D-orbifolds and d-bordism

UNIVERSITY OF

OXFORD

Benjamin Volk
Lincoln College
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2014



This thesis is dedicated to

my beloved wife Ramona



Acknowledgements

First of all, I would like to thank my supervisor Dominic Joyce for
proposing this project and introducing me to this and many other
exciting areas of mathematics. His guidance with remarkable patience,
his continuous support and his many enlightening suggestions and ideas
were vital for the succes of this thesis, and without his encouragement
and both mathematical and personal support over the past years, this

thesis would not exist.

Thanks are also due to Frances Kirwan, Gergely Berczi and Alexander
Ritter, who were the examiners in my Transfer and Confirmation of

Status exams, for many helpful and insightful comments.

I am grateful to Franz Pedit for introducing me to the wonderful world
of geometry and encouraging me to apply to Oxford and to Frank Loose

and Stefan Teufel for their support in this application.

My studies in Oxford were funded by an EPSRC DPhil studentship,
and I would like to thank the EPSRC for providing the financial sup-

port to do this research project.

On a more personal note, I want to thank all my current and past
friends at the Mathematical Institute who made the last years such an
enjoyable experience. Finally, I would like to thank my whole family,
and in particular my parents, for their continuous support and encour-
agement over the past years. Mostly important, I would like to thank
my beloved wife Ramona for her love, patience and understanding. Her
never ending encouragement and support over the past years made the

success of this thesis possible in the first place.



Abstract

The purpose of this thesis is to study d-manifolds and d-orbifolds and
their bordism groups. D-manifolds and d-orbifolds were recently in-
troduced by Joyce [35] as a new class of geometric objects to study
moduli problems in algebraic and symplectic geometry. In the spirit
of Joyce we will introduce the notion of (stable) nearly and homo-
topy complex structures on these 2-categories and study their unitary
bordism groups. Fukaya and Ono [20] proved that the moduli space
of n-pointed, genus g, J-holomorphic curves M, (M, J,3) carries a
so called stably almost complex structure, and as Kuranishi spaces
are closely related to d-orbifolds, the introduction of complex struc-
tures will be essential in studying symplectic Gromov-Witten invari-
ants using d-orbifolds. We furthermore introduce the notion of repre-
sentable d-orbifolds and prove that these representable d-orbifolds can
be embedded into an orbifold. We will then explain how a result of
Kresch [3§] can be used to show that many important moduli spaces in
algebraic geometry, are representable and thus embeddable d-orbifolds.
Moreover we will sketch how one could prove an analogous result in

the symplectic case.

We then prove as one of our main results, that for a compact manifold
the unitary d-bordism group is isomorphic to its ‘classical’ unitary bor-
dism group. This result extends a result by Joyce [35] who proved a
similar statement for oriented manifolds and d-manifolds. Furthermore
we will introduce the notion of blowups in the 2-category of d-manifolds
and prove that these d-blowups satisfy a universal property. Finally,
we sketch how our results may be used to make a step towards a proof
of the Gopakumar—Vafa integrality conjecture and a “resolution of sin-

gularities” theorem for d-orbifolds.
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Chapter 1

Introduction

Many important problems in symplectic geometry involve studying the moduli
spaces M (M, J, 3) of J-holomorphic curves in some symplectic manifold (M, w).
For instance symplectic Gromov—Witten theory is about “counting” J-holomorphic
curves in a compact symplectic manifold (M, w). In order to get reasonable results,
it is essential that M,,,(M, J, ) behaves as much as possible like a compact, ori-
ented manifold with known dimension. The reason for this is, that we want our
“counting invariant” to be just dependent on the underlying symplectic manifold
and not on a choice of compatible almost complex structure J. This independence
of J depends on treating ./\7lg,m(M ,J,B) as if it was a compact oriented mani-
fold and compute its dimension. Unfortunately the moduli space Mg’m(M g, B)
is in general not a compact, oriented manifold and not even an orbifold, as it can
have bad singularities. In order to resolve this problem, there are basically two
approaches: The first approach is to make rather strong assumptions on the ge-
ometry, as for example taking (M, w) to be closed monotone and J to be generic.
(See McDuff and Salamon [42] for more details.) The second possibility to get
around this problem without losing generality, is to find a nice geometric structure
on M, (M, J) which admits a virtual class [M]y, € Hx(M;Q), where k should
be the expected dimension of M gm(M, J, B). This virtual class allows one to define
counting invariants, which are independent of all choices, and so just depend on
the underlying symplectic manifold.

In algebraic Gromov—Witten theory the method for defining such a virtual class

on the moduli space of m-pointed, stable genus g curves in a projective complex



algebraic manifold (M, J) is called a (perfect) obstruction theory. This additional
structure on the, in the algebraic case, proper, separated C-scheme ./Vlg,m(M ,J,B)
enables one to define a virtual class in the Chow homology of M, (M, J,3),
as for example Behrend and Fantechi have shown [7]. The notion of (perfect)
obstruction theory is rigorously defined and provides a well-established and well-
defined geometric structure on /Wg,m(M ,J,B).

On the symplectic side of Gromov—Witten theory, there are basically two ap-
proaches to define a nice geometric structure on ./\7lg,m(M ,J, B): Kuranishi spaces,
introduced by Fukaya and Ono in 1999 [20] (see also [I§] for a revised definition
and [19] for the most up to date treatment of the subject) and polyfolds, introduced
by Hofer, Wysocki and Zehnder in 2005 [29]. The theory of polyfolds, a kind of
general Fredholm theory, is philosophically opposed to the theory of Kuranishi
spaces, as Kuranishi spaces remember only minimal information about the mod-
uli problem, whereas polyfolds remember essentially everything. The reason for
this is that polyfolds do not localize, and therefore no information is forgotten by
localizing. Although this means that polyfolds do not require the usage of higher
categories, it also means that the theory of polyfolds is in some sense unwieldy.

Kuranishi structures on the other hand, were introduced as a geometric struc-
ture on the moduli space /Wg’m(M ,J, B) and were used to attack some problems
in Lagrangian Floer cohomology and Fukaya categories.

Although the definition of a Kuranishi structure was sufficient for the appli-
cations of [20] and [18], there are some issues with this theory. One issue with
Kuranishi spaces is that they do not give a very satisfactory notion of geometric
structure, since for instance notions like “being the same” or morphisms between
Kuranishi structures are not well behaved. Another problem is that there is no
commonly agreed definition of what a Kuranishi structure actually should be,
and there are several not necessarily compatible definitions floating around. (See
[20],[18], [33].)

Very recently Joyce invented new classes of geometric objects, which he called
“d-manifolds” and “d-orbifolds” [35]. These “derived” smooth manifolds and orb-
ifolds form 2-categories and were originally designed to fix the problems with the
notion of Kuranishi structures, but turned out to provide a kind of unified frame-

work for studying enumerative invariants and moduli spaces. D-manifolds are



related to David Spivak’s “derived manifolds [50]”, as they should roughly speak-
ing be a kind of 2-truncation of the co-category of derived manifolds. Spivak’s
‘derived manifolds’ form an oo-category and the definition involves complicated
and heavy usage of derived algebraic geometry, in particular the extensive work
of Lurie [40]. Borisov and Noel [9] showed that an equivalent oo-category can be
defined using much simpler techniques. Moreover Borisov [§] proved that there
exists a strict 2-functor FEMan  from a 2-category truncation of the co-category
of Spivak’s ‘derived manifolds to the 2-category of d-manifolds.

D-manifolds are particularly nicely behaved as for instance the (1-)category of
smooth manifolds Man can be embedded as a full subcategory into the 2-category
of d-manifolds, and many differential geometric concepts generalize nicely to d-
manifolds.

Despite their own beauty, d-manifolds and d-orbifolds are interesting because
almost any moduli space used in enumerative invariant theory over R or C has
the structure of a d-manifold or a d-orbifold. Moreover there are truncation func-
tors from already established geometric structure like C-schemes with obstruction
theory in algebraic geometry and Kuranishi spaces or polyfolds in symplectic ge-
ometry. In particular, the “correct” notion of Kuranishi space should be “d-orbifold
with corners”. In [35] Joyce establishes the theory of d-manifolds and d-orbifolds
and virtual vector bundles over d-manifolds. A d-manifold is defined as a fibre
product of manifolds in the 2-category of so called d-spaces, which can be thought
of a C'*°-scheme equipped with additional “derived” data. Joyce proves for exam-
ple that there is a well behaved and canonical notion of “virtual cotangent bundle”,
a d-manifold analogue of the ordinary cotangent bundle, and that the oriented d-
bordism group, which is a d-manifold analogue of the usual bordism group, for a
manifold Y is isomorphic to the usual oriented bordism group. This isomorphism
allows one to define virtual classes for d-manifolds, and one can therefore study
moduli problems and define for example Gromov—Witten type invariants.

In chapter [2] we start by recalling some basic theory about C*°-rings, C>°-
schemes, d-spaces and d-manifolds and modules and quasicoherent sheaves over
them. C*°-rings have their origin in in synthetic differential geometry, and stan-
dard references are for example Dubuc [17] or Moerdijk and Reyes [45]. A C*-

ring can be thought of as a generalization of the algebra of smooth functions on a



smooth manifold, and will be the underlying structure of d-spaces and d-manifolds.
We will follow Joyce [35], [34], who refined in 2010 a version of (Hartshorne) al-
gebraic geometry over C*°-rings. We will briefly give the basic definitions and
state the for our purposes important results, but refer for the details and a much
more complete discussion to [35]. Furthermore, we recapitulate the 2-categorical
analogue of vector bundles and sheaves, so called virtual vector bundles and wvir-
tual quasicoherent sheaves. In doing so we prove as a new result that each virtual
vector bundle over a compact, sufficiently nice C'*°-scheme is equivalent in the
2-category of virtual vector bundles to a virtual vector bundle consisting of actual
vector bundles. This result will be crucial for studying unitary bordism for stable
nearly complex d-manifolds.

Chapter |3| will discuss similar background for C*°-stacks, d-stacks and d-
orbifolds. Although the actual definitions of C'*°-stacks, d-stacks and d-orbifolds
require some background from stack theory, the for us important point is that
Deligne-Mumford C'*°-stacks are related to C"*°-schemes in the same way as Deligne-
Mumford stacks in algebraic geometry are related to schemes. Many concepts and
definitions from the C*°-space world extend nicely to the C'*°-stack case, but there
are some subtleties involved which in some cases will prevent results from being
true in the d-orbifold case.

We then follow Joyce [35, §14] in chapter 4 and explain how d-manifolds and
d-orbifolds are related to other, established geometric structures. We focus on
the for us most important geometric structures and describe in section the
relation between Kuranishi structures due to Fukaya, Ono [20] and Fukaya, Oh,
Ohta and Ono [I§] and d-manifolds and d-orbifolds. We will in the spirit of Joyce
[35, Remark 14.15] provide a sort of “dictionary” between Fukaya, Oh, Ohta and
Ono’s Kuranishi spaces. In section 4.2 we discuss the relation between C-schemes
and C-stacks with obstruction theory and d-manifolds and d-orbifolds as in [35,
§14.5].

Chapter [5| then defines a new class of d-manifolds and d-orbifolds, by intro-
ducing (stable) homotopy and nearly complex structures on d-manifolds and d-
orbifolds. Stable homotopy and nearly complex structures can be thought of an
analogue of stable almost complex structures for manifolds and orbifolds. After

introducing (stable) homotopy complex structures on d-manifolds and d-orbifolds



in and (stable) nearly complex structures in we will prove that any
nearly complex d-manifold (d-orbifold) is locally equivalent to a nearly complex
standard model d-manifold (d-orbifold). This result will play a crucial role in
studying unitary d-manifold and d-orbifold bordism in chapter[7] In we then
prove that given a stable homotopy complex d-manifold, we can construct a sta-
ble nearly complex d-manifold, and vice versa. Homotopy complex structures are
closely related to complex structures on Kuranishi spaces of Fukaya and Ono [20],
and we sketch in subsection [5.4.1} assuming a result of Fukaya and Ono [20], why
the moduli space of n-pointed, genus g, J-holomorphic curves M, (M, J, §) is a
stable nearly complex d-orbifold.

We then introduce another new class of d-orbifolds in chapter [6] which we
call representable d-orbifolds. Representable d-orbifolds are d-orbifolds X which
admit a 1-morphism f : X — Y = F39™(Y) in dOrb into an effective orbifold Y,
which is representable, that is the underlying C'*°-stack morphism f, : Isox([z]) —
Isoy([y]) is injective for all [x] € Xiop With fi([z]) = [y] € Viep. We will prove as a
new result that any representable d-orbifold can be embedded into some smooth
orbifold, and is thus an embeddable d-orbifold. This will allow us to use a result
by Kresch [38] to conclude that many important algebraic moduli spaces, like the
moduli stack /\7lg7n(X , B) of n-pointed, genus ¢ stable maps to a projective target
variety X, are in fact embeddable d-orbifolds. Moreover we will sketch how one

could prove that the moduli space of n-pointed, genus g, J-holomorphic curves

M, (M, J, 3) is a representable d-orbifold.

In chapter [7| we first recall some basic results about d-(co)bordism due to
Joyce [35 §13 |. The major theorem ([35, Theorem 13.15]) is here, that oriented
d-manifold bordism of a manifold (considered as a d-manifold) is isomorphic to
oriented manifold bordism. It is crucial in the whole theory, as one consequence of
this theorem is, that oriented compact d-manifolds admit virtual classes, and can
therefore be used to study moduli problems in for instance symplectic geometry.

In section we then define a unitary version of d-manifold bordism using
nearly complex structures introduced in section[5.2, We then prove as a new major
result that for a stable almost complex manifold its unitary d-bordism group is
isomorphic to the “ordinary” unitary bordism group. This theorem is an extension
of [35, Theorem 13.15], and as Fukaya and Ono proved in [20] that the moduli space



of n-pointed, genus ¢, J-holomorphic curves /ng(M ,J, B) carries a stable nearly
complex structure, it will potentially play a crucial role in studying symplectic
Gromov-Witten invariants. We then explain when and how this material on d-
manifolds can be extended to the d-orbifold case. The situation in the d-orbifold
case is much more subtle, as the straightforward d-orbifold generalization of [35,
Theorem 13.15] is false. The problem is, that whereas any d-manifold can be
perturbed into a manifold, the analogous result for d-orbifolds is false. To see this
note that in a standard model Sy ¢ ; at a point v € s71(0) C V, the orbifold group
I' = Isoy(v) acts on the tangent space T,V and the obstruction space &|,. So if the
nontrivial part of the I'-representation on £|, is not a subrepresentation of TV,
small deformations s of s cannot be transverse near v, and so Sy ¢ 5 cannot be an
orbifold.

However, restricting oneself to (semi)effective d-orbifolds, Joyce was able to
prove that in this case the oriented d-orbifold bordism groups are isomorphic to
the “classical” orbifold bordism groups. (Compare [35, Theorem 13.23].) The
major point is that (semi)effective d-orbifolds can be perturbed to (effective (in the
effective d-orbifold case)) orbifolds, as (semi)effectiveness prevents the phenomena
described above from happening.

Chapter |8 then introduces the notion of d-blowups. We will motivate how the
classical real (complex) blowup of a manifold along a submanifold can be extended
to d-manifolds. The basic idea is to imitate what happens in the classical case:
blowing up a manifold along a submanifold at a point (z,A), where x € W and
0 # X € Nwvls, affects the tangent bundle of V' by twisting the part of the
normal bundle orthogonal to (A) by the inverse of the line bundle associated to
the exceptional divisor. Imitating this behaviour in the d-manifold case, that
is given a closed w-immersion of standard model d-manifolds S, ; : Swre —
Sv s we twist the “IW-part” of the bundle E by the inverse of the to line bundle
associated to the exceptional divisor of the (manifold) blowup V = Bly/ V. Using
this idea, we can define the notion of standard model d-blowups. We will then prove
in subsection [8.2.1 that similarly to the classical case of manifolds or schemes,
these standard model d-blowups satisfy an universal property. In contrast to the
classical universal property of blowups of manifolds or schemes (as for example in

[277, Proposition I11.7.14]), the universal property of standard model d-blowups is



characterized by pairs of closed w-embedded standard model d- submanifolds with
I-morphisms between them. In section [8.3] we explain how one can extend this
local notion of standard-model d-blowups to the general d-manifold case, using
the results proven in section Moreover, we briefly explain how the results of
this chapter can be extended to the d-orbifold case.

Finally, in chapter [0] we briefly sketch how all of the previous results could be
used to study integral Gromov-Witten invariants. In particular, we sketch how
by using nearly complex structures and blowups, one could make a step towards
proving the Gopakumar—Vafa integrality conjecture and how our results lead to a

d-orbifold ‘resolution of singularities’ theorem (in the spirit of Hironaka [28]).



Chapter 2

Background on d-manifolds

We will start by recalling some basic material on d-manifolds in this chapter.
D-manifolds were recently introduced by Joyce [35], and can be thought of as a 2-
categorical generalization of manifolds. As the precise definition involves material
from synthetic differential geometry, we start by introducing C'*°-rings and C*°-
schemes, which will be the foundations for our later discussions on d-spaces and
d-manifolds. Most of the covered material can be found in [35] and [34], which we

found to be valuable references.

2.1 (C*-rings and C*°-schemes

2.1.1 (C*-rings

We will recall the basic definitions and properties of C'"*°-rings and C'*°-schemes.
We follow here closely [34] and refer to it as a much more complete and rigorous
source. C*°-rings are a part of synthetic differential geometry and were first studied
in the 1960s. References for this subject are among others Dubuc [17] on C*-
schemes, and the book of Moerdijk and Reyes [45]. More recently Joyce [34] re-
established the subject and provided new ideas, which lead to Algebraic Geometry
over C'*°-rings.

The basic idea behind this theory, is that each smooth manifold X comes
naturally equipped with an R-algebra C°°(X) of smooth functions ¢ : X — R. This

)

R-algebra has a much richer structure than just the “ordinary” algebra structure,

as for example given any arbitrary smooth map ¢ : X — R, we can concatenate



it with the exponential function, which yields another smooth function exp(c) :
X — R, and defines therefore an operation exp : C*(X) — C*(X), which cannot
be expressed by the R-algebra structure (at least without introducing a topology
and taking limits of series). These additional structures motivate the definition of

a C°-ring:

Definition 2.1.1. A C*-ring is a set € together with operations ®; : €" — € for
all n > 0 and smooth maps f : R®™ — R, where by convention €° is defined to be

a single point {}. These operations have to satisfy the following relations:

(1) For myn > 0 and f; : R® - R for i = 1,...,m and g : R™ — R smooth
functions, define a smooth function h : R* — R by

hzy,...;zn) = g(fi(zr, .. 2n)s oo f(T1, oo T0))

for all (z1,...,2,) € R™. Then for all (¢,...,c,) € € the following holds
Qp(cry.. o cn) =Py(Pp(c1,.ovcn), .o, Py (er, o0 cn)).

(2) For all 1 <j <n define 7; : R® — R by 7;(z1,...,2,) = x;. Then

D (c1,...,00) =¢; forall (..., ¢,) € C"

Given two C™-rings (€, ®;) and (D, V,), a morphism between C*°-rings is given
by a map ¢ : € — D such that Us(p(c1),...,0(cn)) = ¢ o Ps(cy,...,c,) for all
c1,-..,¢, and all smooth maps f : R® — R. The resulting category of C'*°-rings
will be denoted by C*°Rings.

The following example is somehow the “motivating example” for a C*°-ring,

and is discussed in much more detail in [35, §1.2.1].

Example 2.1.2. Let X be a manifold, possibly with boundary, and write C*°(X)
for the set of smooth functions ¢ : X — R. Given a smooth map f : R” — R for
n > 0, define ®¢(xy,...,2,) = f(z1,...,2,) by

Qr(cy,...,cn)(x) = flar(z),. .. cn(x))



for all ¢i,...,¢, € C®(X) and = € X.

It is immediate that C°°(X') together with ®; defined above is a C*-ring.
Every smooth map between manifolds f : X — Y, induces a morphism of C'*°-
schemes, given by the pull back f*: C>(Y) — C*(X), f*(c) =co f.

If we denote the category of smooth manifolds without boundary by Man,
and write C*°Rings® for the category of C'*°-rings with direction of morphisms
reversed, we get a full and faithful functor Fip. .o 8 : Man — C*Rings® acting
on objects by Fyant "8 (X) = C(X) and on morphisms by Fi. ' W"8(f) = f*.
Under this functor Man can be obtained as a fully embedded subcategory of
C*Rings™.

One consequence of the definition of a C*°-ring structure is that every C'*° ring
¢ has an underlying commutative R-algebra structure. This R-algebra structure
allows one to establish notions like ideal of a C'*°-ring, module over a C'*°-ring,

and so on.

Definition 2.1.3. Any C*-ring € carries in a natural way the structure of a

commutative R-algebra as follows:

e Define addition ‘“+’ on € by ¢+ ¢ = ®4(c, ) for ¢, € €, where f: R* - R
is given by f(z,y) =z +y.

e Define multiplication ‘-’ on € by ¢- ¢’ = @ (¢, ) for ¢, € €, where g : R?* —
R is given by g(z,y) = zy.

e Define scalar multiplication by A € R by Ac = @y (c), where ' : R — R is
given by XN(z) = Az.

e Define elements 0 and 1 in € by 0 = &y (@) and 1 = ®/(0), where 0/ : R =
{0} - Risgiven by 0/ : )+~ 0, and 1’ : R® - Ris given by 1’ : ) > 1 .

Using the relations on the ®¢, it is immediate that the definitions above make € into
a commutative R-algebra. Applying this definition to Example recovers the
usual commutative R-algebra structure in the ring of smooth function ¢: X — R.
Although being a commutative R-algebra provides a rich set of algebraic structures,
it is worth noting, that the C*°-ring structure has far more structure and operations

than a commutative R-algebra.
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Since every C*-ring has the structure of a commutative R-algebra we can

define what an ideal of a C'*°-ring should be.

Definition 2.1.4. An ideal I of a C*°-ring € is an ideal I C € in € regarded
as a commutative R-algebra. The quotient €/I can be equipped with a C*°-ring
structure as follows. For any smooth function f : R™ — R, define <I>§ ¢/ —
¢/I by

(@1 +1,...,cn+ 1)) = Pp(cr(), ..., ca(w)) + 1.

For q)fc to be well-defined, we have to check that it is independent of the choice
of representatives ¢y, ..., ¢, in € for ¢; +I,...,¢, + I in €/I. To show this, note
that Hadamard’s Lemma implies the existence of smooth functions g; : R** — R
for 4+ 1,...,n, satisfying

n

f(ylu'-wyn)_f(xlau-xn) :Z(yi_xi)gi(xlwH;Imylw-'ayn)

i=1
for all z1,....2n,y1,...,yn € R. If we now have two choices ¢y,...,¢c, and
Ay...,c,ysothat ¢, + I =c+ 1 fori=1,...,nand ¢, —¢; € I, we have

Dr(cy,...,c) —Psler,...cn)

c
n
g I N A P o B

But the second line lies in [ as ¢; — ¢; € I and [ is an ideal. This implies that (Ich
is indeed well-defined, which makes (€/1, ®}) into a C**-ring.

If € is a C*-ring, denote by (f, : a € A) the ideal generated by a collection of
elements f,,a € A in €, that is

n
(fa:a€ A) = {Zfai-ci:nzo,al,...,an EA,cl,...,CHEQf}.
i=1
In many situations it will be convenient to describe a C*°-ring € by its gener-
ators and relations.

Definition 2.1.5. We call a C*°-ring € finitely generated, if there exist ¢, ..., ¢, €
¢ such that for each ¢ € €, there exists a smooth function f : R® — R with
¢ = ®¢(c1,...,c,). Note that being finitely generated over all C*°-relations is a

much weaker condition than being finitely generated as a commutative R-algebra.
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As shown in ([45], Proposition 1.1) the ring C*°(R™) of smooth function in n
variables is the free C'*°-ring on n generators. So for any C*°-ring with generators
C1,...,C, we have a surjective C*°-ring morphism ¢ : C*°(R") — € given by
o(f) = @s(cry...,cy) for any f : R® — R smooth. The kernel I = ker(¢) is an
ideal in C*(R") and € = C>(R")/I is a C*°-ring. Therefore any finitely generated
ring € can be written as € = C°(R")/I for some n > 0 and ideal I in C*°(R"),

and vice versa.

Definition 2.1.6. An ideal [ in C*°(R") is called finitely generated, if there exists
fi,--, fx € C®°(R™) such that I = (f1,..., fx). Call a C*®-ring € finitely pre-
sented, if € = C*(R")/I for some n > 0, with I being a finitely generated ideal
in C*(R").

A C*-ring € is called a C*-local ring if regarded as an R-algebra, € has a
unique maximal ideal m¢ such that €/me = R.

Denote the full subcategories of finitely generated and finitely presented C'>°-
rings in C*°Rings by C*°Rings® and C>*Rings™.

2.1.2 (C*-schemes

We want now to recall some material on C'*-schemes and refer again to [35], §1.2.2]
for a much more complete and detailed discussion. The basic idea is to adapt

“conventional scheme theory” over a ring to the case of C'*°-rings.

Definition 2.1.7. A C*-ringed space X = (X,Ox) is a topological space X
together with a sheaf Oy of C'*°-rings on X, the so called structure sheaf. A mor-
phism f = (f, f*) : (X,0x) = (Y, Oy) of C*-ringed spaces consists a continuous
map f : X — Y between topological spaces and a morphism of sheaves of C'*°-
rings on X, f# : f71(Oy) — Ox, where f 1Oy is the inverse image sheaf. These
C*°-ringed spaces form a category, which we will denote by C*°RS.

A local C*®-ringed space X = (X,0Ox) is a C*-ringed space for which the
stalks Oy, of Ox are C*-local rings for all x € X. Morphisms of C*°-local rings
are automatically local morphisms, and so morphisms of local C'*°-ringed spaces
X =(X,0x),Y = (Y, Oy) are just morphisms of C'*°-ringed spaces without any
additional locality condition. The full subcategory of local C**°-ringed spaces in
C>*RS, will be denoted by LC*RS.
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As in the case of “ordinary” rings, one can explicitly define a spectrum functor
Spec : C*Rings®® — LC*RS (compare [34, §6.2]). A local C*°-ringed space X
is called an affine C'*°-scheme, if it is isomorphic to Spec € in C*°Rings for some
C*-ring €, and a local C*°-ringed space X = (X, Oy) is called C*°-scheme, if X
can be covered by open sets U C X, such that (U, Ox|y) is an affine C*°-scheme.
The full subcategory of C'"*°-schemes in LC*Rings will be denoted by C*°Sch.

We call a C"*°-scheme X locally fair, it X can be covered by open U C X with
(U, Ox|v) = Spec € for some finitely generated C®-ring €, and write C>Sch'® for
the full subcategory of locally fair C'*°-schemes in C'*°Sch.

A C*°-scheme X is called separated, second countable, compact or paracompact,
if the underlying topological space X is Hausdorff, second countable, compact or

paracompact.

Example 2.1.8. Let X be a manifold. We can define a C*°-ringed space X =
(X, Ox), where the topological space is just the manifold X itself, and Ox(U) =
C>°(U) for each open U C X, where as usual, C*°(U) denotes the C'*-ring of
smooth maps ¢ : U — R. Now, if V C U C X are open subsets of X, define
the restriction map pyy : C*°(U) — C*(V) by pyv(c) = c|y. This makes X =
(X, Ox) alocal C*°-ringed space, which is canonically isomorphic to Spec C*(X),
and so is an affine C'°°-scheme. Moreover it is immediate that X is locally fair.
As in the case of C*°-rings, we can define a full and faithful functor Fy, S
Man — C*®Sch ¢ C*Sch by FG.5% = Spec o FG5 and so the category

Man embeds as a full subcategory of C*°Sch.

The following theorem summarizes some important facts of C'"*°-schemes, and

we refer to [34] §4] for individual proofs of the statements.

Theorem 2.1.9. (a) All fibre products exist in the categories C*°RS, of C'*-
ringed spaces and C*°Sch of C'*°-schemes.

(b) The subcategory C>°Sch' of locally fair C*®-schemes is closed under fibre prod-
ucts and all finite limits in C*°Sch.

(c) The functor F{.oM takes transverse fibre products in Man to fibre products
in C'*°Sch.

(d) Let (X, Ox) be a fair affine C*°-scheme, and U C X be an open subset. Then
(U, Ox|v) is a fair affine C*-scheme.
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Note that this does not hold for general C*°-schemes.
(e) For any separated, paracompact, locally fair C*-scheme X, and open cover

{U, : a € A}, there ezists a partition of unity {n, : a € A} on X subordinate to
{U, :a € A}.

2.1.3 Modules over C*°-rings and cotangent modules

In the following, we will recall some material on modules over C'**°-rings and refer

to [35, §1.2.3] or [34] §5] for a more detailed and complete discussion.

Definition 2.1.10. Let € be a C*-ring. A €-module M is a module over € re-
garded as a commutative R-algebra. We will write €-mod for the abelian category
of €-modules. Let ¢ : € — ® be a morphism of C*-rings. If M is a €-module, then
G«(M) = M ®¢ D is a ©-module. This induces a functor ¢, : €-mod — D-mod.

Example 2.1.11. Let X be a manifold, possibly with boundary or corners, and let
E — X be a vector bundle. Denote by C*°(E) the vector space of smooth sections
e: X — E, and define ug : C°(X) x C®(F) — C®(E) by ugr(c,e) = c-e.
Then (C*(E), pg) is a C*°(X)-module. If E is the trivial rank k vector bundle
E =~ X x RF then (C®(E), ug) = (C°(X) @r R*, gt ), and so (C®(E), ug) is a
free C°°(X)-module.

Given F, F — X vector bundles and A : £ — F' a bundle morphisms between
them, then A, : C®°(E) — C*°(F) defined by A\ : e — Ao e is a morphism of
C*°(X)-modules.

Let X,Y be manifolds and f : X — Y be a smooth map. Then f*: C*(Y) —
C>°(X) is a morphisms of C*®-rings. If F — Y is a vector bundle, then the
pull back bundle f*(E) is a vector bundle over X. Using the functor (f*), :
C*(Y)-mod — C*(X)-mod from Definition [2.1.10] we see that (f*).(C>*(E)) =
C™(E) ®@ce vy C>(X) is isomorphic as a C'°(X)-module to C*°(f*(E)).

One particularly important example of a module over a C*°-ring €, is the

cotangent module (Qg, pie) of €.

Definition 2.1.12. Let € be a C*-ring, and M a €-module. A C*-derivation is
a R-linear map d : € — M such that whenever f : R® — R is a smooth map and
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c1,...,Cq € € we have
n
d®y(cy,. .., cn) :ZQD%(Q,...,%)-dCi.
i=1 ‘

The pair (M, d) is called a cotangent module for €, if it has the universal property
that for any €-module M’ and C*°-derivation d' : € — M’, there exists a unique
morphism of €&-modules ¢ : M — M’ with d’ = ¢od. Let Q¢ be the quotient of the
free €-module with basis of symbols dc for ¢ € € by the €-submodule spanned by all
expressions of the form d®(c1,...,c,) —> @a%fi(cl, ceoyCp)ede for fi R - R
smooth and ¢q,...,¢c, € €, and define dg : € — Q¢ by d¢ : ¢ — dc. Then the pair
(Qe¢, d¢) is a cotangent module for €. Thus cotangent modules always exist, and
are unique up to unique isomorphism.

Let €,D be C*°-rings with cotangent modules (Q¢, d¢), (o, dn), and let ¢ :
¢ — ® be a morphism of C"*°-rings. Then ¢ induces an action on {25, which makes
p into a €-module with C*-derivative dg o ¢ : € — (0. Hence by the universal
property of ()¢, there exists a unique morphism of €-modules Q4 : Q¢ — Qp
such that dp o ¢ = €y o d¢. This morphism induces a morphism of ®-modules
(Qp)s 1 Qe ®e D — Qg satistying (). 0 (de ®idp) = do. Moreover, given C*-ring
morphisms ¢ : € = 0,9 : D — & we have oy = 2y 02y 1 Qe — Q.

Example 2.1.13. Let X be a manifold. Then the cotangent bundle T* X is a vec-
tor bundle over X and admits therefore a C*>°(X)-module C*°(7T*X). The exterior
derivative d : C®°(X) — C*(T*X) is a C*-derivation. The pair (C*(T*X),d)
has the universal property in Definition [2.1.12] and so forms a cotangent module
for C>°(X).

Now let X,Y be manifolds, and f : X — Y be a smooth map. Then T'X,
as well as the pulled back tangent bundle f*(TY), is a vector bundle over X,
and we have a vector bundle morphism df : TX — f*(TY) between them. The
dual of this morphism is df* : f*(T*Y) — T*X, and this morphism induces a
morphism of C*(X)-modules (df*). : C®(f*(T*Y)) — C>°(T*X). This (df*).
can be identified with (Q¢+), in Definition under the natural isomorphism
C(FH(T*Y)) = C=(T*Y ) @iy C%(X).
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2.1.4 Quasicoherent sheaves on ("*°-schemes

As in [35], §1.2.4] and [34] §6] we can now discuss quasicoherent sheaves on C'*°-

schemes.

Definition 2.1.14. Let X = (X,Ox) be a C*®-scheme. An Ox-module & on X
assigns a module E(U) over Ox(U) for each open set U C X, with Ox(U)-action
py - Ox(U) x E(U) — E(U), and a linear map Eyy : E(U) — E(V) for each

inclusion of open sets V' C U C X, such that the following diagram commutes:

Ox(U) x EU) —— £(U)

puv XEyv Euv

Ox (V) x E(V) L (V).

All this data £(U), Eyy must satisfy the usual sheaf axioms (see for example [27,
§I1.1]).

A morphism of Ox-modules ¢ : € — F, we can assign a morphism of Ox (U)-
modules ¢(U) : E(U) — F(U) for each open set U C X, such that ¢(V) o Eyy =
Fuv o ¢(U) for each inclusion of sets V. C U C X. The abelian category of
Ox-modules will be denoted by Ox-mod.

Similarly to the spectrum functor Spec : C*°Rings®® — C°>°Sch, which assigns
to each C'*°-ring an affine C'*°-scheme, there is a module spectrum functor MSpec :
¢-mod — Ox-mod, which assigns to each module over a C'"*°-ring € a sheaf of Ox-
modules over Spec (€).

Let X = (X,Ox) be a C*-scheme, and £ an Ox-module. & is called quasico-
herent, if there exists an open cover of X by U, where U = Spec € for some C*°-ring
¢, and under this identification £|y = MSpec M for some €-module M. We call £
coherent, if furthermore the €-modules can be taken to be finitely presented.

£ is called a vector bundle of rank n > 0, if X can be covered by open U such
that &y = Op ®r R™.

We will write qcoh(X), coh(X), vect(X) for the full subcategories of quasico-
herent sheaves, coherent sheaves and vector bundles in Ox-mod. Note that in the
case of X being a locally fair C*°-scheme, every Ox-module £ on X is quasicoher-
ent, and therefore qcoh(X) = Ox-mod.
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Definition 2.1.15. Let f : X — Y be a morphism of C'*-schemes, and let £
be an Oy -module. The pullback f*(£) of £ by f, is the Ox-module, defined by
f5(€) = f7HE) ®f-1(0y) Ox, where f7HE), f~1(Oy) are inverse image sheaves.
Now, if ¢ : £ — F is a morphism of Oy-modules, we have an induced morphism
[ (o) = fH¢) ®idoy : f*(E) — f*(F) in Ox-mod. The so defined functor
S*: Oy-mod — Ox-mod is a right exact functor between abelian categories and

restricts to a right exact functor f* : qcoh(Y) — qcoh(X).

Remark 2.1.16. Pullbacks f*(€) can be characterised by a universal property,
as they are closely related to fibre products. It is therefore convenient to regard
pullbacks as being unique up to canonical isomorphism rather than unique.

It is possible to construct pullbacks explicitly, using the Axiom of Choice to
choose the f*(&) for all f, &, but it may not be possible to do this in a strictly
functorial way in f. So in other words, given morphisms f: X =Y, g:Y — Z
and an Oz-module &, then (go f)*(€) and f*(g*(£)) are canonically isomorphic as
Ox-modules, but may not be equal. These canonical isomorphisms will be denoted
by I14(€) : (go [)*(€) = f*(g7(€)) and the 2-morphism Iy, : (go f)* = [*og"
is then a natural isomorphism of functors.

Example 2.1.17. Let X be a manifold and X its associated C'*°-scheme, so that
Ox(U) = C=(U) for all open subsets U C X. Let E — X be a vector bundle.
Define an Ox-module £ on X by E(U) = C*(E|y), where C*(FE|y) denotes
the smooth sections of the vector bundle Ey — U, and for V C U C X define
Euv : EWU) = E(V) by Eyy : ey — eyly. The so defined Ox module € turns out
to be a vector bundle on X, that is £ € vect(X), which can be thought of as a lift
of F from manifolds to C*°-schemes.

Let now f : X — Y be a smooth map of manifolds, f : X — Y the corre-
sponding morphism of C'*°-schemes and let ' — Y be a vector bundle over Y, so
that the pullback f*(F) — X is a vector bundle over X. Denote by F € vect(Y)
the vector bundle over Y lifting F. Then f*(F) is as a vector bundle over X
canonically isomorphic to the lifting of the pullback bundle f*(F').

In the same manner as the notion of modules over C'*°-rings lifts to O x-modules
over C'°-schemes, we can define the sheaf version of cotangent modules and obtain

cotangent sheaves of C*°-schemes.
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Definition 2.1.18. Let X be a C*-scheme. Define a presheaf of Ox-modules
PT*X on X, by assigning to each open set U C X the cotangent module Qo (1),
and to each inclusion of open sets U C V' C X the morphism of Ox(U)-modules
QpUV
Ox (V). The cotangent sheaf T*X of X is then defined as the sheafification of
PT*X, as an Ox-module.

If f: X — Y is a morphism of C*°-schemes, then by definition of the pullback,
f*(T*Y) is the sheafification of the presheaf f*(PT*Y). Moreover, similarly to the

case of cotangent modules over C*°-rings, there exists a morphism Q; : f*(T*Y) —

: Qo) = Qo (v) associated to the morphism of C*°-rings pyy : Ox (U) —

T*X. This morphism €2y can be thought of as the C*°-scheme analogue of the
morphism (df)* : f*(T*Y) — T*X induced by a smooth map of manifolds f :
X =Y.

The following theorem explains why it will be much more convenient to work
with quasicoherent sheaves instead of coherent sheaves, and can be found in [35,
Theorem A.37], or [34, Cor. 6.11 & Prop. 6.12].

Theorem 2.1.19. (a) Let X be a C*-scheme. Then qcoh(X) is closed under
kernels, cokernels and extensions in Ox-mod, making it into an abelian category.
The category coh(X) of coherent sheaves is closed under cokernels ad extensions in
Ox-mod, but may not be closed under kernels in Ox-mod, so coh(X) is in general
not an abelian category.

(b) Let f : X — Y be a morphism of C=-schemes. Then the pullback functor
f* 1 Oy-mod — Ox-mod preserves the subcategories qcoh(Y'), coh(Y), vect(Y) and
furthermore f* : qcoh(Y) — qeoh(X) is a right exvact functor.

(c) Let X be a locally fair C*°-scheme. Then every Ox-module £ on X is qua-
sicoherent. So in other words we have qcoh(X) = Ox-mod for locally fair C>°-

schemes.

The next proposition characterizes pullbacks f* of quasicoherent sheaves on

C°-schemes purely in terms of modules over the corresponding C'*°-rings.

Proposition 2.1.20. Let &€, be C®-rings, ¢ : ® — € be a morphism, M, N
be ®-modules and o : M — N be a morphism of ®-modules. Consider X =
Spec (€),Y = Spec(D),f = Spec(¢) : X = Y and & = MSpec (M), F =
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MSpec (N). Then there exist natural isomorphisms f*(€) = MSpec (M ®9 €) and
f*(F) = MSpec (N®9p€) in Oy-mod. Under these isomorphisms MSpec (a®ide) :
MSpec (M ®p €) — MSpec (N ®g €) is identified with f*(MSpec (a)) : f*(€) —
I (F).

2.1.5 Virtual quasicoherent sheaves and virtual vector bun-
dles

A general principle in Joyce’s theory of derived differential geometry is that 1-
categories in the classical picture should be replaced by 2-categories.

In classical differential geometry, the vector bundles over a manifold with their
morphisms form a 1-category vect(X). A particularly important example of a vec-
tor bundle over a given manifold X, is the cotangent bundle 7* X. Given a smooth
map f : X — Y, pulling back gives a natural functor f* : vect(Y) — vect(X), and
taking the differential provides a natural morphism (df)* : f*(7T*Y) — T*X. We
will follow here Joyce [35, §3.1] and describe the 2-categorical “derived” analogues
of these notions, and then prove in Proposition [2.1.24] as a new result that a virtual

vector bundle is globally equivalent to a morphism of actual vector bundles.

Definition 2.1.21. Let X be a C*°-scheme. Define a 2-category vqcoh(X) of
virtual quasicoherent sheaves on X. Objects in vqcoh(X) are given by morphisms
¢ EY — £% in qeoh(X), which we will also denote by (€1, 2, @) or (E£°,¢). The
1-morphisms in vqcoh(X) are given by (f1, f?) : (€°,¢) — (F*,%) a pair of
morphism f!: & — F f2: % — F?in qcoh(X) satisfying ¢ o f! = f20¢, where
¢: & — &% and ¢ : F' — F? are objects. We will use f* as an abbreviation for
)

The identity 1-morphism of (£°,¢) is defined as (idg1,idg2) and composition
of 1-morphisms f* : (€%, ¢) — (F*,¢) and ¢°* : (F*,¢0) — (G*,() as g* o f* =
(90 f1.4%0 1) (£%,0) > (G°,€).

Let f*,¢°: (€%, ¢) — (F*,v) be l-morphisms. A 2-morphism n: f* = ¢*is a
morphism 71 : £2 — F! in qcoh(X) such that g = f' +no¢ and ¢> = f2+on.

Given 1-morphisms f* g% h* : (€%, ¢) — (F*,¢) and 2-morphisms 7 : f* =
g%, C : g°* = h*, the vertical composition of 2-morphism ( ©® n : f* = h® is defined
by COn=C_+n.
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If fo f* : (E%¢) — (F*, 1) and ¢°,§° : (F*,1)) — (G*,€) are 1-morphisms
and n : f* = f‘,C : g* = ¢* are 2-morphisms, the horizontal composition of
2-morphisms ¢ 7 : g*o f* = §*o f* is defined as Cxn = g  on+Co f2+otpon.
The resulting strict 2-category will be denoted by vqcoh(X).

If U C X is an open ('*°-subscheme then restriction from X to U defines a
strict 2-functor |y : vqcoh(X) — vqcoh(U).

An object (£°, ¢) in vqcoh(X) is called a virtual vector bundle of rank d € Z if
X may be covered by open U C X such that (£°, )|y is equivalent in vqcoh(U)
to some (F*,v) for F', F? vector bundles on U with rank F? — rank F! = d. We
will write rank (£°,¢) = d. If X # () then rank (£°, ¢) depends only on &Y, E2, ¢,
so it is well-defined. The full 2-subcategory of virtual vector bundles in vqcoh(X)
will be denoted by vvect(X).

Definition 2.1.22. Let X be a C®-scheme. A virtual vector bundle (£, &%, ¢)
on X is called a vector bundle if it is equivalent in vvect(X) to (0,&,0) for some
vector bundle £ on X.

One can show that a virtual vector bundle (€', £2, ¢) is a vector bundle if and

only if ¢ has a left inverse in qcoh(X).

The following proposition due to Joyce [34, Proposition 3.5], will be a valuable

tool in determining when a l-morphism in vqcoh(X) is an equivalence.

Proposition 2.1.23. Let X be a C*®-scheme, (E°,¢), (F*,v) be virtual quasico-
herent sheaves on X and f* = (f', f?) : (€°,¢) — (F*,%) be a 1-morphism in
vqcoh(X). Then f* is an equivalence if and only if the following complex is a

split short exact sequence in qcoh(X):

0 grliet, prggr voll | 0. (2.1)

In particular, if f* is an equivalence then E' @ F? = F' @ €% in qcoh(X).

As a new result, we will show in the following proposition that every virtual
vector bundle over a compact C'*°-scheme X is equivalent to a virtual vector bun-
dle, consisting of vector bundles. This result will play an important role, when we

later on study stable nearly complex d-manifolds, and their bordism groups.
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Proposition 2.1.24. Let (€°,¢) be a virtual vector bundle over a separated, com-
pact, locally fair C*-scheme X. Then there exists a virtual vector bundle (G*, 1),
where G, G? are (global) vector bundles over X, and an equivalence f* = (f*, f?)

between (G*, ) and (E°, ¢).

Proof. We will prove that (€°, ¢) is equivalent in vvect(X) to some virtual vector
bundle (G*, 1), where G', G? are vector bundles, by explicitly constructing G', G2.
Consider therefore the vector bundle G2 := RY ® Ox. We will prove in the
following, that there exists a morphism o : RY @ Ox — £2 for some N > 0 large
enough such that ¢ : E' @ (RY ® Ox) — £? has a right inverse. Defining G' as

G :=Ker(&' o RY ® Ox oa, £,

yields the following commutative diagram in vqcoh(X):

gL £
£ °
gl ............. .]RNfg(Ox,

where f : G} — &' and ¥ : G' — G? = RY @ Ox are by the kernel induced
morphisms in qcoh(X). If we denote the 1-morphism between (G*, 1) and (€°, ¢)
in vvect(X) by f* = (5, @), the following exact sequence in gqcoh(X):

Be—1y D
0——G T 8eRY®O0x) .8 —0, (2.2)
Y 0

is then a split exact sequence in qcoh(X), since ¢ & « has a right inverse, and
therefore, by Proposition f* is an equivalence in vvect(X).

Let therefore z € X. As & 2. E? is a virtual vector bundle on X there
exists an open neighbourhood U of z in X, an object (F*,p) in vvect(U) with
F', F? vector bundles on U, and an equivalence i® = (i',4%) : (F*,p) = (€%, 9)|v.

Hence we have the following complex in qcoh(U):

:Yy:(:}/lv’;?) Sy:(51,82)
Since ¢* is an equivalence, this complex is a split exact sequence, and we get in
b b

particular a morphism oy = (01, 0s) : 3|y — Ey ® F?, satisfying (¢ © i%) o oy =
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idgz),,. Choose a surjective morphism ay : (RN ® Ox)|y — F? for some N > 0
large: enough (this is possible since F? is a vector bundle on U), and define a
morphism ay : (RN ® Ox)|y = 2|y by ay = i* o ay.

We claim, that there exists a morphism oy : F? — (RY ® Ox)|y such that

oy o oy = i?, that is we have the following commutative diagram in vvect(X):

7,'2
F? Ey

ou ay

(RN ® Ox)|u-

This can be seen as follows: the vector bundle F2 can locally be written as R* ®0O,.
So every section ¢ of F? can be written as € = (e1,...,e;), where ¢; € H(E?|y)
for all i = 1...k. Since oy is surjective, the sections H°(E?|y) are generated
by HY(E|y) = ((d1lu, - -, dn|u))oxw), that is for each j = 0...k we have ¢; =

k ,
> aijdilu, where a;; € Op(U). Then (ai;))=% is the matrix corresponding to
i=1

=1,
a morphism oy : F? = (RY ® Ox)|y. Since a vector bundle is locally free, the
claim follows.

We want now to use the morphism SQ to construct a morphism dy in ((2.2)),
such that dy is a right inverse to (¢ ® )|y, that is (¢ @ )|y o 6y = idg2y,, .

We claim that 0y := (6;,04002) : £y — Ey @ (RN @ Ox)|y is a righ_t inverse
for (¢ @ a)|u:

(¢ av) ( UU5;(§2 ) :gbogl—i—agoagogg :qﬁogl—i—iQoSQ :id52|y.

Here we used that i = ay o oy and that oy = (91, 0y) is right inverse to ¢ @42, As
X can be covered by such open U, and admits a partition of unity subordinated
to such an open cover (this follows from X being compact and locally fair, so that
we can use Proposition 4.22 in [34]), we can patch all these local data together,
and get a morphism o : RY ® Oy — £? and a global right inverse morphism of
® @ a, which we will denote by 6 : £2 — &' @ (RN ® Ox). But as the category of
quasicoherent sheaves is an abelian category, the existence of ¢ implies that
is an split exact sequence (see Lemma [A.4.1]), and therefore that f* = (8, a) is an

equivalence.
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The remaining bit, is to show, that G! is a vector bundle over X. Note therefore

that on U we have the following commutative diagram in vqcoh(U):

where i* = (i',4%) : (G*, %)y — (F*,p) is the equivalence given by composition
of the equivalence f® with the equivalence (i®)~' : (€%, ¢)ly — (F°*,p). The

corresponding complex in qcoh(U) is then of the form

%169—1/1 ¢@E2
0— Gy e FloRY @ Ox)|y oot F2—— 0.
g 5

But as i*® is an equivalence, this is in fact an exact sequence and the virtual vector

bundle

Flo (RY @ Ox)|y 225 72
has a left inverse g, which shows that 7! & (RN ® Ox)|y — F? is a vector bundle.
(Compare [34, Proposition 3.9]). But G'|y = ker(F' @ (RY @ Ox)|y — F?), and
hence also a vector bundle. Again, since we can cover X by such open U, this

shows that G! is a vector bundle, which completes the proof. O

2.1.6 Square zero extensions of C'°-rings

A square zero extension of C*°-rings is a surjective morphism of C*°-rings ¢ : ¢’ —
¢ such that the kernel I of ¢ in € is a square zero ideal. Recall, that a square zero
ideal in a commutative R-algebra A is an ideal I satisfying ¢-j = 0 for all ¢, 5 € I.

Thus, every square zero extension fits into an exact sequence

0 ] K¢ Q:/ ¢

¢ 0, (2.3)

where k4 : I — € denotes the kernel of ¢. The ideal I in €', has not just the
structure of a €-module, but since ¢ is surjective also that of a €-module. This

¢-module structure is well-defined, as I is a square zero ideal.
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Given two square zero extensions ¢ : € — € and ¢ : ©" — D, a morphism
of square zero extensions (a,a’) : ¢ — 1 is given by a pair of morphisms of
C®-rings a : € — © and o : ¢ — D' satisfying a o) = ¢ o a’. Such a pair

(v, ') induces a morphisms o” between the kernel I of ¢ and the kernel J of v,

by o’ :=</|; : I — J, and we get thus a commutative diagram
0 [— " ¢ ¢ 0
0 J—2 .9 Y .9 0.

The following definition will associate an exact sequence of €-modules to a
square zero extension. This exact sequence will be particularly useful when inves-

tigating 2-morphisms of d-spaces.

Definition 2.1.25. Let ¢ : € — € be a square zero extension of C*°-rings, with
kernel k4 : I — €. As we already know, I has the structure of a €-module. As in
Definition [2.1.12] we have cotangent modules Q¢, Q¢ and a morphism of €-modules
(Q24)s : Qo ®er € = Q¢. We can therefore define a linear map =y : [ — Q¢ ®¢ €

to be the composition

dgr id®¢

¢ Qe = Qg Qs ¢ Qe @ C. (2.4)

A not obvious fact about this composition is, that =, is a €-module morphism,
although none of Ky, der,id ® ¢ are €-module morphisms. This fact and the ex-
istence of an exact sequence of €-modules is proven in the following proposition.

(For a proof of this proposition see [35, Proposition 2.4].)
Proposition 2.1.26. The linear map =, : I = Q¢ Q¢ € is a C-module morphism
and fits into an exact sequence of €-modules:

Qe 0. (2.5)

The exact sequence ([2.5)) extends in a straightforward way to a commutative

diagram when we consider morphisms between square zero extensions.

24



Lemma 2.1.27. Let ¢ : € — € and ¢ : ©' — D be square zero extensions and
(o, ) : ¢ — b be a morphism of square zero extensions. Then the exact sequence

(2.5)) extends to a commutative diagram

[1]

¢

O @p € — 22 L 0, 0

a”\ Qa/®a\ Qq

J 2 Q0 D — L 0 0.

The next proposition is crucial for defining 2-morphisms of d-spaces and will

play an important role in the construction of a tangent d-space.

Proposition 2.1.28. Let ¢ : € — € and ¢ : D" — D be square zero extensions
of C*®-rings with kernels I,J and let (o, ), (o, o) be morphisms between square

zero extensions inducing morphisms oY, o : I — J. So we have the following

diagram
0 —™ ¢ ¢ 0
/
0 J - D ; £y 0

Then there exists a unique D-module morphism p : Qg Qe D — J such that
o = ) + kg o 10 (1A @ (0 6)) o der (2.6)

Here the morphisms come from the following sequence

€/ de/ QC/ _ QQ:/ ®¢, €/ id@(OéO(z)) QQj/ ®€/ D iu’_> J K_’l" :D/.

Moreover we have

ay =af +po(id® (o)) ode ok
and Qg = Qo +do o kyopo (id® (ao@)).
The converse also holds that is, if (o, ) : ¢ — ¥ is a morphism, and u :
Qe Qe D — J a D-module morphism, then defining o by (2.6 gives a C*-ring

morphism ol : € — D" with (a,ab) : ¢ — ) being a morphism of square zero

extensions.
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The proof of this proposition uses basically the universal property of the cotan-

gent module and can be found in [35, Proposition 2.8] .

Applying the spectrum functor we get an analogous notion and description of
square zero extensions of C'*°-schemes. The C*°-rings are basically replaced by
sheaves of C'"*°-rings, and the modules over C*°-rings, are replaced by sheaves of
Ox-modules. (See [35, Definition 2.9] for more details.)

Definition 2.1.29. A square zero extension (O%,1x) of a locally fair C*°-scheme
X = (X, Ox) is given by a sheaf of C*-rings O% on X, such that X' = (X, O%)
is a C*°-scheme, and a morphism iy : O — Ox of sheaves of C*°-rings on X,
which is a sheaf of square zero extensions of C*°-rings. The tuple 2, = (idx,2x)
is a morphism of C'*-schemes 1y : X — X', and the triple (X, O, 1x) is called
square zero extension of C'°*°-schemes.

The C'*°-scheme analogue of equation is then given by

0 Ix —— 0, —X 0Oy 0, (2.7)

where we denoted again the kernel of 1x by rx : Zxy — O%.

As the sheaf of C*°-rings O has a sheaf of cotangent modules o, (recall
that this is a sheaf of O'y-modules with exterior derivative d : Oy — Qo ), we
can define Fx = QO/X ®or, Ox to be the associated sheaf of Ox-modules. Fx
is actually a quasicoherent sheaf on the C'*°-scheme X, and we get a natural
morphism ¢x = Q,, ®id : Fx — T*X in qcoh(X) to the cotangent sheaf of X.
As in (2.4), we can define a morphism of sheaves of abelian groups {x : Zxy — Fx
as the composition

KX d id®x
Ix O

Qo = Qo @y, O Qo ®o, Ox = Fx. (2.8

Using Proposition [2.1.26] we get then that £x is a morphism of quasicoherent
sheaves on X and the sequence

Ex Vx

Ix

Fx T*X — 0, (2.9)

is exact in qcoh(X).

All the results from the C*°-ring world translate nicely to the C'*°-scheme world
and will not be stated explicitly here, and we will refer instead to [35, §2.1] for a

complete discussion.
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2.2 D-spaces

We are now in the position to define the 2-category of d-spaces. D-spaces will be
the surrounding environment for d-manifolds and many important properties of
d-manifolds will already be present in the d-space world. We once again refer to

[35, §2] for more details and proofs of the results.

Definition 2.2.1. A d-space X is a quintuple X = (X, O%, Ex,1x, Jx ), consisting
of a separated, second countable, locally fair C*°-scheme X = (X,Oyx) and an

exact sequence of sheaves on X

Ex v 0y 2 Oy 0, (2.10)
satisfying the following conditions:
(a) O is a sheaf of C™ - rings on X, with X' = (X, O%) a C*-scheme.

(b) 1x : O — Ox is a surjective morphism of sheaves of C'*°-rings on X. Its
kernel Zx is a sheaf of ideals in O’ which should be a sheaf of square zero
ideals. Recall, that a square zero ideal in a commutative R-algebra A is an
ideal [ satisfying ¢-j = 0 for all 4,j € I. Zx is thus an O%-module, but
as Ix consists of square zero ideals and ux is surjective, the action of O
factors through an action of Ox. Hence Ix is an Ox-module, and thus a

quasicoherent sheaf on X, as the C*°-scheme X is locally fair.

c) Ex is a quasicoherent sheaf on X, and jx : Ex — Ix is a surjective morphism
J J
in qcoh(X).

As the C®-scheme X is locally fair, the underlying topological space X is
locally homeomorphic to a closed subset of R" and therefore locally compact.
This together with the Hausdorffness and second countable property implies that
X is paracompact.

Now, the sheaf of C*°-rings O has a sheaf of cotangent modules Q2o , which is
an O-module with exterior derivative d : O — Qo . Define Fx = Qo ®0, Ox
to be the associated Ox-module. This associated Ox-module is a quasicoherent

sheaf on X, and if we set ¢x = Q,, : Fx — T*X, we get a morphism in qcoh(X).
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Moreover, define ¢x : £Ex — Fx to be the composition of morphism of sheaves of

abelian groups on X:
d| 1d®1
Ex L Ty X Qo = Qo ®o, O — Qo @y, Ox = Fx.
One can show that ¢x is a morphism of Ox-modules, and that the following

sequence is exact in qcoh(X)
¢X wX *
Ex 2% Fy X T°X —— 0. (2.11)

It turns out the morphism ¢x : Ex — Fyx is in fact a virtual vector bundle in the
sense of , and we refer thus to ¢x : Ex — Fx as the virtual cotangent sheaf
of X.

Given two d-spaces X,Y, a 1-morphism f : X — Y between d-spaces is
given by a triple f = (f, f', f"), where f = (f,f#) : X — Y is a morphism
of C*-schemes, f': f~1(O}) — O% a morphism of sheaves of C*-rings on X
and f”: f*(€y) — Ex a morphism of quasicoherent sheaves on X, such that the

following diagram commutes:

_ i _ _ v _ PN e (2% _
FHE) @y, fHOY) = FHE) 2L o) Y 1 0y) — 0
idef# f! f#l
£ (&) " ey Ix o X Oy 0.

_ #
= f 1(5}/) ®§_1(Oy) OX

(2.12)

One can also define composition of 1-morphisms, 2-morphisms, the identity 1-
morphism, the identity 2-morphism and composition of 2-morphisms, and thus
define a 2-category of d-spaces, which we will denote by dSpa. For all the details
of the construction we refer to [35], §2.2].

The following theorem summarises some properties of the category of d-spaces.

Theorem 2.2.2. (a) D-spaces form a strict 2-category dSpa, in which all 2-
morphism are 2-isomorphisms.

(b) Let f : X =Y be a 1-morphism in dSpa. Then the 2-morphisms n : f = f
form an abelian group under vertical composition, and in fact a real vector space.

(c) FOSR2  and FypP® are full and faithful strict 2-functors.
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. dSpa 00 If
There exists a 2-functor Foog,, : C*Schg,

— dSpa from the category of

separated, second countable, locally fair C*°-schemes C*°Sch!_

2-category) to the 2-category of d-spaces dSpa and, using this functor, one can
define a 2-functor FoP® : Man — dSpa given by FoP® = F, gi%ih o FipaSch,

Using these functors we will write CA“’OSchgSC for the 2-subcategory of objects

X in dSpa equivalent to Faska, (X) for some X in C*Sch¥ | and Man for the

ssC?

(regarded as a

full 2-subcategory of objects X in dSpa equivalent to FaoP?(X) for X being some

manifold.

2.2.1 Gluing d-spaces by equivalences

In many situations it will be convenient to have a gluing procedure for d-spaces on
hand. This procedure should satisfy that the “glued” d-spaces are again a d-space
and this resulting d-space should be independent of all choices up to equivalence.

Before stating the theorem which provides such a gluing procedure, we will

first define what we will mean by an open d-subspace.

Definition 2.2.3. Let X = (X, O%,Ex,1x,)x) be a d-space. We call a d-space
U = (U O%|u, x|y, ix|u, 1x|u) an open d-subspace of X, if U is an open C>°-
subscheme in X. An open cover of a d-space X is a family {U, : a € A} of open

d-subspaces of X, where A is some indexing set, such that X = (J U,.
acA

The following theorem is proven in [35, Theorem 2.28], and explains how one
can glue a collection of d-spaces X;, € I along open d-subspaces U;; C X,14,] €
I and equivalences e;;.U;; — U j;, satisfying some conditions on the overlaps. The
so obtained new d-space Z has open subspaces X, equivalent to X; for ¢ € I,
with Z = (J,; X, and X; N X'j ~U;; ~Uj.

Theorem 2.2.4. Let X,Y be d-spaces, U C X,V CY open d-subspaces and
f:U — V an equivalence in dSpa. On the underlying level of topological spaces
we have open subsets U C X,V CY and a homeomorphism f : U — V', and we
can form the quotient topological space Z == X ;Y = (X IIY)/ ~, where ~
identifies u € U C X with f(u) € V CY.

Suppose that Z is Hausdorff. Then there exists a d-space Z, open d-subspaces
X,f’ n Z with Z = Xuf’, equivalences g © X — Xandh:Y =Y in
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dSpa such that gly : U — XNY and hly : U — X NY are equivalences, and
a 2-morphism n : gl = ho f : U — X NY. Furthermore, the d-space Z is

independent of all choices up to equivalence.

This theorem can be stated in a more general setting, gluing not just two, but
an arbitrary (not necessarily finite) number of d-subspaces together. We will not
state this theorem here, but refer to [35, Theorem 2.31] instead.

2.2.2 Fibre products in dSpa

As we will see in section [2.3] a d-manifold will locally be defined as a fibre product
of manifolds in the 2-category dSpa. (The definition of fibre product in a 2-
category can be found in Appendix ) It is therefore crucial that all fibre
products exist in in the 2-category of d-spaces dSpa, and that transverse fibre
products of manifolds are preserved under the functor F&iﬂa. This is exactly the

statement of the following theorem due to Joyce (compare [35, Theorem 2.36]).

Theorem 2.2.5. (a) All fibre products in dSpa ezist.

(b) Let f : X — Z and h: Y — Z be smooth maps of manifolds without boundary
and let X,Y,Z, g, h = F3P*(X,Y,Z,g,h). If g and h are transverse the fibre
product X X475, Y wn Man exists, and its image under F&iﬂa is equivalent in
dSpa to the fibre product X X475, Y in dSpa. In the case of g,h not being

transverse, then X xg4 7z, Y exists in dSpa, but is not a manifold.

This theorem can be proven by writing down an explicit construction for the
fibre product, that is writing down a d-space W, 1-morphisms e : W — X f :
W — Z and a 2-morphisms 1 : go e = ho f and verifying that the so obtained

square
W — Y
oo
X Y .7

in dSpa is in fact a 2-Cartesian square, that is, fulfils a universal property.
Note that on the underlying C*°-scheme level, the d-space W is just the fibre
product of the underlying C"*°-schemes, that is we have W = X xz Y
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2.3 D-manifolds

We are now in a situation where we can define the notion of d-manifolds. D-
manifolds were recently introduced by Joyce in [35] and can be interpreted as a 2-
category truncated version of the ‘derived manifolds’ of David Spivak [50]. Spivak’s
‘derived manifolds’ form an oo-category and the definition involves complicated
and heavy usage of derived algebraic geometry, in particular the work of Lurie
[40]. Borisov and Noel [9] showed that an equivalent co-category can be defined
using much simpler techniques. Moreover Borisov [8] proved that there exists a
strict 2-functor FSMan from a 2-category truncation of the oo-category of Spivak’s
‘derived manifolds’ to the 2-category of d-manifolds.

The basic idea in defining the 2-category dMan of d-manifolds without bound-
ary is to define it as a full 2-subcategory of the category of d-spaces dSpa. We
follow here closely [35] §3.2] and refer to it for a much more complete and detailed

treatment.

Definition 2.3.1. A principal d-manifold is a d-space W which is equivalent in
the category dSpa to a fibre product X x4 25, Y, where XY, Z € Man. The
underlying C'*°-scheme W of a principal d-manifold W ~ (W, O}, Ew,ww, w)
is given by the fibre product X x; Y, where XY, Z = FGuSeh (XY, Z). Since
X,Y, Z are finitely presented affine C'*°-schemes, and these are closed under fibre
products, W is a finitely presented affine C*°-scheme.

Given a manifold X we can take Y = Z = %, a point, and g =7 : X — %, h =
id, : * — %, and get W ~ X X, x ~ X. So the image of every manifold X under
FASP2 is a principal d-manifold, and so is any object in Man.

The virtual dimension vdim W of W is defined as

vdim W =dim X +dimY — dim Z,

where X, Y, Z are manifolds representing X,Y , Z, thatis X, Y, Z = Fl'\i,lsarr’la(X, Y. Z).
Note that vdim W is independent of the choice of X,Y,Z, g, h for W # (), and
depends only on the d-space W. This statement is proven in [34, Proposition
1.4.11] and shows that the integer vdim W is well-defined.
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Definition 2.3.2. A d-manifold of virtual dimension n € Z is a d-space W, which
can be covered by nonempty open d-subspaces U, which are principal d-manifolds
of virtual dimension vdim U = n.

We will denote by dMan the full 2-subcategory of d-manifolds in dSpa.

Note, that if X € Man then X ~ X x, x, that is X is a principal d-manifold
and thus a d-manifold. Thus Man is a 2-subcategory of dMan and we will call a d-
manifold X a manifold, if it lies in Man. The 2-functor Ff\i,ls,;‘:la defined above maps

actually into dMan, and we will therefore write FgMan — [48P2 . Nap —» dMan.

An alternative description of principal d-manifolds, which also motivates the

relation to Kuranishi spaces (see [33] or [20]), is the following;:

Proposition 2.3.3. A d-space W is a principal d-manifold if one of the following

equivalent statements hold
(a) W~ X x4, Y for X,Y,Z € Man.

(b)) W ~ X X;7z;Y, where X,Y,Z are manifolds, i : X — Z and j:Y — Z
embeddings, and XY ,Z,1,j = Fj\dﬁgf(X, Y, Z,i,7). In other words, W is

an intersection (in the sense of d-spaces) of two submanifolds X,Y C Z.

(c) W >~V XgsgoV, where V is a manifold, E — V a vector bundle, s :
V. — E a smooth section, 0 : V. — FE the zero section, and V,E,S,0 =
Fiy B s,0). In other words, W is the zero set s(0) of a smooth section

an
s of a vector bundle E, in the sense of d-spaces.

2.3.1 Local properties of d-manifolds

We want now to investigate the local structure of d-manifolds. We will in particular
be interested in the description provided by Proposition m (c) and start with
the following definition.(Compare [35] §3.3, §3.4].)

Definition 2.3.4. Let V be a manifold, and £ — V a vector bundle with a smooth
section s € C*°(FE). To this data, we can assign by an explicit construction, a d-
manifold S = (9, O%, s, 15, 7s) which is equivalent to V' x4 go V, and which will
be called the standard model Sy s of (V,E,s).
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In order to construct Sy g, denote by C°°(V') the C*°-ring of smooth functions
c:V — R, and let C®(E),C>*(E*) be the vector spaces of smooth sections of
E,E* over V. Then s € C*(FE), and C*(F),C*(E*) are modules over C*(V).
Moreover there is a natural bilinear product - : C®(E*) x C®(E) — C>®(V).
Define I, C C*(V) to be the ideal generated by s, that is

Iy ={a-sla e C*(E")} CC™(V). (2.13)

Let I? ={B-(s®s)|8 € C®(E*® E*)} C C*(V) be the square ideal of I,. Then
I? is an ideal in C>(V') generated by s ® s € C*°(E ® E), or in other word

I?={B-(s®s)|8 € C®(E*® E*)} C C®(V).

Define C*-rings € = C*°(V) /I, & = C>(V)/I?, and let 7 : € — € be the natural
projection from the inclusion 2 C I,. Define a topological space S = s7(0) C V,
as the zero set of the section s. Now s(v) = 0 if and only if (s®s)(v) = 0. Thus S is
the underlying topological space of both Spec € and Spec €. This means Spec € =
S = (5,0),Spec€’ = 5" = (5,0%) and Specm = 15 = (idg,25) : 8" — S, where
S, 8" are fair affine C'*°-schemes, and Og, O% are sheaves of C*°-rings on S, and
15 : Oy — Og is a morphism of sheaves of C*°-rings. Since 7 is surjective with
kernel the square zero ideal I,/I? we get that 15 is surjective with kernel Zg, a
sheaf of square zero ideals in Of.

Equation yields a surjective C*°(V')-module morphism p : C*°(E*) — I

given by u(a) = - s. This morphism induces a surjective morphism of €-modules:

o1 C(E) (L, O%(E")) — 1,/1?
a+ (I,-C®°(E*)) = a-s+ 12

Now define £ = MSpec ((C*(E*))/(Is-C*(E*))). Note that Zg = MSpec (I,/1?),
and so js = MSpeco is a surjective morphism of quasicoherent sheaves on S,
Js : € — Tg. This implies that Sy g, defined by Sy ps =S = (5, 0%, Es, 15, Js),
is a d-space. The remaining bit is to show that S is in fact a d-manifold. This can
be seen as follows: First note that £g is a vector bundle on S, which is naturally
isomorphic to £*|g, where £ is the vector bundle on V = Fi 5 (V) corresponding

to B — V. Secondly Fg = T*V|s. The morphism ¢g : £g — Fg can be interpreted
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as follows: Choose a connection V on £ — V. Then Vs € C*(E ® T*V), so we
can regard Vs as a morphism of vector bundle £F* — TV on V. This lifts to
a morphism of vector bundles Vs = & — T*V on the C*-scheme V, and ¢g
is identified with @s|§ : s — T*V|g under the isomorphisms &g = £*|g and
Fs =2T*V|s.

Note that although Vs depends on the choice of V., its restriction to S is

independent of the chosen connection V.

The following result due to Joyce (|35, Corollary 2.36]) shows, that every d-
manifold X is locally equivalent in the 2-category dMan to a standard model
d-manifold Sy g for some manifold V, a vector bundle £ — V and a smooth
section s € C*°(E). Moreover, the data (V| E,s) just depends on the underlying

C*°-scheme structure X and the virtual dimension of X.

Theorem 2.3.5. For every d-manifold X with x € X, there exists an open neigh-
bourhood U of x in X and an equivalence U ~ Sy g s in dMan for some manifold
V', vector bundle E — V and s € C*(FE) which identifies x € U with a pointv € V
such that s(v) = ds(v) = 0. The triple (V, E, s) is determined up to non-canonical
isomorphism near v by X near by x, and depends only on the underlying C*-

scheme X and the integer vdim X .

We will end this section by the following proposition ([35, Proposition 3.28]),

which gives criteria for when a d-manifold is a manifold.

Proposition 2.3.6. A d-manifold X is a manifold, that is X € Man, if and
only if its virtual cotangent bundle T* X s a vector bundle. Equivalently, X is a

manifold if and only if the morphism ¢x : Ex — Fx has a left inverse.

2.3.2 1- and 2-morphisms in terms of differential geometric
data

The goal of this subsection is to interpret a 1-morphism between standard model
principal d-manifolds X = Sy g, and Y = Sy g, in terms of a pair (f, f), where
f:V — W is a smooth map and f : E'— f*(F) a vector bundle morphism, and
a 2-morphism 7 : f = ¢ as a relation between two such pairs (f, f ) and (g,¢). In
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order to do this we first fix some notation, which will simplify things tremendously.
We follow here closely the work of Joyce [35], §3.4], to which we refer as a much

more complete and rigorous source.

Definition 2.3.7. Let V be a manifold, £ — V a vector bundle over V and
s :V — E a smooth section. If E — V is another vector bundles over V and
51,89 € C*°(E) are smooth sections, we will use the notation §; = S5+ O(s) if there
exists an o« € C®(E* ® F) such that §; = §o+a-sin C*(F). Here a- s is formed
using the natural pairing of vector bundles (E* ® F) x E — F over V. Similarly,
we will use the notation §; = S5 + O(s?) if there exists an o € C®°(E* ® E* @ F)
such that §; = S + a - (s ® s) in C°(F), where again « - (s ® s) is formed using
the pairing (E* @ E*® F) x (E®@ E) = F.

If now W is another manifold and f,g : V — W are smooth maps, we will
write f = g+ O(s) if whenever h : W — R is a smooth map, there exists
a € C°°(E*) such that ho f = hog+ a-s. Moreover, we will write f = g+ O(s?)
if whenever h : W — R is a smooth map, there exists o € C*°(E* ® E*) such that
hof=hog+a-(s®s).

Now suppose that f,g: V — W are smooth maps satisfying f = g+ O(s?), and
W carries in addition a vector bundle F' — W with two sections ¢,t, € C(W).

We will write f*(t1) = g*(t2) + O(s), if f*(t1) = f*(t2) + O(s) and f*(¢t;) =
g*(t2) + O(s?), if f*(t1) = f*(t2) + O(5?).

Note that strictly speaking this does not make sense, since f*(¢;) is a section
of f*(F), and g*(ts) as a section of g*(F), are sections of different vector bundles,
but as f = g + O(s?), we make the convention that f*(ty) = g*(t2) + O(s?*) for

any to. This implies, at least informally,

fr(t) = g"(t2) = (f(t) = f1(t2)) + (f*(t2) — 9" (12)) = f"(t2) — f"(t2) + O(s7).

This O(s) and O(s?) notation has a nice interpretation at the level of C*°-schemes:
let V = F{L. SR (V) be the corresponding C°°-scheme to the manifold V and X, X’
be C*°-subschemes in V defined by the equations s = 0 and s®s = 0. Then, using

the notation f, g for the corresponding maps of f, g on the C"°-scheme level,

(a) 51 =384 O(s), f = g+ O(s) mean that 5;|x = 52|x/, flx = g|x".

35



(b) When f = g+ O(s%), f*(t1) = g*(t2) + O(s*) means that (f[x)*(t1) =
(glx)"(t2)-

(s*) means (f[x/)*(t1) = (g]x/)*(t2), which makes sense

Definition 2.3.8. Let V, W be manifolds, £ — V, ' — W be vector bundles and
s:V = E;t: W — F be smooth sections. Write X = Sy g, Y = Swp, for
the standard model principal d-manifolds. Let f : V — W be a smooth map and
fE—f *(F) be a morphism of vector bundles, satisfying

~

fos=f )+ O(s*) in C°(f*(F)). (2.14)

Using the data f, f one can define a 1-morphism g = (9,9',9") : X =Y between
d-manifolds. This 1-morphism is called standard model 1-morphism and will also
be denoted by Sﬂf : Sves — Swre Note therefore, that if x € X then x € V
satisfying s(z) = 0 and therefore by we get

t(f(x)) = (f*())(@) = f(s(x)) + O(s(x)?) = 0
which means f(z) € Y C W. Thus we can define g := f|x : X = Y.
Now define morphisms of C"*°-rings
¢: Co(W) /I, — C*(V)/I,, & :C*W)/I} = C>(V)/IZ,
by ¢p:c+Lrscof+1I, ¢:ct+I}vscof+I2

Note that ¢ is well-defined, since if ¢ € I; then ¢ = X\ -t for some A € C*°F™*, which

means

cof+(A-t)of =[N -f(t)=FO-(fos+ O(s)
=(fof'(\)-s+0(s) € L.

A similar argument holds also for ¢/, so ¢ and ¢* are well defined. Thus, we
have C-scheme morphisms g = (g,¢%) = Spec¢ : X = Y and ¢’ = (g9,¢') =
Spec (¢') : (X,0%) — (Y,0%), both with underlying continuous map g. Hence
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g 1 g7 Oy) = Ox and ¢ : g71(0}) — O are morphisms of sheaves of C*-
rings on X. In order to define g”, note that g*(&y) = MSpec (C(f*(F™*)/(L -
Coo(f*(F*)))>> ThU.S, deﬁne g” : g*(gy) — 8X by g” = MSpeC (CYW)7 where

G" C™(f*(F7)) /(L - CF(F(F7))) = C=(E") /(L - C(E7))
is given by  G": A+ L - CF(f*(F*)) = Ao f + I, - C®(E*).

This definition of g = (g, ¢, ¢") is indeed a 1-morphism of d-manifolds, which we
will also denote by S, ¢ : Sv,p,s = Sw,r.

Note that if V' C V is an open neighbourhood of s7!(0) in V, with inclusion
map i : V — V, we can define £ = E|y = i (E) and § = s|;V. We then get a 1-
morphism @, = S,_ia, : Sy gz — Sv,ps [t is easy to show ¢y 1, is a I-morphism
with inverse i\;,lv’ which means that making V' smaller, without changing s~1(0)
does not really change Sy s, or in other words: the d-manifold Sy g depends

only on FE, s on an arbitrary small open neighbourhood of s71(0) in V.

The following lemma ([35, Lemma 3.32]) gives a criterion when two standard
model 1-morphisms are the same and together with Theorem [2.3.11|below (see [35,
Theorem 3.34] for a proof), we get a complete differential geometric classification

of standard model 1-morphisms.

Lemma 2.3.9. Let V.W be manifolds, E — V, F — W wvector bundles, s : V —
Et : W — F smooth sections, f1,fo : V. — W a smooth maps and fl B
i), fo « E — f3(F) vector bundle morphisms with fi o s = ff(t) + O(s?)
and foos = f3(t) + O(s?). Definition yields standard model 1-morphisms
S8 Sves = Swirs Then S, 5 =8 i if and only if f; = fo+ O(s?)
and fi = f»+ O(s).

Lemma 2.3.10. Let V' be manifolds, E — VW wvector bundles and s : V — E a
smooth section, and let V- C V be open with restrictions E = Ely and § = s|y.
Then iy y 2 Sy gz — Svies 15 a 1-isomorphism with an open d-submanifold of

SvE.s, and if additionally s7*(0) C 'V then iy s a 1-isomorphism itself.

Theorem 2.3.11. Let V,W be manifolds, E — V,F — W wvector bundles, s :
V. = E,t: W — F smooth sections. Let g : Sy.gs — Swyr: be the associated

standard model 1-morphism.
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Then there exists an open neighbourhood 1% of s740) in V, a smooth map
f:V =W, and a morphism of vector bundles f : E — f*(F), satisfying f o § =
f*(t), where E = E|y and § = s|y denote the restrictions of E, s to V., satisfying

g = Sﬁf o i‘f/lv. Here Sf,f : S\ZE,&‘ — Swr: and iV,V : S\?,E,g — Svp,s and the

muerse i‘f/lv exists by Lemma [2.3.10),

Similarly to the 1-morphism case, the next definition will give a differential-
geometric characterization of 2-morphisms A\ : S = S, between standard
model 1-morphisms S; 7, Sy5 1 Svies = Sw,re. We refer to [35, Definition 3.35]

for a more detailed treatment.

Definition 2.3.12. Let V,W be manifolds, £ — V,F — W vector bundles,
s:V — E t: W — F smooth sections, and f,g : V — W smooth maps. Moreover
let f: E — f*(F),§: E — g*(F) be morphisms of vector bundles on V, satisfying
fos=f*(t)+ O(s?) and Gos = g*(t)+ O(s?), and let S; 7844 Svies — Swrs
be the standard model 1-morphisms given by Definition

By choosing a complete Riemannian metric A on W, and a connection V¥ on
F — W one may write for each v € V and sufficiently close maps f, g, g(v) =
exp s, (7(v)) for some y(v) € Tp)W, where expy(,) : TywyW — W is the geodesic
exponential map. Furthermore, using parallel transport along the unique short
geodesic from f(v) to g(v) for each v € V, we may define an isomorphism Oy, :
F(F) = ¢*(F).

Given a morphism of vector bundles on V, A : E — f*(TW), we can con-
catenate it with s, and get a section Aos € C®(f*(TW)), so that we can require
g = exps(Aos)of. In addition, V't is a section of T*W @ F — W, and so f*(V*t)
is a section of f*(T*W) ® f*(F) — V and hence a morphism f*(TW) — f*(F).
So f*(VFt) o A is a morphism E — f*(F) and hence we may require that
g =040 (f + f*(VFt) o A). Taking the dual of A and restricting to the C°-
subscheme X = s7(0) in V gives X = A*[x : f*(Fy) = f*(T*"W)|x = &|x = Ex.
It can be shown that this A is a 2-morphism S = S, if and only if

g=f+NA-s+ 0(s? and g=f+A-f(dt)+ O(s),

which is an informal way of writing g = exp;(Aos)o f+ O(s?) and § = Oy, 0
(f + F*(VEt) o A) + O(s). The 2-morphism A will be denoted by S, : Sii= 854

and called a standard model 2-morphism.
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Moreover, it can be shown that every 2-morphism 7 : Sff = S§,; in dSpa is
a ‘standard model’ 2-morphism and that Sy, = Sy : S = S, if and only if
N =A+ 0O(s).

The following theorem due to Joyce (|35, Theorem 3.39]) gives a condition when
a l-morphism S IE SvEs — Sw.rs between two principal d-manifolds Sy g s and

Sw . is étale, respectively an equivalence.

Theorem 2.3.13. Let V.W be manifolds, E — V, F — W wvector bundles, s :
V. — E t: W — F smooth sections, f : V. — W a smooth map and f B —
f*(F) be a morphism of vector bundles on V', satisfying the following condition:
fos= f*(t)+ O(s?). Then Definitions|2.3.4 and|2.3.8 give principal d-manifolds
Sv.e,s; Swre and a 1-morphism S ; : Svps = Swre. This 1-morphism S ; is
étale if and only if for each v € V with s(v) =0 and w = f(v) € W, the following

sequence of vector spaces is exact:

ds(v)®df (v) E oT W

fw)ye—di(

0——~T,V Y F, 0. (2.15)

Moreover S ; is an equivalence if and only if in addition f|s-1() : s7'(0) — t~1(0)
s a bijection.
We will end this section with two results, which characterise how 1-morphisms

between principal d-manifolds are reflected in the underlying local data V| E, s and
refer for a proof to |35, §3.4].

Lemma 2.3.14. Let V be a manifold, E — V be a vector bundle, s € C>(E)
be a smooth section and V. C V open. Then the 1-morphism tyy @ Spes —
Sy .. is an 1-isomorphism with an open d-submanifold of Sy .. If V is an open

neighbourhood of s7(0) in V., then iy : Sy ¢ s — Sv,ps is a 1-isomorphism.

Theorem 2.3.15. Let V,W be manifolds, E — V,F — W be vector bundles,
and s € C®(E),t € C>®(F) be smooth sections. Define principal d-manifolds
X = Svgs and Y = Swr:, with topological space X = s71(0) and Y = t~1(0).
Let g : X =Y be a 1-morphism.

Then there exist an open neighbourhood 1% of X in'V, a smooth map f : V>
W, and a morphism of vector bundles f : E — f*(F) with fos= f*(t)., where

E = Ely and § = s|y denotes the restriction of E respectively s to V., satisfying

g= Sf,f o i‘f/lv, where 11 Sves — Sy s exists by Lemma|2.5.14)
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2.3.3 Equivalences and gluing by equivalences

As in the case of d-spaces, it will in some situation be important to have a gluing
procedure for d-manifolds. We will here just briefly state the basic definitions and

theorems and refer once again to |35, §3.5, §3.6] for the details.

Definition 2.3.16. Let f : X — Y be a 1-morphism in dMan. We call f étale,
if it is a local equivalence, meaning that for each x € X there exists an open

subset U C X containing z, and an open subset V' C Y containing f(x) such
that f(U) =V and f|y : U — V is an equivalence.

The following Theorem due to Joyce ([35, Theorem 3.36]) provides useful cri-

teria when a 1-morphism f : X — Y between d-manifolds is étale .

Theorem 2.3.17. Let f : X — Y be a 1-morphism of d-manifolds. Then the

following are equivalent:
(i) f is étale
(i) Qg : fY(TY) — T*X is an equivalence in vqcoh(X)

(iii) the following is a split short exact sequence in qcoh(X):

f”@*f‘(tﬁy)

0 —— f(&) Ex @ [*(Fy) 220 Fy 0

If in addition f: X — Y is a bijection, then f is an equivalence in dMan.

The next theorem is the analogue of Theorem for d-manifolds and is
proven in [35, Theorem 3.41].

Theorem 2.3.18. Suppose X.,Y are d-manifolds with vdim X = vdim'Y =n €
Z, and letU C X,V CY be open d-submanifolds, and f : U — V an equivalence
i dMan. Thus, on the underlying topological spaces we have an homeomorphism
f:U—=V, where U C X,V CY are open, and can therefore form the quotient
topological space Z == X 11} Y = (X I1Y)/ ~. Here the equivalence relation ~ on
XY identifiesw € U C X with f(u) € V CY.

Suppose that Z is Hausdorff. Then there exists a d-manifold Z with vdim Z =
n, open d-submanifolds X, Y in Z, satisfying Z = XU Y, equivalences g : X —
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X and h:Y — Y such that glu and hl|y are both equivalences with XNY and
a 2-morphismn : gly = ho f : U — X NY. Furthermore, the d-manifold Z is

independent of all the choices up to equivalence.

We will end this section with the following theorem ([35, Theorem 3.42]), which
shows that given certain differential-geometric or topological data, there exists an

up to equivalence unique d-manifold coming from this data.
Theorem 2.3.19. Suppose we are given the following data:
(a) an integer n,
(b) a Hausdorff, second countable topological space Y,
(¢) an indexing set I, and a total order < on I,

(d) for each i € I, a manifold V;, a vector bundle E; — V;, a smooth section
s; + Vi = FE;, and a homeomorphism v; : X; — Xi, where X; = {v; € V; :
si(v;) = 0} and X; CY is an open set,

(e) for all i < j in I, open submanifolds V;; C V;,V;; C V;,a smooth map

eij : Vij = Vji, and a morphism of vector bundles é;; : Eilv,, — ej;(Ej),
satisfying
(Z) Y = Uie[Xi ’
(i) if i € I then dimV; —rank E; = n |

(’LZZ) ZfZ < ] m I, then éij o Si‘Vij = 62}-(8_7') and wZ<XZ N V;j) = wj(Xj N ‘/JZ) =
X N Xj, and 1); XAy, and if v; € Vi with s;i(v;) = 0 and

vj; = e;;(v;) then the following sequence of vector spaces is exact:

XiNVi; = ;0 e

ds;(v;)®de;;(vy) i)®—ds;(v;

0——~1T,V Eilo @ T, V; 22 L&, — 0.

() if i < j <k in I then ey ViV =

— 2 ~
ViV = €k © €ijlvnv, + O(s7) and ey

€ vy + O(si).

ij

Vi,V (€4k) © €3
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Then there exists a d-manifold Y with vdim'Y = n and underlying topological
space Y, and a 1-morphism f; : Sv, g, s, — Y which is an equivalence with the
open submanifold X, CY corresponding to X, CY for all i € I, such that for
all i < j in I there exists a 2-morphism n;; @ f; 0 S, e, = [0y, v, where
Seien SVM’EHV“,SAV“ — Sy, 5,5, and Ty, v, - S‘/ijin\vijvsi\vij — Sv,.g.s - This
d-manifold Y is unique up to equivalence in dMan.

Furthermore, given a manifold Z and g; : V; — Z smooth maps for all i € I, and
gj © €ij = Gilv,; + O(s?) for all i < j in I, there exist a 1-morphism h :' Y —
Z unique up to 2-morphism, where Z = FgMa(7) = S;40, and 2-morphisms
G:hof, = S0 forallicI. Here Sz is from Definition with vector
bundle E' and the section s both zero, and Sy, 0 : Sv, E.si — Sz00 = Z s from

Definition [2.3.7)

2.3.4 Submersion, immersions and embeddings

In this section we will follow [35] §4.1] and state some basic definitions and theo-
rems about immersions, submersions and embeddings of d-manifolds.

Submersions and immersions of smooth manifolds can be described by injectiv-
ity and surjectivity of the differential. In the same spirit one can define what

immersions, submersion and embeddings for d-manifolds should be.

Definition 2.3.20. Let X be a C*®-scheme, &', £2, ¢ and F*, F2,1 be virtual vec-
tor bundles on X and (f*, f?) : (£°,¢) — (F*,¢) be a 1-morphism in vvect(X).
We have the following complex in qcoh(X):

f D
i, Fre& o F?——0. (2.16)

Proposition [2.1.23] shows, that f*® is an equivalence in vvect(X) if and only if
(2.16]) is a split short exact sequence in qcoh(X), which means that there exist

morphism 7, ¢ as in ([2.16]) satisfying

vod =0, Yo (f'd —¢) =idg,
(ffe—¢)oy+do (W f?) =idrige, (Y@ f?)0d =idse.

Weakening some of these conditions leads to the following definitions:
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a is called weakly injective if there exist v : $ & — £ in qecoh(X) wit
f* lled kl f th Flog? - &t h(X h
vo (f' @ —¢)=ide.

(b) f* is called injective if there exist v : F' @ E? — E and § : F? — Fl @ &2
with yod = 0, yo (fl@®—¢) = ide1 and (f1®—@)oy+d0 (YD f?) = idrigee.

(c) f*is called weakly surjective if there exist 6 : F? — F'@®E? in qcoh(X) with
(b ® f2) 06 = ids.

(d) f*is called surjective if there exist v: F' @ E? — L and § : F? — FL p &2
with 708 =0, 7o (1 @ —¢) = ider and (1) & [2) 0§ — idy.

Using these notions of injectivity and surjectivity one can define the following.

Definition 2.3.21. Let f: X — Y be a l-morphism of d-manifolds and denote
by Qf : f*(T*Y) — T*X the corresponding 1-morphism in vvect(X). Then

(a) We call f a w-submersion if Qf is weakly injective.
(b) We call f a submersion if 1 is injective.

(c) We call f a w-immersion if Qf is weakly surjective.
(d) We call f an immersion if Q2 is surjective.

(e) We call f a w-embedding if it is a w-immersion and f : X — f(X) is a

homeomorphism, which in particular implies f is injective.

(f) We call f an embedding if it is an immersion and f : X — f(X) is homeo-

morphism.

Note that all of the conditions above concern the existence of suitable morphisms

7,6 in the following complex in qcoh(X):

00— (&) e Ex @i*<fY) <¢ .............. Fx —0. (2.17)

Using (¢) — (f) from above, one can define the notion of d-submanifolds of a d-
manifold. A 1-morphism ¢ : X — Y between two d-manifolds X and Y is called
a w-tmmersed, or immersed, or w-embedded, or embedded d-submanifold of Y, if ¢

is a w-immersion, immersion, w-embedding, or embedding respectively.
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It will be important to have a good understanding of the cohomology of the
complex (2.16|). The following proposition characterised this cohomology and is

proven in [35, Proposition 4.3].

Proposition 2.3.22. Let X be a separated, paracompact, locally fair C'*°-scheme
and f* : (€%, ¢) — (F°*,¢) be a 1-morphism in vvect(X), so that is a
complex in qcoh(X). Define the cohomology of at the second, third and
fourth terms by G,H,Z € qeoh(X), as follows:

G=Ker(f'®—¢:" — F' a&?), (2.18)

:Ker(w®f2:f1@52—>}“2) (2.19)
Im(ft e —¢:E — Fla&?)’ '

T = Coker(v @ f?: F' @ £2 — F?). (2.20)

Then

(i) Let f*, f* : (E°,¢) — (F*, 1) be 1-morphisms, n : f* = f* a 2-morphism
and G,H,T and G,H,T be as above for f',f'. Then there are canonical
isomorphisms G = G, H = H, T = T in qcoh(X).

(ii) Leti® : (E%,0) = (E°, ), : (F*,1b) — (F*,4) be equivalences in vvect(X),
and denote by f* = j*o f*oi® : (E°,0) — (F*,v) the concatenation of
j*, f* % Let G, H,T and G, H,Z be as in for f*. f*. Then there are
canonical isomorphisms = g, H ’H,i =~ 7 in qcoh(X).

(iii) If f* is weakly injective, then G = 0.

() If f* is injective, then rank(E®,¢) < rank(F*,¢) and G = H =0, and T
is a vector bundle on X of rank rank (F*,v¢) — rank (€®,¢). Moreover, if
rank (€%, ¢) = rank (F*, ) then Z =0 and f* is an equivalence.

(v) If f* is weakly surjective, then T = 0.

(vi) If f* is surjective, then rank (E°®,¢) > rank (F*,¢) and G =7 =0, and H
is a vector bundle on X of rank rank(E®,¢) — rank (F* ). Moreover, if
rank (£°, ¢) = rank (F*, 1) then H =0 and f* is an equivalence.
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Proposition [2.3.22| yields to the following proposition (compare [35, Proposition
4.5]).

Proposition 2.3.23. (a) Any equivalence of d-manifolds is a w-submersion,

submersion, w-immersion, immersion, w-embedding and embedding.

(b) For 2-isomorphic 1-morphisms f,g : X —'Y, f is a w-submersion, sub-
mersion, w-immersion, immersion, w-embedding or embedding if and only if

g 1S.

(c) Compositions of w-submersions, submersions, w-immersions, immersions,

w-embeddings or embeddings are 1-morphisms of the same type.

(d) The condition on a 1-morphisms of d-manifolds f : X — Y to be a w-
submersion, submersion, w-immersion or immersion are local in X and'Y .
That is, for each x € X withy = f(x) € Y, it suffices to check the conditions
for flu : U — V where U is an open neighbourhood of x in f (V) C X
and V' an open neighbourhood of y in'Y .

Theorem [2.3.17needed a rather strong condition on f being an étale 1-morphism
and Theorem provided a differential-geometric criterion for when a standard
L-morphism S, ; : Syps — Swr; is étale. As Definitions and in-
troduce weaker notions of f being a w-submersion, submersion, w-immersion or
immersion, the following theorem due to Joyce [35, Theorem 4.8] provides criteria

for when S, ; is a a w-submersion, submersion, w-immersion or immersion.

Theorem 2.3.24. Let V,W be manifold, E — V,F — W be vector bundles of
Vand W and s € C*(V, E),t € C®(W, F) be smooth sections. Let f:V — W
be a a smooth map and f . B — f*(F) be a morphism of vector bundles on V
satisfying fos = f*(t)+ O(s2). Then Definitions|2.3.4| and|2.3.8 define principal
d-manifolds Sv.gs, Swrt and a 1-morphism Sf’f :Sves = Swre. Asin

we have the following complex of vector spaces

ds(v)@df ( Fv)@—dt(w)

VB, o T,W

0——T,V E, 0, (2.21)

for each v € V with s(v) =0 and w = f(v) € W.
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(a) S;; is then a w-submersion if and only if for all v € V with s(v) = 0
and w = f(v) € W equation (2.21) is exact at the fourth position, that is
f() @ —dt(w) is surjective.

(b) S;; is then a submersion if and only if for all v € V with s(v) = 0 and
w = f(v) € W equation (2.21)) is exact at the third and fourth position.

(c) S;j is then a w-immersion if and only if for all v € V with s(v) = 0
and w = f(v) € W equation (2.21)) is exact at the second position, that is
ds(v) @ df (v) is injective.

(d) S;; is then an immersion if and only if for all v € V with s(v) = 0 and
w = f(v) € W equation (2.21)) is exact at the second and fourth position.

Note that all of the above conditions are open condition onv in{v € V : s(v) = 0}.

The following theorem (|35, Theorem 4.9]) gives a local characterisation in
terms of standard models and standard model 1-morphism of the above defined

1-morphism types of d-manifolds.

Theorem 2.3.25. Let g : X — Y be a 1-morphism and x € X with g(x) =y €
Y. Then there exist open d-submanifolds T C X and U CY withx € T,y € U
and g(T) C U, manifolds V, W, vector bundles E — V, F — W, smooth sections
s € C®(E),t € C*(F), a smooth map [ :V — W, a morphism of vector bundles
fiE— fH(F) with fos= f*(t), equivalences t : T — Syps,j: U — Swrt,
and a 2-morphism n: j o Sff 0% = g|r, where Sf,f :Sves — Swrye.

(a) If g is a w-submersion, we can chose the data T, ..., j such that f : V —
W is a submersion in Man, and f : E — f*(F) is a surjective vector bundle

morphism.

(b) If g is a submersion, we can chose the data T, ..., such that f :V — W

is a submersion and f : E — f*(F) is an isomorphism.

(¢) In the case of g being a w-immersion, we can chose the data T, ..., J such
that V' is a submanifold of W, f : V' < W is the inclusion, and F|y = E®G
for some vector bundle G =V, and f =idg®0: E — E®&G = f*(F),tly =
5@ 0.
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(d) In the case of g being an immersion, we can choose F|y = E, f =

idE, t|V = S.

2.3.5 Embedding theorems for d-manifolds

The following section discusses embedding theorems for d-manifolds. We will just
state the important results and refer for proofs to [35], §4.4]. The following lemma
(see [35, Lemma 1.4.27]) follows easily from the description of principal d-manifolds
in terms of “standard models”, and shows that any principal d-manifold can be

embedded into some manifold.

Lemma 2.3.26. Let U be a principal d-manifold. Then there exists an embedding
t:U =V of U into a manifold V.

As this lemma shows, in the case of principal d-manifolds there are no restric-
tions on the d-manifold to obtain an embedding. In the case of general d-manifolds
however, it is no longer true that any d-manifold X can be embedded into some
manifold Y, and as Theorem will show, this is the case if and only if X is
a principal d-manifold. So Theorem is the converse of Lemma [2.3.26

Theorem below will generalize the following well-known classical result
by Whitney [53]:

Theorem 2.3.27 (Whitney [53]). (a) A generic smooth map f: X — R™ from

a m-dimensional manifold into R™ for some n > 2m + 1 is an immersion.

(b) For any m-dimensional manifold X, there ezists an embedding f : X — R™
for some n > 2m +1 and f can be chosen such that f(X) is closed in R™.

Moreover, generic smooth maps f : X — R™ are embeddings.

The d-manifold version of this theorem will play a central role in defining and
studying bordism theory of d-manifolds. We will state the proof of this theorem
(and therefore an implicit proof of Lemma [2.3.26) as we will later on imitate
this proof when studying representable d-orbifolds. The proof follows closely [35,

Theorem 4.29], to which we refer for a more complete and detailed discussion.

Theorem 2.3.28. Let X be a compact d-manifold. Then there exists an embedding
f: X = R"” for somen > 0.

47



Proof. Let * € X and let U, be a principal open neighbourhood of z in X
with equivalence ¢ : U, — Sy, g, s, for some triple V,,, E,s,. So in particular,
i(x) = v, € V, and s,(v,) = 0. As X is paracompact and Hausdorff, we can choose
an open neighbourhood U of z in U,, such that the closure U’ of U/ in X is a
subset of U,. Denote by U’, C U, be the corresponding open d-submanifold, and
choose an open V/ C V, such that ¢(U’,) = Sv; g« C Sv, 5,.s,, where E!, = E|y,
and s? = s|y, denote the restrictions of E, and s, to V.

For some n, > dimV, we can choose an open neighbourhood V) of v, in V/
and a smooth cut off function g, : V, — R", such that g,|v,\v; = 0, gz|vr — R
is an embedding, g,(V;') doesn’t contain 0 and g, (V)N g, (Vz \V)) = 0. Set E! =
Eulvy, st = so|yy and U, = i (Svr.pr ), so that U is an open neighbourhood
of # in U, C X and é|yn : U, — Syy gy is an equivalence.

Using the cut off function g,we get a 1-morphism S, g0 : U, — Sgra 0 =
FgMan(Rrey — R On U, \ U/, this 1-morphism is identically 0, as g,|y,\v; = 0,
and hence we can write Sy, ¢ o i|UI\7; — 0o, where w : U, \ U, — * and
0:% — R"™ = Fg°P(0: ¥ — R™). As U, C U,, we can extend S, o o4 uniquely
by zero to all of X, and we get therefore a unique 1-morphism f, : X — R"",
satisfying f,|u, = Sg, 00t and f,[x\gr =00 m.

As 0 & g.(V)) and g.(V)) N g.(V, \ V), we can conclude that f_(U") N
f(X\U,) = 0. To see that f,|y» : U, — R™ is an embedding, note that
folur =8 9zl 0 © iy, where 4|y is the equivalence given as above and S gilyp0
bSv gy s — bSrna 0o = R™ with g,|y» : V" — R™ an embedding.

Equation yields for ng|vé,,0 the following sequence

y sz (v)Ddga(
—_—

00— T,V YE R .0 .0

Y

which is exact at the second and fourth terms as dg,(v) is injective. Hence, by
Theorem [2.3.24{d), Sg.lyp0 is an immersion and thus and embedding as Galvy is
an embedding and therefore a homeomorphism with its image. Hence f, |y is an
embedding by Proposition [2.3.23|(a),(c).

Choosing n,, U”, f, for all z € X, we get an open cover {U”;z € X} of X,
and as X is compact, there exists a finite subcover {U}, : i =1,...,k}. Defining

n = Ng + -+ ng, we may define a I-morphism f by f=f, x---xf, X —
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R"1 x ... x R" = R" which we claim is an embedding. To see this, note that
as f, |ur is an embedding, f|y~ is an immersion for i = 1,...,k and therefor
f is an immersion as X = Ugllu .- U U, . Suppose now that x # y € X.
Then z € U}, for some i = 1,... k. If y € U] then f,,(v) # f,(y) as fxi|U;’i is
injective. If y # Uy, then f,(y) as fo,luy as fo,(Uy,) N £, (X \Uy,) = 0. Hence
f(z) # f(y) and f: X — R"™ is injective. As f is locally an embedding and X is

compact, we get that f is a homeomorphism with its image and therefore that f

is an embedding. O]

We will end this section with the following theorem ([35, Theorem 4.34]), which
proves that if a d-manifold X can be embedded into a manifold Y, then X can be
written as the zero set of a smooth section of a vector bundle over the manifold Y

near its image.

Theorem 2.3.29. Let X be a d-manifold, Y a manifold and f : X — 'Y an
embedding, in the sense of d-manifolds. Then there exist an open subset V C Y,
with f(X) C V, a vector bundle E — V' and a smooth section s : V — FE fitting

into a 2-Cartesian diagram in the category of d-spaces dSpa:

X — 174
T
1% * . E

for some 2-morphism n:so f = 0o f. Here 0:V — E is the zero section, and
Y,V E,s,0=FMaY Y E s5.0). Hence X is equivalent to the standard model

d-manifold Sy g s, and is therefore a principal d-manifold.

As a consequence of Theorems [2.3.28) and [2.3.29| and Lemma [2.3.26| we get the

following corollary which shows that any compact d-manifold is principal.

Corollary 2.3.30. A d-manifold X is principal if and only if dim T); X is bounded
above for all x € X. In particular, if X is compact then X 1is principal.
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2.3.6 D-transversality and fibre products

We have seen in Theorem [2.2.5] that in the 2-category of d-spaces dSpa all fibre
products exist. Since the 2-category dMan is a full 2-subcategory of dSpa, we
know that given l-morphisms g : X — Z and h : Y — Z the fibre product
W = X X425 Y exists in dSpa. We will now follow [35, §4.3] and investigate
under which circumstances this fibre product will exist in dMan. As it will turn
out, a sufficient condition for W being a d-manifold will be d-transversality of g
and h. As the name suggests, the notion of d-transversality is motivated by the
notion of transversality between smooth maps of manifolds.

Recall, that in the ‘classical” manifold case, the fibre product W = X x, 7, Y
of smooth manifolds X,Y with smooth maps ¢ : X — Z and h : Y — Z exists
in Man, if g and h are transverse maps, that is the tangent bundle 7.7 can be
split into 1,Z = dg|,(T,X) + dh|,(T,)Y) for all z € X and y € Y with g(z) =
h(y) = z € Z. This can be reformulated into g and h are transverse if the following

morphism of vector bundles on the topological space W is injective:
e (dg") @ f*(dh*) : (goe)(T"Z) — e (T"X) & fY(T"Y),

where e : W — X and f : W — Y denote the natural projections satisfying
goe=hof.

Definition below (compare [35, Definition 4.16]) imitates this condition
for the d-manifold case, but on the obstruction bundle rather than the cotangent
bundle.

Definition 2.3.31. Let XY, Z be d-manifoldsandg: X - Zand h:Y — Z

be l-morphism. Let W = X X, 7, Y be the fibre product of the underlying

C*°-schemes and define e : W — i( ,J : W =Y to be the projection morphisms.
We call g, h d-transverse, if the following morphism in qcoh(W) has a left

mverse:
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The following theorem is the d-manifold analogue of the classical result that
fibre products between smooth manifolds exist in Man if the involved smooth

maps are transverse and is proven in [35, Theorem 4.21].

Theorem 2.3.32. Let XY, Z be d-manifolds andg: X — Z and h:Y — Z
be d-transverse 1-morphisms.
Then the d-space fibre product W = X Xg zp Y exists in dMan, that is W

1 a d-manifold with
vdim W = vdim X + vdim'Y — vdim Z.

Moreover, Joyce [35, Theorem 4.22] gives sufficient conditions for two 1-morphisms
f: X —>Z h:Y — Z between d-manifolds X,Y , Z to be d-transverse.

Theorem 2.3.33. Letg : X — Z andh :' Y — Z be 1-morphisms of d-manifolds.

Then the following are sufficient conditions for g, h to be d-transverse:
(a) Z € Man, that is Z is a manifold,
(b) g or h is a w-submersion.

In the case of smooth manifolds, it is sufficient for either g : X — Z or
h :Y — Z to be a submersion, as this implies that g and h are transverse. An
analogous result in the d-manifold world is the following theorem again proven in
[35, Theorem 4.23].

Theorem 2.3.34. Let Y be a manifold, X, Z be d-manifolds, and g : X — Z
and h :'Y — Z be 1-morphism with g being a submersion.

Then W = X XgzprY is a manifold of dimension dimW = vdim X +
dimY — vdim Z.

Fibre products with R" in dMan can be used to locally characterise embed-
dings and immersion in dMan (see [35, Proposition 4.26]) and vice versa ([35,
Proposition 4.27]).
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Theorem 2.3.35. (a) Let X be a d-manifold and g : X — R" a 1-morphism
of d-manifolds. Then the fibre product W = X Xggrng * exists in dMan by
Theorem (a) and the projection map e : W — X 1is an embedding of d-
manifolds.

(b) Let f : X —'Y be an immersion of d-manifolds, and x € X with f(x) =
y € Y. Then there exist open d-submanifolds v € U C X andy € V CY
with f(U) C V, and a 1-morphism g : V. — R" satisfying g(y) = 0, where
n = vdim'Y — vdim X. These data fits into the following 2-Cartesian square in

dMan:

U *
flu s 0
\% g R".

In the case of f being an embedding, U can be taken as U = f~H(V).

2.3.7 Orientations on d-manifolds

This section will quickly review some material on orientations on d-manifolds. The
notion of orientation on a d-manifold is the d-manifold analogue of the notion of
orientation in the ‘classical’ manifold case, and we advise the reader to consult |35,
§4.5, §4.6] for an in depth treatment of the subject.

Definition 2.3.36. Let X be a d-manifold. Then the virtual cotangent bundle
T*X = (€x, Fx, ¢x) is a virtual vector bundle on X. As shown in [35 §4.5], one
can construct a line bundle L7+x on X, which we will call the orientation line
bundle of X.

Note that this construction holds more generally on the C*°-scheme level, that
is for a given C'*-scheme X and a virtual vector bundle (£°,¢) on X, one can
construct a real line bundle L. 4) on X, the so called orientation line bundle of
(£,6).

An orientation w on X is then an orientation on L+ x, that is, w is an equiv-
alence class [7] of isomorphism 7 : Ox — L+x, where 7 is equivalent to 7’ if and

only if they are proportional by a positive function on the underlying scheme X.
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We will call X orientable if it admits an orientation, that is, X is orientable
if and only if Lp«x is trivilizable.

An oriented d-manifold is a pair (X,w), where X is a d-manifold and w an
orientation on X.

The opposite orientation to a given orientation w = [7] on a d-manifold X, is
given by —w = [—7], which changes the sign of the isomorphism 7 : Ox — Lp-x.
Using the shorthand notation X for an oriented d-manifold (X,w), we will write
—X for X with the opposite orientation, that is —X is short for (X, —w).

The following theorem summarizes some important properties of orientation
line bundles. (Compare [35], §4.5, §4.6] for proofs and more details).

Theorem 2.3.37. Let X be a C*°-scheme, (E°,¢) a virtual vector bundle on X
and Lge 4) be the orientation line bundle. Then

(a) Let EY,E? be vector bundles on X with ranks ki, ky and ¢ : EL — E? be a
morphism of vector bundles. Then (E°, ) is a virtual vector bundle of rank
ky — k1, and the orientation line bundle Lee 4 is canonically isomorphic to
the tensor product of the determinant line bundles of (E')* and &%, that is
Ligeg) = A (EN) @ AF2E2,

then there exists a

(b) If f*: (&%, ¢) — (F°,4) is an equivalence in vqcoh(X),
canonical isomorphism Lo : Lige gy = L(Fe y) i qcoh(X).

(¢) If (E°,¢) is a virtual vector bundle on X, that is (E°,¢) € vvect(X), then
Eid¢ = idg(g,,(b) : ﬁ(g-@) — £(507¢).

(d) Suppose f*: (€% ¢) — (F*,¢) and g : (F*, 1) — (G*,€) are equivalences in
vgcoh(X), then Lyeope = Lgo 0 Lo : Ligo gy — Lge.e).

(e) If f*,9° : (E°,¢) — (F*,¢) are 2-isomorphic equivalences in vqcoh(X),
then ‘Cf' = Ego : £(5.1¢) — ﬁ(]‘",w)

(f) Suppose f : X — Y is a morphism of C*=-schemes, and (E€*,¢) € vqcoh(Y).
Then there is a canonical isomorphism Iy ge gy @ [*(Lige,g)) — Lyr(go.g) be-
tween the pulled backed line bundle and the line bundle associated to the

pulled back virtual quasi coherent scheme.
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The next theorem (see [35, Theorem 4.50] for a proof) shows that the fibre

product of d-transverse oriented d-manifolds itself carries an orientation.

Theorem 2.3.38. Given d-manifolds X,Y ,Z and d-transverse 1-morphisms g :
X - Zand h :' Y — Z, Theorem shows that the fibre product W =
X Xg2znY exists and is a d-manifold. Denote bye : W — X and f - W =Y
the projection morphisms. Then we have orientation line bundles Ly, ..., Lr«z
onW,...,Z and so Ly-w, e (Lr-x), f*(Lry), (g0 e) (Lr-z) are line bundles on

W . A suitable choice of an orientation convention, yields a canonical isomorphism
(p . CT*W — g*('CT*X) ®OW I*(ﬁT*Y) ®OW (g Og)*(ﬁT*Z)*- (222)

Thus, given oriented d-manifolds X,Y , Z, the fibre product W also has a nat-

ural orientation, since trivializations of Lr«x, Lpvy, Lr+z induce a trivialization

of Lr-w by (2.22).

2.3.8 D-manifolds with boundary

As we want to study d-bordism later on, we will in the following give a short
summary of d-manifolds with boundary. We follow here the exposition of the
material in [37, §6, §7] and refer to [35, §7] for a much more general, rigorous and
complete approach.

In a similar spirit to the definition of dSpa and dMan, Joyce defines in
[35],67-68 the 2-categories dSpa® dSpa® of d-spaces with boundary and with
corners, and full 2-subcategories dMan®, dMan® of d-manifolds with boundary
and corners. The objects in dSpa®, dSpa®, dMan®, dMan® are quadruples X =
(X,0X,ix,wx), where X, 0X are d-spaces, and tx : 0X — X is a l-morphism,
such that 0X is locally equivalent to a fibre product X X[ o0) * in dSpa.

The following theorem summarizes some of the properties of d-manifolds with
boundary and corners. For proofs of these statements and a much more detailed

and complete approach to d-manifolds with boundary and corners we refer to [35,

§7).

Theorem 2.3.39. The 2-categories dMan® and dMan® have the following prop-

erties:
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(a)

(b)

(c)

(d)

(¢)

There exist full and faithful functors Ff/llfr?,“b : Man® — dMan® and FdMan® .
Man® — dMan®. The full 2-subcategories of objects in dMan® and dMan®,

anb

which are equivalent to objects in the image of Fl‘\ig[nb and Ff,g[fc“c will be
denoted by Man® and Man®.

Each object X = (X,0X ,ix,wx) in dMan® or dMan® has a virtual di-
mension vdim X € Z. Moreover, the virtual cotangent sheaf T*X of the

underlying d-space X is a virtual vector bundle on X with rank vdim X .

If X € dMan®, then 9X € dMan, and if X € dMan, then 90X = 0. Here
dMan denotes the image of dMan under the full and faithful 2-functor
FdMan® . Nan® — dMan®.

Boundaries in dMan®, dMan® have strong functorial properties. For ex-
ample, if f : X — Y is a simple 1-morphism in dMan®, which roughly
speaking means f maps 0*X — OFY for all k, then there exists a unique
simple 1-morphism f_ : 0X — Y with foix =y o f_, and the following

diagram is 2-Cartesian in dMan®

f-

0X oY
(3¢ TT idfO’LX 1y
X - Y,

so that 0X ~ X Xy ,, 0Y in dMan®.

An orientation on a d-manifold with corners X € dMan®, is an orientation
on the line bundle Lr«x on X. Moreover, an orientation on X induces a

natural orientation on 0X .
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Chapter 3

Background on d-orbifolds

We want now, in a similar way to chapter 2] review some basic material on d-
orbifolds. If one thinks of d-manifolds as aderived generalization of manifolds, one
can think of d-orbifolds as a derived generalization of orbifolds. The basic idea in
defining d-orbifolds is very similar to the d-manifold case, but we have to replace
C*-schemes and d-spaces, by Deligne-Mumford C'*°-stacks and d-stacks. We will
start by recalling some theory on ‘classical’ orbifolds, and would like to refer to [35,

§11] for an in depth treatment of the material covered in this chapter.

3.1 Some orbifold background

Orbifolds were introduced by Satake [49] in 1956, who called them “V-manifolds”.
Thurston [52] studied them later in his work on 3-manifolds, and gave them the
name “orbifold”. He proved that orbifolds admit well-behaved notions of funda-
mental group and universal cover.

We will start by briefly recalling some basic definitions and properties and
refer to the book of Adem, Leida and Ruan [I, §1] for a much more complete

introduction.

Definition 3.1.1. A n-dimensional orbifold chart on a topological space X is given
by a connected open subset U C R”, a finite group G of smooth automorphisms
of U and a G-invariant morphism ¢ : U — X, which induces a homeomorphism of
U/G to an open subset U C X.
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As in the case of manifolds an orbifold atlas on X is then given by a family U =
{(U,G, ¢)} of locally compatible orbifold charts covering X. Locally compatible
means here that for any two charts (U, G, ¢) and (V, H,1)) and a given point z €
o(U)Nh(V) = UNV there exists an open neighbourhood W C YNV of z and an
orbifold chart (W, K, p) such that there exist embeddings (W, K, p) < (U, G, ¢)
and (W, K, p) — (V,H,v). (Here an embedding e : (W, K, p) — (U,G,¢) is a
smooth embedding e : W < U with ¢ o e = p.)

An atlas U is called a refinement of another atlas V if for every chart in U
there exists an embedding in some chart of V. Two atlases U and V are called

equivalent if there exists a common refinement W.

Definition 3.1.2. A second countable Hausdorff space X, equipped with an equiv-
alence class [U] of n-dimensional orbifold atlases is called an effective orbifold,

written X.

As in classical differential geometry, we can define what smooth maps between
orbifolds should be:

Definition 3.1.3. let X = (X,U) and Y = (Y,V) be orbifolds. A morphism
f:X =Y is called smooth if for all z € X there exists a chart U, G, ¢ around z
and (V, H 1) around f(z), such that f(U) C V, where U = ¢(U) and V = 4(V),
and f can be lifted to a smooth map f: U — V with ¢y o f = f o é.

This immediately yields the notion of a diffeomorphism between orbifolds.

Definition 3.1.4. Two orbifolds X and ) are called diffeomorphic if there exist
smooth maps of orbifold f : X — Y and g : Y — X such that go f = idx and

fog=idx.

Definition 3.1.5. For each x € X, with X = (X,U) being an orbifold, define the

local group at x as

G, = {9 € Glgy =y},

whenever (U, G, ) is a local chart around x = 1(y). Note that G, is determined

up to conjugacy in G, which follows as in [I], §1].
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Definition 3.1.6. For an orbifold X = (X,U), the singular set of X is defined as
X(X) ={r e X|G, #1}.

The most natural source of orbifolds are compact transformation groups: con-
sider a compact Lie group G acting smoothly, effectively and almost freely (that
is, with finite stabilizers) on a smooth manifold M. Then, as smooth actions on
manifolds are locally smooth, we can conclude that for each x € M with isotropy
group G, there exists a G -invariant chart U = R" containing z. The orbifold
charts are then simply given by (U,G,,n), where 7 : U — U/G, is the projec-
tion map. The quotient space X = M /G is automatically second countable and
Hausdorft.

Definition 3.1.7. We call an orbifold X = (X,U) an effective quotient orbifold,
if it is given as the quotient of a smooth, effective, almost free action of a compact
Lie group G on a smooth manifold M, that is X = M /G with U being constructed

from a manifold atlas using the local smooth structure from above.
In the case of G being finite, this yields:

Definition 3.1.8. If G is finite in the situation of Definition [3.1.7, X = (M/G,U)
will be called effective global quotient orbifold.

3.2 (*-stacks

In this section we briefly review the basic theory of Deligne-Mumford C*°-stacks
due to Joyce ([34] and [35]). We will just recall the for us most important defini-
tions ans concepts and refer a much more detailed and complete discussion about
C>-stacks and orbifolds to Joyce [34] §8].

Definition 3.2.1. A C'*-stack is a geometric stack on the site (C*Sch, J), where
J is a Grothendieck topology on the category C*°Sch. (For more details see [35]
Definition C.1]).

The 2-category of C'*°-stacks will be denoted C'*°Sta. For any C'*°-scheme X,
X is a C®-stack.
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The following definition defines open and closed C*°-substacks and can be found
in [34, Definition 8.13].

Definition 3.2.2. A C*-substack ) in a C*-stack X is a substack of X (as for
instance in [34, Definition 7.4]), which is also a C*-stack. There exists a natural
inclusion 1-morphism ¢y : Y — X.

Y is called open C*°-substack of X if iy is a representable open embedding,
closed C*°-substack of X if iy is a representable closed embedding, and locally
closed C*-substack of X if 1y is a representable embedding.

A collection {Y, : a € A} of open C*-substacks Y, in X with [[, ., %y, :
[,ca Yo — X being surjective, is called open cover of X.

We will now recall some material on quotient C'*-stacks as in [35], §C.4].

Definition 3.2.3. Consider a separated C'*°-scheme X, a finite group G, and an
action of G on X by isomorphisms r : G — Aut(X). Then the quotient C*°-stack
X = [X/G] can be defined as follows:

Define a category X to have objects septuples (A, u,T,U,t,u,v). Here A is
a finite group, pu : A — G is a group morphism, 7', U are C'*°-schemes, t : A —
Aut(T) is a free action of A on T by isomorphisms, v : T — X is a morphism
satisfying u o t(a) = r(pu(a))ou : T — X foralla € A, and v : T — U is a
morphism which makes T into a principal A-bundle over U, i.e. v is proper, étale
and surjective, and its fibres are A-orbits in 7.
can be defined to be pairs of morphisms, where a : U — U’ is a morphism of C'*°-
schemes, and @ : T x 4 G — T' x oG’ satisfying some compatibility conditions as in
[35, Definition C.26]. Joyce shows in [35], Definition C.26], that this makes X" into
a category. The functor py : X — C*°Sch defined by py : (A, u, T, U, t,u,v) — U

on objects and py : (a,a) — a on morphism makes X into a Deligne-Mumford

C>°-stack, which will also be denoted by [X/G].

In Algebraic Geometry, the notion of Deligne-Mumford stack plays an im-
portant role in studying moduli problems. Deligne-Mumford stacks are locally
modelled on quotient stacks [X/G], where X is an affine scheme and G a finite
group acing on X. In the same spirit, Joyce [34], Definition 8.16] defines Deligne—
Mumford C*°-stacks.
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Definition 3.2.4. A Deligne-Mumford C'*°-stack is a C'*°-stack X admitting an
open cover {), : a € A}, in the sense of Definition where each ), is equiva-
lent to a quotient stack [U,/G] for U, an affine C*°-scheme and G, a finite group.
X is called locally fair,locally finitely presented if it admits an open cover with each
U, a fair, or finitely presented affine C'*°-scheme, respectively.

We write DMC>Sta, DMC>Sta'’, DMC>Sta'®, DMC>Sta'®™ for the full
2-subcategories of locally fair, locally good, locally finitely presented, and all
Deligne-Mumford C'*°-stacks in C*>*Sta, respectively.

Proposition 3.2.5. Let X be a C*-stack with X = [X/G|, where X a separated
C>°-scheme and G s finite. Then X is a separated Deligne—Mumford C'*°-stack.

As the following example will show, the condition that X is separated cannot

be weakened:

Example 3.2.6. Consider the non-separated C*°-scheme X = (RIIR)/ ~, where
~ is the equivalence relation identifying the two copies of R along (0, 00). Consider
furthermore the group G = Zs acting on X by exchanging the two copies of R. The
quotient C*-stack X = [X/G] can be thought of as a copy of R, with stabilizer
group {1} for x € (—o0,0] and Z, for z € (0,00). Then as in [34, Example 8.19)],
X is not a Deligne-Mumford C'*°-stack.

3.2.1 The underlying topological space of a C"*-stack

Given a C*™-stack X, we follow Joyce [34, §8.6] and explain briefly how one can
associate a topological space &j,, to X. It can then be shown, that for a given
Deligne-Mumford C*-stack X, its underlying topological space X, can be given

the structure of a C'°°-scheme.

Definition 3.2.7. Let X be a C'*°-stack. Write x for the point SpecR in C>*Sch
and x for the associated point in C*Sta. The underlying topological space (Xiop,
Tx.,) of X is then defined as the set of 2-isomorphism classes [x] of 1-morphisms

x :x — X, denoted by X, and the topology

Txiop = {Ux top © i : U — X is an open C™-substack in Xiop},
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where
Ux top = {[u0iy] € Xiop : u : ¥ — U is a 1I-morphism} C Xiqp.

To see that Ty, is indeed a topology, note first that taking i = X or U = 0
gives Xiop, 0 € T, Let now iy : U — X,y : V — X be open C*-substacks
of X. Then W :=U X, ,, V is an open C*-substack of X satisfying W op =
Ux top N Vi top, Which shows that Ty, is closed under finite intersections. To see
that T, is closed under arbitrary unions, note that given a family of open C*°-
substacks in X, {U, : a € A} for some index set A, each U, is a subcategory of

X and so the union V = |J U, is a subcategory of X. This subcategory V can
acA

be shown to be a prestack and the associated stack V' turns out to be an open

C*°-substack of X satisfying ]A}X’top = U Ua top-
acA
The underlying topological space (Xiop, Tx,,): OF Xiop for short, has the follow-

ing properties:

e Given a l-morphism f : X — ) of C"*°-stacks, there exists a natural contin-

uous map fiop : Xiop = Viop defined by fiop([x]) = [f © ].

e Given l-morphism f,g : X — )Y and a 2-isomorphism 7 : f = g we have
ftop = Gtop-

Viewing the category of topological spaces as a 2-category with only identity 2-
morphisms, we can define a 2-functor Fgfopsm : C*Sta — Top, by mapping

X = Xiop, [ — fiop and any 2-morphism to the identity.

3.2.2 Quasicoherent sheaves on C*-stacks

In the following section we will recall the definition of quasicoherent sheaves on
C*>-stacks (as in [35, §C.2] and [34], §9]). The here presented material will later
on in section be extended to the notions of virtual quasicoherent sheaf and
virtual vector bundle on C*°-stacks.

We start by defining Oy-modules, (quasi)coherent sheaves and vector bundles
on a Deligne-Mumford C*°-stack and refer to [35], Definition C.12] or [34] Definition
9.1] for an in depth treatment of the subject.
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Definition 3.2.8. Let X be a Deligne-Mumford C*-stack. We can define a
category Cx with objects being pairs (U, u), where U is a C*-scheme and u : U —
X is an étale 1-morphism, and morphisms being pairs (f,n) : (U,u) — (V,v),
where f : U — V is an étale morphism of C*°-schemes, and 1 : v = vo fis a
2-isomorphism. Define the composition (g,() o (f,7) of two morphisms (f,7) :
(U,u) = (V,v) and (g,¢) : (V,v) = (W, w) in Cx to be

(go f.0): (U, u) = (W, w),

where 6 is the composition of 2-morphisms across the following diagram

Q u
N
S
wf|e= V¥V X
g

id v

W\%

We can define a sheaf of Ox-modules £, or just an Oy-module &£, to assign for
all objects (U,u) in Cx a sheaf of Op-modules £(U,u) on U = (U,Oy), and
for all morphisms (f,7n) : (U,u) — (V,v) in Cx an isomorphism of Op-modules
Eqgm  [HEN,v)) — E(U, u) such that for all (f,7),(g,¢),(go f,0) as above, the

following diagram of isomorphisms of sheaves of Oy-modules commutes:

(go ) (EW, w) £(901.9)

) E(U,u).
Iy 4 (EWw)) E(tm) (3.1)

I (g (€W, w))) JH(EW, v))
Here I; ,(€(W, w)) is a natural isomorphism of functors as in Remark .

We call ¢ : € — F a morphism of sheaves of Ox-modules if it assigns a
morphism of Op-modules ¢(U, u) : E(U,u) — F(U,u) for each object (U, u) in Cy

such that for all morphisms (f,7) : (U,u) — (V,v) in Cx the following diagram

17 (€9:0)

commutes
. Egm)
fH(EWVv)) —— €U, u)
£ (V) \wu) (3.2)
Fitm

[(FVv) — FU,u).
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The sheaf of Oy-modules is called quasicoherent, or coherent, or a vector bundle
of rank n, if £(U, u) is quasicoherent, or coherent or a vector bundle of rank n for
all objects (U, u) in Cx. The category of Ox-modules will be denoted by Oy-mod,
the full subcategories of quasicoherent and coherent sheaves will be denoted by

qcoh(X) and coh(X) respectively.

The following proposition (see [34, Proposition 9.3]) shows some nice properties

of the categories defined above.

Proposition 3.2.9. Let X be a Deligne—Mumford C*°-stack. Then the category
Ox-mod of Ox-modules is an abelian category and the full subcategory qcoh(X)
of quasicoherent sheaves is closed under kernels, cokernels and extensions in Ox-
mod, and so is itself an abelian category. Moreover the category of coherent sheaves
coh(X) is closed under cokernels and extensions in Ox-mod, but may not be closed
under kernels in Ox-mod, and so it may not be abelian. In the case of X being
a locally fair Deligne—Mumford C*-stack, the categories Ox-mod and qcoh(X)

coincide, that is we have qcoh(X) = Ox-mod.

3.2.3 Sheaves of abelian groups and ("*°-rings on ('*°-stacks

In this section we briefly review material on sheaves of abelian groups and sheaves
of C*-rings on Deligne-Mumford C'*-stacks, as in [35, §C.3]. This section can be
seen as an extension of the previous section [3.2.2, and we start with the following
definition, where we use the same notation as in §3.2.2

Definition 3.2.10. Given the data of Definition define a sheaf of abelian
groups € on X which assigns a sheaf of abelian groups (U, u) on U for all objects
(U, u) in Cy, and an isomorphism of sheaves of abelian group &, : f~(E(V,v)) —
E(U,u) for all morphisms (f,n) : (U,u) — (V,v) in Cx with f_: (f, f*) such that
for all morphism (f,7), (g,¢), (g © f,0) the analogue of equation (3.1]) commutes:

£gof.9))

(9o ) (EW,w))

It g(EWw)) S(fy' (3.3)



Here I;,(€(W,w)) is the natural isomorphism as I ,(€) in Definition and
f~! denotes the pullbacks for sheaves of abelian group.

Given two sheaves of abelian groups € and F, a morphism of sheaves of abelian
groups ¢ : &€ — F, assigns a morphism of sheaves of abelian groups ¢(U, u) :
E(U,u) — F(U,u) on U for each object (U, u) in Cy, such that for all morphism
(f;m) : (U,u) — (V,v) in Cx the analogue of equation commutes:

f1(¢(‘_/;v))J qu) (3.4)

1 g
f(FW ) — F(U,w).

Sheaves of C*°-rings on X and their morphisms are defined in the exact same

way, where sheaves of abelian groups are replaced by sheaves of C'*°-rings.

Remark 3.2.11. Any quasicoherent sheaf £ € qcoh(X) on a C*°-scheme X has
an underlying sheaf of abelian groups, by regarding £(U) as a abelian group for
open subsets U C X and forgetting about its Ox(U)-module structure. In the
same way, any quasicoherent sheaf £ on a Deligne-Mumford C'*°-stack X has an
underlying sheaf of abelian groups, which in the following will also be denoted by
E. The only subtlety in the Deligne-Mumford C*°-stack case, is that £ being a
quasicoherent sheaf requires &,y @ f*(E(V,v)) — E(U,u), but in the case where
€ is a sheaf of abelian groups_, we need &y, ¢ fTHEW,v)) = EU,u). But
f(E(V,v)) and f~H(E(V,v)) can be related l;y the following morphism :

(id® fH): fFHEW ) = fFHEWV,v) ®p-10y) [ (Ov)
= [THEW ) ®5-1(0y) Ov = f(E(V,0)),

where the tensor products use the fact that we have an Oy-module structure on

£(V,v) € qeoh(V).

The following example will define the structure sheaf Oy on a Deligne-Mumford
C*°-stack, and can be found in [35, Example C.23].
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Example 3.2.12. Given a Deligne-Mumford C*-stack &X', the structure sheaf Oy
is a sheaf of C*°-rings on X, defined by Ox(U,u) = Oy for all objects (U, u) in
Cx with U = (U,Op), and (Ox);y, = f*: f71(Oy) — Op for all morphisms
(f;m) : (Uyw) = (V,v) in Cx with [ = (f, f%).

3.2.4 Effective Deligne—-Mumford C*-stacks

In this section we recall basic definitions and properties of effective Deligne—
Mumford C*-stacks. We refer to [35, §C.5] for a more detailed discussion of
the subject.

Definition 3.2.13. A Deligne-Mumford C*°-stack X is called effective if whenever
we have [z] € &,op and X is near [z] locally modelled on a quotient C*°-stack [U/G],
where G = Isox([z]), then G acts effectively on U near u, where u € U is fixed by
G. So for each 1 # v € G and the G-action r : G — Aut(U) we have r(v) # id;,
near v in U. B

The C*°-scheme U is determined up to G-equivariant isomorphism by X, [z]
locally near u, which implies that in order to test X being effective, it is enough
to consider one choice [U/G] for each [z] € Xip.

A quotient C*°-stack [X/G] is effective if and only if the action r : G — Aut(X)
of G on X is locally effective, which means that for each 1 # v € G we have
r(v)|u # idy for every open C'*°-subscheme () # U C X.

Note th;t any Deligne-Mumford C*°-stack & that is a C*°-scheme is auto-
matically effective. Examples of non-effective Deligne-Mumford C'*°-stacks are for

instance quotients of the form */G for any nontrivial group G # {1}.

The following proposition summarizes important uniqueness properties of 2-
morphisms of effective Deligne-Mumford C*°-stacks. (See [35], Proposition C.32]

for a proof.)

Proposition 3.2.14. Let X, Y be Deligne—Mumford C*-stacks and f,g: X — Y
be 1-morphisms between X and ). If any one of the following conditions hold:

(a) X is effective and f is an embedding of C*-stacks; (note that this implies
that fi : Isox([x]) — Isoy(fiop([2])) is an isomorphism for each [x] € Xipp.)
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(b) Y is effective and f*: f~1(Oy) — Ox injective; (for example f is an étale

morphism, an equivalence, or a submersion of orbifolds)
(c) YV is a C®-scheme;

then there exists at most one 2-morphism n: f = g.

3.2.5 Orbifold strata of C*°-stacks

We will in this section describe orbifold strata of C'*°-stacks and refer once again
to [35], §C.8] for a detailed discussion of the subject.

Given a Deligne-Mumford C*°-stack X, with topological space &, each point
[z] € Xiop has an orbifold group Isox([z]), that is a finite group defined up to iso-
morphism. For each finite group I', we will write )chtop = {[z] € Xiop : Isox([z]) =
I'}. Note that é\?gtop

C>®-substack X! of X with inclusion OF(X) : AT — X. Furthermore we get the

following decomposition of X;qp:

is a locally closed subset of Xi., coming from a locally closed

Kiop = 1T XL op (3.5)

isomorphism classes of finite groups I"

—I
For each I', the closure X_.  of XTI

o.top o.top I Xiop can be shown to satisfy

—T SA
Xo,top g | | Xo,top'
isomorphism classes of finite groups A:
I" is isomorphic to a subgroup of A

Therefore (3.5) is a stratification of X;op, and we will call X orbifold strata of X.
There exist six variations of this idea, the Deligne-Mumford C®-stacks T, XT,
X" and their open C*-substacks Al C At A C AN?F,)?OF C XT. The geometric

points and orbifold groups of these strata are given by:

(i) Points of X' are isomorphism classes [z, p], with [z] € X, and p : T —
Isox([z]) is an injective morphism. The orbifold group Isoyr([z, p]) is given
by the centralizer of p(I') in Isox([z]). The points of X1 are pairs [z, p] as
above, where p is an isomorphism, and Isoxr([z, p]) = C(I'), where C(I) is
the centre of I
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(ii) Points of XT are pairs [z, A], with [z] € Xip and A C Isox([x]) is a subgroup
of Isox([z]), isomorphic to I'. The orbifold group Isosr([z, A]) is given by
the normalizer of A in Isox([z]). The points of X are pairs [z, A] as above,
where A = Isox([z]), and Isogr([z, A]) = {1}.

(iii) Points [z, A] of XT and XL are the same as for X" and X!, but with orbifold
groups Isopr([z, A]) = Isogr ([z, A])/A and Isogr([z, A]) = {1}.

The 1-morphisms O (X), ..., TI'(X) between the different strata, form a strictly

commutative diagram as follows:

AN\r 0 g 5@ ar T
O (X) OF' (X)
C X C - (3 6)
or(X) or(x)
" (x) T I (x) T

Aut(r)AX r

Here the columns are inclusions of open C'*°-substacks and the automorphism
group Aut(I') acts on X, XL such that XT ~ [XT /Aut(T")] and X'~ (XL /Aut(T)].

Definition 3.2.15. Let X be a Deligne-Mumford C*>-stack, and I" a finite group.
Then the Deligne-Mumford C*®-stack X' can be defined as follows:

First recall, that X being a stack on the site (C*Sch, J) means that X is a
category with functor py : X — C'*°Sch satisfying various conditions. In order to
define X' we have therefore to define a category X' and a functor pyr : X' —
C*Sch.

The objects of X are pairs (A, p) satisfying the following three conditions:

(1) Ais an object in X, with py(A) = U for some C*°-scheme U € C*°Sch.

(2) p: ' = Aut(A) is a group morphism, with Aut(A) denoting the isomorphism
group of A. That is the elements in Aut(A) are given by isomorphism a :
A — Ain X, satisfying px o p(y) = id;, for all v € T'.
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(3) Consider u € U with corresponding morphism u : * — U in C*°Sch. As
in [34, Definition C. 45|, there exists a morphism a, : A, — A in X with
px(A,) = x and px(a,) = u where A, is unique up to isomorphism. Given
such data A,, a,, [34, Definition 7.2] implies furthermore that for each v € T
there exists a group morphism p, : I' — Aut(A,), which we require to be

injective for all u € U. This condition is independent of the choice of A, a,.

The morphisms ¢ = (A,p) — (B,o) in X' are defined to be morphisms
c: A — Bin X, satisfying o(y) oc = co p(y) for all v € T. Given two
morphisms ¢ : (A,p) — (B,0),d : (B,0) — (C,7) define the composition
doc: (A, p) — (C,7) to be the composition cod : A — C in X. For each
(A, p) € XT, the identity morphism id(a ) : (A, p) = (A, p) in X" is defined
to be idy : A — A in X. The functor pyr : XT — C*Sch is defined by
par i (A, p) = U = pa(A) and pyr : ¢ = pa(c).

The full subcategory of objects (A, p) in X' such that p, : ' — Aut(A,) is

an isomorphism for all v € U is denoted by X with functor p xr = Px|ar
X' — C>Sch. As [35, Theorem C.45] shows, X' is in fact a Deligne-
Mumford C*°-stack and X an open C*-substack in AT,

3.2.6 Orbifolds as C*-stacks

We follow here closely Joyce [35] §8.2] in associating the classical theory of orbifolds
to the theory of C"*°-stacks.

Definition 3.2.16. We call a C*-stack X an orbifold (without boundary), if it
is equivalent to a groupoid stack [V = U] for some groupoid (U,V, s, t,i,m) in

C*>Sch which is the image of a groupoid (U, V, s, t,u, 4, m) in Man under F{, 5.

Here s : V' — U should be an étale smooth map and s xt:V — U x U is proper
and smooth. So in other words, X is the C*-stack associated to a proper étale Lie
groupoid in Man, and in particular every orbifold X is a separable, second count-
able, locally compact, paracompact, locally finitely presented Deligne-Mumford
C>-stack.

Another definition, which is more in the spirit of Satake and Thurston is the

following;:
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Definition 3.2.17. A separable, second countable Deligne-Mumford C'*°-stack X
is called an orbifold of dimension n, if for every [z] € X}, there exists a linear
action G = Isox([z]) on R", a G-invariant open neighbourhood 0 € U C R™ and a

I-morphism i : [U/G] — X, which is an equivalence with an open neighbourhood
U C X of [z] in X, with i, ([0]) = [2]. Here U = F.3M(U).

Definition states that an orbifold is a Deligne-Mumford C'*°-stack X
which is locally modelled on R"/G for some finite group G. In contrast to the
“classical” theory of orbifolds, it follows immediately that orbifolds form a 2-
category Orb, which is a full 2-subcategory in DMC>Sta. The 1-morphisms f :
X — Y in Orb will also be called smooth maps of orbifolds and by concatenating
FaSeh with FSZ5% we get a functor FQR2 : Man — Orb in the obvious way.

Asin Joyce [35, Theorem 8.2] it can be shown that the above defined 2-category
Orb is (weakly) equivalent to various (weak) 2-categories of orbifolds studied by
other recent authors like [44] or [39].

Many differential geometric constructions and ideas, like submanifolds, trans-
verse fibre products and orientations, extend nicely to the orbifold world and will
be used in the further without specifically mentioning them. Other notions like im-
mersion, submersion or embeddings need to be slightly adjusted, as the following
definition shows. (Compare [35, Definition 8.3].)

Definition 3.2.18. A smooth map f : X — ) between orbifolds X and ) is
called

(a) representable, if f, : Isox([x]) — Isoy(fiop([z])) is an injective morphism for

all [x] € Xiop, 1.6. f acts injectively on orbifold groups;

(b) immersion, if it is representable and Qy : f*(7T*Y) — T*X is a surjective

morphism of vector bundles, that is has a right inverse in qcoh(X);

(c) embedding, if it is an immersion and f, : Isox([z]) — Isoy(fiop([])) is not
just an injective morphism, but an isomorphism for all [z] € Xiop, and fiop

Xiop = Viop 15 @ homeomorphism on its image;

(d) submersion, if Qf : f*(T*Y) — T*X is an injective morphism of vector

bundles, that is has a left inverse;
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e) €tale, if it is representable and €, : f*(T*)) — T*X is an isomorphism.
(e) 7

Note that in contrast to the other notions, submersions between orbifold need
not be representable. Note furthermore, that there are equivalent definitions of

representable and étale morphism as follows:

(a’) f is called representable, if it is a representable 1-morphism of C*°-stacks,
that is whenever V is a C'*°-scheme and Il : V — ) is a 1-morphism, then
the fibre product X x;y gV in C*Sta is a C*®-scheme.

(e') f is called étale if it is étale as a 1-morphism of C*°-stack.

3.2.7 Orbifold strata and effective orbifolds

As shown in Joyce [35, §C.8], there are six different variations of the idea of
orbifold strata of Deligne-Mumford C'*°-stack. For each finite group I', he defined
O>=_stacks XT, AT, XT, and open C>®-substacks Xl c xrt oarc )EF,XAOF C /'\,;OF
Note that as XAOF is a C*°-scheme, we get é\,;or ~ ﬁ

We want now to define these strata for orbifolds. The geometric points and

orbifold groups of X1, ..., 280F are given by:

(i) Geometric points of X' are isomorphism classes [z, p], where [z] € X, and
p: I' = Isox([z]) is an injective morphism. Moreover we require Isoyr([z, p])
to be the centralizer of p(I') in Isox([z]). Points of X' C X are given by
isomorphism classes [z, p|], where p is an isomorphism and Isoxrr([z,p]) =
C(T"), with C(T") being the centre of T

(i) Geometric points of XT are pairs [z, A], where [2] € X;op and A C Isox([z])
is a subgroup of Isox([x]) isomorphic to I'. Moreover we require Iso ;i ([z, A])
to be the normalizer of A in Isoy([z]). Points of X;F C XT are given by pairs
[z, A], where A = Isox([z]) and Iso/\;g([x, A]) =T.

(iii) Geometric points [z, A] of X r XAOF are the same as for X7, /'\,;OF , except the orb-
ifold groups are given by Isop([z, A]) = Iso - ([z, A]) /A and Iso yp (7, A]) =
{1}.

70



As in [3.2.5] there exist 1-morphisms OT(X),... II'(X) forming the strictly com-
mutative diagram ({3.6)). (Compare [35] §8.4].)

Definition 3.2.19. Let I' be a finite group. A representation (V, p) of I', where
V' is a finite-dimensional real vector space and p : I' — Aut(V) a group mor-
phism, is called nontrivial if V™) = {0}. The abelian category of nontrivial
[-representations (V, p) will be denoted by Rep,,(I'), and its Grothendieck group
by A" := Ky(Rep,(I')). Define the positive cone AL of A" by AL = {[V,p] :
(V,p) € Rep,(I')} S T

By an elementary result in representation theory, I' has, up to isomorphism,
finitely many irreducible representations. Denoting some choices of representations
in these isomorphism classes by Ry, Ry, ..., Rx, with Ry being the trivial irreducible
representation and Ry, ..., Rj being nontrivial irreducible representations, A" and
A£ can be described as follows:

A" is the freely generated group over Z by [Ry],...,[Ry], and AL the subgroup

generated over Zsq. So in other words

D ={a[Ri] + -+ a[Re);a1,...,ax € Z}, and (3.7)
5_ = {al[Rl] + 4 ak[Rk];al, coe, ag - ZZO} g AF, (38)

and therefore A" = ZF and AL = Z&,.

The dimension of Al can be defined by the group morphism dim : A" —
Z,ay[Ry)+- - -+ ag|Rg] — ay dim Ry +- - - +a dim Rg. Then dim : [(V] p)] — dim V/
and dim(AL) C Zs,.

3.2.8 Effective orbifolds

In section[3.2.4]we followed Joyce ([35, §C.5]) in defining effective Deligne-Mumford
C>-stacks. Since orbifolds can be seen as examples of Deligne-Mumford C°°-
stacks (section , we get the notion of effective orbifold. The following propo-
sition due to Joyce (|35, Proposition 8.13]) characterizes effective orbifolds in dif-

ferent ways.

Proposition 3.2.20. An orbifold X is effective, if any of the following equivalent

conditions hold:
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(1) X is locally modelled near each [x] € Xy, on R"/G, where G acts effectively

on R". Here an action is called effective, if every 1 # v € G acts nontrivially
on R™.

(i1) Generic points [x] € Xy have trivial stabilizer group Isox([x]) = {1}.

(i) Whenever T # {1} is a nontrivial finite group and X € AL, with X # [R]
for R an effective representation of I', then the orbifold stratum X7 = is

empty.

(iv) Whenever I' # {1} is a nontrivial finite group, then the orbifold stratum
XT0 =) is empty.

Given effective orbifolds X,) and l-morphism f.g : X — ), the following
proposition (compare [35, Proposition 8.14]) gives criterions when there exists at

most one 2-morphism 7 : f = g.

Proposition 3.2.21. Let f,g: X — Y be 1-morphisms between effective orbifolds
X.,Y. Then there exists at most one 2-morphismsn : f = g, if one of the following

conditions is satisfied:

(i) f is an embedding.

(ii) f is a submersion.

(111) fi: Isox([z]) = Isoy(fip([2])) is surjective for all [x] € Xy
() Isoy(frop([x])) = {1} for generic [x] € Xip.

(v) Y is a manifold.

Note that effective orbifolds play an important role in questions of integrality
in homology and cohomology. Consider an oriented, n-dimensional orbifold X
The fundamental class [X] of an arbitrary orbifold X is naturally defined as an
element in H,(Xp, Q), as we get for each point [z] € Xiop a rational “weight”
contribution 1/|Isox(z)|. If however, X is an effective oriented n-orbifold, the
fundamental class [X] is actually defined in H,(Xiop, Z).
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3.2.9 Vector bundles on orbifolds

As defined in section [3.2.2] a vector bundle £ on an orbifold X is a special kind
of quasicoherent sheaf on X.

A smooth section s of a vector bundle £ on an orbifold X is a morphism
s: Ox — & in the category qcoh(X'). The vector space of smooth sections will be
denoted by C*°(€). As in the manifold case, any morphism ¢ : € — F of vector
bundles on X, induces a linear map ¢, : C*(€) — C*(F) by sending s +— ¢ o s.

If f: X — ) isasmooth map (1-morphism) of orbifolds and F a vector bundle
over ), then as in the manifold case, the pullback bundle f*(F) is a vector bundle
over X. Moreover, f induces a linear map f* : C°(F) — C*(f*(F)) by sending
s+ f*(s) o1, where 1 : Ox — f*(Oy) = f7H(Oy) @s-1(0,) Ox is the natural
isomorphism.

The cotangent sheaf T*X of an n-orbifold X is a vector bundle on X" of rank n,
and is called the cotangent bundle of X', and as in the manifold case the tangent
bundle TX of X is defined as TX = (T*X)*.

Contrary to the manifold case, vector bundles on orbifolds can have fibres which
are equipped with a non-trivial representation of Isox([z]). This can be seen as
follows: Let X be an n-orbifold and £ — X be a rank k vector bundle on X. Let
[z] € Xiop be a geometric point of X, and G = Isoy([z]) its orbifold group. Then
X is locally modelled near [z] on R"/G near 0, where G acts linearly on R™ and &
is locally modelled near [z] on the orbifold vector bundle (R¥ x R")/G — R"/G,
where G acts linearly on R¥. However, this action of G needs not to be trivial,
and so at each geometric point [z] € X, the fibre &, is a vector space isomorphic
to R¥, which is equipped with a not necessarily trivial representation of Isox([z]).

Smooth sections s : X — & are locally modelled near [z] on G-equivariant
smooth maps s : R® — R* near 0. As s(0) must take values in the G-invariant
subspace (R*)¢ of R¥, a smooth section s of a vector bundle £ over an orbifold X
must take values in the Isoy([x]) invariant subspace of &€, at each geometric point
[z] € Xiop-
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3.2.10 Sheaves on orbifold strata

This section briefly describes some basic properties and definitions of sheaves on
orbifold strata. In particular we will sketch that for any quasicoherent sheaf
& € qeoh(X), there exists a natural representation of T' on &' := OY(X)*(€) €
qcoh(XT) and that the action of Aut(I') on AT lifts in an equivariant way to E'.

The material used here can be found in more detail in [35, §C.9].

Definition 3.2.22. Consider a Deligne-Mumford C'*°-stack &', a finite group I
acting on X'. Section defines the orbifold stratum X1, a 1-morphism OY(X) :
X' — X a natural action of Aut(T") on X' by l-isomorphisms L'(A, X) : AT —
XT for A € Aut(T'), and a natural action on O'(X) by 2-isomorphisms E' (v, X) =
O'(X), where v € T'.

For a quasicoherent sheaf £ € qcoh(X) we can define £V := OV(X)*(€) €
qcoh(XT) and an action of T on &' as follows: for each v € T' define a morphism
RY(v,E) : EY — &L by

R (7,€) = BN (7, X)°(€) : O1(X)"(€) = O"(X)"(€).

As E'(1,X) = idor(x) and E'(y,X) ® E'(6,X) = E'(y04,X) for 7,6 € I, we

can conclude that

RY(1,€) =ider and
RY(v,E) o R'(6,€) = R'(y004,E) forall v,6 €T,

Therefore RY(—, £) defines an action of T on E' by isomorphisms.

In a similar fashion one can show that ST(A, &) : LT(A, X)*(EF) — ET, ST(A, €)
= Iraxyor (&) o YA X)* o ON(X)*(E) — ON(X)*(€) for A € Aut(I)
defines a lift of the action of Aut(T") on X' to ET.

Moreover it can be shown that the actions of Aut(I') and I" on XT are in fact
compatible so that the action of Aut(I") on X lifts to an action of Aut(T") x I' on
Er.

Furthermore, E' (v, X)* : OY(X)* = OY(X)* being a natural isomorphism of

functors implies that RY(y, —) and S(A, —) are natural isomorphisms of functors,
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that is for a morphism a : & — & in qcoh(X!) we have

o oRY(v,E) = R (7,&)0a"  foryeTl
aoSY(A,E) =S (A, E)o LY (A, X)) (aF)  forA € Aut(T).

Here o' denotes the by a induced morphism o : OV (X)*(a) : & — &)
Let X, T, X' &£, E" be as above and denote by Ry = R, ..., R, representatives
of the irreducible representations of ' over R. As R'(—, &) is an action of T on X

by isomorphism, an elementary result in representation theory yields a splitting
k
=l @R for&,... & € qeoh(XT). (3.9)
=0

We can split ' into trivial and nontrivial representations of T
E=glagl, (3.10)

where the subsheaf £ of trivial representations of £' corresponds to the factor
k

& @Ry inf3.9)and the subsheaf £L of nontrivial representations of ' to @ £ @ R;.
=0

If we denote the action of I' on R; by p; : I' — Aut(I") then we get for évery auto-
morphism A € Aut(T) that p;oA™! : T' — Aut(R;) is an irreducible representation
of I', and is therefore isomorphic to Ra(; for some unique A(i) = 0,..., k. Hence
we get an action of Aut(I') on 0,...,k given by permutations. As in Joyce [35,
Definition C.50] one can show that the the lift ST (A, £) preserves the splitting|[3.10

The following definition will describe what morphisms of square zero extension
should be. We refer once again to [35, Definition 9.2] for a much more detailed

discussion.

Definition 3.2.23. Given square zero extensions of C*-stacks (X, 0%, 1x) and
(Y, 0y,1y), we call a pair (f, f'), where f : X — ) is a 1-morphism of C*°-stacks,
and f": f71(O)) = O% a morphism of sheaves of C*°-rings on X, a morphism of
square zero extensions from (X, O, 1x) to (¥, 0Y,1y), if the following condition

is satisfied:
flof ) =1xof : fT(O}) = Ox.
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3.3 D-stacks

In this section we follow Joyce [35], §9] in defining the 2-category of d-stacks dSta.
A d-stack can be thought of as a derived version of Deligne-Mumford C*-stack,
and play a similar role in the d-orbifold world, as d-spaces in the d-manifold world.
We will start by providing the d-orbifold analogue of and define what square

zero extensions of C*°-stacks should be.

3.3.1 Square zero extensions of C'*°-stacks

This section will be the d-orbifold analogue of section [2.1.6] and extend square
zero extensions of C*°-schemes to Deligne-Mumford C*>-stacks. We refer to Joyce

[35, §9.1] for a more detailed discussion.

Definition 3.3.1. Given a locally fair Deligne-Mumford C*-stack, it can be
shown that all Oy-modules are quasicoherent (compare [35, Proposition C.13]).

A tuple (O%,1x), consisting of a sheaf of C*°-rings O’ on X and a morphism
of sheaves of C'*-rings 1y : 0% — Ox on X, where Oy is the structure sheaf of X
(see [35, Example C.23)]), is called a square zero extension of X, if for all objects
(U,u) in the category Cxy (sheaves on X are defined in terms of this category ;
compare [35, Definition C.12])

1x(Uyu) : O%(U,u) = Ox(U,u) = Oy

is a square zero extension of C'*-schemes on U in the sense of § The triple
(X, O%,1x) is called a square zero extension of C*-stacks.

Given an object (U,u) in Cy, we can define quasicoherent sheaves Iy (U, u)
and Fy(U,u) on U, a morphism rx(U,u) : Zx(U,u) — O%(U,u) of sheaves of
abelian groups on U, and morphisms {x (U, u) @ Zx(U,u) — Fx(U,u), Yx (U, u) :
Fx(Uyu) = T*U = (T*X) (U, u) of quasicoherent sheaves on U, which full fill the
role of Zx, Fx, kx, &, ¥x in the definition of square zero extension of C'*°-schemes.
(Compare [35, Definition 2.9].)

Given a morphism (f,7) : (U ,u) — (V,v) in Cx we can define a morphism of

sheaves of C>-rings on U f':= (Ol) (s : [~ (O%(V,v)) = O%(U,u), such that

76



(f, ') is a morphism of square zero extensions of C*°-schemes (f, f’) : (U, O% (U, u),
w(U,u) = (V, 0% (V,v), 12(V, 0)).

As in §2.1.6] this morphism of square zero extensions of C'*°-schemes defines
morphisms f', f?, f* in qeoh(U), which are isomorphism as f is étale and f’ an

isomorphism. Using these isomorphisms, and setting

)
)

one can check that the data Zy (U, u), Fx(U,u), (Zx) (s, (Fx(f,n)) defines quasi-

coherent sheaves Zy, Fy on X and &y (U, u), ¥ (U, u) defines morphisms of quasi-

I/y(
Fxlf,

(Zx(V,v)) = Zx (U, w),

e
f I(‘FX(VU))_)fX(Qau>>

I*ﬁ |\H

coherent sheaves £y : Zy — Fx,¥x : Fx — T*X. Moreover, if one regards Zy as
a sheaf of abelian groups on X, then rky (U, u) defines a morphism ky : Zy — O
of sheaves of abelian groups on X.

Equation yields for each (U,u) an exact sequence of sheaves of abelian
groups on X

0 Ix —2+ O —X Oy 0, (3.11)

and equation ([2.9) implies for each (U, u) the existence of an exact sequence of

sheaves of quasicoherent sheaves on X'

Ex Yx

Ix

Fu T*X — 0. (3.12)

3.3.2 The 2-category of d-stacks

We will now define the 2-category dSta of d-stacks, which can be thought as the
Deligne-Mumford C*°-stack analogue of d-spaces. (The C*-schemes X, X’ are
replaced by Deligne-Mumford C'*-stacks X', X”.) We will not prove any results in

the following, but refer to Joyce [35, §9.2] for a more detailed discussion instead.

Definition 3.3.2. A d-stack X is given by a quintuple X = (X, 0%, Ex,1x, Jx)
consisting of a separated, second countable, locally fair Deligne-Mumford C*°-
stack X', a square zero extension (O, 1x) of X with kernel ky : Zy — O, such
that Iy € qcoh(X), and a quasicoherent sheaf €y € qcoh(X), and a surjective
morphism jy : Ex — Zy in qeoh(X).
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Using (3.11)), equation (2.10]) translates into the following exact sequence of

sheaves of abelian groups on X:

Ex 2L O s Oy 0, (3.13)

and by setting ¢y = {x 0 Jx : Ex — Fx and using (3.12)), the d-stack analogue of
equation (2.11)) is given by

Ex 2% Fro X TP x — 0. (3.14)

The morphism ¢y : Ex — Fy is called virtual cotangent sheaf of X.

Denote the kernel of jx : £y — Zy in qecoh(X) by Ay and let py : Dy — Ex
be the kernel of ¢y : Ex — Fx in qecoh(X). Then there exists a unique morphism
vy : Cx — Dy such that Ay = pyovy, making the following diagram commutative

with exact diagonals

/'

0 "X

. zf’y'

CX Ax dx ‘FX
\ /

VX /SX% ‘éx
Dy nx Iy

7 .

0 0.
Given two d-stacks X', Y, a 1-morphism f : X — Y is a triple f = (f, f', f"),
where f : X — Yis a I-morphism of C*-stacks, f' : f~'(0},) — O’ a morphism of
sheaves of C*-rings on X" such that (f, f’) is a morphism of square zero extensions
(X, 0%, 1) = (¥, 0%, 1p) as in section [3.3.1} and f” : f*(Ey) — Ex is a morphism
in qcoh(X) satisfying

geo f'=flo f(y): [ (Ey) = Tx,

with f1, f2, f% as in section [3.3.1]

One can also define composition of 1-morphisms, 2-morphisms, the identity
1-morphism, the identity 2-morphism and composition of 2-morphisms, and thus
define a 2-category of d-stacks, which we will denote by dSta. For all the details

of the construction we refer to [35, Definition 9.6].
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3.3.3 Gluing d-stacks by equivalences

In this section we generalize the material of section to the d-stack case. We
will not discuss the material in detail, and refer for an in depth discussion of the
subtleties and details to Joyce [35, §9.4] instead.

The following theorem is the d-stack analogue of Theorem [2.2.4]

Theorem 3.3.3. Let X,Y be d-stacks, U C X,V C Y be open d-substacks
and f: U — 'V an equivalence in dSta. For the underlying topological spaces this
means that we have open subspaces Usop C Xiop, Viop © Viop, Wwith a homeomorphism
frop + Utop — Viep. Hence we can form the quotient topological space Z,, =
Xiop L, Viep = (Xiop H Viop)/ ~, where the equivalence relation ~ on Xyop 11 Vi,
identifies an element [u] € Uyop C Xiop with frop([t]) € Viep C Viep-

Assume that the quotient space Zy,, ts Hausdorff, or that on the C*°-stack level,
the quotient C*™°-stack Z = X Iy Y 1is separated. Then there exist a d-stack Z,
open d-substacks )2',:)7 in Z with 2 = X U )A), equivalences g : X — X and
h:Y — Y such that glu and hly are equivalences with )?U)), and a 2-morphism
nN:glu=hof:U— X UY. Moreover, the d-stack Z is independent of choices

up to equivalence.

3.4 D-orbifolds

We want now to recapitulate some basic definitions and properties of d-orbifolds.
As orbifolds are an extension of manifolds, d-orbifolds will play the same role as
an extension of d-manifolds. We follow throughout this section Joyce [35], §10],

and refer to him for a much more complete treatment of d-orbifolds.

3.4.1 Virtual quasicoherent sheaves on C*>-stacks

In this section we will briefly extend the material of section to virtual quasi-
coherent sheaves and virtual vector bundles on C'*-stacks. As it turns out, most
of the concepts of section [2.1.5] on virtual quasicoherent sheaves and virtual vec-
tor bundles on C'*°-schemes extend nicely to the C'*°-stack case. However there

are some differences and subtleties in the C*°-stack case, which we will explain in
Definition below. (Compare [35, §10.1.1].)
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Definition 3.4.1. The C*°-stack analogue of Definition (the definition of
the 2-category vqcoh(X')) is exactly the same as in the C*°-scheme case. A virtual
quasicoherent sheaf (£°,¢) in vqcoh(X') is called a virtual vector bundle of rank
d € Z if X may be covered by Zariski open C*-substacks U such that (£°, )|y
is equivalent in vqcoh(U) to some virtual quasicoherent sheaf (F*,v) for F!, F?
vector bundles on U with rank 72 — rank F' = d. The difference between this
definition and Definition is that the vector bundles F', 72 on U need only
be locally trivial in the étale topology, so that the orbifold groups Isoy([u]) of U can
act nontrivially on the fibres of !, F2. The full 2-subcategory of virtual vector
bundles in vqcoh(&X') will be denoted as in the C*°-scheme case by vvect(X).

If f: X — Yisal-morphism of Deligne-Mumford C'*°-stacks then the pullback
f* defines a strict 2-functors f*: vqcoh()) — vqcoh(X) and f*: vvect()) —
vvect(X), as for C*-schemes. In contrast to the C*°-scheme case, the “pull-
back” of a 2-morphism exists, that is if f,g: X — ) are 1I-morphisms of Deligne—
Mumford C*-stacks and n: f = g is a 2-morphism, then n*: f* = ¢* is a strict
2-natural transformation.

As in the d-space case (compare section , one can define the virtual cotan-
gent sheaf T*X of a d-stack X to be the morphism ¢y : Ex — Fx in qcoh(X) as
in Definition If f: X - Y is a l-morphism in dSta then Q; := (f”, f?)
is a 1-morphism, mapping f*(7*Y) — T*X in vqcoh(X). The first subtleties in
the d-stack case arise in the 2-morphism picture in dSta. Suppose f,g: X — Y
are l-morphisms and n = (n,7'): f = ¢ is a 2-morphism in dSta. Then we have
beside the induced 1-morphisms Q: f*(T*Y) — T*X, Q,: ¢*(T*Y) —» T* X, a 1-
isomorphism
n (T*Y): fX(T*Y) — g¢*(I*Y) in qeoh(X) and a 2-morphism n': Qy = Q, o
n*(T*Y) in vqcoh(X).

Most of the other results in the C'*°-scheme and d-space case, like Proposi-
tions [2.1.23| and [2.1.24] carry over nicely to the C'*°-stack and d-stack world and

can be proven in the exact same manner.
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3.4.2 The definition of d-orbifolds

As in the d-manifold case, we start by defining principal d-orbifolds. (Compare
[35, Definition 10.1],)

Definition 3.4.2. We call a d-stack W a principal d-orbifold (without boundary),
if it is equivalent in dSta to a fibre product X x4 z, Y with X, Y, Z € Orb. On
the underlying C'*°-stack level, the fibre product W ~ X’ x, z 5 V is locally finitely
presented, as X', ), Z are, and similar to the d-manifold case, any object in Orb
is a principal d-orbifold.

Let WW now be a nonempty principal d-orbifold. Then, as we have seen before,
the virtual cotangent sheaf T*W is a virtual vector bundle on the C'*°-stack W.
We can therefore define as in the d-manifold case the wvirtual dimension of W as
vdim W = rankT*W € 7Z. Similar to the d-manifold case, the virtual dimension is
well-defined, and if W ~ X xz Y, with X, Y., Z being orbifolds, then vdim W =
dim X + dim)Y — dim Z.

A d-stack W is called a d-orbifold (without boundary) of virtual dimension
n € Z if it can be covered by open d-substacks W, which are principal d-orbifolds
with vdim W = n. The underlying C*-stack X" is separated, second countable,
locally compact, paracompact, and locally finitely presented. As in the d-manifold
case, the virtual cotangent sheaf T*X = (Ex £, 4, ) of X is a virtual vector bundle
of rank vdim X = n, and is therefore called the virtual cotangent bundle of X .
The empty d-stack 0 is defined to be a d-orbifold of any virtual dimension n € Z,
and hence vdim @ is undefined.

Write dOrb for the full 2-subcategory of d-orbifolds in dSta. Then, as in
the d-manifold case, the image of the 2-functor F@3f*: Orb — dSta is dOrb,
and we write F39™: Orb — dOrb instead. Moreover, Orb is a 2-subcategory of
dOrb. If we restrict the 2-functor Fggta to dMan, we obtain a 2-functor F§gae =
F§8% aMan: dMan — dOrb. Then F§ga o Fype® = F§O™® o Fgib - Man —
dOrb.

We can hence write dMan for the full 2-subcategory of objects X in dOrb
being equivalent to FSOP(X), for some d-manifold X. We will refer to a d-
orbifold X as a d-manifold, if X € dMan.

81



As in the d-manifold case, there are several characterizations of when a d-stack
is a principal d-orbifold. This again, builds a bridge to Kuranishi neighbourhoods,
as we will see later on. The following proposition is the d-orbifold analogue of
Proposition [2.3.3]

Proposition 3.4.3. A d-stack W is a principal d-orbifold, if one of the following

equivalent characterizations hold
(a) WX xXg2pY for X, Y, 2 ¢ Orb.

(b)) W ~ X X;2; Y, where X, Y, Z are orbifolds, i : X — Z,j : Y — Z
are orbifold embeddings and X, Y, Z,1,j = FS2(X, Y, Z,i,7). So in other
words W s an intersection of two suborbifolds X,Y in Z in the sense of
d-stacks.

(c) W=V Xse0V, where V is an orbifolds, £ € vvect(V) a vector bundle on
V (as in §3.2.9), s € C>(E) a smooth orbifold section of € and 0 € C=(E)
is the zero section. Here V, E, 5,0 = Fa582(V, Tot(E), Tot(s), Tot(0)), where
Tot is given by the ‘total space functor’ as in [35, Definition 8.4). So W is
the zero set s71(0) of an orbifold section s of an orbifold bundle €, in the

sense of d-stacks.

The only difference in the proof is that in the manifold case one could take ®
to be a diffeomorphism with an open neighbourhood U’ of the diagonal in Z x Z.
In the orbifold case ® is no longer a diffeomorphism, but rather a |Isoz(z)|-fold
branched cover near (z,0) € U and (z,2) € Z x Z.

Many concepts and properties of d-manifolds extend nicely to the d-orbifold
case, like the following lemma, which shows that open substacks of d-orbifolds are
d-orbifolds themself. (Compare [35, Lemma 10.3].)

Lemma 3.4.4. An open substack U of a d-orbifold VYV is also a d-orbifold with
vdim U = vdim WW.

The following lemma gives a nice characterisation when a d-orbifold is a d-

manifold.
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Lemma 3.4.5. A d-orbifold X is a d-manifold, that is equivalent in dOrb to
FIOrb (X)) for some d-manifold X, if and only if Isox = {1} for all [x] in Xy

Proposition 3.4.6. Let X be a d-orbifold, [x] € X,y and G = Isox([z]). As in
[35, Theorem C.25 (a)], there exists a quotient C*®-stack [U/G|, where U is an
affine C*-scheme, and a 1-morphism i : [U/G| — X, which is an equivalence
with an open C*-substack U C X, such that on the underlying topological spaces
Gtop * (U] = [2] € Upop C Xiop for some w € U, fized by G.

Then a = dimTjU — dim O, U — vdim X > 0 and X s determined up to
non-canonical equivalence near [x] by X, vdim X and a choice of representation

of G on R*, up to automorphisms of R®.

3.4.3 Local description of d-orbifolds

Similarly to the d-manifold case (see §2.3.1)), there exist local descriptions of d-
orbifolds in terms of orbifolds and vector bundles. We refer to Joyce [35, §10.1.3]

for a more detailed discussion of the subject.

Definition 3.4.7. Let V be an orbifold, £ € vect) a vector bundle over V, as
in §[3.2.9 and s : V — &£ a smooth section, that is s : Oy — £ is a morphism
in vect). Then the ‘standard model’ d-orbifold, is defined to be the principal
d-orbifold Sy ¢, = (S, 0%, Es, 1s, Js)-

Consider the C'*°-substack S in V), defined by the equation s = 0, so that
roughly speaking S can be thought of being S = s7(0) C V. It turns out (see for
instance |35, Definition 10.5]) that S is then a Deligne-Mumford C'*-stack.

The inclusion of categories is : § — V is a closed embedding in C*°Sta and it

can be shown that

S =V XTot(s),Tot(€), Tot(0) Vs

that is S is equivalent to the C'*°-stack fibre product consisting of the orbifolds
V, Tot(€) and the orbifold 1-morphisms Tot(s), Tot(0) : V — Tot(E)

As is : S — V is the inclusion of C*°-stacks, the morphism of sheaves of C*°-
rings on S, zg) 10,1 (Oy) — Os is surjective. If we denote the kernel of zq, by Z,,

the corresponding sheaf of square ideals by Z2, the quotient sheaf of C*-rings by
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O% = i,' (Oy) /T2, and the natural projection i},' (Oy)/Z2 — i},' (Oy)/Zs = Os by
is: O — Os, (0%, is) is a square zero extension of S.

The vector bundle &g is then given by s = i},(£*), where £* € vect(V) is the
dual vector bundle of £.

As in the d-manifold case, it can then be shown that Sy ¢ s = (S, O%, Es, 1s, Js)
indeed a d-stack which is equivalent in dSta to V xs¢0 V. Hence Syg¢; is a

principal d-orbifold, and every principal d-orbifold is equivalent in dSta to some
SV,E,S'

We want now to outline briefly how one could use an alternative description
of standard model d-orbifolds in terms of quotient of standard model d-manifolds.
We want to refer to [35, §9.3 and §10.1.3] for a much more complete treatment.

The following theorem (compare [35, Theorem 9.16(a)]) shows that a d-stack
X is equivalent to a quotient d-stack U /G near each [z] € Xiop.

Theorem 3.4.8. Let X be a d-stack and [x] € Xy,,. Then there exists a quotient
d-stack [U/G], where G = Isox([x]), and a 1-morphism i : [U/G] — X, which is
an equivalence with an open d-substack U in X. Moreover we have iy, @ [u] —
[z] € Urop C Xy for some fized point u of G in U.

Using this theorem we can study d-orbifolds X locally near a point [z] € Xiop,
as quotients X ~ [U/G], where U is a d-manifold and G = Isox([z]). This
equivalence identifies [x] with a fixed point u of G in U, and as U ~ Sy g, in
dMan near u for some standard model d-manifold Sy, g s, we can take G to act on
V, E,s and the equivalence to be G-equivariant. Hence X ~ [Sy g /G| near [z]
and every result from extends nicely, provided we can show where necessary
that the proofs work equivariantly with respect to G.

The next proposition is the d-orbifold analogue of Theorem and Proposi-
tion [2.3.6} A proof can be found in [35, Proposition 10.7].

Proposition 3.4.9. Let X be a d-orbifold and [x] € Xip. Then there exists an
open neighbourhood U of [x] in X and an equivalence U ~ Sy ¢ s in dOrb such
that [x] is identified with [v] € Vi, where s(v) = ds(v) = 0. Moreover X near [z]

determines V, €, s up to non-canonical equivalence near [v].

84



Proposition 3.4.10. A d-orbifold X is an orbifold, that is X € Orb if and only
if ox 1 Ex — Fx has a left inverse, or equivalently if and only if T*X is a vector
bundle.

3.4.4 1- and 2-morphisms in terms of differential geometric
data

The following section is the d-orbifold analogue of section in studying 1 and
2 morphisms of d-orbifolds in terms of ‘standard models’. A much more complete
discussion of this subject can be found in [35, §10.1.4].

Definition 3.4.11. Let V, W be orbifolds, £, F be vector bundles on V., W and
s € C®(€),t € C(F) be smooth sections. Definition defines ‘standard
model’ principal d-orbifolds Sy ¢ and Syy r;, which we will abbreviate in the
following by S = Sy ¢ s = (S, 0%, Es,1s,75) and T = Sw 7t = (T, 0%, E7, v, 7).
Furthermore, assume that f : V — WV is a 1-morphism between orbifolds and
f & = f*(F) a morphism in vect(V), which satisfies

fos=f(t)or: Ox — f(F),

where ¢ : Os — f*(Or) is the natural isomorphism. The standard model 1-
morphism S, : Syes — Swrs can then be defined as a 1-morphism g =
(9,4',¢") : 8 — Tin dSta as in [35 Definition 10.9].

In the case of ¥V C V being a open suborbifold with inclusion 1-morphism
15 ¥V — V and vector bundle £ = &|y = 1*(V)(£) and section 5§ = s|p, the
standard model 1-morphism ¢y, = 8, ;. : Spg; = Sves Is an l-isomorphism,
if s~1(0) C V.

It is sometimes useful to contemplate another form of ‘standard models’ and
not to build the ‘standard models’ Sy ¢ 5, S 7.f using orbifolds V. One can instead
use the ‘standard model’ descriptions Sy g s, S ¢, Sa for d-manifolds (as in
and the quotient d-stack notation as in [35], §9.3].

The following example due to Joyce [35, Example 10.11] explains this alterna-

tive form of ‘standard model’ for d-orbifolds.
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Example 3.4.12. Consider a manifold V', a vector bundle £ on V', a finite group
" acting smoothly on V| E preserving the vector bundle structure, and s € C*°(E)
a smooth, ['-equivariant section of E. For y € I', let r(y) : V — V and #(y) : £ —
r(v)*(E) be the I'-action on V| E respectively. Definitions [2.3.4] and [2.3.8| define
principal d-manifolds Sy g and 1-morphism S,(,)+¢) : Sv,e,s = Sv,gs for y € I'

which can be understood as an action of I' on Sy g,. Hence we get a quotient
d-stack [Sy.gs/I as in [35, Definition 9.15].

The quotient V = [V//T] is an orbifold and it can be shown that E,s induce
a vector bundle £ on V and a section § € C*°(€) so that Definition defines
a ‘standard model’ principal d-orbifold Sy, ;. It can be shown that the quotient
d-stack is indeed equivalent to the so defined principal d-orbifold, that is we have
[Sv.Es/T] = Sy g5 and [Syes/I] is a principal d-orbifold.

Note however, that not all principal d-orbifolds VW can be represented by a
quotient d-stack Sy g /I, as not all orbifolds V can be represented as a quotient
of a manifold by a finite group, so V ~ [V /I'] for some manifold V" and finite group

I' does not hold in general.

Example [3.4.13| below explains what 1-morphism between two quotient stan-
dard models [Sv,g /T, [Sw.rt/A] look like. (See [35, Example 10.12].)

Example 3.4.13. Consider two standard model quotient d-orbifolds [Sy g /T,
[Sw,r:/A] as in Example [3.4.12], where the action of I' on V, E is given by ¢(7) :
V- Voand ¢ : E — q()*(E) for v € T, and the action of A on W, F by
r(0) : W — W and #"F — r(§)*(F) for § € A. Let f: V — W be a smooth
map between manifolds and f : E — f*(F) a morphism of vector bundles of V|
satisfying f o s = f*(t) + O(s2). Moreover, let p : I — A be a group morphism
satisfying f o q(v) = r(p(y)) o f : V — W and q(y)*(f) 0 q(y) = [*(F(p(7))) o f :
E — (f cireq(y))*(F) for all v € T, so that f, f are equivariant under I', A, p.
Definition [2.3.8| defines a 1-morphism S ; : Sy,ps = Sw,r: in dSpa. Since i

are equivariant under I'; A, p, we get that

Sy.5 0 Sam.itn) = Sriptn)iten) © Sy

for all v € I'. This data defines then a quotient 1-morphism [S; ; | : [Sv,ps/T'] —
[Sw.rt/A] as in [35, Definition 9.15].
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3.4.5 Submersions, immersion and embeddings

In this section we want to imitate section [2.3.4] and introduce the notions of sub-
mersion, immersion and embeddings of d-orbifolds. We follow here closely Joyce
and refer to [35], §10.3] for a much more detailed approach including the proofs of
the cited theorem and propositions.

Before stating the first definition, note that given a Deligne-Mumford C°°-
stack X and a 1-morphism f* : (£°,¢) — (F°*,v) in vvectX one can define f*
to be weakly injective, injective, weakly surjective or surjective in the exact same
way as in Definition [2.3.20 Moreover Proposition holds for X being a
Deligne-Mumford C'*°-stack.

The following definition ([35, Definition 10.22]) is the d-orbifold analogue of
Definition 2.3.21]

Definition 3.4.14. Let f : X — Y be a 1l-morphism of d-orbifolds and denote
by Qg : f*<(T*Y) — T*X the corresponding 1-morphism in vvect(X). (T*X =
(Ex, Fx,dx) and f*(T*Y) = (f*(Ey), f*(Fy), f*(¢y)) are virtual vector bundles
on X of ranks vdim X and vdim Y.) Then:

a) We call f a w-submersion if {); is weakly injective.
f

b) We call f a submersion if ()¢ is injective.

( f J

(c) We call f a w-immersion if Qf is weakly surjective and the 1-morphism
f + X — ) is representable, that is f. : Isox([z]) — Isoy(fiop([z])) is

injective for all [z] € Xiqp.
(d) We call f an immersion if Qf is surjective and f : X — ) is representable.

(e) Wecall f a w-embedding if it is a w-immersion and fiop @ Xiop = frop(Xiop) C
Yiop i @ homeomorphism, which in particular implies fiop, is injective, and

fi t Isox([z]) = Isoy(fiop([z])) is an isomorphism for all [z] € Xp.

(f) We call f an embedding if it is an immersion and fiop @ Xiop = frop(Xtop) <
Viop 1 @ homeomorphism, and f, : Isox([z]) — Isoy(fiop([2])) is an isomor-

phism for all [z] € Xiop.
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Using (¢)-(f) from above, one can define the notion of d-suborbifolds of a d-orbifold.
A l-morphism z : X — Y between two d-orbifolds X and Y is called a w-
immersed, or immersed, or w-embedded, or embedded d-suborbifold of Y, if 7 is a

w-immersion, immersion, w-embedding, or embedding respectively.

The next theorem is the d-orbifold analogue of Theorem [2.3.24|and shows under
what circumstances d-orbifold standard model 1-morphisms are w-submersions,

submersion, w-immersions or immersion. We refer once again for more details to
[35, Theorem 10.23].

Theorem 3.4.15. Let S;;: Syes — Sw e be a ‘standard model’ 1-morphism
in dOrb as in Definition |3.4.11), and consider for each [v] € Vy,, with s(v) =0
and [w] = fiop([v]) € Whep the following complex

ds(v)@df (v) fw)o—dt(w)

0——1,V

& @ T, W

Fu 0. (3.15)
Then

(a) 8;; is a w-submersion, if and only if for all [v] € Vi, with s(v) = 0 and
(W] = fiop([v]) € Wiop is exact at the fourth term, that is f(v) ® —dt(w)

18 surjective.

(b) S;; is a submersion, if and only if for all [v] € Vi, with s(v) = 0 and
(W] = frop([v]) € Wigp is exact at the third and fourth term.

(¢) 8;; is a w-immersion, if and only if for all [v] € Vi, with s(v) = 0 and
(W] = fiop([v]) € Wiop is exact at the second term and f, : Isoy([v]) —

Isow ([w]) is injective.

(d) 8;; 1s a immersion, if and only if for all [v] € Vi, with s(v) = 0 and
(W] = fiop([V]) € Wiep is exact at the second and forth term and f, :
Isoy([v]) — Isow ([w]) is injective.

As in Theorem|2.5.24), conditions (a)-(d) are open conditions on [v] in {[v] € Vi :
s(v) = 0}.

We will end this section by stating the d-orbifold analogue of Theorem [2.3.25]
(Compare [35, Theorem 10.24].)
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Theorem 3.4.16. Let g : X — Y be a 1-morphism of d-orbifolds, and [x] € Xy
with gop([z]) = [y] € Viep- Then there exists open d-suborbifolds T C X and
U CY with [x] € Tiop, [y] € Urop and g(T) C U, ‘standard model’ 1-morphisms
S;;:8vps = Swre in dOrb, equivalences @ : T = Sves,J U = Swre,
and a 2-morphismmn :joS; ;01 = gl7. Moreover

(a) If g is a w-submersion, T,...,j can be chosen such that f :V — W
1s a submersion in Orb, and f : & — f*(F) is a surjective vector bundle

morphism.

(b) If g is a submersion, T,...,j can be chosen such that f :V — W is a

submersion and f : € — f*(F) is an isomorphism.

(c) In the case of g being a w-immersion, T',... j can be chosen such that
V is an immersed suborbifold of W, that is f :V — W is an immersion in
Orb, and f : ED f*(F) is an injective morphism of vector bundles.

(d) In the case of g being an immersion, T, ... j can be chosen such that V
such that f :V — W is an immersion in Orb and f : € — f5(F) is an
1somorphism.

The following corollary (see [35, Corollary 10.25]) is a consequence of Theo-

rem [3.4.16(b) from above.

Corollary 3.4.17. Given a submersion of d-orbifolds f : X — 'Y, where Y is an
orbifold, the source d-orbifold X is actually an orbifold.

3.4.6 Embedding d-orbifolds into orbifolds

In the following we will discuss when d-orbifolds can be embedded into orbifolds.

In contrast to the d-manifold case, where Theorems [2.3.28 and [2.3.29| prove that

any compact d-manifold can be embedded into some R" and is therefore a principal
d-manifold, we will in general not get a similar result.

The reason why a d-orbifold X does in general not admit an embedding f :
X — R” is that if X' is an orbifold and [z] € X, a point, such that Isox([z]) acts
nontrivially on 7, X, then for any 1-morphism f : X — R” the map df|, : T, X —
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R™ is not injective, as the kernel contains nontrivial representation parts of the
action of Isox([z]) on T, X.

Note that it is also not possible to alter the situation a bit and try to embed a d-
orbifold X into [R"/G] for some finite group G, acting linearly on R™. The reason
why this approach does not succeed in general, is that there one can show that
there exist representable 1-morphisms f : X — [R"/G] if and only if X ~ [X /G|
for some d-manifold X. However most orbifolds and d-orbifolds do not admit a
representation as a global quotient, as the example of the weighted projective space
CP},, for some k > 2 shows: the 2-dimensional orbifold CP/, is homeomorphic to
S? with one orbifold point at [0, 1], whose orbifold group is Z;. But CP{,\ {[0,1]}
is simply-connected, and one can show that CP}, % [V/G] for any manifold V
and finite group G.

We follow here closely Joyce [35, §10.5] and refer to him for a more detailed

discussion and proofs of the following results.

Theorem 3.4.18. Let X be a d-orbifold, Y be an orbifold and f : X — Y be an
embedding in dOrb. Then there ezist an open suborbifold V C Y with f(X) CV,
a vector bundle £ on'V and a smooth section s € C*(E), such that the following

2-Cartesian diagram in dOrb commutes:

X — Y
C
Y * L€,

where Y, V,E,5,0 = FA™ (Y, V, Tot(E), Tot(s), Tot(0)). Therefore, X is equiva-
lent to the “standard model” d-orbifold Sy ¢ s of Definition|[3.4.7 and is a principal
d-orbifold.

Building upon Joyce’s idea (see [35, Proposition 10.34]), we will later on in
section provide a useful criterion for the existence of an embedding from a
d-orbifold into an orbifold.

3.4.7 Semieffective and effective d-orbifolds

In this section we follow Joyce [35, §10.9] in defining semieffective and effective

d-orbifolds. Semieffective and effective d-orbifolds will play a prominent role in
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the bordism theory of d-orbifolds, as it will turn out, that in contrast to general
d-orbifolds, semieffective and effective d-orbifolds can be generically perturbed
to orbifolds and effective orbifolds. This property will be crucial in showing that
(semi)effective d-orbifold bordism is isomorphic to classical (effective) orbifold bor-

dism.

Definition 3.4.19. Let X be a d-orbifold. Let [z] € Xiop beso that 2 : % — X is a

C*>-stack 1-morphism. Applying the right exact operator z* to the exact sequence

Ex —2%0 Fp 220 Tr X — 0,
yields an exact sequence in qcoh(*)
* z*(Px) z*(ha) 4 * ~Y Tk
0 —— Kppy — 2" (Ex) —— 2" (Fx) ——= 2" (IT"X) = T; X — 0.  (3.16)

Here Kp;) = Ker(z*(¢x)), and we may think of as an exact sequence of
real vector spaces, where K|,; and T;X are finite-dimensional with vdim X =
dim T*X — dim K.

The orbifold group Isox([z]) is the group of 2-morphisms 7 : © = z, and we get
an induced isomorphism n*(Ey) : 2*(Ex) — x*(Ex) in qcoh(k), which makes x*(Ex)
a representation of Isox([z]). Similarly z*(Ex) and a*(T*X') are representation of
Isox([z]) and moreover x*(¢x) and z*(1)x) turn out to be equivariant. Therefore
K}, and T X are Isox([x])-representations.

A d-orbifold X is called semieffective, if K,) is a trivial Isox ([z])-representation
for all [x] € X, and we call X effective, if in addition T} X is an effective Isox ([z])-

representation for all [z] € Xp.

The most important property of (semi-)effective d-orbifolds is that a generic
perturbation yields an (effective) orbifold. The following proposition shows, that if
the standard model Sy ¢ ; is a semieffective d-orbifold, then any generic, sufficiently
small perturbation of [ is an orbifold. We refer to [35, Proposition 10.58] for a

proof.

Definition 3.4.20. Let V be an orbifold, £ a vector bundle over V and s,5 €
C>(V) be smooth section. We say that 5§ — s is sufficiently small in C* locally,
if 15— s|([v]) + V(5§ — 9)|([v])) < C([v]) for all [v] € Viep, for some choice of
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connection V on £ and metrics |- | on £, @ T*V and some continuous function

C : Vtop — (0, OO)

Proposition 3.4.21. Let V be an orbifold, £ a vector bundle overV and s :V — &
a smooth section. Suppose the standard model Sy ¢ s is a semieffective d-orbifold.
Then for any generic, smooth perturbation s of s, with s — s sufficiently small in
C* locally, the d-orbifold Sy ¢ 5 is an orbifold, that is it lies in Orb c dOrb.

If Sy ¢ s is effective, then the perturbed Sy ¢ 5 is an effective orbifold.

Using good coordinate systems, one can extend Proposition [3.4.21]| to general
(semi)effective d-orbifolds X as in [35] §10.9].

Remark 3.4.22. As we have seen, being a semieffective (effective) d-orbifold is a
sufficient condition for a small, generic perturbation to be an (effective) orbifold.
However, it is not a necessary condition. To get a more precise description of
sufficient and necessary conditions, let (] € Xiqp, the representations Ki,), T X' of
Isox([x]), and the splittings K = K34 ® Kg) e and Ty X = (T7),, @ (T X )y be
as in Definition [3.4.19]

Let Hom (K3 ut, (T X )ne) be the finite-dimensional vector space of morphisms
of Isox([x])-representations \ : Ky — (75X )ne, and Homg( Ky ue, (T X )ne) for
the closed subset of Isox ([z])-representations A, which are not injective. Note that
Homg (K [z nt, (T X )ne) will in general be singular.

Then, a small generic perturbation of X is an orbifold if and only if for all
(] € Xiop, either K = 0 or the codimension of Homg (K ne, (T X)nt) in
Hom (K g e, (T X )nt) is strictly greater than dim(7} &)y — dim K. A small
generic perturbation of X is an effective orbifold if and only if in addition to the
condition above for each [z] € Xyop, either [(T7 X )ne| — [Kznt] = [R] in A for some
effective representation R of Isox([z]), or dim(T; X)s, < dim Ky -

The next lemmas summarise some properties of (semi)effective d-orbifolds.

Lemma 3.4.23. Let X be an orbifold and X = F3O™(X) its associated d-orbifold.
Then X is a semieffective d-orbifold, and if X is effective X is effective.
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This lemma is an immediate consequence of the fact that (semi-)effectiveness
is preserves by equivalences ¢ : X — Y in dOrb, as these induce isomorphisms
K = Ky, T; X =2 T, for igp([z]) = [y]. The Lemma follows, as if X' is an
orbifold and X = F§IrP(X) then £x = K;) = 0 in Definition Moreover,
the last part of Definition yields the following

Lemma 3.4.24. Let X be an effective d-orbifold. Then the underlying C'*°-stack
X is effective.

Note that the converse of Lemma [3.4.24] is not true, that is the condition that
the underlying C*°-stack X of a d-orbifold X is effective does not imply that X

is an effective d-orbifold.

Lemma 3.4.25. Let X be a semieffective d-orbifold, I a finite group and \ € AL.
Then X5 = () unless \ € Ai C AL, In the case of X being effective then X7 = ()

unless A = [R] for R an effective I'-representation.

Again, the converse is false: X" = for A € AT\ AL does not imply X to be

semieffective and similarly for effective d-orbifolds.

Lemma 3.4.26. Let XY be (semi)effective d-orbifolds, then the product X x Y
is also (semi)effective. More generally, a fibre product X Xz Y in dOrb with
X, Y (semi)effective and Z a manifold is (semi)effective.

Proposition 3.4.27. Let X be an oriented, semieffective d-orbifold, and I' a
finite group. Then there exist orientations on X" X5 for all X € AL, .. These
depend on orientations Ry, ..., Ry for representatives (Ry,p1), ..., (R, pr) of the

nontrivial irreducible, even-dimensional I'-representations.

Proposition 3.4.28. Let I' be a finite group and \ € AI;U,-i- with ®Y(5,\) = 1 for
all 0 € Aut(T") with A-§ = X. Then, for any oriented, semieffective d-orbifold X,
the orbifold strata ./?F’#,.i'g’#,inu,j(g’u are oriented, where p = X\ - Aut(T') in
AGy 4/ Aut(T).
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3.4.8 D-orbifold strata

This section is the d-orbifold analogue of section [3.2.7]and discusses orbifold strata
of d-orbifolds. We want once again refer to [35, §10.7] for a much more rigorous

and complete approach.

Definition 3.4.29. Let ' be a finite group and Rep,(T'), A" = Ky(Rep,(T)),
AL C A" and dim : A" — Z be as in Definition . Denote by Ry, ..., R, the
representatives for the isomorphism classes of irreducible I'-representations, where
Ry = R is given by the trivial irreducible representation, so that Ry,..., Ry are
nontrivial. Using this setup, Al is freely generated over Z by [Ry], ..., [Rx] and
hence equation in Definition yields isomorphisms A = Z*, AE =~ NF,
Let now X be a d-orbifold. As X is a d-stack, it inherits, as in [35, Defini-
tions 9.24 and 9.25], a d-stack X" and a 1-morphisms O"(X) : X" — X. The
virtual cotangent bundle T*X = (Ex, Fx,¢x) of X is a virtual vector bundle
of rankvdim X on X. Hence the pullback OV(X)*(T*X) of T*X is a virtual
vector bundle on AT. As in Definition the virtual quasicoherent sheaves
O (X)*(Ex), OV (X)*(Fx) admit decompositions of the form and [3.9 and as
OY(X)*(¢x) is I-equivariant and preserves therefore these splitting,we get the
following decomposition in vqcoh(XT):
k
O"'(X)(T"X) = P(T"X)] @ R;  for(T*X)] € vqcoh(X") (3.17)
i=0

ONX)(T"X) = (T"X);, & (T X)),

Here (T*X)L = (T*X)5 © Ry and (T* X)L, = @F_(T*X)] @ R,.

Moreover it can be shown that T*(X") = (T*X)L.

The splitting implies that since O (X)*(T*X) is a virtual vector bundle,
the (T*X)! are virtual vector bundles of mized rank, where the ranks may vary on
different connected components of X*. (Compare [35, Definition 10.38] for more
details.)

Example 3.4.30. Given an orbifold V, a vector bundle & — V and a smooth

section s : V — &, we can form the ‘standard model” d-orbifold Sy ¢ s as in
Definition|3.4.7, Given a finite group I', we will define the orbifold strata (Sy g ;)7
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of Sye, as follows: consider the decomposition V&' = |_|)\16A£ YEM L As in 35,
Appendix C], the vector bundle E' = O (V)*(£) on V' has a [-representation

and can be split as follows:

k
=P o R,

=0
Eh=¢cLocl.

Here R; are irreducible I'-representation over R with Ry = R being the trivial

representation, and €L, €L denote the subsheaves of ' corresponding to & ® Ry

tr) “nt
and @Y, &F @ R,.

3.4.9 Good coordinate systems

In this section we want to briefly review good coordinate systems of d-orbifolds
and Kuranishi neighbourhoods on d-orbifolds. All of the following can be found
in much greater detail and rigour in Joyce [35, §10.8].

We start by defining what type A Kuranishi neighbourhoods and type A coor-
dinate changes are. (Compare [35, Definitions 10.45 & 10.46].)

Definition 3.4.31. Let X be a d-orbifold. A type A Kuranishi neighbourhood
on X is a quintuple (V, E, T, s, 1) consisting of a manifold V', a vector bundle
E — V, a finite group I' acting smoothly and locally effectively (in the sense of
Definition on V, E, and a smooth, '-equivariant section s : V — E. If we
denote the actions of I'on V and E by r(y) : V. — V and #() : E — r(v)*(E) for
v €T, we can define a principal d-orbifold [Sy,z,s/T as in Example [3.4.12]

We require that @ : [Sygs/I'] — X is a l-morphism of d-orbifolds which is
an equivalence with a nonempty open d-suborbifold ¢([Sy,gs/I']) C X. We call
such a quintuple (V, E,T',s,%) a type A Kuranishi neighbourhood of [z] € Xiop, if

2] € Y([Sv.p.s/TTtop-

Definition 3.4.32. Let (Vi, E;, Ty, 54, 9;), (Vj, Ej, T, 55,1;) be type A Kuranishi
neighbourhoods on a d-orbifold X with

0 # ,([Sv, 5.s,/Til) N;([Sv; E,.5,/T5]) € X.
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A type A coordinate change from (Vi, E;, T, s,4;) to (V}, E;, T, 85,;) is given
by a quintuple (Vij, €ij, €5, pij, m;;), where

(a) 0 #Vi; CV;is a I';-invariant open submanifold, which satisfies

¥,([Sv,, Ei vi, /Til) = ¥,([Sv; 5,5, /Ti]) N;([Sv; 5,5, /T5]) € X.

Vw’?si

(b) pij : I'i = I'; is an injective morphism of groups.

(c) eij : Vij = V; is an embedding of manifolds compatible with the action,
that is e;; o () = 7;(pi;(7) o e;5) = Vi; = Vj for all v € I';. Moreover, if
v, v, € Vi and 0 € I'; with r;(6) oe;;(v]) = e;5(v;), then there exists a vy € I';

/

with p;;(v) = ¢ and 7:(7)(v) = v;.
has a left inverse) such that é;; o silv;;, = ej;(s;) and r;(7)*(éi;) o 7i(y) =

€i;(Fi(pis(7))) © &5 + E;
ple [3.4.13| yields an 1-morphism

vi; — €;;(E;) is an embedding of vector bundles (in other words, é;;

v, — (e ori(y))*(&;) for all v € T;. Hence, Exam-

[Seméij?pij] : [Svij’ Ei|vij’ 3i|Vij /Fl] - [SVJ',EJ',S]' /Fj]7

where [Sv;;, Eilv;,, silv;,;/I';] is an open d-suborbifold in [Sy; g, s, /1'i].

e) For all v; € V;; with s;(v;) = 0 and v; = (e;:(v;)) € V; the following linear
(e) j j J j g

map is an isomorphism
(ds;j(v;))« = (To,V5)/(deij(0i) [T, Vi]) = (Ejlu,)/ (€35 (03) [Eilu,])-

This implies then that [S.,, ¢,;, pi;] is an equivalence with an open d-suborbifold
of [sVuEuSz/Fl]

(£) My - ;0[8e,; ;0 Pis) = 1/’1“[8% Eilviysilu;y /T is a 2-morphism in dOrb.

(g) The quotient topological space V; Ly, V; = (V; I1V;)/ ~ is Hausdorff, where
~ is the equivalence relation identifying v € V;; C V; with e;;(v) € V}.

Definition 3.4.33. Let X be a d-orbifold. A type A good coordinate system on
X consists of the following data satisfying (a) — (e)
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(a) An index set I, together with a total order < on I, making (I, <) into a

well-ordered set.

(b) Foreachi € I, there exists a type A Kuranishi neighbourhood (V;,E;.T';,s;,%,)
on X, such that the following holds: if X; = ¥,;([Sv; ks /1]), so that
X,; C X is an open d-suborbifold, and v, : [Sy, g, s,/Ti] — X, is an equiv-
alence, then we require | J.., X; = X, making {X;;i € I} an open cover of

X.

il
(c) Forall i < jin I with &;NA&; = 0, there exists a type A coordinate change
(‘/z‘jaeij;éijvpijanij) from (V;, E;, T, s4,4;) to (Vjanverjﬂﬂj)-

(d) Foralli < j < kin I with X;NX;NX) = 0, there exists v, € [y satisfying
pij = YigkPik (i (7)) iz for all y € Ty, and

€ijlvinest (Vi) = T(Visk) © €k © €ijly ety

Cijlvignert vy = (€05(€5(Pr(vigh))) © €51 (Ex) © &5

vme;jl(vm)'
Moreover this 7;j; is uniquely determined.

() Forall i < j < kin I with X, NX; =0 and X; N X}, = O the following
holds: let v; € Vig,v; € V), and 0 € I'y, with eji(v;) = 14(6) 0 ei(vi) € Vi
Then X, N X; N X, = 0, and v; € V;;, and there exists a v € T'; with
pik(Y) = 67%ijk and v; = r;(7) o e;;(vi).

Let Y now be a manifold and h : X — Y = Fg2'*(Y) a l-morphism in
dOrb. A type A good coordinate system for h : X — Y consists of a type A
good coordinate system (I, <,...,7;;) for X satisfying (a) — (e), together with
the following data satisfying (f) — (g):

(f) Let ¢ € I. Then there exists a smooth map ¢; : V; — Y, with g; o r;(y) = ¢
for all v € T';, so that

[Sg0x): [Svimsi/Til = [Syoo/{1}] =Y,

where 7 : I'; — {1} denotes the projection. Moreover, there exists a 2-
morphism 7; : h o4, =[S, 0+] in dOrb, which will sometimes required to

be a submersion.
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(g) Foralli < jinIwith &;NX; # 0, the following equality holds g;oe;; = gilv;, .
Note that this equation implies that

[Sgi,oﬂr] © [Seij,éijmzj] = [Sgi7077r]|[SVij,E¢\Vijﬁsi‘Vij/Fi] :

[SviijHVi]-vsi‘Vij/Fi] - [SY70,0/{1}] =).

The following theorem due to Joyce [35, Theorem 10.48] shows that there exists
for any d-orbifold X a type A good coordinate system. The proof of this theorem
is rather complex and lengthy, and we refer to [35, Appendix D].

Theorem 3.4.34. Let X be a d-orbifold. Then there exists a type A good coordi-
nate system (I, <, (Vi, B, si,v;), (Vij, €ij; €ij5 Pij> Miz)> Vigie) for X . If X is compact,
I can be taken to be finite.

Let {U; : 5 € J} be an open cover of X. Then the X; can be taken as
X =vY([Sv, ki s/r,]) CU; for each i € I and some j; € J.

IfY is a manifold and h : X — Y = F32*P is a 1-morphism in dOrb. Then
all of the above extends to type A good coordinate systems for H : X — Y, and

moreover the g; in Definition |3.4.35 can be taken to submersions.
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Chapter 4

Relation between d-manifolds and
d-orbifolds and other geometric
structures

This chapter briefly summarizes [35, §14] in relating d-manifolds and d-orbifolds
to other classes of spaces. We will in particular focus on the relationship of d-
manifolds and d-orbifolds to Kuranishi spaces (in the sense of Fukaya, Oh, Ohta
and Ono [I§]) and to C-schemes and C-stacks with obstruction theories, as these

spaces play an important role in several moduli problems.

4.1 Fukaya—Oh—Ohta—Ono’s Kuranishi spaces

We begin by recalling the basic definitions and start with the following definition,
which is analogues to that of a ‘Kuranishi space with tangent bundle’ in [18, §A1.1].
We refer to the original work of Fukaya and Ono [20], the extensive treatment of
the subject in Fukaya, Oh, Ohta and Ono [I§] and their most recent work [19] for

a much more detailed and complete resource.

Definition 4.1.1. Let X be a topological space and p € X. A Kuranishi neigh-
bourhood of p in X is a quintuple (V,,, E,, '}, sp, 1) consisting of a manifold V,,
a vector bundle £, — V), a finite group I', acting structure preserving, smoothly
and locally effectively on V), and E,, a I',-equivariant section s,, and a homeo-
morphism 1), : 3;1(0)/Fp — U C X, where U is an open neighbourhood of p in
X.
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Definition 4.1.2. Let X be a topological space, and consider Kuranishi neigh-
bourhoods (V,, E,, '), sp, ¥p) and (Vy, B, Ty, s4,1,) of p,q € X. We call a quadru-
ple (Vyy, €pgs €pgs Ppq) & coordinate change from (V,,, E,, Ty, sp, 1) to (Vi Ey.Ly,54,1),

if the following conditions are satisfied:

(a) Vp, €V, is a non-empty, I',-invariant open submanifold, satisfying
P € Yp(splys, (0)/Tp) S (s (0)/T) € X.
(b) ppq : Iy = Ty is injective.

(c) epg = Vg — Vg is an embedding of manifolds, such that e,, o r,(7) =
Tq(Ppg(7)) © €y, for all v € I',. Here ry(y) : V, — V, denotes the ac-
tion of I', on V,, where v € T',. Moreover, if v,,v, € V,, and v € T,
with 74(0) 0 eyq(v,) = €pg(vy), there exists v € ') with py(y) = § and

/

() (Up) = Up-

(d) épq : Bply,, — €,(E) is an embedding of vector bundles, such that é,, o

3P|qu = e;q(sq) and 1,(7)"(Epg) © Tp(7) = e;q(fq(ppqw))) O €pq Ep|qu -
(epg 0 (7)) (Ey) for all v € T'y. Here 7,(7) : E, — 1,(7)*(E,) denotes the

action of I', on E,, where v € I').

(e) Let v, € V,y with s,(v,) = 0 and v, = eyy(v,) € V,. Then we require

(dsq(vg))s (Tquq)/(depq@p)[Tvp%]) - (Eq‘vq)/(épq(vp)[Ep‘va?

to be an isomorphism.

(f) g o (epq)*|sp\;;q(o)/rp = 1/Jp|8p|‘7;q(0)/1“p : 5p|1_/p1q(0)/rp — X, where (epq). :
Vig/Tp = V, /T is the induced map by e, : Vg — V.

With these ingredients, we can finally define what a Kuranishi structure x on
a topological space should be. We omit here some technical details, as this will

not be important for the applications we have in mind.
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Definition 4.1.3. Let X be a second countable, topological Hausdorff space. A
Kuranishi structure x on X of dimension n € Z assigns for each p € X with
dimV,, — rank F,, = n a Kuranishi neighbourhood (V,, E,, T, s, 1,) and a coor-
dinate change (Vq, €pq, €pq, Ppq) for all p,q € X with p € 9,(s,(0)/T,) satisfying
some ‘associativity’ condition.

A Kuranishi space (X, k) of virtual dimension n is a second countable, topo-

logical Hausdorff space X, admitting a Kuranishi structure x of dimension n.

As there is currently no definition of morphisms between Kuranishi spaces, they
do not form a category. However Fukaya, Oh, Ohta and Ono define morphisms

from Kuranishi spaces to manifolds (compare [I8, Definition A1.13]).

Definition 4.1.4. Given a Kuranishi space (X, k) and a manifold Y, a strongly
smooth map (f,\) : (X,k) — Y is a continuous map f : X — Y of topological
spaces together with additional data A, which assigns to each Kuranishi neigh-
bourhood (V,,, E,, '), s,,1,) in K for p € X a smooth map f, : V, = Y such that
foty=(fp)«:5,'(0)/T, =Y and f is compatible with coordinate changes. (See
[35, Definition 14.14].)

If f,: V, = Y is a submersion for all p € X, (f,\) is called weakly submersive.

The following remark will summarize the similarities and differences of Ku-
ranishi spaces and d-orbifolds. We will follow here closely Joyce and refer to [35,

Remark 14.15] for a more complete and detailed resource on the topic.

Remark 4.1.5. (a) Given a Kuranishi space (X, k), Fukaya, Oh, Ohta, Ono
[18, Definition A1.17] define an orientation on (X, k) as an orientation of
the line bundle A*PE, ® A*PT*V, on V), for p € X which is compatible
under coordinate changes. This definition corresponds to the definition of

orientation on a standard model d-manifold Sy g s. (Compare [35], Definition
4.48].)

(b) The good coordinate systems of Fukaya et al. [18, Lemma A1l.11] and their
claimed existence are very similar to type A good coordinate systems defined

in section [3.4.9] and Theorem [3.4.34]
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(c)

Given a compact, oriented Kuranishi space (X, k) of virtual dimension n,
a manifold Y and a strongly smooth map (f,A) : (X,k) — Y, Fukaya
et al. define after choosing some extra data a wvirtual chain [(X,K)]vire €
C3(Y;Q) for (X, k), and for Kuranishi spaces without boundary a wvirtual
class [(X, k)]t € HS(Y;Q). The proof of the existence (see [18, Theorem
A1.23]) uses good coordinate systems and is similar to the proof of Theo-
rem [Z.4.5] in section [7] below.

This corresponds to the explanation that compact oriented d-manifolds and

d-orbifolds admit virtual classes. (Compare chapter (7| for more details.)

Fukaya and Ono define in [20, Definition 5.13] bundle systems on Kuranishi
spaces (although the sections s, in Kuranishi neighbourhoods in [20] are just
assumed to be continuous and not smooth like in [I§]). These bundle systems

correspond to virtual vector bundles defined in section [3.2.2]

For a compact, symplectic manifold (X, w) with compatible almost complex
structure J, Fukaya and Ono [20, §12-§16] construct an oriented Kuranishi
structure (with different definition of Kuranishi space) on the moduli space

M, (X, J, B) of n-pointed, genus g stable J-holomorphic curves in X.

The following theorem due to Joyce [35, Theorem 14.17] provides the connec-
tion between Kuranishi spaces due to Fukaya, Ono, Ohta, Oh [I§] and d-orbifolds.

Theorem 4.1.6. (a) Given a Kuranishi space (X, k), one can construct a d-

(b)

orbifold with corners X with the same underlying topological space and virtual
dimension, which is unique up to equivalence in dOrb®. Similarly strong
smooth maps (f,A) : (X,k) = Y from (X, k) into a manifold Y induce 1-
morphisms f : X — Y = FIO™(Y)) in dOrb® with the same continuous

map f: X =Y, which are unique up to 2-isomorphism in dOrb®.

Vice versa: given a d-orbifold with corners X, one can define a Kuranishi
space (X, k) from X with the same topological space X = X,,, and virtual
dimension. The Kuranishi structure k depends on many arbitrary choices.
Moreover, given a 1-morphism f : X — Y = FI2™°(Y) in dOrb®, one

can construct a strongly smooth map (f,\) : (X,k) — Y with the same
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underlying continuous maps f = fip : Xiop — Y, where X depends on many

choices.

(¢) Construction (a) is ‘left inverse’ up to equivalence to construction (b). So in
other words, given a d-orbifold with corners X, applying (b) yields a Kuran-
ishi structure (X, k). Applying (a) to this Kuranishi structure yields then a
d-orbifold with corners X' which is equivalent to the d-orbifold X' in dOrb®.
A similar result holds for the morphisms f,(f, ).

4.2 (C-schemes and C-stacks with obstruction the-
ories

4.2.1 Cotangent complexes

We follow here Joyce [35, §14.5], and begin by briefly reviewing the theory of
cotangent complexes.

Let f: X — Y be a morphism of C-schemes. As in |27, §I1.8], one can define
the cotangent sheaf (sheaf of relative differentials) Qx/y € coh(X). In the case
Y = SpecC and f : X — Spec C being the unique projection, we write 2x for the
cotangent sheaf. If X is a smooth C-scheme, than Qx is a vector bundle (locally

fee sheaf) of rank dim X on X, the cotangent bundle 7% X.
f

Morphisms of C-schemes, X Y —2+ Z induce an exact sequence

« Q5
[ (Qyyz) X — Qx/z — Qxyy — 0

in coh(X). This sequence may not be a short exact sequence, as the morphism
[ (Qyz)X A Q0x/z need not to be injective.

The cotangent complex Lx/y of a morphism f : X — Y is an object in the
derived category D(qcoh(X)) of quasicoherent sheaves on X, which can be con-
structed as in Illusie [32]. As in the cotangent sheaf situation we write L in the
case where Y = SpecC and ¢ : X — Spec C is the projection. We will not discuss
the multi-faceted theory of cotangent complexes here in detail, but will highlight

the following points instead.

o h'(Ly/y) =0 for ¢ > 0, and h°(Lx/y) = Qx/y. Moreover, if f: X — Y is

smooth, then Lx/y = Qx/y.
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e There exist truncation functors 7.4, 7> : D(qcoh(X)) — D(qcoh(X)) for
each k € Z, satisfying

W(E®), i<k,
0, i >k,

0, 1 < k,

hi(T<k(E.)) = { hz<Eo) i>k

W (1=(E%)) > {

for any E* € D(qcoh(X)) and i,k € Z. Moreover there is a distinguished triangle

F<k +2k
THE* —— E* — 7P Bt — (75VE*)[1].

4.2.2 Perfect obstruction theories

We will now briefly review some material on perfect obstruction theories. Perfect
obstruction theories play a major role in algebraic geometry and are used to con-
struct virtual cycles on moduli spaces and define enumerative invariants such as
Gromov—Witten invariants. Behrend and Fantechi [7] introduced obstruction the-
ories as morphism ¢ : E* — Ly, whereas Huybrechts and Thomas [31] introduced
a weaker definition of a morphism ¢ : E* — 7~_1(Lx). We follow here Joyce
[35, §14.5] in discussing the by Huybrechts and Thomas introduced obstruction

theories.
Definition 4.2.1. Let X be a C-scheme (Deligne-Mumford C-stack).

(i) A complex E* € D(qcoh(X)) is called perfect (or amplitude contained in
[a,b]), if locally on X, E* is quasi-isomorphic to a complex F* of vector
bundles (locally free sheaves) of finite rank in degrees a,a + 1,...,b. Here
locally means Zariski locally, if X is a C-scheme, and étale locally if X is a
Deligne-Mumford C-stack.

The wvirtual rank of E® is a locally constant function rank E® : X — Z
b
defined locally (Zariski or étale) by rank E* = > (—1)rank F'*, where F* is

k=a
the complex from above. If rank £* = n, we say E* has constant rank n € 7.

(ii) An obstruction theory for X is a morphism ¢ : E* — 7>_;(Lx) in D(qcoh(X)),
where Ly is the cotangent complex of X, and 7> _; (L x) its truncation. More-

over E has to satisfy the following conditions:
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q) h'(E*) =0 for all i > 0.

b) “(E®) is coherent for i = 0, —1.

(c) (@) : h°(E*) — h%(7>_1(Lx)) ~ h°(Lx) is an isomorphism.
)

(d) h71(p) : Y E®) = h Y (m>_1(Lx)) ~ h™!(LLy) is surjective.

(
(
h
h~
(iii) We call ¢ : E* — 7~_1(Lx) is called a perfect obstruction theory, if E® is

perfect of amplitude contained in [—1, 0].

In the same way, one can define a relative (perfect) obstruction theory ¢ : E® —

7>_1(Lx/y) for a morphism of C-schemes f: X — Y.

The following theorem due to Behrend and Fantechi [7, §5] equips C-schemes

and Deligne-Mumford C-stacks with virtual fundamental classes.

Theorem 4.2.2 (Behrend and Fantechi [7]). Let X be a proper C-scheme or
Deligne—Mumford C-stacks with perfect obstruction theory ¢ : £* — Lx of constant
rank n € Z. Then one can construct a virtual fundamental class [X],;¢ in the
Chow homology A, (X). In the case where X is smooth of dimension n and ¢
15 the identity on the cotangent bundle idp«x : T*X — Lx ~ T*X, this virtual

fundamental class [ Xy is just the usual fundamental class of X.

One particular important example of a moduli space that admits an obstruction
theory, is the Deligne-Mumford moduli C-stack /Vlg,m(X ,B) of m-pointed, genus
g stable maps to a projective target variety X, and we will explain later on in
section @ how we can think of ./\7lg7m(X ,B) as a special kind of d-orbifold.

4.2.3 (C-schemes with perfect obstruction theories as a cat-
egory

In contrast to Kuranishi spaces ([20],[18]) C-schemes with perfect obstruction the-

ory can be made into a category as the following definition (compare [35, Definition

14.25]) will show. Another reference where schemes and stacks with obstruction

theories are treated as a category is the work of Manolache [41].

Definition 4.2.3. The category of C-schemes with perfect obstruction theory
SchcObs is defined as follows:
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e Objects are given by (X, E*, ¢), where X is a separated, second countable
C-scheme and ¢ : E* — 7>_1(Ly) is a perfect obstruction theory on X with
constant rank.

e Morphisms between two objects (X1, E, ¢1) and (Xa, F3, ¢2) are given by a
pair (f, f) (X1, B}, 1) — (Xo, ES, ¢9) consisting of a morphism f : X; —
X, of C-schemes, and a morphism f : f*(E3) — E* in D(qcoh(X)) making

the following diagram commute

(E) ! E*

F*(¢2) o1
* 7>-1(Ly)
frrsa1(Ly,)) =5 71 (Lx,).

e Composition of morphisms (f, f) (X, By, 1) — (Xo, ES, ¢9) and (g,9) -
(Xo, B3, ¢2) — (X3, ES, ¢3) is given by

(9:9) 0 (f, /)= (go f, fo [ (9)ols4(E)),

where I74(G*) : (go f)*(ES) — f*(¢*(E3)) is the canonical isomorphism.
The identity morphism for (X, E® ¢) is given by (idx,dpe), where dge :
id% (E*) — E* is the natural isomorphism.

In the same spirit one can define a 2-category StacObs of Deligne-Mumford
C-stacks. The objects are given by (X, E*, ¢), where X is now a second countable
Deligne-Mumford C-stack, and ¢ : E* — 7>_;(ILx) is a perfect obstruction theory
on X with constant rank. 1-morphism, composition and identities are defined as
for SchcObs.

Let (f,f),(g,4) : (X1, E?,¢1) — (Xs, ES,¢5) be 1-morphisms in StacObs.
A 2-morphism 7 : (f, f) = (g,§) in StacObs is a 2-morphism 7 : f = ¢ in
DMStag, such that gon*(E3) = f, where n*(E3) : f*(E3) — ¢*(E3) is the natural
isomorphism in D(qcoh(X)). All composition and identities involving 2-morphism
(horizontal and vertical composition, and identity 2-morphism) are induced from

the compositions and identities in DMStac.
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4.2.4 Truncation functors from C-schemes and Deligne—

Mumford C-stacks with perfect obstruction theories
to d-manifolds and d-orbifolds

The following theorem due to Joyce ([34, Theorem 14.27]) relates C-schemes and

Deligne-Mumford C-Stacks with perfect obstruction theories to d-manifolds and
d-orbifolds.

Theorem 4.2.4. (a) Let X be a separated, second countable C-scheme and ¢ :

(b)

(¢)

(d)

E* — 7>_1(Lx) a perfect obstruction theory of virtual rank n € Z on X.
Then there exists a, up to oriented equivalence in dMan, natural oriented
d-manifold X with vdim X = 2n, whose underlying topological space is given
by the set X (C) of C-points of X, with the complex analytic topology. This

d-manifold X can be explicitly constructed.

Let (f,f) : (X1, ES ¢1) — (Xa, ES,$5) be a morphism in ScheObs and
let X1, X be (choices of) the d-manifolds constructed from Xy, EY, ¢1 and
Xo, B3, ¢o. Then one can construct a 1-morphism f : X1 — X5 in dMan,
which is natural up to 2-isomorphism and whose underlying continuous map
is given by f(C) : X1(C) — Xo(C) induced by f on the sets of C-points in
X1, Xo.

Combining (a) and (b) one can define a functor TIgNaR . SchcObs —
Ho(dMan), where Ho(dMan) is the homotopy category of the 2-category
dMan.

(a)-(b) also hold for separated, second countable Deligne—Mumford C-stacks
X with perfect obstruction theories ¢ : E* — 7>_1(Lx) of virtual rankn € Z
and oriented d-orbifolds X with vdim X = 2n. Part (c) yields then a functor
1gorb : Ho(StacObs) — Ho(dOrb).

Corollary 4.2.5. The moduli stack ./Vlg,m(X, B) of m-pointed, genus g stable maps

to a projective target variety X, with fixed topological data B, admits the structure
of an oriented d-orbifold.
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Corollary 4.2.6. There are natural truncation functors

dMan dMan SchObs
11 oll

QsDSch — 11SchObs QsDSch : HO(QSDSChC> — Ho(dMan)

1208, = 18028, o 13394 - Ho(QsDStac) - Ho(dOrh)

from the oo-categories of separated, second countable, quasi-smooth derived C-

schemes and Deligne-Mumford C-stacks of constant dimension to d-manifolds and

d-orbifolds.
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Chapter 5

Nearly and homotopy complex
structures

This section will introduce the notions of nearly complex structures and homo-
topy complex structures. As we have seen in section [2.3] d-manifolds are a 2-
categorical generalization of manifolds. In the same manner as d-manifolds gener-
alize manifolds, and virtual vector bundles generalize vector bundles, nearly and
homotopy complex structures and nearly and homotopy complex d-manifolds are

2-categorical generalizations of almost complex structures and complex manifolds.

5.1 Homotopy complex structures

In this section we want to establish the notion of a stable homotopy complex
structure on a d-manifold.

We first want to recall some basic properties and definitions of stable (almost)
complex structures on vector bundles and manifolds. In contrast to the usual
definition in the literature, it will be convenient for us to define (stable) almost
complex structures on the cotangent bundle T*M of a manifold M, instead of on
the tangent bundle TM. We will therefore start with the following definition: (For

more details in the ‘classical’ case, see for example [20, Appendix D].)

Definition 5.1.1. A stable complex structure on a real vector bundle £ — M
over a manifold M, is a fiberwise complex structure on the Whitney sum E @ R*
for some k € Zso. Here R* denotes the trivial bundle M x R* with fibre R*. We
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will call a triple (E, J, k) stable complex vector bundle, if E is a real vector bundle,
and J a complex structure on E @ RF.

A stable almost complex structure on a manifold M is a stable complex struc-
ture on its cotangent bundle 7*M, and we will call the triple (M, J, k) a stable
almost complex manifold if J is a complex structure on T*M @ R*. We will some-
times refer to T*M ® R¥ as the stable cotangent bundle of M or the stabilization
of T*M.

An almost complex structure on a manifold M is a fiberwise complex structure
on the cotangent bundle T*M, that is, an automorphism of real vector bundles
J : T*M — T*M such that J?> = —id. Note that an almost complex structure is

a stable almost complex structure with k = 0.

It is usually convenient to work not with a special choice of stable complex
structure, but with an equivalence class of stable complex structures, where we

will use the following notion of equivalence:

Definition 5.1.2. Let £ = FEy; = E; be vector bundles over a manifold M,
carrying stable complex structures Jy, J;. We say that the stable complex struc-
tures (E,Jo, k) and (E, J;,l) are homotopic if there exist a,b € Zsq such that
k 4+ 2a = [ 4+ 2b and such that the resulting almost complex structures on the vec-
tor bundle £ @ R™, where m = k + 2a = [ + 2b, obtained from the identifications
(FEoR)@C*~ FEpR™ = (E®R) @ CP are homotopic through a family of

almost complex structures J;, for ¢ in [0, 1].

The following proposition (compare [26, Proposition D.14]) plays an important

role in defining unitary bordism groups:

Proposition 5.1.3. Let M be a manifold with boundary OM. A stable almost
complex structure on M induces one on OM , which is canonical up to homotopy.

Homotopic structures on M induce homotopic structures on OM.

Proof. We will prove the proposition for the ‘classical’ case in which the tangent
bundle T'M carries the (stable) almost complex structure, but as the tangent
bundle T'M is isomorphic to the cotangent bundle 7*M, the statement of the
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proposition is true for both definitions. For any manifold M with boundary, we

have the following exact sequence of vector bundles over the boundary oM
0 —— T(OM) — TM|aps — N(OM) — 0, (5.1)

where T(OM) is the tangent bundle to the boundary and N(OM) its normal
bundle.

As a one-dimensional real vector space, the normal bundle N3, can be given
an orientation by choosing the “outward” pointing direction to be positive. This
choice of orientation determines an isomorphism of vector bundles N'(OM) = O M x
R, and this isomorphism is unique up to homotopy.

Now, as a sequence of vector bundles, splits and this splitting is unique up
to homotopy, since the space of all splittings can be identified with the connected
space of sections of the vector bundle Hom(N (0M),T(0M)). We therefore obtain

an isomorphism
TM|op =R®T(OM),

which is canonical up to homotopy, and the proposition follows. O]

We want now to generalize this definition to the d-manifold world, and start

by defining what a complex structure on a virtual vector bundle is.

Definition 5.1.4. A complex virtual quasicoherent sheaf over a C'*°-scheme X is
given by the following data: a virtual quasicoherent sheaf (F* 1) € vqcoh(X)
on X, a l-morphism of virtual quasicoherent sheaves J* = (J!, J?) : (F*,¢) —
(F*,%), and a 2-isomorphism 7 : (J*)?> = —idz. in vqcoh(X), such that the
following compatibility condition between J® and 7 is fulfilled:

nolJ*=Jon. (5.2)

Note that since J*® is a 1-morphism, 1 is complex linear, that is we have 1) o J! =
J? o1p. We will call (J®,n) a complex structure on the virtual quasicoherent sheaf
(F*, 1), and we can make these complex virtual quasicoherent sheaves into a 2-
category vqcoh™ (X)) as follows: Objects are given by complex virtual quasicoher-
ent sheaves ((£°, ¢), J*, ng). The 1-morphisms between two objects ((£°, ¢), J2, ns)
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and ((F*,¢), J¥,nr) can be characterized by the following commutative diagram
in vqcoh(X):

£! ? £
JL J2
f1 (c; 1 ¢ 52
fl P fQ f2
BN W 7
F e F?

That is 1-morphisms in vqcoh®™ (X)) are pairs (f*, ), where f* is a l-morphism
in vqcoh(X) and 6 : Jy o f* = f*®o J2 is a 2-morphism in vqcoh(X) satisfying

the following compatibility condition:
nr * idfo = (idf- * 7’/5) ® ((9]0 * ldjg) © (ldj} * (9]0) (53)

Note that condition ([5.3]) comes from the fact that we want the following diagram

of 2-morphisms in vqcoh(X) to commute:

(O5xid ;9 )O(id ye +0)

fro(J2) S (J3)* o f*

idye *ngﬂ \“/n]:*idf.

f. @) _id(5'7¢) —id(f-7¢) o f..

The 2-morphisms X : f* = g* between two l-morphisms (f*,0f) : (£°,¢) —
(F*,¢) and (¢°,0,) : (E°,¢) — (F*,1) are given by 2-morphisms A : f* = ¢°* in
vqcoh(X) such that

We call a complex virtual quasicoherent sheaf ((F*,), J®,n) a complex virtual
vector bundle, if (F*,1) is a virtual vector bundle, J* a 1-morphism in vvect(X)
and 7 a 2-morphism in vvect(X), and refer to the corresponding 2-category as
vvect™(X).
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Remark 5.1.5. Note that the compatibility condition (5.2]) can be expressed in

2-categorical terms as
T]*id]o :idJu *’I’]’

where id ;e denotes the identity 2-morphism of J® and * the horizontal composition
of 2-morphisms. Note further, that this means nothing else than that the resulting
2-isomorphism from J** to —J*® is canonical , as n*idje : J** = —J* and idje 7 :
JO = e

The following definition will use complex virtual vector bundles to define a
notion of homotopy complex structure on a d-manifold. In the classical manifold
case, an almost complex manifold carries an almost complex structure on its tan-
gent bundle, in the d-manifold case however we need a slightly weaker notion for

the application we have in mind.

Definition 5.1.6. A homotopy complex structure ((E°, ¢), J*,i®, j°) on a d-manifold
X consists of a virtual vector bundle (£°,¢) on X x [0,1] and equivalences i°® :
(E%,0)|xxqoy — T°X and j* : (£%,9)|xxqy — (F*,¢) in vvect(X) , where
((F*,%),J*,n) is a complex virtual vector bundle on X. We will sometime leave
the equivalences and the virtual vector bundle implicit and refer to J*® as a homo-
topy complex structure.

Note that the basic idea of this definition is the following: although the vir-
tual cotangent bundle T*X may not admit a complex structure itself, it can be

deformed to a complex virtual vector bundle.

The next definition introduces the stabilization of the cotangent bundle of a
d-manifold, which will allow us to introduce the more general notion of stable

homotopy complex structures.

Definition 5.1.7. For each positive integer a € Z>, define a stabilization of the
cotangent bundle 7% X to a d-manifold X, to be the virtual vector bundle 7% X,
given by

Ex oxey Fx @ (R*® Oy),
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where the map * : £x — R* ® Ox is arbitrary. Note that we will in the following,
for brevity, sometimes suppress the @O x-part if it is clear from the context, and
just write Ex Xy Fx @ R instead.
Definition 5.1.8. Fix a positive integer a € Z>, and let X be a d-manifold with
underlying C-scheme X. Let T*X be a stablilization of the cotangent bundle of
X. A stable homotopy complex structure ((€°, ¢), J®, a) on a d-manifold X consists
of a virtual vector bundle (£°, ¢) on X x [0, 1] and equivalences i® : (£°, ¢)|x x {0} —
T*X and j* : (€% 8)|xxpy — (F*,¢) in vvect(X), where ((F*,v),J*n) is a
complex virtual vector bundle on X.

We call a quintuple (X, (£°, ¢), J*, a), consisting of a d-manifold X and a stable

homotopy complex structure ((€°,¢),J*,a) on X a stable homotopy complez d-

manifold.

The following proposition is the homotopy complex analogue of Proposition
and can be proven in a similar way.

Proposition 5.1.9. Let (€°,¢,J%,n) be a complex virtual vector bundle over a
separated, compact, locally fair C*°-scheme X. Then there exists a complex vir-
tual vector bundle (G®, v, j’,f] = 0), where G*,G* are global complex vector bun-
dles over X, and an equivalence (f*,0;) in vvect™(X) between (G*, v, J*. i) and

(8.7 ¢7 J‘?n)'

Proof. Similar to the situation in the proof of Proposition [2.1.24] we consider the
complex vector bundle G2 = (CY ® Oy, Jen) for some N > 0 large enough, where
Jen denotes the standard complex structure on CV. We will first construct the
“f2-part” of the equivalence f* and the associated 2-morphism 6; : CN @Oy — &!

and show that the equation
fPoden =J%0 f24¢oby, (5.4)

is satisfied.
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Note therefore that since (£°,¢) is a complex virtual vector bundle, we have

the following commutative diagrams in qcoh(X)

gl ¢ 82
\Jl \ﬂ (5.5)
51 ¢ 82
g g
\m" l(ﬂ)? (5.6)
gt g

Recall that in the diagrams (5.5)) and (5.6)) the following 1- and 2-morphism equa-

tions are encoded:

J2ogp=¢olJ, (5.7)
nolJ*=Jon, (5.8)
(JY)? = —idg1 + 710 9, (5.9)
(J?)? = —idg2 + pon. (5.10)

In order to construct the f2-part of f* and the associated 2-morphism 6, consider
the splitting CV = RY @/RY and write f? = fZ+if7 and ; = 0y, +1i6y, according
to this splitting. Now let f? : RY ® Ox — £? be as in Proposition [2.1.24] and
define f7 : RN ® Ox — &? by —f7 = J? o ff. Furthermore, set 6y, = 0 and
0r, = no fi. We claim, that these choices of f2,6; satisfy equation from
above. Note that this is nothing else than to prove that the following equations
hold:

fi=Jofi+doby, (5.11)
—f3 =T ft. (5.12)

But equation (5.12)) is true by definition and equation (5.11)) simplifies, by using
the definitions of 8¢, and f3, to ff = —(J*)*ff +¢ono fE, which in turn is nothing
else than equation ([5.10)).
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As in the proof of Proposition define G! to be the kernel of ¢ & f?, and
denote the induced map by f!: G' — €. As we have seen, G! is a vector bundle
over X. We claim that there is a natural complex structure J* on G' = ker(¢@® f2),
making it into a complex vector bundle.

Consider therefore the following commutative diagram in qcoh(X):

0 G L glg (e g 0y) L g2 0
7 (5 220) lﬂ (5.13)
0 G L glg (O @ 0y) L g2 0.

Here J' : G — G' is the unique morphism induced by the commutativity and
exactness of the diagram.
Analogous to (p.4), one can show that f! and 6, satisfy the equation

flojl:Jlof1+9f01/), (5.14)

and that the compatibility condition between 0y and 7, as in Definition [5.1.4} is

satisfied. Hence (f*,6y) is indeed a complex 1-morphism from (G*, ) to (€°, ¢).
We want now to show that (J!)2 = —idg, that is J' is a complex structure on

the vector bundle G'. Using diagrams , and the definition of 0, we get

the following commutative diagram in qcoh(X)

0 ¢ L% elg (Y e 0y) vOr g2 0
(j1)2' l (—idgl()+770¢ —Jloﬂfi;:;oJCN ) \‘]22 (515)
1 fley 1 N 2
0 g E @ (CY®0y) o & 0.

Defining v = v, +72 : €2 = 1@ (CY @ Ox) by 71 = 1,72 = 0, yields the following

()6 n=(5 ).

But as no ff = 0y, by definition of 0y, and no f§ = —no J?o ff = —J'ono f7 =
—J' 00y, by equations (5.12) and (5.§), we get for no f*:

nof2:—Jlo(9f—9foJ(cN,

equation:
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and thus

—idg1 +no0 ¢ —Jloef—cngJCN [ —idga 0 n no¢ mno f>
0 —idew - 0 —idew 0 0

= —idgigey +70 (0 ® f?).
Hence, the morphism

<—id51+770¢ —Jloef—QfOJ@N

. )251@(CN®O)()—>EIEB(CN®O)()
O —ld(cN

from diagram (5.15)) factors through v : £2 — £' @ (CN @ Ox):

51 @ (CN ® O oD f 52
(fid£10+no¢> ﬁlﬁi;g%w ) \ 7 ............ \Jg (5.16)
1 N o 2

But uniqueness of (5.15) yields then that (J')? = —idg:, which proves that G is
a complex vector bundle.
Moreover it follows immediately that ¢ : G — CV ® Ox is complex linear,

that is Jev 09 = 1 o J', which completes the proof of the proposition. O

Corollary 5.1.10. Every compact, stable homotopy complex d-manifold (X ,((E°, @),

J*®),a) has an orientation.

Proof. Let (€°, ¢) be the virtual vector bundle associated to the stable homotopy
complex structure J* and let is : (£°,0)|xxq1y — (F*, 4, J*,n) the corresponding
equivalence in vvect(X). Proposition shows that (F* 1, J®*, 1) is equivalent
to a complex virtual vector bundle (G*, p, Je, 77), where G', G? are complex vector
bundles. Thus, Theorem 2.3.37|(a) shows that £ ge ,) = AﬁgnkRgl(gl)*®Aﬁ§nkRg2gz.
But since G!, G? are complex vector bundles they are oriented, and this isomor-
phism induces an orientation on Lgs ,). Part (b) of Theorem shows, that

this orientation induces one on (F*, %, J*, n) and we get therefore an orientation

on (€°,¢)|xxq; which determines an orientation on (£°,¢) and therefore one on

(£°,¢)|x 10}, which in turn gives an orientation on X. O
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Remark 5.1.11. As the definition of a (stable) homotopy complex d-manifold
just involves the virtual cotangent bundle and a homotopy complex structure, we
can define in exactly the same way what a (stable) homotopy complex d-orbifold
should be. Moreover, all the results in this section, like Proposition [5.1.9] extend
nicely to d-orbifolds, as they are results about complex virtual vector bundles and

do not involve d-orbifold specific properties.

5.2 Nearly complex structures

In this section we will define the notion of nearly complex structures on d-manifolds
and d-orbifolds. The basic idea is, that given a virtual quasicoherent sheaf (virtual
vector bundle) (£°, ¢) over a C*-scheme X, a nearly complex structure on (£°, ¢)
is given by complex structures on &', £? which do not necessarily make ¢ into a
complex linear morphism. The advantage in working with nearly complex struc-
tures over homotopy complex structures (defined in the previous section), is that
the cotangent bundle will be equipped directly with a nearly complex structure

and we do not have to use perturbation arguments.

Definition 5.2.1. A nearly complex virtual quasicoherent sheaf ((£°,¢),J®) over
a (°-scheme X is given by the following data: a virtual quasi coherent sheaf
(€%, ¢) € vqcoh(X) on X and a pair of morphisms J* = (J*, J?) with J! : ' —
EY J?: 2 — £? in qeoh(X), satisfying the condition (J%)? = —idg: fori = 1,2. We
will call J® a nearly complex structure on the virtual quasicoherent sheaf (£°, ).

We want to emphasise that we do not require any compatibility of ¢ with J*®
whatsoever.

We can make these nearly complex virtual quasicoherent sheaves into a 2-
category vqcoh™ (X)) as follows: Objects are given by nearly complex virtual qua-
sicoherent sheaves ((€°, ¢), J*). The 1-morphisms between two objects ((£°, ¢), J2)
and ((F*, 1), J%) are given by the following commutative diagram in vqcoh(X):

@
(€', 72) (2, 72)
! f?
(F,73) (F2.3),
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that is 1-morphisms in vqcoh™ (X) are 1-morphisms of virtual quasicoherent
sheaves f* = (f!, f?) : (€°,¢) — (F*, ) such that fio Ji = Jio f' for i = 1,2.
The 2-morphisms n : f* = ¢°* between two l-morphisms f* : (€%, ¢) — (F°, )
and ¢* : (€°,¢0) — (F°*,%) are given by 2-morphisms 7 : f* = ¢* in vqcoh(X)
such that no JZ = Jron.

(&, T —2— (&%, 72)

flJ \91 " fz\ Jga (5.17)

(F' J5) (72, %),

Note that 1 being a 2-morphism in vqcoh(X) implies ¢' = f! + 7o ¢ and ¢* =
f?+ 1 on, which yields that although ¢ (and 1) need not be Ji-J2? complex linear
(JE-JZ% complex linear), n o ¢ (and v on) are complex linear, as f! and g' are.

We will call a diagram of the form an equivalence diagram in the future.

As in the non-complex case, we call ((€°,¢), J*) a nearly complex virtual vector
bundle, if it is locally equivalent in vqcoh™®(X) to some ((F*, %), K*), for F!, F?
being complex vector bundles with almost complex structures K, K2, and we
denote the corresponding 2-category by vvect™(X).

A nearly complex virtual vector bundle over a d-manifold X is given by a

nearly complex virtual vector bundle ((£°, ¢), J®) € vvect™(X) on its underlying
C*°-scheme X.

Remark 5.2.2. Given a nearly complex virtual quasicoherent sheaf ((€°,¢), J®)
on a C*-scheme X, we can define a complex virtual quasicoherent sheaf ((€°, (5), Je,

n) on X by setting
~ 1
¢:§(¢—J20¢OJ1) and 17 =0.

Moreover, given a 1-morphism f*® in vqcoh™(X), we can define a 1-morphism in
vqcoh™ (X)) by (f*,0; =0), and given a 2-morphism A : f* = ¢* in vqcoh™(X)
we get a 2-morphism A : (f*,0; =0) = (¢°,6, = 0) in vqcoh™(X).

It is easy to check that using the above, we get a strict 2-functor FS5X :
vqcoh™ (X) — vqcoh®™ (X)) from the 2-category of nearly complex virtual quasi-

coherent sheaves to the 2-category of complex virtual quasicoherent sheaves.
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Using the notion of nearly complex virtual vector bundles we can now define

what a nearly complex d-manifold should be.

Definition 5.2.3. A nearly complex structure on a d-manifold X is given by
a quadruple ((€°,¢), J*,i*) consisting of a nearly complex virtual vector bundle
((&°,¢),J°) on X and an equivalence i® : (€%, ¢) — T*X in vvect(X). For the
sake of brevity, we will sometimes leave the equivalence i®* implicit, and call the
triple ((£°,¢), J*) a nearly complex structure.

A quadruple (X, ((€°, ¢), J*)), consisting of a d-manifold X and a nearly com-
plex structure ((£°,¢), J*) will be called a nearly complex d-manifold.

The next definition introduces the more general notion of stable nearly complex

structures.

Definition 5.2.4. As in the homotopy complex case, fix a non-negative integer
a € Z>p, and let X be a d-manifold with underlying C"*°-scheme X. Let T*X be
a choice of stabilization of the cotangent bundle of X. A stable nearly complex
structure ((€°,¢),J°,a,i®) on a d-manifold X consists then of a nearly complex
virtual vector bundle ((€°,¢),J*) on X and an equivalence i* : ((£°,¢),J°*) —
T*X in vvect(X). We will sometimes leave the equivalence 7* implicit and refer
to ((€°,¢),J*, a) as a stable nearly complex structure. We want to emphasise that
the choice of stabilization of T*X is a part of the data of a stable nearly complex
structure.

A quintuple (X, ((€°,¢),J*,a)), consisting of a d-manifold X and a stable
nearly complex structure ((£°,¢),J®, a) will be called stable nearly complex d-

manifold.

As a consequence of the definition of stable nearly complex d-manifold, we can

prove that stable nearly complex d-manifolds are oriented.

Proposition 5.2.5. Every stable nearly complex d-manifold (X, ((E°,¢),J*),a)

has a natural orientation.

Proof. Proposition [2.3.37(a) (see [35, Proposition 4.40] for a proof) shows that
for a virtual vector bundle (£°, ¢), the associated orientation line bundle Lg. 4 is

canonically isomorphic to the tensor product of the determinant line bundles of
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(EY)* and &%, that is Lge 4) = AP (EN)* @ AP2E2, where ki = rank &y, ky = rank &s.
Given a nearly complex virtual vector bundle ((£°, ¢), J®), we can use the functor
F$* from Remark and get a complex virtual vector bundle ((£°, é), Jon =
0). It is clear that the proof of Proposition extends nicely to complex
determinant line bundles and hence we get the following isomorphism:

C ~ Ak * k
Liigegyom AT (E) @ AZE
Since £, E? carry almost complex structures, they are oriented and hence we get

. . (C
an orilentation on E((E',é),J')' But as

avi ~Y (C
Ligeg) = Liee ) = Mp(Liige g).00))

the orientation line bundle Lg. 4 is oriented. Part (b) of Theorem [2.3.37| shows
finally, that this orientation induces one on X, as T*X = ((€°,¢), J*). O

The following proposition is the nearly complex analogue of Proposition
and will play a central role in the following applications. To fix some notation,
let (€,J),(F, K) be quasicoherent sheaves with complex structures. We will call
a morphism g : £ — F “complex linear” if it is J-K-linear, that is go J = K o g.

Proposition 5.2.6. Let ((£°,¢),J°) be a nearly complex virtual vector bundle
over a separated, compact, locally fair C*°-scheme X. Then there exists a nearly
complex virtual vector bundle ((G*,), K*), where G*,G? are complex vector bun-
dles over X, and an equivalence f* = (f1, f?) in vvect™(X) between ((E°, ¢), J*)
and ((G*, ), K*).

Proof. Take an open, finite cover (Y; : i € I) of X and a partition of unity
(e @ € I) subordinated to this cover, such that on each Y; the nearly complex
virtual vector bundle ((€°,¢), J*) is equivalent to a nearly complex virtual vector
bundle consisting of trivial complex vector bundles. This means, we get for each

i € I the following diagram in gcoh(Y;):

/_Ci\

Elly, — 2 &2y,

a%l [bg a?l Ib? (5.18)
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where ¢; : E%y, — E'ly;, and 7; : (sz — (Cz,l are the 2-morphisms induced by
the equivalences af = (a},a?) and b* = (b}, b?) for each i € I. Note further that

19 "1 27 71

except for ¢|y, and fy,, all the morphisms are complex linear with respect to the
appropriate complex structures.
Now, define N := 3" n?, such that CN = @ C™. By defining G? := CN @ Oy
el el
we get a morphism f?: G? — €2, f2 = ;b2
i€l

Define G' := ker(¢ @ f?) and let f!' : G* — &' and ¢ : G' — G? be the

morphisms making the following sequence in vqcoh(X) exact :

0 G I elg (N @ 0y) 2L g2 0. (5.19)

We claim that G' is a complex vector bundle over X and that f® = (f!, f?) is an
equivalence in vvect(X).

In order to prove this, we have to show that there exists a morphism y @
e?: &2 — ' @ (CN ® Ox) which is complex linear with respect to the complex
structures J2? on £2 and J' @ Jev on £ @ CN ® Oy, so that would become

a split exact sequence in qcoh(X)

fl _ ¢@f2
0——G' T E'®((CY®0x) e &8 ——0. (5.20)
el@e xPe?

Proposition [2.1.23| then implies that f* is an equivalence in vvect(X) and we
get the existence of a unique complex structure K' on G' and a complex linear
morphism ¢! ® ¢ : &1 @ (CV @ Ox) — G,
Define x @ €* := Y oy @ Y b7, where n; : Cyf — Cy! and b7 : Cyf — &2
iel iel - - =
are the morphisms from (5.18)). As n; and b? are complex linear for all ¢ € I, y @ ¢?

is complex linear. Indeed

Y;

(& f)o(x@e’) = aipon +b]oal)

i€l

= E Ozidg2‘y :id52,

el
where we used the fact that a®,0* is an equivalence. Using Proposition [2.1.23]
we get a morphism e! @ ¢ fitting into (5.20), and as G! = Coker(y @ €* : €2 —
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E'@ (CYN ®0Oyx)), we get a unique complex structure on G! making e! & ¢ complex
linear.

To complete the proof, we need to show that G! is a vector bundle over X. But
this was already proven in the proof of Proposition [2.1.24] O

Remark 5.2.7. As the definition of a (stable) nearly complex d-manifold, again
just involves the virtual cotangent bundle and a nearly complex structure, we get
as in the (stable) homotopy complex case, a nice extension of the definitions and
results to d-orbifolds.

5.3 Local nearly complex standard model equiv-
alence

In the following we will prove as a new result that locally the cotangent bundle of
a nearly-complex d-manifold behaves well in the sense that there exists a nearly
dsls=1(0) 1y

T V) as

complex analogue to the local description T* X |y ~ (E*|s-1(g)
in section 2.3.11
We start with the definition of a stable nearly complex standard model d-

manifold.

Definition 5.3.1. Let a € Z>( be an integer, V' be a manifold, &' — V' a vector
bundle on V' with rank (E) = 2k for some k € Zs¢, s € C*(FE) a smooth section,
J € End(TV @& R?) a stable almost complex structure on V and K € C*(E ® E*)
an almost complex structure on the fibres of F.

Then the standard model d-manifold Sy, g ,, defined in Definition [2.3.4] admits

a nearly complex structure

ds@*

(E*, K) 222 (T*V @ R, J).

We call the quadruple (Sv.gs, J, K, a) a stable nearly complex standard model d-

manifold.

The following proposition will play a crucial role in studying unitary d-manifold

bordism, as it will allow us to switch to a local picture.
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Proposition 5.3.2. Let (X, (E°,¢),J®, a) be a stable nearly complex d-manifold.
Then near each x € X, X is equivalent as a stable nearly complexr d-manifold to
a stable nearly complex standard model d-manifold (Sv g, J, K, a).

If X is compact, then (X, ((E°,¢), %, a)) is globally equivalent to a stable
nearly complex standard model d-manifold (Sv g, J, K, a).

Proof. As shown in section [2.3.1] for each z € X, X there exists an open neigh-
bourhood # € U and an equivalence of U to a standard model d-manifold U =~
Svps, for some manifold V, a vector bundle £ — V and a smooth section
s € C®(E).

Proposition allows us to replace the nearly complex virtual vector bun-
dle (€°,¢), by an equivalent nearly complex virtual vector bundle (F*, ), where
F', F? are complex vector bundles, and so we may assume w.l.o.g. that &', £? are
complex vector bundles.

On the open neighbourhood U of x, we have the following equivalence in
vvect(X)

dS|s_1(0)@*

T*X’U ~ (E*ls—l(o) T*V|s—1(0) EB Ra),

and therefore the following equivalence diagram in vvect(X)

¢
ds| - P*
E*|5*1(0) Sls—1(0) T*V|571(0) o R®
a1J [bl a2l b2
'y ° £y

Here ¢ : T*V|s-1(0) = E*|s-1(0) and 1 : E2|y — €|y are the 2-morphisms corre-
sponding to the equivalences a®, b°®.

The idea of the proof is first to show, that after choosing suitable, equivalent
replacements for (£°, ¢) and a®, we get the following equivalences: E*|;-1) ® G =
Ely and T*V|s-1(0) ® G = €|y, where G denotes the cokernel of E*[;-1(g) in Ey.
Then, after extending G to V, we can replace V by the total space of G* and
pullback E and s under the projection map 7 : Tot(G*) — V.

124



In order to achieve this, we first have to show that we can replace a® by an
equivalent equivalence a®, where a',a? are injective. This implies then the exis-
tence of left-inverse morphisms and we get therefore that the following short exact

sequence is split exact:
dl
00— E*’s—l(o) — 51’[_] —_— Q — 0.

Let therefore o : T*V @ R* — &£ be a generic morphism and define

ELI = CLl +ao d8|3—1(0),

i’ =a*+¢oa.

We claim that @' and a? are injective for rank £, rank £2 sufficiently large. To see

this, let z € s71(0) and consider the following diagram in qcoh(X)

ds|e

0 K, B, S pv,eR 0, —— 0
0 K’ g, -2 g2 ! 0,

where K, K| denote the kernels of ds|,, ¢, and C,, C! the respective cokernels.

We have to ensure that « o ds|, : im(ds|,) — &'|, is injective. Let therefore
dim K, = c¢,rank E* = k,dimT*V|, ® R* = n,dimC, = d, and rank&' = N +
k,rankE? = N + n. We know that a o ds|, € Hom(im(ds|,),E|,) and that
dim Hom(im(ds|,), ') = (N + k)(k — ¢), as dimim(ds|,) = k — c.

The non-injective morphisms have at least 1-dimensional kernel and so the
dimension of non-injective maps Homyep inj(im(ds|,), £];) € Hom(im(ds|,), )
is at most

dim. Hom (im(ds|,), EY.) = (k —c—1) + (k — c— 1)(N + k).

non-inj
Therefore the codimension of the non-injective morphisms within all morphisms

is given by

codim Hom (im(ds|,), £Y.) = (N + k) — (k —c—1)

non-inj

=N+c+1>N+1
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This shows, that in order to ensure that « o ds|, is injective, we require n <
N + 1, or equivalently N > n.

By adding sufficiently large trivial bundles to £! and &2 and thus replacing
(&Y, &2, ¢, J, J?) with the equivalent nearly complex virtual vector bundle (€' &
C™, E2@C™, ¢®idem, J'® Jom, J>® Jem), we can assume w.l.o.g that rankE! > n,
which in turn ensures that there exists a generic morphism « : TV* @ R* — &£*
making a', a? injective.

As a',a? are injective, there exist left inverse morphisms W& 1|g — E*|s-1(0)
and 0% : 2|y — TV*|-1(0) ® R

Replacing @', a2, b', 0% by a',a?, b, b? we get the following diagram in vect(X)

0 0
ds| —
E*|s*1(0) 1(0) T*V|571(0) @ R®
al bl/ 2 b2
¢

Ely £y (5.21)
ct dt c? d?
id
g ; g
0 0,

where G = coker a' = coker a?. a' and a? being injective imply that the vertical

exact sequences are split exact, and we get therefore the following isomorphisms

ds|s_1(0) 0
* 0
0 idg

E*|S—1(0) ® g T*V|571(0) PR @G
al@dl o~ GZEB(F o
&y - Ey.

The complex structures J'|y, J?|y on |y, £2|y induce complex structures K and
K? on E*|5—1(0) @ G and T*V|s—1(0) PR*®G.
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Extending G from s~'(0) to V, we can define V := Tot(G*), where Tot(G*)
denotes the total space of G*, and let 7 : V — V be the projection map. More-
over, let E := 7n*(E) ® 7*(G*) and 5 := 7*(s) @ idg-. We then get the following

commutative diagram in qcoh(X)

~ d3|.— Dx* ~
E* 571(0) 1(0) T*Vlgfl(()) @ Ra
= ds|s_1(0) 0 =
(5" )
E*|s—l(0) EBQ g T*V|S—1(0) @Ra@g
EI‘Q d 82|Q7

and therefore we get almost complex structures J*, J2 on E*|§71(0) and T *‘~/|§71(0) &
R®. Hence, by changing V to V, E to E and s to § we get that (U, (£*, ¢)|v, J*|u, a)
is equivalent to (S 55, K', K2, a) as claimed.

In the case where X is compact, it is principal by Corollary [2.3.30/and therefore
(globally) equivalent to a standard model d-manifold Sy gs. Using this global
standard model, and the fact that Proposition [5.2.6| allows us to replace the nearly
complex virtual vector bundle (£°,¢) globally by an equivalent nearly complex
virtual vector bundle, consisting of complex vector bundles, the proof is the same

as before. O

In the d-orbifold case, the same proposition holds and can be proven using
the same proof, except that we have to ensure that not just the rank of &', &2
are large enough, but also that £!,£? contain “large enough representations” of
orbifold groups at each point. The reason for this is, that a' : E*|s-19) = E'|u
needs to be Iso(z)-equivariant and hence we have to ensure that there are enough
copies of each Iso(x) representation in E*|;-1() in £'|y. We call a d-orbifold X
embeddable, if there exists an embedding f : X — Y = FA9™®()) in dOrb, with
Y being an orbifold.

Proposition 5.3.3. Let (X, ((E°,¢),J®, a)) be a stable nearly complex d-orbifold.
Then near each [x] € Xy, X is equivalent as a stable nearly complex d-orbifold to

a stable nearly complex standard model d-orbifold (Sy¢ s, J, K, a).
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If X is compact and embeddable, then (X, ((E®, @), J*, a)) is globally equivalent
to a stable nearly complex standard model d-orbifold (Syes,J, K, a).

The only adjustment of the proof in the d-orbifold case, is that instead of choos-

1

ing £'|y, £2|y with sufficiently large rank, we have to choose Eys

8[290} as follows:
Ely = © (§y @R CM) @ (T1,)V &R @ C™) & C™,
£ = )0 (6 9x O & (ThyV & BY) 93 C%) & T,

Here Ny, Ny, N3 are chosen sufficiently large as in the proof of Proposition [5.3.2]

With this choice of g[lx}, gé | the proof of Proposition [5.3.3) is essentially the same
as the proof of Proposition [5.3.2] and will therefore be omitted.

5.4 The relation between nearly and homotopy
complex structures

The major difference between the notion of nearly complex d-manifolds (Defini-
tion[5.2.4) and homotopy complex d-manifolds (Definition[5.1.6)), is roughly speak-
ing that for a stable homotopy complex d-manifold, the stabilization of the virtual
cotangent bundle 7*X does not admit a complex structure itself (but can be
deformed to a complex virtual vector bundle), whereas for a nearly complex d-
manifold the virtual cotangent bundle is equivalent to a nearly complex virtual
vector bundle without any deformation. On the other hand, though, the notion of
homotopy complex structure requires the morphism ¢ to be complex linear (which
is a very strong condition on ¢), whereas in the nearly complex case ¢ will in
general be not complex linear.

In the following, we will prove that there exists a (partly non-canonical) 1-1-
correspondence between these two notions. What we mean by partly non-canonical
is that although the direction from stable nearly complex d-manifold to stable
homotopy complex d-manifold is canonical, the reverse direction from stable ho-

motopy complex d-manifold to stable nearly complex d-manifold is not.

Lemma 5.4.1. Given a stable nearly complex d-manifold (X, (F°*,v), K*, a), there
exists a canonical homotopy complex structure ((E°,¢), J®, a), making (X, (E°, ),

J*®,a) into a stable homotopy complex d-manifold.
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On the other hand, given a stable homotopy complex d-manifold (X, (E°,¢),
J*®, a), there exists a non-canonical stable nearly complex structure ((F*, ), K*, a),

making (X, (F*,¢), K* a) into a stable nearly complex d-manifold.

Proof. Let therefore X be a stable nearly complex d-manifold, with stable nearly
complex structure ((F*,), K® a). We can then define an homotopy complex
structure ((€°,¢),J*,n) on X by setting

£ =nmx(F) fori=1,2

¢ =tnyx (V) — (1 —t)J? omx(¥)o ! for ¢t € [0,1]
J' = W%(Ki) for i =1,2

n=0.

This defines then a homotopy complex structure ((£°,¢), J®,n) on X and makes
it into a stable homotopy complex d-manifold.

For the other direction, that is given a stable homotopy complex d-manifold
we can construct a stable nearly complex d-manifold, consider a stable homotopy
complex d-manifold X, with stable homotopy complex structure ((£°,¢), J®,a).
Using Proposition , we can conclude that the virtual vector bundle (£°, ¢) on
X x [0,1] is equivalent to a virtual vector bundle (G®,x), where G', G? are vector
bundles on X x [0, 1].

On X x {1} the virtual vector bundle (£°, ¢)|xx {1} is equivalent to a complex
virtual vector bundle ((H*®, ), J3;, n), and by using Proposition[5.1.9|we can assume
with out loss of generality that H' and H? are complex vector bundles on X x {1}
with almost complex structures Jy: for ¢ =1, 2.

Choosing connections in the [0, 1] directions on the vector bundles G! — X x
0,1] and G* — X x [0, 1] allows us through parallel transport, to identify G'|x s
with G'|xxqy ~ H' for all t € [0,1] and ¢ = 1,2. Hence we get for each ¢ € [0, 1]
an equivalence of virtual vector bundles on X X [0, 1]:

(gl _X, 92)|;<x{t} ~ (WE(("HI) Q) 71}(7.[2))

Note that although 7% (#') and 7% (#?) do not depend on ¢ € [0,1], the mor-
phism £(t) does. Denote the so obtained virtual vector bundles on X x {0} by
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(F*! v, F?) and let K’ be the complex structures induced by Jy:, for i = 1,2.
Although the induced morphism v depends on ¢ € [0, 1] and is therefore not com-
plex linear, the resulting virtual vector bundle ((F*®,v), K*) is a nearly complex
virtual vector bundle over X x {0}.

Furthermore, on X x {0} we have (£°,¢)|xx0; =~ T*X, and as all the above

identifications preserve equivalences, we get that
(F*,¢),K*a) ~T*X,

where a € Z>( is the same as before. Hence we get a nearly complex d-manifold
(X, (F*,¢), K*, a), completing the argument that we can construct a stable nearly

complex structure from an homotopy complex structure. O

Note that the lemma above is not independent of choices we made. In order to
get a canonical 1-1-correspondence in both directions one has to make sure that
the resulting nearly complex virtual vector bundle does not depend on the various
choices, like the choice of connection, involved. One way how one could tackle this
problem is by introducing a kind of K-theory for nearly complex virtual vector
bundles and show that the constructed nearly complex virtual vector bundles lie
all in one fixed K-theory class. For our purposes however, the statement of the

lemma will be enough.

5.4.1 The relation between nearly and homotopy complex
structures and Kuranishi structures

In this subsection we want in a similar way to section explain some results
from Fukaya and Ono [20] in terms of nearly and homotopy complex structures
on d-manifolds and d-orbifolds. The following remark can be thought of as an
extension of Remark [4£.1.5

Remark 5.4.2. (a) Fukaya and Ono [20, Definition 5.15] define K-groups KO(X),
KSO(X) and K(X) of a Kuranishi structure X. (Where again the sections s, in
the definition of Kuranishi neighbourhood in [20] are just assumed to be continuous
and not smooth like in [I8].) These K-groups are defined as the free abelian group

generated by the set of all isomorphism classes of bundle systems, oriented bundle
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systems and complex bundle systems divided by some relation. There is then an
obvious map K(X) — KSO(X) — KO(X), which corresponds in the d-orbifold
world to the fact that “homotopy complex structure on T*X — orientation on
T*X — T*X7. Note that here (in an extension of Remark [4.1.5(d)), Fukaya
and Ono’s bundle systems correspond to virtual vector bundles, oriented bundle
systems correspond to oriented virtual vector bundles, and complex bundle systems

to complex virtual vector bundles.

(b) In [20, §16] Fukaya and Ono prove that for a compact, symplectic manifold
(X, w) with compatible almost complex structure .J, the moduli space M, ,,(X, J, )
of n-pointed, genus g stable J-holomorphic curves in X carries a stably almost com-
plex structure. Here a stably almost complex structure on a Kuranishi space X
(see [20, Definition 5.17]) is a complex structure on the tangent bundle 7X. (To
be more precise, X carries a stably almost complex structure if [TX] € KO(X)
lies in the image of K(X)). In the language of d-manifolds and d-orbifolds,
Fukaya and Ono construct in the proof of [20, Proposition 16.5] a virtual vec-
tor bundle (£°,¢) (a bundle system) on M,,,(X, J,3) x [0,1] which restricted to
M. (X, J,B) x {0} is equivalent to the tangent bundle T M, (X, J,3) and re-
stricted to /Vlg,n(X ,J,8) x {1} admits a complex structure. So in other words,
Fukaya and Ono prove that M, (X, J, 3) is an homotopy complex d-orbifold.
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Chapter 6

Representable d-orbifolds

In the following we will study d-orbifolds, which admit a representable map into
an effective orbifold. We will then prove that these representable d-orbifolds as we
call them, will have the property that they can be embedded into an orbifold. As
discussed earlier in section it is not known, whether d-orbifolds do in general
admit an embedding into an orbifold. The theorem we will prove in the following,
makes a step towards answering this question and provides a useful criterion for
the existence of such embeddings.

We will then briefly discuss a result of Kresch [38] about the embeddability of
Deligne-Mumford stacks, and show how this result can be used to prove as a new
result that a large class of ‘interesting” moduli spaces in algebraic geometry can
be given the structure of representable d-orbifolds. This result can be seen as a
justification of the relevance of representable d-orbifolds, and will potentially be
useful for future applications.

At the end of this chapter we will then sketch how one could prove the same
result for the moduli spaces of n-pointed, genus g, J-holomorphic curves, using
symplectic geometry. The idea we present is not fully worked out, but should rather
provide a rough sketch how ideas of Cieliebak and Mohnke [I1] and Donaldson [14]

could be used to prove a theorem along these lines.
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6.1 The definition of representable d-orbifolds

We will start by defining the new subclass of representable d-orbifolds in the class
of d-orbifolds, which will have the property that they can be embedded into some
orbifold. As it will turn out, many important examples in algebraic geometry, like
the moduli stack M,,,,(X, 3), do not just possess a d-orbifold counterpart, but a

representable d-orbifold counterpart.

Definition 6.1.1. A d-orbifold X is called representable, if there exists an effective
orbifold ) and a 1-morphism between d-orbifolds f : X — Y = FZ9™®(Y) which
is representable, i.e. the underlying C'*°-stack morphism f; : Isox([z]) — Isoy([y])
is injective for all [z] € Xiop with fi([z]) = [y] € Viop. f will be called the
representation map.

We call a d-orbifold X embeddable, if X can be embedded into an orbifold
Y = F39™(Y) as d-orbifolds.

We will now prove as a new result that compact representable d-orbifolds are
embeddable. Our proof is based on ideas of Joyce (compare [35, Proposition 10.34])
and will imitate the proof of Theorem The following theorem can therefore
be considered as an analogue of Theorem

Theorem 6.1.2. For a compact d-orbifold X, the following are equivalent:

i) X admits a representable 1-morphism f : X — Y = FIO™(V) where Y is
Orb

an effective, smooth orbifold.

(ii) X admits an embedding f : X — Y = FAQ™(Y) in dOrb, where Y is an
effective orbifold.

Note also, that that this means that X is a principal d-orbifold by Theorem[5.4.18.

Proof. (ii)=(i): Is immediate by the definition of embedding (Definition
(£))-

(i)=(ii): Note first that that it is sufficient to prove the theorem for the C'*-stack
case. The reason for this is that given an embedding f : X — ) from a C°°-

stack X into an effective orbifold ), we get a 2-isomorphism class of 1-morphism
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embeddings f : X — Y = FZ®()) in dOrb. This can be seen by using local
models (and joining the local choices by a partition of unity) and noting that two
different standard model 1-morphisms on a coordinate chart differ by an O(s)-
term.

Suppose now first that f : X — ) is a representable 1-morphism between
smooth orbifolds, where ) is effective. Let £ be a vector bundle over ), and
let s : X — f*(€) be a generic section of f*(£). Assume further that for each
x € X, each irreducible representation R; (i € I,I ={0,...k} for some k € Z>)
of Isox([x]) is contained in the representation of Isox([z]) on f*(€) and, moreover,
that for each i €

multy, v (R;) < mult gy, (R;),

where multy, v (R;) denotes the multiplicity of the representation R; in T, X and
mult p+g)), (R;) the multiplicity of R; in f*(£)|;. Then we claim (that after modi-
fying &):

Claim. There exists alift of f : X — Y to f' : X — Tot(€) which is an embedding.

For the proof of this claim, fix a finite group I and consider the orbifold strata
XL, as in section For a point z € X we can split T, X and £|, into the

o’ k k
irreducible representations of I', that is T,X = @ R and &|, = @ R, where
i=0 i=0
n; = multTIX(RZ-), m; = multf*(g)‘z(Ri).
The tangent bundle of Tot(€) is given by T(Tot(€)) = TY & €. Hence we can
split ds : TX — T(Tot(£)) for a fixed z € X! into

df =V f @ ds,

and as Vf is fixed (for a fixed x € XL), df’ is injective if ds; : n;R; — m;R;
is injective for all ¢« € I. But as ds is I'-equivariant, and m; > n; for all ¢ € [,
genericity of s shows that f’ : X — Tot(€) is an immersion at a fixed point z € X} .
In general, we require a generic family of maps n; R; — m; R;, for all : € I, of
dim X! to be injective, that is the following condition has to be satisfied for all
1€ I
(dim &) < codim(Hom (n;R;, m;R;)),

non-inj

134



where Homyon inj(n;R;, m;R;) € Hom(n;R;,m;R;) denotes the non-injective map
from n; R; to m; R;. The non-injective maps have at least 1-dimensional kernel and
the dimension of Homy,gy inj(n; R;, m; R;) is at most

dimpyay, Hom (n; Ry, miR;) = (ny — 1) + (n; — 1)(my)

non-inj

and hence the codimension of the non-injective maps within all maps is given by
codim Hom (n; R;, m; R;) = (nym;) — (n; — 1) — (n; — 1)(my)
non-inj

:mz—nz—i—l

So in order to ensure that f’is an immersion, the condition dim X < (m; —n;+1)

has to be satisfied for all i = 0,...k. So by replacing £ with £®2dim?

we can
guarantee that m; > n; +dim X, which in turn implies that f’ : X — Tot(€) is an
immersion.

Moreover, by making rank (£) large enough we can ensure that f': X — &£ is
injective and thus an embedding.

In the case where X’ is not a smooth orbifold, but a singular C*°-stack, there
exists locally a smooth orbifold X in which X can be embedded. Denote this
embedding by 2y : X — X and note that X exists provided that X is locally fair.

Making X smaller if necessary, the morphism f : X — Y factors through
X as Y is smooth, and we get a 1-morphism f: X — Y. We are then in the
situation as before and get an embedding f' : X — € and therefore an embedding
fl=floux: X — Y.

To prove now the theorem, choose for each z € X an open neighbourhood

r € U, C X and an equivalence U, ~ Sy, ¢, s,. Consider the vector bundle

N

E=@PTY® over Y. Let [x] € Xiop With fiop([z]) = [y]. As f is representable
=0

f« : Isox([z]) — Isoy(ly]) is injective and the representation of Isoy([y]) on & is

effective, as ) is effective. Note that the representation of Isox([z]) on f¥(&) con-
tains all irreducible representations of Isoy([z]) for N > 0. This is true as f is
representable and the representation of Isoy([y]) on 7*Y is effective, as ) is effec-
tive. (Compare [2, §7, Theorem 1] for a proof that every irreducible representation

is a subrepresentation of an n-fold tensor product of an effective representation.)
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So in particular, the representation of Isox([z]) on f(£) contains the representa-
tion of Isox([z]) on T, X for ng,...,ny > 0.

Compactness of X guarantees that first of all dim 7., X is bounded and that the
size of the orbifold groups | Iso X'([z])| is bounded. Hence we are in the situation
of before and we get an embedding g, : X — £. By choosing a partition of unity
subordinated to a covering of X by open neighbourhoods U, we can join these

local embeddings and end up with an embedding g : X — &€ as claimed. O]

As we have seen in the proof of Theorem [6.1.2] we do not actually require
compactness of X, as we just used the facts that dim 7T, X and |Isox([z])| are

bounded. This gives us the following stronger result:

Theorem 6.1.3. Let X be a representable d-orbifold. Assume further that dim T, X
and | Isox([z])| are bounded for x in X. Then X is embeddable.

6.2 Kresch’s Theorem

We want now to discuss Kresch’s theorem about the embeddability of Deligne—
Mumford stacks and use his result to conclude that many important moduli spaces
in algebraic geometry can be thought of as representable d-orbifolds. Let us begin
by recalling some facts about Deligne-Mumford stacks, and stating the embed-
dability theorem due to Kresch [38]. For more background on Deligne-Mumford
stacks we refer to [38].

An algebraic orbifold is a smooth Deligne-Mumford C-stack X of finite type,
that has a dense open subset isomorphic to an algebraic variety. This is equivalent
to X having trivial generic stabilizer, which implies by a well-known theorem that
X is a quotient stack, that is X = [P/G] for some algebraic space P and a linear
algebraic group G. Over C one can take P to be the frame bundle associated with
the tangent bundle TX of X and G to be G L4, where d = dim X’ (see for example
Satake [49, §1.5] as a reference).

In [38 §5] Kresch proves the following theorem about the embeddability of
Deligne-Mumford stacks. We will show how this result can be used to conclude

that every moduli space of n-pointed genus ¢ curves is an embeddable d-orbifold.
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Theorem 6.2.1 (Kresch). For a proper Deligne—Mumford stack X over C, the

following are equivalent:

(i) X is a quotient stack and has projective coarse moduli space.
(11) X possesses a generating sheaf and has projective coarse moduli space.

(iii) X can be embedded into a smooth, proper Deligne—Mumford stack with pro-

jective coarse moduli space.

A Deligne-Mumford stack X is called quasi-projective (projective) if there exists
a locally closed embedding (closed embedding) to a smooth Deligne-Mumford
stack which is proper over C and has projective coarse moduli space.

Examples of projective moduli stacks include the moduli stack ./\7lgvm(X ,B) of
m-pointed, genus ¢ stable maps to a projective target variety X or the moduli
stacks ICy (X, d) of twisted stable maps, where X is a proper Deligne-Mumford
stack having projective coarse moduli space.

The following theorem is an addition to Theorem [4.2.4(d) and will show that
projective Deligne-Mumford C-stacks can be thought of as not just d-orbifolds,
but as representable d-orbifolds.

Theorem 6.2.2. Let X be a separated, second countable Deligne—Mumford C-
stack with perfect obstruction theory ¢ : E* — 7>_1(Ly) of virtual rank n € Z.
Then, as in Theorem (d), one can construct an up to equivalence unique,
oriented d-orbifold X with vdim X = 2n.

If X 1s also a projective Deligne—Mumford stack, which implies that it admits
an embedding into a smooth Deligne—Mumford stack, then the above constructed

d-orbifold X is representable, and therefore principal.

[e']

The reason why Theorem is true, is that there exists a “functor” F¢~,,

from algebraic geometry over C to algebraic geometry over C'*°-rings. What we

mean by this, is that there exists a functor FSy, >® from the category of C-schemes

to the category of C°-schemes, a functor Fg;, > from the category of Deligne—
Mumford C-stacks to the 2-category of Deligne-Mumford C*°-stacks, a functor
from smooth Deligne-Mumford C-stacks to smooth Deligne-Mumford C*-stacks,
that is orbifolds, ... . So for every algebraic object over C we get a C*°-analogue,

and this in a functorial way.
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6.3 Symplectic case

In this section we want to outline a proof, that the moduli space of n-pointed,
genus g, J-holomorphic curves M, (M, J, B) is representable, that is, it admits a
representable 1-morphism to an effective orbifold ). The obvious candidate for a
target space ) is the Deligne-Mumford moduli space of stable, n-pointed, genus ¢
curves Mg,n, which can be shown to be an effective Hausdorff, compact complex
orbifold of complex dimension 3g + n — 3, provided (g,n) # (1,1).

Restricting ourselves to triples [3, 2, u], where (X, 2) is a stable n-pointed, genus
g curve gives an indication why /\7197,1 should indeed be the “correct” choice of tar-
get space. In the case of (3, Z) being stable, the projection map 7 : M, (M, J, 3) —
M, [5,Z,u] — [5,7] is indeed a representable morphism, which implies that
MZbele(M ,J, B) is a representable, and therefore embeddable d-orbifold.

In general however, this is not true, as for any element [, 2, u] € M, (M, J, 5)
where (X, Z2) is not stable, the map m maps [, 2, u| to its stabilization. The
unstable component of (X, Z, u) can for example be given by a k-fold cover of CP!
with only one node, so that Iso(X, Z,u) is given by Zj. But 7(3, 2, u) is then just
a CP! with trivial orbifold group, and therefore the corresponding representation
map cannot be injective.

The idea how to resolve this issue, is to contemplate J-holomorphic hypersur-
faces intersecting the unstable parts in exactly “size of the orbifold group”-points.
The idea presented in the following is similar to the idea of Donaldson pairs of
Cieliebak and Mohnke [11]. They use a result of Donaldson [14], which provides,
for a sufficiently large D € Z>(, the existence of a degree D, symplectic hyper-
surface for a given w-compatible almost complex structure J. We refer therefore
to Cieliebak and Mohnke [I1] and Donaldson [14] for more detailed discussions of
this idea.

To be more specific, given an almost complex manifold (M, J) and a J- holo-
morphic hypersurface H, consider n-pointed, genus ¢, J-holomorphic curves u :
Y. — M representing the homology class [u(X)] = 8 € Ho(M;Z) and satisfying
u([X]) - H =k > 0, where k € Z>q denotes the maximum order of the stabilizer

groups of the unstable components.
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Denote the moduli space of such curves by /\_/lg’m(M, J, B, H), where m = n+k.
If everything is ‘nice’, we would expect that every curve in M on(M, J, B) intersects
H in exactly k points, counted with multiplicity. We could then define M g,k to be
the moduli space of n-pointed prestable, genus g curves (¥, 2, 2’) with additional
marked points 2, where these additional marked points are allowed to repeat, that
is 2 = zj for i # j, and are allowed to be nodes or coincide with the already given
marked points z;.

The map M,,,(M,J, 3, H) — M., which treats the intersection points
u(X) N H as additional marked points Z’, is then a representable morphism. More-

over we would get the following diagram

Mg,n(Ma J, /6) ...... Tr ...... > Mg,m(Ma J7 5’ H)
\ H/
Mg,n,k )

where o 1 My, (M, J,8) — Mynm(M,J, 3, H) is given by o([%,u,?]) = [2,u, 7,
w ' (H)] and g : My (M, J, 8, H) = M, (M, J,B3) by m([2,u, 2, 7]) = [, u, Z].

In order to make this approach rigorous, one have to deal among others with

the following problems that can arise:

(A) For a given hypersurface H, we may get u(3) C H for some curves 3 C H.

(B) The condition that all 2’ occur “in the right multiplicity” might not be open

Z
in the set of all (X, u, 2, 2").
(C) Does M, (M, J, 3, H) carry the structure of a d-orbifold?

One possible way how problem (A) could be resolved on the common domain of
symplectic and algebraic geometry (for J integrable and (M, J) being projective
algebraic), is to choose H as a generic smooth hypersurface in O(N) for some
N > 0. For a generic choice of such a hyperplane H any fixed curve u(X) should
satisty

u(®) ¢ H. (6.1)



The reason why should be true is the following: Denote by 7 : H(O(N)) —
H°(u*(O(N))) the projection map. Then, assuming that u(X) C H, we find for
N large enough that H°(O(n)) admits a smooth section sy € H°(O(N)) near
mosg =0in H°(u*(O(N))), which for N > 0 should not happen.
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Chapter 7
D-(co)bordism

In this chapter we want to introduce the notion of unitary d-(co)bordism theory.
In the same way classical unitary bordism theory extends oriented bordism theory,
unitary d-(co)bordism theory can be thought of an extension of the oriented d-
(co)bordism theory due to Joyce [35, §13]. One of the major theorems in Joyce’s
book, is that the d-(co)bordism group of a manifold is isomorphic to the “usual”
oriented (co)bordism group, or in other words, that d-(co)bordism for a manifold
is “the same as classical” (co)bordism. This result is crucial, as it shows that d-
manifolds admit virtual cycles and can therefore be used as a geometric structure
in enumerative invariant problems, like symplectic Gromov-Witten theory. We
will prove in section as a new result that the same result holds for unitary
d-bordism, that is, given a compact manifold without boundary, its unitary d-
bordism group is isomorphic to its classical unitary bordism group. We then

discuss in secion [7.4] how these results can be extended to d-orbifolds.

7.1 Classical cobordism and bordism theory for
manifolds

In the following we want to briefly review some classical (co)bordism theory. Clas-
sical bordism groups were introduced by Atiyah [5] and a good introduction can be
found in Conner [12]. We will closely follow Joyce in describing his “non-standard

approach” and refer for more details to [35, §13.1].
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Definition 7.1.1. Let Y be a compact manifold without boundary and k € Z.
Consider pairs (X, f), where X is a compact, oriented k-manifold without bound-
ary, and f : X — Y is a smooth map. By convention, () is an oriented manifold of
any dimension k € Z, and () : ) — Y is smooth. In particular the pair (0, ?) is the
only such pair for k£ < 0.

Define a binary relation ~ between (X, f) and (X', f') by (X, f) ~ (X', f') if
there exists a compact, oriented (k4 1)-manifold W with boundary 0W, a smooth
map e : W — Y, and a diffeomorphism of oriented manifolds j : —X 11 X" — oW,
such that fII f' = e oidy o j, where iy : OW — W denotes the inclusion map.
Here —X is given by X with reversed orientation and the orientation of OW is
induced from that on W.

As for example shown in Conner [12, Th. 1.2.1] the binary relation ~ is an
equivalence relation, and is called bordism relation.

Denote by [X, f] the ~-equivalence class of such a pair (X, f) and define for
each k € Z, the k-th bordism group Bi(Y') of Y to be the set of all such bordism
classes [X, f] with dim X = k. By(Y) can be given the structure of an abelian
group, with zero element 0y = [0, 0], addition [X, f] + [X', /'] = [X T X', f 1T f]
and additive inverse —[X, f] = [-X, f]. Note that if £ < 0 then Bi(Y) = 0, as

the only element is Oy.

The following definition can be found in [35], §2.8 and §6.7] and will be impor-
tant in defining the (co)bordism group.

Definition 7.1.2. Let f : X — Y be a smooth map between manifolds with
dimensions dimY = n and dim X =n — k. A coorientation for f is an orientation
on the line bundle A" *T*X @ f*(A"T*Y)* over X.

In the spirit of Definition one can define the cobordism group of a manifold

Y as follows:

Definition 7.1.3. Let Y be a compact n-dimensional manifold without boundary,
and k € Z fixed. Consider pairs (X, f), where X is a compact, oriented n — k-
manifold without boundary, and f : X — Y is a cooriented smooth map.

Define a binary relation ~ between (X, f) and (X', ') by (X, f) ~ (X', )

if there exists a compact (n — k + 1)-manifold with boundary OW, a cooriented
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smooth map e : W — Y, and a diffeomorphism j : X IT X’ — OW, such that
fII f' =eoiy oj, and j identifies the given coorientation on e o iy : OW — Y
with the disjoint union of the opposite coorientation on f : X — Y, and the
coorientation f’': X' — Y.

The inclusion map iy : OW — W has a natural coorientation coming from
the identification A" *T*OW & i, (A" *H1T*W)* 2 Now W, where Ngw W is the
normal bundle of W in W, and the orientation on Ny W is given by outward-
pointing normal vectors.

Once again, one can show (see for example Conner [12, Theorem 1.2.1]) that
the binary relation ~ is an equivalence relation, which is called cobordism.

Denote by [X, f] the ~-equivalence class of such a pair (X, f), and define for
each k € Z, the k-th cobordism group B*(Y') of Y to be the set of all such cobordism
classes [X, f] with dim X = n—k. B¥(Y') can be given the structure of an abelian
group, with zero element 0y = [0, 0], addition [X, f] + [X', f/] = [X T X', f 1T f]
and additive inverse —[X, f] = [ X, f]. Note that for k > n, B¥(Y) = 0 as the
only element is Oy, but for k < 0 it can happen that B*(Y") # 0.

The bordism and cobordism groups carry much more structure than just that
of an abelian group. We will follow Joyce [35] and define products on (co)bordism,

identities and fundamental classes.

Definition 7.1.4. Let Y be a compact manifold of dimension n. Then we can
define a biadditive cup product U : B¥(Y) x BY(Y) — B*"(Y) on cobordism,
a biadditive cap product N : B¥(Y) x B)(Y) — B,_x(Y) mixing bordism and
cobordism, and in the case of Y being oriented the intersection product e : By(Y") x
Bi(Y) — By (Y) on bordism.

All of these operations can be defined by the same formula: given suitable
classes [ X, f], [X', f'], we can deform f, f" within their (co)bordism classes to make

f: X =Y and f': X’ = Y transverse smooth maps. We can then define

[X7 f] U [X/’f/] = [X XEY.f X/>fo7TX]>
[X7 f] N [Xlaf/] = [X XY, f Xl?foﬂ_X]a
(X, flo X fT=[X xpyp X', fomx].
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Note that since f and f’ are transverse, the fibre product X Xy p X' exists in
Man. Moreover, the orientations on X, X', Y (or coorientations on f, f’) combine
to an orientation on X Xy ¢ X’ (or a coorientation on fory : X Xy p X' = Y).

The fibre product and the orientations fulfil certain associativity and commu-
tativity properties and these imply that U, e are associative and supercommutative
and that (B.(Y),N) is a graded module over (B*(Y),U).

The identity idy : Y — Y on Y inherits a natural coorientation from A"T*Y ®
idy (A"T*Y)* = Oy and we can therefore define the identity element 1y = [Y,idy] €
BY(Y). If f: X — Y is smooth, we have X X yiq, ¥ 2V Xiq, v X = X, and
hence [X, flU 1y = 1y U [X, f] = [X, f], which means that 1y is the identity for
U. This makes B*(Y') into a supercommutative graded ring.

If Y is oriented we can define the fundamental class [Y] € B,(Y) by [Y] =
[Y,idy]. The fundamental class is the identity for the intersection product e on
B.(Y).

If g: Y — Z is a smooth map of compact manifolds without boundary, we can

define pushforwards g,, pullbacks ¢g* and projections to (co)homology.

Definition 7.1.5. Let ¢ : Y — Z be a smooth map of compact manifolds without
boundary. Define the pushforward g. : By(Z) — Br(Y) of a class [X, f] by
g.([X, f]) = [X, go f]. Define the pullback g* : B¥(Z) — B*(Y) of a class [X, f] €
B¥(Z) as follows: perturb the map f : X — Z within its cobordism class so
that f, g are transverse. Then the fibre product X x;z,Y exists in Man, and
is compact as X,Y, 7 are. The coorientation on f induces a coorientation for
Ty : X X524Y — Y and we define ¢*([X, f]) = [X Xz, Y, 7my]. The so defined
morphism g* preserves the cup product U, and satisfies g*(1z) = 1y, which makes
g* a morphism of graded rings.

Define projection morphisms 111°™ : B (Y) — Hy(Y;Z) by T1P°™ . [X, f]
f«([X]), where [X] € Hi(X;Z) is the fundamental class of X.

Let Y be a compact manifold of dimension n. Then there exists a unique
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morphism I1¢! : B¥(Y') — H*(Y;Z) such that the following diagram commutes

cob

coh

B*Y) ——> . O"Y;7Z)
~ | N[Y] >~ N[Y]

Bn_k<Y) Hn_k(Y;Z).

g
Here the columns are just the Poincaré duality isomorphisms, and are therefore
invertible.

If Y is not oriented, one can still define a projection morphism 11" : B*(Y) —
H*(Y;Z) using the non-oriented version of Poincaré duality, which relates coho-
mology of Y to the homology of Y twisted by the orientation line bundle A"T*Y
of Y. (Compare [35, Remark 13.4].)

The projection morphisms IT11o™ TI°! are structure-preserving, that is they take
U, N, e, identities and fundamental classes in B,(Y'), B*(Y') to U, N, e, identities and
fundamental classes in H,(Y;Z), H*(Y;Z). Hence, II®% : B*(Y) — H*(Y;Z) is a

morphism of graded rings.

For a point *, the bordism ring is understood completely, as the following

theorem due to Thom [51] shows:

Theorem 7.1.6 (Thom [51]). The bordism ring B.(x) ®z Q of a point is the free
commutative Q-algebra generated by (y = [CP?* 1] € By(x) ®z Q for k > 1.
Therefore B, (x) ®z Q # 0 if and only if n = 4k for k =0,1,2,....

As discussed for example in [12] §1.5 & §1.13] bordism and cobordism satisfy
all of the Eilenberg—Steenrod axioms except for the dimension axiom, which makes

them into generalized homology and cohomology theories.

7.2 D-manifold (co)bordism

We want now to generalize this notion of bordism and cobordism to the case of d-
manifolds. Most of the basic definitions in the classical approach generalize nicely
to the d-manifold world and as we will see, it can be shown that the d-(co)bordism
groups dB,(Y) are in fact isomorphic to the classical (co)bordism groups when Y
is a manifold. We follow here again Joyce, and refer to [34, §13] for further details

and discussion.
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Definition 7.2.1. Let Y be a compact manifold without boundary, and k£ €
Z. Consider pairs (X, f), where X € dMan is a compact, oriented d-manifold
without boundary of virtual dimension vdim X = k, and f : X — Y is a 1-
morphism between d-manifolds. Here Y = Far2®(Y).

Define a binary relation ~ between pairs (X, f) ~ (X', f'), if there exists a
compact, oriented d-manifold with boundary W of virtual dimension vdim W =
k+1, a I-morphism e : W — Y in dMan®, an equivalence of oriented d-manifolds
j:—XII X' — OW, and a 2-morphism 7 : fII f' = eoiw o j . This binary
relation is in fact an equivalence relation, as for example proven in [35].

Denote by [X, f] the equivalence class (the d-bordism class) of a pair (X, f)
and define for every k € Z the k-th d-manifold bordism group, or for short d-bordism
group dBy(Y') of Y as the set of all such d-bordism classes [ X, f] with vdim X = k.
Defining Oy = [0, 0], [X, f] + [ X, f] = [X U X', fII f] and —[X, f] = [- X, f]

gives dBy(Y') the structure of an abelian group with zero element.

Definition 7.2.2. Let Y be a compact n-dimensional manifold without boundary,
and k € Z. Consider pairs (X, f), where X € dMan is a compact d-manifold
without boundary of virtual dimension vdim X =n —k, and f: X — Y is a
cooriented 1-morphism between d-manifolds, where again Y = Fara?(Y).

Define a binary relation ~ between pairs (X, f), (X', f), if there exists a
compact d-manifold with boundary W of virtual dimension vdim W =n —k+1,
a cooriented 1-morphism e : W — Y in dMan®, an equivalence of d-manifolds
j: XII X' — OW, and a 2-morphism n : f1II f/ = e o iw o j, such that 5,7
identify the coorientation on e o iy : OW — Y with the union of the reversed
coorientation on f : X — Y and the coorientation on f' : X’ — Y. Once
again, this binary relation turns out to be an equivalence relation, which we call
d-cobordism.

The d-cobordism class [ X, f] is the equivalence class of a pair (X, f). For
each k € Z define the k-th d-manifold cobordism group, or just d-cobordism group
dB*(Y) of Y to be the set of all such d-bordism classes [ X, f] with vdim X = n—F.
As in the d-bordism case, dB*(Y") can also be given the structure of an abelian
group with zero element Oy = [0, #], by defining addition as [X, f] + [ X', f'] =
(X II X', f II f'] and additive inverses —[X, f] = [- X, f].
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As in the classical case, we can define a cup product, a cap product, an inter-

section product, identities and fundamental classes on dB*(Y') and dB,(Y").

Definition 7.2.3. Let Y be a compact n-manifold without boundary. Define the
cup product U : dBF(Y) x dBY(Y) — dB*™(Y) on d-cobordism, the cap product
N dB*(Y) x dBy(Y) — dBj_;(Y) mixing d-cobordism and d-bordism and, for
oriented Y, the intersection product e : dBi(Y) x dBy(Y) — dByy_n(Y) on d-
bordism as follows:

if [X, f],[X’, f'] are classes, define

[va] U [X/7f/] = [X XY f XI?foﬂ'X]a
(X FNXL =X xpy p X' fomx],
(X, fle[ X" f]=[X %y p X' formx]

Note that the fibre product X Xy p X' exists by Theorem [2.3.33(a) as a d-
manifold, and is oriented when X, X', Y are oriented, by Theorem .

Moreover, using [35], §6.6 — §6.7] one can use the orientations and coorientations
on X, f, X', f to define an orientation on X X g X § X' or a coorientation on
f omx. Using these results, one gets similarly to the classical case, that U, e are
supercommutative and associative, and that N makes dB.(Y') into a module over
(dB*(Y),U).

Again, idy : Y — Y carries a natural coorientation, and we can define the
identity 1y = [Y,idy] € dB%(Y). This identity satisfies [X, f] N1y = 1y N
(X, f] = [ X, f] for any class [ X, f] in dB*(Y). If Y is in addition oriented, define
the fundamental class [Y] € dB,(Y) by [Y] = [Y,idy]. It turns out that the
fundamental class is the identity for e on dB,(Y").

Definition 7.2.4. Let g : Y — Z be a smooth map of compact manifolds without
boundary. Define a morphism g, : dBx(Y) — dB(Z) by ¢.([ X, f]) = [X, g o f],

where g = F{I"(g).

Define g* : dB¥(Z) — dB*(Y) by ¢* : [X, f] = [X X2, Y, my]. Here the
fibre product X X z 4 Y exists in dMan by Theorem [2.3.33|(a), and is compact as
XY, Z are. Moreover, the coorientation for f induces one for w: X X7 z,Y —
Y.
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There are natural projections IT1{*° : By (Y) — dB.(Y) and T19% : B*(Y) —
dB*(Y) given by [X, f] — [X, f], where X, f = F&Ma2(X, f). Note that the
orientations on X correspond to orientations on X, and coorientations for f :
X — Y correspond to coorientations for f : X — Y. These projections are well-
defined and preserve all the structures, that is they take U, N, e, identities and
fundamental classes in B, (Y'), B*(Y) to U, N, e, identities and fundamental classes

dB.(Y),dB*(Y).

Remark 7.2.5. In the case of classical (co)bordism one had to perturb the classes
(X, f],[X’, f'] to make f: X — Y and f': X’ — Y transversal to define U,N;, e
and pullbacks. In the case of d-(co)bordism one can define these products and
the pullback without making a perturbation, since the appropriate fibre products
exist in dMan for all (X, f), (X', /).

The next theorem is crucial for the whole theory of d-(co)bordism. It says
that for a compact manifold without boundary, the d-bordism group is isomorphic
to the ordinary bordism group, and that all the structures like the intersection
product are preserved under that isomorphism. One consequence of this theorem,
is that oriented compact d-manifolds admit virtual classes, and can therefore be

used to study moduli problems in symplectic geometry.

Theorem 7.2.6. Let Y be a compact manifold without boundary. Then the mor-
phisms TII° : Bu(Y) — dBy(Y) and 19 : B¥(Y) — dB*(Y) are structure pre-
serving (N, U, o, 1y, [Y], g«, g*) isomorphisms for all k € Z.

We will not give the full proof of this theorem here, since the proof of The-
orem (7.3.3, which can be seen as a complex analogue, ‘contains’ the proof of
Theorem [7.2.6, Hence, we will just sketch the basic idea and refer for the full
proof to Theorem or to our standard reference [35, Theorem 13.15].

Sketch proof. Let [X, f] be an element of dBy(Y). Then by Theorem [2.3.28| there
exists an embedding g : X — R", for n big enough. The direct product (f,g) :
X — Y x R" is also an embedding. Hence, Theorem yields the existence
of an open subset V' C Y x R", a vector bundle £ — V over V and a smooth
section s € C*°(E) such that X ~ Sy p,. A generic perturbation § € C*(E)
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of s intersects the zero section in E transversely and X := §71(0) is therefore a

k-manifold for k > 0, and X = 0 for k < 0. Choosing § — s small, one can ensure

that X is actually compact and oriented. Defining f = Ty|g ¢ X =Y, one gets
1P ([X, f]) = [X, f], that is, II{"° is surjective.

A similar argument for W, e yields injectivity of TI{>° and proves the theorem.

O

Corollary 7.2.7. By Theorem there exist projection maps from d-bordism

and d-cobordism to ordinary homology with integer coefficients:
e dBL(Y) — Hy(Y;7Z)
e = ™ o (1)

and

It - dBA(Y) — H*(Y; 2)

dco
coh __ ycoh dco\ 1
1_[dco - 1_[cob o (Hcob) .

The main conclusion we want to draw from this, is that oriented compact d-
manifolds admit virtual classes, as one can think of IT}™ and TI" as virtual class

maps. Due to this fact d-manifolds can be used as geometric structures on moduli

spaces in invariant problems like symplectic Gromov—Witten theory.

7.3 Unitary d-manifold bordism

In this section we extend the oriented d-manifold bordism theory of Joyce [35] §13]
to the case of stable nearly complex d-manifolds, and obtain a unitary d-bordism
theory. The main result in this section is that, similarly to the oriented case, the
unitary d-bordism group of a stable almost complex manifold is isomorphic to
its “ordinary” unitary bordism group. As we will see, unitary d-bordism can be
thought of as oriented d-bordism with some extra structure in form of a stable
nearly complex structure. Since this stable nearly complex structure is encoded
in virtual vector bundles and morphisms between them, unitary d-bordism is in
some sense oriented d-bordism which keeps track of certain nearly complex virtual

vector bundles.
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We begin first by recalling the basic definition of “ordinary” unitary bordism.
(Compare for instance [20, Definition D22].)

Definition 7.3.1. Let Y be a manifold, (X, Jy,a0) and (X3, J1,a;) be oriented
stable almost complex manifolds of dimension k, and fo: Xg = Y and f; : X1 = Y
be smooth maps. Define an equivalence relation ~ between two such quadruples
(Xo, Jo, ao, fo) and (X1, J1, aq, f1) by (Xo, Jo, ao, fo) ~ (X1, J1, a1, f1) if there exist
integers by, by € Z>, satisfying ag + 2by = a1 + 2by =: m + 1, a compact oriented
stable almost complex manifold (W, Jy, m) of dimension (k + 1) and a smooth
map g : W — Y such that 0W = — X, 11 X; as oriented manifolds, g|low = fo Ll f1,
and that Jy|x, = Jo ® Jeoo and Jy|x, = J1 B Jess -

Define for all k£ € Z the k-th unitary bordism group BUg(Y) of Y to be the
set of all such equivalence classes [X, J, a, f], with dim X = k. We will sometimes
leave a implicit and refer to [X, J, a, f] as [X, J, f].

We want now to adapt this definition to the d-manifold level.

Definition 7.3.2. Let Y be a manifold. Consider compact stable nearly complex
d-manifolds (Xo, ((£5,¢0), J3),a0) and (X1, ((EF,¢1),J7),a1), of virtual dimen-
sion k, and let f, : Xo — Y and f; : X; — Y be l-morphisms between
d-manifold, where Y = FgMan(Y"). Define an equivalence relation ~ between two
such sextuples as follows: (X, (&3, ®0), J3), a0, fo) ~ (X1, (E7, ¢1), JT), ar, fy) if
(X1, f1] ~ [Xo, fo] as compact oriented d-manifolds in the sense of Definition[7.2.1]
and the following conditions are satisfied: let W be an oriented d-manifold with
boundary of virtual dimension k + 1 having — X II X; as boundary, fulfilling the
criteria of Definition [7.2.1] Then there should exist integers by, b1 € Zx, satisfying
ap + 2bg = a1 4+ 2b; =: m + 1, a stable nearly complex structure (( £°, @), J*.m)

on W and equivalences of nearly complex virtual vector bundles

° ce | Te Do D* 0
€o - ((5 7¢)a<] )’Eo - (5(} — 502 ®Cb 7(‘](}"]02 S J(Cbo))’
and e} ((€%,0),]%)|x, = (E} 2 &2l (J1, 2@ Jen)).

As (&} il E2 0 CY) ~ (&, P87 Fx, ® (R% @ C")) for i = 0,1 we get equiv-
alences from the stable nearly complex structure ((£°,6),.J*,m) on W to the

stabilized cotangent bundles of X and X.
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Define for all k € Z the k-th unitary d-bordism group dBUi(Y') of Y to be
the set of all such equivalence classes [ X, ((€°,¢)J®),a, f], with vdim X = k.
Using the obvious virtual vector bundles, one can show as in Definition [7.2.1] that
dBUL(Y) is in fact an abelian group with zero element.

Given a stable almost complex manifold (X, J, a) we can define a stable nearly
complex d-manifold as follows: Let X = FgMan(X) be the image of X under the
functor Fgan Define a virtual vector bundle (£°, ¢, J*) on X by 0 L T X &R
The equivalence is just given by the natural isomorphism, and the complex struc-
ture J* = (0,J) on 0 L T X OR s given by the given stable almost complex
structure J : T" X @ R* = T*X ® R® on X.

We can therefore define a projection map TP : BU.(Y) — dBU,(Y) for all
k€ Zoo by TER(X, Ja, f]) = (X, ((£%,6), J*).a, f], where X, f — FgMan(X )
and ((E°,¢), J*) are defined as above.

Since the stable nearly complex structure of a d-manifold is encoded in terms
of virtual vector bundles, we can think of unitary d-bordism as oriented d-bordism
with a kind of “virtual vector bundle bordism”. On the underlying d-manifold,
unitary d-bordism equals oriented d-bordism, but we have to keep track of the
virtual vector bundle defining the stable nearly complex structure.

The following theorem is an analogue of Theorem [7.2.6, and shows that for a
compact manifold Y, the unitary d-bordism groups are isomorphic to the usual
unitary bordism groups. The proof follows basically the proof of Theorem [7.2.6]
(which can be found as Theorem 13.15 in [35]), except that we have to show,
that the virtual vector bundle associated to the nearly complex structure behaves

“nicely”.

Theorem 7.3.3. Let Y be a compact manifold without boundary. Then the mor-
phism 11 . BUL(Y') — dBUL(Y) is an isomorphism for all k € Z.

Proof. Let [X,((€°,¢),J%),a, f] € dBU,(Y). Since X is compact, Theorem[2.3.2§|
yields an embedding g : X — R"™ for some n > 0. Moreover, the direct product
(f,g9) : X = Y x R" is also an embedding, and thus Theorem gives an
open set V. C Y x R", a vector bundle £ — V| a smooth section s € C*(F),

an equivalence ¢ : X — Sy g, and a 2-morphism ¢ : S, 00% = f. Since a
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stable nearly complex d-manifold is oriented, we can require ¢ : X — Sy g, to
be orientation preserving, and get a unique orientation on Sy g . Furthermore,
compactness of X yields, that in the standard model description s~!(0) C V is
compact, although V' will be non-compact.

Corollary and the proof of Proposition [5.3.2] show that we can assume
without loss of generality that the standard model d-manifold Sy g is a stable
nearly complex standard model d-manifold (S, g, J, K, a), that is we have almost

complex structures K on E* and J on T*V & R® and an equivalence
T"X ~ (B* -5 TV & RY).

To simplify the notation, we will in the following identify equivalent (nearly com-
plex) virtual vector bundles.

Next, choose an open neighbourhood U of s7*(0) in V whose closure U C V
is compact, and a generic perturbation § : V. — E of s, such that |§ — 5| <
s|s| on V'\ U , where |- | is computed using some choice of metric on E. For
this generic choice $71(0) is closed in V' and contained in the compact subset
U, and so 5(0) is compact. This implies, that the standard model SvEes is
a compact d-manifold, which inherits an orientation from the orientation on the
fibres of A% FF @ AMmVT*)/  Genericity of 5 guarantees 5 to be transverse, and
so X = §1(0) is a compact submanifold of dimension k = dim V' — rank E and
f=rmy|z : X =Y is a smooth map.

We now need to show that there exists a stabilization of the cotangent bundle
of X, T*X =T*X & R%, that carries an almost complex structure. To prove this
note that as X is a manifold, the stabilization of the cotangent bundle of X =
I1gMan(X') is a vector bundle (in the sense of Definition , that is 7*X ~
(0 — T*X). Restricting (E* By ®R®) to X yields then the following

equivalence of virtual vector bundles
(B*z P% 7V g RY.) =~ (0—% T*X @ RY).

As in the proof of Proposition [5.2.6], the nearly complex virtual vector bundle

(E* Erve R?) is equivalent as a nearly complex virtual vector bundle to
ds| %
(B'lx 25 TV @ R'[g) = (¢']5 <= € © Ox),
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for some N € Zso. We get therefore an equivalence between (real) virtual vector

bundles
¥ 0 PRY a
Gy =~ C"®0l5) ~ (0 — T*X & R"),

which we will denote by o = (g, ag).
Proposition [2.1.23] yields then the following split exact sequence

Qa2

0— Gy > CV 00|z 2+ T"X — 0, (7.1)
where

CV®0|; 2T X @G| (7.2)

>

as a real vector bundle. Adding 7*X on both sides yields 7* X C"® 0O v = X @
T*X ®G'| , which allows us to define a complex structure Jo; on T*X ®C" @ O«
by

) 0 idpng O
JCt = _1dT*X 0 0 9
0 0 Ja

where, Jg: denotes the almost complex structure on Gl.

Rewriting T*X @ C™ = T*X @ R*?™ we can define @ = a 4+ 2m € Zs( and
we obtain [X, Ju, @, f] € BUL(Y).

Note that we will in the following, for brevity, suppress the ®O ¢-part if it is
clear from the context, and just write C™ instead.

Denote the by the projection map II{"" induced nearly complex d-manifold by
(X, J*, a, f] = OPY([X, Ju, @, f]). Recall, that X, f = FdMan (X f) and that the

stable nearly complex structure J* is encoded in the virtual vector bundle

0—%TXacCm on X,

with almost complex structure jct on T*X & C™.

We have now to show [X,.J*,a, f] ~ [X,J*% a, f]. Consider therefore the
manifold with boundary W =V x [0, 1], the vector bundle F' = 7},(E) over W,
and define a smooth section t : W — F by t = (1 — 2)7{,(s) + zm},(8), where z is
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the coordinate on [0, 1]. Here my denotes the projection my : W — V on V. The
boundary OW of W is isomorphic to two disjoint copies of V., OW =V x {0} IT
V' x {1}. The vector bundle F' restricted to the boundary is isomorphic to FE,
Flow = E, on each of the copies of V', and we have t|gy = s € C*(FE) on V x {0}
and tlogw = § € C*°(E) on V' x {1}. The standard model d-manifolds Sy, r; and
Sy g s inherit an orientation by the orientations on the fibres of ATk ¥ @ AdimV+y/
and on [0, 1], and we get an equivalence 0Sw p: ~ —Sy g s I Sy s of oriented
d-manifolds. The perturbation 5 of s was chosen such that |§ —s| < 1[s| on V\ U,
which implies that t71(0) C U x [0,1], and so ¢t7*(0) is closed in V x [0, 1] and
contained in the compact subset U x [0,1]. This implies that t=*(0) is compact
and thus that Sy, is compact.

We have now a compact, oriented d-manifold with boundary Sw ., a 1-
morphism S;, o : Swr: — Y and equivalences of oriented d-manifolds X ~
SVE’S,X ~ Svps; and 0Swp, ~ —Sves I Syps. Putting these equivalences
together yields an equivalence j : —X II X — 9S w,rt. Moreover, the 2-morphism
n:8y00i = f and the definition of f = 7y|g imply that there exists a 2-
morphism 7 : FILf = Sry 00%sy ., 0. Hence (X, f) ~ (X, f) by Deﬁnitionm
and therefore [X, f] = [X, f] in oriented d-bordism.

The remaining bit is to show that the virtual vector bundle (G® 1) on X and
(0,7*X @ C™,0) on X satisfy

G L ™) ~ (02 T*X @ C™).
Consider therefore the virtual vector bundle (H*, &) on Sy g given by
Hl i» ok o) Cm’

where H! = m(GL,), with GL,
extension of 1, such that Gl x= =G and ¢ x = ¥

Using H'| ¢ = G! and equation (7.2), we obtain that on X the virtual vector

being an extension of G! to V, and ¢ being an

bundle (H°, 5)\;( is equlvalent in vvect(X) to G' — ‘LG erXae C™, which in
turn is equivalent to 0 L mX e C™.
On the other hand on X we have H'|x = G' and hence (H*,§)|x is equivalent
in vvect(X) to gt L. crpCm
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So choosing by = 0 and b; = m, we obtain

and therefore

as claimed.

This shows that IIIPY([X, Ju, a, f]) = [ X, J*, a, f] = [X, ((*, ), J*), a, f] and
therefore that [P : BU,(Y') — dBU(Y)) is surjective.

To prove injectivity of TP suppose that [X, J, a, f], [X’, J',d’, '] € BUL(Y)
with IR ([X) T, a, f]) = TEPY([X7, J7, d, f']). Then Joyce shows in [35, Theorem
14.15], that [X, f] = [X', f'] in oriented bordism. We will not give the proof of this
statement here, since the proof requires more theory on d-manifolds with boundary
and corners, in particular the notion of sf-embeddings, but refer the reader to the
proof of [35, Theorem 14.15] instead.

Using the notation of Definition [7.3.1, we have to show that there exists
bt/ € Z>p with a +2b = o’ + 20 =: k, and an almost complex structure Jy,
on T*W @& RF such that Jy|x = J @ Jom and Jy|x = J' @ Jem. But since
(X, J,a, f]) = TE((XY, ', d, f7), we have (X', (J°),d, ) ~ (X%, a, f)
and the associated virtual vector bundles 0 —— T*X @ R® and 0 —— T* X’ @& R
satisfy the condition above by definition.

Hence TI¢P : BUL(Y) — dBU(Y) is injective for all k € Z, and therefore an

isomorphism, which completes the proof of the theorem. m

Remark 7.3.4. Using similar definitions and methods, one could have contem-
plated stable homotopy complex d-manifolds in section|7.3|instead of stable nearly
complex d-manifolds and by a slight alteration of the proof, one could have proved
Theorem considering unitary stable homotopy complex d-bordism groups

instead.
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7.4 Bordism and d-bordism for orbifolds and d-
orbifolds

We want now to elaborate a bit on what concepts and results can be extended to
the orbifold and d-orbifold case. We will follow here in major parts Joyce [35, §13.3
-13.4] and will later on explain how our new results concerning unitary bordism

can be extended to the d-orbifold case.

7.4.1 Orbifold bordism

Many definitions and concepts from manifold and d-manifold bordism can be ex-
tended to the orbifold and d-orbifold case. Using the 2-categories of orbifolds
Orb, and of orbifolds with boundary Orb® (as in [35, §8.2, §8.5]) the definition of
orbifold bordism is essentially the same as the definition of d-manifold bordism.
(Compare [35, Definition 13.12]).

Definition 7.4.1. Given an orbifold ) and an integer £ € Z, consider pairs
(X, f), where X is a compact, oriented orbifold of dimension dimX = k and
f: X — Yisal-morphism in Orb. Define an equivalence relation ~ between such
pairs by (X, f) ~ (X', f') if there exists a compact, oriented (k + 1)-dimensional
orbifold with boundary W, a 1-morphism ¢ : WW — ), an orientation-preserving
equivalence j : —X T X' — OW and a 2-morphism 7 : fII f' = g oy o j.

As in the manifold case, it can be shown that the k-th bordism group BI™())
is an abelian group satisfying BO™()) = 0 for k < 0.

Requiring the orbifolds X and W to be effective, one can define in exactly the
same way, the effective orbifold bordism group B (Y).

Many concepts from the manifold case generalize to the orbifold case (by in-
troducing some additional conditions), like cup product, cap product, pullbacks
and fundamental classes. Moreover, given an orbifold ), there exist similarly to

the manifold case several projection morphisms:

e B (V) = B (D), Tosy™ : BY(Y) = Hi(Veops Q), (7.3)
(X, [l = [ ], [, 1= (frop)([X]),
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and  IIg™: BiN(Y) = Hy(Viop: Z),
[va] = (ftop)*([X])7

where [X] is the fundamental class of the compact, oriented k-dimensional orbifold
X. Note that this fundamental class lies in Hj(Xiop; Q) for general orbifolds X,
and in Hy(Xop; Z) when X is effective.

If Y is a manifold and Y = FOE2 (Y), we can define a morphism
I : Br(Y) — Bi(¥) by I « [X, f] = [Fygan(X), Fagan ()] (7.4)

The morphisms defined in and commute with pushforwards g,, and
preserve fundamental classes [V] when defined.

In contrast to the manifold case, Poincaré duality will in general not hold for
(effective) orbifolds, as the definition of the cobordism groups requires (X, f) to
satisfy an additional condition, which may not be satisfied in the bordism groups.
(For more details we refer to [35, Remark 13.14]).

As the maximal effective open suborbifold W’ of a compact orbifold with ef-

fective boundary W satisfies OWW' ~ W, one can conclude that
Lemma 7.4.2. TI% : B (Y) — B2™(Y) in injective for any orbifold Y

In the manifold case results by Thom, Milnor, Wall and others determined
the bordism ring B, () completely. The following theorem will characterise the
effective orbifold bordism ring B, (x) of the point %, and summarizes results by
Druschel [I5] and Angel [4].

Theorem 7.4.3. (a) (Druschel [15]). The morphism 1Y . B,(x) — BY(x)
from induces a morphism between Q-algebras B,(x) ®z Q — B¥(x) ®7 Q,
where Bi(x) @7z Q can be described using Theorem . Regarding B () @7 Q
as a B.(x) ®z Q-module, we get the following:

BI(x) 0, Q= (B.(x) 2Q) ®g ) H.(B(Nog(I)/T); Q)" (7.5)

rcSO(n)

Here the direct sum is over all conjugacy classes of finite subgroups I' C SO(n)
for n > 0 with trivial fized point set (R)" = {0}, and Nog) () is the normalizer
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of I' in SO(n). Moreover, B(Now)(I')/T") denotes the classifying space of the
quotient subgroup Nogy(D)/T, and Q is a local system on B(Now(I')/T) with
fibre Q induced by the orientations on the fibres of the universal R"™/T'-bundles
over B(No)(I')/T).

(b) (Druschel [15]). B;gﬂ(*) ®zQ =0 for all k > 0. Note that contrary to the
manifold case, BEJ,ZFQ(*) @z Q might be non zero, as the exzample B (%) ®,Q # 0.
shows.

(c) (Druschel [15]). B (x) = {0} for k=1,2,3.

(d) (Angel [}]). The torsion (that is the elements of finite order) in B,(x) is
given, by the kernel of IV B, (x) — B (x).

7.4.2 D-orbifold bordism

As in the manifold case it is possible to extend some results from the classical
orbifold bordism theory to the d-orbifold case.

The definition of the d-orbifold bordism group dBg™ () is very similar to the
definition of d-manifold bordism. We will skip some minor technical details, like
the identification of the 2-category of d-orbifolds with that of d-orbifolds without
boundary, and refer for more details to [35, Definition 13.21].

Definition 7.4.4. Let ) be an orbifold, and k € Z. Consider pairs (X, f), where
X € dOrb is a compact, oriented d-orbifold of virtual dimension vdim X =
k without boundary, and f : X — Y is a l-morphism in dOrb, where Y =
SR> ()

As in the d-manifold case, we can define a binary relation ~ between such pairs
by (X, f) ~ (X', f') if there exists a compact, oriented d-orbifold with boundary
W of virtual dimension vdim W = k + 1, a 1-morphism e : W — Y in dOrb’,
an equivalence of oriented d-orbifolds 7 : —X I X' — OW, and a 2-morphism
n: fII f/ = e oy o j, where iy, denotes the inclusion of OW into W. This
binary relation ~ can be shown to be an equivalence relation as in the d-manifold
case.

For each k € Z the k' d-orbifold bordism group dBy™(Y) is then defined as
the set of all ~-equivalence classes [X, f] with vdim X = k. Similarly to the

d-manifold case, dB{™ can again be given the structure of an abelian group.
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Taking X and W to be (semi)effective d-orbifolds, defines the semieffective
and effective d-orbifold bordism groups dB (V) and dBST ().

If Y is an orbifold, we get the following projection maps:

I3, : B (V) — dBE' (V). I, « (X, f] = [X, f),

orb *
and 1153 - B (V) — dB{(V), 15y, : [X, f] = [X, f],

where X, f = F3O™ (X, f).

In the d-manifold case, Theorem provides an isomorphism between d-
bordism and classical bordism in the case where Y is a manifold. In the d-orbifold
setting this statement is no longer true, as not every d-orbifold can be deformed to
an orbifold, and dBg™ () will in general be much bigger than B{™()). The reason
for this is that given a standard model d-orbifold Sy ¢, at a point v € V with
s(v) = 0, we have an action of the stabilizer group Isoy(v) on 7,V and on &|,. If
the nontrivial part of the Isoy(v)-representation on £|, is not a subrepresentation
of TV, then small deformations s of the section s will not be transverse near v,
and so the deformed standard model Sy ¢ 5 will not be an orbifold.

Restricting oneself to (semi)effective d-orbifolds X', these can be perturbed to
(effective) orbifolds and Joyce [35, Theorem 13.23] was able to prove the following

analogous result:

Theorem 7.4.5. Let Y be an orbifold. Then the maps 1I°% - BY™(V) — dB;(Y)

and 1%V . BI(Y) — dBF(Y) are isomorphisms for all k € Z.

orb

We want now briefly discuss which aspects of section on unitary d-manifold
bordism can be extend to the d-orbifold case. As Definition shows, we can
think of unitary d-manifold bordism as oriented d-manifold bordism with the ad-
ditional structure of a kind of “virtual vector bundle bordism”. But since we have
a nice notion of oriented d-orbifold bordism (Definition and of stable nearly
complex structures on d-orbifold (section, it becomes obvious that one can define
unitary d-orbifold bordism in the exact same ways as unitary d-manifold bordism
in Definition [7.3.2l Moreover, all the different kinds of d-orbifold bordism, like
effective or semieffective d-orbifold bordism carry over to effective or semieffective

unitary d-orbifold bordism.
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Considering the structure of the proof of Theorem [7.3.3, we notice that the

proof consists basically of two parts:

(1) The proof that oriented d-manifold bordism is isomorphic to ‘usual’ oriented

manifold bordism.

(2) The proof that the virtual vector bundle structure, which encodes the com-

plex data, is preserved.

Part (1) can be dealt with by using Theorem and for part (2) we note that
almost all the techniques and definitions used have a nice d-orbifold counterparts.
The key ingredient in the proof of part (2) is the use of Proposition[5.3.2] but as we
have seen earlier, using an additional assumption, namely that the d-orbifold X is
embeddable, we get a d-orbifold version of this proposition in Proposition [5.3.3]

As we have seen in section [6.1] the embeddability of a compact d-orbifold is
equivalent to the existence of a representable morphism f : X — Y = F39™())) in
dOrb for some effective orbifold ). But the key point in the proof of Theorem [7.4.5
is that one can perturb an effective d-orbifold into an effective orbifold. Hence,
after the perturbation step we get a representable, compact d-orbifold X and the
rest of the proof extends nicely using Proposition [5.3.3|instead of Proposition|5.3.2]

If we denote the ‘classical” unitary orbifold bordism (which is defined in exactly
the same way as unitary manifold bordism) by BUE’rb and the effective version by
BUZH, we then get the following d-orbifold analogue of Theorem m

Theorem 7.4.6. Let Y be a compact, orbifold. Then the morphism Hﬁﬁweﬁ :
BUT(Y) — dBUM (V) is an isomorphism for all k € 7Z.
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Chapter 8

D-blowups

In this chapter we define what a blowup in the 2-category of d-manifolds dMan is,
and show that the definition we give is well-defined. We will define the d-blowup
locally and show that this local construction does not depend on the choice of
local data. The basic idea is to use the local description of (w-)embeddings of
d-manifolds as in Theorem and twist a part of the vector bundle E by L.

8.1 Classical blowups

We will briefly review some classical theory on (differential geometric) blowups
and motivate how this can be generalized to the d-manifold case.
Recall the following theorem (compare [30, §2.5] or [25] §6] for a more detailed

discussion), which summarizes some important properties of blow-ups.

Theorem 8.1.1. Let W be a complex submanifold of a complex manifold V. Then
there exists a complex manifold V = Bly'V, the so called blow-up of V along W,
together with a holomorphic map 7 :V — V., such that 7 : V\ 7 Y (W) — V\ W
and 7 : 7Y (W) — W is isomorphic to the projectivization of the normal bundle
of WinV, P(Nywv) = W.

In the case of real differential geometry, where we want to blow up a real man-
ifold V along a real submanifold W, the map © : V. — V is a diffeomorphism
from V\ 7= Y(W) to V. \ W instead and we have as in the complex case that
7w Y (W) — W is isomorphic to the projectivization of the normal bundle of W
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in 'V, PWNwy) — W. The hypersurface D = m= (W) = P(Ny,v) C BlwV will
be called the exceptional divisor of the blow-up 7 : BlyV — V.

Considering that the blowup V of a manifold V along a submanifold W is itself
a manifold and isomorphic to V' outside the exceptional divisor, one can ask how
the tangent space of V at the exceptional divisor changes.

Let therefore z € W and 0 # A € Ny v|,. We can then split (in a non

canonical way) the tangent space of V' as follows:

=T,W &\ @ (M),

where (\) denotes the span of A in Ny v |, and (A\)* = Ny v/ (N).

The exceptional divisor can locally be written as D = W x P(Ny,y) and as
the normal bundle to D in V has fibre (\) at (x, (\)), and the tangent space of
P(Nwyv) at (A) is given by TiyP(Nwyv) = Hom({\), Nwyv /(A) = (A) " @Nwv /
(\), we get

TL()\)V =T,W & <)\> D T<,\>IP’(/\/W/V)
=T, WaeMNae (D)o .

Hence, blowing up a manifold along a submanifold has the effect on tangent spaces
of twisting the normal bundle part orthogonal to (\) by (\)~1.

Apart from that, we have a line bundle Lp associated to the exceptional divisor
D of f/, and as D is a divisor there exists a nontrivial section sp : V — Lp
satisfying sp # 0 on vV \ D and sp vanishes to first order along D. (Compare for
instance [30, §2.3]). Moreover it is not to difficult to see, that on the exceptional
divisor D this line bundle is in fact isomorphic to the tautological line, that is we
have Lplxy = (A). (See for instance [30, Proposition 2.3.18] for a proof in the
complex case).

Hence blowing up a manifold along a submanifold at a point (x, \) affects the
tangent bundle of V' by twisting the part of the normal bundle orthogonal to (\)
by the inverse of the line bundle associated to the exceptional divisor.

Now in the d-manifold case, we do not just have a manifold V" and a submanifold

W in V', but also a vector bundle £ — V which can near W be split into a W-part
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and a complement as £ = '@ G. The idea for the blowup in the d-manifold case
is now to blowup V along W, pullback £ = F & G to the blowup and twist the
non W-part G by LBl accordingly.

8.2 D-blowup of standard models

As we have seen in section [8.I) blowing up a manifold along a submanifold has
the effect of twisting a part of the normal bundle. We want now to translate this
fact to the d-manifold case and define what the blowup of a d-manifold Y along
a d-submanifold X should be. To do this, we will first define what the blow up
of a standard model d-manifold along a standard model d-submanifold is, and
then define the blowup of a d-manifold along a d-submanifold by gluing blown up

standard model d-manifolds together.

Definition 8.2.1. Let Sﬂf : Sw.rt — Sv.es be a closed w-embedding of standard
model d-manifolds. Assume further, that WW is a closed embedded submanifold of
V, f: W < V is the inclusion of submanifolds, E|y = F @& H for some vector
bundle H - W, f =id®0: F - F® H = f*(E) and sy = t & 0. Given a
sufficiently small open neighbourhood V' of W in V' we can extend F to V', and
furthermore split the bundle E|y» = F & G and the section s|y» = t' @ u with
ulw = 0. We will in the following sometimes omit the restriction to V"’ if it is clear
from the context, and write V' =V, E|y» = E, and s|ys = s.

Define the blowup of Sygs along Swr: as the standard model d-manifold
Sy 5.s wWhere V := Bly/V is the blowup of V along W in Man with projection
map 7 : V. — V, and E, § are defined by E = 7*(F) @ (7*(G) ® L") and
§=m(t)® (" (u)®s;) on V', and E = E and 3 = s on V \ V. Here D denotes
the exceptional divisor associated to the the blowup f/, Lp the corresponding line
bundle, and sp : V = Lp the associated non-trivial section satisfying sp|p = 0.
The blowdown map Sz : Sy p; — Sves is then given by the blowdown map

7:V = Vand by 7 = < e 0. ) T (F) @ (m°(G) ® L) — m*(F) &
0 sp -idg
™(Q).

The following lemma will show that the definition of the standard model d-
blowup is independent of the choice of splitting of the vector bundle E.
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Lemma 8.2.2. Let Sff : Swrt — Sves be a closed w-embedding of standard
model d-manifolds, and let E = F1 ® Gy, s =t1 Duy and E = F5,® Go, 5 =t D us
be two different choices of splitting of E near W. Then there exists a unique
isomorphism I : E~1 = Eg with 1(81) = 32, making the resulting standard model
d-blowups Sy g, 5 and Sy g, 5, 1-isomorphic through the canonical 1-isomorphism
Siae. 1 Sv 5 = SV.E

Proof. Consider two different splittings of £ near W:

E:Fl@Gl, with F1|W:F
s =1t ®u, with u;|y =0  and
E= F2 @D GQ, with F2|W =F

5=ty D uo, with us|y = 0,

and the resulting standard model d-blowups

Away from the exceptional divisor D of the blowup V = Bly'V we have that
V\ D =V \W and as the line bundle Lp associated to the exceptional divisor D
and the corresponding section sp, is trivial on 1% \ D, we get that Ey,=E=EFE,
and §; = s = §,. Therefore on V \ D the isomorphism I is given by the identity.
To prove the statement on D, note first that near W in V', we can view F5 as a
graph over F; and G5 as a graph over (G;. Hence there exist unique vector bundle

morphisms « : F; — G and S : G; — F7i, such that

F=Ts={(fi,a(f1)): fi € i} and
Go=Tp={(B(91),3) : 1 € G1}.

Since Fy|w = F = Fi|lw, we get that ol = 0. Moreover, using the different
splittings of £/, we can split idg : Fo @ Go =T, ® I's — F} & G near W into

. (idp B
ldE_( «Q idG1>'
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Lifting this to E yields the following map I : Ey — F;

I )

“(a) sy 7 (idg,) - id; -

The crucial point is, to note that the bit 7*(a) - 5! extends smoothly over D, as
7 () lies in the ideal of D. Hence, I is a well-defined, smooth isomorphism and
it is clear from the construction of Sy g . and Sy g, -, that we get an isomorphic

standard model d-blowups. O]

8.2.1 Universal property

We will now show that the standard model d-blowup satisfies a universal prop-
erty in the sense that there exists an up to 2-isomorphism unique standard model
1-morphism between a pair of standard model d-blowups. In contrast to the clas-
sical universal property of blowups of manifolds or schemes (as for example in
[27, Proposition I1.7.14]), this universal property of standard model d-blowups is
characterized by pairs of closed w-embedded standard model d-submanifolds with
1-morphisms between them. We start by defining a property of w-embeddings of

standard model d-manifolds which we will need for the universal property.

Definition 8.2.3. Let Shljll : SW17F17t1 — SV17E1781 and S’hQ’}”12 : SW27F27t2 —
SVv,.5,.5, be closed w-embeddings of standard model d-manifolds and suppose that

the following diagram is 2-commutative

Sg,é
SW1,F1¢1 SW27F2¢2

shlﬁlj / \Shm (8.1)
s 1 g
Vi,E1,51 7 7 O Va,Ea,s0-
We say that (8.1)) satisfies condition (1) if the corresponding complex

P (h) (B @ ()" (F3) @ (f o hn)"(T*Va)

FY @ hi(T*Vi) @ g" (T"Ws)

(f o hn)"(E3)

B2 B3
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is exact at the third position. (Compare [35, Proposition 2.41] for more details
and the definition of 3;,7 = 1,2, 3). Using the splittings E; = F; & G; and T*V; =
W @ Ny, sv; for i = 1,2, equation (8.2) has the same cohomology as

(f 0 hn)*(G5) — ()" (G}) @ (f o h)* (N pvs) — Wi(Nii o) — 0 —— 0,

(8.3)

and therefore being exact at the third position is (by taking the dual) equivalent
of

i (Nwa) — (f o )" (NMiwyv) @ (h1)*(Gh)
being injective.

The following theorem will construct a 1-morphism between a pair of stan-
dard model d-blowups. We will then show that this morphism is unique up to
2-isomorphism and that the standard model d-blowup thus fulfils a universal prop-

erty.

Theorem 8.2.4. Consider two standard model d-blowups Sy, gz, 5 and Sy, g, =, of
closed w-embedded standard modeld d-submanifolds S, j = Swy,rt — Svi,Eis:
and Sy, ;. * Swa Bty = Svi By ,s,, With standard model 1-morphisms Sq 5 : Swy p 1,
= Swy,mt, and Sy ;2 Svi By sy = Sva,Ba,s,, Such that the resulting diagram

Sg,ﬁ
SW17F17t1 SW21F27t2

ShIVfll J / Jshzﬁz (84)
Sy

SV1,E1,81 — SVQ,EQ,SQ?
is 2-commutative and satisfies (1).
Then there exists a natural standard model 1-morphism Sz : S¢ 5 —
f’f 1,81,51
Sy, 5,5 making the following diagram 2-commutative

S .
Swi kvt — Swa, Byt
Sh1fb1 ; Shzﬁz

Sy

SV17E17S1 - SV2,E2,52 . (85)
¢=id
S

T,
...... - S0, s
Fif
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Note that f,f are actually only defined on an open neighbourhood f/l’ of 5,1(0) in
S

Vi, but we can concatenate S — Sy, 5,5, With the inverse of the

‘71'7E1|\71/,§1|‘71/
— Sy, 5.5 10 get the desired standard

i
inclusion 1-morphism S, ; SV{,EH‘;{,@\‘—/{
model 1-morphism.

Proof. Denote by N;, N5 the normal bundles of Wy, Wy in Vi, V; respectively, so

that we get the following diagram of exact sequences:

00— Tzlwl - Txl‘/l _>N1|:E1 — 0

Jdg \df gEI!a
\

0 —— Ty, Wo — T4,V — Nils, — 0.

Here o : M|, — Na|s, is the unique lift making the diagram commutative.
As (8.4)) satisfies condition (), we have that

a @ dugly, : Nilay = Mooy, @ Gilay

is injective, where we used the fact that we can split By = F1® Gy and s; =t Puy.
AsP(ker(a)) € D C Vi, we cannot define f, f on all of Vi, but we claim that §; #£0
on P(ker o), which means that we can define f, f on an open neighbourhood V; of

571(0) in Vi not containing P(ker(c)). To prove this claim, note that we have

1ler,oy = (dulay)|ny-

Therefore, o @ dus|,, being injective gives us either (\) Z ker(a), or duy|;y # 0,
which implies that 31|,y # 0. In both cases we get an induced map between
f f/l’ — ‘:/2 Using the definitions of £} and E; we get in a similar fashion a
morphism f By — By

Split the morphism f : E1 — E5 according to the splittings E; = F1® G, Ey =

Fy@ G,y into f = ( ge}’“ :; ) , where g.x; denotes an extension of § to the extended

vector bunclle FyonV and [ : F| — Gy satisfies [|y;, = 0. Then we can define a
morphism f : 7% (Fy) & 7*(G1) ® Ly — 7 (Fy) @ 7 (G2) ® L} as follows:

P (oo 8 )

() -6t sph w(m) -6
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Here 6 : Lp, — Lp, denotes the by a induced isomorphism between Lp, and Lp,,
and sp,,? = 1,2 the associated sections to the line bundles Lp,, Lp,. Moreover,
f is well defined as Il|ly, = 0, and as 0 is an isomorphism it is clear from the
definition that we have the identity f 0§ = §y0 f. Hence, we get a standard
model 1-morphism S I St

W Brlgy A1l — SVQ, £,.5, and after concatenating with

the inverse of the inclusion 1-morphism S : Sy — Sy, f,.5 the claimed

Vi, E1|V/ S1|V/
standard model 1-morphism.
To see that diagram ({8.5)) is 2-commutative, note that the following diagrams

commute strictly:

iy, B
T \ T2 \ and et \ T2 \ .
Vi L1, E, - E,
Hence diagram ({8.5)) is 2-commutative with ¢ = id. O

We will now show that the constructed standard model 1-morphism S, :
S, 55 — Sty.h,5 18 unique up to 2-isomorphism and thus that a pair of d-blow

ups satisfies a universal property.

Theorem 8.2.5. Given the assumptions of Theorem let Sy Sy s —
5‘72752752 and Sk,l;‘ .S SVz\D2,E2\D2,§2|D2
and Sy, : Sg50 85,

= Sﬂ2|D2’fr2‘D2 o Sk,fq’ SA2 S .- o0 Sk,fc = Sh,fz o
Sinerine @nd Say 1 87y 7,085, = S 0S5k 7, be 2-morphisms making the following

by Erlpy A1), be 1-morphisms in dMan

|D1 ,1 \Dl inco,incy
incy,incy

diagram 2-commutative

D1,E1|Dl ,Sl\Dl mc1 inty V1,E1,51
/n 71
fID1 fID1
D2 B3| Dy 82| Dy S, i
S, 2,incy
S Shlvﬁl S
Wi, Fita Vi,E1,81 Sy o
Sg. Sf,f
S “
S s

Wa,Fs,ta Va,E2,82
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such that it satisfies the composition round the cube condition (compare section

(idfront * idsk,fc) ® <idsh2,f12 x SA2) ® (idbottom * lds
(ids, ; * idsack) © (Sa, * ids, ) © (ids

incq,incy

7T1\D1a*1\D1)

*Sh,) (8.7)

T,y

- ldS 0S. S

72,72 1n02,iﬁ020 kk®

Note that here Sf,f : SV1,E1,§1 — 5‘727];2752 and Sf\Dl,lel : SD1,E1|D1,§1\D1
Da,Balpy 521, denote the 1-morphisms constructed in Theorem and that we,
for the sake of readability, did not include the identity 2-morphisms for the strictly
commutative diagrams at the bottom, on the front and on the back. (Compare the
2-morphisms nra,nep and Npg in diagram (A1) in Appendiz[A.3).
Given these assumptions, there exist unique 2-isomorphism Sz : S, ; = S
Sz 56k = S, fin,
Svn B s — Sy constructed in Theorem s unique up to 2-isomorphism.

fh];‘;)
completing the diagram. In particular, the morphism S 1E

Proof. We will prove the existence of a 2-isomorphism S= : S, ; = S 77 by showing
that the 2-morphism Sy, : Sy, 7, © Sh,ﬁ = Sfjf o S, # satisfies

SA3 = ids x Sz.

T, —

Using the description of 2-morphisms in terms of maps as in Definition [2.3.12]
this translates to showing that the to S, associated map As : By — (ma0h)*(T'V3)
factors through = : E; — h*(T'V,), that is we have the following commutative
diagram

W (TVa)

R4

-

h* (dr)
As

E, h*(TV;).
To do this, we first show that we can change S, ; by a 2-isomorphism, such
that S, ; =8 hpe Al and the diagram on top is strictly commutative.
) Dy>hiDy
Choose therefore a standard model 1-morphism S, ;, : Sy, 5,5, = Sv,.55

and a 2-isomorphism Sa : S, ; = S, ;, such that (Sa xidsg, ) = —S\,. This

incq,incqy
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can for example be done, by setting So = —Sx, on D; and arbitrary away from

D+, and then choose

W =h+A-5 +0(5)
B =h+A-h*(ds) + O(5),

accordingly to make Sa : S, ; = §,,; into a 2-isomorphism. We can think of
A:E,—h* (T‘~/2) as an extension of Ay to Ej in some sense. The by Sa induced
2-morphism Sz : S Spi=SpyposS satisfies

. LA (@] . : 2
inco,ince incy,incy

S[\2 = (SA*ldS

1nc1,iﬁc1
= id,

)®5A2

which makes the diagram on top

incq,incy
R ——

Vi,E1,51

Sh’,}}' (88)

Di1,E1|p, 51lp,

Sk,fc

id-top
-l ~ —_— e — ~
SDQ,E2|D2,82|D2 S SV27E27S2

incg,incy

strictly commutative.

In terms of the standard model description of 2-morphisms (Definition [2.3.12)),
we choose a map A : B} — h* (Tf/g) such that A|p, = Ay and set

W =h+A- 5 +0(),
W =h+A-h(ds) + O(5).

Note that if we replace S, ; in diagram (8.8|) with Sh‘D hip. o We also get a strictly
) = 1’ 1

commutative diagram, and as inc; : D; — V;, ¢ = 1,2 is injective, we can conclude

that

k=1|p, +0(1p,)
k=h|p, + O(51|p,)-

But S w iy only depends on h' up to order O(5%), and so we can arrange by adding

suitable O(5%)-terms to A’, that we have a strict equality above without changing

170



S,/ s, that is we get

k=1p,
]%: il/‘Dl.

This then simplifies diagram ({8.8]) to

incq,incqy

SDl,El\Dl 51Dy SV17E1,§1
Sh/\Dl,iLqDl J id Sh/,ill (89)

S SV27E2,§2'

Do EQ S2 -~
’ ‘DQ’ |D2 Sinc2,inc2

If we denote by Si, = Sa, © (ids,_ ., * S:') the by S induced 2-morphism,

the round the cube condition (8.7]), written in terms of maps, becomes
A+ Aslp, =04+ 0O(8). (8.10)

On the exceptional divisor Dy, the projecting of equation (8.10)) to the normal
bundle (f o m)*(TVa/TWs) is zero

7TTV2/TW2<A3) =0+ 0(5}),

as Ay : Eﬂp1 — T'W,. Hence, the factorization

As|p,

E1|D1 (fO7T1’D1>*(T‘N/2)

(forilpy ) (Trvy yTWy)
Trvy W, (As)
(f omlp,) (TV2/TW>)

shows that the image of As|p, on Dy is (f o my|p, ) (TW2) up to order O(5?).

On the other hand, using the local splitting of TV, = TW, @ (\) & (\)+
and TVy = TWo @ (\) @ (M) @ (M) as in §8.1] we can split the morphism
As = (A3); ® (A3)y @ (As)s accordingly and write dmy : TV, — TV, as

idTWg * *
dﬂ'Q = 0 1d</\> *
O 0 ®8D
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The morphism As|p, factors then through a morphism Z|p, : E1|p, — f|*Dl (TV3),
which near (z,()\)), is given by = = (A3); @ (A3)2 @ ((A3)3 ® s5'). But as the
projection to the normal bundle satisfies w7y, /7w, (Az) = 04+0(3%), we can conclude
that

(Ag)g = BQ X SD + O(é?)
(A3)3 = Bg ® SpD + O(:S?),

for some smooth maps By, Bs. Hence (A3); ® sp' is smooth up to O(52) and we

get the following commutative diagram near (z, (\)):
[lp, (W2 () & (V) @ ()7)

(A3)1$(A3)2@B3+O(§% ...............

................... idrw, % *
---------- (f07r1D1)*(< 0 deyy o= ))
----- 0 0 ®sp
(fomlp) (TWa @ (X) & (X))

El |D1 = (A3)189(A3)2®(A3)3

(forilpy )" (mrvy yTwsy)

(f omi|p,)" (TV2/TWy).
Hence the morphism As|p, factors (up to O(3?)) through a morphism Z|p, :
Eilp, — f|p,(T'V2) making the following diagram commutative:
F1p, (TV2)
E D1
| (fomi|p,)*(dm2|p;)

(f omilp,)" (TV2)

As|p,

E1|D1

(fOWI|D1)*(7TTV2/TW2)

TTVy /TWo (A3)

(f o mi|p,)" (TV2/TW2).

The morphism Z|p, : Ei|p, — f|731(T1~/2) extends then uniquely to a 2-
, * Sz, which

=

isomorphism Sz : S, ;, = Sff on Vi, satisfying S;, = idg

T, T

then completes the proof. O]
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Remark 8.2.6. Note that the obvious approach in defining the universal prop-
erty as the existence of an unique 2-isomorphism in the diagram between
Sf,f and another standard model 1-morphism S, ; : Sy, 5 5 — Sy, 5,5, Which
makes 2-commutative, fails. Setting all the sections to be 0 produces the fol-
lowing counterexample: let t; = s; = §; = 0 for « = 1,2, but let F; be non-trivial.
Then A : Ey — (my 0 f)*(TV4) satisfies no conditions, but a general such A does

not factor through a A’ : By — f*(T'V,)

~ A

E,

0 [)*(TVa)

>\ 7 Fr(dm)

fH(TV).
Hence there does not exist a A": S, s = S, ; with A =idg, . *A’, and therefore

S ¥ is not unique up to 2-isomorphism.

)

The following lemma will prove, that if the standard model 1-morphisms S, ;
and S 1.j in Theorem are equivalences so is S PF

Lemma 8.2.7. Assume that in diagram (8.5) of Theorem the standard model

1-morphisms Sq 4 and S, ; are equivalences. Then Sf'f is an equivalence.

Proof. Let z; € t7(0), and A € Ni|,, be such that 7}(u;) ® sp'|yy = 0. Here
[A] € P(Ni].,) denotes the equivalence class of A in the projectivization of Nj.
Furthermore, let 7o = f(x1) € t;'(0) and let u = a()\) € Ns|,,, with associated
equivalence class [u] € P(Na|z,). Note further that o : Ni|,, — MNa|., being

[

injective implies that (\) = (u), and we will denote this isomorphism by § :

A — ().
Now, to prove that S ITE Sy, 55— Stz 18 an equivalence, consider the

following diagram:
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0 <)\>J‘ Gl D <M>J' G2 0
(0 0 id) (0 id)
(F1 @ Gy) ;
0 —— Ty Wi @ (\) @ (\)F 2% @ 19702 | By g Gy 0
(ToyWa @ () @ () ")
id 0 0
id 0
e (53)
‘ (Fl@G1®<)\>_1)
T21 Wi & <)\> - . ©® = _ Fy
0— & _ e We e () L2 S S
AL @ ()L o Go ® (u)~!
()t @ (u)™)
090®pid 0p6— !
G1® <)\>_1
0—— NN ——— @ Go® (A" — 0.
()t @ ()=t
0 0

(8.11)

We claim that all the horizontal and vertical sequences are exact.

Note first, that the first vertical sequence is clearly exact. In a similar fashion
the obvious morphisms make the second and the third vertical sequences exact,
and therefore all the vertical sequences are exact.

For the horizontal sequences note that the second row is exact by Theo-
rem [2.3.13, as S;; © Sy e — Sy,.m.s, 15 an equivalence. As the fourth
horizontal sequence is just the first row tensored by (A\)~! = (u)~!
the first row implies exactness of the fourth row.

, exactness of
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To prove that the first row is exact, consider the following commutative diagram

0 0 0
0 W, Fy & TW, F, 0
0—TW, 6N, — FLOG @TWo &Ny — F, Gy —— 0 (8.12)
0 N Gi ®N; G 0.

0 0 0

The first and second rows are exact as the second row is just the exact sequence
associated to the equivalence S; ¢ : Sy, g s, — SV,.y.s, and the first row the
restriction of this equivalence to Sy, p,+. But as all the vertical sequences are
exact for obvious reasons, we get that the third row is exact making into an
exact diagram.

Using this exact sequence we can deduce that

0—><)\>L—>G1@<M>J——>G2—>O

is exact as follows: We claim that the following diagram is exact:

0 0 0
0 (A) (1) 0 0
0— NN —Gae () — KRG, —0 (8.13)
0 o G1 @ (u)* G 0

0 0 0
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~Y

Indeed, the first row is exact as (A\) = (u), the second row is exact, because it
is just a reformulation of the third row in diagram (8.12), and as all the vertical
sequences are exact for obvious reasons, we may conclude that

0—><)\>L—>G1@<M>J——>G2—>O

is an exact sequence.

This means, that in diagram (8.11]) all vertical sequences, as well as the first,
the second and the fourth row are exact. We can therefore conclude that the third
TOW

(oG N

Txl Wl D <>\> P F2
0— ® — (T ,Wa () — 5> —0
ANt (At @ Gy @ (u)~t

()t @ (u)™")

is an exact sequence. Hence, by Theorem [2.3.13| this means that the induced
standard model morphism S; = : Sy, 5 . — Sy, 5, 5, between the two d-blowups
f.f 1,81,81 2,102,52

is an equivalence. []

8.3 D-blowup of general d-manifolds

We want now to use the standard model d-blowups from Definition to define
the blowup of a d-manifold Y along a closed w-embedded d-submanifold X. In
order to do this, we want to use Theorem [2.3.19| and glue the standard model

d-blowups along equivalences.

Definition 8.3.1. Let h : Y — X be a closed w-embedding of d-manifolds. As
shown in section 2.3.1] for each y € Y there exist open neighbourhoods y € U
and z = f(y) € V and equivalences from U,V to some standard d-manifolds
Swr: and Sy g, with standard model morphism Sh,ﬁ :Swrt = Sves. As his
a w-embedding, Theorem [2.3.25|(c) shows that W can be taken as a submanifold
of V, f: W < V can be taken to be the inclusion of submanifolds, FE|y = F & H
for some vector bundle H — W, f =id®0: F — F&H = f*(E) and s|yy = t®0.

To define the blowup of X along Y, chose an open covering U; of Y for some
countable indexing set I, as above. That is, for each i € I we have equivalences

from U;, V; to standard model d-manifolds Sy, r,+, and Sy, g, s;, with standard
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model morphism S, ; : Sw; rt, = Sv; E, s, By making U;, V; smaller if neces-
sary, we can assume that on the overlaps U; NU; and V; NV ; the induced maps

— Sv, g,s; are equivalences.

Sggi 0 Swirt, = Swyp, and Sy 5 0 Sy s,
For each 7 € I, we can then define standard model d-blowups Z; := Sy, ¢ .. as
in Definition . As we have equivalences on the overlaps Sy, 4. : Sw, . —
Sw, ., and Sfij,fij 1 SV, Esi = SV B8 Lemmaw shows that the resulting
standard model d-blowup morphisms S Py SV, 55— Sv,,5,,5, are equivalences.

We are now in the situation that we fulfil all the prerequisites of [35, Theorem
2.31]. This theorem is just the infinite countable generalization of Theorem ,
and although said theorem is just stated for d-spaces, the proof extends straight-

forward to the d-manifold case. We get therefore an up to equivalence unique

d-manifold 7 : X — X, which we will call the blowup of X along Y.

All the properties and results discussed previously extend nicely to the general
d-manifold case. We will not repeat the statements and the results here as one
simply can exchange the standard model d-manifolds and standard model mor-
phisms by d-manifolds and morphisms between d-manifolds throughout. We want
to highlight however, that in particular the material discussed in can be
extended to the general d-manifold case, which gives us a universal property for

blowups of d-manifolds.

Remark 8.3.2. Similarly to the d-manifold case, we can define what the blowup of
standard model d-orbifolds should be, by using the local description of d-orbifolds
X in terms of quotients of d-manifolds X ~ [Sy g /G] by the stabilizer group
G = Isox([z]) as in §3.4.3] Instead of just considering w-embedded d-submanifolds,
we consider w-embeddings of d-orbifolds which are isomorphisms on the stabilizer
groups and make all the constructions G-equivariant. This then yields to a notion
of standard model d-orbifold blowup, and by using the d-orbifold analogue of
Theorem (compare Theorem [3.3.3] for the d-stack case and [35, Theorem
10.19] for an extensive discussion), we can glue the local blowups to get a notion

of d-blowup for general d-orbifolds.
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Chapter 9

Towards a resolution of
singularities and integral
Gromov—Witten invariants

We want now to outline, how the material above could be used to tackle some
problems in symplectic Gromov—Witten theory. (Symplectic) Gromov—-Witten in-
variants are invariants ‘counting’ J-holomorphic, genus g curves » with marked
points in a complex symplectic manifold. Despite being ‘curve counting’ invari-
ants, (symplectic) Gromov—Witten invariants lie in rational homology instead of
integral homology, as points [, Z,u] € M,,,(M,J) have to be counted with ra-
tional weight |Aut(X, Z,u)|~'. Hence, the reason that Gromov—Witten invariants
are defined over Q rather than Z comes down to the fact that there exists points
[, Z,u] € My (M, J, 3) with non-trivial finite automorphism groups Aut(%, 2, u).
Equivalently, using the notion of d-orbifolds, it is because of non-trivial d-orbifold
strata M, ., (M, J, B)T* C M, (M, J, 3) in the sense of .

It is therefore natural to ask, whether (symplectic) Gromov-Witten invariants
can be expressed in terms of other (Gromov—Witten type) integral invariants.
In the case of semi-positive symplectic manifolds and genus zero invariants for
example, it is indeed true that one can define genus zero Gromov—Witten invariants
GWom(M,w,u) in integral homology. This is proved in detail in the book of
McDuff and Salamon [43], §7], and the reason why this is true from the viewpoint
of d-orbifolds, is that the codimension of all non-trivial, non-empty orbifold strata

is at least 2, which is enough to define virtual cycles over Z in a similar way as in the
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semi-effective and effective d-orbifold case. (Compare[7.4.2or [35, §13.4].) Another
prominent example, where integrality questions arose, is the case of symplectic
Calabi-Yau 3-folds, that is compact symplectic 6-manifolds (M, w) with ¢ (M) =
0. Let therefore the number of marked points m to be zero. This then implies
that vdim ./\7lg’0(M ,J,8) = 0 for all g,5 and therefore that the Gromov-Witten
invariants GW, o(M,w,u) are in this case rational numbers.

The String Theorists Gopakumar and Vafa [22],]23] used physical reasoning
about counting so called BPS states, and conjectured the existence of invariants
GVy(M,w,u) € Z for Calabi-Yau 3-folds, which roughly speaking ‘count’ em-
bedded J-holomorphic curves of genus g representing a homology class g in M.
These integral counting invariants are known as Gopakumar—Vafa invariants and
by expressing J-holomorphic curves in M as branched covers of embedded curves,
Gopakumar and Vafa conjecturally expressed Gromov—Witten invariants in terms
of Gopakumar—Vafa invariants, and vice versa, by the following equation in formal

power series

S GWo(Mw, P2 = 3 GV, (M,w, §)7 (2sin(kt/2)7 ¢, (9.1

9.8 k>0,9,8
The Gopakumar-Vafa Integrality Conjecture says, that Gromov-Witten invariants
of Calabi-Yau 3-folds satisfy for some integers G'V,(M,w, ). Moreover
Gopakumar and Vafa conjectured that GV, (M,w, ) = 0 for all fixed classes /3
and g > 0.

There are two obvious approaches to tackle this conjecture. The first approach
is to define an integral curve-counting invariant GV, (M, w, u) and prove that these
invariants satisfy equation . In the context of algebraic geometry, important
steps in this direction where undertaken by Pandharipande and Thomas [47],[48],
by defining integer-valued invariants counting ‘stable pairs’ (F,s) of a coherent
sheaf F' supported on a curve in M and a section s € HY(F). Tt is still not yet
totally understood how to prove that these Pandharipande—Thomas invariants are
equivalent to Gromov—Witten invariants.

The second approach is to regard equation as a definition of numbers
GVy(M,w, B) € Q and prove that these GV, (M, w, B) are actually integers. We will

sketch in the following how one could try to use the previous material on d-orbifolds
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to tackle this problem and make the second approach work. The techniques and
ideas are similar to the ideas of Fukaya and Ono [2I] in the Kuranishi space
framework.

Another useful resource on this subject is Pandharipande [46], who extends
Gopakumar—Vafa invariants and their integrality conjecture to all smooth projec-
tive complex algebraic 3-folds.

The following procedure will outline, how one can prove the existence of a pro-
cedure which modifies a general (nearly complex) d-orbifold to a (semi-)effective
(nearly complex) d-orbifold (or even a d-manifold). The induced functor from uni-
tary d-orbifold bordism (as in [7.3] and to unitary (semi-)effective d-orbifold
bordism can then be applied to the (d-orbifold) Gromov—Witten invariants which
yields integral Gromov-Witten type invariants. We will explain the procedure for
general d-orbifolds (and not just M, (M, J, 3)) as it might be interesting to have
a “resolution of singularities”-type result for other future applications.

Let therefore X be a nearly complex d-orbifold with orbifold strata X, where

I' is an abelian group.

Step (1): Make the d-orbifold strata X abelian. This can be done by using the
‘wonderful blowup’ argument of Borisov and Gunnels [10]. Instead of successively
blowing up the strata of smallest dimension classically like in the original paper,
we perform d-blowups as defined in chapter

Step (2): Choose a type A good coordinate system (I, <, (V;, E;, s, ¥:),(Vij,€ij.€i5,
PijMij),Yisk) on X as in Definition . Note that this type A good coordinate
systems exists on X because of Theorem [3.4.34]

Step (3): Choose nearly complex structures on the good coordinate system and
make the ‘real’ good coordinate system of step (2) into a ‘nearly complex’ good

coordinate system. This can be done by using the techniques of Proposition [5.3.2]
Step(4): For each relevant subgroup A; C I';, choose a tubular neighbourhood

TiAi of V2 in Vj plus an identification of this tubular neighbourhood with an open
neighbourhood of the O-section in the total space of the normal bundle T/>* =
v and

a splitting By a, = EA' @ ER™ of By on T into trivial and nontrivial A,

A.
Ut C Nya, v;- Moreover, choose a nearly complex structure on NV_A
K2

. A
representations on V7.
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This data has to satisfy various compatibility conditions, like the compatibility
with coordinate changes of the good coordinate system and the compatibility with

change of subgroup.

Step (5): Perturb the section s; near the 0-section in TiAi, such that the following

conditions are satisfied:

(a) The component of s; in E~™ is (C-)linear in N VAL that is there exist

such that we have near the 0O-

morphisms «; € Homy )(N 2, A“nt)

’L/V )
. . A;
section in 77

si'(v,m) = a(n),
where v € V;* and n € N, Az/v|

(b) The perturbation satisfying (a) is compatible with coordinate changes.

(¢) The perturbation makes the s; generic under condition (a), that is the a; are

generic.

Step (6): Define and use a simultaneous toric resolution process for all V;/T;.
The rough idea is to view the standard model d-orbifolds Sy g ,/I" as toric objects,
and use a slight modification of the following ‘classical’ toric resolution theorem
(see [13, Theorem 11.1.9] for a proof):

Theorem 9.0.3. Let Xy, be a toric variety coming from a fan . Then there exists

a refinement X' of ¥ satisfying the following:

(i) 3 is smooth.

(11) ¥° C (X)°, where X0, (X)° are the smooth loci of ¥ and Y.
(7ii) X' is obtained from ¥ by a sequence of star subdivisions.

(iv) The toric morphism ¢ : Xs» — Xy is a projective resolution of singularities.
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Using the notation of [13], the alteration one has to make to this theorem, is
that there is some ambiguity in choosing an element v € P,, N A\ {0} to star-
subdivide through.

We want to address this ambiguity and make Theorem [9.0.3| algorithmic to get
a step-by-step procedure for resolving toric singularities. Consider therefore a cone
oo of maximal multiplicity.[I3, Proposition 11.1.8 (ii)] shows that the multiplicity

of a cone can be expressed as the number of points in mult(cg) = #(P,, N A),

d
where P, = {>_ A\v; : 0 < \; < 1}. Any element v € P,y N A\ {0} is of the
i=1
do
form v = Y \v;, where dy denotes the dimension of op and 0 < \; < 1 for all
i=1
do
i=1,...,dyo. We can define an order < on P, , N A as follows: for v = > \v;, w
=1
do do
Z piv; € P,y NA we say v < w if and only if > A\ < >y, with equality v = w
=1 =1 =1
do do
if and only if Z Ai = > pi. It is easy to check that this definition makes P,, N A
=1
into a totally ordered set.

Using <, we can order the elements in P,, N A\ {0}. If there exists a unique
minimal element v € P,, N A\ {0} (i.e. v < w for all v # w € P,, N A\ {0}) star
subdivide through this v.

Otherwise let oy = % Mg, = dzo Mew; € P,y N A\ {0} be the elements
realising the minimum.lz1 -

Consider f € Q minimal, such that a := BZL a; € A. Star subdividing
through «, divides the initial cone ¢ into k different subcones. But not all of the
a;,1 = 1,...,k can lie in one new subcone, so we improve the situation in one of

the following two ways:

(1) In each newly introduced subcone of gy, the number of minimal elements is
reduced. The star subdivision through a “separated” therefore the minimal

points in oy.

(2) Minimal elements of oy lay in a lower dimensional cone Cone(r, ), which

also reduces the number of minimal elements.
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In both cases we reduced the number of minimal elements, and thus we get rid
of the ambiguity in choosing an element to star-subdivide through.
As the toric resolution process can be expresses as a sequence of blowups,

the idea is to use the d-blowups defined in §g| to imitate a toric resolution for

d-orbifolds.

Step (6): Patch the resulting Kuranishi neighbourhoods together and get a d-
manifold (effective d-orbifold).

In the case of X being an embeddable d-orbifold, we know that X admits a
global Kuranishi neighbourhood, and so the situation could potentially be simpli-
fied, as we just have to worry about one “Kuranishi-patch” and do not have to
consider step (6) from above for example.

Hence one should be able to prove a “resolution of singularities”-type theorem

as follows:

“Theorem” 9.0.4 (Resolution theorem for d-orbifolds). Let X be an (embed-
dable) nearly complex d-orbifold with orbifold strata Xr. Then there exists a “res-
olution” X of X, such that X is a nearly complex d-manifold (or a nearly complex

effective d-orbifold). Moreover X has the following properties:

(a) The d-manifold (effective d-orbifold) X can be defined by an algorithm involv-
ing small perturbations and blow-ups (or other resolution-type modifications)

of X.
(b) If X is compact, so is X.
(¢) If X admits a morphism to a manifold Y = FINM2 (V) so does X.
(d) If X is a d-manifold, then we have X = X.

(e) All of the above is compatible with unitary d-orbifold bordism over Y =
FaMan(yy - That is, if X, X’ are compact, (stable) nearly complex d-orbifolds
with (stable) nearly complex structures ((£°,¢), J*, a), ((E*, ), J*,a) and 1-
morphisms f : X =Y ,f : X' — Y which lie in the same unitary bordism

class
(X, ((E%,0), J°),a, f] = [X',((€7,¢), J°),d, £,
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then the resolutions X, X' of X and X'satisfy
X, ((€%,0),7°),a, ] = (X', ((€°, ), T°).,

In other words, if two compact, (stable) nearly complex d-orbifolds are equal
wn unitary d-orbifold bordism, then their resolutions are equal in unitary d-

manifold bordism (or (semi-)effective unitary d-orbifold bordism).

Moreover the construction of X yields a group morphism dBU{™(Y) — dBU(Y)
(or dBUY™(Y)) — dBU(Y') ) which can be composed with the integral virtual cycle
map dBUL(Y) — Hy(Y,Z) (or dBUY(Y) — Hy(Y,Z)) to get an integral virtual
cycle map dBUY™(Y) — Hy(Y,Z).

As we explained before, we do not claim to have proven the above “theo-
rem”, but we feel confident that by following the outlined steps, a proof of “The-
orem” is within reach and that the techniques and results developed in this
thesis may be useful to get a step closer in proving the Gopakumar—Vafa integrality

conjecture.
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Appendix A

Basics of 2-categories

A.1 2-categories

Definition A.1.1. A 2-category € consists of a proper class of objects Obj(€),
for all X,Y € Obj(€) a category of morphisms Hom(X,Y"), for all X € Obj(€) an
object idx € Hom(X,Y), the so called identity 1-morphism, and for all X\ Y, Z €
Obj(€) a functor pyy.z : Hom(X,Y) x Hom(Y, Z) — Hom(X, Z).

These data has to satisfy the following properties:

(a) ddentity property: pux xy(idx,—) = pxyy(—,idy) = iduom(x,y) as functors
Hom(X,Y) — Hom(X,Y).

(b) associativity property: pw,y,z o (pw,x,y X idtom(v,2)) = pw,x,z © (idHom(w,x) X
pxyz) as functors Hom(W, X) x Hom(X,Y) x Hom(Y, Z) — Hom(W, X)
for all objects W, XY, Z.

Objects f of Hom(X,Y') are called 1-morphisms and will be written as f : X —
Y. Given two l-morphisms f,gX — Y, we call morphisms 7 € Hompuom(x,v)(f, 9)
2-morphisms and write n: f = g¢.

In a nutshell, a 2-category € consists of objects Obj(€), 1-morphisms f : X —
Y between objects X,Y, and 2-morphisms 7 : f = g between 1-morphisms.

There are three different compositions in a 2-category:

(1) Let f: X - Y and g : Y — Z be l-morphisms, then pxy z(f,g) is the

horizontal composition of 1-morphisms, written as go f : X — Z.
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(2) If f,g,h : X — Y are l-morphisms and n : f = ¢,( : ¢ = h are 2-
morphisms, then composition of 1, in Hom(X,Y") gives the vertical com-

position of 2-morphisms of n,(, written ( ©n : f = h, or as a diagram

f f
/gm N
X—Y ~ X {CoOnvy
\*U// \/
h h

3)If f,f : X - Yand g,§:Y — Z are l-morphisms and n : f = f,( :
g = § are 2-morphisms then uxy.z(n,() is called horizontal composition of

2-morphisms, written as ( xn:go f = go f7 or as a diagram

f g gof
X In vy V¢ Zz ~ X ¢xn Zz
f g gof

Moreover there are 2 different kinds of identity in a 2-category, identity 1-morphisms
idx : X — X, and identity 2-morphisms idy : f = f.
In contrast to the 1-category case, there are several notions of when objects

X,Y in € are “the same”:
(i) equality X =Y,

(ii) isomorphism, where two objects X,Y € Obj(€) are called isomorphic, if
there exist 1-morphisms f : X — Y,g : Y — X with go f = idy and
f ©g= idY?

(iii) equivalence, where two objects X, Y € Obj(€) are called equivalent, if there
exist 1-morphism f: X — Y, g:Y — X and 2-isomorphisms 7 : go f = idx
and ¢ : fog=idy.

From these different notions of “being the same”, equivalence is usually the correct
notion.

Example A.1.2. The basic example of a 2-category is the category of categories
Cat. Here the objects are categories C, 1-morphisms are functors ' : C — D and 2-

morphisms are natural transformations n : ' — G between functors F,G : C — D.
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A.2 Fibre products in 2-categories

Commutative diagrams in a 2-category € should in general only commute up to

2-isomorphisms rather than strictly. For example the following commutative dia-

Y
/uN
X - C,

means that X,Y, 7 are objectsin €, f : X - Y, g:Y — Zand h: X — Z are

I-morphisms in € and 1 : go f = h is a 2-isomorphism.

gram

Moreover, there is also the notion of fibre product in a 2-category.

Definition A.2.1. Let € be a 2-category and g : X — Z,h :' Y — Z be 1-
morphism in €. A fibre product X Xz Y in € consists of the following data: an
object W, 1-morphisms 7x : W — X and 7y : W — Y and 2-isomorphisms
n:gomx = homy in €. These data satisfies the following universal property: Let
v W' — X and 7}, : W' — Y be l-morphisms and ' : go 7’y = h ol be a
2-isomorphism. Then there exist a 1-morphism b : W/ — W, and 2-isomorphisms
(x : mxob = 7,(y : my ob = 7w} such that the following diagram of 2-

isomorphisms commutes

nxidp
gO’ﬂ'XOb:>hoﬂ'Yob

idg*CX\H( JJ}dh*CY

/ /
goTy ; homy.

n

Moreover, if b, f X, fy are alternative choices of b, (x, (y, there exists a unique 2-

isomorphism 6 : b = b with

(x =Cx © (idgy *6) and &y =G © (id,y % 0).
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A.3 2-Commutative Cubes

Counsider a 2-commutative cube as follows

A B

C D
S 7

E F

NG D
G

The composition round the cube condition is then given by the following identity:

H.

(nep *1dase) © ([deom *Nec) © (Mre *1dasg) ©
(idp—m *nBE) © (pr *idasp) © (dp_uy *nes) (A.2)
= id(p—H)o(c—D)o(A-C),

where id,_,, denotes the respective identity 2-morphisms.

A.4 Splitting Lemma

The following well known and easy to prove lemma is a categorical generalization

of the rank-nullity theorem in Linear Algebra.

Lemma A.4.1 (Splitting Lemma). Let € be an abelian category, and let
0 A—-B—1.C 0 be a short exact sequence of objects
A, B,C € Obj(€). Then the following are equivalent:

(i) There exists a morphism p: B — A, such that poi =ida.
(ii) There exists a morphism q : C'— B, such that j o ¢ = id¢.

(iii) There exists an isomorphisms B = A& C.
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