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Abstract

We give an FPTAS and an efficient sampling algorithm for

the high-fugacity hard-core model on bounded-degree bipar-

tite expander graphs and the low-temperature ferromagnetic

Potts model on bounded-degree expander graphs. The re-

sults apply, for example, to random (bipartite) ∆-regular

graphs, for which no efficient algorithms were known for

these problems (with the exception of the Ising model) in

the non-uniqueness regime of the infinite ∆-regular tree.

1 Introduction

There are two natural computational problems associ-
ated to a statistical physics spin model on a graph G:
the approximate counting problem of approximating the
partition function of the model and the sampling prob-
lem of obtaining a random spin configuration approxi-
mately distributed according to the model.

A prominent example is the hard-core model of
weighted independent sets. For a graph G and fugacity
parameter λ > 0, the hard-core model is the probability
distribution µG,λ on the collection I(G) of independent
sets of G given by

µG,λ(I) =
λ|I|

ZG(λ)

where
ZG(λ) =

∑
I∈I(G)

λ|I|

is the hard-core partition function (also known as the
independence polynomial in graph theory).

A fully polynomial-time approximation scheme (FP-
TAS) is an algorithm that for every ε > 0 outputs an
ε-relative approximation to ZG(λ) (that is, a number
Ẑ so that (1 − ε)Ẑ ≤ ZG(λ) ≤ (1 + ε)Ẑ) and runs in
time polynomial in |V (G)| and 1/ε. An efficient sam-
pling algorithm is a randomized algorithm that for every
ε > 0 runs in time polynomial in |V (G)| and 1/ε and
outputs an independent set I with distribution µalg so
that ‖µG,λ − µalg‖TV < ε.
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The computational complexity of the approximate
counting and sampling problems for the hard-core
model is well understood for bounded-degree graphs.
For graphs of maximum degree at most ∆, when λ <

λc(∆) = (∆−1)∆−1

(∆−2)∆ , there is an FPTAS and an effi-

cient sampling algorithm due to Weitz [36]; whereas
when λ > λc(∆) both computational problems are
hard: there is no polynomial-time algorithm unless
NP=RP [33, 34, 13]. The value λc(∆) is the unique-
ness threshold of the hard-core model on the infinite
∆-regular tree [23].

On the other hand, if we restrict ourselves to
bipartite graphs, then the computational complexity of
these tasks are open problems. The problem #BIS is
that of computing the number of independent sets of a
bipartite graph [11], and many interesting approximate
counting and sampling problems have been shown to
be #BIS-hard; that is, as hard as approximating the
number of independent sets in a bipartite graph [18,
8, 14]. In particular, Cai, Galanis, Goldberg, Guo,
Jerrum, Štefankovič, and Vigoda [7] showed that for
all ∆ ≥ 3 and all λ > λc(∆), it is #BIS-hard to
approximate the hard-core partition function at fugacity
λ on a bipartite graph of maximum degree ∆. Resolving
the complexity of #BIS is a major open problem in the
field of approximate counting.

One direction for partial progress on any interme-
diate complexity class is to find subclasses of instances
for which the problem is tractable (e.g. results show-
ing that the Unique Games problem is tractable on ex-
pander graphs [1, 26]). For #BIS, we would like to
find subclasses of bipartite graphs on which we can effi-
ciently approximate the number of independent sets or
the hard-core partition function. One example is the al-
gorithm of Liu and Lu [25] which works when λ < λc(∆)
and one side of the bipartition has maximum degree
∆ but the other side of the bipartition is allowed un-
bounded degree.

Recently, Helmuth, Perkins, and Regts [21] gave ef-
ficient algorithms for the hard-core model at high fugac-
ity on the torus (Z/nZ)d and subsets of the lattice Zd
with certain boundary conditions. The algorithms are
based on contour models from Pirogov-Sinai theory [31]
along with the Taylor series truncation method due to
Barvinok [2, 3].
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Here we adapt the algorithms of [21] to give effi-
cient approximate counting and sampling algorithms for
all bounded-degree, bipartite expander graphs at suffi-
ciently high fugacity. We say that a bipartite graph
G = (O, E , E) is a bipartite α-expander if |N(S)| ≥
(1 +α)|S| for all S ⊆ O with |S| ≤ |O|/2 and all S ⊆ E
with |S| ≤ |E|/2 .

Theorem 1.1. There exists an absolute constant C
such that for every α > 0, ∆ ≥ 3, and any λ > C∆5/α,
there exists an FPTAS and an efficient sampling algo-
rithm for the hard-core model at fugacity λ on bipartite
α-expander graphs of maximum degree ∆.

As with Weitz’s algorithm [36], the running time of
the approximation algorithm of Theorem 1.1 (and the
theorems that follow) is (n/ε)O(log ∆) for an ε-relative
approximation to ZG(λ) for an n-vertex graph G. Since
∆ is fixed this running time is polynomial in n and 1/ε,
but one might hope to improve the dependence on ∆.

We can extend the methods of the proof of The-
orem 1.1 to obtain efficient counting and sampling al-
gorithms for the hard-core model on random regular
bipartite graphs for all λ larger than an absolute con-
stant, independent of ∆. Let Gbip(n,∆) be the set of
all ∆-regular bipartite graphs on n vertices (where n is

even), and let Gbip
n,∆ be a uniformly chosen graph from

Gbip(n,∆). We say that a property holds for almost ev-
ery ∆-regular bipartite graph if the property holds with
probability → 1 as n→∞ for Gbip

n,∆.

Theorem 1.2. There exists an absolute constant λ? >
0 so that for every ∆ ≥ 3 and all λ > λ?, there is
an FPTAS and an efficient sampling algorithm for the
hard-core model at fugacity λ on almost every ∆-regular
bipartite graph.

To the best of our knowledge, no efficient counting
or sampling algorithms for random regular bipartite
graphs were previously known for any λ > λc(∆).

1.1 The Potts Model Given a graph G and q ∈ N,
let Ω = [q] = {1, . . . , q} and let ΩV (G) be the set of all
colorings ω : V (G) → Ω. Given ω ∈ ΩV (G) let m(G,ω)
denote the number of monochromatic edges induced by
the coloring ω, that is

m(G,ω) :=
∑

{i,j}∈E(G)

δω(i),ω(j)

where δ is the Kronecker delta function. The q-color
Potts model on G at inverse temperature β is the
probability distribution on ΩV (G) defined by

µG,q,β(ω) =
eβ·m(G,ω)

ZG,q(β)
, ω ∈ ΩV (G)

where
ZG,q(β) :=

∑
ω∈ΩV (G)

eβ·m(G,ω)

is the Potts model partition function. When β > 0
the model is ferromagnetic (monochromatic edges pre-
ferred) and when β < 0 the model is antiferromagnetic
(bichromatic edges preferred).

Galanis, Štefankovič, Vigoda, and Yang [14] showed
that approximating the ferromagnetic Potts model par-
tition function for q ≥ 3 is #BIS-hard on graphs of max-
imum degree ∆ when β > βo(q,∆), the order/disorder
threshold of the infinite ∆-regular tree (see [14] for a
precise definition of βo(q,∆); in particular, βo(q,∆) >
βc(q,∆), the uniqueness threshold on the infinite ∆-
regular tree).

Our next theorem gives efficient counting and sam-
pling algorithms for the ferromagnetic Potts model at
low enough temperatures on expander graphs. We say
that a graph G is an α-expander if e(S, Sc) ≥ α|S| for
all subsets S ⊆ V (G) with |S| ≤ |V (G)|/2.

Theorem 1.3. For all α > 0, ∆ ≥ 3, q ≥ 2 and
β > 4 log(q∆)/α, there is an FPTAS and efficient
sampling algorithm for the q-color ferromagnetic Potts
model at inverse temperature β on all α-expander graphs
of maximum degree ∆.

Our algorithms apply to the Potts model on the
random ∆-regular graph as well. Let G(n,∆) be the
set of all ∆-regular graphs on n vertices, and let Gn,∆

be a uniformly chosen graph from G(n,∆) (as long as
this set is non-empty). We say that a property holds
for almost every ∆-regular graph if the property holds
with probability → 1 as n→∞ for Gn,∆.

Corollary 1.1. There is an absolute constant C > 0
so that for every ∆ ≥ 3, q ≥ 2, and all β > C log(q∆)

∆ ,
there is an FPTAS and efficient sampling algorithm for
the ferromagnetic Potts model at inverse temperature β
on almost every ∆-regular graph.

Again to the best of our knowledge no efficient
counting or sampling algorithms were known previously
for the q ≥ 3 Potts model on random regular graphs for
β above the uniqueness threshold βc(q,∆) of the infinite
∆-regular tree.

1.2 Discussion We note that we take ∆ ≥ 3 in all
of our theorems since computing the relevant partition
functions exactly on paths and cycles takes linear time.

We also note that for the q = 2 case of the Potts
mode (the Ising model), efficient algorithms are known
for all graphs and all temperatures: the approximate
counting algorithm of Jerrum and Sinclair [22], turned
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into a sampling algorithm via self-reducibility by Ran-
dall and Wilson [32]; see also the recent proof of Guo
and Jerrum [20] showing polynomial-time mixing of the
random-cluster dynamics.

The approximate counting and sampling problems
for the hard-core and Potts models on random graphs
have received considerable attention, with positive al-
gorithmic results in the low-fugacity, high-temperature
uniqueness regimes of the infinite ∆-regular tree, and
some negative algorithmic results, in the form of torpid
mixing of certain Markov chains, in the high-fugacity
and low-temperature regimes. Our results are novel
in providing positive algorithmic results in the high-
fugacity and low-temperature regimes.

For λ > λc(∆), the Glauber dynamics for the hard-

core model on Gbip
n,∆ are known to mix slowly [27]. As

λc(∆) decays like 1/∆, it is an interesting open problem
to find efficient algorithms that work closer to λc(∆).
We have made no efforts to optimize the constant λ∗

in Theorem 1.2 (the current proof shows that (2e)250

suffices). A natural next step for future research would
be to reduce λ∗ to a constant below 1. This would
furnish us with an FPTAS for counting independent sets
and sampling independent sets uniformly in the random
regular bipartite graph.

In the low fugacity regime with λ < λc(∆), Weitz’s

algorithm applies to Gbip
n,∆, and Efthymiou, Hayes,

Štefankovic, Vigoda, and Yin [12] have also shown that
the Glauber dynamics have mixing time O(n log n).

For the Potts model, a natural conjecture for the
optimal bound on β for the particular polymer-based
algorithm we use here is the order/disorder transition
point βo(q,∆) = log q−2

(q−1)1−2/∆−1
. Galanis, Štefankovič,

Vigoda, and Yang [14] show that the Swendsen-Wang
dynamics mix slowly at βo(q,∆) on the random ∆-
regular graph (for q large enough). In fact their analysis
shows that the approximation lemmas we use below fail
for Gn,∆ and β ≤ βo(q,∆). The bound we obtain in
Corollary 1.1 is at worst a factor of order log ∆ away
from this natural barrier and matches up to a constant
factor when q and ∆ are polynomially related.

In the high-temperature regime, Blanca, Galanis,
Goldberg, Štefankovic, Vigoda, and Yang [5] have re-
cently given an efficient algorithm to obtain an n−c-
approximate sample from the Potts model (ferromag-
netic and anti-ferromagnetic) on Gn,∆ when the param-
eters lie the uniqueness regime for the infinite ∆-regular
tree.

While efficient counting and sampling algorithms
for these problems on random regular graphs were previ-
ously only known for the uniqueness regime, the proba-
bilistic properties of these models are well understood at

all fugacities and temperatures. Sly and Sun [34] showed
that the limiting free energy (the normalized log parti-
tion function) of any sequence of locally tree-like bipar-
tite graphs converges to the replica symmetric solution
predicted by the cavity method from statistical physics.
This result applies in particular to the hard-core model
on random bipartite ∆-regular graphs. Dembo, Monta-
nari, Sly, and Sun [10] then showed that the limiting free
energy of the ferromagnetic Potts model on a sequence
of graphs converging locally to the infinite ∆-regular
tree is given by the replica symmetric solution from the
cavity method. Note that computing the limiting free
energy or using concentration of the partition function
for random ∆-regular graphs does not suffice to give an
FPTAS for the partition function, as the partition func-
tion fluctuates by a constant factor over the randomness
in the choice of the graph [27, 9].

1.3 Proof ideas Our main technical contribution
is to show that the hard-core and Potts models are
well approximated by mixtures of polymer models with
convergent cluster expansions in the relevant range
of parameters. These polymer models each represent
deviations from one of the ground states: the all even
and all odd occupied configurations in the hard-core
model, and the monochromatic configurations in the
Potts model.

The main steps in the proofs of Theorems 1.1
and 1.3 are as follows.

1. First we show that the partition functions of the
hard-core model and Potts model on (bipartite)
expanders are dominated by configurations that are
‘close’ to one of the ground states.

2. For each ground state we define a polymer model
representing deviations from the given state. We
show that α-expansion implies a strong bound on
the Peierls’ constant of such a polymer model,
which allows us to verify the Kotecký-Preiss con-
dition for the convergence of the cluster expan-
sion [24] and prove the existence of a zero-free re-
gion of the polymer model partition function in the
complex plane.

3. This last step allows us to implement the ap-
proximate counting algorithm, from [21], based on
Barvinok’s method of truncating the Taylor series
of the log partition function. The sampling algo-
rithm is based on a form of self-reducibility for ab-
stract polymer models.

In Section 2 we define polymer models and the
cluster expansion, and we state the Kotecký-Preiss
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condition and the algorithmic results from [21] that we
will use.

We prove our results for the Potts model in Sec-
tion 3 and for the hard-core model in Section 4. We
conclude with some discussion and open problems in
Section 5.

2 Polymer models

2.1 Abstract polymer models We define polymer
models in sufficient generality for the purposes of this
paper. A more general treatment can be found, for
example, in [19, 24].

Let G be a graph and Ω a finite set of spins. A
polymer γ = (γ, ωγ) is a connected subgraph γ of G
along with an assignment ωγ of spins from Ω to the
vertices of γ. A polymer model consists of a set of
polymers C(G) along with a positive, integer-valued
surface energy, ‖γ‖, for each polymer. We measure the
size of a polymer by |γ|, the number of vertices of γ.

We say two polymers γ, γ′ are compatible if
d(γ, γ′) > 1 and incompatible otherwise, where d(·, ·)
is the graph distance. Let G(G) be the collection of all
finite subsets (including the empty set) of C(G) consist-
ing of mutually compatible polymers.

We can then define the polymer model partition
function

Ξ(G, z) :=
∑

Γ∈G(G)

∏
γ∈Γ

z‖γ‖ .(2.1)

We think of Ξ(G, z) as a univariate polynomial in the
complex variable z.

The prototypical example of a polymer model is the
low-fugacity hard-core model on a graph G: the set of
polymers C(G) is simply the set of vertices V (G). The
collection of sets of mutually compatible polymers G(G)
is exactly I(G), the collection of independent sets of
G. If we set the surface energy of every polymer v to
be ‖v‖ = 1, then the abstract polymer partition func-
tion Ξ(G, z) is exactly the hard-core partition function
ZG(z).

2.2 Convergent cluster expansions A detailed
probabilistic understanding of a polymer model can be
obtained by showing that the cluster expansion of its
partition function converges.

For a multiset of polymers Γ, the incompatibility
graph H(Γ) has one vertex for each polymer with an
edge between two vertices corresponding to polymers
γ, γ′ if d(γ, γ′) ≤ 1. Let Gclust

k (G) be the collection of all
multisets of k polymers from C(G) whose incompatibil-
ity graph is connected. We call an element of Gclust

k (G)
a cluster. The cluster expansion is then the (formal)

power series

log Ξ(G, z) =
∑
k≥1

∑
Γ∈Gclust

k (G)

φ(Γ)
∏
γ∈Γ

z‖γ‖ ,(2.2)

where φ(·) is the Ursell function of the incompatibility
graph H(Γ) defined by

φ(H) =
∑

A⊆E(H)
spanning, connected

(−1)|A| .

A sufficient condition for the convergence of the
cluster expansion is given by the following specialization
of a result of Kotecký and Preiss.

Theorem 2.1. ([24]) Suppose that for all |z| < δ and
all γ ∈ C(G)

(2.3)
∑

γ′:d(γ′,γ)≤1

e|γ
′||z|‖γ

′‖ ≤ |γ| .

Then for every |z| < δ, the cluster expansion converges
absolutely and, in particular, Ξ(G, z) 6= 0.

Often a crucial ingredient in proving the conver-
gence of the cluster expansion is to show that there ex-
ists a constant ρ such that ‖γ‖ ≥ ρ|γ| for all polymers
γ. We refer to the supremum over all ρ for which such
a bound holds as the Peierls’ constant of the model.

2.3 Algorithms Under two mild conditions on the
polymer model and the surface energies, and under the
non-trivial condition of zero-freeness of the partition
function in a disc in the complex plane, Helmuth,
Perkins, and Regts gave an efficient approximation
algorithm for the partition function.

Theorem 2.2. ([21], Theorem 2.2) Fix ∆ and let G
be some class of graphs of maximum degree at most ∆.
Suppose the following hold for a given polymer model:

(i) There are absolute constants ρ, C > 0 so that for
every G ∈ G and every γ ∈ C(G),

ρ|γ| ≤ ‖γ‖ ≤ C|γ|.

(ii) Given γ, ωγ , determining whether γ ∈ C(G) and
computing ‖γ‖ can be done in time polynomial in
|γ|.

(iii) There exists δ > 0 so that for all complex |z| < δ
and all G ∈ G,

Ξ(G, z) 6= 0.

Copyright © 2019 by SIAM
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Then for every 0 < z < δ, there is an FPTAS for
Ξ(G, z) for G ∈ G.

The running time of this algorithm is (n/ε)O(log ∆) (and
in fact it applies to approximating Ξ(G, z) for complex
z as well).

The algorithm can also be used to sample from a
polymer model. We can define a probability measure
νG,z on G(G):

νG,z(Γ) =

∏
γ∈Γ z

‖γ‖

Ξ(G, z)
, Γ ∈ G(G) .(2.4)

Theorem 2.3. ([21], Theorem 5.1) Under the con-
ditions of Theorem 2.2, for all 0 < z < δ there is an
efficient sampling algorithm for νG,z for all G ∈ G.

The algorithm of Theorem 2.2 is based on truncat-
ing the Taylor series of log Ξ(G, z) around z = 0 (the
approach of Barvinok [3] for a broad range of approxi-
mation problems). As the cluster expansion and Taylor
series for log Ξ are the same power series, just organized
differently, the algorithm computes the low-order coeffi-
cients of the Taylor series via the cluster expansion (see
also [28] for a different approach to computing coeffi-
cients of partition functions of bounded-degree graphs).

To prove Theorems 1.1 and 1.3 we will take G to be
the class of (bipartite) α-expander graphs of maximum
degree ∆. We will show that the hard-core and Potts
partition functions, at sufficiently high fugacity and low
temperature respectively, can be approximated well by
sums of partition functions of abstract polymer models.
We then verify conditions (i) and (ii) of Theorem 2.2,
which is straightforward.

Condition (iii) is non-trivial, and we verify it by
showing the Kotecký-Preiss condition (2.3) holds at
sufficiently high fugacity and low temperature.

We note that although we are working with low-
temperature models, we are able to use the polymer
model formulation instead of the more complex contour
model formulation of Pirogov-Sinai theory used for the
algorithms on Zd in [21]. The reason polymer models
suffice is that the strong expansion condition allows us
to express our partition functions in terms of deviations
from the ground states directly and not in the recursive
fashion of a contour model.

3 The Potts model

3.1 Approximation by a polymer model In this
section we show that the Potts model partition function
of an expander graph can be well-approximated by the
partition function of a certain polymer model. Recall
that our measure of approximation is the following.

Definition 1. Let Z be a real number. We call Ẑ an
ε-relative approximation to Z if

(1− ε)Ẑ ≤ Z ≤ (1 + ε)Ẑ .

Given a graph G = (V,E) and a set S ⊆ V , we
let N(S) denote the set of vertices in Sc adjacent to a
vertex in S and we let e(S, Sc) denote the number of
edges in G with one endpoint in S and the other in Sc.
Recall our notion of expansion.

Definition 2. Let α > 0. A graph G is an α-expander
if e(S, Sc) ≥ α|S| for all subsets S ⊆ V (G) with
|S| ≤ |V (G)|/2.

Let G(α,∆) denote the class of all α-expander graphs
with maximum degree at most ∆. For the remainder of
this section we fix a graph G ∈ G(α,∆) on n vertices.

First we first show that the main contribution to
the Potts model partition function of G comes from
colorings where one color dominates. To make this
precise we make a few definitions. First let Ω = [q]
and let Ωn be the set of all colorings ω : V (G) →
[q], and recall that m(G,ω) denotes the number of
monochromatic edges of G induced by ω. The Potts
model partition function is then

ZG,q(β) :=
∑
ω∈Ωn

eβ·m(G,ω) .

For j ∈ [q], let

Ωnj = {ω ∈ Ωn : |ω−1({j})| > n/2} ,

let
ZjG(β) :=

∑
ω∈Ωnj

eβ·m(G,ω),

and let

Z∗G(β) =

q∑
j=1

ZjG(β) .

Lemma 3.1. For β > 2 log(eq)/α, Z∗G(β) is an e−n-
approximation to ZG,q(β).

Proof. Let Ωn∗ =
⋃q
i=1 Ωnj and note that this is a disjoint

union. Let ω /∈ Ωn∗ , then for each j ∈ [q] we have

|ω−1({j})| ≤ n

2
.

Letting Sj = ω−1({j}) it follows that e(Sj , S
c
j ) ≥

α|Sj |. The set Sj consists of all vertices of G with the
color j and so every edge lying between Sj and Scj is
bichromatic. Summing over colors j we thus have at
least

1

2

q∑
i=1

e(Sj , S
c
j ) ≥

1

2

q∑
i=1

α|Sj | =
αn

2
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bichromatic edges and so

m(G,ω) ≤ e(G)− αn

2
.

Using the crude bound |Ωn\Ωn∗ | ≤ |Ωn| = qn we then
have

ZG,q(β)− Z∗G(β) =
∑
ω/∈Ωn∗

eβ·m(G,ω) ≤ qneβ(e(G)−αn/2) ,

and so∣∣∣∣1− Z∗G(β)

ZG,q(β)

∣∣∣∣ ≤ qneβ(e(G)−αn/2)

ZG,q(β)
≤ qn−1e−βαn/2 ≤ e−n ,

where for the second inequality we use the trivial lower
bound ZG,q(β) > qeβe(G).

This allows us to focus on approximating Z∗G(β).
Henceforth, let us fix r ∈ [q]. We will refer to r as the
color ‘red’. By symmetry

Z∗G(β) = q · ZrG(β) ,

and so we may in fact focus on approximating ZrG(β).
For ω ∈ Ωnr , let

Γ(ω) := {v ∈ V (G) : ω(v) 6= r} .

We call a connected component of the induced subgraph
G[Γ(ω)], along with its coloring, a polymer of ω. Note
that a coloring ω ∈ Ωnr is uniquely defined by its
collection of polymers. These polymers constitute
a polymer model with the following surface energy
function:

‖γ‖ :=
∑

{i,j}∈E(G):
{i,j}∩γ 6=∅

(1− δω(i),ω(j)) .

Intuitively, the polymers describe the way in which the
coloring ω deviates from the ground state coloring in
which all vertices are red. The surface energy ‖γ‖ is the
number of bichromatic edges incurred by the vertices
in γ. Recall that we say that two polymers γ1, γ2

are compatible if d(γ1, γ2) > 1 where d(·, ·) denotes
graph distance. We let C = C(G) denote the set of
polymers and we let G = G(G) denote the family of all
sets of mutually compatible polymers. Recall that the
partition function of the polymer model is defined as

Ξr(G, z) :=
∑
Γ∈G

∏
γ∈Γ

z‖γ‖ ,

where we use the superscript r to denote the ground
state color.

Our aim is to verify conditions (i)–(iii) of Theo-
rem 2.2 for this polymer model in order to obtain an FP-
TAS for Ξr(G, z) when z is sufficiently small. Via a con-
nection between Ξr(G, z) and ZrG(β), this will furnish
us with an FPTAS for ZrG(β) and hence also ZG,q(β).
This connection is as follows. Letting

G :=

Γ ∈ G :
∑
γ∈Γ

|γ| < n

2


we have the following alternative representation of
ZrG(β).

ZrG(β) = eβe(G)
∑
Γ∈G

∏
γ∈Γ

e−β‖γ‖ .

In this form ZrG(β) resembles a scaling of Ξr(G, e−β) ex-
cept for the fact that we have the global constraint that
the total size of the polymers in a configuration must
not exceed n/2. However, for β large this constraint has
little effect. Indeed we have the following.

Lemma 3.2. For β > 2 log(eq)/α, eβe(G) ·Ξr(G, e−β) is
an e−n-relative approximation to ZrG(β).

Before proving Lemma 3.2 we need the following
lemma which establishes a lower bound on the Peierls’
constant of our polymer model and verifies condition (i)
of Theorem 2.2.

Lemma 3.3. Let γ ∈ C, then

α|γ| ≤ ‖γ‖ ≤ ∆|γ| .

Proof. Note that since red is the majority color in ω,
all polymers of ω have size at most n/2. Since G is an
α-expander it follows that

e(γ, γc) ≥ α|γ| .

Since γ is a connected component of non-red vertices,
it follows that all edges lying between γ and γc are
bichromatic. This gives the lower bound. Since G has
maximum degree at most ∆, there are at most ∆|γ|
edges incident to γ. The upper bound follows.

Proof. [Proof of Lemma 3.2] Let Γ ∈ G\G. It follows
that Γ = {γ1, . . . , γk} where

∑
i |γi| > n/2. By Lemma

3.3, ‖γi‖ ≥ α|γi| for all i. It follows that

eβe(G) · Ξr(G, e−β)− Zrβ(G)

=eβe(G)
∑

Γ∈G\G

∏
γ∈Γ

e−β‖γ‖ ≤ eβe(G)qne−βαn/2 ,

where we have used the crude bound |G\G| ≤ |G| = qn.
It follows that
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∣∣∣∣1− Zrβ(G)

eβe(G) · Ξr(G, e−β)

∣∣∣∣ ≤ qneβ(e(G)−αn/2)

eβe(G) · Ξr(G, e−β)

≤ qne−βαn/2

≤ e−n ,

where for the second inequality we use the trivial lower
bound Ξr(G, e−β) ≥ 1.

It remains to verify conditions (ii) and (iii) of Theo-
rem 2.2 for our polymer model in order to obtain an FP-
TAS for Ξr(G, z). Verifying condition (ii) is essentially
immediate. Given γ, ωγ , determining whether γ ∈ C
amounts to checking whether G[γ] is connected and con-
sists of non-red vertices. This can be done in O(|γ|)
time by a depth-first search algorithm. There are at
most ∆ · |γ| edges incident to γ and so computing ‖γ‖
can also be done in O(|γ|) time.

We now turn our attention to verifying (iii), i.e. that
there exists δ > 0 so that for all complex |z| < δ we have
Ξr(G, z) 6= 0.

3.2 Verifying the Kotecký-Preiss condition In
this section we will show that Ξr(G, z) is zero-free in a
complex disc containing the origin. By Theorem 2.1, it
suffices to show there exists δ > 0 such that∑

γ′:d(γ′,γ)≤1

e|γ
′||z|‖γ

′‖ ≤ |γ| ,

for all |z| < δ and all γ ∈ C(G).
Note that we will choose δ < 1 and so by Lemma

3.3 it suffices to show that∑
γ′:d(γ′,γ)≤1

e(1+α log |z|)|γ′| ≤ |γ| .

If we could show that for each v ∈ V (G)

(3.5)
∑

γ′:γ′3v

e(1+α log |z|)|γ′| ≤ 1

∆ + 1
,

then by summing this inequality over all v ∈ γ ∪ N(γ)
(noting that |γ∪N(γ)| ≤ (∆+1)|γ|), we would be done.

In order to establish (3.5) we borrow the following
lemma.

Lemma 3.4. ([15], Lemma 2.1) In a graph of maxi-
mum degree at most ∆, the number of connected, in-
duced subgraphs of order t containing a fixed vertex v is
at most (e∆)t.

It follows that the number of supports γ of polymers
on t vertices that contain a given vertex v is bounded

by (e∆)t and so the total number of polymers γ on t
vertices containing v is bounded by (eq∆)t. We thus
have

∑
γ′:γ′3v

e(1+α log |z|)|γ′| ≤
∞∑
t=1

(
q∆ · e(2+α log |z|)

)t
≤ 1

∆ + 1
,

for |z| < (2e2q∆2)−1/α.
This verifies condition (iii) of Theorem 2.2 with

δ = (2e2q∆2)−1/α and so Theorem 2.2 gives an FPTAS
for Ξr(G, z) for all complex |z| < (2e2q∆2)−1/α.

3.3 Proof of Theorem 1.3 We consider two cases
separately. If ε ≤ e−n/2, then we proceed by brute force,
calculating m(G,ω) for each of the qn possible colorings
of G. In this way we can calculate the partition function
ZG,q(β) exactly in time O(nqn) and therefore in time
polynomial in 1/ε. Similarly we can obtain an exact
sample from µG,q,β by brute force in time polynomial in
1/ε.

Now we assume ε > e−n/2. Using Theorem 2.2,
we can obtain Zalg, an ε/3-relative approximation to
eβe(G) · Ξr(G, e−β) in time polynomial in n and 1/ε.
By Lemma 3.2, eβe(G) · Ξr(G, e−β) is an e−n-relative
approximation to ZrG(β) and so qeβe(G) ·Ξr(G, e−β) is an
e−n-relative approximation to Z∗G(β) . By Lemma 3.1,
it follows that qeβe(G) · Ξr(G, e−β) is a ε/3-relative
approximation to ZG,q(β) and so qZalg is an ε-relative
approximation to ZG,q(β) as required.

For the approximate sampling algorithm, we will
apply Theorem 2.3.

Consider the following distribution µ̂ on Ωn.
Choose r ∈ [q] uniformly at random and then sample
Γ from the measure νrG,β on G(G) defined by

νrG,β(Γ) =

∏
γ∈Γ e

−β‖γ‖

Ξr(G, e−β)
.

Then convert Γ into a q-coloring ω ∈ Ωn by setting
ω(v) = ωγ(v) if v ∈ γ for some γ ∈ Γ, and ω(v) = r
otherwise. The resulting distribution of ω is µ̂.

By Lemmas 3.1 and 3.2,

‖µ̂− µG,q,β‖TV = O(e−n).

Thus to complete the proof of Theorem 1.3 it suffices to
obtain an ε/2-approximate sample from νrG,β in time
polynomial in n and 1/ε, and to do this we simply
appeal to Theorem 2.3.

3.4 Proof of Corollary 1.1 To prove Corollary 1.1
for the random regular graph, we need the following fact
about its expansion properties.
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Theorem 3.1. (Bollobás [6]) Let ∆ ≥ 3, and let
η ∈ (0, 1) be such that

(1− η) log2(1− η) + (1 + η) log2(1 + η) > 4/∆

then almost every ∆-regular graph is a (1 − η)∆/2-
expander.

Proof. [Proof of Corollary 1.1] By Theorem 3.1, almost
every ∆-regular graph is a c∆-expander for some abso-
lute constant c. The result follows by Theorem 1.3.

4 The hard-core model

4.1 Approximation by a polymer model In this
section we prove Theorem 1.1 following the same strat-
egy as in the previous section. First we approximate
the hard-core partition function by a combination of
polymer models, and then we verify the conditions of
Theorem 2.2 for these models.

We let G = (O, E , E) denote a bipartite graph with
partition classes O, E and edge set E. We will refer
to vertices of O and E as ‘odd’ and ‘even’ vertices
respectively.

Recall our notion of expansion for a bipartite graph.

Definition 3. Let α > 0. A bipartite graph G =
(O, E , E) is a bipartite α-expander if |N(S)| ≥ (1+α)|S|
for all S ⊆ O with |S| ≤ |O|/2 and all S ⊆ E with
|S| ≤ |E|/2.

Let Gbip(α,∆) denote the class of all bipartite α-
expander graphs with maximum degree at most ∆.
From this point on, let us fix a graph G ∈ Gbip(α,∆)
on n vertices with partition classes O, E .

We first show that the hard-core model partition
function ZG(λ) is dominated by independent sets that
occupy more than three quarters of one of the partition
classes. To make this precise we make the following
definitions. Recall that I := I(G) denotes the family of
all independent sets in G. Let

IO :=

{
I ∈ I : |I ∩ O| > 3

4
|O|
}

and let
ZO(λ) :=

∑
I∈IO

λ|I| .

Define IE and ZE(λ) similarly. Note that IO and IE
are disjoint since, supposing that |O| ≥ |E|, if |I ∩O| >
3|O|/4, then certainly |N(I ∩ O)| > |E|/4 and each
element of N(I ∩ O) ⊆ E must be unoccupied (not in
the independent set). Let I∗ := IO ∪ IE and set

Z∗G(λ) :=
∑
I∈I∗

λ|I| = ZO(λ) + ZE(λ) .

Lemma 4.1. For λ ≥ (2e)40/α, Z∗G(λ) is an e−n-
relative approximation to ZG(λ) .

Proof. Let I /∈ I∗, then by definition |I ∩ O| ≤ 3|O|/4
and |I ∩E| ≤ 3|E|/4. Suppose without loss of generality
that |O| ≥ |E|. We consider two cases depending on the
size of I ∩ O.

Suppose first that |I ∩ O| ≤ |O|/2. In this case,
since G is a bipartite α-expander, we have

|N(I ∩ O)| ≥ (1 + α)|I ∩ O|

and so
|I ∩ E| ≤ |E| − (1 + α)|I ∩ O|

since each element of N(I ∩O) must be unoccupied. It
follows that

|I| ≤ |E| − α|I ∩ O| ≤ |O| − α|I ∩ O| .

If |I ∩ O| ≥ |O|/5, then by the above we would have

|I| ≤
(

1− α

5

)
|O| .

If instead, |I ∩O| < |O|/5 then, recalling that |I ∩ E| ≤
3|E|/4 ≤ 3|O|/4, we have

|I| ≤ 19

20
|O| .

We deduce that

(4.6) |I| ≤ |O| ·max

{
1− α

5
,

19

20

}
.

Suppose now that |I ∩ O| > |O|/2. In this case we
certainly have |N(I ∩O)| > |E|/2 and so |I ∩E| < |E|/2.
A similar argument to the one above, this time using the
expansion of the set I ∩E , again yields the bound (4.6).

Letting cα := max{1 − α/5, 19/20} and using the
crude bounds |I\I∗| ≤ 2n and ZG(λ) ≥ λ|O|, it follows
that

ZG(λ)− Z∗G(λ) =
∑
I /∈I∗

λ|I| ≤ 2n · λcα|O|

and so∣∣∣∣1− Z∗G(λ)

ZG(λ)

∣∣∣∣ < 2n · λ(cα−1)|O| ≤ 2n · λ(cα−1)n/2 ≤ e−n .

In order to approximate Z∗G(λ) we approximate
ZO(λ) and ZE(λ) separately. We focus on approximat-
ing ZO(λ), noting that the approximation algorithm for
ZE(λ) will be identical up to a change of notation.

Given I ∈ IO, let

Γ(I) := (Ic ∩ O) ∪ (I ∩ E) .
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Note that I is uniquely determined by the set Γ(I).
We think of elements of Γ(I) as ‘bad’ vertices which
deviate from the maximal independent set O. The
polymers of an independent set I ∈ IO are defined to
be the connected components γ of the induced subgraph
G[Γ(I)] together with an assignment of spin ‘0’ to the
vertices of |γ ∩O| and spin ‘1’ to the vertices of |γ ∩ E|.
Note that, unlike in the previous section, a polymer γ
is uniquely defined by its support and so for notational
convenience we will simply identify a polymer γ with its
support γ.

These polymers constitute a polymer model with
the following surface energy function:

‖γ‖ := |γ ∩ O| − |γ ∩ E| .

We note that since γ is connected we have γ ∩O =
N(γ ∩ E) and so ‖γ‖ > 0 since G is a bipartite α-
expander.

We let CO = CO(G) denote the set of possible poly-
mers associated to elements of IO and let GO = GO(G)
the family of all sets of mutually compatible polymers
from CO. The polymer model partition function is given
by

ΞO(G, z) :=
∑

Γ∈GO

∏
γ∈Γ

z‖γ‖ .

Again our aim is to verify conditions (i)–(iii) of
Theorem 2.2 for this polymer model in order to obtain
an FPTAS for ΞO(G, z) when |z| is sufficiently small.
The following connection between ΞO(G, z) and ZO(λ),
will furnish us with an FPTAS for ZO(λ) and hence also
ZG(λ). Letting

GO :=

Γ ∈ GO :
∑
γ∈Γ

|γ ∩ O| ≤ |O|
4

 .

we have the following alternative representation of
ZO(λ).

ZO(λ) = λ|O|
∑

Γ∈GO

∏
γ∈Γ

λ−‖γ‖ .

In this form ZO(λ) resembles a scaling of
ΞO(G, 1/λ) except for the global size constraint on the
polymers. However, for λ large the effect of this con-
straint is small.

Lemma 4.2. For λ > (2e)
8n
α|O| , λ|O|ΞO(G, 1/λ) is an

e−n-relative approximation to ZO(λ).

Before proving Lemma 4.2 we need the following
lemma which establishes a lower bound on the Peierls’
constant of our polymer model and verifies condition (i)
of Theorem 2.2.

Lemma 4.3. For each polymer γ ∈ C,

α

1 + α
· |γ ∩ O| ≤ ‖γ‖ ≤ |γ| .

Proof. First note that when γ ∩ E = ∅ i.e. γ is a single
vertex in O, the result is immediate. We may therefore
assume that γ ∩ E 6= ∅.

Suppose that |γ ∩ E| > |E|/2. Then since G is
a bipartite α-expander |N(γ ∩ E)| ≥ (1 + α)|E|/2.
However, by our definition of an expander, we must
also have |E| ≥ (1 + α)|O|/2. It follows that |N(γ ∩
E)| > |O|/4. Since each element of N(γ ∩ E) must be
unoccupied this contradicts the fact that γ is a polymer
of an element of IO.

We deduce that |γ ∩ E| ≤ |E|/2. Since G is a
bipartite α-expander, recalling that γ ∩ O = N(γ ∩ E),
we then have

(4.7) |γ ∩ O| = |N(γ ∩ E)| = (1 + α′)|γ ∩ E| ,

where α′ ≥ α. It follows that

‖γ‖ ≥ α′|γ ∩ E| ≥ α′

1 + α′
|γ ∩ O| ≥ α

1 + α
|γ ∩ O| .

The upper bound is immediate.

Proof. [Proof of Lemma 4.2]

Let Γ ∈ GO\GO. It follows by definition that∑
γ∈Γ |γ ∩ O| > |O|/4. Using the crude bound

|GO\GO| ≤ |GO| ≤ 2n and Lemma 4.3, we then have

λ|O|ΞO(G, 1/λ)− ZO(λ) = λ|O|
∑

Γ∈GO\GO

∏
γ∈Γ

λ−‖γ‖

≤ λ|O| · 2n · λ−α|O|/4(1+α) ,

It follows, using the bound ΞO(G, 1/λ) ≥ 1, that

∣∣∣∣1− ZO(λ)

λ|O|ΞO(G, 1/λ)

∣∣∣∣ ≤ 2n · λ−α|O|/4(1+α) ≤ e−n .

In the final inequality we have used the fact that α ≤ 1.

It remains to verify conditions (ii) and (iii) of
Theorem 2.2 for the polymer model. Verifying condition
(ii) is straightforward. Given a subset γ ⊆ V (G)
checking whether G[γ] is connected and calculating
‖γ‖ = |γ ∩O|− |γ ∩E| can be done in time linear in |γ|.
We now turn our attention to verifying (iii).

4.2 Verifying the Kotecký-Preiss condition In
this section we will show that ΞO(G, z) is zero-free in
a complex disc containing the origin. Again, using

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2243

D
ow

nl
oa

de
d 

08
/1

1/
24

 to
 1

89
.1

22
.6

2.
20

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Theorem 2.1 our task is to show that there exists δ > 0
such that

(†)
∑

γ′:d(γ′,γ)≤1

e|γ
′||z|‖γ

′‖ ≤ |γ| ,

for all |z| < δ and all γ ∈ C.
Note that if d(γ′, γ) ≤ 1 and |γ′| = 1, then γ′ must

be a vertex of γ ∩ O and so

∑
γ′:d(γ′,γ)≤1

e|γ
′||z|‖γ

′‖

= |γ ∩ O| · e · |z|+
∑

γ′:d(γ′,γ)≤1
|γ′|>1

e|γ
′||z|‖γ

′‖ .

If we choose |z| < e−1 then in order to verify (†) it
suffices to verify∑

γ′:d(γ′,γ)≤1
|γ′|>1

e|γ
′||z|‖γ

′‖ ≤ |γ ∩ E| .

Now, by (4.7), for some α′ ≥ α we have

e|γ
′||z|‖γ

′‖ = e(2+α′)|γ′∩E||z|α
′|γ′∩E|

≤ e(2+α)|γ′∩E||z|α|γ
′∩E|,

It therefore suffices to show

∑
γ′:d(γ′,γ)≤1
|γ′|>1

e(2+α)|γ′∩E||z|α|γ
′∩E| ≤ |γ ∩ E| .

If we could show that for each v ∈ V (G)

(4.8)
∑

γ′:γ′3v
|γ′|>1

e(2+α)|γ′∩E||z|α|γ
′∩E| ≤ 1

(∆ + 1)2
,

then by summing this inequality over all v ∈ γ ∪ N(γ)
(recalling that γ = (γ∩E)∪N(γ∩E) so that |γ∪N(γ)| ≤
(∆ + 1)2|γ ∩ E|), we would be done.

In order to establish (4.8), consider the auxiliary
graph H on vertex set E where we join two vertices
if they have a common neighbor in G. For a subset
S ⊆ E , H[S] is connected if and only if G[S ∪ N(S)]
is connected. Let us call a polymer with more than
one vertex non-trivial. A non-trivial polymer γ is deter-
mined by its intersection with E since γ∩O = N(γ∩E).
It follows that there is a one-to-one correspondence be-
tween non-trivial polymers and subsets S ⊆ E for which

H[S] is connected. Note also that H has maximum de-
gree at most ∆2. It follows from Lemma 3.4 that the
number of polymers γ′ containing a vertex v ∈ E with
|γ′ ∩ E| = t is at most (e∆2)t. If v ∈ O, then by consid-
ering the polymers containing one of its neighbors we
see that the number of polymers γ′ containing v with
|γ′ ∩ E| = t is at most ∆(e∆2)t. We thus have

∑
γ′:γ′3v

e(2+α)|γ′∩E||z|α|γ
′∩E| ≤ ∆

∞∑
t=2

(
∆2e3+α|z|α

)t
≤ 1

(∆ + 1)2
,

when |z| < e−1(4e3∆5)−1/α.

4.3 Proof of Theorem 1.1 We consider two cases
separately. If ε < e−n/2, then we proceed by brute
force, checking all subsets of V (G) to see if they are
independent. In this way we can calculate the partition
function ZG(λ) exactly in time O(n2n) and therefore
count and sample in time polynomial in 1/ε.

Now we assume ε > e−n/2 and take

λ > max
{
e(4e3∆5)1/α, (2e)40/α

}
.(4.9)

Assume without loss of generality that |O| ≥ |E|. Note
that by the definition of a bipartite expander we also
have |E| ≥ |O|/2.

Using the FPTAS for ΞO(G, 1/λ) given by Theo-

rem 2.2, we may find Zalg
O , an ε/7-relative approxima-

tion to λ|O|ΞO(G, 1/λ) in time polynomial in n and 1/ε.
By Lemma 4.2, λ|O|ΞO(G, 1/λ) is an ε/7-relative ap-

proximation to ZO(λ) and so Zalg
O is an ε/3-relative ap-

proximation to ZO(λ).
In identical fashion (noting that n/|E| ≤ 3 for the

‘E-version’ of Lemma 4.2) we may find Zalg
E , an ε/3-

relative approximation to ZE(λ) in time polynomial in

n and 1/ε. It follows that Zalg := Zalg
O +Zalg

E is an ε/3-
relative approximation to Z∗G(λ). By Lemma 4.1, Z∗G(λ)
is an ε/3-relative approximation to ZG(λ) and so Zalg

is an ε-relative approximation to ZG(λ) as required.
The proof for the sampling algorithm is much like

that for the Potts model. Consider the distribution µ̂ on
I(G) defined by choosing O or E with probability pro-
portional to ΞO(G, 1/λ) and ΞE(G, 1/λ) respectively.
Then, supposing we chose O, sample Γ from the mea-
sure

νOG,1/λ(Γ) =

∏
γ∈Γ λ

−‖γ‖

ΞO(G, 1/λ)

and obtain the independent set I corresponding to the
set of contours Γ. The distribution of I is µ̂.
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By Lemmas 4.1 and 4.2 we have

‖µ̂− µG,λ‖TV = O(e−n)

and so to obtain an ε-approximate sample from µG,λ
efficiently, it suffices to obtain an ε/2-approximate
sample from νOG,1/λ and νEG,1/λ in time polynomial in

n and 1/ε. This is provided by Theorem 2.3.

4.4 Proof of Theorem 1.2 To prove Theorem 1.2
we need a result on the expansion of random regular
bipartite graphs. In order to state the result we first
generalize our notion of expansion slightly.

Definition 4. Let σ, ρ > 0. A bipartite graph G =
(O, E , E) is a bipartite (σ, ρ)-expander if |N(S)| ≥ ρ|S|
for all S ⊆ O with |S| ≤ σ|O| and all S ⊆ E with
|S| ≤ σ|E|.

Note that our previous definition of a bipartite α-
expander is the same notion as a (1/2, 1 +α)-expander.

Theorem 4.1. (Bassalygo [4]) Almost every ∆-
regular bipartite graph is an (σ, ρ)-expander provided

∆ >
H(σ) +H(σρ)

H(σ)− σρH(1/ρ)
,

where H(p) = −p log2(p) − (1 − p) log2(1 − p) is the
binary entropy function.

Proof. [Proof of Theorem 1.2] Note that Theorem 4.1
implies that almost every ∆-regular bipartite graph
is a bipartite 0.16-expander and so the conclusion of
Theorem 1.2 holds for all λ > C∆32 for some absolute
constant C (we may therefore assume that ∆ ≥ 4 in
the following). In order to remove the dependence
on ∆ we exploit the fact that small subsets expand
a lot more in the random regular bipartite graph.
Indeed, Theorem 4.1 shows that almost every ∆-regular
bipartite graph is also a (1/∆,∆/3)-expander.

Suppose that in the proof of Theorem 1.1 we also
knew that G = (O, E , E) was a (1/∆,∆/3)-expander
and was balanced (i.e. |O| = |E| = m = n/2 as in a
regular bipartite graph).

The key observation is as follows. If γ is a polymer
of an independent set I ∈ IO then we must have |γ∩E| ≤
m/∆ else, by the (1/∆,∆/3)-expansion property, we
would have |N(γ∩E)| ≥ m/3 contradicting the fact that
|I ∩O| > 3m/4 (since each element of N(γ∩E) must be
unoccupied). By (1/∆,∆/3)-expansion we then have

|γ ∩ O| = |N(γ ∩ E)| ≥ ∆

3
|γ ∩ E| ,

and so

‖γ‖ ≥
(

∆

3
− 1

)
|γ ∩ E| .

It follows that for such G, we may replace every instance
of α in Subsection 4.2 by ∆/3−1. Completing the proof
as before, we see that Theorem 1.2 holds for

λ > max
{
e(4e3∆5)

1
∆/3−1 , (2e)40/0.16

}
= (2e)250 .

5 Concluding Remarks

The algorithms presented here are the first provably effi-
cient counting and sampling algorithms for #BIS-hard
problems for the class of expander graphs. However,
they are presumably not optimal in terms of either their
running time or the range of parameters for which they
are provably efficient.

Using contour-based techniques Galvin and
Tetali [17] showed slow mixing of the Glauber dynamics
on ∆-regular bipartite expander graphs. Somewhat
counterintuitively, the proof of slow mixing via contour
methods is related to verifying the Kotecký-Preiss
condition. The expansion condition is weaker and the
value of λ smaller in [17] than in Theorem 1.1 and
so one could hope to devise efficient counting and
sampling algorithms matching the class of graphs and
range of parameters from [17]. We leave for future work
the task of adapting some of their ideas and techniques
to algorithms.

Moreover, one could hope to find efficient algo-
rithms for other statistical physics models that have
been proved to exhibit phase coexistence via contour
arguments (e.g. the q-coloring model on a bipartite
graph [16, 29, 30]). We state a conjecture in this di-
rection on proper colorings in random regular bipartite
graphs, but one could also make conjectures along the
same lines for all bipartite expander graphs or for the
anti-ferromagnetic Potts model.

Conjecture 1. For all q ≥ 3 there is ∆ large enough
so that there exist an FPTAS and efficient sampling
algorithm for proper q-colorings on almost every ∆-
regular bipartite graph.

One could also hope to improve the running time
of the algorithms presented here. The natural choice
for more efficient algorithms would be those based on
Markov chains. A candidate algorithm for the Potts
model is the Swendsen-Wang dynamics [35]. It is natu-
ral to conjecture that the Swendsen-Wang dynamics are
rapidly mixing on expander graphs at sufficiently low
temperatures, and this would give a more efficient sam-
pling algorithm than the one presented here. Similarly,
for the hard-core model on a bipartite expander graph
with symmetry between the sides of the bipartition, one
could follow the suggestion of [21] and start the Glauber
dynamics in either the all even or all odd occupied state
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with equal probability. Proving that such sampling al-
gorithms are indeed efficient is left as an open problem.
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