Sobolev spaces also hold.

For the rest of Section 3.1.3 we consider dj + d as a map
df +d: CFYYA T X) — CPY (A T*X) (3.22)
which is a bounded linear map of Banach spaces. By Corollary 3.6 the subspace Im(d; +d) <

CH*(A*T*X) is closed and Ker(d} + d) is a finite-dimensional subspace of C*°(A*T*X). Also, by
Theorem 3.8 and the fact that dj + d is self-adjoint we have a direct sum decomposition

CP(A*T*X) = Im(d} + d) @ Ker(d} + d) (3.23)
which is L2-orthogonal.
Proposition 3.9 The bounded linear map of Banach spaces (3.22) has kernel
Ker(d} +d) = {¢ € CF(A*T*X) : d}¢ = 0 and d¢ = 0}
and image

Im(d +d)

{01 +db : 61,0, € CFTH(A*T*X) }
= d;(CMAT X)) @ d(CHT(ATTX)

a direct sum of vector spaces that is L?-orthogonal.

Proof: It is clear that if ¢ € C*T14(A*T*X) with d%¢ = 0 and d§ = 0 then ¢ € Ker(d} +d). Suppose
conversely that § € Ker(dj + d). Then d;§ = —d¢ and

dgéll7e = (dgéldy€) re = (€]ddg€) r2 = —(€]dd€) = = 0

where by L? we mean L?(A*T*X) throughout. It follows that dz§ =d§=0.
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For the second set of equations we note that clearly Im(dj + d) is contained inside
A= {01 +dbs : 61,0, € CFTHA(AT*X) }

but the problem is to show the reverse inclusion A < Im(dj + d). For this take any 61,02 €
CHHLa(A*T*X). Then we have d}0; 4+ df; € C**(A*T*X) so from the decomposition (3.23) there
exist h € Ker(d} +d) and 03 € C*4(A*T* X)) with

d291 +dfy = (d; + d)93 +h (3.24)
From the description of Ker(dj + d) obtained above we have

did(G2 —65) = 0
dd;(6: —63) = 0

by respectively applying dj and d to equation (3.24). Then

[d(0s — 05)||22 = (d(8s — 03)|d(05 — 05)) 5 = (02 — O3|d5d(05 — 05)),, = O

so that df, = df3, and similarly d}6, = d03. Hence h = 0 and (d} + d)f3 = d;60; + df2 so we have
proved Im(dj +d) = A. The last remaining equality

A= (CFY AT X)) @ d(CF (AT X)) (3.25)
is obvious: the sum of vector spaces is direct because given any 61,60y € C*+1.4(A*T*X) we have
(dg01|dO2) 2 = (01]ddba) 2 =0
and this also shows the splitting (3.25) is L2-orthogonal, in that

& (CHF L4 (AT X)) < (A(CHH (AT X)) .

For the rest of Section 3.1.3 we consider A as a map
A CHFFZOA* T X)) — CH(A*T*X) (3.26)

which is a bounded linear map of Banach spaces. By Corollary 3.6 the subspace Im A < C*¢(A*T*X)
is closed and Ker A is a finite-dimensional subspace of C®(A*T*X) < C*+2.4(A*T*X). Also, by
Theorem 3.8 and the fact that A is self-adjoint we have a direct sum decomposition

CP(A*T*X) = Tm A @ Ker A (3.27)
which is L?-orthogonal.
Proposition 3.10 In equation (3.27) we have

KerA = Ker(d; +d)
Im A Im(dj +d).

Proof: Clearly Ker(d} + d) < Ker A as both are subspaces of C*°(A*T*X) and (d} 4+ d)* = A. To
show the reverse inclusion, suppose that £ € Ker A. Then

I + )82 = ((d5 + el + D)8 o = (&](d; +)6) o = (]A8) . = 0

as dj + d is self-adjoint. We conclude that § € Ker(dj + d).
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For the second equation, it is obvious that
ImA < {d}61 +df : 61,0, € CFTHH(AT*X) } = Im(d] + d).

Now suppose that ¢ € Tm(d; +d) < Cka(A*T*X). Using the splitting (3.27) we write £ = & + &
where &1 € ImA and & € Ker A. But then £ — £ = & lies inside

Im(dj +d) NKer(d; +d) = {0}

so that & = & lies inside Im A.

|
We usually refer to elements of H := Ker A as harmonic forms. If dim X =: n then there is a
grading
CHO (AT X) = P CHH (AT X) (3.28)
r=0
and we define H" := HNC>®(A"T*X) for each 0 < r < n.
Proposition 3.11 There is a decomposition
CFUNT*X) =H" @ d;(CFTH(A™T'T* X)) @ d(CHTH* (AT X)) (3.29)
which is L?-orthogonal.
Proof: From equation (3.23) and Proposition 3.9 we have an L2-orthogonal decomposition
CPOANT*X) =H @ d (CFH (A T* X)) @ d(CF(A*T* X))
and now intersecting both sides of this equation with C*¢(A"T* X) gives the result.
|

Corollary 3.12 Ifn € CY(A™1T*X) with dn € C*%(A"T* X) then there exists ¢ € CkTLe(AT"1T* X)
with dn = d¢&.

Proof: In the direct sum decomposition (3.29) we may write dn = h+d}6+d¢ where § € CFHha(ATHT*X)
and ¢ € CFTLe(A™"1T*X). Now an integration by parts argument as in the proof of Proposition 3.9
shows that h = 0 and d;@ = 0 as required.

|
There are versions of the grading (3.28) and decomposition (3.29) in the smooth situation:
C(NT*X) = PC~nTx) (3.30)
r=0
CXNT*X) = H &d,(C*ATTX))od(C(N T X)). (3.31)

It follows that for each 0 < r < n we have a canonical isomorphism of real vector spaces

HY — H'(X)

and this is because the smooth, closed r-forms split as H" & d(C*(A""1T* X)), from equation (3.31).
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3.2 The McLean Theorem

As a part of his doctoral thesis, published as [50], McLean showed that whenever X is a compact
special Lagrangian submanifold of a Calabi-Yau manifold we may deform X via normal vector fields
to nearby submanifolds, and the special Lagrangian deformations correspond to a finite-dimensional
smooth submanifold of the total (infinite-dimensional) space of normal deformations. This smooth
submanifold is a manifold modelled locally as an open subset of the affine space H!(X), as is explained
in the paper [23] of Hitchin.

Using the background material we have already discussed, we give a rigorous proof of McLean’s
theorem, and also extend the theorem to the situation where the background Calabi-Yau structure
is being deformed, and ask whether or not compact special Lagrangian submanifolds persist under
deformations of the ambient Calabi-Yau structure. The main result of this section is Theorem 3.21.

3.2.1 Deformations of Calabi-Yau structures

We begin by explaining what we mean by deforming a Calabi-Yau structure.

Let Z be a manifold and let £ — Z be a vector bundle. We would like to formalise the notion of
a smoothly varying family of smooth sections of E. For this, let D C R™ be a domain containing 0
and 7z : D x Z — Z be the projection onto the second factor.

Given é € C®(ny,E) and p € D define the section e(p) € C*(E) by

e(p): = €(p,2)

for all z € Z. Here we are identifying E. = (13 E)(, ) in the usual way, for each z € Z. We shall say
that é is a (smooth, m-dimensional) deformation of e(0). We shall call D the parameter space of the
deformation é.

Given the above situation, we have for each i = 1,...,m a section <§Z\-e € C=(r,E) defined

(9:€) p.e) = %(éw,z))

r=p

for each (p,z) € D x Z. In other words, 876 is just the derivative of é in the ith direction in D, where
we compute derivatives in each fibre of E separately. We then have sections (9;e)(p) € C*(FE) for
each 1 <i<m and p € D, as described above.

Suppose now that M is a manifold with a Calabi-Yau structure (J,g,2). Then by a deforma-
tion of Calabi-Yau structures of (J,g,2) we mean a deformation (j,g,fz) of (J,g,9), such that
(J(p), 9(p), 2p)) is a Calabi-Yau structure on M for each p € D, the common parameter space

A’g ~
of (J,3,9).

3.2.2 The deformation map F

For the rest of Section 3.2 let M be a manifold with dim M = 2n and (J, g,?) a Calabi-Yau structure
on M with Kéhler form w. Let f : X — M be a compact submanifold which is special Lagrangian
with respect to (J,g,9Q). We let by : TX — T*X be the usual bundle isomorphism induced by the
restriction of g to X and %, the Hodge star on X induced by the restriction of g to X and the
orientation on X determined by f* Re(). Also dj denotes the formal adjoint of the exterior derivative
d on X got using the restriction of the metric g to X. Note that f(X) C M will be a closed subset
as X is compact.

Let N — X be the normal bundle of f : X — M and U, U be tubular neighbourhoods of X, as in
Section 2.3.4, with corresponding smooth sections U, U as in equations (2.37) and (2.38). For the
rest of Section 3.2 fix some k& > 2 and further define

[k+la . {5 e CHLa(NY) ¢, eUforall x € X}

Uktla . {77 e Ck+1,a(T*X) :ng € U for all x € X}-
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Then both Uk+1he C CHFLe(N) and UFthe C Ck+La(T*X) are open subsets of Banach spaces,
containing 0. Moreover both U¥*1:@ and U*+1:¢ are star-shaped with respect to 0.

Given ¢ € UF1@ we have a map fe : X — M defined as in Section 2.2.1 by
fe(x) := expy(y) (&)

for all x € X. Here f¢ will not necessarily be smooth, but instead has components of class Cktha ip
local trivialisations for X and M. However the map f: : X — M still defines a submanifold of M in
that f¢ is an injective immersion that is a homeomorphism onto its image. Also, we may pull back
forms 6 € C°°(A"T* M) to obtain forms f76 € Cka(ATT*X).

Let us suppose that (j,g,Q) is a deformation of Calabi-Yau structures of (J,g,{2) which has a

common parameter space D C R™. So J = J(0), g = ¢g(0) and Q = (0). Also, given p € D we
denote the Kahler form of the Calabi-Yau structure (J(p), 9(p), Q(p)) by w(p).

We now consider the problem of which p € D and & € UF+1¢ give rise to submanifolds fe: X =M
which are special Lagrangian with respect to the Calabi-Yau structure (J (p), g(p),Q(p)). That is,
which (p,€) € D x UFt1¢ satisfy

few(p) = fiImQ(p) =0
in C*2(A*T*X). To this end we define a map

F:DxUkLe o Ccha(A*T*X)
(p,&) = #gf¢ ImQ(p) + fEw(p)

which is a map between open subsets of Banach spaces. Then clearly we have F(0,0) = 0 since
f: X — M is special Lagrangian with respect to (J,g,€) and more generally the (p,£) € F~1(0)
correspond precisely to the submanifolds fe : X — M which are special Lagrangian with respect to

(J(p), 9(p), 2p))-

A priori the map f¢ : X — M will be only have regularity C**+1:¢ but the material from Sec-
tion 2.3.2 shows us that the fc : X — M which are special Lagrangian with respect to some
(J(p), 9(p), 2p)) must in fact be smooth. It follows that we are interested in looking at the structure
of the subset

F~Y0) C D xU>® C D x Uktte
which is precisely the set of (p,&) € D x Uk+ha guch that fe + X — M is a smooth submanifold
which is special Lagrangian with respect to (J(p),g(p), Q(p)) The right tool to study F~1(0) is the

Implicit Function Theorem 2.10, and in order to invoke this theorem we shall need to establish some
facts about the map F. The first such fact is given in the following theorem.

Theorem 3.13 The map F : D x Uktha Cka(A*T*X) is a smooth mapping between open subsets
of Banach spaces.

Theorem 3.13 is proved in the thesis [5, Theorem 2.2.15] of Baier. Essentially, for each I > 1 and
(p,€) € D x U1 one obtains a candidate: the so-called Gateaux derivative [1, Corollary 2.4.10],
for the Ith order derivative

(D'F)(pe) + (R™ @& CFTLY(N)) x -+ x (R™ @ CFTH9(N)) — CF(A*T*X) (3.32)

[ factors

where we use the identification (2.1). Straightforward estimates on the components of F show that
the multilinear map (3.32) is bounded for all (p,£) € Dx U*™1¢ and that the map (p, &) — (D'F) .

is continuous. So F is of class C! for each I > 1 and therefore smooth.

For convenience we shall work mainly with the cotangent bundle 7%X rather that the normal

bundle N: we can interchange the two pictures using the isomorphism b,J. Define the mapping
F:D x Uktbae  OFa(A*T*X) by

F(p,(bgJ)€) := F(p,€) = o f ImQ(p) + fEw(p)
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for all (p, (byJ)§) € D x U2, In other words, F=Fo (id x(bgJ)). Now bgJ : N — T*X is a
vector bundle isomorphism and the induced map byJ : CKTLa(N) — CFFLa(T*X) is a topological
linear isomorphism. The Chain Rule 2.5 and the Product Rule 2.6 then imply that the map F' is

smooth and moreover 3
F'(0,0) = F'(0,0) o (id x (bJ))

as a bounded linear map R™ @ C*T1¢(N) — CF(A*T*X).

Now, the derivative of F at (0,0) is a bounded linear map
F'(0,0) : R™ @ CFh(T*X) — CHO(A*T*X)
and the decomposition (3.29) of Section 3.1.3 allows us to write
CHEUT*X) = H @ dj (CF24(A°T* X)) @ d(C*H>4(X)).
We define
X = R"oH
Xy = dp(CFP2AT*X)) @ d(CHH>(X))

and pick open subsets V; C H', Vo C X, containing 0 such that V; x Vo C UF+1:¢. For the purposes
of applying Theorem 2.10, put U; := D x V; and Us := Vs so that we have a restriction

F Uy x Uy — C**(A*T*X). (3.33)
For the rest of Section 3.2 we consider F' as the smooth map (3.33).
Proposition 3.14 The smooth map F : Uy x Uy — C*(A*T*X) has partial derivative

F3(0,0) : Xy — C**(A*T*X) (3.34)
at (0,0) in the Xy direction which acts as dj + d.
Proof: Given z € X let ev, : C*¢(A*T*X) — A*T* X denote the bounded linear map which evaluates
sections at z € X. Also if ¢ € C*1:2(N) define a bounded linear map

multe : R —  CFha(N)
t — tE.

The partial derivative we have to calculate is the derivative at 0 of the map T : Uy — CH4(A*T*X)
defined by

T((bgJ)€) = g fE ImQ + fiw
for all (b,J)E € Uy. Further define T = T o (b,J) and then if 5 = (b, J)€ € Xy we have
(T'Om). = (T(0)¢),

evy o T) (0

ev ) multg( )

(7'(

= (evyoT'(0 )
(eve
(eve

= (evw OTomlﬂtg) (0)(1)

where we use the Chain Rule 2.5. It follows that

(T'(O)), = %((*g fie ), + (fiew), ) g (3.35)
= x, %((fi} Im Q)x) . + %((f;‘gw)w> . (3.36)

= —(xgd*gn)s + (dn)a
= (dgn+dn),
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where the derivatives in equations (3.35) and (3.36) are the pointwise derivatives calculated in Lemma
2.29. The result now follows.
|

Theorem 3.15 The partial derivative F5(0,0) : Xo — CH%(A*T*X) is a topological linear isomor-
phism onto the closed subspace

Vi=d;(CM T X)) @ d(CFTY(TX)) (3.37)
of CF¢(A*T*X).

Proof: Recall from Proposition 3.11 that there is an L?-orthogonal decomposition

CHLaT*X) =H' @ As. (3.38)
Now, any element n € X, which lies inside Ker F4(0,0) must, by Proposition 3.14, satisfy dgn =
dn = 0 and therefore lie in H!. It follows from the orthogonality of (3.38) that n = 0 and hence
Ker F3(0,0) = {0}.

From Proposition 3.11 with » = 0 and r = 2 we have that both
& (CH(T* X)) < CMY(X)
d(CHrTX)) < CPYAPTX)

are closed subspaces. Therefore

d; (Ck+1,a (T*X)) @ d(Ck+1,a(T*X)) < Ck,a (X) fa Ck,a(AQT*X) < C«k,a(A*T*X)

is a sequence of closed inclusions, and ) is closed in C*@(A*T*X).
It is obvious that Im F3(0,0) < ). To see the reverse inclusion, take any 6,60, € C*+Le(T*X).
Then by Proposition 3.9 we have

d701 + dfs € 4 (CFHH(A*T* X)) @ d(CFTH(A*T* X)) = Im(d} + d)

where we consider dj +d as a map on the whole exterior bundle Ck+La(A*T*X) as in Section 3.1.3. It
follows that there exists € C*+1.2(A*T* X) with (dy +d)n = dj01 +db2. Now write =g+ -+,
where 7, € Ck+12(A"T*X) for each 0 < r < n. Then it is easy to show that

(d; + d)771 _ dzel + dbs.
Using the decomposition C*+1:4(T*X) = H! @ Xy to write n; = h + 71, we deduce that dy6h +dfz €
Im F3(0,0), and hence Im F4(0,0) = ).
We have shown that F3(0,0) is a continuous linear isomorphism from X5 onto ). But Y is closed

in C**(A*T*X) and so must be a Banach space. We then deduce from the Open Mapping Theorem

2.9 that F4(0,0) is a topological linear isomorphism from X5 onto Y.
|

3.2.3 The moduli space of compact special Lagrangians

We have nearly completed our task of fulfilling the requirements of the Implicit Function Theorem
2.10. However in the statement of Theorem 2.10 we require the partial derivative of our mapping F
to be a topological linear isomorphism of Banach spaces. But

F Uy xUy — C**(A*T*X) (3.39)

has partial derivative F4(0,0) : X3 @ Xy — C*@(A*T*X) which is not surjective. In fact, by Theorem
3.15 we have
Im F}(0,0) = d; (C**H*(T* X)) @ d(C*H(T* X))

a proper subspace of C*%(A*T*X). We must somehow get around this problem.
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Lemma 3.16 If p € D is such that there exists & € Uk+bha with fe : X — M special Lagrangian with
respect to (J(p), g(p), Ap)) then [f*w(p)] =0 in H*(X) and [f*ImQ(p)] =0 in H"(X).

Proof: Firstly note that £ € U>. This follows from the regularity of special Lagrangian submanifolds
as described in Section 2.3.2. Then the smooth mappings f, f¢ : X — M are homotopic, in the sense
of Bott and Tu [8]. The homotopy H : R x X — M can be given as

H(ta .’E) = fx(t)é(x)

where x € C*°(R) is non-negative with supp(x) C (0,00) and supp(l — x) C (—o0,1). From the
material of [8] it follows that

[f*wp)] = [féw(p)] =0
in H?(X). Similarly [f*Im Q(p)] = 0 in H"(X) and we are done.

As in the proof of Proposition 2.20, we can use the variations theory of Section 2.2.2 and see
explicitly that

féwlp) — frw(p) =d (/01 fle (L(&S)W(p))d«S) :

We are interested in the (p,&) € D x Uk+1a guch that fe + X — M is special Lagrangian with
respect to (J(p), 9(p), Q(p)) Lemma 3.16 gives us necessary conditions on p € D for this to hold. In
order to prove a kind of converse result to Lemma 3.16 we make the following assumption about our
deformation of Calabi-Yau structures (.J, §, ).

Assumption 3.17 For each p € D we have

[ffwp)] =0 (3.40)
in H*(X) and
[ I Q(p)] = 0 (3.41)
in H"(X).
Note that condition (3.41) can always be arranged by rotating the holomorphic volume form Q(p)
by some S'-valued function of p. An interesting point to consider is whether or not the conditions

(3.40) and (3.41) cut out a subset D’ C D which is a submanifold in a neighbourhood of 0. For the
rest of Section 3.2 we shall assume that Assumption 3.17 holds.

Proposition 3.18 The mapping F : D x Ukthae — Cka(A*T*X) has image

Im F C & (CH(T* X)) @ d(CFHH(T*X)).

Proof: Given (p,&) € D x U*+1 we have that

F(p,§) = #gf¢ ImQ(p) + fw(p).

Now, there exists an € > 0 such that the map fiz : X — M defines a submanifold of M for each
—& <t < 14¢. These maps will have class C¥+1:¢ coefficients. Define the map H : (—¢,1+&)x X — M
by

H(t,xz) = fie(x)

forallt € (—e,1+¢) and 2 € X. Also for 0 < t < 1 define X, := {t} x X = X and the vector field

¢t e Che(fr, TM) by
0
t . e

for all z € X. We then extend & to any neighbourhood of fie(X) in M.
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If 0 is any closed form on M and 0 < s < 1 then as in Section 2.2.2 and the proof of Proposition
2.20, we may compute
0 ( 4
ot (1ic0)

= L

(H"0)

9
ot X

= fie(u(€)d0 + d(u(7)0))
= fle(d((€M)0))
d(fL(u(€%)0))

(¢
(¢

and then

Jeo— 170 = - f30
/O 1 %( ) s
= [ atzeemas
a ( /0 r (L(&S)H)ds> . (3.42)

Now Assumption 3.17 implies that f*w(p) = d¢y for some ¢; € C°(T*X), so that equation (3.42)
applied with 6 = w(p) yields ffw(p) = dg where

¢2 = ¢1 +/0 fae (L(gs)w(p))ds

is a 1-form with coefficients of class C*. Unfortunately this is one less derivative than we need, but
we can get around this problem using Lemma 3.12, which implies that there exists ¢3 € C*+14(T* X)
with fgw(p) = d¢3. Similarly, there exists ¢4 € Ck¥+1:2(T* X) with *g f¢ Im Q(p) = dj¢4. Hence

F(p,€) € & (C*19(T* X)) @ d(CH (T X))

as required.

The following result is a prelude to our main theorem.

Proposition 3.19 There exist open subsets W C D, Wy C Vi, W C Vs each containing 0, and a
unique map X : W x Wi — Wy such that

Fﬁl(o) N (W X Wl X W2) = {(pv flaX(p, 51)) : (pa 51) €W x Wl} (343)

in W x Wy x Ws. Moreover the map x is smooth.

Proof: By Proposition 3.18 we can consider F' as a smooth map U; X Us — Y, and then Theorem
3.15 tells us that this map has a partial derivative

F3(0,0): Xy — Y

which is a topological linear isomorphism. Now invoking the Implicit Function Theorem 2.10 we see
that there exist open subsets Wy C Uy, W5 C Uy containing 0 and a unique map x : Wi — Ws such
that

F_l(()) N (Wl X WQ) = {(wl,x(wl)) Twy € Wl}

Moreover x is smooth.
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Recall now that Uy = D xV; C R™@H! so that we may choose open subsets W C D and W; C V;
containing 0 such that W x W7 C W; and then consider y as a map defined on W x W7 to give us the
required result: an inspection of the proof of Theorem 2.10 shows that equation (3.43) characterises
x uniquely as a function x : W x Wy — Whs.

|

One can think of Proposition 3.19 as saying that in the cube W x Wy x Wy the zero set F~1(0)
of F' is given as the graph of a uniquely determined function x : W x W3 — W, that is smooth.
An important point is that W is an open subset of the finite-dimensional space R™ and W is a
subset of the finite-dimensional space H!. The open set W C R™ corresponds to deformations of the
Calabi-Yau structure on M and the open set W; C H' corresponds to deformations of the compact
special Lagrangian submanifold f : X — M.

It follows from Proposition 3.19 that there is a bijection

WxW; — FH0)n (W x Wi x W) (3.44)
(&) — (p.&, x(.&))

and we can put the structure of a smooth manifold onto
M:=FH0)n (W x Wy x Wa) (3.45)
by declaring that the map (3.44) be a chart in the maximal smooth atlas for M.

Lemma 3.20 1. The manifold M is diffeomorphic to the open subset W x Wi C R™ @ H! and
consequently dim M = m + b*(X).

2. With the smooth structure on M defined above, the inclusion
1 M—W x Wiy x W, (3.46)

s a smooth injective map that is an immersion, and a homeomorphism onto its image. In other
words, the inclusion (3.46) is a smooth submanifold of W x Wy x Wh.

Of course, here we are extending the notions of immersion and submanifold to the Banach space
situation, in the obvious manner.

Proof: The first part is obvious. For the second part, it is obvious that 4 is a smooth (as x is
smooth) injective immersion. Now if G C W x W is open, the subset G x W5 is an open subset of
W x W1 x W,. Consequently M N (G X Wg) is open with respect to the subspace topology on M
and 7 is a homeomorphism onto its image.

Most of the above results are summarised in the following theorem, whose proof is straightforward
given the above discussion.

Theorem 3.21 Let (M, J, g,Q) be a Calabi-Yau manifold and (j,f], Q) a deformation of Calabi-Yau
structures of (J,g,)), with common parameter space the open subset D C R™ containing 0. Suppose
that f : X — M s a compact submanifold which is special Lagrangian with respect to (J,g,9), and
that (j,g, Q) satisfies Assumption 3.17. Let N — X be the normal bundle of f : X — M and identify
N = T*X wvia the bundle isomorphism bgyJ. If k > 2 then there exist open subsets

W C D
Wi C H'={¢e M T X): Ajé =0}
W2 d; (Ck+2,a (T*X)) D d(ck+2,a (T*X))

N

all containing 0 and a smooth map x : W x Wi — Ws with x(0) = 0 such that the following holds:
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. Every
§=(&,8) € WixW,
C H'ed(CH2YT*X)) @ d(CH(T* X))
— Crk+1,a(T*X)

1%

Ck+1’a(N)

gives rise to a submanifold fe : X — M of class Cktla,

. For all £ = (&1,&) € Wi X Wh and p € W we have

fe : X — M is special Lagrangian wrt (J(p)7g(p), Q(p))} — [52 = x(p, 61)}

and consequently x(W x Wy) C &3 (C=(T*X)) & d(C>(T*X)).

M= {(pvf) = (pvfla£2) e W x Wl XWZ:

fe : X — M is special Lagrangian wrt (J(p), g(p), Q(p))}

is a smooth manifold with dimension dim M = m + b*(X). Moreover,

WxW, — M
(p,&1) (I%fl,x(pa&))

is a diffeomorphism, and the inclusion M — W x W1 x Wy is a smooth submanifold.

. Givenpe W

M, = {5 = (&1,62) € Wi x Wyt fe : X — M is special Lagrangian wrt (J(p),g(p),Q(p))}

is a smooth manifold with dimension dim M,, = b*(X). Moreover,

W1 — Mp
& — (&,x(&))

is a diffeomorphism, and the inclusion M, — M is a smooth submanifold.

. Given & € W1

M, = {(p,ﬁg) €W xXWs: fe,qe, : X — M is special Lagrangian wrt (J(p)g(p),Q(p))}
is a smooth manifold with dimension dim Mg, = m. Moreover,

W — Mg
p — (&4,x(p.&))

is a diffeomorphism, and the inclusion Mg, — M is a smooth submanifold.



Chapter 4

Fredholm theory on non-compact
manifolds

In this chapter we give a description of the analytic theory we shall be needing later. The relevant
sources are the papers of Bartnik [6], Lockhart [45], and Lockhart and McOwen [46]. We begin by
explaining some of the theory from these papers, and in later chapters go on to say how this theory
can be applied in our situation.

The chapter is roughly split into three parts, which correspond to three different types of opera-
tors we shall consider on our non-compact manifold: translation invariant operators, asymptotically
translation invariant operators, and asymptotically conical operators. Although the results in each
section are closely related, the techniques required in the proofs are not, and so we give a separate
exposition for each.

4.1 Manifolds with ends

We begin by describing the type of non-compact manifolds we shall consider. Throughout this chapter,
suppose that X is a non-compact manifold of dimension n > 3 and that ¥ is a compact manifold of
dimension n — 1 with L connected components

Y=%U---UXp.
Also suppose that there exists a compact submanifold with boundary Xy C X and a diffeomorphism
X\ Xo— (T,0) x X (4.1)

for some T' € R. We shall say that X is a manifold with ends. The sort of thing we have in mind, at
least topologically, is indicated in Figure 4.1. We shall always consider X, := X \ X and (T, 00) X 2
as being identified via the diffeomorphism (4.1). The canonical coordinate on (7', 00) will be denoted
by ¢t and we denote a typical coordinate on ¥ by 0 = (z2,...,2,). Also m: Xo — ¥ is the projection
onto the link of the cylindrical part of X, got from the identification (4.1). If S > 0 we put

Xs:=XoU ((T, T+ S] x %)

which is a compact submanifold of X with boundary. If 3 = (31,...,8z) € R then expressions such
as [t refer to smooth functions X — R which are equal to 8;t on the jth end (T, 00) x £; of X.

We now describe the special types of coordinate charts on X we shall need in order to define
Banach spaces of sections of bundles over X. Although there are coordinate independent methods for
defining such spaces with a metric, with coordinate charts one obtains a very explicit description of
the Banach spaces involved, with which one can prove easily results via the standard local results of
PDE theory. Fix any covering Uy, ...,Un of ¥ by coordinate charts and put V, := (T, 00) x U, for

51



52 Chapter 4: FREDHOLM THEORY ON NON-COMPACT MANIFOLDS

Figure 4.1: A portion of a manifold X with ends, divided into a compact piece Xy and a non-compact
piece X \ Xo

each v =1,...,N. Then Vi,...,Vy is an open cover of X, consisting of coordinate charts. Fix any
open covering Vi1, ..., VNix of Xy by coordinate charts such that

N+K

U wcx.

v=N+1
The coordinates on V,, will be denoted z = (x1,...,2,). In particular, if 1 < v < N we put 1 = ¢
and (z2,...,2,) = o the coordinates on U,. We also fix a partition of unity p1, ..., pn+x subordinate
to the open cover Vi,...,Vy 1k of X, chosen so that p, is translation invariant on (T'+ 1,00) x U,

for each 1 < v < N. In other words,
pV(S,O') :py(t,a')
forall<v<N,s,t>T+1and o € U,.

We now describe the vector bundles E — X we shall consider to build the Banach spaces mentioned
above. The main requirement is the existence of suitable trivialisations for F over the infinite piece
X of X, and this is certainly no significant restriction for our purposes. Let Fyx, — X be a vector
bundle which is trivial over each U,. Then we have induced trivialisations for the vector bundle
™ Ey — Xy over Vi,...,Vn. Suppose that E — X is a vector bundle, trivialised over each V,, so
that E|x._ = 7*Ex on X \ Xg for some large S > 0. We shall call such a bundle E over X admissible,
and the vector bundle Ey, — X the slice of E over ¥. Actually, the terminology is a bit misleading,
because being admissible is really a property of the vector bundle E — X together with an additional
piece of data, namely the charts for E|x__ as described above. However, we shall abuse terminology
and simply refer to the bundle F — X itself as being admissible.

Obviously we can direct sum, exterior product or tensor product admissible bundles to obtain
new admissible bundles. If £ is a section of an admissible bundle E we denote by &7, ...,&), . g the
components of £ in the given trivialisation of E over V,,.

SupBgs/e that F is an admissible vector bundle over X, with slice Ex,. We shall say that a fibre
metric ( | )5 on E is translation invariant if there is a fibre metric ( | ) gy, on the vector bundle Ex

such that
™( | )es =(|)g
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over X \ Xg for some large S > 0. We shall say that a fibre metric { | )g on E is asymptotically
translation invariant if there is a translation invariant fibre metric (T} 5 on E such that
sup |0, 0 (eij — éi5)| = o(1) (42)
{t}xU,
for each 1 < v < N, 1< i,j <rankE and |A| > 0. Here the e;; and é;; are the components of ( | )g
and m © respectively in the given trivialisations of E and X over each V, = (T, 00) x U,.
Examples of admissible bundles are:
1. The tensor bundles
E:=(@'T"X) @ (2°TX) (4.3)

which have slices @@ ®'T*Y) @ (®ITT).

i=r,r—1 j:s,s—l(
2. The exterior bundles
E=AN"T*X (4.4)
which have slices ATT*Y @ AT 1T*X.

3. The total exterior bundle
FE:=A"T*X (4.5)
which has slice A*T*Y @ A*T*X.

To see why the slices are as given, take for example the case E = A*T*X. Then given x € X
and any £ € A*T;X there are unique ¥, ¢ € A*TFY such that £ = ¢ + dt A ¢ where x = (¢,0) in
Xoo = (T, 00) X X.

Whenever F is one of the three bundles (4.3), (4.4), (4.5) given above, we define a linear operator
e(3="t acting on sections ¢ of F as follows. The basic idea is that e(s~")* scales ¢ depending on what
type of tensor or form & is. If £ has r covariant (7" X)) parts and s contravariant (7°X) parts we declare
els—te .= fr.s& where f, s : X — (0,00) is a smooth function which over X, is equal to the function
e(5="t  We now extend the operator ¢5=")* by linearity to act on any section £ of E. Obviously
e(s=")t ig an invertible operator, and will be a topological linear isomorphism between certain Banach
spaces we shall consider in the sequel.

4.2 Fredholm theory on manifolds with cylindrical ends

In order to consider the Fredholmness of various differential operators on X, we need to introduce
suitable classes of Banach spaces between which such operators can act. It turns out that weighted
versions of the usual Sobolev and Holder spaces on X are the most appropriate. After defining these
spaces we go on to describe the corresponding differential operators and Fredholm results.

4.2.1 Construction of suitable Banach spaces
Let gy be a Riemannian metric on ». A metric h on X which is of the form
}Nl = d¢? + gs

over X \ Xg for some large S > 0 is called a cylindrical metric on X. We say that a metric h on X is
asymptotically cylindrical if there exists a cylindrical metric h such that

sup [py 0™ (hij — Bij) =o(1) (4.6)

{t}xU,

foreach 1 <v < N, 1<4j<nand |\ > 0. In coordinate free terms, equation (4.6) is the same as
requiring

V2 (h— ﬁ)’ — o(1)

sup _
h h

{t}x=
for each j > 0. Any asymptotically cylindrical metric h on X will be complete. Note also that an
(asymptotically) cylindrical metric induces an (asymptotically) translation invariant fibre metric on
each of the admissible bundles (4.3), (4.4), (4.5).



54 Chapter 4: FREDHOLM THEORY ON NON-COMPACT MANIFOLDS

Damped Sobolev spaces

Suppose now we have an asymptotically cylindrical metric h on X. Then we have an induced measure
dV}, on the space X. It follows that if u € C°(X) with supp(u) C V,, we may define

3
lullzev,) = (/v IUIpth> (4.7)

the usual LP-norm of u. Given £ € C°(E) we define the damped Sobolev norm

=

rank E

N N+K
lEllwe = | D2 X2 (leempu(aﬁ?)||§p<vy>+ > ||P»(3*€5)||’2p(v,>> - (48)
v=1

J=1 0<|A|<k v=N+1

Let WY 5(E) be the vector space completion of C2°(E) with respect to the norm (4.8). We call the

Banach space W,fﬁ (E) a damped Sobolev space. Note that each W,?Q(E) is a Hilbert space, equipped
with the inner product

rank F

N+K
Emwz = > Y (Z/ LN AV + > /pu (DMeX) (9 )th>.

J=1 0<|A|<k v=N+1

As a topological vector space W} 5(E) is independent of all choices Uj, Vj, p;, h, h, gs. Additionally, we
can view elements of W} B( ) as genuine sections of E, whose components in the various trivialisations

V., are k times weakly dlfferentlable and satisfy appropriate LP-decay conditions as one goes to infinity
on X

If E is equipped with an asymptotically translation invariant fibre metric then we have L?(E) =
W3 o(E) where we form the space L?(E) as in Section 2.1.2 using the asymptotically cylindrical metric
h. Furthermore, in the case that E is a tensor bundle (4.3) or an exterior bundle (4.4), (4.5) we have
the Levi-Civita connection V}, and fibre metric | - |, on E induced by the asymptotically translation
invariant metric h, and the norm (4.8) is equivalent to the norm on C2°(E) defined by

S

€Il ==

. p
e*ﬁtvgg‘h v,

for all £ € C°(F).
Note that there is a constant C > 0 such that

[(€uleahws o] < ClEtlwg,, oll€elhgr

for all &,& € CZ°(E). It follows that the inner product (| )wz (&) extends to a continuous bilinear
map ’

(1 >W0275 : W(ié—&-ﬁ(E) x Wé),&—g(E) —-R (4.9)

and in fact the pairing (4.9) induces a Banach space isomorphism
O W55, 5(E) = Wos_g(E)" (4.10)

defined by ®()(n) == ({Emwz,(m) for all £ € W5, 5(E) and n € W&;_E(E). We now have the
following useful result, which can be proved as in the book [2, Section 3.4] of Adams.

Proposition 4.1 The Banach spaces W 5(E) are reflexive.

The important point in Proposition 4.1 is that p > 1.
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Damped Hoélder spaces

Besides the damped Sobolev spaces W,f ﬁ(E) defined above we shall also introduce a class of Banach

spaces Bg’a(E) whose elements are forced to decay at rates O(e??) (as measured, for example, by the

asymptotically cylindrical metric h when F is a bundle of forms or tensors) on the infinite piece X,
of X.

Define BE(E) to be the vector space consisting of those £ € C"“(E) such that

sup o (00€))| =
a1 (0°€)] -

foral l<v < N,1<j<rankFE and 0 < |A| < k. Given £ € BE(E) we define

rank E

N+K
lElls e = > > <Zsup\e UACEAIEESY supyp,,(aAg;)O. (4.11)

J=1 0<|A|<k v=N41

Then the norm (4.11) makes BE(E) into a Banach space, which we call a damped B*-space.
We also define Bg’“(E) to be the vector space consisting of those £ € BE(E) such that

1. [e*ﬁtpy(a%;)]av <ooforall 1< v < N,1<j<rankFE and |A\| =k
2. [pl,<a)‘§;)]av <ocforal N+1<v< N+K,1<j<rankF and |\ =k

where each [ - ]4,v, is defined as in Section 2.2.4. Given £ € BE’G(E) we now put

rank F N+K
HSHBZ’E(E) = ||f||Bk(E) + Z Z <Z (3)‘5] v, T Z pu( 3>‘§ ) . (412)
Jj=1 |X|=k v=N+1

Then the norm (4.12) makes BE’G(E) into a Banach space, which we call a damped Hélder space. Note
that as topological vector spaces both Bg(E) and BZ’“(E) are independent of all choices of U,,, V,,, p,.
In the case that E is one of the bundles (4.3), (4.4), (4.5), we may give an equivalent description
of the norms (4.11) and (4.12) in terms of the connection V; and fibre metric | - |, on E got from
the asymptotically cylindrical metric h. Firstly, it is not hard to show that B’g (E) consists of those
¢ € C*(F) such that
sup )Vflf
{t}x=

- O(ePt)
for all 0 < j < k. Furthermore the norm (4.11) is equivalent to the norm on BE(E) given by
k .
el = gg(p e vig]

for all £ € BE(E)
We secondly deal with the Holder norm (4.12). For this it turns out that

Bb(E) = {5€BB(E) e Pvke]” } (4.13)

and the norm (4.12) is equivalent to the norm on Bg’“(E) given by
k .
lell = | Dosup|e?vie| | + e Vhe, (4.14)
7=0

In equation (4.13) and equation (4.14) we make sense of the quantity [e 'V} ¢] Z  as in the discussion
of Section 3.1.1.
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Embedding and Compactness Theorems

We now state some embedding and compactness theorems for the spaces introduced above.

Theorem 4.2 (Damped Embedding Theorems) Refer to Section 2.1.1 for the definition of a
continuous embedding between Banach spaces.

1. Ifk>2l>20and k-2 >1— % and one of the following two conditions holds:

»
(a) p<qand B< 0
(b)y p>qand 5 <o

then there is a continuous embedding Wy, ;(E) < W/s(E).

2. If B < 9 and k+a > 1+ then there are continuous embeddings BEH(E) < BS’Q(E) < Bé’b(E) <
BY(E) and B(E) < B4(E).

3. If <6 and k— 2 > l+a then there are continuous embeddings W 5(E) < Blﬁva(E) < W/S(E).

»
Part 1 of Theorem 4.2 is proved in the paper [46, Lemma 7.2] of Lockhart and McOwen, part 2 is
proved in the paper [13, Lemma 2] of Chaljub-Simon and Choquet-Bruhat, and part 3 is proved in
the paper [6, Theorem 1.2] of Bartnik. A consequence of Theorem 4.2 is that

cho,ﬁ(E) = ﬂWIfB(E)
k=0

BF(E) = [)B5“(E)
k=0

are both subspaces of C*°(E) with the latter independent of ¢ and
W2 4(E) < B (E) < WL ,(E)
for all 5 < 4.

We also have results which tell us when the embeddings of Theorem 4.2 are compact.

Theorem 4.3 (Damped Compactness Theorems) Refer to Section 2.1.1 for the definition of a
compact embedding between Banach spaces.

1. The embedding W 5(E) < W/s(E) is compact whenever k > 120, k— 2 >1—2 and § <.

2. The embedding BE’G(E) < BY(E) is compact whenever 3 < 6.

Part 1 of Theorem 4.3 is proved in the paper [45, Theorem 4.9] of Lockhart and part 2 is proved in
the paper [13, Lemma 3] of Chaljub-Simon and Choquet-Bruhat.

4.2.2 Translation invariant operators

Suppose that F' — X is a second admissible vector bundle over X, with slice Fx; — X over X. Let
Py : C¥(E) — CX(F) be a smooth, linear differential operator of order [ > 1. Over each V,, the
operator P, acts as a rank F' X rank F matrix of operators of the form:

(Polx,)ij = > (Pu)i}d* (4.15)

0< A<
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where each (Poo);’j)‘ : V, — R is smooth. We shall say that P, is translation invariant if for each

1 < v < N the functions (Poo);’j)‘ got above are translation invariant on (T + S, 00) x U, for some
large S > 0. In this case we may write

l
Polx\xs = > 01774, (4.16)
=0

where each 4; : C*(Ey) — C*°(FY) is a smooth, linear differential operator of order < j and 9; = %.

Whenever we write P} to denote the formal adjoint of a translation invariant differential oper-
ator Pu,, we always mean with respect to some translation invariant fibre metrics on F, F' and the
cylindrical metric A on X. Having said this, we now give the following basic result:

Lemma 4.4 1. The set of translation invariant differential operators is a subalgebra of the algebra
of all differential operators.

2. For any € RY and translation invariant differential operator P, the differential operator
e PtP_ePt is also translation invariant.

3. If Py, : C(E) — CX(F) is a translation invariant differential operator then the formal adjoint
P : CP(F) — CX(E) is also translation invariant.

Proof: Although this result is entirely straightforward, we give a few details as some of the formulae
we obtain will be useful later.

The first assertion is quickly verified in local coordinates. For the second assertion, note that if
P, is as given in equation (4.16) and 8 = (34,...,0r) then

l
e P Pet =3 (00 + )7 4, (4.17)

=0

on the ith end of X. For the third assertion, it is straightforward to check that there is a large S > 0
such that over X \ Xg the operator P% acts as

l

PL=) (-00)'77 43

Jj=0

where the formal adjoint of each A; is computed using the metric gs; on ¥ and the given fibre metrics
on Eg and FE.

Examples of translation invariant operators include the exterior derivative d, its formal adjoint dZ
and the Laplacian A; of any cylindrical metric hon X.

Translation invariant differential operators always extend to bounded linear maps on the Banach
spaces defined above.

Proposition 4.5 Let Py, : C°(E) — C°(F) be a translation invariant differential operator of order
Il > 1. Then P, extends to bounded linear maps

Poo i WP 4(B) — WP 4(F) (4.18)
Py :Bi*"(E) — ByU(F) (4.19)

Proof: This is straightforward estimation using the given definitions.
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Using Lemma 4.4 and Proposition 4.5 it is easy to show that if Py, : C*(E) — C(F) is a
translation invariant differential operator then the defining identity (2.7) of the formal adjoint P2 of
P, extends to an identity

<§|P<:o77>L2(E) = <P<>O§|77>L2(F)

valid for all £ € W},(E) and n € WP 4(F).

We shall denote the kernel of the map (4.18) by Ker(Px),; 3 < Wi, 5(E), the image of (4.18)
by Im(Poc) ;5 < W[ 5(F) and the cokernel by Coker(Px)},; 5 We also define the index of (4.18)
to be

Ind(POO)ZH“B := dim Ker(Poo)ZH”@ — dim Coker(Poo)iﬂ’ﬁ
whenever this is finite. Similarly the kernel, image, cokernel, index of the map (4.19) are denoted
Ker(Poo)EH’a, Im(POO)ZH’a, Coker(Poo)gH’a, Ind(Poo)ZH’a respectively.
Notice the Embedding Theorem 4.2 shows that

Ker(POO)ZJrl’ﬁ
k+1,a
Ker(P)

whenever 3 < 6. Also from Theorem 4.2 we have
Ker(Px)), 115 < Ker(Poo)ZH’“ < Ker(Poo)iyys (4.20)

wheneverﬁ<5andm—%>k+a.

The following a priori estimates for translation invariant operators are very useful. The Sobolev
estimates are given in the paper [46, inequality (2.4)] of Lockhart and McOwen, and the Holder parts
are proved in [48, Theorem 3.16].

Theorem 4.6 Suppose that P, : C°(E) — C°(F) is an elliptic, translation invariant differential
operator of order | > 1. Suppose that n € Li, .(F) and that £ € Li, (E) is a weak solution of the
equation P§ = 7.

L If§E e Wi 5(E) and n € Wi 5(F) then § € W[\, 5(E) with P§ =1 and

€lhw,, .o < Ca(I1Psc€llwz iy + €Nz, o)

where the constant Cy > 0 is independent of &.

2. If ¢ € BY(E) and n € By*(F) then & € By™"*(E) with Ps& =1 and

€l ety < Co(I1Pockll ey + 1€l

where the constant Cy > 0 is independent of €.

Results such as Theorem 4.6 rely on some kind of “uniform ellipticity” condition on the operator Py,
as one moves off to infinity on the manifold X. Here this condition is provided by the translation
invariance of P,, and the usual pointwise ellipticity. As in the estimates Theorem 3.4 for the compact
case, the proof of Theorem 4.6 is best thought of as being in two parts. The first part is the local
elliptic regularity and estimates, which follow just as in Theorem 3.4. The second part is then a passage
to the global estimates, which involves piecing all the local estimates together in a straightforward
manner. The asymptotic behaviour of P, ensures the local estimates are kept under control as one
goes off to infinity on X.

It follows from Theorem 4.6 that when P, is elliptic we have
Ker(POO)Z];+l,[3 < Wfo,ﬁ(E)
Ker(Py )™ < BF(E).



Chapter 4: FREDHOLM THEORY ON NON-COMPACT MANIFOLDS 59

In particular, when P, is elliptic we have Ker(Poo)ﬁ_Hﬂ independent of k£ and Ker(Poo)gH’a indepen-
dent of k and a. Therefore, when P, is elliptic we shall write

Ker(Poo)Z = Ker(Poo)ZHﬂ
Ker(Pw)s = Ker(POO)ZH’a.

With this notation, equation (4.20) becomes
Ker(P ) < Ker(Px)s < Ker(Pa)j (4.21)

valid for all 8 < § whenever P, is elliptic.
One of the key questions for us is now: when is the map (4.18) Fredholm? The following theorem,
proved in [46, Theorem 1.1], provides the answer.

Theorem 4.7 Suppose that Ps : C°(E) — C(F) is an elliptic, translation invariant differential
operator. Then there exists a subset D(Ps) C RY, independent of p,k, such that (4.18) is Fredholm
if and only if 3 € RE \ D(P.,). Moreover, the subset D(Px) is of the form

D(Px) = (D(Psc, 1) x RET) U (R x D(Psg,2) x RET2) U U (RFT! x D(Pso, L))
where each D(Py,i) C R is countable and discrete.

In the situation of Theorem 4.7, if 3 € RY\ D(P,,) we denote the connected component of RX\ D(P.,)
containing (3 by (RL \ D(P. )) 5 Obviously, one would like to know as much as possible about the

subsets D(Puo, 1) € R. We now give some brief details: a fuller account can again be found in [46].

The idea is to formally substitute w € C for the differential operator d; in the expression (4.16)

for P, as a Fourier transform in the ¢ coordinate. Take 1 < ¢ < L and put Ex, := Ex|n, and
Fy, := Fylx,. For each w € C we have a smooth, linear differential operator
l .
Po(w) := > w7 A, (4.22)
§=0

where Py (w) : C®(FEy, ® C) — C*°(Fy, ® C) and this extends to a bounded linear map
Poo(w) : WY, (Bs, ® C) — W (Fs, ® C). (4.23)

Note that since P, is elliptic we have that A; is an elliptic differential operator of order [. Therefore
Py (w) is an elliptic differential operator of order [ for each w € C. Using this fact and the analyticity
of the map

C — B(Wp,(Bs, ®C),W{(Fs, ®C)) (4.24)
w +—  Py(w)

one can show that (4.23) is an isomorphism if and only if w € C\ C(Px,i), where C(Px,i) C C is
discrete, countable, and finite in any complex strip {w € C: &1 < Rew < e3}: these results are all
proved in the paper [3, Theorem 5.4] of Agmon and Nirenberg. A map of the form (4.24) is called
an operator pencil, which is a much studied object in the theory of PDEs. In fact there is much to
be said about the form of the subset C(Pu,?): see the books [40] and [41] of Kozlov, Maz’'ya and
Rossmann for example. However, we shall not go into this here, but instead merely state that the
subsets D(Puo, ) of Theorem 4.7 are given by

D(Pooa {Rew ’lUGC( 0oyt )}

It follows from the proof of Lemma 4.4 that if 3 = (81,...,8z) € R then

!
(e PtPye)(w Zw—i—ﬂZlJA
7=0
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so that D(e Pt Py et i) = D(Ps,i) — f3; for each 1 < i < L. Therefore
D(e ' Pye’) = D(Py) — .

We also have from the proof of Lemma 4.4 that

l
Pilw) = ()4
= POO(_E))*

where the formal adjoint of each Py (—w) is computed using the metric gs; on ¥ and the induced
hermitian fibre metrics on Ex ® C and Fy, ® C. It follows that D(P%) = —D(Px).

The next result is a useful corollary of Theorem 4.7.

Corollary 4.8 Suppose that Py, : C°(E) — CX(F) is an elliptic, translation invariant differential
operator. Then both

are finite-dimensional.

Proof: Given any 3 € R choose § € RF \ D(P.,) with 8 < §, and then appeal to Theorem 4.7 and
the inclusion (4.20).
|

We now turn to the Fredholm index of the map (4.18). Given 1 < ¢ < L consider the operator
P over (T,00) x E;. If w € C(Pw, 1) let d(i,w) be the dimension of the (complex) vector space of
solutions of P,,& = 0 of the form

f(t, U) = ewtp(tv U)
where p(t,0) is a polynomial in ¢ € (T, 00) with coefficients in C*°(Ex, ® C). Now given f;,9; €
R\ D(Py, i) with §; < f; define
N(Bi,0i,1) = _{d(i,w) : w € C(Ps, i) with 6; < Rew < 8}

and then if 3,0 € RV \ D(P,,) with § < 8 put

L

N(B,6) := Y N(Bi,6i,0).

i=1
We are now in a position to state a theorem regarding the index of the map (4.18) for 3 € RL\D(P.,).

Theorem 4.9 Suppose P : CX(E) — CX(F) is an elliptic, translation invariant differential oper-
ator. If 3,8 € R \ D(Pa) with § < then nd(Puo)yy; g — Id(Po)} 5 = N(8,9).

Theorem 4.9 is also proved in the paper [46, Theorem 1.2] of Lockhart and McOwen, but we shall not
give any details of the proof, as they shall not be required by us in the sequel.

4.2.3 Asymptotically translation invariant operators

In this section we shall extend the theory of Section 4.2.2 to perturbations of translation invariant
operators.
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Let Py, P : CX(E) — C°(F) be smooth, linear differential operator of order [ > 1. As in equation
(4.15) the operators Pi, P» acts as a rank F' x rank E matrix of operators

(Pilv)y = D (P30

0<|Al<!

(P2lv,)i; = Y. ()}

0<|AI<!

on the open subsets V,, of X. We shall say that P, and P, are asymptotic and write P; ~ P if

PO (L)% — (P2))2;)

V1] v,iJ

sup =o(1)

{t}xU,

forall 1 < i <rankF, 1 < j<rankE, 1 < v <N, |M\| >0and 0 < |X] <1I. We shall say
that a smooth, linear differential operator P is asymptotically translation invariant if there exists a
translation invariant differential operator P,, such that P ~ P...

Whenever we write P* to denote the formal adjoint of an asymptotically translation invariant
differential operator P, we always mean with respect to some asymptotically translation invariant
fibre metrics on E and F and the asymptotically cylindrical metric h on X. We now have the
analogue of Lemma 4.4.

Lemma 4.10 1. The set of asymptotically translation invariant differential operators is a subal-
gebra of the algebra of all differential operators.

2. For any 8 € RY and asymptotically translation invariant operator P the differential operator
e PtPePt is asymptotically translation invariant.

3. If P: C(E) — CX(F) is an asymptotically translation invariant differential operator then the
formal adjoint P* : C°(F) — C°(E) is asymptotically translation invariant.

Proof: These assertions follows quickly from Lemma 4.4 and calculations in local coordinates: if
Py ~ Py o and Py ~ P5 o then Py Py ~ P; oo P> . For the second assertion note that if P ~ P, then
e PtPeft ~ e PP, eft. For the third assertion, if P ~ P, then P* ~ PX where P% is formed using
the translation invariant metric » on X and the translation invariant fibre metrics on FE, F which the
asymptotically translation invariant fibre metrics tend towards.

Just as cylindrical metrics hon X gave rise to translation invariant operators dz and Aj, metrics
h on X which are asymptotically cylindrical give rise to asymptotically translation invariant operators
d; and Ay, where dj ~ di and Ay ~ Aj.

As above, asymptotically translation invariant operators always extend to bounded linear maps
on the damped Sobolev and Holder spaces.

Proposition 4.11 Let P : C°(E) — CX(F) be an asymptotically translation invariant differential
operator of order | > 1. Then P extends to bounded linear maps

P:WE, 5(B) — WE(F) (4.25)
P:By(E) — BYU(F) (4.26)

Proof: This is another straightforward estimation.

It follows from Lemma 4.10 and Proposition 4.11 that if P : C°(E) — CS°(F) is an asymptotically
translation invariant differential operator then the defining identity (2.7) of the formal adjoint P* of
P extends to an identity

EIP™ ) 2By = (P&IN) L2 ()
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valid for all € € W}4(E) and n € WP_4(F).

Again, we establish notation: the kernel, image, cokernel, index of the map (4.25) are denoted
Ker(P)} ., 5, Im(P)}, 45, Coker(P);,, 5, Ind(P)},, 5 respectively. The kernel, image, cokernel, index
of the map (4.26) are denoted Ker(P)EH’a, Im(P)ZH’a, Coker(P)EH’a, Ind(P)EH’a respectively. As
before, the Embedding Theorem 4.2 shows that

Ker(P)Zer < Ker(P)Zu,é
Ker(P)ZH’a < Ker(P)§+l’a

whenever 3 < §. Also Theorem 4.2 gives
Ker(P)! ,, 5 < Ker(P)5""* < Ker(P){,, 5 (4.27)

wheneverﬂ<6andmf%>k+a.

If both P and P, are elliptic then we say that the asymptotically translation invariant operator P
is uniformly elliptic. In this case the regularity and Fredholm theory of the map (4.25) is very similar
to that of the map (4.18) given in the theorems above. We now state the corresponding results.

Theorem 4.12 Suppose that P : CX(E) — C°(F) is a uniformly elliptic, asymptotically translation
invariant differential operator of order | > 1. Suppose thatn € L, .(F) and that & € L}, .(E) is a weak
solution of the equation P§ =n.

L If§ e Wy 5(E) and n € Wi, 5(F) then § € W[, 5(E) with P¢ =1 and

Illwe,, ey < Cr(I1PElwy .y + Nellwz )
where the constant Cy > 0 is independent of €.
2. If ¢ € BY(E) and n € Bg’a(F) then € € BZH’Q(E) with P¢ =n and

€l vy < Co(IPEl ey + 1€ 3y )
where the constant Cy > 0 is independent of &.

The estimates of Theorem 4.12 are proved in a manner similar to those if Theorem 4.6. All of the
comments following Theorem 4.6 apply here also. We note that the Holder estimate of Theorem 4.12
is proved in [48, Theorem 3.16].

As before, Theorem 4.12 implies that when P is uniformly elliptic we have
Ker(P)iJrl’ﬁ Wfo,ﬁ(E)

<
Ker(P)5** < BF(E)

so that Ker(P),,; 5 is independent of k and Ker(P)’Z,+l’a is independent of k and a. Therefore,
whenever P is uniformly elliptic we shall write

Ker(P); := Ker(P)},, 4
Ker(P)g = Ker(P)5"".
With this notation, equation (4.27) becomes
Ker(P)j; < Ker(P)s < Ker(P)j (4.28)

valid for all 8 < § whenever P is uniformly elliptic.

The following theorem tells us when a uniformly elliptic asymptotically translation invariant op-
erator is Fredholm.
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Theorem 4.13 Suppose that P is a uniformly elliptic, asymptotically translation invariant operator
with P ~ P an elliptic, translation invariant differential operator. Then there exists a subset D(P) C
RE, independent of p,k, such that (4.25) is Fredholm if and only if 3 € RL\ D(P). Moreover
D(P) = D(P).

The proof of Theorem 4.13 can again be found in [46, Theorem 6.1]. It follows that if both P and
P, are elliptic then the bounded linear map (4.18) is Fredholm precisely when the bounded linear
map (4.25) is Fredholm. In the situation Theorem 4.13, if 3 € R\ D(P) we denote the connected
component of R” \ D(P) containing 3 by (R \ D(P))ﬁ.

Note that if P is asymptotically translation invariant with P ~ P, then e #*Pef? is uniformly
elliptic precisely when P is uniformly elliptic, and in this situation

D(e PtPePt)y = D(P) - 3.

Also, if P* is the formal adjoint of P as described above then P* is uniformly elliptic precisely when
P is uniformly elliptic and in this situation we have

D(P*) = —=D(P).
The following corollary to Theorem 4.13 is very useful.

Corollary 4.14 Suppose that P : C°(E) — C°(F) is a uniformly elliptic, asymptotically translation
inwvariant differential operator of order 1 > 1. Then both

Ker(P)g < Wy, 45(E)
Ker(P); < Byt(E)

are finite-dimensional.

Proof: Given any 3 € RL choose § € RF \ D(P) with 3 < §, and then appeal to Theorem 4.13 and
the inclusion (4.27).
|

The following theorem tells us that as 5 crosses over the “bad” points D(P) = D(Px) the change
in index for P is the same as for P,,. Again, the proof is in the paper [46, Theorem 6.1] of Lockhart
and McOwen.

Theorem 4.15 Suppose that P is a uniformly elliptic, asymptotically translation invariant operator
with P ~ P, an elliptic, translation invariant differential operator. If 3,8 € RE \ D(P) with 6 < 3
then

Ind(P)f;Hﬂ — Ind(P)ﬁJrM = N(B,9) (4.29)
where the quantity N(8,9) is defined at the end of Section 4.2.2.

It follows from Theorem 4.9 and Theorem 4.15 that if 3,6 € RE \ D(P) with § < 3 then
Ind(P)j 1y 5 — Ind(Poc)py, 5 = Ind(P)py, 5 — Ind(Poc)i 4 5 (4.30)

and hence the Fredholm indices of (4.18) and (4.25) differ only by a constant as 3 € RE\ D(P) varies.

4.3 Asymptotically conical Riemannian manifolds

In Section 4.2 we considered a rather general Fredholm theory for asymptotically translation invariant
operators acting between vector bundles over X which had some kind of product structure off a
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compact piece Xg of X. We shall now apply this theory to the specific situation where F is one of
the admissible bundles
(@"T*X) ® (°TX)
E = ANT*X (4.31)
AT X

where r,s > 0 are integers. We shall also consider X as having a metric g which is approximately
of conical form on the infinite piece Xoo, and consider Fredholm theory for operators Ay and d + dj
derived from the metric g. Correspondingly, we define new Banach spaces on which these operators
act, describe the relationship with the spaces of Section 4.2, and derive the corresponding Fredholm
theory.

Although it may seem a little perverse to define new classes of Banach spaces in this section we
believe that in the end it gives a cleaner exposition. The Fredholm theory of Section 4.2 is best
described in terms of the cylindrical type spaces WY 4 (E),BZ’“(E) and (asymptotically) translation
invariant operators P, P. However, for Riemannian manifolds with conical type metrics, introducing

new types of spaces and operators is more appropriate.

4.3.1 Construction of suitable Banach spaces

Let us suppose that the manifold ¥ has a Riemannian metric gs;. The cone metric on X, is then
defined to be
g:= th(dtQ +g%).

The reason for this terminology is clear: for after putting r := e’ we obtain § = dr? + r2gsx, which
is the usual cone metric on the manifold (e, 00) x ¥. We prefer the ¢ coordinate rather than the
r coordinate because the 1-forms d¢ and do; have the same growth rate e™* on X in the conical
metric g, whereas dr has unit length over X ..

t

We say that a metric g on X is asymptotically conical if there exists a conical metric g on X such
that

sup | p, 0 (955 — i) | = o(€*) (4.32)
{t}xU,

foreach 1 <v < N, 1< 14,5 <nand |\ > 0. In coordinate free terms, equation (4.32) is the same as
requiring . ,

sup [V3(g - 5)], = ole™)

{t}xZ

for each j > 0. An asymptotically conical metric on X will always be complete.

Conical damped Sobolev spaces

Let us suppose that X is endowed with some asymptotically conical metric g, asymptotic to the
conical metric g on X. Tt is easy to show that h := e~ 2g is asymptotically cylindrical, asymptotic to
the cylindrical metric h := e~2!j. Therefore the LP-norm (4.7) becomes

1
lullzr v,y = (/ |u|pe”thg> (4.33)

v

forall 1 < v < N and u € C®(X) with supp(u) C V,. Suppose now that E is one of the bundles
(4.31). As in Section 4.2.1 we can use the LP-norm (4.33) to construct the Banach space W ;(E),
which has a norm || - ”erﬁ(E)' Given £ € C(E) we now define

||§||Lgﬁ(E) = ||€(S_T)t§||w,§ﬁ(E) (4.34)

and let L ;(E) be the vector space completion of C2°(E) with respect to the norm (4.34). We shall
call Lj 5(E) a conical damped Sobolev space. Obviously the map els=mt . OX(E) — C*(E) lifts to
an isometric isomorphism

6t LR J(E) — W 4(E). (4.35)
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The reason we have bothered to introduce a new class of Banach space is the following: the bundle
E comes equipped with a natural connection V, and fibre metric | - |, got from the asymptotically
conical metric g on X. Therefore we have a second norm on the vector space C°(F) given by

1
P

k
€l == Z/X|e<ﬂ'*ﬂ>tvggy§e*"tdvg : (4.36)
§=0

The norms (4.34) and (4.36) on CS°(E) are equivalent: this is because we have included the correction
factor e~ into the Wy 5(E) norm (4.8).

Each Li 5 (E) is a Hilbert space, and the norm (4.36) is induced by the inner product

k
(&1lé2) = Z/X62(j75)t<V§§1|V§€2>g67"tdvg. (4.37)
=0

Note that L(Q)ﬁ%(E) = L%(E) where we use the asymptotically conical metric g to define the space
L?(E) as in Section 2.1.2. Note also that there is a constant C' > 0 such that

Exlecs o] < Clléslig,, ool iy e
for all &1, & € CX°(E). Therefore
[(€1162) 2 ()| < CHglan)’ﬂ(E)||§2||Lgf7677l(E)

for all £1,& € CX(E). It follows that the L2-inner product defined in Section 2.1.2 extends to a
continuous bilinear map

(r2e) Lo g(E) x Ly 5 ,(E) = R (4.38)
and in fact the pairing (4.38) induces a Banach space isomorphism
LG 5(E) — Ly 5 ,(E) (4.39)
defined by ®(£)(n) = (€|n) r2(x) for all € € Lf 4(E) and n € Lg:_ﬁ_n(E). The following useful result
can now be proved as in the book [2, Section 3.4] of Adams.
Proposition 4.16 The Banach spaces LZB(E) are reflezive.

The important point in Proposition 4.16 is that p > 1.

Conical damped Hdélder spaces

Besides the damped Sobolev spaces L} ﬂ(E) defined above we shall also introduce a class of Banach
spaces C’g’a(E) whose elements are forced to decay at rates O(e®*) on the infinite piece Xo, of X,

as measured using the asymptotically conical metric g on X. Recall that the spaces BZ’Q(E) had a
similar decay property, but instead using the asymptotically cylindrical metric h.

We shall call the Cg’“(E) spaces conical damped Holder spaces. Given what we have already said
about the BE’“(E) spaces, their definition is very straightforward. First of all, declare a section & of £
to lie in C’g (E) precisely when e(s=7t¢ € BE(E), so as vector spaces we have C§(E) := e(’“_s)th(E).
Now given ¢ € C§(E) define the norm

€l ey = 1€ s (4.40)
which makes Cg (E) into a Banach space, because BE(E) is a Banach space and

et Ch(E) — BE(E)
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is an isometric isomorphism.

Similarly, as a vector space, we define Cg“(E) = e(r_s)th’a(E)7 endowed with the norm
‘|€|‘Clg,a(E) = \|e(‘“_r)t§||Bg,a(E) (4.41)

which makes CS’“(E) a Banach space too.

In fact, we may give an equivalent description of the norms (4.40) and (4.41) in terms of the
connection V, and fibre metric | - |; on E got from the asymptotically conical metric g. Firstly, it is
not hard to show that ¢ € C¥(E) lies in C’g (E) precisely when

sup [V, = 0
{t}x=

for all 0 < j < k, and that the norm (4.40) is equivalent to the norm on C’g (E) given by

k
€]l = sup
i=0 X

For the Holder norm (4.41) it turns out that

U=ty g‘ ,
g

ch(E) = {¢ e Ch(E) [e(’““*ﬁ)tv’;g}zx < oo}

and the norm (4.41) is equivalent to the norm on Cg’a(E) given by

e(j*ﬁ)tv%’g + {6(k+a75)tvlg£}

k
9
&l = sup . 4.42
= o . (1.42)
The fact that the spaces C’g (E) and Clg’a(E) are canonically got from the asymptotically conical metric
g is another reason for introducing them. In (4.42) we make sense of the quantity [e(*Ta=Atvhe]?
using the arguments of Section 3.1.1.

To see that the isomorphisms e(*~"* . CS’G(E) — BZ’Q(E) do what we expect, consider for
example the case s = 0, 7 = 1. The 1-form e'dt lies inside C{(T*X) because dt grows like e~* in the
asymptotically conical metric g and as expected we have e~teldt = dt € BJ(T*X) because dt grows
like 1 in the asymptotically cylindrical metric h.

Embedding and Compactness Theorems

We now state the Embedding and Compactness Theorems for the spaces L} 5(E) and Cg’a(E) de-

fined above. They all follow immediately after applying the isometric isomorphism et to the
corresponding theorems of Section 4.2.1.

Theorem 4.17 (Conical Damped Embedding Theorems) Refer to Section 2.1.1 for the defini-
tion of a continuous embedding between Banach spaces.

1. Ifk>21>20and k — % >1— % and one of the following two conditions holds

(a) p<qand f <6
(b)y p>qand <o

then there is a continuous embedding Ly, 5(E) < L{ 5(E).

2. If <9 and k+a = 1+ then there are continuous embeddings CE'H(E) < C’g’a(E) < C’é’b(E) <
Ci(E) and CE(E) < C§(E).
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3. If 8<d and k — % > 1+ a then there are continuous embeddings Ly, 5(E) < CZ“(E) < Lis(E).

n
p

A consequence of Theorem 4.17 is that
L2, 4(B) = (| Lh 4(B)  C(E):=[)C5(E)
k=0 k=0

are both subspaces of C°°(F) with the latter independent of a and
L3 5(B) S CF(E) < L, 5(E)
for all 5 < 4.

Theorem 4.18 (Conical Damped Compactness Theorems) Refer to Section 2.1.1 for the def-
inition of a compact embedding between Banach spaces.

1. The embedding Lﬁﬁ(E) < L;{(;(E) 18 compact whenever k > 1> 0 and k — % > — % and 3 < 4.
2. The embedding C’;’a(E) < CE(E) is compact whenever 3 < 6.

Note that Theorem 4.17 explains the way we have chosen to define our Li’ B(E) spaces: the index (3
genuinely indicates the rate of growth of a section in terms of the asymptotically conical metric.

4.3.2 Asymptotically conical operators

Suppose now that F is a second vector bundle over X, of the form (4.31). Then we have linear
isomorphisms

T CR(B) - CX(E)
T CR(F) —  CX(F).

We shall say that a smooth, linear differential operator @ : C°(E) — C°(F) of order I > 1 is an
asymptotically conical operator of rate v € RY if

o e(r—S)t i Q o e(‘y+s—r)t o
P:CX(E) — CX(E)—=CX(F)" — CX(F) (4.43)
is an asymptotically translation invariant operator. Whenever we take the formal adjoint Q* of an
asymptotically conical operator (Q we always mean with respect to the asymptotically conical metric
g, which induces fibre metrics on each of the bundles E, F.

Here are some basic properties of asymptotically conical operators:

Lemma 4.19 1. The set of asymptotically conical operators is a subalgebra of the algebra of all
differential operators. Moreover, if Q1, Q2 are asymptotically conical operators of rates 1,7y €
RY then Q1Q2 is an asymptotically conical operator of rate v, + vo.

2. For any 3 € RY and asymptotically conical operator Q of rate ~ the differential operator e~ P QeSt
is an asymptotically conical operator of rate .

3. If Q : CX(E) — C=(F) is an asymptotically conical differential operator of rate v € RL then
the formal adjoint Q* : C°(F) — C°(E) is asymptotically conical of rate .

Proof: For the first assertion, suppose that we have asymptotically translation invariant operators

(r—s)t ( s—r)t

Py C(B) S oo B) 2 oo(p) TEL T o (p)
e(r—s), e( s—r)t

P, : C(F) iy s

Cx(F) 25 0x(G) ¢ 5 0x(q).
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It follows that

)
— €
e Py Py OX(E) “—

e(1tr2ts—m)t

t
ox () 2 erE) S o)
and we are done, after appealing to Lemma 4.10. The second assertion is now a special case of the
first.
To prove the third assertion, we note that if P, Q are as in (4.43) then

e('yfn)tp*ef('yfn)t _ e'yte(sfr)tQ*e(rfs)t

where on the left hand side P* denotes the formal adjoint of P with respect to the asymptotically
cylindrical metric h. Appealing to Lemma 4.10 now completes the proof of the third assertion.

Table 4.1 gives some examples of asymptotically conical differential operators @ : CX°(E) —
C*(F), along with the corresponding asymptotically translation invariant operators P and rates
v € RL.

Q pP

d e—rtdert

d; 6(2—7')td;ert

A; e(Q—T)tA;ert
d*+d efrt(62td; +d)6rt

E F
ANTT*X | ATTIT*X
ATT*X | ATTIT*X
ANT*X | A"T*X
ANT*X | A*T*X

— N = 2

Table 4.1: Examples of asymptotically conical operators: the row for dj + d gives P in terms of the
action on r-forms

Here are some comments on Table 4.1.
1. Clearly the exterior derivative d is asymptotically conical of rate 1, because
d:CX(A"T*X) — C (AT X)

r

is translation invariant. Now we just conjugate by e~ and apply Lemma 4.10.

2. To see that dj is asymptotically conical of rate 1, we calculate
' die = dpé + (—1)"T (= 2r) %, (dE A (x16)) (4.44)

for all r-forms . Here h = e~?*g is the asymptotically cylindrical metric on X. It follows that
thd; is asymptotically translation invariant: now we can again conjugate by e~ and apply
Lemma 4.10.

3. Lemma 4.19 then implies that both dj +d and Ay are asymptotically conical, with the required
rates. An alternative way of seeing the Laplacian is asymptotically conical of rate 2 is to consider

eZtAg —_ (€2td;)d + (ethe_Qt)(ethZ)
and then appeal to equation (4.44) and Lemma 4.10.

Asymptotically conical operators extend to bounded linear maps between the conical damped Sobolev
and Holder spaces.

Proposition 4.20 Let @ : C°(E) — CX(F) be an asymptotically conical differential operator of
order 1 > 1 and rate v € RE. Then Q extends to bounded linear maps

Q:LY, 5 (B) — Lf,(F) (4.45)
Q:Cyth(B) — CpU(p). (4.46)
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Proof: This is immediate from the definition of asymptotically conical and Proposition 4.11.

It follows from Lemma 4.19 and Proposition 4.20 that if @ : C°(E) — C¢°(F) is an asymptotically
conical differential operator of order I > 1 and rate v € RL then the defining identity (2.7) of the
formal adjoint Q* of Q) extends to an identity

<§|Q*7)>L2(E) = <Q5|77>L2(F)

valid for all § € Lj 5, (E) and n € Lj 5, (F).
If Q : C°(E) — C=(F) is an asymptotically conical operator of rate v € R then Proposition
4.20 is really saying we have a commutative diagram

P
(E) Wlfﬁ+'y

e(sfrp)tT Te("ﬂrb'*f')t (447)

BaspurB) —5— LLp(F)

WP

k+1,8+y (£)

where the vertical maps are topological linear isomorphisms. In the situation of the diagram (4.47)
we shall always identify the top row with the bottom row, via the vertical isomorphisms. In particular

we then have Ker(Q)},; 5., = Ker(P)} ;5. Im(Q)1 4 5.y = Im(P)}y; 5., Coker(Q)7,; 5, =

Coker(P)Z+l7B+7 and when the horizontal maps of (4.47) are Fredholm
Ind(Q)} 1y .y = d(P)] 1y 5.

From Theorem 4.17 we see

Kef(Q)Z“,gﬂ < Ker(Q)z_H’&_i_v
k+1,a k+l,a
Ker(Q)ﬁiv < Kelr(Q)éi'7
whenever 3 < §. Also Theorem 4.17 gives
k+l,a
Ker(Q)F, ) 54 < Ker(Q)5i0" < Ker(Q)f 454+ (4.48)
whenever 8 < 6 and m — % > k+a.

In the situation of diagram (4.47) we shall say that Q is uniformly elliptic if the corresponding
asymptotically translation invariant operator P is uniformly elliptic. The following theorem is merely
the version of Theorem 4.12 got from identifying the top row of diagram (4.47) with the bottom row.

Theorem 4.21 Suppose that Q : C°(E) — CX(F) is a uniformly elliptic, asymptotically conical
operator of order | > 1 and rate v € RL. Suppose that n € L}, (F) and that £ € L}, (E) is a weak
solution of the equation P§ =n.

L If§e Lf g, (E) andn € L} 4(F) then & € Ly, 5, (E) with Q€ = n and
€er,, . < Cr(1Q€N Ly o + €Dy . )

where the constant Cy > 0 is independent of &.

2. If¢€Ch (E) andn € C’g’a(F) then € € C’gﬂ/a(E) with Q¢ = n and

€l et st iy < Ca (1€ ety + s, ()

where the constant Cy > 0 is independent of €.
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Proof: This follows immediately from Theorem 4.12.

|
As before, Theorem 4.21 implies that when @ is uniformly elliptic we have
Ker(Q)ZH,ﬁ-&-v < LZO,B+“/(E)
k+l,a 00
Ker(@)51h < O3 (B)
so that Ker(Q)},; 5, is independent of & and Ker(Q)éﬂ;a is independent of k and a. We therefore
write
Ker(Q)g_M = Ker(Q)ﬁ_Hﬂ_M
Ker(Q)p+y = Ker(Q)5t,"
whenever @ is uniformly elliptic. With this notation, equation (4.48) becomes
Ker(Q)j,., < Ker(Q)s+, < Ker(Q)g,, (4.49)

valid for all 8 < 4.

We now have the first main theorem on Fredholm theory.

Theorem 4.22 Suppose that QQ : C°(E) — CX(F) is a uniformly elliptic, asymptotically conical
operator of rate v € RE. Then there erists a subset D(Q) C RL independent of p,k such that (4.45)
is Fredholm if and only if B+~ € RY\ D(Q). Moreover

D(Q) = D(P) = D(Px)
where P corresponds to Q as in diagram (4.47) and P ~ P.

Proof: This follows straight from Theorem 4.13.
|

In the situation of the Theorem 4.22, if 34 v € RY\ D(Q) we denote the connected component of
R\ D(Q) containing 8 + v by (RF \D(Q))B-M'

Notice from Lemma 4.19 that if @ is asymptotically conical then @ is uniformly elliptic precisely
when e~ ?tQe?! is uniformly elliptic, and in this situation

D(e "'Qe™) = D(Q) - 5.

Furthermore, @) is uniformly elliptic precisely when Q* is uniformly elliptic, and in this situation
D(Q") =v—n—-D(Q)
so that § 4+~ € D(Q) precisely when —3 —n € D(Q*).
Another useful corollary:
Corollary 4.23 Suppose that Q : CX(E) — CP(F) is a uniformly elliptic, asymptotically conical
differential operator of order 1 > 1 and rate v € RY. Then both
Ker(@)fiy S Lijip4(E)

k+l,a
Ker(Q)psr, < ChHL(E)

are finite-dimensional.
Proof: This follows straight from the corresponding Corollary 4.14 and the commutative diagram

(4.47).
|

The second main theorem on Fredholm theory is now:
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Theorem 4.24 Suppose that Q : CX(E) — C(F) is a uniformly elliptic, asymptotically conical
operator of rate vy € RL. If B+~,8 +~v € RE\ D(Q) and § +~v < B+ then

md(Q)} ;54 — A(Q)},, 5, = N(5,0).

Proof: This is immediate from Theorem 4.15. [ |

4.3.3 The images of asymptotically conical operators

In Section 3.1 we stated that the useful characterisation Theorem 3.7 of the image of an elliptic operator
on a compact manifold has an extension to the non-compact case. We now give that extension.

Theorem 4.25 Let Q : C°(E) — CX(F) be a uniformly elliptic, asymptotically conical operator of
order 1 > 1 and rate v € RE. Suppose that 3+~ € RE\ D(Q) so that the bounded linear map

Q:I?

D g (B) = LY 5(F) (4.50)

is Fredholm. Then the image of the map (4.50) is given by
(@)} 4151, = {17 € Ly, 5(F) : (nlh)p2(r) =0 for all h € Ker(Q*)’iﬁ_n}. (4.51)

Proof: First note that
Im(Q)ZH,ﬁM < {77 c Li,B(F) : (M) p2(py = 0 for all h € Ker(Q*)’ig,n}

follows immediately from integration by parts.

Consider now the case £ = 0. For the purposes of this proof, denote the Banach space adjoint
of the map (4.50) by Q" : L 5(F)* — Lj 4, (E)* to distinguish from the formal adjoint Q* of Q.
If we identify Lf 4(F)" = Lg:fﬁfn(F) as in (4.39) then it is a consequence of Theorem 4.21 that
Ker Q' = Ker Q* in Lg 5(F)*. To see this, note that if n € Ly 5, (F) with (Q¢[n)r2(r) = 0 for all
NS Lfﬁ+,y (E) then the equation Q*n = 0 holds weakly.

Now take 1 € Lf 5(F) such that (n|h)r2(ry = 0 for all h € Ker(Q*)’jﬁfn. Then we have that
ne Lg”@(F) lies in

(Ker Q*)° = (Ker Q")° =ImQ

as required. Here we are using the fact that (4.50) has closed image, together with Proposition 2.2.
We have now proved the result in the case k = 0.

Now suppose that k > 1 and that 7 € L} ;(F) with (n|h)2(p) = 0 for all h € Ker(Q*)’i/ﬁfn. A
consequence of the case k = 0 proof is that there exists £ € LV, (E) such that Q¢ = n. But then

L,B+y
Theorem 4.21 implies § € Ly, 5. (F) and we are done.

Corollary 4.26 Let Q : C°(E) — C°(F) be a uniformly elliptic, asymptotically conical operator of
order 1 > 1 and rate v € RE. Suppose that 3+~ € RE\ D(Q). Then we may write

Li,g(F) = Im(Q)iﬂ B4y @ 4

where V. < LY, E(F) is a subspace of finite dimension dimV = dim Ker(Q*)’jﬂ_n, and in particular,
dimCoker(Q)’éHﬁﬁw = dimKer(Q*)’jﬁfn. If Ker(Q*)’jﬁfn < Ly 5(F) then we may take V' to be
equal to Ker(Q*)” 5_,,.
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Proof: The first part is straightforward: using Theorem 4.25 we have

dim Coker(Q)iﬂﬁﬂ = codimlm(Q)zﬂﬁyy = dimKer(Q")" 5_,,

as required, and the existence of the subspace V is trivial to establish.

For the second part, suppose Ker(Q*){lﬁin < Ly 5(F) and pick an L?(F)-orthonormal basis

{e1,...,ex} for Ker(Q*)’iﬁ_n. Given n € Ly, 5(F) we may observe

K
n— Z<77|€k>L2(F)€k € Im(Q)y 41544
=1

and we are done.

It follows that if @ : C°(E) — C°(F) is a uniformly elliptic, asymptotically conical operator of
order [ > 1 and rate v € R and 3,6 € RE with 3+ +,5 +~ € RE\ D(Q) and § < 3 then
dim Coker(Q)

< dim Coker(Q) (4.52)

P P
k+1,8+ k+1,6+~"

But now if 3+ and § + lie in the same connected component of RY \ D(Q) then by Theorem 4.24
we have Ind(Q)7,; 5., = Ind(Q)},, 5., so that by equation (4.49) and equation (4.52)

dimKer(Q)3,, = dimKer(Q)y,,
dim Coker(Q)} 47 51~ dim Coker(Q)} 4y 5+~
hold. Since Ker(Q)j, ., < Ker(Q)j, ., we deduce that
Ker(Q)j,, = Ker(Q)j, .- (4.53)

Corollary 4.27 Let Q : C°(E) — C°(F) be a uniformly elliptic, asymptotically conical operator of
order 1 > 1 and rate v € RE. If 3 € RY with 8+ € RE\ D(Q) then

Ker(Q)p4 = Ker(Q)f.

Proof: Choose some small € > 0 so that § +7 := 3+ v + ¢ lies in RY \ D(Q). The result now follows

from the inclusions (4.49) and equation (4.53).
|

It follows from Corollary 4.26 and Corollary 4.27 that dim Coker(Q)}; 5., and hence Ind(Q)},; 5

are independent of p and k, provided that S+~ € R¥\D(Q). This is because —3—n € D(Q*) precisely
when 8+~ € D(Q). Similar remarks hold for asymptotically translation invariant operators P.



Chapter 5

Infinitesimal deformations of AC
special Lagrangians

In this chapter we give applications of the material of Chapter 4.

5.1 A study of AJ

5.1.1 Analytic properties of AS

In this section we apply some of the results of Chapter 4 to the Laplacian Ag of an asymptotically
conical metric g on X, acting on functions. The resulting theory will give many of the analytic results
we shall need later.

Recall that A) : C2°(X) — C2°(X) is an asymptotically conical operator of order 2 and rate 2.
Our first task is to determine the set of 3 + 2 € R” such that

AY LR yo pia(X) = LY 5(X) (5.1)

fails to be Fredholm. In other words, we are computing the subset D(AJ) C R* and then (5.1) fails
to be Fredholm precisely when 3 + 2 € D(A)). Recall from Theorem 4.22 that this subset is of the
form D(AY) = D(P) = D(Px) where

D(Px) = (D(Pso,1) x RET) U (R X D(Pag,2) x RE2) U U (RFT! x D(Ps, L))

0

g0 and Poo is

and P = eZtAg is the asymptotically translation invariant operator corresponding to A
the translation invariant operator with P ~ P.,. Here we have Py, = e* A
If u: Xoo — Ris a twice differentiable function then a brief calculation in local coordinates shows

that
0%u ou

BT

where Agz is the Laplacian of the metric g5, on the manifold 3, acting on functions. Referring back

thAgu — A%u — (n —2)(dt,du);, = Agzu

to Section 4.2.2 and in particular the discussion after Theorem 4.7, we replace each 8% in the operator
Py, by w € C, and then for each 1 < j < L we have an operator

Poo(w) : W,(5;®C) — W{(E;®C) (5.2)
& — Agzﬁ —w(w+n —2)¢&.
We now have:
Lemma 5.1 If w € C then (5.2) is not an isomorphism precisely when
w(w +n — 2) € Spec(X;, g5, 0) C [0, 00)

and the set of such w € C is a subset of R.

73



74 Chapter 5: INFINITESIMAL DEFORMATIONS OF AC SPECIAL LAGRANGIANS

Proof: Firstly, suppose that w € C is a complex number such that w(w + n — 2) = p is real and

non-negative. Then since
2 2
+ n—2 n—2 n
w =
2 2 H

we see immediately that w must in fact be real.

Now suppose that w € C. Obviously w(w +n — 2) € Spec(X;, g5, 0) precisely when (5.2) fails to
be injective. If (5.2) is not surjective then by standard Hodge Theory the adjoint operator

Poo(w)* = (Ag,)" = w(w +n —2) = P ()

fails to be injective. Thus W(W + n — 2) € Spec(%;, g,0), and @ is real, completing the proof.
Following Section 4.2.2 we define

C(Px,j) := {w € C: (5.2) is not an isomorphism }

and then D(Px, j) := {Rew : w € C(Px, j)}. It follows from Lemma 5.1 we have that

n—2 n—2 2 2
D(Pw,j) = —( 5 )i<( 5 ) +Mj,i> 2120

where 0 = pj 0 < ftj,1 < pj2 < ... are the points of Spec(X;, gx;, 0). In other words, §;+2 € D(Pw, J)
precisely when (8; + 2)(8; +n) = p;,; for some ¢ > 0.

As in the introduction, we put pu; = p;1 the first positive element of Spec(X;, gs,0), and then
define \; > 0 to be such that \j(A\; +n —2) = p;. We finally put A = (Ay,...,Ar). Figure 5.1
shows the quadratic equation (5; + 2)(8; + n) = p. The horizontal axis corresponds to the growth
rates 3; + 2 of the harmonic functions on X, and the vertical axis corresponds to the elements of
Spec(X;, gs,0). The first positive eigenvalue p; of the Laplacian on ¥; is marked, together with the
growth rates A; > 0 and 2 —n — ;. By Theorem 4.22 the map AJ : L}, 5. ,(X) — L} 5(X) fails to
be Fredholm precisely when 4 2 € D(P,), and these points can now just be read off the quadratic
equation given in Figure 5.1.

The operator A(g) is an example of a second order elliptic operator acting on functions. We can
exploit these features of AY to obtain strong control over the kernels Ker(Ag)g 4o and Ker(AD) s, o.
The required ingredient is the Mazimum Principle, which does not hold for the operators A7 when
r>1.

Theorem 5.2 (Maximum Principle) Let G C R™ be a domain. Define the operator L : C%(G) —
C%(G) by - '
Lu := a" 0;0;u + b'0;u

where a' = a?®b' : G — R are functions. For each x € G let m(x) be the least eigenvalue of (a’(z)),
so that we have a function m : G — R. Assume that

1. m>0o0nG

2. The function % : G — R is bounded for each 1 < i < n.
If u € C*(G)NC°(G) with Lu = 0 in G then the maximum and the minimum of u on G are both
attained on 0G := G\ G.

Theorem 5.2 is proved in the book [18, Theorem 3.1] of Gilbarg and Trudinger. We have an immediate
corollary for the operator AJ.

Corollary 5.3 If 5+ 2 < 0 then Ker(Ag)gJr2 = Ker(A)p42 = {0}.
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Bj +2

Figure 5.1: The quadratic equation (8; +2)(8; +n) = u

Proof: From the inclusions (4.49) we need only show that Ker(A))z o = {0}. So suppose for a
contradiction that u € Ker(A))gy2 and there exists z € X with u(z) # 0. Since u € C’g+2(X) we
have that |u| is bounded by some multiple C' > 0 of the function e/**2)* on X. Also we may choose a
large S > 0 so that x € Xg and

B+ o lu(z)] (5.3)

for each 1 < j < L. Tt follows that the function u : Xg — R cannot attain both its maximum and
minimum on 0Xg, which contradicts the Maximum Principle 5.2.

Corollary 5.4 If $+2 € R*\ D(A)) and 3+2 > 2 —n then the map A) : Ly g py0(X) — L} 5(X)

is surjective, and therefore dj : Ly | 5. (T*X) — Ly 5(X) is surjective also.

Proof: If +2 > 2 —n then —3 — n < 0 and the assertion now follows from Theorem 4.25 and
Corollary 5.3.

|
We now have a fairly explicit description of the kernel and cokernel of the map
Ay LR 5i0(X) = LY 4(X) (5.4)

for various 3+ 2 € RE. Firstly, the map (5.4) always has finite-dimensional kernel, and is injective
for 4 2 < 0. Therefore the map (5.4) has finite-dimensional cokernel precisely when it is Fredholm,
which is precisely when 3 + 2 € R \D(Ag): a set of points we have a very explicit description of.

Furthermore, the map (5.4) is surjective when §+2 > 2 —n and §+2 € R \ D(A)).
When 2 —n < 8+ 2 < 0 the map (5.4) is an isomorphism, and so

Ind(AY)} 5 542 = 0- (5.5)
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Exactly the same arguments as above work for the conical metric § so that Ind(Ag)i 42442 =0 for
2 —n < #+2 <0, and therefore by equation (4.30) we have

Ind(AD)} 15 540 = MA(A 5 510 (5.6)

for all 8+ 2 € RE\ D(AY).

We now turn to evaluating the indices (5.6) for all 3 +2 € RY\ D(AY). To do this we use the
“jumping” formula (4.29) and equation (5.5). Take 1 < j < L and w € C(Px, j), where Py, = thAg.
Then w is a real number such that

w(w+n —2) =: u € Spec(X;, g5, 0).

We are interested in the dimension d(j,w) of the space of solutions of the equation P,,u = 0 which
have the form
u(t,o) = e'p(t, o)

for some polynomial p(t, o) in t with coefficients in C*°(%;). We now appeal to the following lemma.

Lemma 5.5 Let m > 0 and
pt,0) =t fo + -+ L1+ fo (5.7)

be a polynomial in t with coefficients fr, € C*°(3;), where fm # 0. Then
P (e"'p) =0 (5.8)

precisely when m = 0 and (A, — p)fo = 0.

Proof: Note that

w 8 82 wt w 6p azp
Poo(e"'p) = (Agz —(n=2)5 — aﬂ) (e'p) = e ((Agz —n)p— 2w+ (n—2)) 5o - aﬂ) :
Therefore equation (5.8) is equivalent to
ap *p
(Ags —m)p— 2w+ (n=2) 5 — 5 =0. (5.9)

Clearly when m = 0 and (AgZ — ) fo = 0 we see that p satisfies equation (5.9). For the converse,
suppose that p is as given in equation (5.7) and satisfies (5.9). Then comparing coefficients of ™ in
(5.9) gives (AY_ — ) fm = 0. Suppose for a contradiction that m > 1. Then comparing coefficients of
tm=1in (5.9) gives

(A, — 1) fim—1 = m(2w + (n = 2)) frm. (5.10)
Now the right hand side of (5.10) is non-zero, but lies in the p-eigenspace of A22~ The operator

(AgZ — ) preserves the splitting of C'°°(3;) into eigenspaces of Agz and annihilates the p-eigenspace.
This is a contradiction, as required.

[ |
It follows from Lemma 5.5 that
d(j,w) = dim(Ker(A) — p) N C=(%;)) (5.11)

whenever w € C(Px, j) with w(w+n—2) = p € Spec(X;, gs,0). In equation (5.11) we are thinking of
C*>(X;) < C*(X) as the functions which vanish on 3, for k£ # j. We can now easily obtain expressions
for dim Ker(Aj)s42 = dimKer(A))j,, and dim Coker(A9)y,, 5., for all §+2 € R* \ D(A]). For
example, if 3+ 2 € R\ D(Ag) with 5+ 2 > 0 then

dim Ker(A9) , = L+ x(6 +2) (5.12)
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where for 5+ 2 € R” with 8 + 2 > 0 we define

(B+2) Z S {dlm (Ker(A2, — 1) N C=(5;)) - 22 ‘S‘pic((% +A22)z(vﬁj)+ n) } (5.13)

which is an analytic piece of data got from the Riemannian manifold (X, gs). We also define, for
future reference

WB+2): Zz{dlm (Ker(A2. — 1) N C(3))) 22‘5;5(% Zi)fjf n) } (5.14)

for all B +2 € RY with 8 +2 > 0.

5.1.2 Cohomology and homology

For each ¢ > T define a submanifold ¢; : ¥ — X by i,(0) := (¢, 0) for each o0 € ¥. We shall say that a
form £ defined over X is translation invariant if there exists an S > 0 such that

i = i
(e = i ((F)e)

for all s,t > S+ T. We shall say that a translation invariant form & defined over X is a lift if there
exists an S > 0 such that
i (u(5)8) =0

forallt > S+T. A form £ on X is a lift precisely when there exists a form 7 on X such that £ = 7n*n
over X \ Xg for some S > 0. We shall say that a function f : X — R is constant on the ends of X if
there exists S > 0 and ¢ = (c1,...,cr) € RE such that f(t,0) =c¢; forallt > S+ T and o € &;. The
notation we use in this situation is f. := f. So given ¢ € R we have f, € C*°(X) well-defined up to
elements of C°(X).

On our manifold X we have the usual de Rham cohomology groups H"(X) and the compactly
supported de Rham cohomology groups H’ (X). Moreover, if X is oriented there is a pairing H. (X) X
H" "(X) — R defined

X
which induces isomorphisms
H)(X) = H""(X)" (5.16)
HI(X)" = H""(X). (5.17)

We also have the usual real singular homology groups H,.(X), and a pairing H,,_(X)x H*"(X) - R

defined
= /5 (5.18)

which induces isomorphisms

H, .(X) = H""(X)" (5.19)
H, . (X)" 2 H""(X).
Now the isomorphisms (5.16) and (5.19) imply
H, . (X)= H(X). (5.20)

In order to obtain homological objects which are isomorphic to the usual de Rham cohomology groups
H"(X) we need to consider X as the interior of a compact manifold X with boundary 0X C X. This is
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certainly no problem because we can pick a homeomorphism (7', 00) x X = (T, T+ 1) x X so that 0X =
Y. Then we have the relative homology groups H,(X,0X) and a pairing H!(X) x H,(X,0X) — R
defined

mm:/s (5.21)

which induces isomorphisms

HI(X) = H(X,0%)
H'(X) = H.(X,0X (5.22)
which combined with (5.17) show that
H.(X,0X) > H" "(X). (5.23)

Note further that H,(X) = H,(X) for all > 0.

We now describe how to build a long exact sequence of cohomology groups which shall be useful
later. First of all, we have the natural map

¢r  HI(X) — H"(X) (5.24)
€ = &
Also, given t > T the embedding i; : 3 — X induces a pull-back homomorphism
pr: H'(X) — H"(Y) (5.25)
(€ = [igl.

Note that by Stokes’ Theorem the map (5.25) is independent of our choice of ¢t > T'. We also have a
boundary map
0, H"(X) — HITH(X) (5.26)

which we define as follows. Fix any p € C*°(X) such that

plx) = 0 for all z € X
p(z) = 1 for all x € X \ X;.

Given £ € C®(A"T*X) with d§ = 0 we lift to a translation invariant form 7*¢ € C*°(A"T* X ),
which in turn extends to a form pr*¢ € C*°(A™T*X). We now put 0,.[¢] := [d(pn*€)] and this gives
us a well-defined map (5.26) as required.

Proposition 5.6 The sequence

ér

s HY(X) S HN(X) 2 H(R) 2 (X)) — (5.27)

s exact.

Proof: Under the Poincaré Duality isomorphisms (5.20) and (5.23) defined above the sequence (5.27)
of cohomology groups is isomorphic to the usual long exact sequence for relative homology

— H, (X)) — Hp (X,0X) — Hy_p 1(0X) — Hy_p 1(X) — -+, (5.28)

Lemma 5.7 In the long exact sequence (5.27) we have Ker ¢1 = {[dfc] tc € RL}, and furthermore
dimKer¢; =L — 1.
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Proof: Obviously
{[dfc] = RL} < Ker ¢5.

Now suppose that f € C°(X) with df € C*(T*X). Then f is locally constant off some compact
subset of X, and it follows that f must be constant on the ends of X. Hence

Ker ¢y < {[dfc} ic€ RL},

as required, and it is easy to show this vector space has dimension L — 1.

An alternative approach is to use the exactness of the sequence
0 — HO(X) 2% HO(X) 2% HO(x) 2 HH(X) 25 HY(X) — -

and the fact that HO(X) = 0, H*(X) 2R, H°(Y) = RL.

|
If we denote the standard basis of R” by {e1,...,er} then clearly
Ker ¢y = Span{[dfe,], ... [dfe,]}
and moreover given (cy,...,cr) € RZ we have
cildfe,] +---+ecpldfe,] =0
in H!(X) precisely when ¢; = --- = ¢r. This is because the map py sends ¢ € R to (c,...,c) € RF

and the map 0y sends ¢ = (cy,...,cr) € RE 2 HO(X) to the element [df.] € H}(X).

Proposition 5.8 Let 0 < r < n and [n] € H"(X) be a cohomology class, so that n € C®°(A"T*X)
with dn = 0. Then there exists £ € C°(A"T*X) which is a lift such that d§ =0 and [n] = [€].

Proof: We give two proofs. The first method relies on the exactness of the sequence (5.27) and the
second method gives an explicit construction for &.
Method 1

Since [n] € H"(X) we have p.[n] = [ifn] € H"(X) for any ¢t > T. Define 6 := i;n so that § €
C*®(A"T*Y) with d0 = 0. By the exactness of (5.27) we have [#] € Kerd, and there exists 6 €
C=(A"T*X) with

d(pm*0) = do
as 0,[0] = 0 in H7*!(X). Consider now the cohomology class [pr*0 — 6] € H"(X). We have
i (pr*0 — 0) = it (7°0) = 0 = ifn.
It follows by the exactness of (5.27) that
[pr*0 — 0 — 1] € Kerp, = Im ¢, C H"(X)
and there exists h € C°(A"1T*X) and ¢ € C°(A"T*X) with d¢ = 0 such that
¢+dh=pr0—0—n,

and then [n] = [p7*0 — 0§ — ¢] in H™(X) with p7*0 — 0 — ¢ a lift as required.
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Method 2
First of all, work on X, = (T, 00) x X. Then given ¢t > T we have the embedding
it N = Xoo

o — (to).

Suppose that n € C*°(A"T* X ,) with dn = 0. Write n = 19 + dt A n; where ng € C°(A"T*X ) and
m € C°(A""1T* X ) with L(%)ﬁo = L(%)m = 0, so that ng,n; have no dt component. Since dn =0
we have dny — dt A dn; = 0 and then

!(57) (o) = o) (At A diy) = dmy
and also ¢;dny = 4fdn =0 for all t > T. Now given ¢t > T define
t
oy = / (i¥m)ds € C®° (A" 1T*%),
0

and then define further o € C°(A"~'T* X ) by the equations
L(a%)a =0

o = oy forall ¢ > T.

We now show that £ :=n — do is a lift, by looking at the component parts. Firstly

. (S
—(zt(n—da)) = a(ztno—dot)

ot
a t
= — ijno— [ 4i(dm)ds
at (tT]O \/0 ( 771) >

0 < <k
= ot (iymo) — iy dm
0 < <k
= 9 (ifmo) — i} (L(%)d%)
= i <E6no - L(gt)dno>
o1

= it (d(F)m))
0

and therefore i%(n — do) = i} (n — do) for all s,¢ > T. Secondly, we have

iy (U(F)m—da)) = if(m —u(F)do)
= ijm— <i:(£86to-_d(L(gt)U))>
- i?m—i;‘(cgg)

" 0 .
= it - 2 (ito)

s=t

" 9 -
= i — 75 (/0 zumdu>

= 0

s=t

and hence £ is a lift, as required.

Now suppose we are working on the whole manifold X. Given n € C°°(A"T*X) with dn = 0 put
7 :=nlx.. Then from the above there exists & € C°°(A""'T*X,,) such that £ := ) — d& is a lift on
X . Now define o := p6 € C*°(A""1T*X) and then

do =dp A6+ pdé
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so that n —do = (n — pdé) — (dp A &), which is a lift.
|

Corollary 5.9 If 0 < r < n then any cohomology class in H"(X) can be represented by some closed
form & € CZ.(A"T*X), and moreover & can be chosen to be a lift.

Proof: Using Proposition 5.8 we may pick a lift £ € C°°(A"T*X) representing the cohomology class.
This form has the required decay properties.

5.1.3 Calculations with functions

Lemma 5.10 Let & € Clgﬁ’a(T*X) and f € C1(X) with df = ¢.

L If3+2>0 then f € CHI3(X).

2. If 34+2=0 then f € C’ffig’a(X) forallv+2 > 0.

3. If B+2 < 0 then there exists f. € C°(X) constant on the ends of X such that f—f. € Cgig’a(X),

Obviously the condition df = £ determines f uniquely up to constants. Also when [+ 2 < 0 the
function f tends to the constants ¢; € R on the jth end of X, where ¢ = (¢1,...,cr) € RL.

Proof: We begin by considering the first part. Using the elliptic estimates of Theorem 4.21 applied
to the operator @ = dj +d on C2°(A*T*X) we observe that we need only show f € C’g+2 (X).

Fix 1 < j < L and some ¢ € ¥, S > 0. Then for any ¢t > T + S and o € X; we have by Stokes’
Theorem

f(t70)—f(T+5,5)=L1§+L2§

where ~y; is the straight line path in (T, 00) x 3; going from (T'+S,4) to (¢,5) and 2 is a geodesic of
minimum length in {t} x £; C (T'+ 5, 00) x ¥; going from (¢, &) to (¢,0). Suppose that in coordinates
(s,7) over (T,00) x ¥ we have £(s,7) = a(s,7)ds + b(s, 7)d7. Then since £ € Cj,,(T*X) we have

a,be C’g+2(X), and furthermore
¢
/ & = / a(s,o)ds
Y1 T+S

/’ b(t,7)dr

where 73 is the geodesic in ¥; with v = {t} X v3. Working on the jth end (T, 00) x 3; of X we have

T
I
I

t
/5 < / la(s,d)|ds
" T+S
t
(Bj+2)s
< Mg, [ e+
lalles, .0 (cortor _ ctnsarss)
Bi+2
o Malleg . 5,10

and

B+2 (X) e(ﬂj 2

/ s\ < diam(%;, g5) bl oo
Y2
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so that

[f(to)l < [f(T+50)+f(t0) = f(T+5,5)]
lallcg

(X) . )
B2 + dlam(Zj,gz)||b||Cg+2(X)> e(Bi+2)t

< |f(T+S,0)+ <ﬁ]+2

It follows that f € C’g 42(X), as required.

For the second part we need only show f € CY,,(X) for all ¥ +2 > 0. The proof is now very
similar to part 1. Keeping the same notation we compute

[ e <=1 9laley, 0

from which it follows

[f(t,0)| < [f(T+5,0)[+ (=T = 5)llallcy

B+2

(x) +diam(X;, gs)[[bllco, (x)

B+2

and we are done.

In case 3 we need only show that there exists f. € C°°(X) constant on the ends of X such that
f = fe € CY,5(X), since then (d} +d)(f — f.) = & —df. € C5T1*(T*X). With notation as in part 1
we have

f(t,a)—f(T—i—S,&)—/oo a(s,5)ds = —/too a(s,&)ds+/% b(t, 0)do

T+S

and then

/a(t,a)dt‘ < / la(s,o)|ds
t t

= Bj+2)s
||a||cg+2(X)/t (B +2)s

_||a||cg+2(x)

Bj +2

N

eBi+2)t.

It follows that

oo

fit,o) = f(T'+S,0) — / a(s,o)ds

T+S

lallco (X)
] ' _ s ) (B42)8
< <d1am(2]7gz)||bcg+2(x) 5 +2 e(B

and we are done, with f. constant on the ends of X chosen so that

o0

¢ =f(T+8S,5) +/ a(s,d)ds. (5.29)
T+S

A straightforward application of Stokes’ Theorem shows the right hand side of equation (5.29) is
independent of S > 0 and a similar application together with a convergence argument shows the right
hand side of equation (5.29) is independent of 6 € X;, as we expect.

|
In the second part of Lemma 5.10 we can never hope to have f € C(])“H’G(X), as the example

f(t, o) :=logt shows. For here we have

which lies in €% (X), but f ¢ CJ(X).
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Lemma 5.11 Let h € C*°(X) be harmonic and f. € C*(X) be constant on the ends of X. Then

/ (AYfo)hdV, = Zc] ] - [#4dh]

j=1

where in the right hand side we use the pairing (5.18).

Proof: Choosing some large S > 0 and noting Ag fc is compactly supported we have

/ (A) fo)hdV, = —/ h(d %4 df.)
X Xs

from the definition of Ag. Then Stokes’ Theorem and the fact that
d(h *g dfe) = h(d %4 df) + dh A x4df.
gives
/ (Agfc)hdvg :/ dh/\*gdfc—/ hxg dfe :/ dfe Axgdh = fe*g dh,
X Xs 0Xs Xs 0Xs

again using Stokes’ Theorem and the fact that d(f. %, dh) = df. A x,dh. We now have

/(Aofchd :Zi: / :z:: - [#gdh]

as required.

|
Recall the definition of the L-tuple A = (\y,...,\r) in Section 5.1.1 above. If v + 2 € RY with
0 <y +2<A; ifk=y
2—-n<yy+2<0 ifk#£j

for each 1 < k < L, then a consequence of Theorem 4.24, Corollary 5.4 and Lemma 5.5 is that
dim Ker(Ag),H_Q =1

Let hj be a non-zero element of Ker(AY), 5. Then by equation (4.53) we have h; € Ker(AQ)z 2
for all 8+ 2 € (R* \D(Ag))w?’ and as h; ¢ Ker(AY)s,o = {0} for any d +2 < 0, it follows that
{h1,...,hr} is a linearly independent set.
Now suppose that v+ 2 € R” with 0 < v +2 < X. Then again using Theorem 4.24, Corollary 5.4
and Lemma 5.5, we see that
dim Ker(A2)7+2 =L
so that {h1, ..., hr} is necessarily a basis for Ker(AJ), 2. Since 1 € Ker(AJ), 42 there exist ai, ..., az, €
R such that
arhi+---+arhyp =1 (530)
and each a; # 0, as otherwise the left hand side of equation (5.30) tends to zero on some end of X.
We now rescale the h; so that
hi4+---+hy =1 (5.31)
and fix this preferred basis {hy,...,hr} for the rest of Chapter 5.

For each 1 < j < L define hj1 € C*°(X) to be a function constant on the ends of X, constantly
equal to 1 on the jth end of X and 0 on the other ends of X. So in the notation of Section 5.1.2,
h; = fe,. Then from equation (5.31) we see that

hj — hj € C3%5(X) (5.32)
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forall y4+2 >2—nand 1 < j < L. Note that a consequence of equation (5.32) is that h; € C§°(X)
for each 1 < j < L, and therefore

Ker(Ag)o = Ker(A2>7+2 = Span{hy,...,hp} (5.33)

foral 0 < vy+2 <A
Note that dh; € C35,(T*X) for all y+2 > 2 —n and 1 < j < L. Also the vector space

Span{dhy,...,dhy} < C5,(T*X) (5.34)
has dimension L — 1, because the linear map
d: Ker(A))o — dKer(A))g (5.35)
is surjective and has a 1-dimensional kernel {c1hy + --- + cphr : ¢; = --- = cr}. Note that although
dKer(A)) 12 = Span{dhy,...,dhr} (5.36)
for all 0 < v+ 2 < X it is not the case (unless L = 1) that
dKer(A)y42 = Span{dh,...,dhr} (5.37)

for any 2 —n < v+ 2 < 0, because for such v + 2 the left hand side of equation (5.37) is zero,
whereas the right hand side has dimension L — 1. All we assert is that the dh; lie in C55, (7 X) for
all2—n<vy+2<0.

Lemma 5.12 For each 1 < j, k < L we have
/ dh; A xgdhy = [E,] - [*gdhi]
X
where in the right hand side we use the pairing (5.18).

Proof: This follows from Lemma 5.11 and an integration by parts once we note that, for all S > 0:
/ d(h; — hjl) N *gdhy = / d((hj — h;) g dhy) = / (hj — hjl) *g dhyy — 0
Xs Xs 0Xs

since (h; — hj) € CY,5(X), dhy, € CY, | (T*X) for all v +2 > 2 —n, and furthermore Vol(0Xs, g) =
O(e(nfl)S)'
|
It follows from Lemma 5.12 that the vector space Ker(Ag)O = Span{hq,...,hr} is endowed with
a positive, semi-definite bilinear form ( , ) defined by

L

(h,h) = / |dR[2dV, = Z cjck[Z5] - [*odhi]
X jik=1
forall h =cih1 +---+cphy € Ker(Ag)o. Since dh = 0 precisely when ¢; = - -- = ¢, we deduce that
{, ) becomes the usual L2-inner product on Span{dhy,...,dhs} after we push down using the map
(5.35). If we let A be the symmetric L X L real matrix with entries
aji = [2;] - [*gdhy] (5.38)

then we have

KerA = {(Cl,...7CL)ERL201=~-~:CL}

ImA = {(al,...7aL) eRlcay+---+ar =O}7

since A is self-adjoint. These facts will be useful later. In the sequel we shall always let (a;r) C R
denote the real numbers defined as in equation (5.38) above.

We conclude this section with some integration by parts formulae. For each 1 < j < L we define
h? € C™(X) to be any function equal to e>~™* on the jth end of X and 0 on the other ends of X.
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Lemma 5.13 For each 1 < j,k < L we have

/(Agh})hkdvg = [%] [*gdhs] (5.39)

{ én —2) Vol(%;, gs) Zi ; Z (5.40)

where in the right hand side of equation (5.39) we use the pairing (5.18).

/ (Ag hi)hdeg
X

Proof: Equation (5.39) follows straight from Lemma 5.11 as each h} is constant on the ends of X.
For equation (5.40) we compute, for S > 0:

/ (AYR)hedV, = —/ hi(d *g dh?)
Xs XS
= —/ (d(hg *g dh3) — dhy A 5gdh3)
Xs

= / dhk/\*gdh?f/ hi (%gdh3). (5.41)
Xs 8Xs

The first term of (5.41) is

dhy A xgdh2 = / dh2 Axgdhy = [ d(h? %, dhy) = / h2 sy dhy,
Xs

Xs Xs 0Xs

and this tends to 0 as S — oo, because h? € C3_,(X), dhy € C9,1(T*X) for all ¥ +2 > 2 — n, and
Vol(0Xs,g) = O(e"~19).
The second term of (5.41) is

/ hk(*gdh§):/ h,g(*gdh§)+/ (hx — h}) *¢ dh2
0Xs 0Xs 0Xs

and since dh3 € CY_, (T*X), hy — hj, € C555(X) for all 7 +2 > 2 —n, we deduce that

9 (2 —n)Vol(X;, gx) ifj=k
/Ms hk(*gdhj)e{ ! o

as S — 00. The Dominated Convergence Theorem now implies that the integral (5.40) exists and is
as given.

5.1.4 Strongly asymptotically conical metrics

In order to derive further properties of the harmonic functions Ker(Ag) g+2 we shall have to assume
stronger decay conditions on our asymptotically conical metric g on X. Let a € RY with o < 0. We
shall say that the metric g on X is strongly asymptotically conical with rate « if

sup |p, 0 (g:5 — Gij) | = O(eL*T)) (5.42)
{t}xU,

foreach 1 < v < N, 1< 14,57 <nand |\ > 0. In coordinate-free terms, equation (5.42) is the same as
requiring ‘

sup [V3(g — )|, = O

txs
for each 7 > 0. Of course, any strongly asymptotically conical metric is asymptotically conical. For
the rest of this chapter (except for Section 5.2.4) we assume that g is a strongly asymptotically conical
metric on X which has rate a < 0.
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Lemma 5.14 1. The operator dy — d; : CZ(A"T*X) — CX(A™1T*X) is an asymptotically
conical operator of rate 1 — «.

2. The operator (dj +d) — (dz +d) : CFX(AT*X) — C*(AT*X) is an asymptotically conical
operator of rate 1 — .

3. The operator Ay — AL 2 C(A"T*X) — CP(A"T*X) is an asymptotically conical operator of
rate 2 — .

Proof: The first assertion can be established via a local coordinate calculation. The second and third
assertions then follow from the equations

(@ +d)— (A5 +d) = d;—d;
AT AL = d(dl - dD) + (4 —dE)d

and Lemma 4.19.
[ |

One can consider (5.32) as the first in a series of equations giving an asymptotic expansion of
the harmonic functions hq,...,hr, in terms of functions which are harmonic on the ezactly conical
Riemannian manifold (Xo,§). Then the first such approximation to h; is given in equation (5.32)
by hj1 When the metric g is strongly asymptotically conical we can give the second order terms in
the asymptotic expansion for the h;. For the purposes of the following lemma, if 8,6 € RL then we
denote the L-tuple with jth entry max{3;,d,} by max{3,d}.

Lemma 5.15 For each 1 < j, k < L define

—ap —[2;] - [%gdhg]
bap 1= J = J J ) 5.43
ik (n—2)Vol(Zk,g92)  (n—2)Vol(Zg, gx) ( )
Then the functions
L
[y by B3 bk (5.44)
k=1

lie inCﬁQ(X)f0rallmax{2—n—|—oz,2—n—)\}<ﬂ+2<2—n and 1 <j < L.

Proof: Let 1 < j < L. For arbitrary (b;z) € R consider

(h — h} ijkh ) (Z birh? ) (5.45)

modulo elements of C°(X). It follows from Lemma 5.14 that

A0 <h — I} —ijkhk> €0, o(X). (5.46)

k=1
Now for each 1 <[ < L we have:

L
/AO (h —h} - Zbﬂhk> mdV, = —/X(Agh;)hldvg—ijk/X(Aghi)hldvg

k=1

L
= [ * dhl Zbgk n— 2 Vol(Ek,gE)ékl
=1
= =[5 [rgdhi] - ;l(n 2) Vol(%y, gx)
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where we use Lemma 5.13. Now put

—[%;] - [xgdhi]

~2) Vol (S g5) (5.47)

bk ==
ik (n

and pick any max{2 —n+ a,2 —n— A} < 8+ 2 < 2 —n. Then from equation (5.46) we have

(h —h} ijkhk>eL 5(X) (5.48)

and 2 —n — A < 42 < 2—nsoby Theorem 4.25 there exists f; € Lk+2 512(X) such that

L
AVf = A0 (hj —hi = bjkh§> :
k=1
Now the elliptic regularity Theorem 4.21 together with equation (5.48) tells us that

fj € Lzo,m-z(X) - ng-z(X)

and the Maximum Principle 5.2 then gives

L
.l 2
Fi=hj —hj =) bihi
k=1
so we are done.

In the sequel we shall always let (b;,) C R denote the real numbers defined as in equation (5.43)

above. Also, (f;) € C§5,(X) will always denote the functions defined in equation (5.44) above.

Using analogues of Lemma 5.13 for g-harmonic functions with even stronger decay we could compute
further terms of the asymptotic expansion for the h; in terms of the g-harmonic functions on X. A
particular consequence of (5.44) is the fact that

hj —h; € C52,(X) (5.49)

with even stronger decay when the bj; given in equation (5.43) vanish. It follows from (5.49) that
dh; € C°,,(T*X) for each 1 < j < L.

We can use Lemma 5.15 to deduce further useful information about the Laplacian Ag acting on
functions with low growth rate.

Corollary 5.16 Ifmax{2 —n+a,2—n— A} <f+2<2-nand{ € Ly, 5. ,(T*X) then:

1. There exists f € C°,(X) and f € LV (X) such that

k+2,8+2
0/ f *
A (f+ f) = dé. (5.50)
2. There exists fi, € C°(X) constant on the ends of X and F € Lj,, 5, ,(X) such that

AY(F + fp) = dj¢. (5.51)
Proof: First of all, for arbitrary (a;) CR and 1 < < L consider:

<d§ Zajth2‘hl> sy = (056l £200) = @l —2) Vol (1, g)
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by Lemma 5.13. Therefore defining

gy
7 (n—2) Vol(%,, g5)

and using the fact that

d*f ZCL]AO}LZ € C—n—i—a( ) < Li,B(X)v

where 2 —n — A < 8+ 2 < 2 —n, we deduce from Theorem 4.25 that there exists f € L?
such that

k+2, 5+2(X)

L
0 r3 2 *
A F+Y ah? | =dig
=1

and this proves the first assertion, putting f := Zle ajh?.

For the second assertion, observe that since

L L
D (n—2)Vol(S), gs)a; = Y (dré|h;)rax) = (d€[1) 2x) = 0
j=1

j=

=

there exists (b;) C R such that
Z ajrb; = (n — 2) Vol(Zyg, g5 )ax

for each 1 < k < L, so that Z]LZI bjrb; = —ay for each 1 < k < L. Recall that the real numbers
(a;x) € R are as defined in Section 5.1.3. Now we have

L
* _ 0 r 2
dgg - Ag f+ Z ajha

-

I
—

J

L
<ajh§ +b; (fj +hi+ Y bjkhz»
j=1 k=1

L
= AV Z (f; +h})

M=

— ol f
= AV F+

and we are done, putting F := f + Z 1 b f;, which lies in LY (X) by Lemma 5.15.

k+2,8+2

5.2 The infinitesimal deformation space
The main reason we have developed the theory above is so that the vector space
Kpy1:={6 e C5,(T"X) : d¢ = dj¢ = 0} (5.52)

may be examined more closely. Because of Lemma 2.29 the infinitesimal deformations of a special
Lagrangian submanifold X may be thought of as the space of closed and coclosed 1-forms on the
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manifold X. When X is strongly asymptotically conical, the infinitesimal deformations which preserve
being strongly asymptotically conical and special Lagrangian are precisely those in the vector space
Kp11 defined above, for a certain value of 3 + 1 € RL which corresponds to the decay rate a of the
metric on X (in fact, as we shall see in Chapter 6, the relationship is § = «). This is the reason we
are interested in the K4, spaces. In particular we are interested in the dimension of the vector space
Kpy1: we know it has finite dimension because K11 < Ker(d; + d)s41 and we may then appeal to
Corollary 4.23.

Define a map

Vo1 K1 — HY(X) (5.53)
& — [¢
for each B+ 1 € RY. Then
dim Kgy1 = dimKer g1 + dimIm g4 (5.54)

where Ker 11 measures the failure of elements of K11 to represent cohomology classes in H'(X)
uniquely and Im1g41 measures the extent to which Kg41 represents the whole cohomology group
H'(X). A proper understanding of the kernel and image of the map 3.1 requires the use of the
long exact sequence (5.27). Before we begin our calculations we make the trivial observation that
Kpi1 < Ky, Kergir < Kerty4q and Imypgy1 < Impyi1, whenever 5+ 2 < v+ 2.

5.2.1 Calculating Ker vz,
Lemma 5.17 If 342 € R* and 5+ 2> 0 then Ker g1 = dKer(Ad)g4s.

Proof: Clearly applying the exterior derivative to any harmonic function gives a closed and coclosed
1-form. Therefore dKeI’(Ag)g+2 C Kerg41. To see the reverse inclusion, take any £ € Kergq.
Then there exists f € C°°(X) such that df = § and from Lemma 5.10 we deduce that f € CF55(X).

Since £ is coclosed we have A) f = 0 so that f € Ker(A))gz12 as required.
|

It follows from Lemma 5.17 and equation (5.36) that
Ker ’lﬂg_,_l = Span{dhl, ce ,dhL}

for all 0 < B+ 2 < A. Since each dh; is a closed and coclosed 1-form lying in C7° , (T*X) we deduce
that dh; € Ki1_, < K4 for all 842 > 2 — n. Therefore

Ker¢sy1 = Span{dhq,...,dhp}

for all 2 —n < 842 < A. There is more to say about this space when 2 —n < 3+ 2 < 0, as we see in
the next lemma.

Lemma 5.18 Recall the definition (5.24) of the map ¢1 : HX(X) — HY(X). If 3 +2 < 0 then there
exists an injective map
041 : Ker g1 — Ker ¢1. (5.55)

When 2 —n < +2 <0 the map (5.55) is onto and acts as

9ﬁ+1(61dh1 + -+ CthL) = [dfc] (556)
for all c = (c1,...,cr) € RE.
Proof: Let 542 < 0 and suppose that £ € Ker gy 1. Then there exists f € C°°(X) such that df =¢
and then from Lemma 5.10 we see that there exists f. € C°°(X) constant on the ends of X such that

f=f-fc€ Cg52(X). Define
Op4+1() := [d/f]
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a class in H}(X) lying in Ker ¢;. Clearly f is uniquely determined by & up to constants and f. is
uniquely determined by f up to elements of C2°(X), so that 61 is well-defined as a map into H}(X).
To see that the map (5.55) is injective, suppose that there exists fe C°(X) such that df = df..
Then f — fe is constant and the entries of the L-tuple ¢ are all equal. Abusing notation we write
c=(c,...,c). Then f —c € CF ,(X) and moreover

A)(f—c)=AYf =d;¢=0.

The Maximum Principle 5.2 now shows that f = ¢ so that £ = 0 as required.
Suppose now that 2 —n < 3+ 2 < 0. Let [df.] € Ker ¢; where ¢ € RF. Then Agfc € C*(X) and

by Corollary 5.4 we see that there exists f € L£+2ﬁ+2 (X) such that
0f _ 0
Agf=—-Afe. (5.57)

Put f := f + f. and consider now ¢ := df. Elliptic regularity for equation (5.57) shows that f and
hence £ are smooth, and since & € L£+1,B+1(X) is closed and coclosed we may invoke Theorem 4.21 to
see that € € Ker¢gy1. It is clear that 6311(€) = [df.]. Also the properties of the harmonic functions
h; established in Section 5.1.3 show that the action of the map (5.55) is as given in (5.56).

Note that Lemma 5.17 provides a good way of evaluating dim Ker ¢5,; when 3+ 2 € RE \D(A))
and B 4 2 > 0, because in this situation we have

dim Ker ¢4, = dim(d Ker(A))g42) = dimKer(A)) 42 — 1 = dim Ker(AS)’éH -1

which we compute using the material of Section 5.1.1. The cases +2 >0 and S+ 2 € D(Ag) can
be similarly dealt with once we prove the following lemma.

Lemma 5.19 Let $+2 > 0 with 3+ 2 € D(AY). Then for suitably small € > 0
Ker(Ag)’;+2 = Ker(Ag)gH%

Ker(A))pr2 = Ker(Ag)sioye.

Proof: Take any small € > 0 such that 5+ 2 + te € R\ D(AY) for each 0 < [¢| < 1. Then we have

Ker(Ag)gH_g = Ker(A))po-c
< Ker(A))5,, (5.58)
< Ker(AY)gyo (5.59)
< Ker(A),,.. (5.60)
= Ker(AQ)gro4e

and we wish to show that equality holds in inclusion (5.58) and inclusion (5.60). Since
D(A)) = (D(AY, 1) x RF"H U (R x D(AY,2) x RE2)U--- U (RF! x D(A), L))

there exists an 1 < r < Land 1 < j; < -+ < j < L such that for each 1 < j < L we have
Bi+2¢€ D(Ag, j) precisely when j = j; for some 1 < I < r. Without loss of generality suppose that
ji=1for each 1 <1< r. Then given 1 < j < r we have

1 = (B; +2)(B; + n) € Spec(X;,A), 0).

For each 1 < j < r put .
V= Ker(Agz — )N C=(E;)



Chapter 5: INFINITESIMAL DEFORMATIONS OF AC SPECIAL LAGRANGIANS 91

and choose a basis {kjl, . knj} for each V;. Now for each 1 < j < r and 1 < ¢ < n; define functions
h; € C*(X) such that h; = e(ﬂ1+2)tk; on the jth end of X and h; = 0 on the other ends of X. Then
since each Agh; is compactly supported we deduce

ADRS € CFYo(X)

for each 1 < j <7 and 1 <4 < nj. Now choose some § € RF such that 0 <6 < —a, B+2+a+0d €
RL\D(Ag) andﬁ+2+a+5> 2 —n. Then since
AG LY prngars(X) = LY giais(X)
is onto and each AJh} € C5%a(X) < LY 5404 5(X) we deduce that there exist fie L} o piorars(X)
such that
0gi _ AOpi
Agfj - Aghj
foreachl <j<rand1l<i< nj. Therefore we have
Span{f;f —ht:1<j<rand1<i< nj} Ker( AO )B+2 (5.61)

and the left hand side of the inclusion (5.61) is a vector space of dimension ny + -+ + n,. We also
have
Span{fi —h%:1<j<rand1<i<n;}NKer(A)f,, = {0}
and
dim Ker(Ao)ngere — dim Ker(AO)5+2,€ =ny+---+n,

so that 0 < dim Ker(AD)g42 — dim Ker(AO)ﬁ_s_2 ny + - -+ n,. It now follows that
Ker(A))gin = Span{fl —hi:1<j<rand1<i<n;}® Ker(AD)f, 5 (5.62)

and we are done: equality in (5.58) and in (5.60) comes from equation (5.62), because the dimension
jump at (5.59) is as big as it can be.
|

So Lemma 5.19 is saying that for fixed 5+ 2 € R” the function ¢ — dim Ker(AY) 454 is upper

semi-continuous, and that ¢ — dim Ker(AO) B+2+1e lOWer semi-continuous.

The previous results show that for all 3 + 2 > 0 can choose a suitably small ¢ > 0 so that
B+2+¢eeRE\D(A)) and then we have
dimKeriygyr = dideer(A2)5+2
= dim Ker(Ag)gH -1
= dimKer(A))gio4e — 1
= dlmKer(AO)ﬁ+2+€ 1
= L—-1+x(8+2)
where the analytic piece of data x(8 + 2) is defined in equation (5.13).

We end this section on Ker g1 by showing that this space must vanish for small enough growth
rates B + 2.

Lemma 5.20 If 842 < 2 —n then Ker g4, = {0}.

Proof: Suppose that §+2 < 2 —n and £ € Kertygy;. Take some harmonic h € C°°(X) such that
dh = £. From Lemma 5.10 we deduce that A must be bounded, and then for S > 0 we may compute

2 _ _ —
/XS €2V, = /XS dh A #gdh = /8XS h(xgdh) = /3X5 h(4€) (5.63)

since d(h*, dh) = dh A *,dh+ h(d %, dh). But we now observe that Vol(0Xs, g) = O(e(®~V5) so that
the right hand side of equation (5.63) tends to 0 as S — oco. Therefore £ = 0 and we are done.
|
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5.2.2 Calculating Im ¢34,
Lemma 5.21 If 3+ 2 <0 then Img4q < Im¢y.

Proof: Suppose that £ € Kgyq and consider the cohomology class [¢] € H'(X). Refer to the long
exact sequence (5.27). To show that [£] € Im ¢; we show that [¢] € Kerp; or equivalently that

€)1 = [ g =0
for all homology classes [7] € Hy(X). Without loss of generality suppose that 7 C X;. Since { €
Cg1(T*X) we have that [if{|yy, = O(eit2) on the component ¥; of ¥. Then there exists a
constant A > 0 such that for suitably large ¢t > T

[ e

< A eBit2)t

and hence we are done.

Lemma 5.22 If 3 +2 > 2 —n then Im¢; < Impgiq.

Proof: Since Im 3 is decreasing with 8+ 1 we may without loss of generality suppose that 542 €
RY\ D(AY). Suppose that £ € C2°(T*X) with d€ = 0 and consider [£] € H'(X). Then as —d}¢ €
C(X) < Lj) 4(X) we deduce from Corollary 5.4 that there exists f € L} 5, ,(X) with A f = —d}¢.
Since —d;¢ € LY 5(X), elliptic regularity as in Theorem 4.21 shows that f € LZ_ ;5. ,(X) < Cg5(X),
so that £ + df is an element of Kz, and we are done.

In actual fact, we have Im ¢y < Im g1 for 3+ 2 slightly smaller than 2 — n, as we now go on to
prove. Clearly this implies the previous result, but we have included the proof of Lemma 5.22 above
because it is simpler than the proof of Lemma 5.23 below, and Lemma 5.22 does not rely on the strong
decay properties of the asymptotically conical metric g.

Lemma 5.23 Ifmax{2 —n+a,2—-n—-A} < f+2<2—n then Im¢ < Imegiq.

Proof: Suppose that 3+2 € R with max{2—n+a,2—n—\} < f+2 < 2—n. Take any £ € C(X)
with d§ = 0. We must find an f € C°°(X) such that df +& € Kpg1, or equivalently df € CF5 (T X)
and Agf = —dg¢. For this we simply invoke Corollary 5.16: since § € LfﬂH(T*X) there exists
F e Lf5,,(X) and f, € C*°(X) constant on the ends of X such that A)(F + f;) = —d;¢. Elliptic
regularity tells us that since —Agfb —d;& € C2°(X) we have

FelL?

so,012(X) € C555(X)

and then we are done after putting f = F + f.
|

It follows from Lemma 5.21 and Lemma 5.23 that Im ¢)541 = Im ¢4 for all max{2—n+a,2—n—A} <
8+ 2 < 0. We now deal with the cases g+ 2 > 0.

Lemma 5.24 If 3+ 2 > 0 then Im g = HY(X).

Proof: Since Im 131 is increasing with 541 we may without loss of generality suppose that 342 €
RE\ D(AY). Now, Corollary 5.9 tells us that any class in H*(X) can be represented by a closed form
£ e Cx(T*X). Since

—dg¢ € C%(X) < L 4(X)
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we know from Corollary 5.4 that there exists f € L 512(X) with Agf = —d;¢. Now the weighted
regularity Theorem 4.21 implies f € L, 5,,(X) and then the Embedding Theorem 4.17 shows that
f € CF 5 (X) so that  +df € Kgi1 as required.

In actual fact, we have Imt_; = H'(X), as we now go on to prove. Clearly this implies the
previous result, but we have included the proof of Lemma 5.24 above because it is simpler than the
proof of Lemma 5.25 below, and Lemma 5.24 does not rely on the strong decay properties of the
asymptotically conical metric g.

Lemma 5.25 Im¢_; = H'(X).

Proof: By Corollary 5.9 any cohomology class in H'(X) can be represented by a closed form n €
C=(T*X), and moreover we may suppose that there exists an S > 0 and o € C*°(T*X) such that
n = n*c over X \ Xg. By perturbing ¢ by an exact 1-form on ¥ we may further suppose that o is
gs-harmonic.

We wish to find an f € C*(X) such that df € C=(T*X) and A)f = —d}n. Now, a priori
—dyn € C%%(X), but can we do any better? In fact, we can: working over X \ Xg we have

xgm = —eMDtdt A (7" (%g0))

so that
d(xgm) = e~ Dt A d(7* (kg50)) = A T (d(#gy0)).

It follows that dZn = 0 precisely when dj o = 0, which is evidently the case as o is gs-harmonic
and X is compact. Now over X we have —djn = —(dj — dj)n, modulo elements of C2°(X) and from
Lemma 5.14 we deduce that —d%n € C°%,,(X). Now choose any ¢ € R” so that 2—n <e+a <0
and € > 0 and then

(X)

0. 7P P
Ag . Lk+2,a+s(X) - Lk,72+a+6

is an isomorphism, by Corollary 5.3 and Corollary 5.4. Since —d;n € C%%, ,(X) < L} 5, .. (X) we
deduce that there exists f € LZ+27Q+E(X) such that Agf = —dyn, with elliptic regularity showing
fe Lt ar(X) <G5 (X)

00, a+¢€

and we are done.

We finish this section on Img,; by considering the remaining case § 4+ 2 < 2 — n, so that
Imiygyi < Im¢@y. In the following lemma we give a condition for an element of Im¢; to lie in
Impg41. In general, it is quite hard to check explicitly if this condition holds. An exception is the
case L =1 and §+ 2 is only just smaller that 2 — n: in this situation there are no harmonic functions
on X with small positive growth rate other than constants so that dKer(Ag),g,n =0.

Lemma 5.26 Let 342 < 2—n with $+2 € RF\ D(A)). Let 6 € C(T*X) with d6 = 0 so that
[6] € Im¢pq. Then [6] € Imipgi1 precisely when there exists f. € C*°(X) constant on the ends of X
such that

(dh|o —dfe)r2(r-x) =0 (5.64)

for all h € Ker(A)) 5.

Proof: Clearly [5] € Im1s11 precisely when there exists an fec= (X) such that & + df € Kgiq,
that is, df € C55, (T*X) and AYf = —dé.

Suppose that there exists f, € C°°(X) constant on the ends of X such that equation (5.64) holds
for all h € Ker(Ag),/@,n. Then there exists f € Lf 5(X) such that Agf = Agfc — d*& and by elliptic
regularity and the embedding theorems f € CEﬁ_Q(X ). Taking f := f — f. shows [6] € Img41.
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Suppose conversely that there exists an f € C™ (X) such that df e C55.1(T"X) and Agf = —dgo.
Then by Lemma 5.10 there exists f. € C*°(X) constant on the ends of X such that f := f+ f. lies

in C3%,(X) and therefore
(dh|G — dfe)r2(r+x) = (hldyo — AS(f - f)>L2(X) = _<A2h|f>L2(X) =0

for all h € Ker(A))_5_,. Hence we are done.

5.2.3 Results for dim Kz,

The purpose of this section is merely to summarise the results of Section 5.2.1 and Section 5.2.2
above. We observe that for § 42 > 0 we have dimdKer(AY)g,o = dimKer(A))g42 — 1 since the
linear map d : Ker(AJ)z1o — dKer(A))gyo is surjective and has kernel the 1-dimensional subspace
of Ker(Ag) g+2 consisting of the constant functions. In particular, for small positive 5 + 2 we have

dideer(Ag)ngg = dim Span{dhy,...,dh} =L — 1.

Also we have
dimIm ¢; = dim H}(X) — dimKer ¢; = b}(X) — L + 1.

The various results of Section 5.2 are now summarised in Table 5.1. The definition of the analytic
piece of data x(8 + 2) is given in Section 5.1.1.

Growth rate Ker g1 Im g1 dim Kg41
B+2>0 dKer(A)) g2 H'(X) [V'(X)+L—-1+x(B+2)
B+2=0 Span{dhi,...,dhr} | H*(X) V(X)+L-1
2—-n<pB+2<0 Span{dhi,...,dhr} | Im¢ bi(X)
B+2=2—-n Span{dhi,...,dhr} | Im¢; bi(X)
max{2 —n+o,2-n—-A}<f+2<2-n 0 Im ¢ bi(X)—-L+1
B+2<max{2 —n+a,2—n— A} 0 < Im ¢y <bUX)—-L+1

Table 5.1: The kernels and images of the representation map 1341, together with the dimensions of
the infinitesimal deformation space K1, for strongly asymptotically conical Riemannian manifolds
(X,g) with rate a« <0

Suppose that we are interested in the infinitesimal deformations of a strongly asymptotically conical
special Lagrangian submanifold as an asymptotically conical special Lagrangian submanifold. To this
end, define C’EH(T*X) to be the vector space of 1-forms ¢ on X which are of class C* such that

sup |V§§|g = o(e(ﬁ+17j)t)
{t}x=

for all 0 < j < k. Then CA'EH(T*X) < C’EH(T*X) is a closed subspace: in fact CA'EH(T*X) is the
closure of C°(T*X) in C”gH(T*X). We now put

Co(T7X) = () Chy (T7X)
k=0

and then Kpyp := {€ € 5%, (T*X) : df = ;¢ = 0} < Kpy1, with a projection ¢, := Yotili,,,-
From the results given in Table 5.1, together with small modifications of the proofs in Section 5.2.1
and Section 5.2.2 above, we can compile a Table 5.2 which gives the dimensions of the spaces K B+1
for various 3 + 2 € RL. The definition of the analytic piece of data X(3 + 2) is given in Section 5.1.1.
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Growth rate Kergi1 Imypgi1 dim K41
+2>0 dKer(AD),, H'Y(X) [(X)+L—-1+x(8+2)
B+2=0 Span{dhi,...,dhr} | Im¢s bi(X)
2-n<B+2<0 Span{dhi,...,dhr} | Im¢; bi(X)
B+2=2-n 0 Im ¢ bi(X)—L+1
max{2 —n+o,2-—n—-A}<f+2<2—-n 0 Im ¢ bi(X)—-L+1
B+2<max{2 —n+a,2—n—A} 0 < Im ¢y <bUX)—L+1

Table 5.2: The kernels and images of the representation map 1[)54_1, together with the dimensions of

the infinitesimal deformation space K. 8+1, for strongly asymptotically conical Riemannian manifolds
(X, g) with rate a < 0

If we are interested in the space K, of infinitesimal deformations of X as an asymptotically conical
special Lagrangian submanifold, then we have 04+ 2 = 2 and

dim Ky = 0Y(X) + L — 1+ %(2)

where
R . . o _ . 0<pu<2n

g

5.2.4 Results for non-strong decay

Although it is not our primary concern, we shall note here what happens in the situation that the
metric g on X is merely asymptotically conical, rather than strongly asymptotically conical. In this
case we have Lemmas 5.17, 5.18, 5.20, 5.21, 5.22, 5.24, 5.26 holding and we can go on to fill in a
version of Table 5.2 for asymptotically conical metrics. This is Table 5.3: we have only given proofs
in the case § +2 € R \ D(A)).

Growth rate Ker ¢s1 Im 1/}g+1 dim k5+1
B+2>0and g+2cRE\ DAY dKer(Ag)%, HY(X) [o"(X)+L-1+%(8+2)
2-n<B+2<0 Span{dhi,...,dhr} | Im¢: bi(X)

B+2<2—n 0 <Im¢y <bi(X)—L+1

Table 5.3: The kernels and images of the representation map Iﬁgﬂ, together with the dimensions of
the infinitesimal deformation space Kgsy1, for asymptotically conical Riemannian manifolds (X, g)



Chapter 6

Deformations of AC special
Lagrangian submanifolds of C"

In chapter we consider the deformation problem for a certain class of special Lagrangian submanifolds
of C™, in a manner analogous to the deformation problem for compact special Lagrangian submanifolds
of a general Calabi-Yau manifold, as described in Section 3.2. The main result of this chapter is
Theorem 6.45.

6.1 Further analytic results

6.1.1 Fredholm theory for Holder spaces on non-compact manifolds

Most of the theory in the literature concerning the Fredholm theory of operators on non-compact
manifolds is given in terms of Sobolev spaces of some type, as in the theory of Lockhart, McOwen
and others presented in Section 4.2. However we shall be phrasing our deformation problem for AC
special Lagrangian submanifolds f : X — C” in terms of conical damped Hélder spaces Cg"a(E) for
bundles £ — X. In this section we bridge the gap by deducing Fredholm theory for Holder spaces
analogous to the material for Sobolev spaces as given in Section 4.2.

For the rest of Section 6.1 we return to the mind-set of Chapter 4 and assume that X is a manifold
with ends, as in Section 4.1. In fact, we shall assume all notation from Chapter 4.

Green’s operators on the full cylinder

For the time being, let’s suppose ¥ is connected, so that L = 1, and define X :=RxY the full cylinder
on . We further put E := 7* Ex; which is a vector bundle over X. In order to define Banach spaces
of sections of E we work as in Section 4.2.1, except only consider charts of the form V,, =R x U, for
1 < v < N,sothat Vi,...,Vy is an open cover of X. All weight functions ePt are then extended
to the full cylinder X, so that we obtain Banach spaces WY ;(E) and Blg’a(E) as in Section 4.2.1 by
omitting the terms with N +1 < v < N + K in the norms (4.8), (4.11), (4.12).

Notice that there is an obvious failure for many of the embeddings of Theorem 4.2, the problem
being that for 8 < § we have t3 > td for ¢ < 0. However, this aside, the Banach spaces W,f’B(E)
and Bg“(E) are very similar to the original spaces W} 5(E) and Bg’a(E) we defined in Section 4.2.1.

In particular, a translation invariant differential operator Py, : C°(E) — C°(F) of order I > 1 will
extend to bounded linear maps

Poo : WP 4(E) — WES(F) (6.1)
Py : BSTM(E) — BRU(F). (6.2)

We now have a very important result. For the rest of Section 6.1.1 we assume the (uniform) ellipticity
of the operator Ps, (respectively, P).

96
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Theorem 6.1 (Green’s function for Wkpﬁ(E) spaces) If € R\ D(Px) then the bounded linear
map (6.1) is a topological linear isomorphism.

Although we did not mention it in Chapter 4, Theorem 6.1 is the key result for proving the Fredholm
theory of that chapter. For a proof of Theorem 6.1 see the paper [49, Theorem 4.1] of Maz’ya and
Plamenevskii. The main idea is that given £ € C2°(F') we can define, for w € C, the Fourier transform

E(w, o) = \/% /C: e WtE(t, o)dt

so that £(w,-) is a section of the bundle Fy, ® C. Now if 3 € R\ D(Ps) we have Ps (w) invertible for
all w € C with Rew = 3 so we can define

(Apé)(t, o eVt Poo (w) " é(w, o) dw.

= 5

It turns out that Ag extends to a bounded linear operator W,fﬁ(ﬁ') — Wi, ﬂ(E) which inverts the
bounded linear map (6.1).

In order to deduce Fredholm theory for asymptotically translation invariant operators P on the
Bg’a(E) spaces, we shall need a result analogous to Theorem 6.1, valid for the damped Hoélder spaces.

Unfortunately, the results given in the literature do not deal with the Banach spaces BEG(E) directly,
but only a closed subspace: define EZ’“(E) to be the closure of C°(E) in the space BE’Q(E). In

more explicit terms, the space B’ﬁ”(EN’) can be defined as those sections £ of E which satisfy the decay
conditions

sup |p, (97€7)| = o(e™)
{t}xU,

forall 1 <v < N, 1< j<rankFE and 0 < |\ < k, together with a corresponding o(e”t) decay
condition on the Holder norm of the kth derivatives of €.

The following result is proved in the paper [49, Theorem 5.1] of Maz’ya and Plamenevskii.

Theorem 6.2 (Green’s function for Bga(E) spaces) If § € R\ D(Px) then the bounded linear
map X ) R }
Py : BiYY(E) — By (F) (6.3)

is a topological linear isomorphism. We denote the inverse of the map (6.3) by Rg.

We can use Theorem 6.2 to prove various desirable properties of the map (6.2) for 8 € R\ D(Px).
We begin with the following lemma:

Lemma 6.3 Let K1 C R\ D(Py) be compact. Then there exists an M > 0 such that ||Rg|| < M for
all B € K1. Here |Rg|| denotes the operator norm of the map Rg : B’ga(F) — BZH’Q(E).

Proof: Fix any 0 € R. Then for all € € R we have a topological linear isomorphisms
et By*(E) — By (E) (6.4)

Moreover, it is easy to check that one can obtain a bound on the operator norm ||e®|| of the map
(6.4) which is independent of ¢ and polynomial in €.

For the purposes of this proof, let (Py)s denote P, acting on the space B§+l’a(E). Then it is
easy to see explicitly from equation (4.17) the map & — e %!(Px)s1c€! is a continuous map

Hk+1,a /1= Hk,a -
RHB(B(; (E), Bg (F))
Since inversion is a continuous map we deduce that € — e *'Rs . et is a continuous map

{e€R:6+e€R\D(Px)} — B(BYy“(F), By™(E))
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and so there is some M; > 0 such that ||e ¢! Rs,.e®t|| < M; for all ¢ € R with 6 + & € K;. Therefore
for such ¢ € R we have

[Rssell = lle'e™" Roycee™=|| < Malle=|l[le™="|]

and we are done because of the polynomial bound we can obtain on ||e*¢!|| in terms of ¢.

|
Corollary 6.4 Suppose that Ko C R\ D(Py) is compact. Then there exists a C > 0 such that if
1. B€E Ky and € € Bgil&a( ) for alle >0
2. supp(&) C (T, 00) x X for some T € R
3. Put € By (F)
then & € BkH “(E) with
1€l presta iy < CllPocéll gt (6.5)

Proof: Take a compact subset K1 C R\ D(Px) such that K C V C K; for some open subset V' C R,
and then let M > 0 be as in Lemma 6.3.

Suppose that conditions 1, 2, 3 above hold. Then clearly ¢ € Bgiia( ) for all € > 0 and
furthermore we have

||§||B’“+la(E) - ||Rﬁ+s oogHB’“““ ||R,8+5|H|Poof||3ka (F) < MHPoogHB’ng(F)

for all e > 0 such that S+ € V. But now observe that if n € BE’G(F) is such that supp(n) C (T, 00)x %

then n € Bgfg( ) for all € > 0 and

||77||Bgf5(13‘) < C’e_ETHnHBZ,a(F)
for some constant C’ > 0 independent of T, i, 3 and . We now have

I€ll g e gy < MC'e _€T||Poo§||Bka

for all e > 0 with 8+ ¢ € V. Tt follows quickly that £ € Bk'H ““(E) and that the inequality (6.5)
holds for some C' > 0 independent of T', { and § € K2. To see this, take for example 1 < v < N,
1< j <rank F and 0 < |[A| < k. Then for = (¢,0) € (T, 00) x U, we have

e (0%,

< lléllprriesy < MC'e _€T||Poo€||3ka

and letting € — 0 shows
le= P (p,07¢Y) | < MC| Pootl| g 5y (6.6)

Taking a supremum in the inequality (6.6) over all x = (¢,0) € (T,00) x U,, followed by summing
1<v<<N,1<j< rank E and 0 < [A| < k, gives the required bound: the Holder part of the
BEH"L(E) norm is handled just as for the BZH(E) part. Alternatively, one could just show that
¢ e Bg(E) and then appeal to the version of Theorem 4.6 which holds for the bundle E: it is easy to
show that in results such as Theorem 4.6 the estimating constant Cs can be taken to be independent
of 3 provided we restrict 8 to some compact subset of RE.
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Scale broken estimates and Fredholm theory

We now apply the results above to the usual situation of bundles E, F' over our manifold X, which
we now assume to have an arbitrary number L > 1 of ends.

Corollary 6.5 Suppose that Ko C RY \ D(Ps) is compact. Then there exists a C > 0 such that if

1. € Ky and & € B 2(E) for alle >0

2. supp(§) € Xoo
3. P& € By*(F)

then & € BZH"L(E) and
€l sy < CllPrckl e s (6.7)

Proof: This is immediate if we apply Corollary 6.4 on each end of X.

Note that one would expect the inequality (6.7) to fail for non-zero elements { € Ker(Py)g and
that is what the second condition is meant to rule out. We now give a lemma which we shall need for
the main result of this section, Theorem 6.7.

Lemma 6.6 (Interpolation Inequality) Let S > 0. Then for all € > 0 there exists C(e) > 0 such
that

[€llcrtria(e sy < elléllor+zamx,) T CENEcomxy) (6.8)
for all € € CF+29(B|x,).

Proof: Define B := {¢ € CF2e(E|y,) : [€llcrrza(mng) =1 and [[Ellortiie(mx,) = £}. Since
the embedding C*¥*2%(E|x,) — C*t1¢(E|x,) is compact we deduce that the closure B of B in

CktLe(E|x,) is compact. It follows that the function
B — R
& = llElleoeixy)

attains its minimum, which must be strictly positive as ||§Hck+1,a(E|XS) > ¢ for all £ € B. Therefore

there exists a C'(g) > 0 such that
1
> -
||£HCO(E|XS) O(E)

for all ¢ € B, and the result follows: given ¢ € C*+22(E|x,) with [€llox+2.a (i) ,) = 1 we have either
§ € Bor [llcr+ra(my,) <€ and in both cases the inequality (6.8) holds.

|
The main use of interpolation inequalities is to replace norms such as || - [|ck+1.a (g x) on the right
hand side of an estimate with weaker norms such as || - [[co(z|y ), When the left hand side of the

estimate is a strong norm such as || - [|or+2.a(pg| ). We shall do this in Theorem 6.7 below.

We can now move on to prove the following scale-broken estimate for asymptotically translation
invariant differential operators P. Theorem 6.7 is the key result for proving Fredholmness for the
asymptotically translation invariant operator P : BEH’G(E) — BE’G(F).

Theorem 6.7 (Scale Broken Estimate) Suppose that Ko C RL \ D(P) is compact. Then there
exist C1,S > 0 such that if § € Ky then

€l ety < Ca(I1PEN ey + I€lloocmin, )

for all ¢ € B (E).
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Proof: Since Ky C RE\ D(P) = RY\ D(Py) is compact we may take the C' > 0 as given in Corollary
6.5. Now, given S > 0 define

e Bg l“(E) with supp(§) € X \ Xg
P — Py||s := sup P — Po)&|| gragp 13 .
[ ls :=su {H( ) HB’S ORI ||Bg' ey S 1

the operator norm of P — P, restricted to X \ Xg. It is easy to show, using the asymptotic conditions
on P — Py, that ||P — Px|ls — 0 as S — oco. So fix some S > 0 such that

1
1P = Puclls < &

Also, fix some ¢g € C*°(X) such that supp(¢s) C Xog_. and supp(l — ¢s) C X \ Xgic where e >0
is small.

Now let 8 € K5. Then given £ € BZH’“(E) we can write £ = £, + £ where . = ¢s€ and then
||§oo||3’5+‘>a(E) < CHPOOfooHBgv“(F)
by Corollary 6.5. It follows that

||§oo||3:;+lv“(E) < C(||P§<>O||Bgv“(F) + P - POOHSHgOOHBg“*“(E))

so that
||§oo||B’g+l*“’(E) S O2||Pfoo|‘3g="'(p) (6.9)
where Cy = ﬁ. We may now estimate
1Pelpecry = PO =68)€l o r)
< NPl oy + 195 PEl gt gy + 1P D516 N gt
< C(IPElgrecr + I€llcrsi-romin,)) (6.10)

for some C3 > 0 independent of 8 and £. This is because the commutator [P, ¢g] is differential
operator of order [ — 1 which is supported on Xs5. Now a standard interpolation inequality, such as
in Lemma 6.6, together with inequalities (6.9) and (6.10), allow us to write

l€scll ity < Ca(IPEN ey + o )

for some C4 > 0 independent of # and £. The usual Schauder interior estimates [16, Theorem 1] for
. on Xog_ . C Xog now finish the proof of the theorem.

|
Corollary 6.8 Suppose that 3 € RE\D(P). If A< BEH’G(E) is any closed subspace such that
By (E) = Ae Ker(P)g (6.11)
then there exists C > 0 such that
||§||BZ“'“(E) S C||P§||Bg=a(p) (6.12)

for all € € A.

Proof: Armed with Theorem 6.7 we can proceed as in the compact case of Theorem 3.6.

Take S > 0 as in Theorem 6.7 and consider the composite

BET(B) — C(E|x,.) — C°(Elx,e) (6.13)
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where the first map is restriction, which is a continuous map. By the Arzela-Ascoli Theorem, the
second map of (6.13) is compact. Therefore the composite (6.13) is compact.

Let A < BEH"I(E) be a closed subspace and suppose for a contradiction that (6.12) fails. Then
there exists a sequence (§;) C A such that ||§j||Bg+z,a(E) =1forall j > 1 and \\P§j|\Bg,a(F) — 0 as

j — o0. Then by the compactness of (6.13) there is subsequence (&;.) C (§;) which is convergent,
and hence Cauchy, in the C°(E|x, )-norm. It follows from Theorem 6.7 that (¢;,) is Cauchy in the
Bg+l’“(E)—norm, so there exists £ € A with ||€;,. —€||Blg+l,a(E) — 0 asr — co. But now H§||B§+Z,Q(E) =1

and P¢ = 0 force the required contradiction.

Note that, since Ker(P)g < BgH’G(E) is finite-dimensional we can always find closed subspaces
A< B§+l’a(E) such that the decomposition (6.11) holds. It follows from Corollary 6.8 that the image

Im(P)ZH’a of the bounded linear map P : BgH’a(E) — Bg’a(F) must be closed if 3 € RY\ D(P). In

fact, we can do even better, as the next theorem shows.
Theorem 6.9 If 3 € Rl \ D(P) then the bounded linear map
k+l,a k,a
P: BiT(E) — By (F)
is Fredholm and has closed image

Im(P)kh = {n € BYU(F) : (n|h) 2y = 0 for all h € Ker(P*),g}.

Proof: An integration by parts argument shows that
Im(P)ZH’a < {n € Bg’a(F) :(|h)r2(py = 0 for all h € Ker(P*)_ﬁ}.

but the problem is to show the reverse inclusion. For this, suppose that n € BE’G(F ) is such that
(nlh)r2(ry = 0 for all h € Ker(P*)_g. Then, since n € Wy 5, (F) for all ¢ > 0 we may use the version
of Theorem 4.25 for asymptotically translation invariant operators

P W}f+zﬁ+a(E) - Wlf,ma(F)

to deduce that there exists £ € ﬁs>0VV,f+lﬁ_~_E (E) such that P€ = 7. We prove the result by showing
that & € BSH’Q(E). For this, pick p > 1 so that k + 1 — % > a. Then from the Embedding Theorem
4.2 we have that ¢ € BgﬁE(E) for all € > 0 and then elliptic regularity as in Theorem 4.12 shows
£ e BZIZE“(E) for all € > 0. To show that in fact £ € BEH’G(E) we appeal to Theorem 6.7: for then

we see that there exist C7,S > 0 independent of € > 0 such that
Hg”Bng’a(E) < Cl(”nllB’EfE(F) + ||§||C0(E|X2S)>

for all ¢ > 0. But now as in the proof of Corollary 6.4 we may write ”77”3’5*“ (F) S CkisT”””B’é*“(ﬁ)
+e

for some C’ > 0 independent of T, n, 3 and £. Then we have
1]l gty < Cr(C e lInll o iy + [Elloo(EIxyg))

for all ¢ > 0 and we may show that & € BEH"’(E) using the method of letting ¢ — 0 at each
x = (t,0) € Xo as in the proof of Corollary 6.4. Hence we are done: the Fredholmness of P follows
immediately because the subspace

{77 € Bga(F) : <n‘h>L2(F) =0 for all h € KGT(P*),I@} < Bgﬂ(F)

has finite codimension dim Ker(P*)_z.

We now state the immediate corollary for asymptotically conical operators acting on the conical
damped Hélder spaces.
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Theorem 6.10 Let Q : C°(F) — C(F) be a uniformly elliptic, asymptotically conical operator of
order | > 1 and rate v € RE. If B+~ € RY\ D(Q) then the map

Q: CEh(E) - Chy(F)

1s Fredholm with image
Im(Q)k e = {n € CH(F) : (nlh) g2y = 0 for all h € Ker(Q*),ﬁ,n}
which is a subspace of finite codimension dim Ker(Q*)_g_y,.

The following corollary of Theorem 6.10 is immediate.

Corollary 6.11 Let Q : C°(E) — C°(F) be a uniformly elliptic, asymptotically conical operator of
order 1 > 1 and rate v € RE. If B+~ € RV \ D(Q) then we may write

CHY(F) =Im(Q)§ i &V

where V' < CS’Q(F) is a subspace of finite dimension dimV = dimKer(Q*)_g_n. In particular,

dim Coker(Q)ZilA;a = dim Ker(Q*)_g_n, and if Ker(Q*)_g_, < C}g’a(F) then we may take V to be

equal to Ker(Q*)_g—n.
It follows from Corollary 6.11 that for all 3+~ € RE\ D(Q) we have

Ind(Q)g14* = dim Ker(Q) g4 — dimKer(Q")_p_n = Ind(Q)1,,, 4,- (6.14)

It is now easy to see that if 4 v € D(Q) then the bounded linear map @ : Cgﬂya(E) — C’E’G(F)
cannot be Fredholm: for otherwise Theorem 4.24 and equation (6.14) would imply the existence of a
continuous family of Fredholm maps
- k+, k,
(8,8 — B(CzL"(B),C5(F))
€ e—sthst

whose Fredholm index jumps as e crosses 0 € (—&,&). This is a contradiction, because, as in [54,
Theorem 1.4.17] and elsewhere, the index is an integer valued continuous function on the set of

Fredholm maps Cgﬂya(E) — CE’“(F)~

As in the case of the (conical) damped Sobolev spaces, we now see from Corollary 6.11 that

dim Coker(Q)515* and Ind(Q)5 1> are independent of k,a provided that 8 + v € RE \ D(Q), and

similarly for asymptotically translation invariant operators on the Bg’a(E) spaces.

6.1.2 Exceptional sets for operators derived from AC metrics

Recall that an asymptotically conical metric g on the manifold with ends X induces uniformly elliptic,
asymptotically conical operators Ay and dj+d, acting on the bundles A"7™ X and A*T™ X respectively.
It is the purpose of this section to give an explicit description of the sets D(Ag), D(d; +d) CRE, so
that we know when the operators Ay and dj + d are Fredholm when acting between conical damped
Sobolev or Holder spaces. As usual, § denotes the metric on X which is exactly conical on the infinite

piece X, of X.

The spectra of compact Riemannian manifolds

We begin with some facts about the spectra Spec(X, gs, r) of a compact Riemannian manifold (%, gs)
of dimension dim¥ = n — 1. For each 0 < » < n — 1 we have Spec(X, g, r) a discrete, countable
subset of [0,00). Also, 0 € Spec(Z, gx, ) precisely when H"(X) # 0. Given p > 0 we write

Vii=Ker(Ay — )
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which is a finite-dimensional subspace of C*°(A"T*X). Moreover, V* # 0 precisely when p €
Spec(%, gs, 7). We further put

Ut = VINdC®(A"'T*Y)
WE = VENd;C®(ATITY)
so that given 0 < r < n —1 and p > 0 we have U* # 0 (W}# £ 0) precisely when p € Spec(3, g5, 7)
and g has a non-zero (co)exact eigenform. We put
U = {u>0:UF+#0}
W, = {pu>0:WH#0}
so that each U,, W, is a discrete, countable subset of [0,00) not containing 0. We call U, the rth
exact spectrum of (X, gs) and W, the rth coezact spectrum of (X,gs). Note that Uy = @ and that
Wo U {0} = SPGC(E, gx, 0)
It is easy to show that for all 0 <r < n —1 and p > 0 we have
Vi=UreWH
and that the maps
dy, U}t — Wi, (6.15)

T

d:wpr — U, (6.16)

are linear isomorphisms. Moreover, if 3 is oriented we have a Hodge star operator 4. and linear
isomorphisms

9w 1 UF = Wi,y (6.17)
tgs T WE = Uy .y (6.18)
%9 P H'(D) — H"7Y(X). (6.19)

From now on we suppose that ¥ is oriented. It follows that H"~}(X) = H?(X) # 0, and the set of
spectra {Spec(E, gs,m):0<r<n— 1} is completely determined by:

1. The cohomology groups H*(X), H*(X),..., H™(X) where r; = 252 if n is even and r; = 251 if
n is odd.

2. The coexact spectra Wy, Wy, ..., W,, where ry = ”7’2 if n is even and ry = %’3 if n is odd.

Note that both H(X), H?(X),..., H™(X) and Wy, W1, ..., W,, are “independent” sets of data in that
no further identifications can be made using the isomorphisms (6.15), (6.16), (6.17), (6.18), (6.19).

Exceptional sets for A}

Recall that differential operator Ay : C°(A"T*X) — C(A"T*X) is uniformly elliptic, order 2 and
asymptotically conical with rate 2. Moreover the bounded linear maps

AL LY (AT X) = LY (ATT*X) (6.20)
Ay CEIZUANT'X) — CRY(A'T*X) (6.21)

are Fredholm precisely when §+2 € RL\D(AQ) where D(A}) = D(Px) is computed as in Section 4.2.2.
As in Table 4.1, the translation invariant operator Puo : C°(A"T*X) — C°(A"T* X)) corresponding
to the Laplacian A acts as

Py = ePIALE, (6.22)
We view the bundle A"T* X as being admissible with slice A"T*X @A™~ 1T*Y got via the vector bundle
isomorphism
(ATT*E) @ ¥ (A" MT*Y) =2 AT X (6.23)
(¥, ¢) < P+dtAg

and then we have the following result.
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Lemma 6.12 If we work with the identification (6.23) then the translation invariant operator (6.22)
corresponding to A; acts as

POO_<A;Z—(§7§+T)((§+7L—T—2) » , —2d ; )
—2dg, At = (s tr=2) (5 +n-7)

on the bundle m* (A"T*Y) @ 7* (A" ~1T*%).

The proof of Lemma 6.12 is a long, but entirely straightforward calculation: we omit the details. It
follows from Lemma 6.12 that for each w € C and 1 < j < L the operator P (w) acts as

AL, —(w+r)(w+n—r—2) —2d ) (6.24)

Pw(w)Z( —2d3 Art—(w+r—2)(w+n—r)
on the complexified bundle (A"T*Y; ® C) & (A" 'T*%; ® C). Given w € C we define

a(w) :=(w+r)(w+n—r—2) bw):=(w+r—2)(w+n-—r)
c(w) = (w+r)(w+n-—r) dw):=(w+r—-2)(w+n—r—2)=clw-—2).

Note that by completing the square in w it is easy to show that if any one of a(w), b(w), c(w), d(w) is
real and non-negative then w € R. We can now state for which w € C the map

Pyo(w) : WP L (A'T*S; @ C) @ (A 7'T*S; @ C)) — W ((A'T*E; @ C) & (A 'T*%; @ €))

is an isomorphism of Banach spaces: recall the definition of the subsets C(Ps,j) C C from Section
4.2.2.

Lemma 6.13 Let w € C. Then w € C(Px,j) precisely when at least one of the following holds:

L. a(w) =0 and H"($;) #0 2. b(w) =0 and H71(%;) #0
3. a(w) € W, 4. b(w) € W,
5. c(w) e W,_1 6. d(w) eW,_1

where the coexact spectra are those of the Riemannian manifold (X;,gs).

Note that cases 5 and 6 of are just translates of each other. The proof of Lemma 6.13 is a messy
case by case analysis, whose details we omit. Since each of the cases of Lemma 6.13 give rise to a
real, non-negative w it follows that D(Ps,,j) = C(Px,j) for each 1 < j < L and we now have a very
explicit picture for when the bounded linear maps (6.20) and (6.21) are Fredholm.

Corollary 6.14 Let 3 +2 € RE. Then B+2 € D(A}) precisely when there exists a 1 < j < L such
that B +2 = w for some w satisfying at least one of 1, 2, 3, 4, 5, 6 of Lemma 6.13.

Using Lemma 6.13 we can also deduce the existence of open subsets

L r
I, x---xI,CR \D(Ag) (6.25)
L factors

where each I,, C R is a “good interval” for the growth parameters 8; + 2.

Corollary 6.15 If0 <r < 5 —1 define I, := (r+2—n, —7), an open interval of length n—2—2r >0
and if 5 +1 <r < n, define I, := (2 —r,r —n) an open interval of length 2r —n —2 > 0. Then the
inclusion (6.25) holds.

Corollary 6.15 is easy to deduce from Lemma 6.13 and the definitions of the polynomials a(w), b(w),
c(w), d(w) given above: we omit the details. Note that for r close to 0 or n the “good interval” I,

has length close to n — 2, and the length of I,. decreases to 0 as r approaches 7.

The following two examples will be particularly useful for us: note we have already calculated
D(AY) in Section 5.1.1.
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Example 6.16 The Laplacian A; on 1-forms. After some brief calculations we find that if 1 < j < L
then B; +2 € D(A;j) precisely when at least one of the following hold:

1. (B; +3)(B; + n+1) € Spec(X;, g5, 0)
2. (,BJ + 1)(ﬁj +n—1)e Wy,

where the coexact spectrum Wy is that of the Riemannian manifold (¥, gs).

Example 6.17 The Laplacian A; on 2-forms. After some brief calculations we find that if 1 < j < L
then B; +2 € D(Ag,j) precisely when at least one of the following hold:

1. (Bj+2=—-2o0rpB;j+2=-n) andHQ(Zj) #0 2. (Bj+2=00rp;+2=2-n) andHl(Ej) #0
3. (B +4)(Bj +n—2) € W 4. (B; +2)(Bj +n) € Wy
5. (Bj+4)(ﬂj+n)EW1 6. (ﬁj—|—2)(ﬁj—|—n—2)€W1,

where the coexact spectra are those of the Riemannian manifold (£;,gs). Note that case 4 consists
precisely of the points in D(AY,j) \ {0,2 —n}.
Exceptional sets for dj +d

Recall that differential operator dj +d : CZ°(A*T™"X) — C2°(A*T* X) is uniformly elliptic, order 1
and asymptotically conical with rate 1. Moreover the bounded linear maps

Ay +d: Ly 5 (MNTX) — L} 5(A'T*X) (6.26)
Ay +d: CRI (AT X) — CyY(A'T*X) (6.27)

are Fredholm precisely when 3+ 1 € RE \ D(dj + d) where D(d; + d) = D(Px) is computed as in
Section 4.2.2. As in Table 4.1 the translation invariant operator P, : C°(A*T*X) — C°(A*T*X)
corresponding to dj + d acts as

P = e " (e} + d)e" (6.28)

on r-forms. We view the bundle A*T*X as being admissible with slice A*T*Y & A*T*¥ got via the
vector bundle isomorphism

Il

7 (A*T*E) @ " (A*T*Y) NT*X (6.29)
(,0) < Y+dtAg.
We now have the following result.

Lemma 6.18 If we work with the identification (6.29) then the translation invariant operator (6.28)
corresponding to dy +d acts as

(A +d —(F4n-r—1)
P°°_( Far T+ (6.30)

on the bundle 7 (A*T*X) @ 7*(A*T*X). In equation (6.30) r denotes the operator which multiplies
r-forms by r.
The proof of Lemma 6.18 is a long, but entirely straightforward calculation: we omit the details. It

follows from Lemma 6.18 that for each w € C and 1 < j < L the operator P (w) acts as

= (55 3"

on the complexified bundle (A*T*3; ® C) @ (A*T*X; @ C). Recall the definitions of a(w), b(w), c¢(w),
d(w) given above. We can now state for which w € C the map

(6.31)

Po(w) : WP

7 ((A*T*S; ® C) @ (AT*E; © C)) — WP ((MT*E; @ C) @ (AT*S; ® C))

is an isomorphism of Banach spaces.
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Lemma 6.19 Let w € C. Then w € C(Px, j) precisely when there exists an 0 < r < n such that at
least one of the following holds:

Lw+r=0and H(Z;) #0 2. w+n—r=0and H"1(Z;) #0
3. a(w) € W, 4. b(w) € Wy_o
5. c(w) € Wy

where the coexact spectra are those of the Riemannian manifold (X;,gs).

Again, we omit the details. Since each of the cases of Lemma 6.19 give rise to a real, non-negative w
it follows that D(Ps, j) = C(Pso, j) for each 1 < j < L and hence we have a very explicit picture for
when the bounded linear maps (6.26) and (6.27) are Fredholm.

Corollary 6.20 Let 5 +1 € RE. Then 3+1 € D(d; + d) precisely when there exist 1 < j < L and
0 <7 < n such that B; + 1 = w for some w satisfying at least one of 1, 2, 3, 4, 5 of Lemma 6.19.

Note also from Lemma 6.13 and Lemma 6.19 that

D(d; +d) C [ DAy,
r=0

but this is exactly what we should expect, because, for example, the composite map

p * ok d;er P * vk d;er D * ok
Dg i LYy io(NT*X) 2o L0 (NTPX) 2 LF (AT X) (6.32)

is Fredholm precisely when
B+2eRM\ | DAY,
r=0

and if (6.32) has finite dimensional cokernel then so has

A5+ d: L 5 (ATT7X) — L2 (AT X).

Note that in order to refine some of the above results one could also consider the bundles A°dd/even* x
over X, which are admissible with slice A°94/even*y; g Aeven/edd*y;  Then the differential operator

(d; + d)odd/even . C(c\)o (Aodd/evenT*X) N C;)o (Aeven/oddT*X) (633)

is uniformly elliptic, order 1 and asymptotically conical with rate 1. Using the techniques described
above, it is easy to work out the exceptional sets of the operators (6.33), and it turns out that in
building these subsets D((d; + d)Odd/e“e") C RE one only takes the 0 < r < n in Lemma 6.19 which
are odd or even accordingly. As an application, we give two examples in low dimensions.

Example 6.21 dim X = 3. Note that the only “independent” pieces of data are H*(X) and Wy.
After some brief calculations we find that if 1 < j < L then B; +2 € D((d; + d)"dd,j) precisely when
at least one of the following hold:

LBj+1==2o0rB;+1=0 2. B;+1=-1and H(Z;) #0

3. (Bi+1)(8; +2) € Wy 4. (B +2)(B; +3) € W,

where the coexact spectrum Wy is that of the Riemannian manifold (¥;, gs).

Example 6.22 dim X = 4. Note that the only “independent” pieces of data are H*(X), Wy and Wy.
After some brief calculations we find that if 1 < j < L then 3; +2 € D((d; + d)"dd,j) precisely when
at least one of the following hold:

1.5j+1:—3 2.ﬁj+1:—1andH1(Zj)7$O

3. (B +2)(B+4) e Wy 4. (B; +2)? € Wy,

where the coexact spectra are those of the Riemannian manifold (X;,gs).
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6.1.3 “Hodge theory” on non-compact manifolds

Although we shall be working with the conical damped Holder spaces in this section, the material can
be easily converted to the setting of the conical damped Sobolev spaces.

For non-compact Riemannian manifolds (X, g), many of the results of Section 3.1.3 fail to hold.
In particular, if we suppose that X is a manifold with ends equipped with an asymptotically conical
metric g then we have

{¢€ Ciy(NT*X) - dj¢ = 0 and d§ = 0} < Ker(A)) 40 (6.34)

but in general the reverse inclusion in (6.34) fails to hold. Indeed, when [ + 2 is too large the usual
integration by parts argument is not valid. We can, however, give some useful results, and begin with
the following:

Lemma 6.23 If (6+1)+ (0 +1) <2—n then
&3 (CHIPY AT X)) Nd(Cyy (AT X)) = 0.
Proof: Put 2¢:=(2—n)— (f+1)—(6+1) >0. If
§ € Chp*(ATTX)
0 € ciT
we use the fact that
¢ e I¥ (A+1T*X)
(AT X)

1,(B+e)+1
&y € Lf_ (0,

to write (d;&[dn) L2(arr+x) = (€lddn) p2(ar+17+ x) = 0, as required.

The following result gives conditions which ensure that the reverse inclusion of (6.34) holds.

Lemma 6.24 If¢ € Ker(Ag)ﬁ+2 then dy€ = 0 and d§ = 0 whenever either of the following conditions
hold:

L f+2<1-2
2. B+2<—rorfB+2<r—n.

Proof: Let £ € Ker(Ag) g+2. When condition 1 holds the integration by parts
0 = (JALE) 2 (arrex) = (d€[dE) L2 (ar+17+ x) + (dG€ldGE) L2(ar-17+x)
is valid, as in the proof of Lemma 6.23. We now introduce
3.0<r<g—land B+2<—r
4. %+1<r<nandﬂ+2<r—n.

If either condition 3 or condition 4 holds then from Corollary 6.15 and equation (4.53) we deduce that
§ € Ker(Af)s42 for some 6 +2 < 1— 3, since in both cases we have 1 — 5 € I, and 3 +2 < sup I,. for
each 1 < j < L. Therefore the conclusions of the lemma hold under elther condition 3 or condition 4.

Supposing that 7 > § — 1 and 8+ 2 < —r, we have

ﬁ+2<—r<1—g
so that dj¢ = d¢ = 0 by the first case. Similarly, if r < § +1 and 8+ 2 <r —n then
n
2<r— l-n=1-—
B+2<r—mn< 2—|— n 5

so that, again, dj§ = d§ = 0. The result now follows.
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Corollary 6.25 If 5 +2 € R"\ D(A}) then

AL (CEEYA T X)) = A3 (CEL (AT X)) + d(ChT (AT X))

whenever either of the following conditions hold:
L.B+2>1-3

2. 64+2>r+2—-morf+2>2-—r.

Proof: It is obvious that

AL (CERUA T X)) < A (CHLTH (AT X)) + d(ChT (AT X))

always. In order to prove the reverse inclusion, take £ € Clgi}’a(ATHT*X) and 7 € Clgii’a(Ar’lT*X).

Then dj§+dn € AZC;i?“(ATT*X) precisely when (d}&+dn|h) L2(arp+x) = 0 for all h € Ker(A}) 5.

But from Lemma 6.24 this is clearly the case whenever one of
3. f-n<1-3%
4. —f—n<—-ror—-0—n<r—n

hold, and these conditions are exactly those given.

Lemma 6.26 If either of the following conditions hold:
1. B+2>22-3%
2. B4+2>r+4—norf+2>4—r
then Ker(A}) 5 < Cg’a(ArT*X).
Proof: If the first condition holds then —3 —n < 8 and we are done. Suppose now, for example, that

B+2>r+4—n. Ifr <3 —1then we have I, = (r+2 —n, —r) and we are done since —F —n < —r
and 3 > r +2 —n. If, on the other hand r > § — 1 then

B+2>r+4-n=>25-14+4-n=3-5>2-3

so that the first condition holds, and we are also done. The case 8+ 2 > 4 — r is handled similarly,
proving the lemma.

Using Corollary 6.11, Lemma 6.23, Lemma 6.24, Corollary 6.25 and Lemma 6.26 one can prove
various Hodge decomposition theorems analogous to those of Section 3.1.3 which hold in the compact
case, for example: Proposition 3.11.

Another typical failure in the asymptotically conical setting is that although we always have

(d; + ) (CEE (T X)) < dy(CHEH* (AT X)) @ (1 (AT X))

the reverse inclusion will in general not hold. However, in the case of most interest to us, namely
r =1, we can employ a device to get round this. The point in the proof of the following result is that
the Laplacian on functions is only djd, rather than djd + ddj.

Lemma 6.27 If 342 e R*\ D(AY) and 342 > 2 —n then
(d; +d) (CHIT (T X)) = d; (C5IT(T7 X)) @ d(Ch (T X)) (6.35)

and furthermore d; (Cgﬁ’a(T*X)) = CE’G(X)'
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Proof: As noted above, one inclusion of equation (6.35) is obvious. To prove the other inclusion, take
§1,62 € Cgﬁ’a(T*X). Since the map

k+2, k,
AY L CREY(X) — CFY(X) (6.36)
is surjective there exists f € Cgig“(X) such that Agf = dzé1 — dg&e. Putting £ = & + df we see
that (dj +d)§ = dj& + d&z and we have proved (6.35). The final equation follows from the fact that

(6.36) is surjective.
|

When the metric g has a stronger decay rate than merely being asymptotically conical we can
actually say more than Lemma 6.27. But we first give an intermediate result.

Lemma 6.28 Suppose that the metric g is strongly asymptotically conical with rate o < 0. If max{2—
n+a,2-n—-A<f+2<2-nandfc Cgﬁ’a(T*X) then:

1. There exists f € C5°,,(X) and f € C*T2%(X) such that

B+2
AV(f+ f) =die. (6.37)
2. There exists f, € C°(X) constant on the ends of X and F' € Cgig’“(X) such that
AY(F + fo) = dzé. (6.38)

Proof: The proof of this result is just as for its Sobolev counterpart Corollary 5.16: the important
point is that we now have Theorem 6.10 at our disposal.

Corollary 6.29 Suppose that the metric g is strongly asymptotically conical with rate o < 0. If
max{2 —n+a,2—n—-A} <fB8+2<2—n then

(d; +d) (CHIT (T X)) = d; (CHI (T X)) @ d(Chi1* (T X)), (6.39)

Proof: Take 3+ 2 € R® as given. It is clear that the left hand side of (6.39) is contained inside the

right hand side. To prove the reverse inclusion, take &;,&s € C’gi} “*(T*X). By Lemma 6.28 there

exists f, € C°°(X) constant on the ends of X and F' € C’;Ig’a(X) such that AY(F+ f,) = & —djés.
Putting ¢ := & +dF +dfy € CkH’Q(T*X) we have (dj +d)§ = dj&1 + d&a, so that we are done.

B+1
|
For applications in the sequel we now consider when the linear subspace
(dy +d) (CH11 (T X)) < Cy*(X) & Cy*(A*T* X) (6.40)

is closed. Note that since d; (Cgﬂ’a(T*X)) < C]g’a(X) is closed whenever 42 € R" \ D(A)) it
follows from Lemma 6.27 that for 542 € RY\ D(AY) with 542 > 2 — n we have (6.40) a closed

subspace whenever

d(CEHT7 X)) < Oy (AT X) (6.41)

is closed. Using Corollary 6.39 we see a similar remark applies for max{2—n+a,2—n—A} < §+2 <
2 — n when the metric g on X is strongly asymptotically conical with rate o < 0. Unfortunately the
closure of the subspace (6.41) is not something that can be decided using the Laplacian on functions
alone. Instead the operators A;, A§ or dy +d must be introduced. This is, for example, one use of

the computations of the relevant exceptional subsets in Section 6.1.2.
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Proposition 6.30 The bounded linear map

Ay +d: CELT*X) — Cy*(X) & C5 (A T* X) (6.42)

has closed image whenever any of the following conditions hold:
1. B+1€RE \D((d; + d)Odd)
2. k>1, ﬂJrQGRL\D(Ag), B+2>2—n and no coordinate of B+ 2 is 0

3.k>1,+1eRV\D(A}) and +2 < 0.

Proof: If condition 1 holds pick any closed linear subspace A; < Cgii’a(AOddT*X ) such that

CHIP (AT X) = Ay & Ker((d +d)*™) , |

and then by conical damped version of Corollary 6.8 there exists a C' > 0 such that
||n||cg¢i’“(A*T*X) < Clldgn + d77||c’g~a(m:r*x)
for all n € A;. Now define A; := A; N Cgi}’a(T*X) and we have
CR (T X) = Ay {¢ € CFTP(T*X) - din = 0 and dn = 0}

with
Hn”c;;_ﬂv“(T*X) < C||d277 + dn”c[’;ﬂ(/\*T*X) (6.43)

for all n € A;. Suppose now that f € CE’G(X) and £ € Cg’“(AZT*X) are such that f + £ lies in the
closure of the image of the map (6.42). Then there exist (n;) C A; such that dyn; — fin C’g’a(X)
and dn; — & in C’g’a(AQT*X). It follows that (djn; + dn;) C Cg’a(A*T*X) is Cauchy and hence
from the inequality (6.43) we see that (n;) C Clgﬁ’a(T*X) is Cauchy, and hence convergent to some

n e A;. Clearly djn = f and dn = £ so that f + ¢ lies in the image of the map (6.42). Therefore

(6.42) has closed image.
If condition 2 holds, then note from Example 6.17 that 3+ 2 € RF \D(Ag). Let

Wi = {€ € Ch*(A*T"X) : dj¢ = 0 and g = 0}

which is a finite-dimensional vector space. Also let W5 denote the image of the map (6.42). We begin
by showing that Wi + W5 is closed in CE’Q(X) ® C’g’a(A2T*X). For this take any (n;) C Cgﬂ’“(T*X)
and (w;) € Wi such that djn; — f in CS’G(X) and dn; + w; — € in C’g’“(AQT*X). Now since the
map A2 : Cgig’“(AgT*X) — Cg’a(AQT*X) is Fredholm we see
Vo= {d;& +dy: 0 CEIAST X) and n € Cgﬂ’a(T*X)}

has finite codimension in Cg’a(AQT*X ), and so from Proposition 2.4 we deduce that V is closed
in Cg’a(AZT*X). As W, is finite-dimensional, V + W must be closed in Cg’a(AZT*X), and since
dn; +w; € V+ W, for all j > 1 there exist n € Cgﬁ’a(T*X), 0 e C’gi}’“(A?’T*X) and € € W, such
that £ = dg6 + dn+ £. Now, it is easy to show that { —dn = dj0 + ¢ is closed and coclosed using the
fact that k > 1, and therefore £ —dn € W;. Since f+2 € RE \D(Ag) and 8+2 > 2 —n we also know
that there exists u € Clgiia(X) such that Agu = f —djn and then

f+E&=(§—dn)+dj(du+n) +d(du +n)
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shows that f + & € Wi + Wa so that Wy + Wy is closed in C;’G(X) ® CS’G(A2T*X). We can now
quickly deduce that the image W5 of the map (6.42) must be closed. For this simply observe that Ws
has finite codimension in W7 + W5 and so by Proposition 2.4 must be closed in W7 + W5. It follows
that W5 is closed in C”g’a(X) ) Og’“(AQT*X).
Finally, suppose that condition 3 holds. Pick any closed subspace Ay < Clgﬁ’a(T*X ) such that
CHI™(T7X) = Ay & Ker(A}) g1
and then by the conical damped version of Corollary 6.8 there exists a C' > 0 such that
1
Hn”c}jﬂ*“(T*X) < C”Agan’gj’l(T*x) (6.44)

for all n € Ay. Now if f € Cg’a(X) and ¢ € Cg’a(AQT*X) are such that f + ¢ lie in the closure of
the image of the map (6.42) then there exist (7;) C Cgﬁ’a(T*X) such that djn; — f in Cg’a(X) and
dn; — & in C’g’a(AzT*X). Therefore

A;Uj —df +dy¢

in ng”l(T*X). Using Lemma 6.24 together with the fact that 8+ 2 < 0 it is easy to deduce that
every element of Ker(A;) g+1 is closed and coclosed, and therefore we may without loss of generality
take the (n;) above to lie in As. Then the inequality (6.44) above implies that (n;) is Cauchy in

C’}gﬂ’a(T*X) so that there exists an n € Ay with n; — 7 in Cgi}’a(T*X). It follows that djn = f
|

and dn = ¢ and we have shown that (6.42) has closed image, as required.

There are various good and bad features of the three conditions given in Proposition 6.30: the
first condition is good because it holds for almost all 34 1 € RE, but is bad because on many of the
non-generic points 3+ 1 € D((d} +d)°??) the map (6.42) will in fact have a closed image. The degree
of this badness will increase with n, but for small n the set D((d; + d)°??) is a close approximation
to the set of points 8+ 1 for which the map (6.42) does not have a closed image. The good and bad

features of conditions 2 and 3 are: there are fewer non-generic points, but we must restrict the values
of § + 1 with some inequality.

6.2 The Deformation Theorem

6.2.1 Asymptotically conical submanifolds of R™

A conein R™ is a non-empty closed subset C' C R™ such that the inclusion C'\ {0} — R™ is a smooth
submanifold and e’ - C = C for all t € R. It follows that 0 € C always. If S™~! denotes the unit
sphere in R™ then we define ¥ := C' N S™~! which is a smooth, compact submanifold of C'\ {0},
Sm=1 and R™. If C'\ {0} has dimension n then ¥ has dimension n — 1. We call ¥ the link of the
cone C, and sometimes say that C is a cone on X. Note that C itself is smooth precisely when C' is
a linear subspace of R™. When m = 2n and we identify R™ = C™ we abuse notation and say that a
cone C is (special) Lagrangian when the submanifold C'\ {0} — C™ is (special) Lagrangian.

The Euclidean metric e on R™ endows the manifold C'\ {0} with a metric we denote § and the
manifold ¥ with a metric we denote gs;. There is a diffeomorphism

i:RxY — C\{0}CR™ (6.45)

(t,o) +— elo
and we identify g with the pulled-back metric
i*g = e*(dt* + gx) (6.46)

on R x 3. The metric (6.46) is called the cone metric on R x X.
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Suppose for the rest of Section 6.2 that C C R™ is a fixed cone with link ¥ C S™~! and that the
metrics gy, g are as described above. We also fix X a manifold with ends, as in Section 4.1, built
using the link ¥ of C, so that there exists a compact submanifold with boundary Xy C X, and a fixed
diffeomorphism

X\ Xo— (T,00) x X (6.47)
for some T' € R. Now, using the metric gy (or indeed any metric) on ¥ we can build the Banach
spaces L} ;(E) and C’]g’a(E) when E is a bundle of the form (4.3), (4.4), (4.5) on X. Moreover, as
topological vector spaces, these Banach spaces are independent of gs;, asymptotically conical metric,
open cover, and partition of unity satisfying the conditions given in Section 4.1. Define C’g (E) to be
the closure of C°(E) in CE(E) and similarly define C’ga(E) to be the closure of C°(E) in Cg’a(E),
so that the “hat” spaces replace O(-) decay conditions with the stronger o(-) decay conditions. We
also put

C(B) = () CH(EB).

k>0
If f: X — R™is a map we write f € C”g(X, R™) whenever the components fi,..., fn : X — R all
lie in Cg(X ), and adopt similar conventions for the other vector spaces mentioned above.

Recall the definition (6.45) of the map i. Using the identification (6.47) we can extend the restricted
map i : (T,00) x ¥ — R™ to a smooth map ¢ : X — R™. In other words, the image of X \ X under
i is an infinite portion of the cone C' C R™. Tt is easy to see that ¢ € C°(X,R™). In a similar way,
we can consider the cone metric g as being a metric on X, and indeed build our Banach spaces of
sections using this metric. The fact that ¢ € C° (X, R™) is equivalent to

sup |p, (0%ik)| = O(e")
{t}xU,

for all 1 < v < N, multi-indices |A] > 0 and 1 < k < m, and this in turn is equivalent to the fact that
sup Vgik‘ = 019
{t}xZ g

forall j >0and 1 < k< m.

~ We shall say that a submanifold f : X — R™ is asymptotically conical with cone C' if f —i €
C°(X,R™). This condition is equivalent to either of the following:

L. supyyxu, PO (fr —ik)| =o(et)forall I<v <N, [N 2>0,1<k<m

2. SUP{y)xs ‘Vg(fk - zk)‘~ =o(e™=Dt) for all j >0, 1 <k < m.
g

Obviously if f : X — R™ is asymptotically conical with cone C then f € C7°(X,R™), which is again

equivalent to either of

L supgy o, |0 (0 fr)| = O(e!) for all L < v < N, A >0, 1 <k <m

2. supgyyxx ‘ngk‘a =0 forall j > 0,1 <k <m.

If X is a manifold with ends then there are various rates of decay at which a submanifold f :
X — R™ might tend towards a cone ¢ : C' — R™, and we shall now go on to consider rates which are
stronger than the o(e') decay given by the condition f—i € C‘fo (X,R™) above. However, f: X — R™
being asymptotically conical with cone C' is the weakest useful rate at which f : X — R™ could decay
towards C: any weaker decay rates for f —i mean a loss of control which makes the analysis of Chapter
4 and Chapter 5 impossible to implement: see Corollary 6.33 below. Also, if f —i € C’fo (X,R™) then
the cone C' to which f: X — R™ is asymptotic is uniquely determined, but this is not the case for
growth rates f —i € C{°(X,R™) or higher.

Let @ € R with & < 1. We shall say that a submanifold f : X — R™ is strongly asymptotically
conical with cone C' and rate & if f —i € C°(X,R™). This is equivalent to either of the conditions
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L. supgyxw, ‘Pu (fr — ix |— Oe®) forall 1< v < N, A >0,1<k<m
2. SUPgyx ‘V%(fk - zk)‘~ =0 forallj >0, 1<k<m
' g

Clearly if a submanifold f : X — R™ is strongly asymptotically conical with cone C' and rate & <1
then f: X — R™ is asymptotically conical with cone C, since C$°(X,R™) < C{°(X,R™).

We now give a result which shall be useful later, and demonstrates a typical application of the
above asymptotic decay conditions.

Proposition 6.31 Let (e1,...,ey) be the usual coframe on R™ and suppose that
m
0= Z 0j1--~j7‘6j1 & ey,
Jise-gr=1

is a covariant tensor of degree v = 0 on R™ such that each 8;,. ;. : R™ — R is a homogeneous
polynomial of degree § > 0.
LIff,f: X — R™ lie in Ck+1(X,Rm) and f — f € Clg"'l(X,Rm) (respectively f — f e
CkH(X R™)) then f*0—f*0 € C¥ (- 1)y g—r (@ T X) (respectively f*0—f*0 € Cé“r+671)7+57r(®rT*X)).

2. If f,f + X — R™ lie in ChtLa(X,R™) and f — f e C’EH’“(X,R’”) (respectively f — f €
é§+1’a(X, R™)) then f*6—f*6 € C’kriﬁ Dyt pr (@ TX) (respectively f*0—f*0 € Cfrié Dyt pr(@T7X)).

Proof: We assumejhat 0 + 1 > 1 because in the case 6 = r = 0 we just have a constant function 6
on R™ and f*0 = f*6.

Suppose firstly that f, f € C,’j“(X, R™) and that f — fe CgH(X, R™). Then we have, in our
usual coordinates & = (¢, o) over each (T, 00) x U,:

i - - o, 9f;,
o = Z | Z Oj,...5.0f) Dae. " O drg, ® - @ dwy,
ki,..eskr=1 \Jj1,...,dr=1 "
£ - < 3 af]l afljr
froo = > | Z (0.5, <>f)336k1 P | e © @ dw,
k1,...;kr=1 \J1,.--,dr=1 "
and for each 1 < j1,...,J, < m we may write:
0j,..5.0of = Z Ciy.isfin - fis

1<, is<Sm

9j1...jT Of = Z Cil...i(sfil .fla

1<in, e isSm

for some ¢;, .. i, € R. Using the given decay conditions it is easy to see that f*6— f*0 ek (r+6-1)7y+6— A@TT*X):

cach f;, fi and 8kfj,8kf] has decay O(e?*) in the first k derlvatlves, ecach f; — f; and Okfj — ka] has

decay O(eP') in the first k derivatives and each dag, ® -+ ® dwg, has decay O(e™"") in the cone

metric. Using a telescoping argument we see that the total decay rate of f*0 — f*0 is therefore

O(elr+6=1)7+5=")t) in the first k derivatives, as required. When f — f € C’]’”l(X R™) each f; — f;

and O f; — 8kf] have decay o(e®*) in the first k derivatives so that the total decay rate of f*6 — 0

is o(e(r+H9=17+8=1)t) in the first k derivatives, and f*0 — f*0 € CZ“TM_D,YH}_T(@TT*X) as required.
The case of Holder decay follows similarly: we omit the details.

Proposition 6.31 has many useful consequences:
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Corollary 6.32 Suppose f: X — R™ is an asymptotically conical submanifold with cone C. If 0 is
a covariant tensor on R™ which is constant in the usual coordinate system and f*0 =0 then *0 =0
viewing i as a map C — R™. Consequently, if f : X — C™ is a (special) Lagrangian submanifold
which is asymptotically conical with cone C' then C is (special) Lagrangian.

Proof: Suppose that § € C°(@"T*R™). Since i, f € C°(X,R™) and i — f € C°(X,R™) we have,
applying Proposition 6.31 with =~y =1 and § = 0:
"0 =10 — 0 (6.48)

lying in C’go(@TT*X). In equation (6.48) we view i as a map i : X — R™, but it follows immediately
that if we view 7 as a map 7 : C' — R™ we have

sup [i"0|5 = o(1). (6.49)
{t}xZ

Now pick any o € ¥ and any gx-orthonormal frame (fa, ..., f,) for T2X. Then

(etdt, el fo, ... €' fm)

is a g-orthonormal frame for the cotangent space of R x ¥ at each (¢,0) in which the form i*6 is
independent of ¢. It follows from equation (6.49) that we must have *0 = 0 on R x X.

The second assertion now follows from the first because the forms w and Im Q2 are constant in the
usual coframe for C™.

If f: X — R™ is a submanifold we shall always denote the metric induced on X by g := f*e. The
following result relates the decay of f towards ¢ with the decay of g towards the cone metric g.

Corollary 6.33 If f : X — R™ is a (strongly) asymptotically conical submanifold with cone C' (and
rate & < 1) then the metric g on X is (strongly) asymptotically conical (with rate « = & —1<0).

Proof: Suppose that f: X — R™ is asymptotically conical with cone C. Applying Proposition 6.31
with r =2, § =0 and 8 =~ =1 yields g — § € C5°(®?T*X) and that is the same thing as saying

sup V2 (g = g)|, = o(e™")
{t}x%

for all j > 0, which means that g is asymptotically conical. The case of strong decay follows similarly.

6.2.2 Deforming AC Lagrangian submanifolds of C"

Suppose now for the rest of Section 6.2 that f : X — R™ is a (strongly) asymptotically conical
submanifold with cone C C R™ (and rate & < 1), and let N — X be the normal bundle of X in R™.
We would like to deform f : X — R™ to “nearby” submanifolds fs : X — R™. By the Hopf-Rinow
Theorem [24, Theorem 1.4.8] the subset f(X) C R™ is complete as a metric space and therefore closed
in R™, so by the Tubular Neighbourhood Theorem 2.15 there exists an open subset UCN containing
the zero section such that the exponential map

explg: U — R™ (6.50)
is a diffeomorphism onto an open subset of R™. Recall that for each

§€l~]°°::{geCw(N):fweﬁforallxeX}

we have a submanifold f: : X — R™ got by identifying U = exp(U) via the diffeomorphism (6.50),
and then the normal vector field £ becomes identified with the map fe.
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One can think of a normal vector field £ € C°°(N) as a function £ : X — R™ such that &, € R™
lies in (7, X)* < T,R™ = R™ for each € X, and then since the metric e on R™ is flat we have

fe=7F+¢ (6.51)

for all £ € U™.

If¢e U then there is obviously a relationship between the growth rate of £ and its derivatives
and whether or not the submanifold f¢ is (strongly) asymptotically conical with cone C' (and rate
& < 1). However, we have not defined the notion of conical damped C*-spaces or conical damped
Holder spaces for the bundle N. Also, we shall primarily be concerned with the case m = 2n with a
fixed identification R™ = C", and then only Lagrangian submanifolds of C™. Therefore, for the rest
of Section 6.2 we assume that m = 2n, and we have a fixed identification R™ 2 C", and (in addition
to the previous assumptions on f) that f : X — C” is a Lagrangian submanifold. It follows from
Corollary 6.32 that the cone C' must be Lagrangian also.

We have a bundle isomorphism b,.J : N — T*X as in Section 2.3.4. Put U := (b,J)U, which is an

open subset of T*X containing the zero section. We also define U := (b, J)U> C C>°(T*X) as in
Section 2.3.4, and further put

v = {¢echx) g cUforan e X}
Uke = {g € ChU(T"X) €6, e Utorallz € X}
Ug = {€eCFIX)ig eUorallze X}

which each contain 0. Note that the subsets U} € C(T*X) and Ug’“ C Cg’“(T*X) need not be
open. We do, however, have the following useful result, which tells us that we may pick our tubular
neighbourhood U of f : X — C™ in such a way that the submanifold f : X — C" has “room to move”
within U in a manner we should like.

Theorem 6.34 We can always choose the above tubular neighbourhood U C N so that there exists
an € > 0 with
V= {ne T x): Inleger-x) < 2} € UL,

Proof: Recall the statement of the Inverse Function Theorem 2.7. It turns out that the open subset
V of Theorem 2.7 can be made to contain balls of a certain size determined by the operator norms of
F'(0), F’(0)~! and F”(z) for ||z| small. Estimates of this kind are, for example, to be found in the
book [1, Proposition 2.5.6] of Abraham, Marsden and Ratiu.

Suppose that k : Y — Z is a submanifold of a (complete, say) Riemannian manifold (Z,e), with
kE(Y) C Z a closed subset. Let N be the normal bundle of k¥ : Y — Z. The Tubular Neighbourhood
Theorem 2.15 is proved by showing that the exponential map exp : N — Z is a local diffeomorphism
at each point y € Y, so by the Inverse Function Theorem 2.7 one has a neighbourhood V,, C N of
each y € Y on which the exponential map is a diffeomorphism. If follows that

ve=JV =N (6.52)
yey

is an immersion, and as in Lang [42, Chapter IV, Theorem 9], there is a refinement {U, : y € Y} of
{V, 1y € Y} such that exp is a diffeomorphism on U := Uyey Uy-

In our situation, with an asymptotically conical submanifold f : X — C", one can show that there
exists a C' > 0 such that the open subsets {V,. : # € X} can be chosen so to contain a ball of radius Ce!
about each x = (t,0) € Xo,. The method here is to use an explicit coordinate description of the map
exp : N — C", and then the estimates of [1] mentioned above. This gives us an immersion as in (6.52)
where V has the required growth properties, and one can show that the refinement {U, : z € X} can
be taken so as not to destroy this growth.
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For the rest of Section 6.2 we fix the e > 0 and U C N as given in Theorem 6.34. The point of the
theorem is that if (by.J)¢ is any section of T* X which has C) norm less than £ > 0 then the image of
¢ lies inside the tubular neighbourhood U and therefore fe : X — C™ defines a submanifold (provided
¢ is smooth, say).

It follows immediately that we have

Vi = {ne ChrX) s Inlleger-x) <ep € U
Vi = {ne o X)  Inleyir-xy <} € UR°

VEe = {ne CE I X) s Inleyer-x) <=} C UF

for all 5 < 1. Obviously V[f C C’g (T*X) and V;’a - Cg’a(T*X) are open subsets each containing 0.

We now relate the growth rate of a normal vector field ¢ in the Euclidean norm with the growth
rate of the 1-form (byJ)§ on X.

Proposition 6.35 Let £ be a section of the normal bundle N, considered as a map £ : X — C”.
Then

1. €€ Cg(X, C") precisely when (bgJ)E € CE(T*X)
2. € CA"BC(X7 C") precisely when (bgJ)E € é’g(T*X)
3. ¢¢€ C’g’a(X, C™) precisely when (byJ)E € C’g’a(T*X)
4. £ € C’g’a(X, C") precisely when (byJ)E € CE’Q(T*X).
Proof: Write £ =: Z?Zl &je; where (eq, .. ., ezy) is the standard real frame for C™ and each &1, ..., §ay,

X — R. Then J¢ = Z?=1(§jej+n —&j+ne;). Suppose that = (t,0) are the usual coordinates on a
patch (T, 00) x U, C X . It is easy to show that

(bgJ)E = Z (—%fﬂn + afj+nfj>d$k (6.53)

k=1 81‘k 8.rk

in the coordinates x = (t,0). Working over (T,00) x U,, let (df)! be the n x 2n matrix whose
(k, j)-entry is ngi and let J be the 2n x 2n matrix

0 —I
= (7 )
in (n 4+ n) x (n 4 n)-block form. Now define A to be the 2n x 2n matrix
df)tJ )
A= (
( (df)
in (n+n) x (2n)-block form. Since f : X — C" is a Lagrangian submanifold, the matrix A is invertible
at each point of (T, 00) x U,. Moreover, equation (6.53) can be neatly summarised as

() 1 659

and therefore the proof of this proposition comes down to controlling the decay in the derivatives of
the entries of A, A~1.
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Since we have f € C°(X) it is clear that the derivatives of the entries of the matrix A decay at
rate O(e!) on the patches (T, 00) x U,, and this is enough to prove the left implies right parts of the
above assertions, because the dzy parts of the 1-form (6.53) decay at rate O(e™?) in the cone metric

g
To examine the properties of the matrix A~!, consider the map i : X — C" and define

(i)
v ( (di)’
over the patch (T,00) x U,. Then B is invertible at each point of (T, 00) x U, since the cone C is

Lagrangian. Further define

h:=A-B D:=¢'B E:=e¢th

and then it is easy to check that supyy .y, p,0*(D1)| = O(1) and SUP {4} x v, |,0,,8’\E‘ = o(1) for each
1< v < N and |\ > 0. After a brief calculation we have

o0
AT B = —'D'EY (-D'E)" D!
k=0

for each 1 < v < N, where the power series converges on (T + S, 00) x U, for some large S > 0. It
follows that
sup [p,0NA™! = B[ = o(e™")
{t}xU,

for all 1 < v < N, |A\| 2 0 and hence

sup {pua/\(A_l)’ =0(e™") (6.55)
{t}xU,

forall 1 <v < N, |\ > 0. Now we are done: the right implies left parts of the above assertions follow

from equation (6.54) and equation (6.55).
|

The following corollary is now immediate because f¢ = f + & for (byJ)¢ € U™, from equation
(6.51).

Corollary 6.36 Let (bgJ){ € U™, Then fe : X — C" is (strongly) asymptotically conical with cone
C (and rate &) precisely when (b, J)E € C(T*X) (respectively (b, J)¢ € O2(T*X)).

6.2.3 The moduli space of AC special Lagrangian submanifolds of C"

We now establish the deformation problem for asymptotically conical special Lagrangian submanifolds
of C™: the material is conceptually very similar to that of Section 3.2.

As well as the assumptions we have already made in Section 6.2, we shall further assume that the
submanifold f : X — C” is special Lagrangian and strongly asymptotically conical with cone C' and
rate & < 1. It follows from Corollary 6.32 that C is special Lagrangian. We put o := & — 1. Also
(J,e,Q) denotes the standard Calabi-Yau structure on C", with Kéhler form denoted w.

We are interested in the submanifolds of C™ which are near to f : X — C" in some sense. For us,
“near” shall mean a submanifold of the form f¢ : X — C™ where (b, J)¢ lies in V). However, we shall
only be interested in submanifolds f¢ : X — C™ which are strongly asymptotically conical with cone
C and rate @ = a+ 1. Because of Corollary 6.36 we shall therefore restrict ourselves to contemplating
submanifolds fe : X — C™ such that (bgJ)¢ € V9,. We now consider which of the (byJ)¢ € Ve,
give rise to submanifolds f¢ : X — C" that are special Lagrangian.

To this end, fix some k > 2. Let 3+ 1 € RY with 3+ 1 < 1 and define a map Fp1 : V;jll’a —
CY(A*T*X) by
Fﬁ+1<(ng)§) = *gfg ImQ"’fEW (6.56)
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for all (byJ)§ € V;j_rll’a. Note that F(0) =0 as f: X — C" is special Lagrangian, and furthermore
Fﬁj (0) = {(ng)§ € V;jll’a : fe : X — C™ is special Lagrangian}.

It follows that we are interested in the structure of the subset F _+11 (0) C V;ill’a and as in Section

3.2 the right tool to use is the Implicit Function Theorem 2.11. To invoke this theorem we need some
further results.

Proposition 6.37 The image of the map

Fgp1: Vi — CO(N T X)

lies inside CE’G(X) ® Cg’a(AQT*X).

Proof: If (b, J)¢ € V;:ll’a C Cgi}’a(T*X) then from Proposition 6.35 we have £ € Cgﬂ’“(X, Cm) if

we consider £ as a map X — C". Butsince fe — f=f+&{—f=Eand fe, f € C’f“’a(X,(C”) we
deduce from Proposition 6.31 that
fiw=fiw— ffwe CyU (AT X).

The function *, fZ Im (2 is handled similarly.

Theorem 6.38 The map Fgyq : V;jll’a — CS’G(X) ) Cg’a(AQT*X) is smooth.

Proof: This result is very similar to Theorem 3.13, whose proof from Baier [5, Theorem 2.2.15] we
explained there. We therefore omit the details.

|
Proposition 6.39 The smooth map Fgy : Vﬁkill’“ — C’g’“(X) & C’;;’“(AQT*X) has derivative
k+1,a /* k,a k,a *
Fy(0): CHIPUTX) — C(X) @ Cf (A T* X)
at 0 which acts as d + d.
Proof: Given z € X let
evy : O (AT X) — N'T; X (6.57)

denote the linear map which evaluates sections at € X. For n € Cg’a(A*T*X) we have
leva)] = [1:] < C - nllega-r-x) < C - lInllgre aerex)

where C' > 0 is a constant independent of 1 (but not z). It follows that the map (6.57) is bounded.
The rest of the proof is now identical to that of Proposition 3.14.

Proposition 6.40 The derivative Fj;, (0) : C;’ﬁ’a(T*X) — C’g’a(X) ) Clg’a(AzT*X) has a closed

1mmage in any of the following three situations:
1. B+1€RE \D((d; + d)Odd)
2. B+2 ERL\D(AE), B+ 2>2—mn and no coordinate of B+ 2 is 0

3. B+1eRF\D(A]) and 342 < 0.
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Proof: This follows immediately from Proposition 6.30.

If any of the conditions 1, 2, 3 of Proposition 6.40 hold we shall say that 3+ 2 € RE is generic.
Clearly 3 + 2 is generic for almost all 3+ 2 € RE.

Proposition 6.41 If § +2 € R" \ D(A)) with 3 +2 > max{2 —n + a,2 —n — A} then the image

FgH(V;fll’a) of the map Faiq : V;jll’a — Cg’a(X) ® CS’G(A2T*X) is contained inside

Fj o (0)(CEIT (T X)) = &y (Chi (T X)) & d(ChL (17 X)). (6.58)
Recall that the equality (6.58) is not automatic: we are using the fact that 5+ 2 € RY \ D(AY) with
8+2>max{2 —n+ «,2 —n — A}, together with Lemma 6.27 and Corollary 6.29.

Proof: Write Im§ = df,,_1, w = df;, where §; € C>°(T*C") and 6,,_; € C*®°(A"~'T*C") are forms

whose components with respect to the usual coframe on C” are linear functions. Let (byJ)§ € V;jll’a

Then it is easy to check that

dg((=1)" #g (feOn1 = [*0n1)) = o fImQ
d(f¢br — f701) few.

Now, by Proposition 6.31 we have

(—1)" %g (fE0n1 — fOn1) € CHU(T7X)

fe01—f701 € CHL(T"X)

since fe — f = f+&— f =€ € Ch1 (X, CY), fe, f € CYTH*(X,C") and the components of 61, 6,1
are linear. It follows that

g fEImQ+ fiw € dj (Ch (T X)) & d(Chy (T X))

and so by Lemma 6.27 and Corollary 6.29 there exists n € C’gfl (T*X) with (dj +d)n =, ff Im Q +

fg‘w. Unfortunately this is one less derivative than we need, but we can infer immediately that in
fact we must have n € Clgﬁ’a(T *X) from the elliptic regularity Theorem 4.21 and the fact that
1€ Céfl(T*X) and x, ff ImQ + fifw € Cg’a(A*T*X). Hence we are done.

|

From now on we shall consider the bundles N and T*X as being identified via the vector bundle

isomorphism bgJ. Pick any closed subspace Agi1 < C’g_ﬁ’a(T*X) such that

CHy(T*X) = Kgi1 © Agp

where Kgy1 = Ker F/ é +1(0) is finite dimensional, with dimension as given in Table 5.1. Now suppose
that §+2 € R* \ D(AY) and that 8+ 2 > max{2 — n+ a,2 — n — A}. Further suppose that § + 2 is
generic. Considering Fig11 as a smooth map

k—+1, k41, k+1,
Fgia: Vi — di(Coip™(T7 X)) @ d(Cpiy (T X))
between open subsets of Banach spaces we see that F é +1(0) is surjective. From the Implicit Function

Theorem 2.11 there exist open subsets WlﬁH C Kgy1, WQﬂH C Ap41 both containing 0, and a unique
map Xg+1 : W15+1 — Wg“ such that

1. Each { = (&,6) € W15+1 X Wg“ gives a submanifold f¢ : X — C" of class Ck+la

2.
Frh 0 0 (WP omy ™) = { (& xen () 6 e Wit

in WiBH X WQBH. Furthermore, the map xg+1 is smooth, and xg+1(0) = 0.
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It follows that there is a bijection

Wit = FRL0)n (WP oWt (6.59)

& o~ (&,xs11(&))

and we can put the structure of a smooth manifold onto
M1 = Fz 1L (0)n (W < Wy (6.60)

by declaring that the map (6.59) be a chart in the maximal smooth atlas for /\;l,@url. The following
lemma is now almost immediate.

Lemma 6.42 1. The manifold ./\;lg_H is diffeomorphic to an open subset of Kgi1 and consequently
dim Mg, = dim Kgy1 where the dimensions dim K1 are as given in Table 5.1.

2. With the smooth structure on Mgy, defined above, the inclusion
Mgy — W sowit! (6.61)

18 a smooth injective map that is an immersion, and a homeomorphism onto its itmage. In other
words, the inclusion (6.61) is a smooth submanifold of Wt x With,

Note that for all £ = (£1,&2) € Wlﬁﬂ X W2B+1 we have
[fg : X — C™ is special Lagrangian} — {f € Mﬁ+1:| — [52 = xp+1(&) |-

The reason for the tilde on the smooth manifold Mgy, is that for € € Mpyy the submanifold
fe + X — C" need not be strongly asymptotically conical with cone C' and rate 8 + 1: all we

know is that the 1-form (byJ)¢ lies in Clgﬁ’a(T*X)7 so that & € C’gﬁ’a(X, C™), and furthermore
f—i€C¥(X,C"). Therefore
fe—i=f+&—ieC(x,C

where v = max{a, 3}. Of course, we can say that f¢ is necessarily smooth, from the regularity results
of Section 2.3.2, but we do not know that f¢ has the required decay in its high derivatives. We shall
now address this point.

Theorem 6.43 If¢ ¢ V;jll’a is such that
Fp1(8) = #gff ImQ + ffw =0 (6.62)
then § € VY,

Note that the following argument does not rely on the fact that 5 + 2 is generic, nor the fact that
B+2eRF\D(AY) with §+2 > max{2 —n+a,2—n—A}.
Proof: For the purposes of this proof, we shall denote the map Fjgy; by F. Recall that we are
identifying the bundles N and 7% X over X, and then F is a first order differential operator
k+1,a k,a k,a *
F Vit — Cp(X) @ Oy (AT X) (6.63)

so that we may write F'(§) = F(f, V¢) where the value of F(&, &) at © € X depends only on the values
of & and & at x. An inspection of the operator F in local coordinates shows that (6.63) is a fully non-
linear operator. For example, in our usual local coordinate system x = (¢,0) on (T, 00) x U, C X
we have

few = fiw—fw

n 2n
= Z Z Wi ja ((a’ﬁfh)(al@gb) + (aklgjl)(aszjz) + (aklfjl)(8k2§j2))dxkl A dxk2

k1,k2=171,j2=1
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which is obviously not linear in the 0i;, and similarly for the quantity x, fg Im Q. However, note
that applying the differentiation 9; to each component function

(Ok1 €51 ) (On265) + (Ok, €3y ) Ok fi) + (O [i1) Ok, )

of the above sum yields

(a?klfjl)(akzgh + aszjz) + (azzkggjz)(aklgjl + 8’€1 fjl) ( ik f]l)(ak2£]2) ( 1k2f32)(8k71§71)

which is linear in the second order derivatives 5‘22k§j of £. It follows that the second order, non-linear
differential operator
k+1,a k—1,a *
G: V" = O (T*X)
defined by G(¢) := (dy + d)F(§) = d*4 ff ImQ + dj ffw is quasi-linear.

Now, by the regularity theory of Section 2.3.2, if £ satisfies equation (6.62), then fe : X — C"
is special Lagrangian, so that £ is smooth. In order to show that all derivatives of £ decay at order
O(e([“rl)t), and hence prove our theorem, we can employ a standard technique from the theory of
quasi-linear equations. First of all, write

G(€) = G1(&, VEVZE + Gol(€, VE)

where Go(&,VE) consists of the parts of G(£) which are of order less than or equal to 1, and
G1(€,VE)V2¢ contains the parts of order 2, so that the map

1 Gi(€, VEV (6.64)

is linear. Now, one can easily check via a local coordinate calculation that Gy (€, VE) € Cgfl(T*X ),
and moreover that the operator (6.64) is order 2 and uniformly elliptic, asymptotically conical, with
rate 2. Therefore

G1 (&, VEVZE = —Go(&,VE)

implies that & € Cgif “(T*X), and a boot-strapping argument then shows £ € Cg51(T*X), finishing
the proof.

Actually, one must be a little careful, because although the coefficients of the operator (6.64)
are smooth, only their first k + a derivatives will decay at rate O(e~2!), and in our definition of
asymptotically conical operator we require all derivatives decay at the specified rate. However, this
turns out not to be a problem because elliptic estimates, as in Theorem 4.21, for a uniformly elliptic,

asymptotically conical operator

Q: CE(E) - Cy(F)

of order I > 1 and rate v € R® only require the coefficients of @ decay at rate O(e™*) in their first
k + a derivatives. The previous statement is easily deduced from the corresponding local Schauder
estimates for operators with Holder continuous coefficients, as in [16, Theorem 1] for example.

|
It follows from Theorem 6.43 that xs4+1 (WIBH) C 055, (T"X), and that

Mpi1 € CFEL(THX).

Hence every element & € M g+1 gives a submanifold fe : X — C" which is special Lagrangian and
strongly asymptotically conical with cone C' and rate v+ 1 < 1, where v = max{«, 5}.

Let us now look at deformations & which have the growth rate we are interested in, namely
& = a+1 < 1. From now on we assume that o + 2 € RY\ D(AY) with a +2 > 2 —n — \. Then
we may choose generic f; + 1,0 +1 € RE with 1 +1 <a+1< fBy+1<1and a—f < n,such
that 81 + 2, + 2, 82 + 2 all lie in the same connected component of RY \ D(AD). It follows that the
previous dlscusmon — from (6.56) onwards — applies to each of 8+ 1:= 1 + 1, 82 + 1 and moreover

Kﬁ1+1 =Ko = Kﬁ2+1'
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The subsets of the above discussion can therefore be chosen so that

1,0 /e
"4514'1 - CﬁlJrla(T X)H'Aﬁz-‘rl
Wlﬂl-i-l — Wlﬁz-l-l

W = Ag et

and the mappings

1 1
Xpuar WP ot
1 1
XpBa+1 ¢ W1[32+ - Wé62+

so that yg,11(61) = Xgy41(€1) for all & € W = WP 1t follows that
Mﬁﬁ‘l = Mﬁr‘rl

and the smooth structures on Mg, 11 and Mg, defined above coincide. Now although o + 2 could
be non-generic, we can still define

k+1 *
Aati = Coy"(T"X) N Agya
W10£+1 — Wlﬁ2+1
Wt = Aap nWgEt

and then the map
Xa+1 * VVl(H_1 - WS-H

by Xat1(€1) = Xa,41(61) = Xgp41(€1) for all & € Wt = WP — w2 1t follows easily that:
1. A1 < Cﬁﬁ’a(T*X) is closed and Cféﬂ’a(T*X) =Kor1 ® Aast-

2. Wt C Koy, WS C A,y are open subsets both containing 0 and the map a4 : W —
Wt is smooth, with xa41(0) = 0.

. Bach € = (£5,&) € W x Wet! gives a submanifold fe: X — C" of class CFt+he,

w

Frby ()0 (Wit seows ™) = {6 xani (1) 1 & € Wt}
in Wt < wett,
We now see there is a bijection
Wttt —  FoL(0)n (WP x wgth) (6.65)
& o= (&, Xa1(81))
and we can put the structure of a smooth manifold onto
Mot = F L (0) N (Wt x wgth) (6.66)

by declaring that the map (6.65) be a chart in the maximal smooth atlas for M,11. The following
lemma is now almost immediate.

Lemma 6.44 1. The manifold My+1 is diffeomorphic to an open subset of K11 and consequently
dim My 11 = dim K41 where the dimensions dim K41 are as given in Table 5.1.

2. With the smooth structure on M1 defined above, the inclusion
M1 — W g+t (6.67)

s a smooth injective map that is an immersion, and a homeomorphism onto its image. In other
words, the inclusion (6.67) is a smooth submanifold of Wt x Wett,
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Note that
Mot1 = Mg, 11 = Mg, 11

aI}d the smoo:ch structure defined on M,41 above coincides with the smooth structures already on
Mg, +1 and Mg, 1. Note also that for all £ = (£5,&) € W x W™ we have

fe : X — C™ is special Lagrangian} — [5 € MQ+1:| = [52 = Xa+1(&1)

and any & € W x WS satisfying these conditions lies in V.2, by Theorem 6.43, so that fe :
X — C” is strongly asymptotically conical with cone C' and rate o + 1.

We now summarise some of the results of the above discussion in the following theorem.

Theorem 6.45 Let X be a manifold with ends, as described in Section 4.1. Let f : X — C™ be a
submanifold with normal bundle N, and suppose that f : X — C™ is special Lagrangian and strongly
asymptotically conical with cone C C C" and rate o« +1 < 1. Identify N = T*X via the vector bundle
isomorphism bgJ. Define

Ka+1 = {51 S g—)i-l(T*X) d;fl =0 and dfl = 0}

Then Ky41 has finite dimension as given in Table 5.1. Let k > 2 and suppose that a+2 > 2—n—\ with
a+2eR¥\D(AY). Then there exists a closed subspace A < CSE’G(T*X) such that Cféﬁ’a(T*X) =
Kor1 DA, and open subsets W1 C Ky11, Wa C A both containing 0, and a smooth map x : W1 — Wy
such that:

1. Each & = (&1,&) € Wi x Wy gives a submanifold fe : X — C™ of class CkT1e,

2. For all £ = (&1,&) € W1 x Wy we have
{fg : X — C" is special Lagmngmn] = [X(fl) = 52}

so that x(Wy) C C3,(T*X) and x(0) = 0.

Mag1 = {f = (£&1,62) e Wi x Wyt fe 1 X — C™ is special Lagmngian}
is a smooth manifold with dimension dim My11 = dim K41. Moreover,

Wi — Map
&~ (&,x(&)

is a diffeomorphism and the inclusion Moy1 — W1 X Wy is a smooth submanifold. Each
element £ € Ma41 gives rise to a special Lagrangian submanifold fe : X — C™ which is strongly
asymptotically conical with cone C' and rate oo + 1.

Before applying Theorem 6.45 to some examples in the next section, we note two things:

1. Up to now we have only considered submanifolds which are genuinely embedded in their ambient
space, but the entire proof of Theorem 6.45 carries through to the case of immersed submanifolds
f:X — C", so that the theorem holds in this situation also: the moduli space My41 will then
contain £ such that the submanifolds f¢ : X — C" are immersed.

2. In the proof of the Theorem 6.45 we used the fact that dim Kz, is constant for § + 2 in a
connected component of R \D(Ag)7 and this allowed us to remove the genericity assumption
on « + 2 for the existence of a smooth moduli space My41. In much the same way, one can
easily show that a smooth moduli space M1 exists for a +2 € D(A)) with a+2>2—-n— ),
provided that dim K g4 is constant for 8+ 2 in a small neighbourhood of o + 2.
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6.3 Applications of the deformation theory

6.3.1 Preliminary discussion

We begin with some general remarks: suppose that X is a manifold with ends as in Section 4.1 and
that f: X — C" is a special Lagrangian submanifold which is strongly asymptotically conical with
cone C' C C" and rate @ = a + 1 < 1. Then, provided a +2 € R* \ D(A)) and o +2 > 2 —n — X
we have a smooth manifold M1 which parameterizes the nearby special Lagrangian submanifolds
fe + X — C" which are strongly asymptotically conical with cone C' and rate a + 1. Moreover the
manifold M,y1 has dimension dim M1 = dim K41 got from Table 5.1. A study of Table 5.1
reveals that the deformations of f : X — C™ have two sources:

1. The exact parts of K,+1. These are:

(a) Kerpgy1 =0for2—n—-A<a+2<2-n.

(b) Ker o411 = Span{dhy,...,dhy} for 2 —n < a+ 2 < \. Essentially this space is the kernel
of the natural projection ¢1 : H}(X) — H*(X).

(c) Kertpoy1 = dKer(A))ayo for a +2 > 0. This space always contains d Ker(A)), =
Span{dhy,...,dhy}. However, for A < a + 2 < 2 there will also be contributions to
dKer(Ag)a_,_g coming from non-constant eigenfunctions of the link Laplacian Agz. Recall
that here A = (A1,...,Ar) where for each 1 < j < L we define A; > 0 to be such that
Aj(Aj +n —2) is the smallest positive element of Spec(X;, gs2,0). It turns out that A <1
always: we prove this below by constructing eigenfunctions of the Laplacian on each X;,
which have eigenvalue n — 1. It is interesting to ask when A < 1: in this case we can say
that there exist unbounded harmonic functions on X which have sub-linear growth.

Kat1
Ker ¢a41
(a) Im¢y < HY(X)if2—-n—-A<a+2<0
(b) HY(X) if a+2> 0.

2. The “non-exact” parts

= Ima+1 of Koqq. These are:

Note that there is an overlap in the cases 1(b) and 1(c) above, corresponding to 0 < a+ 2 < A\. We
now give an explanation of the claim in case 1(c) that A < 1 always: we begin with some standard
theory from symplectic geometry.

Let G be a Lie group with Lie algebra g. If G acts on a symplectic manifold (M, w) via symplec-
tomorphisms then a moment map for the action is a map m : M — g* such that

d(m, ) = i(ve)w (6.68)

for all £ € g. In equation (6.68) (, ) is the natural pairing between the vector space g and the dual
space g*, and v¢ is the vector field on M induced by £ € g and the action of G on M. Note that a
moment map need not exist, nor be unique.

In the case that M = C™ with the usual symplectic form w there are two actions as above which
are particularly relevant for us:

1. If G = C™, acting on M via translations
GxM — M
(w,2) — w4z,

then a moment map m : C* — g* exists. Identifying g = C” in the usual way, we may take m
to be defined by

(m(=),€) =) Im(z€;)
j=1

for all z,& € C”, so that the components of m form a basis for the vector space of real linear
maps C" — R.
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2. If G = SU(n), acting on M via rotations

GxM — M
(A,2) — Az

then a moment map m : C* — g* exists. Identifying g with the trace-free anti-hermitian n x n
complex matrices we may take m to be defined by

(m(2),&) = 3(zl* =121 (6.69)
(m(z), J2k> = —Re(%%;) (6.70)
(m(2),&) = —Im(zz)) (6.71)

for all z € C™. In equations (6.69), (6.70), (6.71) we define, for each 1 < j < k < n:
(a) §;k € g to be the matrix whose only non-zero entries are ¢ in the (g, j) place and —i in the
(k, k) places,
(b) ?k € g to be the matrix whose only non-zero entries are i in the (4, k) and (k, j) places,

(c) f;’k € g to be the matrix whose only non-zero entries are 1 in the (j, k) place and —1 in the

(k,j) place.
Note that {£], :2 < k< n}U {{?k, ?k :1 < j <k< n}isa basis for g.

In both of the above actions, the group G preserves the standard Calabi-Yau structure on M = C".
The following result now allows us to obtain eigenfunctions for our Laplacian on the link 3.

Proposition 6.46 Let G be a Lie group with Lie algebra g and let (M, J,g,Q) be a Calabi-Yau
manifold with Kdhler form w. Suppose that G acts on M preserving (J, g,Q) and that m : M — g* is
a moment map for the action of G on the symplectic manifold (M,w). Then for any special Lagrangian
submanifold f : X — M and £ € g the function

frm, &) X =R

is harmonic with respect to the induced metric on X.

Proof: It is easy to show that

A (7 (m,€)) = dj (f*(1(ve)w))

from the definition of a moment map. So to prove the proposition we must show that f*(¢(ve)w) is
a coclosed 1-form on X. For this, let exp : g — G denote the exponential map of the Lie group G.
Viewing elements of G as diffeomorphisms M — M define f; := exp(t€) o f for each t € R, so that

F:RxX — M
(tz) —  filz)

is a variation, in the sense of Section 2.2.2, with each f; : X — M a special Lagrangian submanifold
and fo = f. Note further that for each ¢t € R we have the infinitesimal variation £' = f;ve in ffTM.
Then we have

= d(f*((") I Q) = ~d (g f*(1(8")w)) (6.72)

t=0

0= %(ft*lmﬁ)

as required. In equation (6.72) we are using the variations material of Section 2.2.2 together with
Corollary 2.28.
|

The following result will also be useful for us:
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Lemma 6.47 Let G be a Lie group with Lie algebra g, and (M,w) a symplectic manifold. Suppose
that G acts on M via symplectomorphisms and that m : M — g* is a moment map for the action.
If f : X — M is a Lagrangian submanifold then f*m : X — g* is constant precisely when (ve), is
tangent to X for each x € X and £ € g.

Proof: Recall our assumption that all manifolds are connected unless explicitly stated otherwise. If
x € X then we have that T, X is equal to the subspace of T,y M which is w,-perpendicular to T, X:
this is because f : X — M is Lagrangian. Suppose further that £ € g and v € T, X. Then the
equation

v (f1(m,§)) = 2w(ve,v)

proves the lemma.

Let ¥; be a component of the link ¥ of C, and let C; € C' C C™ be the cone on ¥;. Applying
Proposition 6.46 with M = C", acted on by translations, we see that the restriction of any real linear
map T : C™ — R to the special Lagrangian cone C; C C™ is harmonic on C;\ {0}. Since any real linear
map 7' : C" — R is homogeneous of degree 1, have that T'[x; is an eigenfunction for Agz restricted to
>, with eigenvalue n — 1. In other words

{T|g, : T:C" - Ris linear} < Ker(AgE —(n—1))NC>=(%;),
which is a subspace of dimension dy, (X;), where

do(3,) = { n if ¥; is a round unit (n — 1)-sphere

2n  otherwise. (6.73)

To see why equation (6.73) holds, suppose that X; is not a round unit (n —1)-sphere, so that the cone
C; is not a linear subspace of C" and has a singularity at 0 € C". Let G be the group C", acting on
C™ by translations. Any non-trivial translation of C™ must move the submanifold C; \ {0} — C”, and
it follows that for every non-zero § € g there exists an z € C; \ {0} such that (v¢), is not tangent to
C;\ {0}. So from Lemma 6.47 we deduce that (m, &) is not constant on C; \ {0}, so that any non-zero
linear function C” — R is non-zero on X;, and therefore de,(X;) = 2n.

Recall that the eigenvalue n— 1 corresponds to the growth rate 0 on the manifold X, so that Kg4;
increases in dimension by at least

L
A (D) = din (%) (6.74)
j=1

as @ + 1 crosses over 0. Because of the equations (6.73) note that di,(X) must be at least n, with
equality precisely when C'is a special Lagrangian plane in C™. Otherwise, C has a singularity at 0, and
we can say that di(X2) is at least 2n. The general idea is that increasing the growth rate 5+ 1 above
0 picks up all the deformations of the submanifold f : X — C™ which are got from translations: being
special Lagrangian and strongly asymptotically conical with cone C' and rate o + 1 > 0 is preserved
by translations. Note that in the cases di,(3) > 2n we have deformations of f : X — C™ which are
not just the usual translations on C": one can think of our theory as saying that the ends of X may
be “translated” independently of each other, to yield submanifolds which are still special Lagrangian
and asymptotically conical with cone C' and rate o+ 1 > 0. It is also interesting to consider if there
are examples of special Lagrangian cones with link ¥ such that di,(¥) < dimKer(A) — (n —1)).

We now look at the action of SU(n) on C™. Then Proposition 6.46 tells us that each of the functions
on C" given by equations (6.69), (6.70), (6.71) restrict to the components ¥; of the link ¥ to be an
eigenfunction for AJ_, with eigenvalue 2n. Let V; < Ker(A) —2n) N C™(%;) be the vector space of
eigenfunctions got on the component 3J; in this way, so that we have a surjective linear map

su(n) V (6.75)

5 = <m7£>|2j~
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The exact dimension d,o(2;) of the space V; will depend upon the symmetries of the cone C; under
the group SU(n): for each 1 < j < L define

Hj = {A € SU(n) : A(C]) = CJ}

the symmetry group of the cone C; C C". Then H; < SU(n) is a closed, and therefore Lie, subgroup
of SU(n). Let h; be the Lie algebra of H;. Using Lemma 6.47, one can show that the kernel of the
linear map (6.75) is h; < su(n), so that

drot(2;) = dim V; = dim SU(n) — dim H; (6.76)

for each 1 < j < L. We shall be less interested in the eigenfunctions with eigenvalue 2n because
the corresponding growth rate is @ + 1 = 1, which is just outside the scope of Theorem 6.45. But,
intuitively at least, the closed and coclosed 1-forms on X got from the SU(n) action on C™ and
Proposition 6.46 correspond to rotating f(X) C C™ by elements of SU(n). As for translations, we
have a contribution of the form (6.76) for each end of X, with a total dimension

drot(z) = Z drOt(Ej)

so that, in vague terms, the ends of X can be “rotated” independently by elements of SU(n). As for
translations, it is interesting to consider if there are examples of special Lagrangian cones with link
% such that dyet(X) < dimKer(A)  — 2n). In actual fact, there are: see [31, Section 10.3], and also
the U(1)"l-invariant example of Harvey and Lawson [21] in dimension n = 8: the details are given
below in Section 6.3.4.

We shall now look at some concrete examples. Note that in Section 6.3.2 onwards, we tend to use
& = a+1 to refer to the minimal decay rate at which a submanifold X — C" is strongly asymptotically
conical, and then use 8 = § 4 1 to refer to decay rates which are larger than a + 1: certainly our
submanifold f : X — C™ will be strongly asymptotically conical with these 3 + 1 rates, and we can
form the corresponding moduli spaces Mgy accordingly.

6.3.2 Decay a+1=1—-—n—-2A\

Unfortunately, we only have one example of a special Lagrangian submanifold f : X — C" which
is strongly asymptotically conical with cone C' and rate a« +1 = 1 — n — A: the special Lagrangian
plane R™ < C™, and this is a degenerate example because the submanifold f : X — C™ obviously has
arbitrarily negative decay. It would be interesting to find examples for which the relevant dimension
dim K41 = bL(X) — L + 1 is non-zero.

Example 1: special Lagrangian planes

Put X = R"” and define f: X — C” by

f(xlv"'7mn) = (xlv"'vxn)'

Then f: X — C™ is special Lagrangian and strongly asymptotically conical with cone C' = f(X) and
arbitrarily negative growth rate a +1 < 1. We have

bUX) = 0
V(X)) = 0.

Clearly C has L = 1 ends, and link the round unit sphere S7"~! C R”. It is a well-known fact that
the spectrum of a round unit (n — 1)-sphere consists of the points

Spec(S™ 1, gpq,0) = {m =ll4+n-2):12 0} (6.77)
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and that the full I(l + n — 2)-eigenspace is got from restricting homogeneous, harmonic polynomials
of degree [ > 0 on R" to S"~!: see [14] for example. Let P! denote the homogeneous polynomials of
degree [ > 0 on R™, which is a vector space of dimension

dim P! — (n—l—l—l)

Also let H!, < P! be the subspace consisting of those p(z) € P! which are harmonic. Then, from [11,
Segal, Section 10] we have dim H! = dim P! — dim P'~2 and a brief calculation yields

(n—2+4+20)(n—-3+1)!
l(n—2)!

dim Ker(A) | — ) = (6.78)

for [ > 0. Note that the only element of Spec(S™1, gq,0) inside (0,2n) is n — 1, and that
dim Ker(Agrd —(n—1)) =n.
The above collection of facts, together with Table 5.1, yield

dimMpgyy = 0 for f+1<0
dimMg; = n for0<pg+1<1.

so that X is rigid up to growth rates 3+ 1 = 0, and then for rates 0 < §+1 < 1 the only deformations
are translations in the normal directions. Moreover, the full (n — 1)-eigenspace is got from the C"
moment map construction given above.

Note that

dim Ker(Agrd —2n) = W

is the multiplicity of the eigenvalue corresponding to growth rate 5+ 1 = 1. Now compare

drot (S" 1) = dim SU(n) — dim SO(n) =n? — 1 — n(n; 1) _ (n+ 2)2(n -1)

where SO(n) < SU(n) is the symmetry group of the special Lagrangian plane R™ < C". Therefore
the full 2n-eigenspace is got from the SU(n) moment map construction given above.

6.3.3 Decaya+1=1—n
Example 2: the cone construction of Castro and Urbano/Haskins/Joyce

We begin by quoting a result proved independently by Castro and Urbano [12, Remark 1, p. 81-82],
Haskins [22, Theorem A] and Joyce [30, Theorem 6.4].

Theorem 6.48 Let C C C™ be a special Lagrangian cone with link . For each a > 0 define

n

Xg = {zx cx €X and z € C with Im(2") = a and 0 < arg(z) < 1}.
Then X, — C" is an immersed special Lagrangian submanifold, diffeomorphic to R x 3. Moreover,

X, is asymptotically conical with cone C :=C Uen C and rate « +1 =1 —n.

Let C C C™ be a l-ended special Lagrangian cone with link . Applying Theorem 6.48 we have,
for each a > 0, an immersed, connected special Lagrangian submanifold X,, with topology ¥ x R.
Then

BL(X,) = BL(R x ) = (%) = 1

by Bott and Tu [8, Proposition 4.7] and also

b (X,) = bR x ) = b (2)
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by Bott and Tu [8, Proposition 4.1]. Now X, is asymptotic to the cone C=Cuew C, which has
L = 2 ends, and the link ¥ has components ¥ and e 3, which are isometric. We therefore have

dimMg; = 1 forl—n<pf+1<-1
dimMgpyy = 140(2) for—1<f+1<A—1

with analytic terms 2x(8+2) from (X, gs) contributing to dim Mpgyq1 if A—1 < 8+1 < 1. Note that
if b!(X) > 0 then we have new examples of special Lagrangian submanifolds in C". More generally, if
¥ is not a round unit (n — 1)-sphere then we have dim Mg;1 > 1+ b'(Z) +4n for 0 < 3+ 1 < 1: this
is an example of being able to “translate” the two ends of f : X — C" independently.

If we take C' := R™ < C" the standard special Lagrangian plane then the above construction yields
the X, of Example 2.22 which are SO(n)-invariant. Then b!(¥) = 0 and using equation (6.77) and
equation (6.78) we deduce that

dimMgp; = 1 forl-n<pB+1<0
dimMpgi, = 14+2n for0<g+1<1

because each component of the link ¥ is isometric to a round unit (n — 1)-sphere. It follows that the
examples X, — C™ are isolated, up to perturbations of a > 0 and translations of C™.
Example 3: Harvey/Joyce/Lawlor examples

The following examples are discussed in Harvey [20, p. 139-143], Joyce [26, Theorem 5.4] and Lawlor
[44].
Let ai,...,a, > 0 and define a polynomial p(y) € R[y| by

1+ a1y?)...(1+a,y?) —1

p(y) == "
Now put
W) = -+
R() =yt
v d
Oc(y) = / g
o (1+ary?)v/p(y)
aly) = ra(y)e W

for each 1 < k < n and y € R. Then from [20, Theorem 7.78] and [26, Section 5.4] we have
X = {(mlzl(y), ... ,xnzn(y)) yeRze S C R"}

is a submanifold X — C™ which is special Lagrangian (with respect to the calibration Im ), diffeo-
morphic to R x S"~!, and asymptotic to a cone C at rate o +1 = 1 — n, where

C:H1UH2

and IT;, Iy < C™ are special Lagrangian planes with II;y NIy = {0}. It is now easy complete the
following:
dimMgi, = 1 forl—-n<pB+1<0

dimMgy, = 1420 for0<g+1<l. (6.79)

The reason why the parameters aq,...,a, > 0 do not contribute n dimensions to the moduli spaces
Mgy above is that the cone C depends upon the ai,...,a,. However, it turns out that C is
unchanged under the dilation

(ar,-..,an) = e'(ar,...,a,) (6.80)

and that is where the 1 comes from in the equations (6.79). It follows that the Harvey/Joyce/Lawlor
examples X — C™ given above are isolated, modulo translations and the re-scaling (6.80).
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6.3.4 Decay a+1=-1
Example 4: Joyce examples by evolving quadrics

The following theorem is proved by Joyce [26, Theorem 5.9]:

Theorem 6.49 Let 1 < k < n— 1. Then there is a countable set N such that for every point of V
there are a1, ...,a, € R and functions u: R — R,0; : R — R such that for every c > 0 the subset

21691 (1) \/al + u(t)

et /ay + ult)

¢ . n 2 ... 22 .2 .
zk+1619k+1(1)\/ak+1+u(t) ‘teR, zeR" and z7 + -+ @ — 2, T, =cC (6 81)

2y et (t) \/an +u(t)

is an immersed special Lagrangian submanifold X, — C™, with X, diffeomorphic to S¥=1 x R*~F x ST,
Let C be the subset of C™ defined by (6.81) with ¢ = 0. Then C C C™ is an immersed special Lagrangian
cone with link ¥ diffeomorphic to S¥=1 x S"=k=1x 81 Each X, — C is strongly asymptotically conical
with cone C' and rate o +1 = —1.

The general idea for proving Theorem 6.49 is to contemplate the subset (6.81) for arbitrary u, 8;, a;.
Then X, being special Lagrangian comes down to the functions u, ; satisfying some first order system
of ODEs. In order for the solutions to be such that u(t) and the % () are periodic in ¢, and hence for
X, to sit nicely inside C™, we need to specify certain initial conditions for our ODEs: this restriction
is where the countable set X comes from.

We work out some topological details when n = 3. The first case is k = 1. Then each X, — C3
is an immersed special Lagrangian submanifold which is diffeomorphic to two copies of S x R2,
and strongly asymptotically conical with cone C and rate @« + 1 = —1, where the link ¥ of C is
diffeomorphic to two copies of S! x S1. Applying our deformation theory to a connected component
of X! of X. we have b'(X!) =1 and L =1 so that for -1 < 8+ 1 < —1 + X\ we have

dimMg =b" (X)) +L—-1=1.

Of course the second connected component also has dim Mg;, =1 for =1 < 8+1 < —1+4 A, and then
both pieces can be deformed independently, to give a 2 dimensional family of deformations. However,
this is rather explicit in the details of Theorem 6.49 above: the deformations come from the parameter
¢ > 0 in the expression (6.81) for X, given above.

The second case is k = 2. Then each X, — C3 is an immersed special Lagrangian submanifold
which is diffeomorphic to S! x S! x R, and strongly asymptotically conical with cone C and rate
a+ 1 = —1 where the link ¥ of C is diffeomorphic to two copies of S* x S'. Then b'(X.) = 2 and
L =2 so that for -1 <+ 1< —1+ X\ we have

dim Mg, =b"(X,)+L—-1=3

so that we have 2 dimensions worth of deformations which are not present in the explicit family given
by Theorem 6.49 above. Note also that for any 0 < 8+ 1 < 1 we have

dim Mgy, >3+6+6=15

where the additional 12 dimensions come from “translating” the 2 ends of X, independently.

Example 5: Harvey and Lawson U(1)" !-invariant examples

The following family of special Lagrangian submanifolds are those of Example 2.22 which are U(1)"~ -

invariant, first discovered by Harvey and Lawson in [21].
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1%

Given ay,...,a,,b € R define

2 _ — ... = 2 _
Xal,...,an,b — {(217 . ~7Zn) ceCm: |21| ay |Zn| anp }

Im(i"*tlzy ... 2,) = b

which is invariant under the group of diagonal matrices U(1)"~* < SU(n). Further define C' := Xo . 0.0
which is a special Lagrangian cone with link ¥ diffeomorphic to 2 copies of 7"~!. We have the following
result, from the author’s dissertation [47, Proposition 3.5, and elsewhere.

Proposition 6.50 Without loss of generality, suppose that min{ay,...,a,} = 0.
1. If b0 then X, ....a,.0 — C" is a special Lagrangian submanifold diffeomorphic to R x T"~1.

2. If exactly one ay, vanishes then X, .
phic to R x T™ 1.

o — C™ is a special Lagrangian submanifold diffeomor-

< ny

3. If exactly two ay vanish then Xq,, . a,.0 5 the union of two special Lagrangian submanifolds
Xail,...,an,o — C" each diffeomorphic to R? x T2, with Xat,.u,an,o NXgoan0 = T2 being

the singular set of Xq, ... a,.0-

4. C is the union of two special Lagrangian cones C*, each with link ©* diffeomorphic to T 1.
Also, Ct N C~ = {0}.

In case 1 and case 2 of Proposition 6.50 it is easy to check that X, . 4. — C" is strongly asymp-

totically conical with cone C' and rate & + 1 = —1. Also, in case 3 of Proposition 6.50 one can check
that
212 —ay = = |z0]? — an
X3 a0 (21,-..y20) €C™": Im(i"l2y...2,) =0

+Re(i"z1...2,) =0
and that C* = Xoﬂf.,.,op- Moreover, X fztl,..wamo is strongly asymptotically conical with cone C* and
rate o +1=—1.

We now apply our deformation theory to the above submanifolds. Clearly in cases 1 and 2 we have
bt (Xar,...an,p) =n — 1 and C having L = 2 ends. Therefore

dimMpgi1=n—-14+2-1=n

for -1 < 841 < A —1 in the situation of cases 1 and 2. This is what we expect: there are explicitly
n parameters in the family X,, . 4, s defined above. Also, in case 3 we have bl (Xai1 o) =n—2
and C* has L = 1 ends. Therefore

yeey@ny

dimMgi1=n—-24+1-1=n-2

for —1 < f+4+ 1 < A —1 in the situation of case 3: again what we expected.

In this example we can also compute the spectral data for the links %+ of the cones C*. Note
that ©T and ¥~ are isometric and ¥ = X7 U X~ so we need only consider X*. It is easy to see that

foal = - = el =
Y =1¢ (21,..,20) €C" ¢ Im(i"T21...2,) =0
Re(i”+lz1 .zn) 20

Let gs+ be the metric on ¥ T induced by the Euclidean metric e on C*. Consider the map ¢ : R*~! —

>t defined 1

vn
Giving R™~! the standard Euclidean metric, one can use ¢ to show that (X7, gs;+) is isometric to the
quotient

¢(t1, ceytp_t) =

(e, et (miymttemiti et )

Rnfl
L

(6.82)
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where L < R"! is the lattice generated over Z by the linearly independent vectors

t

1 _ J 1 1 1
2”( 105050, \/(j+1>n’\/(j+1><j+2>n’\/(j+2>(a‘+3>n""v (nﬂ)(nﬂ)n) (6.83)

< j €< n — 2: these are formed after a diagonalisation process on the usual basis for the lattice
2rZ™ < R™. When j = 0 there is no *1/ﬁ term, and no zero terms in the vector (6.83). For
< n — 2 there are j — 1 zero terms in the vector (6.83). Now define

L*:={yeR"':z-yeZforallz e L} (6.84)

the dual lattice of L. In equation (6.84) we use the usual dot product x -y on R"~1. It is easy to show
as in [14, Chapter II, Section 2] that if A is the (n —1) x (n — 1) matrix whose columns are the vectors
(6.83) then the dual lattice L* is generated by the (n — 1) columns of the matrix (AT)~1. After some
algebra, the relevant vectors turn out to be:

1 1 in n n n K
ejri = g (im0 0~ o o e (6.85)

for 0 < j < n—2,so0that {eq,...,e,—1} is linearly independent and spans L* over Z. We denote the

Laplacian on the torus %71 by A%. Then, following Chavel [14] we have
dim Ker(AY — p) = ’{y eEL":pu= 4772|y|2}‘.
for any p > 0. This fact enables us to compute the spectrum of the Riemannian manifold (6.82),

together with the eigenspace dimensions. We now illustrate the method with a simple example: in
the case n = 3 we have

1 1 V3
€1 2r (%’ %)
1 1 V3
€2 2m (E’ 7%)

and then, given mi, my € Z we have

(m1 + m2)2 3(m1 — m2)2
2 2

472 |m1€1 + m262‘2 =

so that 0 < 47%|mye; + maez|? < 2n = 6 precisely when
0 < (mq +m2)? +3(my —myg)? < 12, (6.86)

One quickly shows that the integral solutions (mj, mg) of (6.86) are +(0,1), +(1,0), £(1,1) each
yielding eigenvalue p = 2, and £(1,2), £(2,1), £(1,—1) each yielding eigenvalue p = 6. So when
n = 3 the eigenvalues of A22+ in the range (0,2n] = (0,6] are n — 1 = 2, with multiplicity 6 and
2n = 6, with multiplicity 6 also. Note that we haven’t picked up any points of Spec(X%, g5+, 0)N (0, 2n]
which we didn’t already know about: namely those got from the actions of the groups G = C" and
G = SU(n) on C™. In actual fact, this is not typical behaviour: using a computer, one is able to work
out the points of Spec(XT, gs+,0) lying in (0,2n] for n > 4. We give in Table 6.1 below the results
found for 3 < n < 13. Notice there are no eigenfunctions corresponding to growth rates less than 0,
so that A = 1 in each case. Notice also that for n # 8,9 the C" and SU(n) moment map constructions
discussed above give the full (n — 1)- and 2n-eigenspaces: in each case we have

dimKer(A%Jr —(n— 1)) =2n = dtr(z+)
and also

dimKer(A%; —2n) =n(n—1)=n> —1— (n— 1) = dimSU(n) — dim U(1)" ™" = d,ot(E™)
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where U(1)"~1 < SU(n) is the symmetry group of the cone C*. However, in dimensions n = 8,9 we
see that there are eigenfunctions with eigenvalue 2n on the link % which are not got from the SU(n)
moment map on C™, as 56 < 126 in the case n = 8 and 72 < 240 in the case n = 9.

A typical application of the results of Table 6.1 is as follows: when n = 7 and %(\/ﬁ—?) <p+l<1
the submanifold X ar.0 — C7 moves in a family Mg, of special Lagrangian submanifolds which
are strongly asymptotically conical with cone C" and rate 3 + 1, where

dim Mg, = b (X} )L —1+x(B+2)=7—2+14+42+70 = 131.

at,...,ar,0

Also, when b # 0 the submanifold X4, .. 4,5 — C” moves in a family Mgpi1 of special Lagrangian
submanifolds which are strongly asymptotically conical with cone C and rate 3 + 1, where

dim Mpi1 = 0" (Xay, o arp) + L =14+ x(B+2) = 7+2- (14 + 42 + 70) = 259. (6.87)

.....

The 2 - 14 in equation (6.87) corresponds to being able to “translate” the two ends of X, 4, b
independently.

6.3.5 Higher decay rates
Example 7: Joyce O(rz) decay

The main purpose of this final example is to demonstrate that there are special Lagrangian subman-
ifolds f : X — C™ which are strongly asymptotically conical whose minimal rates o+ 1 are not equal
to 1 —n or —1. The following theorem is proved by Joyce [27, Theorem 11.6]:

Theorem 6.51 For each s € (0, %) NQ write s = ZE) where p,q € Z are coprime with 0 < 2p < gq.
Define

ap:=p*—¢*  ax:=q¢*—2pqg  az:=2pq—p’
and

C = {(ieialtgcl, e2lpy ' 3tps) tx € R3, t € R with 1 > 0 and a123 + asad + azr? = 0}.

Then C C C3 is a special Lagrangian cone with link ¥ diffeomorphic to T?. Moreover, there are
explicit formulae for a 13-dimensional family of immersed special Lagrangian submanifolds X, — C3
which are strongly asymptotically conical with cone C a double cover of C, and rate a +1 = % The
manifolds X, are diffeomorphic to S' x R2.

Referring to Theorem 6.51, we have X, — C? a special Lagrangian submanifold which is strongly
asymptotically conical with cone C' and rate % Inspecting the proof of Theorem 6.51 we see that the

cone C has L = 1 ends, and is not a special Lagrangian plane in C". Recalling definition (6.74) we
deduce that d,(3) = 2n = 6. Also

b (X,) = b1 (S xRY) =b!(SY) =1
by Bott and Tu [8, Proposition 4.1]. Now, from our deformation result Theorem 6.45 we have
V(X)) +L—-1+x(B+2)>13
for 3+ 2 € R \D(Ag) with S+ 1> %, and taking (8 + 1 only slightly larger than % gives
D dimKer(A), — p) > 12
0<p<gp

where it = (3 +1)(3+2) = 12 corresponds to the growth rate a+1 = 1. Taking away the contribution
dir(X) of the eigenfunctions got from the C* moment map shows that there are 6 eigenvalues (counted
with multiplicities) of the link Laplacian Agz lying in (0, 2] which we didn’t already know about.
In the previous examples we have used the existence of eigenfunctions on the link 3 to infer the
existence of special Lagrangian deformations. In this example, we turn the argument on its head and

use the existence of special Lagrangian deformations to infer the existence of eigenfunctions of the
link Laplacian.
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Dimension n | Eigenvalue u | Eigenspace dimension | Growth rate 5+ 1
3 2 6 0
3 6 6 1
4 3 8 0
4 4 6 V5 -2
4 8 12 1
5 4 10 0
5 6 20 1(V33-5)
5 10 20 1
6 5 12 0
6 8 30 V12 -3
6 9 20 V13 -3
6 12 30 1
7 6 14 0
7 10 42 1(V65-1)
7 12 70 T3 =1)
7 14 42 1
8 7 16 0
8 12 56 V21 —4
8 15 112 V24 — 4
8 16 126 1
9 8 18 0
9 14 72 1(V105 - 9)
9 18 240 1
10 9 20 0
10 16 90 V32-5
10 20 90 1
11 10 22 0
11 18 110 1(V153 — 11)
11 22 110 1
12 11 24 0
12 20 132 V45 -6
12 24 132 1
13 12 26 0
13 22 156 (V209 — 13)
13 26 156 1

Table 6.1: The points 0 < p < 2n of Spec(XT, gs+,0) for each 3 < n < 13 together with the
dimensions of the relevant eigenspaces and the corresponding growth rates § + 1
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