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Abstract
Weconsider a general framework formulti-type interacting particle systems on graphs,
where particles move one at a time by random walk steps, different types may have
different speeds, and may interact, possibly randomly, when they meet. We study the
equilibrium time of the process, by which we mean the number of steps taken until
no further interactions can occur. Under a rather general framework, we obtain high
probability upper and lower bounds on the equilibrium time that match up to a con-
stant factor and are of order n log n if there are order n vertices and particles. We
also obtain similar results for the balanced two-type annihilation model of chemical
reactions; here, the balanced case (equal density of types) does not fit into our gen-
eral framework and makes the analysis considerably more difficult. Our models do
not admit anyKindly provide MSC. exact solution as for integrable systems or the
duality approach available for some other particle systems, so we develop a variety of
combinatorial tools for comparing processes in the absence of monotonicity.

1 Introduction

Interacting particle systems have been intensively studied since the 1970s to model a
variety of phenomena in Statistical Physics and Mathematical Biology, such as spin
systems, chemical reactions, population dynamics and the spread of infections. A
precise analysis of such systems in generality seems far out of reach, although there
is a large theory for some classical special models that are more tractable, due to
admitting a variety of techniques based on monotonicity or duality (see [32, 33]) or
even exact methods based on the rich theory of Integrable Systems, RandomMatrices
and KPZ Universality (see [17]).

On the other hand, there are natural classical models that do not admit such tech-
niques and for which the theory is much less developed. An important example is
the two-type annihilation model for chemical reactions, studied classically on integer
lattices Z

d , where a celebrated series of papers by Bramson and Lebowitz [7–9] gives
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order of magnitude estimates for the site occupancy probability. In this model, there
are two types of particles and interactions only occur between two particles of different
type, which makes the analysis particularly difficult.

A single typemodel introduced by Erdős andNey [22] is easier to analyse, although
even here it was an open problemwhether the originwould be occupied infinitely often,
solved in one dimension by Lootgieter [34] and in higher dimensions by Arratia [3, 4].
There is also a substantial physics literature starting from [21, 30] on annihilation with
ballistic motion which still has many open problems, such as the Bullet Problem (see
e.g. [20]). The analysis of Bramson and Lebowitz is very model specific, relying on
the lattice structure and both particle types moving at the same speed. Less is known
if we move away from these assumptions, although Cabezas, Rolla and Sidoravicius
[11] showed even if the speeds differ that the system remains site recurrent on any
infinite generously transitive graph.

Considering the real-world motivations for interacting particle systems, it is natural
to consider systems on finite graphs and ask for the asymptotics of key parameters
when the number n of vertices is large. Here there is also a large literature (discussed
in more detail below), dating at least to the early 80s, when Donnelly and Welsh [18]
studied coalescing particles on finite graphs via duality with the voter model.

1.1 Balanced two-type annihilation

Before introducing our general models, we will discuss the following two-type anni-
hilation model for finite graphs, recently considered by Cristali, Jiang, Junge, Kassem,
Sivakoff and York [12]. Fix a graph with n vertices and initialise with at most one
particle at each vertex, so that there are equal numbers of red and blue particles and at
most one vertex is unoccupied; we refer to this setting as balanced. At each time step,
with probability p a red particle is chosen, uniformly at random from the remaining
red particles, or otherwise a uniformly random blue particle is chosen. Without loss
of generality 0 ≤ p ≤ 1/2, i.e. blue moves at least as fast as red. The chosen particle
performs a simple random walk step. If it reaches a vertex with one or more particles
of the opposite colour, it mutually annihilates with one such particle. This process
almost surely eventually terminates with no particles remaining. The key quantity of
interest is the time taken for this to happen, which we call the extinction time.

We will see below how the analysis of unbalanced annihilation can be subsumed
in that of a much more general class of models (see Corollary 1.7). However, the
analysis of balanced annihilation is much harder due to the total number of particles
changing dramatically over time. Nevertheless, we are able to prove similar results
for this model, determining with high probability the extinction time up to constant
factors, for any initial particle distribution on any regular graph with sufficient spectral
expansion (for an introduction to expanders and their applications, see [29]).

Theorem 1.1 Let G be a regular graph on n vertices with spectral gap at least 0.425.
Consider balanced two-type annihilation on G from any starting configuration and
let T be the extinction time. Then cn log n ≤ T ≤ Cn log n with high probability and
in expectation, where c and C are absolute constants.
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We make the following remarks on Theorem 1.1:

1. The upper bound on T holds for any regular expander sequence (i.e. regular graphs
G with spectral gap uniformly bounded away from zero).

2. The spectral gap condition holds with high probability for a random d-regular
graph for any d ≥ 177.

3. The high probability bound is sufficient to imply that E(T ) = �(n log n).

The corresponding upper bound for unbalanced two-type annihilation, as one of a
much more general class of models, is provided by Theorem 1.4. However, this does
not cover the case of balanced two-type annihilation, since the proof of Theorem 1.4
depends on the fact that in the unbalanced case (and more generally in the class of
models covered), �(n) particles survive throughout the process.

The special case p = 0 (stationary red particles) is equivalent to the particle-hole
model of Cabezas, Rolla and Sidoravicius [10], which they show has essentially the
same behaviour as a system of activated random walks with infinite sleep rate. Here
our lower bound applies for any regular graph (regardless of expansion) assuming a
uniformly random starting state.

Theorem 1.2 Let G be a regular graph on n vertices. Consider balanced two-type
annihilation with stationary reds from a uniformly random starting configuration and
let T be the extinction time. Then E(T ) ≥ 0.08n log n for n sufficiently large, and with
high probability T > 0.04n log n.

The lower bound in Theorem 1.2 may fail starting from a configuration that is
adversarial rather than random: e.g. if G is a disjoint union of small even connected
components and the types are balanced in each component then T is �(n) in expecta-
tion and with high probability. The same example shows that our other results below
for general regular graphs (Theorems 1.5 and 1.8) would fail if we considered an
adversarial rather than random configuration.

WhileTheorem1.1 considers theworst-case in the setting of [12], it ismuch easier to
analyse the ‘absolute worst-case’, permitting multiple particles at the same vertex and
maximising over any speeds and starting positions. We obtain the following bounds,
which are optimal up to a small multiplicative constant and valid for any graph G. The
key parameter is the ‘worst-case hitting time’ Hmax(G) = maxx,y∈V (G) Hx (y), where
the ‘hitting time’ Hx (y) is the expected number of steps taken by a random walk on
G started at x and stopped when it first hits y.

Proposition 1.3 Fix any graph G. Let Tk be the worst-case expected extinction time for
two-type annihilation starting from k particles of each type,maximised over any speeds
and starting positions (which may coincide). Then kHmax(G) ≤ Tk < 4kHmax(G).

1.2 Dissipative particle systems

Now we will consider a broad class of models for processes with various types of
particlesmoving diffusively and interacting in a possibly randomway that is a function
of their types. Our models will be dissipative, meaning that each type of particle has an
associated energy (some positive real number) and that the total energy of all particles
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is strictly decreased by any effective reaction (i.e. reaction where the output differs
from the input); for example, annihilation models are dissipative (for any energies).
This condition gives quite a different flavour from those models studying population
dynamics with reinforcement (see the survey [36] and [1] for a recent result combining
annihilation and growth). It is also perhaps similar in spirit to the Dissipative Particle
Dynamics (DPD) models used for practical simulations of hydrodynamic phenomena
(see [23]).

Ourmodels are specified by giving for each ‘input’ pair (A, B) of types a probability
distribution πAB on ‘output’ sets S of types (here πAB is fixed, independently of n). If
a particle of type A arrives at a vertex and ‘meets’ a particle of type B then the process
removes both particles and adds a new particle of each type in S ∼ πAB independently
of all other randomness. (One could distinguish the ordered pairs (A, B) and (B, A),
but for simplicitywewill assumeπAB = πBA.) For example, for two-type annihilation
these ‘distributions’ are supported on a single output for each input: the output for
{A, B} is ∅, for (A, A) is {A, A} and for (B, B) is {B, B}. When a particle arrives at
a vertex with one or more other particles already present, it is considered tomeet each
such particle in a random order until either an effective reaction occurs or all reactions
are ineffective. (This seems a natural model for such multiple collisions, but one could
consider other options.)

We may reach an imbalance of types even starting from a balanced position, and it
is anyway often natural to start from a position of imbalance (e.g. as considered for
annihilating particles by Bramson and Lebowitz [7]). To allow for imbalance in our
model, we assign speeds to types, such that the sum over types of their speeds is 1, and
in each round of the processwe select the particle tomovewith probability proportional
to its speed. For example, for two-type annihilation as above we assign speeds p to
‘red’ and 1− p to ‘blue’. Typically, we think of fixing the initial number of each type
of particle in advance, so that there are n particles in total, and of the distribution of
these particles as chosen either randomly or adversarially. For our general models we
consider the speeds to be fixed independently of n, although we note that in our above
results on two-type annihilation we allow p to depend on n.

Our key quantity of interest for these models is the time taken until no further reac-
tion is possible, whichwe call the equilibrium time. For balanced two-type annihilation
this is the extinction time, for which we obtain �(n log n) bounds, as stated above.
We will prove the same bounds on the equilibrium time of general dissipative models,
under an additional assumption regarding ‘active agents’, to be described using the
following definitions.

We say that a type is persistent, for a given set of reactions and initial densities of
the types, if there is some ε > 0 such that the density of that type must be at least ε

throughout any possible sequence of reactions in amean-field setting (meaning that we
allow any two particles to meet at each step, ignoring the graph G). Similarly, we say
that the particle system is persistent if there is some ε > 0 such that the total density
of particles must remain at least ε in a mean-field setting. (This is a strictly weaker
condition than having a persistent type.) A type is ephemeral if it is not persistent.
For example, in two-type annihilation, if the initial densities of red and blue differ by
some ε > 0 then the denser type is persistent and the other is ephemeral, whereas in
balanced two-type annihilation both types are ephemeral.
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We say that the particle system is agential if there are no effective reactions between
two ephemeral types. The interpretation of this terminology is that in some settings we
think of particles of persistent types as ‘active agents’ and those of ephemeral types
as ‘passive reagents’. Note that by definition no reaction between persistent types is
possible, since if it were we could invoke it repeatedly until one type was eliminated,
contradicting persistence. Thus in an agential system every reaction involves one
persistent type and one ephemeral type.

Our general upper bound is as follows.

Theorem 1.4 Let G be a graph on n vertices from a regular expander sequence.
Consider any dissipative agential particle system on G starting from any configuration
with at most n particles. Then the equilibrium time is O(n log n) with high probability
and in expectation.

The assumptions in Theorem 1.4 are all ‘somewhat necessary’, for the following
reasons.

1. If we allowed the speeds of types to depend on n then collisions involving two
types of speeds o(1) may be necessary for equilibrium but take too long to occur.

2. Dissipative dynamics rules out reversible models that never reach equilibrium,
such as ‘catalysed modification’ A + c → A + d and B + d → B + c (in our
examples we adopt the convention that upper-case letters are persistent types).

3. If we allowed reactions between ephemeral types, one could introduce an inert
persistent type to an otherwise ephemeral process, with such an overwhelming
number of inert particles that reactions are rare. Less trivially, consider a system
such as A+ c → b and b+b → c where A is dense enough to be persistent. Then
the penultimate reaction requires two specific particles of type b to meet, and since
there are still �(n) other particles remaining, this typically takes time �(n2).

For a matching lower bound, one should clearly also assume that �(n) reactions
are necessary for equilibrium. Equivalently, one should show that�(n log n) steps are
necessary to eliminate any type with positive initial density. We believe that this holds
for any such systems as above. We support this belief by proving it when the initial
positions of particles are independent stationary random vertices and all types have
the same speed, for any regular graph (not necessarily an expander). We deduce this
from the following result of independent interest on ‘lonely walkers’ in a system of
non-interacting random walks.

Theorem 1.5 (Lonely Walkers) Let G be a regular graph on n vertices. Consider n
independent random walks, starting from stationarity, running for time 0.1n log n,
with one walk moving at each time step. Then with high probability there are �(n3/4)
walks that have never met any other walk.

Remark We give explicit constants in Theorem 1.5 for concreteness. The same proof
shows that for any ε > 0 there is δ > 0 so that if the walks run for time δn log n then
with high probability there are �(n1−ε) walks that have never met any other walk.

Corollary 1.6 Let G be a regular graph on n vertices. Consider any persistent particle
systemonG,where all types have the same speed, and the starting locations of particles
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are independent and stationary. Then with high probability, any type of positive initial
density has not yet been eliminated after O(n log n) steps.

Our results apply to a rather broad class of models, whereas much of the previous
related literature considers deterministic interactions for particles of one or two types;
here one can explicitly list the small number of possible models, each of which has
been studied in its own right. We will discuss the implications of our results for these
models in Sect. 1.4.

1.3 Simultaneousmovement and the Big Bang

Even for the most well-understood model of coalescence, obtaining a precise under-
standing of the early evolution is widely considered a very difficult problem; this has
been dubbed the “Big Bang regime” by Durrett (see e.g. [19]). A recent breakthrough
on this problem for coalescing particles on constant-degree random regular graphs
was achieved by Hermon, Li, Yao and Zhang [27]; comparable results were only pre-
viously known on the integer lattice [6], where transience plays a key role. For other
models, such as annihilation, comparable results are still unknown.

Much of the previous literature on interacting particles considers models where par-
ticles move simultaneously, rather than individually as in our models defined above.
Considering simultaneous movements side-steps the Big Bang question, as then the
Big Bang is so fast that it is insignificant compared to the equilibrium time, which
is dominated by the slower later stages. By contrast, as our models have individual
moments we cannot ignore the Big Bang: we need to consider all particles, whereas
in synchronous models only the longest-surviving particle matters. See also [38] for
a related model of internal diffusion-limited aggregation (IDLA), where results are
obtained for simultaneous movements, but the problem for individual movements
remains open. This distinction is only significant for ephemeral models, such as coa-
lescence or balanced two-type annihilation, as for persistent models the two settings
are essentially equivalent: the equilibrium times are related by a �(n) factor.

Consequently, while our methods are able to deal with both settings, we state our
results for the more difficult case of individual movements. Another minor advan-
tage is that this lends itself more naturally to considering types of different speeds
(although these could be implemented in a simultaneous model by moving each par-
ticle independently with probability equal to its speed). Although a speed differential
is to be expected in almost all applications (e.g. owing to different sizes of reacting
molecules or enzymes and substrates), most previous work does not incorporate this
factor, perhaps due to the focus on simultaneous movement.

1.4 Special models

Now we will specialise to models with one or two types and a single deterministic
reactionwhich does not increase the total number of particles. For the two-type casewe
also assume that the reaction occurs between the two types (which we call A and B),
since otherwisewewould have a one-type systemwith additional inert particles.While
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it would be natural to permit multiple reactions, allowing a combination of one-type
and two-type reactions, this would significantly increase the number of possibilities.
Since we are not aware of previous work covering any suchmodels, we do not consider
them separately here.

The possible ‘special models’ up to relabelling A ↔ B are as follows.

• One type:

(i) A + A → ∅: one-type annihilation.
(ii) A + A → A: coalescence.

• Two type:

(iii) A + B → ∅: two-type annihilation.
(iv) A + B → A: predator-prey.
(v) A + B → A + A: infection / communication.

Besides the annihilation and coalescence models discussed above, we also see models
for (iv) predators of type A eating prey of type B, and (v) infected individuals of type
A infecting healthy individuals of type B. The following, which includes the case
of unbalanced two-type annihilation as mentioned in Section 1.1, is immediate from
Theorem 1.4 and Corollary 1.6.

Corollary 1.7 Let G be a graph on n vertices from a regular expander sequence.
Consider any of the special models (i)–(v) from any initial configuration with at most
n particles, where each type has constant speed and positive initial density. For model
(iii), suppose also that the type densities differ by some ε > 0 independent of n. Then
the equilibrium time is O(n log n) with high probability and in expectation, and is
�(n log n) if the initial positions of particles are independently uniform and types
have the same speed.

Moreover, we have a stronger form of Corollary 1.7: the assumption that both types
have positive density is not needed for the upper bound, except that in models (iv)
and (v) we need type A to have positive density. We have not determined the precise
conditions underwhich the conclusion holds, butwe observe that our conditions cannot
be significantly relaxed. For example, if we have k = ω(1) particles of type B, the
proof of Theorem 1.4 gives an O(n log k) bound, so the lower bound cannot allow k
to be subpolynomial. The following result on the predator-prey model also shows that
the upper bound fails if there are o(n/ log n) predators.

Theorem 1.8 Consider predator-prey dynamics on a regular graph G on n vertices,
starting from k predators and n − k prey on distinct vertices, where 4 ≤ k ≤ n/ log n
and both types have some nonzero speed independent of n. Let T be the equilibrium
time. Then

(a) If the starting configuration is selected uniformly at random then E(T ) =
�(n2/k).

(b) If G is from an expander sequence then E(T ) = O(n2/k) for any starting config-
uration.
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1.5 Comparison with previous results

Cooper, Frieze and Radzik [15] gave a unified treatment of the special models consid-
ered above, with three significant additional assumptions: (a) the initial populations are
polynomially small and randomly distributed, (b) the underlying geometry is a random
regular graph, and (c) the types move simultaneously with equal speeds. Removing
assumption (a) is the main difficulty in our work (see the above discussion of the Big
Bang), although considering general spectral expanders rather than (b) and variable
speeds rather than (c) also poses additional challenges.

Our model allowing for different speeds is much more general, as can be seen by
considering the possibility of a zero speed (stationary) type, which one might at first
think would be simple to analyse, but in fact is often an interesting and difficult model
in its own right. For example, balanced annihilation with one type stationary strongly
resembles the IDLA setting of [38] mentioned above, except that in their model the
moving particles start from what we might expect to be the worst-case scenario of all
having accumulated at a single vertex.

For the predator-prey or infection models, making type A (predators or infected
individuals) stationary is not so interesting, as the equilibrium time is then just a
sum of hitting times from the type B particles to the set of type A particles. In both
cases, making B particles stationary is more interesting. Predator-prey dynamics with
k moving predators and n − k stationary prey is equivalent to the cover time of the
graph by k random walkers, which was analysed in great detail by Rivera, Sauerwald
and Sylvester [39]. Infection with stationary healthy individuals is closely related
to the frog model, where we start from one active frog moving among a system of
sleeping particles, with the latter becoming active frogs once their vertex is visited.
(The frog model often has the further complications that active frogs can die and
there may be a random number of sleeping particles at each site.) Much of the frog
literature concerns propagation on infinite graphs, although there are some results on
the cover time (which is analogous to our model) for special graphs by Hermon [26]
and Hoffman, Johnson and Junge [28].

Coalescence has been much studied as the dual process of the voter model, where
particles do not move but update their opinions to that of a random neighbour. This
was first considered on general graphs some 40 years ago by Donnelly andWelsh [18].
More recently, Cooper, Elsässer, Ono and Radzik [14] gave a general upper bound in
terms of the spectral gap and degree variability of the underlying graph.Haslegrave and
Puljiz [25] analysed a generalisation of the voter process which permits two opinions
of different persuasiveness, similar to our variability in speed; one of their results is
that the complete graph has the smallest expected equilibrium time among regular
graphs.

Finally, the balanced two-type annihilation model that we consider in great detail in
this paper was previously only analysed by Cristali et al. [12] for the complete graphs
(the mean-field case) and stars. For these graphs, the one-type annihilation model is
easy to analyse, but the two-type process is much harder, owing to the possibility of
multiple particles of the same type occupying a single site. While they were able to
give precise results on the extinction time for stars, for the mean-field case they gave
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a lower bound of 2n log n and an upper bound of 20n log2 n/ log log n, thus leaving
the open problem of showing that it is �(n log n); as discussed above, we prove this
on all regular graphs with sufficiently strong spectral expansion. Moreover, in [24] we
determined the mean-field extinction time asymptotically as (1+o(1))n log n, for any
speeds of the particles, even if the ratio of speeds is allowed to grow with n, which
creates additional difficulties (bounded speed ratio is assumed in [12]). Our methods
in [24] are specific to the complete graph and have no overlap with those introduced in
this paper. In particular, for the complete graph we use the fact that the probability of a
collision at each step depends only on the number of vertices occupied by each type of
particle, and that if the number of sites occupied is sufficiently small compared to the
total number of particles, there is a strong tendency for this disparity to self-correct,
irrespective of the precise configuration of particles; neither of these facts apply to
general graphs.

1.6 Methods and organisation

As indicated above, the generality of our models requires the development of new
combinatorial comparison techniques. A basic strategy in many of our proofs is to
consider a short segment of the process, at the start of which we couple the ‘true’
particles with ‘fake’ particles, where the fake particles go on to follow non-interacting
walks, and so gradually become decoupled from the true particles as time proceeds.
We aim to show that with high probability a suitable set of collisions have occurred in
the non-interacting process, and deduce that a certain number of reactions must have
taken place. The time period of the coupling must be chosen so that the total number
of particles does not change by more than a constant factor, as otherwise the rates of
passing of true time and fake time are not comparable. This highlights the difficulty of
non-agential models such as balanced two-type annihilation, where the total number
of particles decays and many time periods are necessary.

We will divide the paper into two parts, where in the first part we treat general
agential dissipative models, and in the second part we consider the harder setting of
balanced two-type annihilation. The first section of the first part introduces a Moving
Target Lemma that will be useful throughout the paper. An intuitive statement is that
we get a roughly tight estimate for the probability of an approximately stationary
random walk on an expander hitting a target, where the target is allowed to move,
but we ‘wait’ a constant number of steps between each ‘attempt’ to hit the target to
allow the conditional distribution of the walker to settle back towards approximate
stationarity. The second section of the first part introduces a poissonisation technique
for handling dependencies that will also be useful throughout the paper; we combine
this with a second moment argument to prove our result on lonely walkers, which
implies the lower bounds for our general models. The remainder of the first part treats
some special models, using a variety of ideas on hitting times of random walks and
toppling of ‘abelian sandpiles’.

In the second part on balanced two-type annihilation, the techniques developed in
the first part are combined with additional technical arguments needed to address the
new difficulties that arise in the proofs of both the upper and lower bounds. For the
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upper bound, theMoving Target Lemma can still be used for comparison, although the
previous basic argument does not suffice, so is replaced by a refined argument using
Hall’s Matching Theorem. Furthermore, there are various regimes for the number of
remaining particles, where in some regimes the approximate stationarity needed for
the Moving Target Lemma can only be guaranteed for the faster blue particles, so
further technical arguments are needed to either control the distribution of the slower
red particles, or show that even a moderately bad distribution of red particles can be
handled by tighter concentration inequalities.

For the lower bound, we start by illustrating the arguments for the one-type annihi-
lation model, which has many of the key ideas but the important simplifications that
all particles move at the same speeds and each vertex has at most one particle. The key
step is to show that when k = nx particles remain with x < 1 then there are constants
c1, c2, c3 > 0 so that starting from any configuration A of k particles, with probability
at least c1 we need at least c2n steps to reduce the number of particles to c3k. We prove
this via results relating return times to the spectral gap and using trajectory reversal
arguments to control meetings by returns. For the two-type model, there are additional
arguments to handle variation in speeds, and a subtle application of Reimer’s inequal-
ity on disjointly occurring events, which is used to rule out ‘catastrophic collapse’, i.e.
reducing from nc to nc−o(1) remaining particles so rapidly that the surviving particles
do not have time to mix.

1.7 Notation

For a d-regular connected graph G, let Q be the Laplacian, let P be the transition
matrix of the lazy random walk and let A be the adjacency matrix. Then we have
Q = d I − A and P = 1

2 I + 1
2d A, giving Q = 2d(I − P). Let 0 = λ1 ≤ λ2 ≤ · · ·

be the eigenvalues of Q, and 1 = μ1 ≥ μ2 ≥ · · · ≥ 0 be the eigenvalues of P . Then
1 − μ2 = 1

2d λ2. We say that a sequence of graphs G form an expander sequence if
1 − μ2(G) ≥ c for some constant c > 0, i.e. λ2 = �(d).

We often consider the modification of our processes where we replace randomwalk
steps by lazy random walk steps. By suppressing the lazy steps in which a particle
does not move we obtain a copy of the original process. By Chernoff bounds, with
high probability the number of lazy steps and normal steps are asymptotically equal,
so this modification essentially doubles the equilibrium time. We refer to a particle
"moving" if it is is selected to take a step of the lazy random walk, even if that step
has no effect.

Throughout the paper, our main focus is on systems of discrete-time random walks
where exactly one particle is selected to move at each discrete time. We refer to a
single step of this process as a “time step”. For the purposes of the proofs, we vary
this in two ways. First, and most commonly, we consider two linked copies of this
process, where in each time step either one particle moves in each copy (in which case
the two moving particles correspond), or one particle moves in one copy and nothing
happens in the other. We sometimes refer to this as “fake time”, with “real time” being
the number of movements that have occurred in the primary copy. We ensure that a
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movement occurring in both copies has constant probability, so that “real time” and
“fake time” differ only by a constant factor with high probability.

Secondly, we occasionally (see Lemmas 7.5 and 7.8 and the proof of Theorem 1.5)
approximate by a continuous-time process where particles independently take (lazy)
randomwalk steps at given rates (in order to remove dependencies), and then discretise
by considering the positions of particles at integer times. For clarity, we refer to
these discrete transitions, during which more than one particle might move, and an
individual particle might move more than once, as “time intervals”. Each time interval
then corresponds to as many time steps as movements that occur in that interval.

We use standard asymptotic notation throughout and suppress notation for rounding
to integers where it does not affect the argument.

Part I
General models

In this part we prove our results on general agential dissipative models. We start
in Section 2 by proving our general upper bound (Theorem 1.4), via the Moving
Target Lemma (Lemma 2.1) that will prove to be a useful tool throughout the paper.
In Section 3 we introduce the Poissonised model that will also be frequently useful,
and apply it to prove our result on lonely walkers (Theorem 1.5), which easily implies
Corollary 1.6, and so the lower bounds in Corollary 1.7. The remainder of the part
treats some special models. In Section 4 we apply various results on hitting times
and toppling of ‘abelian sandpiles’ to analyse the worst-case expected extinction time
(Proposition 1.3) and the particle-hole model (Theorem 1.2 on stationary reds). We
conclude the part in Section 5 by proving Theorem 1.8 on the predator-prey model
with few predators.

2 Hittingmoving targets

In this section we prove our main upper bound for general models (Theorem 1.4).
The key lemma is the following result on an approximately stationary random walk
hitting amoving target. Intuitively, such awalk should hit a target k-setwith probability
O(k/n), so the probability ofmissing the target sn/k times should decay exponentially
in s. However, the hitting events are not independent, so the idea of the proof is to show
that conditioning on missing a target only increases the L2 distance to stationarity by a
constant factor, which is counterbalanced by a constant number of random walk steps
before the next target is considered.

Lemma 2.1 (Moving Target Lemma) Let G be a regular graph on n vertices and k, r , s
be positive integers with k ≤ n/8 and μ2(G)2r < 1/17. Suppose A0, A1, . . . are
deterministic sets of k vertices. Let a particle p follow a lazy random walk v0, v1, . . .

on G, where

∑

v∈V (G)

(P(v0 = v) − 1/n)2 ≤ k

4n2
. (1)

123



J. Haslegrave, P. Keevash

For each i let Ei be the event vir ∈ Air and let Xi be the event that E j does not hold
for any j < i . Let 	 := �6n/k	. Then e−18s ≤ P(Xs	) ≤ e−3s .

Remark When applying Lemma 2.1, we will be interested in whether the particle p
hits some other set of particles, located at the target set Ai at step i . This can be reduced
to the setting of the lemma by revealing the times at which each particle moves and all
positions and movements of all particles other than p. The only randomness is then in
the randomwalk followed by p, and the corresponding target sets Ai are deterministic
conditional on the revealed randomness.

Proof We will prove the following claim for each i :

k

2n
≤ P(Ei | Xi ) ≤ 3k

2n
. (2)

This will suffice to prove the lemma, using P(Xs	) = ∏s	
i=0 P(Ec

i | Xi ) and e−2t ≤
1 − t ≤ e−t for t ∈ [0, 1/2]. To prove the claim, it suffices to show that

∑

v∈V (G)

(P(vir = v | Xi ) − 1/n)2 ≤ k

4n2
. (3)

Indeed, if (2) failed then the triangle inequality would give

∑

v∈Air

∣∣∣∣P(vir = v | Xi ) − 1

n

∣∣∣∣ >
k

2n
,

but this contradicts (3) by Cauchy–Schwarz.
It remains to show (3). We use induction on i . It holds for i = 0 by assumption.

Now suppose inductively that it holds for some i ≥ 0. For each j = 0, . . . , r , let

d j =
∑

v∈V (G)

(P(vir+ j = v | Xi+1) − 1/n)2.

Writing q j for the vector ofP(vir+ j = v | Xi+1) for v ∈ V (G), we have q j = Pq j−1,
for P as in Section 1.7. Note that P has an orthogonal basis of eigenvectors z1, . . . , zn ,
where the Perron–Frobenius eigenvector z1 has all entries 1/n. Since d j = ‖q j −z1‖2,
and q j−1 · z1 = ‖z1‖2, it follows that d j ≤ μ2

2d j−1. As Xi+1 ⇒ Ec
i ⇒ vir /∈ Air , we

have

P(vir = v | Xi+1) = P(vir = v | Xi )

P(Ec
i | Xi )

1v /∈Air ,

so d0 = k

n2
+

∑

v /∈Air

(
P(vir = v | Xi )

P(Ec
i | Xi )

− 1

n

)2

. (4)
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We partition V (G)\Air as (U−,U+), whereU− =
{
v : P(vir=v|Xi )

P(Ec
i |Xi )

< 1/n
}
. Now

∑

v∈U−

(
P(vir = v | Xi )

P(Ec
i | Xi )

− 1

n

)2

≤
∑

v∈U−

(
P(vir = v | Xi ) − 1

n

)2

≤ k

4n2
(5)

by the inductive hypothesis (3). We also have P(Ec
j | X)−1 ≤ (1 − 3k/2n)−1 ≤

1 + 2k/n, by (2), which follows from the inductive hypothesis (3). For any v ∈ U+,
we consider

(apv − 1/n)2 − a2(pv − 1/n)2 = a − 1

n

(
2apv − a + 1

n

)
<

2k

n2
· 5pv

4

with a = P(Ec
j | X)−1 ≤ 1 + 2k/n and pv = P(vir = v | Xi ). Summing over v,

using
∑

pv = 1 and
∑

v(pv − 1/n)2 ≤ k
4n2

by (3), we deduce

∑

v∈U+

(
P(vir = v | Xi )

P(Ec
i | Xi )

− 1

n

)2

<

(
1 + 2k

n

)2 k

4n2
+ 5k

2n2
<

3k

n2
. (6)

Combining (4), (5) and (6) gives d0 ≤ 17k
4n2

. Asμ2(G)2r < 1/17, we deduce dr ≤ k
4n2

,
i.e. (3) holds for i + 1, as required. �

Our next lemma provides a useful property of dissipative agential models. We
require the following definition. Let ≺ be a total ordering on the ephemeral types. We
say ≺ is an ephemeral ordering if for any ephemeral type x , no particle can become
type x after all ephemeral types prior to x in ≺ are eliminated.

Lemma 2.2 Any dissipative agential particle system has an ephemeral ordering.

Proof Consider any dissipative agential particle system. Recall that for such systems
every reaction involves onepersistent type andone ephemeral type.Wedefine a relation
≺ on ephemeral types as follows. If x and y are ephemeral types then x ≺ y if there is
some effective reaction with input including x and output including y. We will show
that ≺ can be extended to a total ordering, which will then be the required ephemeral
ordering, as after all types prior to x have been eliminated then all output ephemeral
particles must come after x .

First we note that≺ is irreflexive, i.e. we cannot have x ≺ x . Indeed, wewould have
an effective reactionwith input {A, x} for somepersistent type A andoutput including x
but not A (as the system is dissipative). However, repeating this reaction can eliminate
A, contradicting persistence. It remains to show that ≺ has no directed cycles, i.e.
we cannot find ephemeral types x1, . . . , xr such that x1 ≺ · · · ≺ xr ≺ x1. Suppose
that such a cycle exists, where for each i there is an effective reaction with input
{Ai , xi } for some persistent type Ai and output including xi+1 (where xr+1 := x1).
From any starting configuration with at least one particle of type x1, we can invoke
these reactions in order (all Ai are available by persistence). After these reactions, the
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total energy of ephemeral particles has not decreased, whereas the total energy has
decreased (as the system is dissipative), so the total energy of persistent particles has
decreased. However, repeating this cycle will then decrease the energy of persistent
particles until some persistent type is eliminated, which is a contradiction. �

Before proving the main result of the section, we pause to collect some standard
facts on mixing of random walks on expanders. Recall that P = 1

2 I + 1
2d A is the

transition matrix of the lazy random walk on G, which is a d-regular connected graph
on n vertices with eigenvalues 1 = μ1 ≥ μ2 ≥ · · · ≥ 0. Thus Pt

uv for any vertices
u, v is the probability that the lazy random walk started at u arrives at v at time t .
By a simple calculation (see e.g. [35, (3.1)], noting that the stationary distribution is
uniform),

|Pt
uv − 1/n| ≤ μt

2. (7)

Thus the mixing time is O(log n). To be precise, for t ≥ 3 log n
− logμ2

we have

1

n
− 1

n3
≤ Pt

uv ≤ 1

n
+ 1

n3
. (8)

We conclude this section by proving our main upper bound on general models.

Proof of Theorem 1.4 LetG be a graph on n vertices from a regular expander sequence.
Consider any dissipative agential particle system onG starting from any configuration
with at most n particles. As no reaction between persistent types is possible, to bound
the equilibrium time it suffices to prove that in time O(n log n) all ephemeral types
are completely eliminated (with high probability and in expectation). As noted above,
we can consider the modified process with lazy random walks.

We consider the ephemeral types according to the ephemeral ordering provided by
Lemma 2.2. It suffices to show for each type x in the ordering that, starting from any
configurationwhere all types prior to x have been eliminated, with high probability and
in expectation in time O(n log n), either (a) all particles of type x react effectively, or
(b) there are at least cn effective reactions, for some fixed c > 0. This indeed suffices,
as option (a) can only occur once for each ephemeral type and option (b) can only
occur O(1) times for a dissipative system. We fix some type A with some positive
probability of an effective reaction when meeting x ; note that A must be persistent.

We first consider a ‘mixing phase’, in which we run the process for time T1 =
K1n log n, for some large constant K1. For the analysis, we consider a parallel system
of non-interacting ‘fake’ particles, starting in the samepositions as the current particles,
andmaintain a partial pairing between the true particles and the fake particles (initially
a complete pairingwith each true particle paired to the fake particle starting at the same
vertex). Paired particles become unpaired if the true particle in the pair participates
in an effective reaction. In each step, we select a particle to take a random walk step
with probability proportional to its speed (as described in Section 1.2), where we
simultaneously consider true and fake particles, but count paired particles as a single
particle. If a pair is selected then they take the same randomwalk step in both systems.
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If an unpaired particle from one system is selected then the other system ignores this
step. We note that this coupling gives the correct marginal distribution for the true
system.

At any step, by persistence of A, for some fixed α > 0 we can assume there are at
least αn paired type A particles (otherwise there are αn effective reactions, so option
(b) holds). There is some constant C depending on the model such that there can be
at most Cn particles by the dissipative property. We say that a paired type A particle
is visible if at least α/2C proportion of the particles at its site (including itself) are
paired type A particles. Then there are at least αn/2 visible paired type A particles.

Throughout, the true and fake populations both have�(n) particles (by persistence),
so both take �(n log n) steps during the mixing phase. (Using the assumption that the
speeds are fixed independently of n; henceforth this will not be explicitly mentioned.)
Also, by any time t = �(n log n), with high probability each fake particle takes
�(log n) steps. Conditional on the initial locations of the fake particles, and the number
of randomwalk steps eachhas taken, all being�(log n), their locations are independent
random variables and approximately uniform in the sense of (8).

Next we let ε = zα/3, with z > 0 being a lower bound on the probability that
a type x particle will have an effective reaction with a visible paired type A particle
when it arrives at a site containing such a particle. We claim that for some η > 0,
with high probability at each time t with �(n log n) = t = O(n2), any set of εn
paired type A particles occupies at least ηn vertices. To see this, first note by (8) each
paired particle is at any given site with probability at most 2/n, independently given
the above conditioning. Let Et be the event that there is some set of ηn vertices that
includes the locations at time t of at least εn particles. Then

P(Et ) ≤
(
n

εn

)(
n

ηn

)
(2η)εn ≤ (exp(1 + η/ε)ε−1η1−η/ε)εn < ηεn/2

for η sufficiently small. The claim follows by a union bound over t .
Now we will consider the elimination of type x , via the Moving Target Lemma.

We will show that this occurs with high probability and in expectation by time T2 =
K2n log n, for some large constant K2. Fix any particle i of type x . We consider the
particle system up to the stopping time τ which is the minimum of T2 and the time
at which i undergoes an effective reaction. Thus i has not yet undergone an effective
reaction before time τ . We need to bound P(τ = T2). We reveal (a) which particle
moves at each time step and (b) all movements and reactions not involving i ; thus the
only remaining randomness is in the random walk and reactions of i . We associate
to every visible paired type A particle j independent Bernoulli random variables Z j

with probability z > 0, which we couple to the process so that if i meets j and this has
not previously occurred and Z j = 1 then an effective reaction occurs. By Chernoff
bounds, with high probability at all times t with �(n log n) = t = O(n2) there is
some set of εn paired type A particles j each having Z j = 1. By the previous claim,
we can assume that these occupy at least ηn vertices.

Now we apply Lemma 2.1, with k = ηn (we can assume η ≤ 1/8) and s = 2 log n,
where p = i and the sets Ai are the vertices occupied by the paired type A particles j
with Z j = 1, as described above.We conclude that with probability 1−O(n−6)within
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12η−1 log n steps taken by particle i it arrives at a vertex occupied by a particle with
which it has an effective reaction. Taking a union bound over i , with high probability
every particle of type x reacts in time �(n log n). Repeated trials give the same bound
in expectation. As discussed above, we accumulate O(1) such time periods, so this
completes the proof. �

3 Poissonised lonely walkers

In this section we prove our result on lonely walkers (Theorem 1.5), which easily
implies Corollary 1.6. We have previously noted that Corollary 1.7 is immediate from
Theorem 1.4 and Corollary 1.6. Next we show how Corollary 1.6 follows from The-
orem 1.5.

Proof of Corollary 1.6 assuming Theorem 1.5 Let G be a regular graph on n vertices.
Consider any persistent particle system on G, where all types have the same speed,
and the starting locations of particles are independent and stationary. We couple this
to a system of non-interacting walks corresponding to fake particles as in the proof
of Theorem 1.4, where the starting locations are independent and stationary and we
randomly assign types according to the starting distribution. We consider the coupled
process up to time 0.1n log n, noting that by persistence both systems have �(n)

particles at all times, so the true system takes �(n log n) steps with high probability.
By Theorem 1.5, with high probability there are ω(1) walks that never met another
walk. For any given type A of initial density c > 0, each such walk has probability c
of being assigned type A, so with high probability some such walk corresponds to a
surviving type A particle. �

It remains to prove the lower bound on lonely walkers. The key idea is to remove
dependencies via the following Poisson approximation.

Poissonised model: We start Po(1.1) particles at each vertex independently. Each
independently takes random walk steps at rate 1/n, for time N := 0.11n log n. How-
ever, we then discretise by considering the transitions between integer time points.
Thus we divide into N time intervals, and retain only the information of what move-
ments occur in an interval. Note that in each interval, each particle independently takes
Po(1/n) random walk steps.

We note that the initial distribution of particles is stationary under these dynamics:
at any time there are Po(1.1) particles at each vertex independently. This follows
from two well-known properties of Poisson variables, used henceforth without further
comment:

1. (Combining) If X ,Y are independent Poissons then X + Y is Poisson.
2. (Splitting) If X is Poisson and Y ∼ Bin(X , p) then Y is Poisson.

Before starting the proof, we record a tail bound for Poisson variables from [13]:

P(Po(λ) ≥ r) ≤ exp(−r log(r/λ) + r − λ) ∀r > λ. (9)
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Proof of Theorem 1.5 Let G be a regular graph on n vertices. Consider n independent
random walks, starting from stationarity, running for N ′ := 0.1n log n discrete time
steps, with one walk moving at each time step.

We attempt to couple this system to a subset of the particles of the Poissonisedmodel
described above, as follows. First, if the Poissonised model has at least n particles,
select n of these particles uniformly at random, and independently of their movement.
Then, for each time interval, order the movements occurring in that interval uniformly
at random. Now divide into time steps such that exactly one selected particle moves
in each time step. Provided the n selected particles move at least N ′ times in the
N time intervals, we can couple the particles of the original process to the selected
particles from the Poissonised model so that they follow the same movements for the
first N ′ time steps of the latter. This coupling succeeds provided it is possible to select
n particles, and these made at least N ′ movements in N time intervals, both of which
happen with high probability.

It suffices to show that the Poissonised model with high probability has �(n3/4)
particles that have never met another particle, as then with high probability �(n3/4)
of these were selected, and correspond to walks in the original system that have never
met any other walk.

For each particle and time interval of the Poissonised model, we define the vertices
visited by that particle in that interval to consist of the vertex occupied by that particle
at the start of that interval together every vertex that is the end of a step taken by that
particle during that interval, if any.

We say that two particles of the Poissonised model collide strongly if they are at
the same vertex at some integer time (i.e. at the start or end of some time interval). We
say that they collide weakly if they do not collide strongly, but there is some vertex
visited by both particles in the same time interval. For two particles to collide weakly,
one of the following must occur in some time interval:

• both particles move more than once;
• one particle moves more than once, visiting a vertex occupied by the other particle
at the start or end of the interval;

• both particles move exactly once, with the departure vertex of one being the arrival
vertex of the other.

We claim that with high probability only O(log n) particles have any weak col-
lisions. To see this, first note that P(Po(1/n) ≥ 2) = �(1/n2) and P(Po(1/n) ≥
3) = �(1/n3). Thus with high probability no particle ever moves more than twice
in a single time interval, and there are only O(log n) pairs (a, t) such that particle a
moves twice at time t , with all such pairs being disjoint (i.e. no repeated particles or
times). We assume this is the case and reveal the pairs (v, t) such that some particle
visits vertex v while moving twice in the interval [t −1, t]. By independence, the total
number of other particles at v either at time t or time t − 1, over all such pairs (v, t),
is Poisson with mean O(log n), so with high probability is O(log n) by (9). Similarly,
given that some particle moves from u to v in a given interval, the number of other
particles moving to u or from v in the same time interval, in total over all such moves,
is with high probability O(log n). The claim follows.
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For each vertex v, let Av be the event that exactly one particle starts at v and it
has no strong collisions. Let X be the number of these events that occur. It suffices to
show with high probability X = �(n3/4). We will show that E(X) = �(n3/4) and
Var(X) = Õ(E(X)) = o(E(X)2), which will suffice by Chebyshev’s inequality.

We define a trajectory to be a sequence T = (v
(T )
0 , . . . , v

(T )
N ) of vertices. We say

that a particle follows trajectory T if for each integer time t its position at time t is
v

(T )
t . We say trajectories T and T ′ meet at an integer time t if particles following these
trajectories occupy the same position at time t but not at time t − 1. Thus particles
collide strongly if and only if their trajectories meet.

By construction of the Poissonised model

(a) each particle independently has some fixed probability of following T ,
(b) the number NT of particles following T is Po(wT ) for some real ‘weight’wT , and
(c) the variables (NT )T are independent.

We call a trajectory valid if it has atmost log nmovements. By (9), the expected number
of particles following invalid trajectories is o(1), so we will ignore such trajectories,
as with high probability this does not affect the process.

Next we estimate E(X) = ∑
v P(Av). Fix v and consider the event that exactly one

particle starts at v and follows a trajectory T that moves at most 0.11 log n times. This
has probability 1.1 exp(−1.1)(1 − o(1)) ≥ exp(−1.1). We estimate the total weight
of trajectories T ′ meeting T as follows. For each time interval at which T moves,
the total weight of trajectories T ′ that meet T at the end of that interval is 1.1, so
summing over at most 0.11 log n such intervals gives weight at most 0.121 log n. For
each time interval during which some T ′ moves to meet T at the end of that interval,
the total weight of such T ′ is at most 1.1(1− e−1/n) < 1.1/n. Summing over at most
0.11n log n such intervals gives weight at most 0.121 log n. The total weight of such T ′
is then at most 0.242 log n < 1

4 log n, so with probability �(n−1/4) no such trajectory
has a particle. Summing over v we obtain E(X) = �(n3/4).

It remains to bound Var(X). For each v, we partition Av into events Bv,T that
exactly one particle starts at v, it follows trajectory T , and no other particle meets it.
Writing

Dv :=
∑

u

(P(Au | Av) − P(Au)) and Dv,T :=
∑

u

(P(Au | Bv,T ) − P(Au)),

we have Var(X) =
∑

v

P(Av)Dv and Dv =
∑

u

∑

T

P(Bv,T | Av)Dv,T .

Thus Var(X)/E(X) is a convex combination of the Dv,T , so it suffices to show that
each Dv,T = o(E(X)). In fact, we will show Dv,T = O(log3 n).

To bound Dv,T , note that starting from the unconditional process, setting the number
of particles following T to 1, setting the number following any trajectory T ′ meeting
T to 0, and leaving all other trajectories unchanged, we obtain a process with the same
law as the process conditioned on Bv,T .

Now, in order for some Au to occur after these changes but not before, the uncon-
ditioned process must have an occupied trajectory T ′ starting at u, such that T ′ meets
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some trajectory T ′′ occupied in the unconditioned process but not after the changes,
due to T ′′ meeting T . Thus Dv,T is bounded by the sum over u of the probability that
some such pair (T ′, T ′′) has particles in both trajectories, which is the sum over such
pairs of O(wT ′wT ′′).

To estimate this sum we introduce some further notation. We call a sequence S of
positions v

(S)
i , . . . , v

(S)
j with 0 < i < j a subtrajectory and say that a trajectory T is

consistent with S if v
(T )
t = v

(S)
t for all i ≤ t ≤ j . We write wS for the total weight

of all trajectories consistent with S. Also, we write w∗
S = wS(1 − e−1/n) ∼ wS/n

for the total weight of all trajectories consistent with S that move in the time interval
[i − 1, i].

We consider various cases for pairs (T ′, T ′′) as above. Suppose first that (a) T ′′
meets T ′ before it meets T , and (b) T ′ moves in the time interval immediately before it
first meets T ′′. Let t be the time when T ′ and T ′′ first meet, let S′ be the subtrajectory
of T ′ from its start at u up to time t , and let S′′ be the subtrajectory of T ′′ from t up
to its first meeting with T . We can bound the sum over such (T ′, T ′′) of wT ′wT ′′ by
the sum over such (S′, S′′) of wS′wS′′ . Now wS′wS′′ = 1.1wS , where S = S′ ◦ S′′ is
some subtrajectory from u to some vertex x visited by T of some length k ≤ 2 log n.
Note that S moves in the interval [t − 1, t] by (b), so there are O(log n) choices for
t . There are also O(log n) choices for each of x and k, so the total of such wT ′wT ′′ is
O(log3 n).

The remaining cases for (T ′, T ′′) are similar and also contribute O(log3 n). Indeed,
suppose next that again (a) T ′′ meets T ′ before it meets T , but now (b’) T ′ moves
in the time interval immediately before it first meets T ′′. Now there are O(n log n)

choices for t (defined as before), but we sum over wS′w∗
S′′ ∼ 1.1wS/n, so the bound

is again O(log3 n). The final case is (a’) T ′′ meets T before it meets T ′. Here we
consider S = S′ ◦ S′′ where S′ is the subtrajectory of T ′ from u to its first meeting
with T ′′ and S′′ is the reverse of the subtrajectory of T ′′ from its first meeting with
T to its first meeting with T ′. This case is simpler than (a), as S must move in the
interval preceding the meeting of T ′ and T ′′, and again the bound is O(log3 n).

In conclusion, Dv,T = O(log3 n), so Var(X) = Õ(E(X)) = o(E(X)2), as
required. �

4 Hitting times and toppling

In this section we analyse two problems on annihilation: the worst-case expected
extinction time (Proposition 1.3) and the particle-hole model (Theorem 1.2 on station-
ary reds). Both results use results on hitting times: for the former we use a result of
Coppersmith, Tetali and Winkler [16] on meeting times for adversarially controlled
random walks; for the latter we prove a lower bound on the hitting time of a small set
from a random position. For the particle-hole model, we also need an interpretation of
the model as an ‘abelian sandpile’, meaning that the order in which blues are ‘toppled’
does not matter, and to devise a method for overcoming dependencies between their
initial positions.
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For our bounds on the worst-case expected extinction time, we consider adversarial
meeting times, defined as follows. Let G be a graph. Start with two particles, one at
some vertex x and another at some vertex y. A strategy S is a possibly random rule that
decides for each possible history of the process which particle should take a random
walk step. The meeting time MS(x, y) is the expected number of steps until the tokens
meet. We use the following consequence of [16, Theorem 2]:

MS(x, y) ≤ 2Hmax(G). (10)

Proof of Proposition 1.3 Fix any graph G. For the lower bound, we consider p = 0,
i.e. stationary reds. Let x and y be vertices such that Hmax(G) = Hx (y). We consider
the starting configuration with k blue particles on x and k red particles on y. Then
the extinction time is the sum of k variables each with expectation Hx (y), so has
expectation kHmax(G).

For the upper bound, we consider an arbitrary partition of the particles into k
oppositely coloured pairs. For each pair, we count the total number of steps taken by
that pair until at least one of them is destroyed. This is bounded by a meeting time
MS(x, y), where one particle starts at x and one at y, with the strategy that at each time
step red moves with probability p and blue moves with probability 1− p. By (10) we
have MS(x, y) ≤ 2Hmax(G). After each annihilation, if this involves the destruction
of two particles from different pairs then we create a new pair consisting of the two
remaining particles from the previous pairs.

Since the number of particles decreases by 2 each time a new pair is created, at most
k − 1 new pairs are created, and so there are at most 2k − 1 pairs in total. Each step in
the process is counted by some pair, and the expected number of steps taken by each
pair is at most 2Hmax(G), so the expected extinction time is less than 4kHmax(G). �

Now we consider the case of stationary reds, i.e p = 0. The abelian property for
this case is discussed in [10], using an alternative ‘site-wise randomness’ construction
of the process. Each vertex is first equipped with a fixed list of instructions, where
each instruction moves a particle to some given adjacent vertex, and each instruction
is sampled independently at random. We ‘topple’ a site by performing the first unused
instruction in its list. A sequence α of sites is a legal toppling sequence if each instruc-
tion can be implemented, i.e. it topples a site with at least one blue particle. A toppling
sequence reaches equilibrium if it removes all blue particles. For a vertex v, we write
mα(v) for the number of times v appears in α. The following is rephrased from [10,
Lemma 1]; for further details see [40, Section 3].

Lemma 4.1 Fix an initial configuration. If α and β are both legal toppling sequences
that reach equilibrium then mα(v) = mβ(v) for every vertex v.

In particular, the total number of movements does not depend on the order in which
particles move, and so it suffices to prove the lower bound for some choice of toppling
sequence.

We also require the following lower bound on hitting times.

Lemma 4.2 Suppose A and B are disjoint non-empty vertex sets in a regular graph G.
Let HA(B) be the first time a random walk, started from a uniformly random vertex
of A, reaches a vertex of B. Then P

(
HA ≥ |A|

2|B|
) ≥ 1/2 and E(HA(B)) ≥ |A|+|B|

2|B| .
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Proof Consider a stationary randomwalk X0, X1, . . . onG, i.e. a randomwalk starting
from a uniformly random vertex, which is therefore at a uniformly random vertex at
each future step. For any positive integer k, the expected number of visits to B by
X1, . . . , Xk is k|B|/|V (G)|. On the other hand, this is at least the probability that
there is some such visit, which is at least P(X0 ∈ A)P(HA(B) ≤ k), so we deduce
P(HA(B) ≤ k) ≤ k|B|/|A|.

Taking k = ⌊ |A|
2|B|

⌋
proves the first statement.

For the second statement, noting that P(HA(B) = 0) = 0 as A ∩ B = ∅, we have

E(HA(B)) =
∑

k≥0

P(HA(B) > k) ≥
�|A|/|B|�∑

k=0

(1 − k|B|/|A|)

= (1 + �|A|/|B|�)(2 − �|A|/|B|�|B|/|A|)/2.

Writing x = |A|/|B| − �|A|/|B|� ∈ [0, 1) we calculate

2|B|E(HA(B))≥(|A|+|B|−x |B|)(1+x |B|/|A|)=|A| + |B| + x(1 − x)|B|2/|A|.

This gives the required bound. �
We will conclude this section by proving Theorem 1.2 on stationary reds. To illus-

trate the idea of the proof, one can consider a variant model where the reds are
positioned at some arbitrary set S of n/2 vertices and the blues each independently
start at a random vertex not in S. We can construct a toppling sequence by consid-
ering each blue particle in turn and revealing its starting location and random walk
steps until it hits a red particle not hit by a previous blue. The expected extinction
time is thus the sum of hitting times HA(B) as in Lemma 4.2, with |A| = n/2 and
|B| = n/2, n/2 − 1, . . . , 1, which is �(n log n). For the actual model where we
start one blue from each vertex not in S we will need a further device to overcome
dependencies.

Proof of Theorem 1.2 We show how to randomly construct a legal toppling sequence
with at least the required length, which is sufficient by Lemma 4.1. For ease of writing,
we assume that �n/2� is even.

First we reveal the locations of half the blues, and the empty vertex if n is odd,
giving a set S1 with |S1| = �n/4	. We build up a set S2, initially empty, as follows. We
consider each blue particle in S1 in turn and reveal its randomwalk steps until it reaches
V (G)\(S1 ∪ S2), then we add its current location to S2. This gives a legal sequence,
since every vertex in S1 either has one blue or is unoccupied, and every vertex in S2
either has two blues (if the particle originally there was blue) or is unoccupied (if
the particle originally there was red, and was annihilated by the blue that reached it).
After these steps we have a partition V (G) = S1 ∪ S2 ∪ U , where S2 ∪ U originally
contained �n/4� blue and �n/2� red particles, |S2| = �n/4� and |U | = �n/2�.

Now we reveal the number k of blue particles that started in S2, thus also revealing
that �n/4� − k blue particles started in U , �n/4� − k red particles started in S2 and
�n/2� − �n/4� + k red particles started in U . We note that the above construction
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of S2 was independent of the initial distribution of particles in S2 ∪ U , so with high
probability we have k = (1/12 + o(1))n, and given the value of k, the vertices of S2
that initially contained blue particles form a uniformly random k-subset of S2. After
following the toppling sequence above, each of these k vertices contains two blue
particles, and the remaining vertices in S2 are empty.

Next we reveal the colours of all particles in U and for each blue particle in U in
turn, move that particle until it hits a red particle in U . This gives a legal sequence
becauseU contains more red than blue particles and every particle in S1 ∪ S2 is either
unoccupied or contains two blue particles.We also note that this process of eliminating
particles inU is independent of the locations of the k vertices with two blue particles.
After this toppling sequence, we have a partition S1 ∪ S2 ∪ U1 ∪ U2 where S1 ∪ U1
is unoccupied, |S2| = �n/4� and k uniformly random vertices of S2 have two blue
particles each, and |U2| = 2k with one red particle at each vertex in U2.

Now, as in the illustration before the proof, we repeat the following procedure. At
each step, we reveal an occupied vertex v in S2 uniformly at random, move one blue
particle at v until it hits a red particle not hit by a previous blue, then do the same for
the other blue particle at v. We remove v from S2 and the two hit vertices from U2,
then continue to the next step.

Note that at each step we have |S2| > n/4 − k = (1 − o(1))n/6. As v is
uniform in S2, by Lemma 4.2 both of the blue particles at v hit U2 in expected
time at least |U2|−1(1 − o(1))n/12. By linearity of expectation, we obtain E(T ) ≥
(1 − o(1))n

∑n/12
i=1 (12i)−1 > 0.08n log n for n sufficiently large.

Furthermore, by Lemma 4.2, the hitting time for the first particle of a pair is at least
(1 − o(1))n|U2|−1/12 with probability at least 1/2, independently of earlier hitting
times, so we can write T ≥ (1 − o(1))n�, where � = ∑n/12

i=1 Xi (24i)−1 with the
Xi being independent Bernoulli random variables with parameter 1/2. Now � has
expectation 1

24 log n − O(1) and variance O(1), so by Chebyshev’s inequality with
high probability T > 0.04n log n. �

5 Few predators

We conclude this part of the paper by proving Theorem 1.8 on the predator-prey model
with few predators.

Proof of Theorem 1.8 We start with the lower bound. Similarly to the proof of Theorem
1.4, we will consider a parallel system of non-interacting ‘fake’ particles, where the
fake particles start from, and hence remain at, independent uniformly random posi-
tions. We will have 2k fake predator particles and n − k fake prey particles, so that
with high probability we can couple the starting distributions of true and fake parti-
cles via a partial pairing between particles of the same types in the same location, so
that every true predator particle is paired with some fake predator particle and n/2
true prey particles are each paired with fake prey particles. Here it is necessary to
have significantly more fake particles of each type than the number of true particles
we intend to pair, in order that the pairing succeeds with high probability despite the
different starting distributions of true and fake particles. For the lower bound, we need
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all true predator particles to be paired, so that unpaired particles cannot destroy paired
particles, but we do not need all prey particles to be paired. The predator pairs remain
paired throughout the process, whereas a fake prey particle becomes unpaired if its
paired true particle is eliminated. In each step, we select a particle to take a random
walk step with probability proportional to its speed, where we simultaneously con-
sider true and fake particles, but count paired particles as a single particle. If a pair
is selected then they take the same random walk step in both systems. If an unpaired
particle from one system is selected then the other system ignores this step.

We note that a paired true prey particle is destroyed only if its paired fake prey
particle meets a paired fake predator particle (since all true predator particles are
paired).We define the ‘fake time’ at any step as the total number of movements by fake
particles and let Xt be the number of meetings between opposite-type fake particles
by fake time t . Writing sA, sB for the speeds of predators and prey respectively, where
sA + sB = 1, at any given step when a fake particle moves, as fake particles are
independent and uniformly distributed, the probability of Xt increasing is at most

ksA
n−k
n + (n − k)sB

k
n

ksA + (n − k)sB
= k(n − k)/n

ksA + (n − k)sB
≤ k

nsB
.

Let τ be the stopping time with Xτ = n/4. Note that the true process has not yet
reached equilibrium, as at least n/4 paired true prey particles have not been eliminated.
As E(Xt ) ≤ kt

nsB
, we have P(τ ≤ t) ≤ P(Xt ≥ n/4) ≤ 4kt

n2sB
by Markov’s inequality,

so

E(τ ) =
∑

t≥0

P(τ > t) ≥
�n2sB/4k�∑

t=0

(
1 − 4tk

n2sB

)
≥ n2sB

8k
.

WriteMt be the number of movements by true particles by fake time t . ThenMτ is a
lower bound on the equilibrium time. To relateMτ to τ , we note that for any t < τ , with
probability at least 1/4 the fakemovement at fake time t is paired with a corresponding
true movement. Indeed, there are k paired predator particles and at least n/4 paired
fake prey particles, so the required probability is at least ksA+sBn/4

2ksA+sB (n−k) ≥ 1/4. It follows

that Mt − t/4 is a submartingale for t ≤ τ , so E(Mτ ) ≥ E(τ )/4 = �(n2/k).
Now we prove the upper bound, arguing similarly to the proof of Theorem 1.4.

We divide into rounds, where within each round with high probability at least half of
the remaining prey particles are destroyed. At the start of each round we couple to
a system of fake non-interacting particles, now starting each round with a bijective
pairing as in the proof of Theorem 1.4. Again, predator particles remain paired, but
prey particles can become unpaired. The true and fake populations differ by at most a
factor of two before half of the remaining prey particles are destroyed.

In each round i , writing mi for the number of remaining particles, we consider a
mixing phase of O(mi log n) steps and then O(min/k) additional steps for destroying
prey particles. Continuing to follow the proof of Theorem 1.4, with high probability
each fake particle takes �(log n) steps in the mixing phase, and conditional on the
initial locations of the fake particles, and the number of random walk steps each
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has taken, all being �(log n), their locations are independent random variables and
approximately uniform in the sense of (8).

We claim that with high probability at each time t in round i with �(mi log n) =
t = O(n2), the predator particles occupy at least k/4 positions. Indeed, if this fails
at some time t then when revealing the positions of predator particles one by one
there are at least 3k/4 times when we reveal a particle in one of at most k/4 occupied
positions. Any particle has probability at most 2/n of being in some given position,
so this event has probability at most 2k(k/2n)3k/4 = o(n−2) for k ≥ 4. The claim
follows by a union bound.

Now we apply Lemma 2.1 to each prey particle p in turn, with the moving target
sets Ai corresponding to k/4 locations of predator particles. For a suitable choice
of constants, with high probability each such p takes at least 12rn/k steps, so by
Lemma 2.1 hits a predator particle with probability at least 2/3, say, so with high
probability at least half the prey particles are destroyed in this round.Wemay rerun any
unsuccessful roundswithout changing the expected time bymore than a 1+o(1) factor.
Sincemi ≤ 21−i (n−k)+k and O(log n) rounds are needed, the total expected time is
O(n log n + k log2 n) = O(n log n) = O(n2/k) for mixing and O(n2/k + n log n) =
O(n2/k) for hitting, as required. �
Part II
Annihilation
In this second part of the paper we focus on the balanced two-type annihilation model,
for which the lack of persistence poses several additional challenges not seen when
analysing the models in the first part of the paper. Our main result here is Theorem
1.1. We divide the proof into two sections, presenting the upper bound in Section 6
and the lower bound in Section 7.

6 Annihilation upper bound

In this section we prove the upper bound for Theorem 1.1. While our main interest is
in the two-type model, our proof also applies to the one-type model, and sometimes
the one-type model is useful for giving a simpler illustration of the proof ideas (the
main simplification is that here all particles move at the same speed). We deduce it
from the following stronger result, where we do not need any specific lower bound on
the spectral gap, but get a constant that depends on the spectral gap.

Theorem 6.1 For anyμ > 0 there is C = C(μ) > 0 such that the following holds. Let
G bea regular graphonn verticeswith1−μ2(G) > μ. Consider one-typeannihilation
or balanced two-type annihilation with arbitrary speeds from an arbitrary valid initial
configuration. Let T be the extinction time. Then T ≤ Cn log n with high probability
and in expectation.

It suffices to focus on the high probability statement in Theorem 6.1. Indeed,
by increasing C we will see that we can get any polynomial failure probability. To
deduce the expectation statement in Theorem 6.1, we combine this with the bound
from Proposition 1.3 that the expected extinction time from any configuration is
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O(nHmax(G)) = O(n2), as the maximum hitting time of a regular expander is �(n)

(see e.g. [35, Corollary 3.3]).

6.1 A Hall matching argument

Similarly to the proof of the upper bound in Theorem 1.8, the overall plan for the
proof of the upper bound in Theorem 6.1 is to divide into rounds, where in each round
1/4 of the remaining particles are destroyed. Again we will use the Moving Target
Lemma, but we cannot use the simple sequential argument as for predator-prey, as for
annihilation the targets disappear as they are hit by other particles.

Instead, our plan will be to use a Hall matching argument to find a large collection
of (vertex-)disjoint pairs of oppositely coloured meeting fake particles, arguing that
this implies that many annihilations happen in the true process. Suppose there are k
particles of each type remaining. As before, we couple to a system of non-interacting
fake particles, where initially there is a bijective pairing of true and fake particles.
Then we have the following simple fact.

Lemma 6.2 Suppose that at least 	 disjoint pairs of oppositely coloured fake particles
have met after t fake steps. Then at least 	/2 particles of each type have been destroyed
after at most t true steps.

Proof For any i ≤ t , the first i fake steps correspond to j true steps for some j ≤ i .
If two fake particles of opposite colours reach the same vertex after i fake steps, then
either they annihilate one another within j ≤ i ≤ t true steps, or at least one of them
has been destroyed before that point. Thus we can choose at least one particle from
each pair which is destroyed within t true steps. �

To find the disjoint pairs assumed in Lemma 6.2, we will consider an auxiliary
bipartite graph where edges represent meeting pairs of oppositely coloured fake parti-
cles, to which we will apply the following version of Hall’s theorem (see e.g. [5, III.3,
Corollary 9]).

Theorem 6.3 Let H be a bipartite graph with parts A and B. Suppose that any S ⊆ A
has at least |S| − d neighbours in B. Then H contains at least |A| − d disjoint edges.

We now come to the main lemma of this subsection, in which we apply Hall
Matching and the Moving Target Lemma to find disjoint pairs as in Lemma 6.2,
provided the red particles are sufficiently spread out and the blue particles move
sufficiently many times.

Lemma 6.4 Let G be a regular graph on n vertices, 0 < c ≤ 1/4 and r , s, k be
positive integers with k ≤ n/2 and μ2(G)2r < 1/17. Consider a system of at least k
red particles and at least k blue particles all following non-interacting lazy random
walks on G, with one particle moving at each time step. Suppose the initial positions
X (0)
i of the blue particles are independent and satisfy

∑

v∈V (G)

(P(X (0)
i = v) − 1/n)2 ≤ ck

4n2
.
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Then with probability at least 1 − 0.8sk/4 there are

(i) at most 3k/4 blue particles that move at least 6nrs/(ck) times, or
(ii) at least k/2 red particles at some time occupying a set of fewer than ck vertices,

or
(iii) at least k/2 meetings of disjoint pairs of oppositely coloured particles.

Proof We can assume that there are exactly k particles of each colour, by restricting
attention to an arbitrary set of k red particles and the k blue particles with the most
movements. We reveal the times at which each particle moves and the position of the
red particles at each time. By independence of the initial positions of the walks, the
positions of the blue particles at each time are independent conditional on the times at
which each walk moves. Thus the events of different blue particles hitting any subset
of the red particles are independent conditional on the positions of the red particles at
each time.

We will bound the probability that events (i), (ii) and (iii) all fail. To do so, we
estimate the probability of the event (iii’) that one cannot find a subset A of k/2 red
particles and a subset B of k/2 blue particles with no meeting between a particle in A
and a particle in B. By Theorem 6.3 event (iii’) implies event (iii). We will show that
when events (i) and (ii) fail then it is very unlikely that event (iii’) fails.

Fix some A and B as above. As event (ii) fails, at each time i we can fix a ‘target’ set
Ai of ck vertices which are occupied by particles in A at time t ′. We will apply Lemma
2.1 with these target sets (replacing k by ck), which are likely to hit by particles in
B moving at least 	rs = 6nrs/(ck) times. As event (i) fails, the subset B ′ of such
particles in B has size |B ′| ≥ k/4. Applying Lemma 2.1, each blue particle in B ′ hits
some At ′ with probability at least 1− e−3s > 1− 20−s . Thus the probability that the
particles in A and B do not meet is at most 20−sk/2. Since there are at most 4k choices
for the sets A and B, the failure probability is at most 4k/20sk/2 ≤ 0.8sk/2. �

In order to apply Lemma 6.4, we will repeatedly need to show that most of the
blues move sufficiently many times in some period.

Lemma 6.5 Suppose there are k ≤ n/2 particles of each type. Fix r ′ ≥ 1. Consider
96nr ′ steps of the fake process. Then with probability 1 − o(n−4), at least 3k/4 blue
particles each move at least 24nr ′/k times.

Proof We will bound the probability that there is some set of k/4 blue particles where
each moves at most 24nr ′/k times. There are at most

(n/2
n/8

) ≤ (4e)n/4 sets of k/4 blue
particles. The total number of movements made by such a set is binomially distributed
with mean at least 12nr ′, since p ≥ 1/2. By a standard Chernoff bound, this is at
least 6nr ′ with probability at least 1 − exp(−3n/2). If it is, then at least one of those
particles moves at least 24nr ′/k times. The result follows from a union bound, since
(4e)n/4 exp(−3n/2) = o(n−4). �

We conclude this section by recording a bound on how many fake steps are needed
in the mixing phase of each round. Depending on the parameters, wemay have enough
time to mix all particles or only time to mix the faster blue particles.
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Lemma 6.6 Fix α > 0, let β = β(α) > 1 with α(β − logβ − 1) = 4, and define

tbluek := �2αβk log n	 and tallk := �p−1αβk log n	. (11)

Consider the fake process with k ≤ n/2 particles of each colour. Then with probability
at least 1 − n−3,

(i) by time tbluek each blue particle has moved at least α log n times,
(ii) by time tallk every particle has moved at least α log n times.

Proof Weconsider a union bound of probabilities that some given particlemoves fewer
than α log n times. This is at most the probability that a binomial random variable with
mean μ ≥ αβ log n (in the first case, using 1 − p ≥ 1/2) attains a value less than
μ/β. By a standard Chernoff bound, using the definition of β, this has probability at
most (e1/β−1β1/β)μ ≤ n−4. �
When applying Lemma 6.6 we shall always take the specific value α = −3/ logμ2 =
�(1) required to achieve approximate uniform distribution as in (8).

6.2 Bounded speed ratio

Here we prove Theorem 6.1 under the simplifying assumption of bounded speed ratio,
i.e. the red particles move at a speed p ∈ [c, 1/2] for some fixed c > 0. This allows
us to give a streamlined proof showcasing the main technique, to be followed by a full
proof for all p in Sect. 6.3.

As discussed above, our basic strategy is to divide into rounds, in each of which
we eliminate 1/4 of the remaining particles. Given a round that starts with k particles
of each type, we will use our usual coupling of true and fake particles to bound the
time taken by the round by the time for finding k/2 disjoint opposite-coloured meeting
pairs of fake particles; this is sufficient by Lemma 6.2 and achievable by Lemma 6.4.

We start with some basic reductions. We can assume that n is sufficiently large. We
can assume that at the start of any round k is at least some large constant, say 100.
Indeed, consider the process when only 100 particles of each colour remaining. Then
we may mix all blues with high probability in time O(log n), then wait until some
blue has moved 6rn log n times, which takes time O(n log n) with high probability.
By Lemma 2.1 with k = 1, this blue hits any fixed red particle with probability at least
1 − n−3. Repeating 100 times eliminates all remaining particles in time O(n log n)

with suitable probability.
To bound the time taken by any given round, we think of it as broken up into phases:

first a ‘mixing phase’ of tallk fake steps, as defined in Lemma 6.6, followed by a ‘hitting
phase’ of 96nr fake steps, with r as in Lemma 6.4. The round ends as soon as k/4
particles of each colour have been destroyed (which may happen during the mixing
phase). By Lemma 6.6, if the mixing phase runs to completion then with probability
at least 1− n−3 mixing ‘succeeds’, meaning that every particle moves at least α log n
times.

Assuming that mixing succeeds, we reveal the positions of the blues before the
mixing phase and the number of times each has moved within it. Then the conditional
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distribution of the blues is independent with each being approximately uniform as in
(8), which is easily good enough to apply Lemma 6.4. This tells us that during the
hitting phase, with probability at least 1 − 0.8k/4 there are

(i) at most 3k/4 fake blue particles that move at least 24nr/k times, or
(ii) at least k/2 fake red particles at some time occupying a set of fewer than k/8

vertices, or
(iii) at least k/2 meetings of disjoint pairs of oppositely coloured fake particles.

Here (iii) is our desired outcome for hitting to ‘succeed’, and we can assume that (i)
does not hold by Lemma 6.5. Thus we need to bound the probability of (ii), as follows.

Lemma 6.7 At any step in the hitting phase, the probability that there is some set of
k/2 fake red particles occupying fewer than k/8 vertices is at most (1.5k/n)3k/8.

Proof By approximate uniformity as in (8), a union bound over
( k
k/2

)
choices for the

set of particles and
( n
k/8

)
choices for the set of vertices gives

(
k

k/2

)(
n

k/8

) (
k

8

(
1

n
+ 1

n3

))k/2

≤ (1 + O(k/n2))2k
(
8en

k

)k/8 (
k

8n

)k/2

≤ 2

(
ek3

2n3

)k/8

≤ (1.5k/n)3k/8, as 100 ≤ k ≤ n/2.

�
For 100 ≤ k ≤ n/2, the bound in Lemma 6.7 is maximised at k = 100, and is

easily O(n−50), say. Thus with suitably high probability mixing and hitting succeed
throughout the process. There are O(log n) rounds, so the total time spent in hitting
phases is at most O(n log n). The total time spent in mixing phases is bounded by
the sum of tallk := �p−1αβk log n	 for k = (3/4)i n, i ≥ 0. This is also O(n log n),
by our assumption that p is bounded away from zero. This completes the proof of
Theorem 6.1 in this case.

6.3 General speeds

Now we will prove Theorem 6.1 in full generality. Our approach is similar to that for
the case of bounded speed ratio, except that we may not have time to mix the slower
red particles, so we need some other way to argue that they are well-distributed. We
consider up to three separate regimes according to the number of remaining particles.
In the first ‘dense’ regime, the red particles will be well-distributed because most of
them have not had enough time to move from their starting locations. In the third
‘sparse’ regime, there are so few particles that we have time to mix the reds. In the
second ‘intermediate’ regime, neither of these approaches works, but as it is relatively
narrow we can afford a worse distribution of the red particles.
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We define these regimes in terms of the number k of remaining particles
in each colour, as follows. The first regime covers all k greater than k∗ :=
max{c1 pn log n, 20 log n}, for some constant c1 depending on the spectral gap of
G to be defined below, the third regime covers all k ≤ pn, and the second regime
covers all intermediate values.We note that over the second regime k varies by a factor
at most c1 log n (since we shall have c1 ≥ 20).

We start by indicating how the third regime is handled by the same proof as in the
previous subsection. Recall that in the round starting with k particles of each colour,
we reduce from k to 3k/4, analysing the time taken by considering a mixing phase
of fake time tallk followed by a hitting phase of fake time 96nr . We showed that with
suitably high probability mixing and hitting succeed throughout the process. There are
O(log n) rounds, so the total time spent in hitting phases is at most O(n log n). The
total time spent in mixing phases is bounded by the sum of tallk = �p−1αβk log n	 for
k = (3/4)i pn, i ≥ 0, which is also O(n log n), as required. Thus with high probability
in the third regime extinction occurs in time O(n log n).

For the first regime, we use the same analysis, except that we can only allow a
mixing phase of fake time tbluek . This ensures that the total time spent in mixing phases
is bounded by the sum of tbluek = �2αβk log n	 for k = (3/4)i n, i ≥ 0, which is
O(n log n). Now success of the mixing phase means that every fake blue particle
moves αn times. The previous proof will still show that mixing and hitting succeed
with high probability if we can find a replacement for Lemma 6.7. This is achieved
by the following lemma, which implies that with high probability throughout the first
regime there is no set of k/2 red particles occupying a set of fewer than k/4 vertices.

Lemma 6.8 The probability that more than k∗/4 red particles move in time c1
20n log n

is at most n−4.

Proof A standard Chernoff bound gives that for a binomial random variable withmean
at most a/5 has value exceeding a with probability at most (e4/5/5)a < e−4a/5. Now
the number of movements of red particles in c1

20n log n time steps is binomial, with
expectation c1

20 pn log n ≤ k∗/20. Thus this exceeds k∗/4 with probability at most
e−k∗/5, and since also k∗ ≥ 20 log n, this gives the desired bound. �

Choosing c1 ≥ 20(8αβ + 96r/ log(4/3)) we see that in time c1
20n log n the first

regime succeeds with high probability, meaning that we reduce k to k∗.

6.3.1 The intermediate regime

Themain challenge of the intermediate regime is that we cannot rule out the admittedly
implausible scenario that the slow red particles huddle together on a few sites that are
hard for the blue particles to hit. We start with a lemma showing that at least this
scenario cannot be too extreme. (A similar bound appears for the complete graph in
[12], but their argument is specific to that case.)

Lemma 6.9 Position one red particle at every vertex of a regular graph of order n.
Consider a process where in each step an arbitrary (possibly empty) set of red particles
is removed and then a uniformly random particle takes a random walk step. Then with
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probability 1−O(n−3), no vertex has more than 8 log n/ log log n red particles at any
point in the first n2 steps.

The intended application of this lemma is that at time 0 all of the ‘red’ particles
that should be blue are removed, and thereafter red particles will be removed by
annihilation in some random way for which we consider an adversarial model. It is
an immediate consequence of the following lemma, as by Chernoff bounds with high
probability every particle moves at least n2 times in the first n3 steps if we ignore
removals, so no matter how the removals are chosen these n3 steps cover at least n2

steps (or all the steps, if fewer).

Lemma 6.10 Position one red particle at every vertex of a regular graph of order n.
Consider a process where in each step a uniformly random particle takes a random
walk step. Thenwith probability 1−O(n−3), no vertex hasmore than 8 log n/ log log n
red particles at any point in the first n3 steps.

Proof We will find it more convenient to analyse a similar process with n green parti-
cles independently positioned at uniformly random vertices. We say that a red particle
is ‘covered’ if at least one green particle was placed at its starting position; note that
each red particle is uncovered with probability (1 − 1/n)n < 1/e. Pair each covered
red particle with a green particle starting in the same position. We couple the green
process to the red process as follows. If a covered red particle is selected to move at a
given time step, select the corresponding green particle andmove it to the same vertex.
Otherwise, select and move an unpaired green vertex uniformly at random.

Suppose that k red particles occupy a given vertex at a given time step. Since the
expected number of these that are uncovered is at most k/e, Markov’s inequality gives
a constant probability that at most k/2 of them are uncovered, and hence that at least
k/2 green particles occupy that vertex at that time. Thus it suffices to prove that the
probability of some vertex having more than 8 log n/ log log n green particles at any
time step is O(n−3).

Since the green particles are in the stationary distribution, for any vertex v and time
t the number of green particles at v at time t has distribution Bin(n, 1/n). For any
r ≥ 3 we have

P(Bin(n, 1/n) = r) < r !−1(1 − 1/n)n < P(Po(1) = r),

so applying (9) with r = 8 log n/ log log n and λ = 1 gives the probability bound

exp

(−8 log n

log log n
(log log n − log log log n + log 8) − 1

)
= n−8+o(1).

The result follows from a union bound over all vertices v and t ≤ n3. �
Now we proceed to the analysis of the process. As in the first regime, in each

round we have a mixing phase of fake time tbluek . Again mixing succeeds with high
probability, so we can assume that every fake blue moves at least αn times in each
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round. For the hitting phases, we do not attempt to show that each is small but instead
focus on bounding their total time.

We will apply Lemma 6.4 to bound the hitting phases, replacing our previous
c = 1/4 in (ii) by ck = max{ log log n16 log n , 1/k}. This is justified by Lemma 6.9: we can

assume that at no point do we ever have more than 8 log n
log log n red particles at a given

vertex. We say k is ‘small’ if ck = 1/k and ‘large’ otherwise. A convenient unit
for measuring time will be B := 1920rn log n/ log log n; we will call a period of B
fake steps a ‘block’. For (i), in any s′ blocks, by Lemma 6.5 at least 3k/4 fake blue

particles each move at least s′B/4k = 480nrs′ log n
k log log n times. If k is large, by Lemma

6.4 with s = 5s′, the probability of the hitting phase lasting for more than s′ blocks
is at most 0.85s

′k/4 < zs
′
, where z = exp(−4 log n

log log n ). If k is small, we instead apply

Lemma 6.4 with s = � 80s′ log n
log log n �, and easily have 0.8sk/4 < zs

′
since k ≥ 20.

In other words, the number of blocks in any round is stochastically dominated by a
geometric random variable with parameter 1− z, i.e. to bound the number of blocks in
a round we generate independent Bernoulli(z) variables until the first 0. Our bound for
the total of the hitting phases is B times the total number of Bernoulli variables needed
across all rounds. Since at most log4/3(c1 log n) rounds take place, the probability of
needing more than m = log4/3(c1 log n) + log log n Bernoulli variables is at most
P(Bin(m, z) ≥ log log n), which can be bounded by 2mzlog log n = Õ(n−4). Thus, with
suitably high probability the total time for this regime is O(B log log n) = O(n log n),
as required.

7 Annihilation lower bound

In this final section of the paper, we conclude the proof of Theorem 1.1 by establishing
the lower bound.

7.1 One-type annihilation

To illustrate the main ideas in a simpler setting, we start by considering one-type
annihilation, as follows.

Theorem 7.1 Let G be a regular graph on n vertices with spectral gap more than 1/3.
Consider one-type annihilation on G and let T be the time until only one particle
remains. Then T ≥ cn log n with high probability and in expectation, where c is an
absolute constant.

The main action in the proof will take place while the number k of remaining
particles satisfies n1−x ≥ k ≥ nx for some constant x ∈ (0, 1/2). The key step is to
show that in this regime there are constants c1, c2, c3 > 0 so that starting from any
configuration A of k particles, with probability at least c1 we need at least c2n steps
to reduce the number of particles to c3k. This will suffice to prove the result, as then
with high probability �(log n) such intervals take �(n) steps to traverse. The proof
of this key step has three main ideas:
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1. We consider a mixing phase (with the usual coupling of true and fake particles)
and use the explicit spectral gap to argue that only a small constant proportion of
the particles return to the starting set A during the mixing phase.

2. Considering the survival during the mixing phase of particles not returning to A,
we note that (a) not many can be annihilated by the few particles that do return to
A, and show that (b) annihilations between two particles both not returning to A
can be bounded similarly to those returning to A by a trajectory reversal argument.

3. Once we have enough surviving mixed particles we are essentially done, as then
at each step collisions occur with probability O(k/n), so with constant probability
�(n) steps are required for �(k) collisions.

Before starting to fill in the details of this sketch, we record some further facts on
mixing and hitting for random walks. We consider the lazy random walk X0, X1, . . .

on some multigraph on n′ vertices, with stationary distribution π and 1−μ2 bounded
away from zero.

(a) The return time H+
v is the first positive time at which the walk started at X0 = v

reaches v; it has mean E(H+
v ) = 1/πv (see [2, Lemma 5 of Chapter 2]).

(b) A strong stationary stopping time τ is a stopping time such that Xτ is stationary
and independent of τ . By (8) and [31, Lemma 24.7] there is such τ with E(τ ) =
O(log n′). By ignoring the first log2 n′ steps, there is such τ with τ ≥ log2 n′ and
E(τ ) = O(log2 n′).

(c) The expected hitting time of v starting from π is

Eπ (H(v)) = π−1
v Zvv, where Zvv :=

∑

t≥0

(Pt
vv − πv) ≤ (1 − μ2)

−1. (12)

Here the equality is [2, Lemma 11 of Chapter 2], and the inequality, noted in [14,
Lemma 3], is immediate from |Pt

vv − πv| ≤ μt
2, which is the general form of (7).

We also require some notation and a simple result for ‘collapsed chains’ (see [2,
Section 7.3 of Chapter 2 and Corollary 27 of Chapter 3]). Given A ⊂ V (G), we
write G/A for the multigraph obtained by contracting A to a single vertex vA. This
is defined on the vertex set V (G/A) = (V (G)\A) ∪ {vA}. For each x ∈ V (G) write
xA = vA if x ∈ A or xA = x otherwise. Then for each edge xy of G we have an edge
xAyA of G/A, included with multiplicity and allowing loops at vA. The variational
characterisation of eigenvalues implies μ2(GA) ≤ μ2(G), i.e. the spectral gap of GA

is at least as good as that of G.
Throughout the remainder of this subsection we fix G as in Theorem 7.1. By

decreasing cwe can assume that n is sufficiently large.We are now ready to implement
the first part of the above sketch, with the following definition and accompanying
lemma.

Definition 7.2 Given A ⊂ V (G) and a time T , we let pA,T be the probability that a
lazy random walk on G starting from the uniform distribution on A visits A before
time T after at least one non-lazy step.

Lemma 7.3 Fix x > 0 and A ⊂ V (G) with |A| < n1−x . Then pA,log2 n ≤ 2μ2 − 1 +
o(1).
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Proof Let H+
A be the first return time to A of a lazy random walk starting from the

uniform distribution on A. We consider H∗
A defined in the same way except that we

require at least one non-lazy step. We claim that

E(H+
A ) = n/|A| and E(H∗

A) = 1 + 2n/|A|. (13)

To see this, we consider the natural coupling of such a random walk to a random
walk in G/A started from vA, observing that H+

A has the same distribution as H+
vA
.

The stationary probability of vA is |A|/n, so E(H+
A ) = E(H+

vA
) = n/|A|. Writing E

for the event that the first step is lazy, we have E(H+
A ) = E(H+

A 1E ) + E(H+
A 1Ec ) =

1
2 +E(H+

A 1Ec ). Also, H∗
A is obtained bywaiting for the first non-lazy step, which takes

expected time 2, then adding E(H+
A 1Ec |1Ec ) = 2E(H+

A 1Ec ). Therefore E(H∗
A) =

2 + 2E(H+
A 1Ec ) = 2 + 2(E(H+

A ) − 1/2) = 1 + 2n/|A|.
Now we let τ be a strong stationary stopping time with τ ≥ L := log2 n and

E(τ ) = O(L). We consider the estimate

E(H∗
A)=E(H∗

A1H∗
A<L)+E(H∗

A1H∗
A≥L)≤ L+(1 − pA,L)(E(τ )+(1 − μ2)

−1n/|A|),

where for the second term, given that the return time is larger than L , we bound it by
waiting until time τ and then using (12). Combining with (13), as E(τ ) = O(L) =
o(n/|A|), we deduce pA,L ≤ 2μ2 − 1 + o(1). �

The next lemma implements the second part of the above sketch, in which we
consider the probability that a fixed particle starting at some v in A hits some other
particle before either has returned to A. For later use in analysing two-type annihilation,
we prove a more general lemma in which we only consider collisions with particles
starting in some set B (this will correspond later to the other colour).

Definition 7.4 Given B ⊂ V (G), v ∈ V (G)\B and a time T , we let pv,B,T be the
probability that a lazy random walk on G starting from v visits B before time T .

Lemma 7.5 Let C > 0, x ∈ (0, 1/2) and A ⊂ V (G) with nx < k = |A| < n1−x . Fix
v ∈ A and B ⊆ A\{v}. One walker starts at each vertex of A and at each time step a
randomly selected walker takes a lazy random walk step on G. For each w ∈ B, let
Ew be the event that the walkers started from v and w collide within T k steps, where
T := C log n, with the former not having reached B and the latter not having returned
to B. Let X = ∑

w∈B 1Ew . Then E(X) ≤ (1 + o(1))pv,B,3T .

Proof As in Sect. 3, it will be convenient to consider a Poissonised model, where each
particle independently takes Po(1/k) lazy random walk steps in each time interval.
Then with high probability there are T k movements within (1 + o(1))T k steps and
each particle takes (1+ o(1))T steps. Let E ′

w be the event that the particle started at v
reaches B within 3T time intervals, withw being the first vertex of B it reaches. Clearly
pv,B,3T = ∑

w∈B P(E ′
w), and so it is sufficient to prove thatP(Ew) ≤ (1+o(1))P(E ′

w)

for each w ∈ B. Here we can replace Ew by the same event with the additional
restriction that neither particle moves away from the collision site in the same time
interval that the collision occurs, i.e. we may assume that the two particles coincide
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at some integer time. Indeed, it is not hard to see that this change affects the overall
probability by a factor 1 + O(1/k) = 1 + o(1).

Now we will implement the trajectory reversal strategy mentioned in the proof
sketch. This will let us compareP(Ew)withP(E ′

w) indirectly via the following closely
related ‘occupancy variables’. We relate Ew to the variable Y , defined by considering
the first 1.5T time intervals, setting Y = 0 if there is no collision satisfying Ew, or
otherwise considering the first such collision, and letting Y be the number of time
intervals that both particles remain at the collision site. We claim that E(Y ) = (1 −
o(1))kP(Ew). This holds, as if a collision satisfying Ew occurs, then it does so within
time T , and within the remaining time period of Y the expected time before either
particle leaves is (1− o(1))k, as the rate of either particle leaving is (1/2)(1/k + 1/k)
by Poisson splitting and combining. Similarly, we define Y ′ with E(Y ′) = (1 −
o(1))kP(E ′

w) by considering the first 3T time intervals, setting Y ′ = 0 if the walker
started at v does not first hit B at w, or otherwise letting Y ′ be the number of time
intervals ending at an even time that the walker remains at w after this first hit.

Now consider any trajectories S, S′ for the particles started at v,w that lead to some
time interval [t − 1, t] being counted in the random variable Y . Following S and then
the reverse of S′ gives a trajectory S′′ with P(S′′) = P(S&S′) that leads to [2t −1, 2t]
being counted for Y ′. Summing over such trajectories we deduce E(Y ) ≤ E(Y ′), and
so P(Ew) ≤ (1 + o(1))P(E ′

w), as required. �
Weconclude this sectionwith the proof of the lower bound for one-type annihilation.

Proof of Theorem 7.1 Let G be a regular graph on n vertices with spectral gap more
than 1/3, i.e.μ2 = 2/3−c for some c > 0. Consider one-type annihilation onG using
lazy random walks from any starting configuration and let T be the extinction time.
We fix x ∈ (0, 1/2) and consider the regime while the number k of remaining particles
satisfies n1−x ≥ k ≥ nx . As discussed at the beginning of the section, it suffices to
show the following ‘key step’: in this regime there are constants c1, c2, c3 > 0 so that
starting from any configuration A of k particles, with probability at least c1 we need
at least c2n steps to reduce the number of particles to c3k.

Following the sketch at the beginning of the section, we consider a mixing phase
of �(k log n) steps (with the usual coupling of true and fake particles). With high
probability each fake particle takes �(log n) steps in this phase. By Lemma 7.3 the
expected number of such particles that return to A is at most (2μ2 − 1 + o(1))k =
(1/3−2c+o(1))k. The same bound applies to the number of particles annihilated by
such particles. ByLemma 7.5, taking B = A\{v} and summing over v, the same bound
applies to the expectednumber of suchparticles that collidewith another particle before
either has returned to A. Excluding these three sets leaves a set of particles surviving
the mixing phase with expected size at least (6c−o(1))k. Letting E1 be the event that
at least 2ck particles survive the mixing phase, we have P(E1) > 2c.

After the mixing phase, at each time step we bound the probability of a collision
of true particles by the probability of a collision of fake particles, which is at most
2k/n, say. We let E2 be the event that there are at least ck such collisions in the
c2n/2 steps following the mixing phase. Then P(E2) ≤ c by Markov’s inequality,
so P(E1 ∩ Ec

2) > c. On this event, at least ck true particles have survived, so in the
c2n/2 steps following the mixing phase, by Chernoff, with high probability there are
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at least c3n/4 steps by true particles. Thus we have established the required key step
with c1 = c3 = c and c2 = c3/4. �

7.2 Two-type annihilation

Nowwe consider the lower bound for two-type annihilation, which introduces several
complications not seen in the one-type model. Firstly, we need to adapt the previous
argument to allow for colours of differing speeds. Secondly, the potential to have
multiple particles at the same location causes two issues:

1. The events that a first returns to A at the location of a given other particle b are
not disjoint for two different choices of b at the same vertex,

2. Our previous argument for particles escaping from A works for a particle chosen
from a uniformly random occupied site, so does not say much about escape of a
uniformly random particle if the particles are concentrated at ‘bad’ sites in A.

Our approach is to first consider representative walks obtained by starting a single
particle at each occupied site. The argument from the one-type model can be adapted
to show that with high probability a positive proportion of these representatives are
unlikely to encounter any opposite-coloured representatives in �(n) steps. The key
idea is that we can then use Reimer’s inequality [37] to argue that when the additional
particles on multiply-occupied sites are taken into account, an n−o(1) proportion of
these particles still survive. While we cannot afford repeated loss of an n−o(1) factor,
we then show that the surviving particles are sufficiently well-behaved that we can
thereafter follow the approach used for the one-type process.

7.2.1 Very slow reds

Our argument requires an adaptation of the trajectory reversal argument in Lemma 7.5
which breaks downwhen the red particles are very slow.We therefore start by disposing
of the case p ≤ n−2/3, which is not hard to handle more directly, and in fact our result
here is stronger, as no quantitative assumption about expansion is needed: it applies
to any expander sequence.

The first observation for this regime is that with high probability at most n1/3 log2 n
red movements occur during the first n log n steps. We consider stages where k = nc

particles of each colour remain with c ≥ 1/2. If we have not yet taken enough steps
for the required lower bound then the red particles occupy at least (1−n−0.1)k distinct
vertices. The following lemma will therefore complete the proof for this regime.

Lemma 7.6 There exist constants c1, c2, c3 and n0 (depending only on μ2(G)) with
the following property. Let n ≥ n0 and p ≤ n−2/3. Fix a starting state with k = nc

particles of each colour, where 1/2 ≤ c ≤ 3/4, arranged arbitrarily subject to having
at least (1 − 1/ log n)k vertices occupied by red particles. Then with probability at
least c1, at least c2n steps are required to reduce to c3k particles of each colour.

The proof of Lemma 7.6 uses the following fact about independent Bernoulli ran-
dom variables: if the expected number of successes is bounded, but the probability of
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at least one success is high, then there must be some individual trial that has a high
probability of success.

Lemma 7.7 Fix x ∈ (0, 1) and let p1, p2, . . . be any sequence satisfying 0 ≤ pi ≤ x
for each i and

∑
i pi ≤ y. Then

∏
i (1 − pi ) ≥ (1 − x)y/x .

Proof It is sufficient to show for any fixed 	 ≥ y/x that
∏	

i=1(1 − pi ) ≥ (1 − x)y/x .
Given 	, by compactness, we can consider a sequence p1, p2, . . . that minimises∏	

i=1(1 − pi ). Clearly
∑	

i=1 pi = y. Observe that if 0 < pi ≤ p j < x for some i �=
j ∈ [	] thenwe can increase the product by replacing (pi , p j ) by (pi−δ, p j+δ). Thus
p1, p2, . . . can have at most one term not equal to 0 or x . Writing α = y/x−�y/x�we
can assume that pi = x for i ≤ �y/x�, p�y/x�+1 = αx and pi = 0 for i > �y/x�+ 1.
Since 1 − αx ≥ (1 − x)α for x, α ∈ [0, 1], the result follows. �
Proof of Lemma 7.6 With high probability at most k/ log n red movements occur in
the next n steps, so we may assume at least k−2k/ log n red particles start at different
vertices and do not move. As in the proof for one-type annihilation, it is sufficient to
show that with constant probability a constant proportion of these survive the mixing
phase.

The expansion condition implies that we may choose some constant q, depending
only on the spectral gap, such that at least 2/3 of the occupied vertices are ‘good’ in
that a walker starting from that vertex will return to the occupied set within the mixing
phase with probability at most q. If a constant fraction of blues are in good spots,
we are done, since this implies a constant fraction of the blue particles, and hence a
constant fraction of the red, will survive. Otherwise almost all the blues are in bad
spots, and there are at least twice as many good reds as blue spots.

For each blue spot, there is at most one good red spot which has more than 1/2
probability of being the first one hit. Each other good spot has at most probability
(1+q)/2 of being hit at all – since it has at most probability q of being hit given that it
is not the first one hit. Moreover, the total over all good red spots of the probability of
that spot being hit is at most (1− q)−1, since this is a bound on the expected number
of times a particle hits a good spot.

In particular, there are at least k/2 good red spots such that no individual blue has
more than (1+ q)/2 probability of reaching that spot. Note that (1− q)−1 is an upper
bound on the expected number of good red spots hit by any given blue particle. Thus
at most k/4 good red spots will be hit by more than 4(1 − q)−1 blue particles in
expectation.

Fix a red spot, and let (pi )ki=1 be the probabilities of each blue particle reaching
that spot. By the analysis above, there are at least k/4 red spots with the property that
maxi pi ≤ (1 + q)/2 and

∑
i pi ≤ 4(1 − q)−1. It follows from Lemma 7.7 that each

such red has constant probability of avoiding being hit. Thus, by Markov’s inequality,
a constant fraction of red particles survive the mixing phase with constant probability.

�
7.2.2 Reds are not too slow

Henceforthwe can assume p ≥ n−2/3. Let A be the occupied setwhen k = nc particles
of each colour remain, for c in some suitable range.Consider starting one representative
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lazy random walk per site. By the proof of Lemma 7.3, the probability of a uniformly
random representative non-trivially returning to A before taking T := εn/k steps is
pA,T ≤ 2μ2 − 1+ oε(1). We fix some parameter q to be optimised later. We say that
v ∈ A is good if pv,A,T ≤ 1 − q. Thus a good representative has probability at least
q of not returning non-trivially to A within time T . As pA,T = Ev(pv,A,T ), at least
σk − o(k) vertices are good, where (1 − σ)(1 − q) = 2μ2 − 1.

Next we consider an optimisation problem according to the distribution of colours
at good vertices. Suppose that A has xi k sites of colour i , of which σi k are good, for
i = 0, 1, labelling ‘red’ as 0 and ‘blue’ as 1. Then x0+x1 = 1 and σ0+σ1 ≥ σ −o(1),
so we can fix i with σi/x1−i ≥ σ . We can assume x1−i = �(1), as otherwise we
can choose 1 − i instead. The easier case is i = 1 (blue is good), so we will consider
the case i = 0 (red is good). Our next lemma is an adaptation of Lemma 7.5. The
intended application is that v is a good red representative and B is the set of blue
representatives. The conclusion is that if the reds are not too slow then we have the
analogue of the second part of our argument in the one-type case.Wemay in particular
assume p ≥ n−2/3, and so the condition below will easily hold provided c ≤ 1/4.

Lemma 7.8 Let c, ε > 0, p ∈ (0, 1)with p > ε−2k/n, v ∈ V (G) and B ⊂ V (G)\{v}
with k = |B| = nc. One walker starts at each vertex of B ∪ {v}. The walkers indepen-
dently take lazy random walk steps on G, at rate p/k for v and (1 − p)/k for B. For
each w ∈ B, let Ew be the event that the walkers started from v and w collide within
time pkT with T := εn/k, with the former not having reached B and the latter not
having returned to B. Let X = ∑

w∈B 1Ew . Then E(X) ≤ (1 + oε(1))pv,B,3T .

Proof As in Lemma 7.5, it suffices to show P(Ew) ≤ (1 + o(1))P(E ′
w) for each

w ∈ B, where E ′
w is the event that the particle started at v reaches B within 3T steps,

with w being the first vertex of B it reaches. Instead of discretising time, we relate
Ew to the variable Y , defined by considering continuous time up to time 1.5pkT ,
setting Y = 0 if there is no collision satisfying Ew, or otherwise considering the first
such collision and letting Y be the length of time that both particles remain at the
collision site. Then E(Y ) = (1 − oε(1))2kP(Ew), as pkT > ε−1k and the rate of
either particle leaving is (1/2)(p/k + (1 − p)/k) = 1/2k. Similarly, we define Y ′
with E(Y ′) = (1 − o(1))2p−1kP(E ′

w) by considering continuous time up to time
3kT = 3εn, setting Y ′ = 0 if the walker started at v does not first hit B at w, or
otherwise letting Y ′ be the time that the walker remains at w after this first hit.

Now consider any trajectories S, S′ for the particles started at v,w that lead to some
time segment (t, t+dt) being counted in the random variable Y . Let S′′ range over the
trajectories obtained by following S to some time in (t, t +dt) and then the reverse of
S′ with a time change factor 1−p

p . Then P(S′′) = P(S&S′) and S′′ leads to counting

p−1(t, t + dt) in Y ′. Integrating over such trajectories we deduce p−1
E(Y ) ≤ E(Y ′),

and so P(Ew) ≤ (1 + o(1))P(E ′
w), as required. �

For p ≥ n−2/3 and c ≤ 1/4 we can apply Lemma 7.8, so each good red repre-
sentative v has probability at least 2q − 1 of not returning to A and not hitting a blue
representative that has not returned to the blue set B.

It remains to control meetings with the set B ′ of blue representatives that have
returned to B. By Lemma 7.3 applied to B, we have E(B ′) ≤ (2μ2 − 1 + oε(1))|B|.

123



J. Haslegrave, P. Keevash

For each w ∈ B, similarly to the proof of Lemma 7.8 we can bound the expected
number of meetings of the w-representative with the v-representative by the expected
number of visits by the w-representative to v, which is at most 1/q as v is good.
Recalling that σ0/x1 ≥ σ , the expected number of v not meeting such w is at least

(2q − 1)σ0k − (2μ2 − 1 + oε(1))x1k/q ≥ σ0k

(
2q − 1 − 2μ2 − 1 + oε(1)

qσ

)
= �(k),

provided that we can choose q so that

(2q − 1)qσ > 2μ2 − 1, where (1 − σ)(1 − q) = 2μ2 − 1.

Some calculations (we omit the details) show that this is possible if μ2 < 0.575.
We therefore expect some positive proportion η of the good red representatives to

avoid collisions with blue representatives. We say that a good red representative is
excellent if has probability at least η/2 of avoiding such collisions. Then at least η/2
proportion of the good red representatives are excellent.

Now we consider the multiplicities of true particles for each representative;
with high probability these are at most 8 log n/ log log n by Lemma 6.9. We lower
bound the survival probability of each excellent red representative by considering
8 log n/ log log n independent samples of the blue representatives. The survival prob-
ability is thus at least exp(−�(log n/ log log n)) = n−o(1), so we expect nc−o(1)

particles to survive the mixing phase. If they do, they are a subset of nc mixed parti-
cles, and with high probability no ten (say) of these particles occupy the same vertex
in the next n log n steps. Thus we may thereafter reapply the same analysis revealing
only ten samples of blue trajectories, which gives constant probability of a constant
fraction surviving the mixing phase, as required to complete the proof as in the case
of one-type annihilation.

It remains to convert the above expected survival of nc−o(1) particles to a high
probability statement. We need to bound the probability that too many red represen-
tatives are destroyed, given that each is destroyed with probability at most 1− α with
α = n−o(1) by the samples of the blue representatives. For a given set of red represen-
tatives to be destroyed, it must be possible to assign them to meets with distinct blue
representatives (possibly from the same vertex in different samples). This corresponds
to events occurring disjointly in the sense of Reimer’s inequality [37], i.e. each anni-
hilation event is determined by the outcomes of some set of coordinates in the total
product probability space such that all these sets are disjoint for different annihilation
events. Thus the probability of destroying a given set of t red representatives is at most
(1−α)t , so the number destroyed is stochastically dominated by a binomial withmean
(1 − α)nc. By Chernoff, with high probability nc−o(1) particles survive, as required.
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