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Abstract

Tao and Vu showed that every centrally symmetric convex progression C C Z“ is contained in a generalized
arithmetic progression of size d°@#C. Berg and Henk improved the size bound to d°?*¢?#C. We obtain
the bound d°?@#C, which is sharp up to the implied constant and is of the same form as the bound in the
continuous setting given by John’s theorem.
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1. Introduction

A classical theorem of John [2] shows that for any centrally symmetric convex set K C R4, there
exists an ellipsoid E centred at the origin so that E C K C /dE. This immediately implies that
there exists a parallelotope P so that P C E C K C +/dE C dP. In the discrete setting, quantita-
tive covering results are of great interest in Additive Combinatorics, a prominent example being
the Polynomial Freiman-Ruzsa Conjecture, which asks for effective bounds on covering sets of
small doubling by convex progressions. In this context, a natural analogue of John’s theorem in
74 would be covering centrally symmetric convex progressions by generalised arithmetic pro-
gressions. Here, a d-dimensional convex progression is a set of the form K N Z4, where K c R? is
convex and a d-dimensional generalised arithmetic progression (d-GAP) is a translate of a set of
the form {Z?zl ma;: 1 <m; < n,-} for some n; € N and a; € Z4.

Tao and Vu [4, 5] obtained such a discrete version of John’s theorem, showing that for any
origin-symmetric d-dimensional convex progression C C Z“ there exists a d-GAP P so that
PC CcO(d)>?.p, where m-P:= {3, pi:pi € P} denotes the iterated sumset. Berg and
Henk [1] improved this to P ¢ C c d°1°8(@) . P Qur focus will be on the covering aspect of these
results, that is, minimising the ratio #P’/#C, where P’ is a d-GAP covering C. This ratio is bounded

by d0@) by Tao and Vu and by d°@1°¢9) by Berg and Henk. We obtain the bound d°@, which is
optimal.

Theorem 1.1. For any origin-symmetric convex progression C C 74 there exists a d-GAP P
containing C with #P < O(d)*¥#C.

Corollary 1.2. For any origin-symmetric convex progression C C 2% and linear map ¢ :R? — R,
there exists a d-GAP P containing C with #¢(P) < 0(d)*#¢(C).
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The optimality of Theorem 1.1 is demonstrated by the intersection of a ball B with a lattice
L. Moreover, Lovett and Regev [3] obtained a more emphatic negative result, disproving the GAP
analogue of the Polynomial Freiman-Ruzsa Conjecture, by showing that by considering a random
lattice L one can find a convex d-progression C = B N L such that any O(d)-GAP P with #P < #C
has #(P N C) < d=¥@#C. Our result can be viewed as the positive counterpart that settles this line

of enquiry, showing that indeed d®@ is the optimal ratio for covering convex progressions by
GAPs.

2. Proof

We start by recording two simple observations and a proposition on a particular basis of a lattice,
known as the Mahler Lattice Basis.

Observation 2.1. Given an origin-symmetric convex set K C R, there exists a origin-symmetric
parallelotope Q and an origin-symmetric ellipsoid E so that éQ CECKCWVAECQ so in
particular |Q| < dK|.

This is a simple consequence of John’s theorem.

Observation 2.2. Let X, X' € R4 be so that the rows of X and X' generate the same lattice of full
rank in RY. Then 3T € GL,(Z) so that TX =X'.

This can be seen by considering the Smith Normal Form of the matrices X and X'.

Proposition 2.3 (Corollary 3.35 from [4]). Given a lattice A C R4 of full rank, there exists a lattice
basis v1, . .., vy of A so that 1_[?:1 [villa < O(d?¥/2) det(vy, . . ., vy).

With these three results in mind, we prove the theorem.

Proof of Theorem 1.1. By passing to a subspace if necessary, we may assume that C
is full-dimensional. Write C=K NZ% where K Cc R is origin-symmetric and convex. Use
Observation 2.1 to find a parallelotope Q D K so that |Q| < d?|K|. Let the defining vectors of Q be
ui,...,ug thatis, Q= {Zl Aiui:hie[—1,1] } Write ui for the j-th coordinate of u; and write U
for the matrix (u’l) with rows 1/ and columns ;.

Consider the lattice A generated by the vectors 1/ (these are the vectors formed by the
j-th coordinates of the vectors u;). Using Proposition 2.3 find a basis v',..., v of A so that
]_[in=1 [1V]], < O(d3d/2) det(vl, e vd). Write v: for the i-th coordinate of ¥/ and write V := (vi)
By Observation 2.2, we can find T € GL,(Z) so that TU =V, so that Tu; =v; for 1 <i<d and
T(Z%) =7°.

Write Q' := T(Q) = {Zl Avithie[—1, 1]} and consider the smallest axis aligned box B:=
[1; [—ai, ai] containing Q. Note thata; <), |v§| = ||¥/||; < ~/d||¥||,. Hence, we find

d d
Bl =2 [ai <2/ [ [VdIIW]l2 < O(@)* det(v}, . .., v") = O(d)* det(v, . .., v4) = O@)*|Q].
i=1 j=1

Now we cover C by a d-GAP P, constructed by the following sequence:
c=knziconzi=1'Q)nZcT'B)NZ =T (BN Z%) =:P.
It remains to bound #P. As C is full-dimensional each a; > 1, so

#P=#(BNZ7) < 2B < 0(d)*"|Q'| = O(d)*|Ql < O(d)*|K| < O(d)**#C,
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where the last inequality follows from Minkowski’s First Theorem (see for instance equation (3.14)
in [4]).

Proof of Corollary 1.2. Let m:= maxyez #(¢ ' (x) NC) and note that #¢(C)> #C/m.
Analogously, let m' := maxyez #(¢ 1 (x) N P) so that m’ > m. By translation, we may assume
that m’ is achieved at x = 0. Note that for any x = ¢(p) with p € P and p’ € PN ¢~1(0) we have
p+p €P+Pwithg(p+p')=x,s0#(¢~'(x) N (P+P)) > m'". We conclude that

#(P) < #(P+ P)/m’ <2%4P/m < O(d)**#C/m < O(d)**#¢(C). .
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