

ARTICLE

Sharp bounds for a discrete John's theorem

Peter van Hintum¹ and Peter Keevash²

¹New College, University of Oxford, Oxford, UK and ²Mathematical Institute, University of Oxford, Oxford, UK **Corresponding author:** Peter van Hintum; Email: peter.vanhintum@new.ox.ac.uk

(Received 25 September 2023; revised 30 January 2024; accepted 2 February 2024; first published online 5 March 2024)

Abstract

Tao and Vu showed that every centrally symmetric convex progression $C \subset \mathbb{Z}^d$ is contained in a generalized arithmetic progression of size $d^{O(d^2)} \# C$. Berg and Henk improved the size bound to $d^{O(d \log d)} \# C$. We obtain the bound $d^{O(d)} \# C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John's theorem.

Keywords: Convex progression; generalised arithmetic progression; John's theorem **2020 MSC Codes:** Primary: 52C07; Secondary: 52A27

1. Introduction

A classical theorem of John [2] shows that for any centrally symmetric convex set $K \subset \mathbb{R}^d$, there exists an ellipsoid E centred at the origin so that $E \subset K \subset \sqrt{dE}$. This immediately implies that there exists a parallelotope P so that $P \subset E \subset K \subset \sqrt{dE} \subset dP$. In the discrete setting, quantitative covering results are of great interest in Additive Combinatorics, a prominent example being the Polynomial Freiman–Ruzsa Conjecture, which asks for effective bounds on covering sets of small doubling by convex progressions. In this context, a natural analogue of John's theorem in \mathbb{Z}^d would be covering centrally symmetric convex progressions by generalised arithmetic progressions. Here, a d-dimensional *convex progression* is a set of the form $K \cap \mathbb{Z}^d$, where $K \subset \mathbb{R}^d$ is convex and a d-dimensional generalised arithmetic progression (d-GAP) is a translate of a set of the form $\left\{\sum_{i=1}^d m_i a_i : 1 \le m_i \le n_i\right\}$ for some $n_i \in \mathbb{N}$ and $a_i \in \mathbb{Z}^d$.

Tao and Vu [4, 5] obtained such a discrete version of John's theorem, showing that for any origin-symmetric *d*-dimensional convex progression $C \subset \mathbb{Z}^d$ there exists a *d*-GAP *P* so that $P \subset C \subset O(d)^{3d/2} \cdot P$, where $m \cdot P := \{\sum_{i=1}^{m} p_i : p_i \in P\}$ denotes the iterated sumset. Berg and Henk [1] improved this to $P \subset C \subset d^{O(\log(d))} \cdot P$. Our focus will be on the covering aspect of these results, that is, minimising the ratio #P'/#C, where P' is a *d*-GAP covering *C*. This ratio is bounded by $d^{O(d^2)}$ by Tao and Vu and by $d^{O(d\log d)}$ by Berg and Henk. We obtain the bound $d^{O(d)}$, which is optimal.

Theorem 1.1. For any origin-symmetric convex progression $C \subset \mathbb{Z}^d$, there exists a d-GAP P containing C with $\#P \leq O(d)^{3d} \#C$.

Corollary 1.2. For any origin-symmetric convex progression $C \subset \mathbb{Z}^d$ and linear map $\phi : \mathbb{R}^d \to \mathbb{R}$, there exists a d-GAP P containing C with $\#\phi(P) \leq O(d)^{3d} \#\phi(C)$.

[©] The Author(s), 2024. Published by Cambridge University Press.

The optimality of Theorem 1.1 is demonstrated by the intersection of a ball *B* with a lattice *L*. Moreover, Lovett and Regev [3] obtained a more emphatic negative result, disproving the GAP analogue of the Polynomial Freiman–Ruzsa Conjecture, by showing that by considering a random lattice *L* one can find a convex *d*-progression $C = B \cap L$ such that any O(d)-GAP *P* with $\#P \leq \#C$ has $\#(P \cap C) < d^{-\Omega(d)}\#C$. Our result can be viewed as the positive counterpart that settles this line of enquiry, showing that indeed $d^{\Theta(d)}$ is the optimal ratio for covering convex progressions by GAPs.

2. Proof

We start by recording two simple observations and a proposition on a particular basis of a lattice, known as the Mahler Lattice Basis.

Observation 2.1. Given an origin-symmetric convex set $K \subset \mathbb{R}^d$, there exists a origin-symmetric parallelotope Q and an origin-symmetric ellipsoid E so that $\frac{1}{d}Q \subset E \subset K \subset \sqrt{dE \subset Q}$, so in particular $|Q| \leq d^d |K|$.

This is a simple consequence of John's theorem.

Observation 2.2. Let $X, X' \in \mathbb{R}^{d \times d}$ be so that the rows of X and X' generate the same lattice of full rank in \mathbb{R}^d . Then $\exists T \in GL_n(\mathbb{Z})$ so that TX = X'.

This can be seen by considering the Smith Normal Form of the matrices X and X'.

Proposition 2.3 (Corollary 3.35 from [4]). Given a lattice $\Lambda \subset \mathbb{R}^d$ of full rank, there exists a lattice basis v_1, \ldots, v_d of Λ so that $\prod_{i=1}^d ||v_i||_2 \leq O(d^{3d/2}) \det(v_1, \ldots, v_d)$.

With these three results in mind, we prove the theorem.

Proof of Theorem 1.1. By passing to a subspace if necessary, we may assume that *C* is full-dimensional. Write $C = K \cap \mathbb{Z}^d$ where $K \subset \mathbb{R}^d$ is origin-symmetric and convex. Use Observation 2.1 to find a parallelotope $Q \supset K$ so that $|Q| \le d^d |K|$. Let the defining vectors of *Q* be u_1, \ldots, u_d , that is, $Q = \{\sum_i \lambda_i u_i : \lambda_i \in [-1, 1]\}$. Write u_i^j for the *j*-th coordinate of u_i and write *U* for the matrix (u_i^j) with rows u^j and columns u_i .

Consider the lattice Λ generated by the vectors u^j (these are the vectors formed by the *j*-th coordinates of the vectors u_i). Using Proposition 2.3 find a basis v^1, \ldots, v^d of Λ so that $\prod_{j=1}^d ||v^j||_2 \leq O(d^{3d/2}) \det(v^1, \ldots, v^d)$. Write v_i^j for the *i*-th coordinate of v^j and write $V := (v_i^j)$. By Observation 2.2, we can find $T \in GL_n(\mathbb{Z})$ so that TU = V, so that $Tu_i = v_i$ for $1 \leq i \leq d$ and $T(\mathbb{Z}^d) = \mathbb{Z}^d$.

Write $Q' := T(Q) = \{\sum_i \lambda_i v_i : \lambda_i \in [-1, 1]\}$ and consider the smallest axis aligned box $B := \prod_i [-a_i, a_i]$ containing Q'. Note that $a_j \le \sum_i |v_i^j| = ||v^j||_1 \le \sqrt{d} ||v^j||_2$. Hence, we find

$$|B| = 2^d \prod_{i=1}^d a_i \le 2^d \prod_{j=1}^d \sqrt{d} ||v^j||_2 \le O(d)^{2d} \det(v^1, \dots, v^d) = O(d)^{2d} \det(v_1, \dots, v_d) = O(d)^{2d} |Q'|.$$

Now we cover *C* by a *d*-GAP *P*, constructed by the following sequence:

$$C = K \cap \mathbb{Z}^d \subset Q \cap \mathbb{Z}^d = T^{-1}(Q') \cap \mathbb{Z}^d \subset T^{-1}(B) \cap \mathbb{Z}^d = T^{-1}(B \cap \mathbb{Z}^d) =: P.$$

It remains to bound #*P*. As *C* is full-dimensional each $a_i \ge 1$, so

$$\#P = \#(B \cap \mathbb{Z}^d) \le 2^d |B| \le O(d)^{2d} |Q'| = O(d)^{2d} |Q| \le O(d)^{3d} |K| \le O(d)^{3d} \#C,$$

where the last inequality follows from Minkowski's First Theorem (see for instance equation (3.14) in [4]). \Box

Proof of Corollary 1.2. Let $m := \max_{x \in \mathbb{Z}} \#(\phi^{-1}(x) \cap C)$ and note that $\#\phi(C) \ge \#C/m$. Analogously, let $m' := \max_{x \in \mathbb{Z}} \#(\phi^{-1}(x) \cap P)$ so that $m' \ge m$. By translation, we may assume that m' is achieved at x = 0. Note that for any $x = \phi(p)$ with $p \in P$ and $p' \in P \cap \phi^{-1}(0)$ we have $p + p' \in P + P$ with $\phi(p + p') = x$, so $\#(\phi^{-1}(x) \cap (P + P)) \ge m'$. We conclude that

$$\#\phi(P) \le \#(P+P)/m' \le 2^d \#P/m \le O(d)^{3d} \#C/m \le O(d)^{3d} \#\phi(C).$$

References

- [1] Berg, S. L. and Henk, M. (2019) Discrete analogues of John's theorem. Moscow J. Comb. Number Theory 8(4) 367-378.
- [2] John, F. (1948) Extremum problems with inequalities as subsidiary conditions. In Studies and Essays, Presented to R. Courant on his 60th Birthday, New York: Interscience, pp. 187–204.
- [3] Lovett, S. and Regev, O. (2017) A counterexample to a strong variant of the Polynomial Freiman-Ruzsa Conjecture in Euclidean space. Discrete Anal. 8 379–388.
- [4] Tao, T. and Vu, V. (2006) Additive Combinatorics. Cambridge University Press, Vol. 105.
- [5] Tao, T. and Van, V. (2008) John-type theorems for generalized arithmetic progressions and iterated sumsets. Adv. Math. 219(2) 428–449.

Cite this article: van Hintum P and Keevash P (2024). Sharp bounds for a discrete John's theorem. *Combinatorics, Probability and Computing* 33, 484–486. https://doi.org/10.1017/S0963548324000051