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Abstract
Tao andVu showed that every centrally symmetric convex progressionC ⊂Z

d is contained in a generalized
arithmetic progression of size dO(d2)#C. Berg and Henk improved the size bound to dO(d log d)#C. We obtain
the bound dO(d)#C, which is sharp up to the implied constant and is of the same form as the bound in the
continuous setting given by John’s theorem.
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1. Introduction
A classical theorem of John [2] shows that for any centrally symmetric convex set K ⊂R

d, there
exists an ellipsoid E centred at the origin so that E⊂K ⊂ √

dE. This immediately implies that
there exists a parallelotope P so that P ⊂ E⊂K ⊂ √

dE⊂ dP. In the discrete setting, quantita-
tive covering results are of great interest in Additive Combinatorics, a prominent example being
the Polynomial Freiman–Ruzsa Conjecture, which asks for effective bounds on covering sets of
small doubling by convex progressions. In this context, a natural analogue of John’s theorem in
Z
d would be covering centrally symmetric convex progressions by generalised arithmetic pro-

gressions. Here, a d-dimensional convex progression is a set of the form K ∩Z
d, where K ⊂R

d is
convex and a d-dimensional generalised arithmetic progression (d-GAP) is a translate of a set of
the form

{∑d
i=1 miai : 1≤mi ≤ ni

}
for some ni ∈N and ai ∈Z

d.
Tao and Vu [4, 5] obtained such a discrete version of John’s theorem, showing that for any

origin-symmetric d-dimensional convex progression C ⊂Z
d there exists a d-GAP P so that

P ⊂ C ⊂O(d)3d/2 · P, where m · P := {∑m
i=1 pi : pi ∈ P

}
denotes the iterated sumset. Berg and

Henk [1] improved this to P ⊂ C ⊂ dO( log (d)) · P. Our focus will be on the covering aspect of these
results, that is, minimising the ratio #P′/#C, where P′ is a d-GAP coveringC. This ratio is bounded
by dO(d2) by Tao and Vu and by dO(d log d) by Berg and Henk. We obtain the bound dO(d), which is
optimal.

Theorem 1.1. For any origin-symmetric convex progression C ⊂Z
d, there exists a d-GAP P

containing C with #P ≤O(d)3d#C.

Corollary 1.2. For any origin-symmetric convex progression C ⊂Z
d and linear map φ :Rd →R,

there exists a d-GAP P containing C with #φ(P)≤O(d)3d#φ(C).
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The optimality of Theorem 1.1 is demonstrated by the intersection of a ball B with a lattice
L. Moreover, Lovett and Regev [3] obtained a more emphatic negative result, disproving the GAP
analogue of the Polynomial Freiman–Ruzsa Conjecture, by showing that by considering a random
lattice L one can find a convex d-progression C = B∩ L such that any O(d)-GAP P with #P ≤ #C
has #(P ∩ C)< d−�(d)#C. Our result can be viewed as the positive counterpart that settles this line
of enquiry, showing that indeed d�(d) is the optimal ratio for covering convex progressions by
GAPs.

2. Proof
We start by recording two simple observations and a proposition on a particular basis of a lattice,
known as the Mahler Lattice Basis.

Observation 2.1. Given an origin-symmetric convex set K ⊂R
d, there exists a origin-symmetric

parallelotope Q and an origin-symmetric ellipsoid E so that 1
dQ⊂ E⊂K ⊂ √

dE⊂Q, so in
particular |Q| ≤ dd|K|.

This is a simple consequence of John’s theorem.

Observation 2.2. Let X, X′ ∈R
d×d be so that the rows of X and X′ generate the same lattice of full

rank in R
d. Then ∃T ∈GLn(Z) so that TX = X′.

This can be seen by considering the Smith Normal Form of the matrices X and X′.

Proposition 2.3 (Corollary 3.35 from [4]). Given a lattice � ⊂R
d of full rank, there exists a lattice

basis v1, . . . , vd of � so that
∏d

i=1 ‖vi‖2 ≤O(d3d/2) det(v1, . . . , vd).

With these three results in mind, we prove the theorem.

Proof of Theorem 1.1. By passing to a subspace if necessary, we may assume that C
is full-dimensional. Write C =K ∩Z

d where K ⊂R
d is origin-symmetric and convex. Use

Observation 2.1 to find a parallelotope Q⊃K so that |Q| ≤ dd|K|. Let the defining vectors of Q be
u1, . . . , ud, that is, Q= {∑

i λiui : λi ∈ [−1, 1]
}
. Write uji for the j-th coordinate of ui and write U

for the matrix
(
uji

)
with rows uj and columns ui.

Consider the lattice � generated by the vectors uj (these are the vectors formed by the
j-th coordinates of the vectors ui). Using Proposition 2.3 find a basis v1, . . . , vd of � so that∏d

j=1 ||vj||2 ≤O
(
d3d/2

)
det

(
v1, . . . , vd

)
. Write vji for the i-th coordinate of vj and write V := (

vji
)
.

By Observation 2.2, we can find T ∈GLn(Z) so that TU =V , so that Tui = vi for 1≤ i≤ d and
T(Zd)=Z

d.
Write Q′ := T(Q)= {∑

i λivi : λi ∈ [−1, 1]
}
and consider the smallest axis aligned box B :=∏

i [−ai, ai] containing Q′. Note that aj ≤ ∑
i |vji| = ||vj||1 ≤ √

d||vj||2. Hence, we find

|B| = 2d
d∏

i=1
ai ≤ 2d

d∏
j=1

√
d||vj||2 ≤O(d)2d det

(
v1, . . . , vd

) =O(d)2d det(v1, . . . , vd)=O(d)2d|Q′|.

Now we cover C by a d-GAP P, constructed by the following sequence:

C =K ∩Z
d ⊂Q∩Z

d = T−1(Q′)∩Z
d ⊂ T−1(B)∩Z

d = T−1(B∩Z
d) =: P.

It remains to bound #P. As C is full-dimensional each ai ≥ 1, so

#P = #
(
B∩Z

d) ≤ 2d|B| ≤O(d)2d|Q′| =O(d)2d|Q| ≤O(d)3d|K| ≤O(d)3d#C,
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where the last inequality follows fromMinkowski’s First Theorem (see for instance equation (3.14)
in [4]). �
Proof of Corollary 1.2. Let m := maxx∈Z #(φ−1(x)∩ C) and note that #φ(C)≥ #C/m.
Analogously, let m′ := maxx∈Z #(φ−1(x)∩ P) so that m′ ≥m. By translation, we may assume
that m′ is achieved at x= 0. Note that for any x= φ(p) with p ∈ P and p′ ∈ P ∩ φ−1(0) we have
p+ p′ ∈ P + P with φ(p+ p′)= x, so #

(
φ−1(x)∩ (P + P)

) ≥m′. We conclude that

#φ(P)≤ #(P + P)/m′ ≤ 2d#P/m≤O(d)3d#C/m≤O(d)3d#φ(C). �
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