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1. Introduction
Many important areas in both dif-
ferential and algebraic geometry in-
volve forming ‘moduli spaces’M of
some geometric objects, and then
‘counting’ the points in M to get
an ‘invariant’ I(M) with interesting
properties, for example Donaldson,
Seiberg–Witten, Gromov–Witten
and Donaldson–Thomas invariants.
Taking the ‘invariant’ to be a vec-
tor space, category, . . . , rather than
a number, Floer homology theo-
ries, contact homology, Symplec-
tic Field Theory, and Fukaya cat-
egories also fit in this framework.

2



All these ‘invariants’ theories have
some common features:
• You start with some geometrical
space X you want to study.
• You define a moduli space M of
auxiliary geometric objects E on X.
• This M is a topological space,
hopefully compact and Hausdorff,
but generally not a manifold – it
may have bad singularities.
• Nevertheless, M behaves as if it
is a compact, oriented manifold of
known dimension k. One defines
a virtual class [M]vir in Hk(M; Q),
which ‘counts’ the points in M.
• This [M]vir is then independent
of choices in the construction, de-
formations of X etc.
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Methods for defining [M]vir vary. In
good cases,with generic initial data
M is smooth. Otherwise, we prove
M has some extra geometric struc-
ture G, and use G to define [M]vir.
• In algebraic geometry problems
M is a scheme or Deligne–Mumford
stack with obstruction theory.
• In areas of symplectic geometry
based on moduli of J-holomorphic
curves – Gromov–Witten theory, La-
grangian Floer cohomology, Sym-
plectic Field Theory, Fukaya cate-
gories – there are two main geo-
metric structures: Kuranishi spaces
(Fukaya–Oh–Ohta–Ono) and poly-
folds (Hofer–Wysocki–Zehnder).
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2. D-manifolds and d-orbifolds
I will describe a new class of geo-
metric objects I call d-manifolds —
‘derived’ smooth manifolds. Some
properties of d-manifolds:
• They form a strict 2-category
dMan. That is, we have objects X,
the d-manifolds, 1-morphisms f , g :
X → Y , the smooth maps, and also
2-morphisms η : f ⇒ g.
• Smooth manifolds embed into d-
manifolds as a full (2)-subcategory.
• There are also 2-categories dManb

of d-manifolds with boundary and
dManc of d-manifolds with corners,
and orbifold versions dOrb, dOrbb,
dOrbc of these, d-orbifolds.
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• Many concepts of differential ge-
ometry extend nicely to d-manifolds:
submersions, immersions, orienta-
tions, submanifolds, transverse fi-
bre products, cotangent bundles, . . . .
• Almost any moduli space used
in any enumerative invariant prob-
lem over R or C has a d-manifold
or d-orbifold structure, natural up
to equivalence. There are trunca-
tion functors to d-manifolds and d-
orbifolds from structures currently
used – C-schemes with obstruction
theories, Kuranishi spaces, polyfolds.
• Virtual classes/cycles/chains can
be constructed for compact oriented
d-manifolds and d-orbifolds.
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So, d-manifolds and d-orbifolds pro-
vide a unified framework for study-
ing enumerative invariants and mod-
uli spaces. They also have other
applications, and are interesting and
beautiful in their own right.
D-manifolds and d-orbifolds are
related to other classes of spaces
already studied, in particular to the
Kuranishi spaces of Fukaya–Oh–
Ohta–Ono in symplectic geometry,
and to David Spivak’s derived man-
ifolds, from Jacob Lurie’s ‘derived
algebraic geometry’ programme.
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2.1. Kuranishi spaces
Kuranishi spaces were defined by
Fukaya–Ono 1999 and Fukaya–Oh–
Ohta–Ono 2009 as the geometric
structure on moduli spaces M of
J-holomorphic curves in symplectic
geometry. A Kuranishi space is lo-
cally modelled on the zeroes s−1(0)
of a smooth section s of a vector
bundle E → V over an orbifold V .
The theory has problems, and is
basically incomplete.
My starting point for this project
was to find the ‘right’ definition of
Kuranishi space. I claim that this
is: a Kuranishi space is (should re-
ally be) a d-orbifold with corners.
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2.2. Derived manifolds
Derived manifolds were defined by
David Spivak (Duke Math. J. 153,
2010), a student of Jacob Lurie. A
lot of my ideas are stolen from Spi-
vak. D-manifolds are much simpler
than derived manifolds. D-manifolds
are a 2-category, using Hartshorne-
level algebraic geometry. Derived
manifolds are an ∞-category, and
use very advanced and scary tech-
nology – homotopy sheaves, Bous-
feld localization, . . . .
D-manifolds are (roughly) a 2-cat-
egory truncation of derived mani-
folds. I claim that this truncation
remembers all the geometric infor-
mation of importance to symplectic
geometers, and other real people.
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2.3. Why should dMan be a
2-category?

Here are two reasons why any class
of ‘derived manifolds’ should be (at
least) a 2-category. Firstly, one prop-
erty we want of dMan is that it con-
tains manifolds Man as a subcate-
gory, and if X,Y, Z are manifolds
and g : X → Z, h : Y → Z are
smooth then a fibre product W =
X×g,Z,hY should exist in dMan, char-
acterized by a universal property in
dMan, and should be a d-manifold
of ‘virtual dimension’

vdim W = dimX + dimY − dimZ.

Note that g, h need not be trans-
verse, and vdim W may be negative.
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Consider the case X = Y = ∗, the
point, Z = R, and g, h : ∗ 7→ 0.
If dMan were an ordinary category
then as ∗ is a terminal object, the
unique fibre product ∗×0,R,0∗ would
be ∗. But this has virtual dimension
0, not −1. So dMan must be some
kind of higher category.
Secondly, two approximations for
dMan are C-schemes X with obstruc-
tion theory, and quasi-smooth dg-
schemes. Both of these include a
‘cotangent complex’ in Db coh(X)
concentrated in two degrees −1,0.
It seems reasonable to capture the
behaviour of such complexes in a
2-category.
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2.4. Why is a 2-category enough?
Usually in derived algebraic geome-
try, one considers an ∞-category of
objects (derived stacks, etc.). But
we work in a 2-category, effectively
a truncation of Spivak’s∞-category
of derived manifolds.
Here are two reasons why this trun-
cation does not lose important in-
formation. Firstly, d-manifolds cor-
respond to quasi-smooth derived
schemes X, whose cotangent com-
plex LX lies in degrees [−1,0]. So
LX lies in a 2-category of complexes,
not an ∞-category. Note that f :
X → Y is étale in dMan iff Ωf :
f∗(LY )→ LX is an equivalence.

12



Secondly, the existence of partitions
of unity in differential geometry
means that our structure sheaves
OX are ‘fine’ or ‘soft’, which simpli-
fies behaviour. Partitions of unity
are also essential in gluing by equiv-
alences in dMan (see Theorem 7,
lecture 2). Our ‘2-category style
derived geometry’ probably would
not work very well in a conventional
algebro-geometric context, rather
than a differential-geometric one.
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3. The definition of d-manifolds
Algebraic geometry (based on alge-
bra and polynomials) has excellent
tools for studying singular spaces –
the theory of schemes.
In contrast, conventional differen-
tial geometry (based on smooth real
functions and calculus) deals well
with nonsingular spaces – manifolds
– but poorly with singular spaces.
There is a little-known theory of
schemes in differential geometry,
C∞-schemes, going back to Law-
vere, Dubuc, Moerdijk and Reyes,
. . . in synthetic differential geome-
try in the 1960s-1980s. This will be
the foundation of our d-manifolds.
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3.1. C∞-rings
Let X be a manifold, and C∞(X)
the set of smooth functions c : X→
R. Then C∞(X) is an R-algebra,
by adding and multiplying smooth
functions. But there are many more
operations on C∞(X), e.g. if c :
X → R is smooth then exp(c) : X →
R is smooth, giving exp : C∞(X)→
C∞(X), algebraically independent of
addition and multiplication.
Let f : Rn → R be smooth. Define
Φf : C∞(X)n→ C∞(X) by

Φf(c1, . . . , cn)(x)=f
(
c1(x), . . . , cn(x)

)
for all x ∈ X. Addition comes from
f : R2 → R, f : (c1, c2) 7→ c1 + c2,
multiplication from (c1, c2) 7→ c1c2.
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Definition. A C∞-ring is a set C together
with n-fold operations Φf : Cn → C for all
smooth maps f : Rn→ R, n > 0, satisfying
the following conditions:
Let m,n > 0, and fi : Rn → R for i =
1, . . . ,m and g : Rm → R be smooth func-
tions. Define h : Rn→ R by

h(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fm(x1 . . . , xn)),

for (x1, . . . , xn) ∈ Rn. Then for all c1, . . . , cn
in C we have

Φh(c1, . . . , cn) =

Φg(Φf1
(c1, . . . , cn), . . . ,Φfm(c1, . . . , cn)).

Also defining πj : (x1, . . . , xn) 7→ xj for j =
1, . . . , n we have Φπj : (c1, . . . , cn) 7→ cj.
A morphism of C∞-rings is φ : C→ D with
Φf ◦φn = φ◦Φf : Cn→ D for all smooth f :
Rn → R. Write C∞Rings for the category
of C∞-rings.
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Then C∞(X) is a C∞-ring for any
manifold X, and from C∞(X) we
can recover X up to isomorphism.
If f : X → Y is smooth then f∗ :
C∞(Y ) → C∞(X) is a morphism
of C∞-rings. This gives a full and
faithful functor F : Man→ C∞Ringsop

by F : X 7→ C∞(X), F : f 7→ f∗.
Thus, we think of manifolds as ex-
amples of C∞-rings, and C∞-rings
as generalizations of manifolds. But
there are many more C∞-rings than
manifolds, e.g. C0(X) is a C∞-ring
for any topological space X.
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3.2. C∞-schemes
We can now develop the whole ma-
chinery of scheme theory in alge-
braic geometry, replacing rings or
algebras by C∞-rings throughout —
see my arXiv:1001.0023.
We obtain a category C∞Sch of C∞-
schemes X = (X,OX), which are
topological spaces X equipped with
a sheaf of C∞-rings OX locally mod-
elled on the spectrum of a C∞-ring.
If X is a manifold, define a C∞-
scheme X = (X,OX) by OX(U) =
C∞(U) for all open U ⊆ X. This
defines a full and faithful embed-
ding Man ↪→ C∞Sch.
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We also define vector bundles, co-
herent sheaves coh(X) and quasi-
coherent sheaves qcoh(X), and the
cotangent sheaf T ∗X on X. Then
qcoh(X) is an abelian category.
Some differences with conventional
algebraic geometry:
• affine schemes are Hausdorff. No
need to introduce étale topology.
• partitions of unity exist subordi-
nate to any open cover of a (nice)
C∞-scheme X.
• C∞-rings such as C∞(Rn) are not
noetherian as R-algebras. Causes
problems with coherent sheaves:
coh(X) is not closed under kernels,
so not an abelian category.
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3.3. The 2-category of d-spaces
We define d-manifolds as a 2-subcategory
of a larger 2-category of d-spaces. These
are ‘derived’ versions of C∞-schemes.

Definition. A d-space is a is a quintu-
ple X = (X,O′X, EX, ıX, X) where X =
(X,OX) is a separated, second countable,
locally fair C∞-scheme, O′X is a second
sheaf of C∞-rings on X, and EX is a qua-
sicoherent sheaf on X, and ıX : O′X → OX
is a surjective morphism of sheaves of C∞-
rings whose kernel IX is a sheaf of square
zero ideals in O′X, and X : EX → IX is
a surjective morphism in qcoh(X), so we
have an exact sequence of sheaves on X:

EX
X //O′X

ıX //OX // 0.
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A 1-morphism f : X → Y is a triple f =
(f, f ′, f ′′), where f = (f, f ]) : X → Y is a
morphism of C∞-schemes and f ′ : f−1(O′Y )
→ O′X, f ′′ : f∗(EY ) → EX are sheaf mor-
phisms such that the following commutes:

f−1(EY )
f ′′

��

f−1(Y )

//f−1(O′Y )
f ′

��

f−1(ıY )

//f−1(OY )
f ]

��

// 0

EX
X //O′X

ıX //OX // 0.

Let f , g : X → Y be 1-morphisms with
f = (f, f ′, f ′′), f = (g, g′, g′′). Suppose f =
g. A 2-morphism η : f ⇒ g is a morphism

η : f−1(ΩO′Y
)⊗f−1(O′Y ) OX −→ EX

in qcoh(X), where ΩO′Y
is the sheaf of

cotangent modules of O′Y , such that g′ =
f ′+ X ◦ η ◦ΠXY and g′′ = f ′′+ η ◦ f∗(φY ),
for natural morphisms ΠXY , φY .

Theorem 1.This defines a strict 2-category
dSpa. All fibre products exist in dSpa.
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We can map C∞Sch into dSpa by tak-

ing a C∞-scheme X = (X,OX) to the d-

space X = (X,OX,0, idOX ,0), with exact

sequence

0 0 //OX
idOX //OX // 0.

This embeds C∞Sch, and hence manifolds

Man, as discrete 2-subcategories of dSpa.

For transverse fibre products of manifolds,

the fibre products in Man and dSpa agree.

But if g : X → Z, h : Y → Z are non-

transverse smooth maps of manifolds, then

the fibre product X×g,Z,hY in dSpa is not

(equivalent to) a manifold.
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3.4. The 2-subcategory of d-manifolds

Definition. A d-space W is a principal

d-manifold if it is a fibre product X ×Z Y

in dSpa, where X,Y ,Z are manifolds with-

out boundary. The virtual dimension of W

is vdim W = dim X + dim Y − dim Z. (We

can have vdim W < 0.)

A d-space X is a d-manifold of dimension

n ∈ Z if X may be covered by open d-

subspaces W ⊂ X which are principal d-

manifolds with vdim W = n.

Write dMan for the full 2-subcategory of

d-manifolds in dSpa.

Think of a d-manifold X =(X,O′X, EX, ıX, X)

as a ‘classical’ C∞-scheme X, with extra

‘derived’ data O′X, EX, ıX, X. The extra

information in the ‘derived’ data is like a

vector bundle on X.
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The 2-subcategory dMan is not closed un-

der fibre products in dSpa, but we can say:

Theorem 2. All fibre products of the form

X ×Z Y with X,Y d-manifolds and Z a

manifold exist in the 2-category dMan.

This is a very useful property of d-manifolds

and d-orbifolds. For example, moduli spaces

Mk(γ) of J-holomorphic curves Σ in a

symplectic manifold (M,ω) with boundary

in a Lagrangian L and k boundary marked

points with [Σ] = γ ∈ H2(M,L; Z) are

d-orbifolds with boundary satisfying

∂Mk(γ) =
∐

i+j=k, α+β=γ
Mi+1(α)×L Mj+1(β),

and this formula makes sense as d-orbifold

fibre products over the manifold L exist.
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