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Abstract
We show for𝐴, 𝐵 ⊂ ℝ𝑑 of equal volume and 𝑡 ∈ (0, 1∕2]
that if |𝑡𝐴 + (1 − 𝑡)𝐵| < (1 + 𝑡𝑑)|𝐴|, then (up to trans-
lation) | co(𝐴 ∪ 𝐵)|∕|𝐴| is bounded. This establishes
the sharp threshold for the quantitative stability of the
Brunn–Minkowski inequality recently established by
Figalli, van Hintum, and Tiba, the proof of which uses
our current result. We additionally establish a similar
sharp threshold for iterated sumsets.
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1 INTRODUCTION

The Brunn–Minkowski inequality asserts that for sets 𝐴, 𝐵 ⊂ ℝ𝑑 with equal volume and 𝑡 ∈
(0, 1∕2], we have

|𝑡𝐴 + (1 − 𝑡)𝐵| ⩾ |𝐴|,
with equality exactly if𝐴 = 𝐵 is a convex set. The stability of this inequality has sparked a rich body
of research (e.g., [2, 4, 6–12, 14–16]). These results variously control (up to translation†) |𝐴△ 𝐵|,| co(𝐴) ⧵ 𝐴|, and | co(𝐴 ∪ 𝐵) ⧵ 𝐴| (where co(𝐴) is the convex hull of 𝐴, i.e., the smallest convex
set containing 𝐴) in terms of the parameter:

𝛿𝑡(𝐴, 𝐵) ∶=
|𝑡𝐴 + (1 − 𝑡)𝐵||𝐴| − 1 ⩾ 0.

† That is, there exists 𝑥 ∈ ℝ𝑛 so that |𝐴△ (𝐵 + 𝑥)| or | co(𝐴 ∪ (𝐵 + 𝑥)) ⧵ 𝐴| is small.
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2 van HINTUM and KEEVASH

In [7], Figalli and Jerison showed that there exist𝑎𝑑,𝑡, 𝑐𝑑,𝑡, Δ𝑑,𝑡 > 0, so that if 𝛿 = 𝛿𝑡(𝐴, 𝐵) ⩽ Δ𝑑,𝑡,
then (up to translation)

| co(𝐴 ∪ 𝐵) ⧵ 𝐴| ⩽ 𝑐𝑑,𝑡𝛿𝑎𝑑,𝑡 |𝐴|.
The question of determining the optimal values of 𝑎𝑑,𝑡 and 𝑐𝑑,𝑡 has received a lot of atten-
tion. The optimal values for general 𝐴, 𝐵 ⊂ ℝ𝑑 were recently determined to be 𝑎𝑑,𝑡 = 1∕2 and
𝑐𝑑,𝑡 = 𝑂𝑑(𝑡

−1∕2) by Figalli, van Hintum, and Tiba [12] concluding a long line of partial results
for specific classes of sets [1, 3, 9, 10]. In their proof, they use our Theorem 1.1 as a crucial tool
(cited as [12, Proposition 8.3]). For the particular case𝐴 = 𝐵, the stronger result with 𝑎𝑑,𝑡 = 1 and
𝑐𝑑,𝑡 = 𝑡

−1 exp(𝑂(𝑑 log(𝑑))) was established in [14] proving a conjecture from [8].
In this paper, we determine the optimal value of Δ𝑑,𝑡 for these results. We establish this bound

both for general𝐴, 𝐵 ⊂ ℝ𝑑 and for iterated sumsets. Both can be extended to quantitative stability
results for all doublings below this threshold.

Theorem 1.1. For all 𝑑 ∈ ℕ, 𝑡 ∈ (0, 1∕2], there are 𝐶𝑑,𝑡 > 0 so that if𝐴, 𝐵 ⊂ ℝ𝑑 of the same volume
have |𝑡𝐴 + (1 − 𝑡)𝐵| < (1 + 𝑡𝑑)|𝐴|, then (after possibly translating) | co(𝐴 ∪ 𝐵)| ⩽ 𝐶𝑑,𝑡|𝐴|.
In fact, we can choose𝐶𝑑,𝑡 = 𝑡−𝑂(𝑑

2). The second theoremdetermines this threshold for iterated
sumsets. For 𝑋 ⊂ ℝ𝑑 and 𝑘 ∈ ℕ, we write 𝑘 ⋅ 𝑋 ∶= 𝑋 +⋯ + 𝑋

⏟⎴⎴⏟⎴⎴⏟
𝑘 terms

.

Theorem 1.2. For all 𝑑, 𝑘 ∈ ℕ, there are 𝐶𝑑,𝑘 > 0 so that if 𝐴 ⊂ ℝ𝑑 satisfies |𝑘 ⋅ 𝐴| < (1𝑑 +⋯ +
𝑘𝑑)|𝐴|, then | co(𝐴)| ⩽ 𝐶𝑑,𝑘|𝐴|.
Remark 1.3. Cole Hugelmeyer, Hunter Spink, and Jonathan Tidor established Theorem 1.2 inde-
pendently [17]. Theorem 1.1 for 𝑡 = 1∕2 coincides with Theorem 1.2 for 𝑘 = 2. This result as well
as Corollary 1.4 for 𝑡 = 1∕2 are established through independent methods in [13, Corollary 1.9].

Combining Theorem 1.1 with the main result from [12] (included here as Theorem 5.1), we find
the following quantitative stability of the Brunn–Minkowski inequality.

Corollary 1.4. For all 𝑑 ∈ ℕ, 𝑡 ∈ (0, 1), there exist 𝑎𝑑,𝑡, 𝐶𝑑,𝑡 > 0 so that if 𝐴, 𝐵 ⊂ ℝ𝑑 of the same
volume satisfy 𝛿 ∶= 𝛿𝑡(𝐴, 𝐵) < 𝑡𝑑, then (up to translation) we have

| co(𝐴 ∪ 𝐵) ⧵ 𝐴| ⩽ 𝐶𝑑,𝑡𝛿1∕2|𝐴|, and
| co(𝐴) ⧵ 𝐴| + | co(𝐵) ⧵ 𝐵| ⩽ 𝐶𝑑,𝑡𝛿|𝐴|.

All these results are sharp as shown by 𝐴 = [0, 1]𝑑 and 𝐵 = 𝐴 ∪ {𝑣}, where 𝑣 ∈ ℝ𝑑 is some
arbitrarily large vector. For these 𝐴, 𝐵, we have

𝑡𝐴 + (1 − 𝑡)𝐵 = 𝐴 ∪
(
[0, 𝑡]𝑑 + (1 − 𝑡)𝑣

)
,

so that 𝛿𝑡(𝐴, 𝐵) = 𝑡𝑑, while
| co(𝐵)⧵𝐵||𝐵| →∞ as ||𝑣||2 → ∞.
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THE SHARP DOUBLING THRESHOLD FOR APPROXIMATE CONVEXITY 3

In Section 2, we establish strong versions of the results for 𝑑 = 1, which are instrumental in
the proof of the general results. In Section 3, we prove Theorem 1.2. In Section 4, we prove The-
orem 1.1. Note that the proof of Theorem 1.2 in Section 3 is a more accessible version of the proof
of Theorem 1.1 in Section 4. Finally, in Section 5, we include a proof of the corollary.
The idea in both proofs is to find two points in 𝐴 (or 𝐵) for each coordinate direction that are

very far apart, which can be done by increasing | co(𝐴)| in combination with Lemma 4.2. We
then distinguish two cases; either𝐴 contains long fibres in all coordinate directions or not. In the
former case, we find a lower bound on the doubling using Plünnecke’s inequality† as the sum of
those long fibres is large (see Claim 4.3). In the latter case, we fix a direction in which the fibres of
𝐴 are short and show that using an optimal transport map, we can pair up the fibres from 𝐴 and
𝐵 whose (weighted) sum form a reference set of size |𝐴| (see Lemma 4.1). Finally we show that
summing fibres of𝐵with the two far removed points from𝐴 gives a set disjoint from the reference
set of the required size (see Lemma 2.1).

2 STRONG VERSIONS OF FREIMAN’S 𝟑𝒌 − 𝟒 THEOREM

We use two versions of the following lemma. This lemma implies continuous versions of
Freiman’s 3𝑘 − 4 theorem for distinct sets.

Lemma 2.1. Given subsets 𝑋,𝑌, 𝑍 ⊂ [0, 1], we have

|(𝑋 + 𝑌) ∪ ({0, 1} + 𝑍)| ⩾ min{1, |𝑋| + |𝑌|} + |𝑍|.
Proof. Let 𝑆 ∶= (𝑋 + 𝑌) ∪ ({0, 1} + 𝑍). Let 𝑓 ∶ ℝ → [0, 1); 𝑥 ↦ 𝑥 − ⌊𝑥⌋ be the canonical quotient
map. Note that for 𝑧 ∈ 𝑍, we have |𝑓−1(𝑧) ∩ 𝑆| ⩾ 2. Moreover, note that |𝑓(𝑋 + 𝑌)| = 𝑓(𝑓(𝑋) +
𝑓(𝑌)) ⩾ min{1, |𝑓(𝑋)| + |𝑓(𝑌)|} by Cauchy–Davenport in the torus, so we find:

|𝑆| ⩾ |𝑆 ∩ 𝑓−1(𝑍)| + |𝑆 ⧵ 𝑓−1(𝑍)|
⩾ |({0, 1} + 𝑍) ∩ 𝑓−1(𝑍)| + |(𝑋 + 𝑌) ⧵ 𝑓−1(𝑍)|
⩾ 2|𝑍| + |𝑓(𝑋 + 𝑌) ⧵ 𝑍|
⩾ 2|𝑍| + (min{1, |𝑋| + |𝑌|} − |𝑍|)
= min{1, |𝑋| + |𝑌|} + |𝑍|.

The lemma follows. □

Wewill only apply Lemma 2.1 to sets with |𝑋|, |𝑌|, |𝑍| ⩽ 1
2
, so that the bound gives |𝑋| + |𝑌| +|𝑍|.

Note that for sets 𝐴, 𝐵 ⊂ ℝ with | co(𝐴)| ⩾ | co(𝐵)|, up to rescaling and translating, we can
assume co(𝐴) = [0, 1] ⊃ 𝐵. In particular, we may assume {0, 1} ⊂ 𝐴, so that |𝐴 + 𝐵| = |(𝐴 + 𝐵) ∪
({0, 1} + 𝐵)|. Setting 𝑋 = 𝐴 and 𝑌 = 𝑍 = 𝐵, we find that Lemma 2.1 implies

|𝐴 + 𝐵| ⩾ |𝐵| +min{| co(𝐴)|, |𝐴| + |𝐵|} = |𝐴| + |𝐵| +min{| co(𝐴) ⧵ 𝐴|, |𝐵|},
which can be seen as a stronger version of the one-dimensional instance of Theorem 1.1.

† Plünnecke’s inequality [20] states that |𝑋 + 𝑌| ⩽ 𝜆|𝑌| implies |𝑑 ⋅ 𝑋| ⩽ 𝜆𝑑|𝑌|.
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4 van HINTUM and KEEVASH

For iterated sumsets, we have the following version of this lemma.

Lemma 2.2. Suppose𝑌𝑖 ⊂ [0, 1]with |𝑌𝑖| ⩽ 1∕𝑘 for 1 ⩽ 𝑖 ⩽ 𝑘. Let 𝑆 ∶=⋃𝑘
𝑖=1{0, 1, … , (𝑘 − 𝑖)} + 𝑖 ⋅

𝑌𝑖 . Then, we have |𝑆| ⩾ ∑
𝑖 𝑖|𝑌𝑖|.

Proof. Let 𝑓 ∶ ℝ → 𝕋; 𝑥 ↦ 𝑥 − ⌊𝑥⌋ be the canonical quotient map from the line to the torus. Note
that for 𝑦 ∈ 𝑓(𝑖 ⋅ 𝑌𝑖), we have |𝑓−1(𝑦) ∩ 𝑆| ⩾ 𝑘 − 𝑖 + 1. Moreover, note that |𝑓(𝑖 ⋅ 𝑌𝑖)| ⩾ 𝑖|𝑌𝑖| by
Cauchy–Davenport. Let 𝑍𝑖 ∶= 𝑓(𝑖 ⋅ 𝑌𝑖) ⧵

⋃
𝑗<𝑖 𝑓

(
𝑗 ⋅ 𝑌𝑗

)
. With a little thought (e.g., by induction

on 𝑘), we find
∑
𝑖(𝑘 − 𝑖 + 1)|𝑍𝑖| ⩾ ∑

𝑖 |𝑓(𝑖 ⋅ 𝑌𝑖)| ⩾ ∑
𝑖 𝑖|𝑌𝑖|. Combining these, we find

|𝑆| ⩾∑
𝑖

|𝑆 ∩ 𝑓−1(𝑍𝑖)|
⩾
∑
𝑖

|||({0, 1, … , (𝑘 − 𝑖)} + 𝑖 ⋅ 𝑌𝑖) ∩ 𝑓−1(𝑍𝑖)|||
⩾
∑
𝑖

(𝑘 − 𝑖 + 1)|𝑍𝑖|
⩾
∑
𝑖

𝑖|𝑌𝑖|.
The lemma follows. □

Thoughwe shall only apply the lemma in its current form, the proof actually gives the following
(stronger) result when all the 𝑌𝑖 ’s are the same, but not necessarily small in their convex hull. For
𝐴 ⊂ ℝ, rescaling and translating, we may assume {0, 1} ⊂ 𝐴 ⊂ [0, 1], so that

𝑘⋃
𝑖=1

{0, 1, … , (𝑘 − 𝑖)} + 𝑖 ⋅ 𝐴 =
𝑘⋃
𝑖=1

(𝑘 − 𝑖) ⋅ {0, 1} + 𝑖 ⋅ 𝐴 = 𝑘 ⋅ 𝐴.

Using the more general Cauchy–Davenport bound |𝑓(𝑖 ⋅ 𝐴)| ⩾ min{| co(𝐴)|, 𝑖|𝐴|}, we find
|𝑘 ⋅ 𝐴| ⩾ 𝑘∑

𝑖=1

min{𝑖|𝐴|, | co(𝐴)|} = (
𝓁 + 1
2

)|𝐴| + (𝑘 − 𝓁)| co(𝐴)|,
where 𝓁 ∶= min

{⌊| co(𝐴)||𝐴|
⌋
, 𝑘
}
. This can be seen as the continuous version of Corollary 1 from

[18].
In the most dense situation (i.e., 𝓁 = 1), this gives that if |𝑘 ⋅ 𝐴| ⩽ (𝑘 + 1)|𝐴|, then | co(𝐴) ⧵

𝐴| ⩽ 1
𝑘−1
(|𝑘 ⋅ 𝐴| − 𝑘|𝐴|). In the least dense situation (i.e., 𝓁 = 𝑘), this is a sharp version of The-

orem 1.2 in one dimension. For 𝑘 = 2, this reduces to the continuous version of Freiman’s 3𝑘 − 4
theorem. These results are sharp as shown by a union of an interval with a point.

3 ITERATED SUMSETS: THEOREM 1.2

Proof of Theorem 1.2. For 𝑖 = 1, … 𝑑, let 𝜋𝑖 ∶ ℝ𝑑 → ℝ𝑑−1 be the projection onto the coordinate
hyperplane spanned by the basis vectors 𝑒1, … , 𝑒𝑖−1, 𝑒𝑖+1, … , 𝑒𝑑. Let 𝐿 = 𝐿𝑑,𝑘 be sufficiently large
in terms of 𝑘 and 𝑑 and 𝐶𝑑,𝑘 sufficiently large in terms of 𝐿.
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THE SHARP DOUBLING THRESHOLD FOR APPROXIMATE CONVEXITY 5

Aiming for a contradiction, we assume | co(𝐴)| > 𝐶𝑑,𝑘|𝐴|.
Note that the statement of the theorem is affine invariant, so that we may normalize so that|𝐴| = 1. We will now apply further transformations to put 𝐴 in a standard form; these are not

hard to justify directly and also follow from Lemma 4.2 below. First, we can apply a volume
preserving affine transformation to 𝑋 = 𝑌 = co(𝐴) to find that a new set (which for notational
convenience we will still call 𝐴) which contains fibres in all coordinate directions, such that
the product of the lengths of these fibres is the volume of a parallelotope containing co(𝐴).
Second, after rescaling each direction while preserving the volume, all of these fibres can be
assumed to have the same length 𝐿′ > 𝐿. Hence, we find for 𝑖 = 1, … , 𝑑 points 𝑥𝑖 ∈ ℝ𝑑−1 so that|𝜋−1
𝑖
(𝑥𝑖) ∩ co(𝐴)| = max𝑥∈ℝ𝑑−1 |𝜋−1𝑖 (𝑥) ∩ co(𝐴)| = 𝐿′ > 𝐿.

Claim 3.1. If for all 𝑖, there exists a 𝑦𝑖 ∈ ℝ𝑑−1 with |𝜋−1𝑖 (𝑦𝑖) ∩ 𝐴| ⩾ 𝐿∕𝑘, then |𝑘 ⋅ 𝐴| ⩾ (1𝑑 + 2𝑑 +
⋯ + 𝑘𝑑)|𝐴|
Proof. For a contradiction assume ||𝑘 ⋅ 𝐴|| < (1𝑑 + 2𝑑 +⋯ + 𝑘𝑑)|𝐴|. Then by Plünnecke’s
inequality, we have ||𝑑 ⋅ 𝐴|| < (1𝑑 + 2𝑑 +⋯ + 𝑘𝑑)𝑑|𝐴|. However,

||𝑑 ⋅ 𝐴|| ⩾
||||||
𝑑∑
𝑖=1

(
𝜋−1𝑖 (𝑦𝑖) ∩ 𝐴

)|||||| ⩾ (𝐿∕𝑘)
𝑑 > (1𝑑 + 2𝑑 +⋯ + 𝑘𝑑)𝑑.

This contradiction proves the claim. □

Hence, we may assume there is a coordinate direction 𝑖 with |𝜋−1
𝑖
(𝑦𝑖) ∩ 𝐴| ⩽ 𝐿∕𝑘 for all

𝑦𝑖 ∈ ℝ
𝑑−1. Rotating if necessary, we may assume 𝑖 = 1. For notational convenience, write 𝐴𝑥 ∶=

𝜋−11 (𝑥) ∩ 𝐴 and 𝑆𝑥 ∶= 𝜋
−1
1 (𝑥) ∩ (𝑘 ⋅ 𝐴).

Translate 𝐴 so that 𝑥1 = 0, and 𝐴0 ⊃ {0, 𝐿′} × (0, … , 0). Now we find that

𝑆𝑥 ⊃
𝑘⋃
𝑖=1

𝑖 ⋅ 𝐴𝑥∕𝑖 + (𝑘 − 𝑖) ⋅ 𝐴0

which by Lemma 2.2 implies

|𝑆𝑥| ⩾ 𝑘∑
𝑖=1

𝑖|𝐴𝑥∕𝑖|.
We conclude:

|𝑘 ⋅ 𝐴| = ∫𝑥∈ℝ𝑑−1 |𝑆𝑥|𝑑𝑥
⩾ ∫𝑥∈ℝ𝑑−1

𝑘∑
𝑖=1

𝑖|𝐴𝑥∕𝑖|𝑑𝑥

=
𝑘∑
𝑖=1

𝑖𝑑 ∫𝑥∈ℝ𝑑−1 |𝐴𝑥|𝑑𝑥
= (1𝑑 +⋯ + 𝑘𝑑)|𝐴|.

This concludes the proof of the theorem. □
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6 van HINTUM and KEEVASH

4 DISTINCT SETS: THEOREM 1.1

We use the following standard lemma that establishes the existence of a large subset of 𝑡𝐴 + (1 −
𝑡)𝐵. For an exposition, see, for example, Section 3, Step 1 in [5], for a proof of this specific lemma,
see [19, Appendix D].

Lemma 4.1 [19]. Let 𝜇𝐴, 𝜇𝐵 ∶ ℝ𝑑−1 → ℝ be two probability measures and 𝑇 ∶ ℝ𝑑−1 → ℝ𝑑−1 the
optimal transport map so that for all measurable 𝑋 ⊂ ℝ𝑑−1, we have 𝜇𝐴(𝑋) = 𝜇𝐵(𝑇(𝑋)). For 𝑡 ∈
(0, 1), let 𝜌𝑡 ∶ ℝ𝑑−1 → ℝ be defined by 𝜌𝑡(𝑥) ∶= 𝑡𝜇𝐴(𝑦) + (1 − 𝑡)𝜇𝐵(𝑇(𝑦)), where 𝑦 ∈ ℝ𝑑−1 is the
unique element so that 𝑥 = 𝑡𝑦 + (1 − 𝑡)𝑇(𝑦). Then ∫ 𝜌𝑡 ⩾ 1.
We also need the following lemma that translates any two sets into a common bounding poly-

tope in which each perpendicular height corresponds to a fibre of one of the sets. We note that the
case when 𝑋 = 𝑌 is straightforward and was used in the previous section.

Lemma 4.2. Given convex sets 𝑋,𝑌 ⊂ ℝ𝑑 and an orthonormal basis 𝑒1, … , 𝑒𝑑 , there exists a trans-
lation 𝑣 ∈ ℝ𝑑 and a volume-preserving affine transformation 𝑇 ∶ ℝ𝑑 → ℝ𝑑, so that if we let 𝑈 ∶=
𝑇(𝑋) and 𝑉 ∶= 𝑣 + 𝑇(𝑌), then there are points 𝑝𝑖 ∈ 𝑈 ∪ 𝑉, 𝜆𝑖 ∈ ℝ and hyperplanes 𝐻𝑖 ⊂ ℝ𝑑 (for
1 ⩽ 𝑖 ⩽ 𝑑) so that:

1. 𝑝𝑖, 𝑝𝑖 + 𝜆𝑖𝑒𝑖 ∈ 𝑈, or 𝑝𝑖, 𝑝𝑖 + 𝜆𝑖𝑒𝑖 ∈ 𝑉,
2. 𝑈 ∪ 𝑉 ⊂ 𝐻𝑖 + [0, 𝜆𝑖]𝑒𝑖 , and
3. ||⋂𝑖(𝐻𝑖 + [0, 𝜆𝑖]𝑒𝑖)|| =∏

𝑖 𝜆𝑖 .

Proof. We proceed by induction on 𝑘; assume after an affine transformation and translation, there
are (for 1 ⩽ 𝑖 ⩽ 𝑘) 𝑝𝑖 ∈ 𝑋 ∪ 𝑌, 𝜆𝑖 ∈ ℝ, and hyperplanes𝐻𝑖 ⊂ ℝ𝑑 so that:

1. if 𝑝𝑖 ∈ 𝑋, then 𝑝𝑖 + 𝜆𝑖𝑒𝑖 ∈ 𝑋 and if 𝑝𝑖 ∈ 𝑌, then 𝑝𝑖 + 𝜆𝑖𝑒𝑖 ∈ 𝑌,
2. 𝑋 ∪ 𝑌 ⊂ 𝐻𝑖 + [0, 𝜆𝑖]𝑒𝑖 ,
3. |||ℝ𝑘 × {0}𝑑−𝑘 ∩⋂1⩽𝑖⩽𝑘(𝐻𝑖 + [0, 𝜆𝑖]𝑒𝑖)||| =∏

1⩽𝑖⩽𝑘 𝜆𝑖 .

Translating one of the sets along a multiple of 𝑒𝑘+1, we may assume that the points 𝑞, 𝑟 ∈ 𝑋 ∪ 𝑌
minimizing ⟨𝑒𝑘+1, 𝑞⟩ andmaximizing ⟨𝑒𝑘+1, 𝑟⟩ belong to the same set𝑋 or𝑌. Note that translating
along 𝑒𝑘+1 does not affect any of the properties of 𝑝𝑖, 𝜆𝑖 , and 𝐻𝑖 with 𝑖 ⩽ 𝑘 (up to the appropri-
ate translations). For notational convenience, translate both sets by −𝑞 (i.e., assume 𝑞 = 0). Let
𝐻𝑘+1 ∶= ℝ

𝑘 × {0} × ℝ𝑑−𝑘−1 and 𝜆𝑘+1 ∶= ⟨𝑒𝑘+1, 𝑟⟩. Clearly, we have𝑋 ∪ 𝑌 ⊂ 𝐻𝑘+1 + [0, 𝜆𝑘+1]𝑒𝑘+1
and

|||||ℝ𝑘+1 × {0}𝑑−𝑘−1 ∩
⋂

1⩽𝑖⩽𝑘+1

(𝐻𝑖 + [0, 𝜆𝑖]𝑒𝑖)
||||| =

|||||ℝ𝑘 × {0}𝑑−𝑘 ∩
⋂
1⩽𝑖⩽𝑘

(𝐻𝑖 + [0, 𝜆𝑖]𝑒𝑖)
||||| ⋅ ||𝜆𝑘+1𝑒𝑘+1||

=
∏

1⩽𝑖⩽𝑘+1

𝜆𝑖.

The only issue is that though 𝑟 ∈ 𝐻𝑘+1 + 𝜆𝑘+1𝑒𝑘+1, it might not coincide with 𝜆𝑘+1𝑒𝑘+1. Hence,
we apply the affine transformation 𝑇∶ ℝ𝑑 → ℝ𝑑, 𝑥 ↦ 𝑥 − ⟨𝑥, 𝑒𝑘+1⟩(𝜆−1𝑘+1𝑟 − 𝑒𝑘+1) to𝑋,𝑌, 𝑝𝑖 , and
𝐻𝑖 (for 𝑖 ⩽ 𝑘). 𝑇 preserves all planes parallel toℝ𝑘 × {0} × ℝ𝑑−𝑘−1 = 𝐻𝑘+1, and takes 𝑟 to 𝜆𝑘+1𝑒𝑘+1.
As the basis vectors 𝑒𝑖 (𝑖 ≠ 𝑘 + 1) are preserved by 𝑇, the inductive hypotheses are not affected.
Choosing 𝑝𝑘+1 = (0, … , 0) concludes the induction. □

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.13129 by C

A
PE

S, W
iley O

nline L
ibrary on [08/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



THE SHARP DOUBLING THRESHOLD FOR APPROXIMATE CONVEXITY 7

Proof of Theorem 1.1. Let 𝐶𝑑,𝑡 ∶= (𝐿∕𝑡)𝑑 where 𝐿 = 𝐿𝑑,𝑡 ∶=
(

4
(1−𝑡)𝑡

)2𝑑
. We will prove the con-

trapositive, so let | co(𝐴 ∪ (𝐵 + 𝑥))| > 𝐶𝑑,𝑡|𝐴| for all translates 𝑥 ∈ ℝ𝑛. Normalize so that |𝐴| =|𝐵| = 1.
For 𝑖 = 1, … 𝑑, let 𝜋𝑖 ∶ ℝ𝑑 → ℝ be the coordinate projections and 𝜋𝑖 ∶ ℝ𝑑 → ℝ𝑑−1 the

complementary projections.
Apply Lemma 4.2 to co(𝑡𝐴) and co((1 − 𝑡)𝐵) to find a volume preserving affine transformation

𝑇, translation 𝑣, points 𝑝𝑖 , scalars 𝜆𝑖 , and hyperplanes 𝐻𝑖 . Since the theorem is affine invariant,
we may assume 𝑇 is the identity and 𝑣 = 0⃗. We find that

𝐶𝑑,𝑡𝑡
𝑑 ⩽ | co((𝑡𝐵) ∪ (𝑡𝐴))| ⩽ | co(((1 − 𝑡)𝐵) ∪ (𝑡𝐴))| ⩽ ||⋂

𝑖

(𝐻𝑖 + [0, 𝜆𝑖]𝑒𝑖)|| =∏
𝑖

𝜆𝑖.

After another volume preserving affine transformation, we may assume all 𝜆𝑖 to be equal to some
𝐿′ ⩾ 𝐿.
Hence, for 𝑖 = 1, … , 𝑑, find the points 𝑥𝑖 ∈ ℝ𝑑−1 so that

max
{|𝜋−1𝑖 (𝑥𝑖) ∩ co(𝑡𝐴)|, |𝜋−1𝑖 (𝑥𝑖) ∩ co((1 − 𝑡)𝐵)|}
= max
𝑥∈ℝ𝑑−1

max
{|𝜋−1𝑖 (𝑥) ∩ co(𝑡𝐴)|, |𝜋−1𝑖 (𝑥) ∩ co((1 − 𝑡)𝐵)|}.

Note that for these 𝑥𝑖 , we in particular have

max
{| co(𝜋−1𝑖 (𝑥𝑖) ∩ 𝑡𝐴)|, | co(𝜋−1𝑖 (𝑥𝑖) ∩ (1 − 𝑡)𝐵)|}
= max

{|𝜋−1𝑖 (𝑥𝑖) ∩ co(𝑡𝐴)|, |𝜋−1𝑖 (𝑥𝑖) ∩ co((1 − 𝑡)𝐵)|}
= max
𝑥∈ℝ𝑑−1

{|𝜋−1𝑖 (𝑥) ∩ co(𝑡𝐴)|, |𝜋−1𝑖 (𝑥) ∩ co((1 − 𝑡)𝐵)|}
= 𝐿′ > 𝐿.

Let 𝑎𝑖, 𝑏𝑖 ∈ ℝ𝑑−1 be such that

|𝜋−1𝑖 (𝑎𝑖) ∩ 𝑡𝐴| = max
𝑎∈ℝ𝑑−1

|𝜋−1𝑖 (𝑎) ∩ 𝑡𝐴| and |𝜋−1𝑖 (𝑏𝑖) ∩ (1 − 𝑡)𝐵| = max
𝑏∈ℝ𝑑−1

|𝜋−1𝑖 (𝑏) ∩ (1 − 𝑡)𝐵|.
Claim 4.3. If for all 𝑖 = 1, … , 𝑑, we have max

{|𝜋−1
𝑖
(𝑎𝑖) ∩ 𝑡𝐴|, |𝜋−1

𝑖
(𝑏𝑖) ∩ (1 − 𝑡)𝐵|} ⩾√

𝐿, then|𝑡𝐴 + (1 − 𝑡)𝐵| ⩾ 2|𝐴|.
Proof. For a contradiction, assume |𝑡𝐴 + (1 − 𝑡)𝐵| < 2|𝐴|. Distinguish two cases, either for all 𝑖,

min
{|𝜋−1𝑖 (𝑎𝑖) ∩ 𝑡𝐴|, |𝜋−1𝑖 (𝑏𝑖) ∩ (1 − 𝑡)𝐵|} ⩾ 1

or not.
In the latter case, consider the 𝑖0 so that min

{|𝜋−1
𝑖0
(𝑎𝑖0 ) ∩ 𝑡𝐴|, |𝜋−1

𝑖0
(𝑏𝑖0 ) ∩ (1 − 𝑡)𝐵|} ⩽ 1.

Assume |𝜋−1
𝑖0
(𝑎𝑖0 ) ∩ 𝑡𝐴| ⩽ 1 (the other case follows analogously). As |𝑡𝐴| = 𝑡𝑑, this implies

|𝜋𝑖0(𝑡𝐴)| ⩾ 𝑡𝑑, so that
|𝑡𝐴 + (1 − 𝑡)𝐵| ⩾ |𝜋𝑖0(𝑡𝐴)| ⋅ ||||

(
𝜋−1𝑖0
(𝑏𝑖0 ) ∩ (1 − 𝑡)𝐵

)|||| ⩾ 𝑡𝑑
√
𝐿 > 2,

a contradiction.
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8 van HINTUM and KEEVASH

Hence, we may assume min
{|𝜋−1

𝑖
(𝑎𝑖) ∩ 𝑡𝐴|, |𝜋−1

𝑖
(𝑏𝑖) ∩ (1 − 𝑡)𝐵|} ⩾ 1 for all 𝑖. Note that by

Plünnecke’s inequality |𝑡𝐴 + (1 − 𝑡)𝐵| < 2|𝐴| = 2𝑡−𝑑|𝑡𝐴| implies
||𝑑 ⋅ (1 − 𝑡)𝐵|| ⩽ (2𝑡−𝑑)𝑑|𝑡𝐴| = 2𝑑𝑡−𝑑2𝑡𝑑 < (2

𝑡

)𝑑2
.

Analogously we find the same bound on ||𝑑 ⋅ 𝑡𝐴|| ⩽ (
2
1−𝑡

)𝑑2
. On the other hand, we find

||𝑑 ⋅ (1 − 𝑡)𝐵|| ⩾
||||||
𝑑∑
𝑖=1

(
𝜋−1𝑖 (𝑏

𝑖) ∩ (1 − 𝑡)𝐵
)|||||| =

𝑑∏
𝑖=1

|||𝜋−1𝑖 (𝑏𝑖) ∩ (1 − 𝑡)𝐵|||,
and the analogous result for 𝑡𝐴. Combining these bounds on the iterated sumsets of 𝑡𝐴 and (1 −
𝑡)𝐵, we find

(
1 ⋅

√
𝐿
)𝑑
⩽

𝑑∏
𝑖=1

|||𝜋−1𝑖 (𝑎𝑖) ∩ 𝑡𝐴||| ⋅ |||𝜋−1𝑖 (𝑏𝑖) ∩ (1 − 𝑡)𝐵||| ⩽ ||𝑑 ⋅ 𝑡𝐴|| ⋅ ||𝑑 ⋅ (1 − 𝑡)𝐵|| <
(

4
(1 − 𝑡)𝑡

)𝑑2
,

a contradiction. □

Hence, we may assume there is a coordinate direction 𝑖 with |𝜋−1
𝑖
(𝑦) ∩ 𝑡𝐴|, |𝜋−1

𝑖
(𝑦) ∩

(1 − 𝑡)𝐵| ⩽√
𝐿 for all 𝑦 ∈ ℝ𝑑−1. Rotating if necessary, we may assume 𝑖 = 1. For notational

convenience, for any set 𝑋 ⊂ ℝ𝑑, write 𝑋𝑥 ∶= 𝜋−11 (𝑥) ∩ 𝑋.
By the application of Lemma 4.2, we have that at least one of | co(𝑡𝐴𝑥1)| and | co((1 − 𝑡)𝐵𝑥1)| is

larger than 𝐿 > 2max𝑥∈ℝ𝑑−1{𝑡|𝐴𝑥|, (1 − 𝑡)|𝐵𝑥|}. Henceforth assume the latter.†
Translate 𝐵 so that 𝑥1 = 0 and (1 − 𝑡) co(𝐵0) = [0, 𝐿′] × (0, … , 0).
Write 𝜇𝐴 ∶ ℝ𝑑−1 → ℝ, 𝑥 ↦ |𝐴𝑥| and 𝜇𝐵 analogously. Let 𝑇∶ ℝ𝑑−1 → ℝ𝑑−1 be the optimal

transport map that takes 𝜇𝐴 to 𝜇𝐵. For 𝑥, 𝑦 ∈ ℝ𝑑−1 define

𝐹(𝑥, 𝑦) ∶= (𝑡 min(𝐼) + (1 − 𝑡)𝐽) ∪ (𝑡𝐼 + (1 − 𝑡)max(𝐽)) × {𝑡𝑥 + (1 − 𝑡)𝑦},

where 𝐼, 𝐽 ⊂ ℝ are so that 𝐴𝑥 = 𝐼 × {𝑥} and 𝐵𝑦 = 𝐽 × {𝑦}. Using this function 𝐹(𝑥, 𝑦), define

𝑆1 ∶=
⋃

𝑥∈𝜋1(𝐴)

𝐹(𝑥, 𝑇(𝑥)).

Note that |𝑆1𝑥| = 𝑡𝜇𝐴(𝑦) + (1 − 𝑡)𝜇𝐵(𝑦) where 𝑦 ∈ ℝ𝑑−1 is the unique element with 𝑥 = 𝑡𝑦 +
(1 − 𝑡)𝑇(𝑦). Hence, by Lemma 4.1, we find |𝑆1| = ∫ |𝑆1𝑥|𝑑𝑥 ⩾ |𝐴|.
Define 𝑆2 ∶= 𝑡𝐴 +

{
(0, … , 0), (𝐿′, 0, … , 0)

}
and note that 𝑆1, 𝑆2 ⊂ 𝑆 ∶= 𝑡𝐴 + (1 − 𝑡)𝐵. We will

use these two particular subsets of 𝑆 to show that |𝑆| is large.
For any 𝑥 ∈ ℝ𝑑−1, we note that

𝑆𝑡𝑥 ⊃ (𝑡𝐴𝑦 + (1 − 𝑡)𝐵𝑇(𝑦)) ∪ (𝑡𝐴𝑥 +
{
(0, … , 0), (𝐿′, 0, … , 0)

}
),

† Though the other case follows analogously, there is an asymmetry between 𝑡 and 1 − 𝑡 that gives a stronger result in the
other case.
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THE SHARP DOUBLING THRESHOLD FOR APPROXIMATE CONVEXITY 9

where 𝑦 is such that 𝑡𝑦 + (1 − 𝑡)𝑇(𝑦) = 𝑡𝑥 (if such a 𝑦 exists). Since |𝑡𝐴𝑦|, |(1 − 𝑡)𝐵𝑇(𝑦)|, |𝑡𝐴𝑥| <
𝐿′∕2, we can apply Lemma 2.1 to find that

|𝑆𝑡𝑥| ⩾ |𝑡𝐴𝑦| + |(1 − 𝑡)𝐵𝑇(𝑦)| + |𝑡𝐴𝑥| = |𝑆1𝑡𝑥| + |𝑡𝐴𝑥|,
so that

|𝑆𝑡𝑥 ⧵ 𝑆1| ⩾ |𝑡𝐴𝑥|.
Integrating over all 𝑥, we find

|𝑡𝐴 + (1 − 𝑡)𝐵 ⧵ 𝑆1| = ∫𝑥∈ℝ𝑑−1 |𝑆𝑥 ⧵ 𝑆1|
= 𝑡𝑑−1 ∫𝑥∈ℝ𝑑−1 |𝑆𝑡𝑥 ⧵ 𝑆1|
⩾ 𝑡𝑑−1 ∫𝑥∈ℝ𝑑−1 |𝑡𝐴𝑥|
= 𝑡𝑑 ∫𝑥∈ℝ𝑑−1 |𝐴𝑥|
= 𝑡𝑑|𝐴|.

Recalling that |𝑆1| ⩾ |𝐴|, this concludes the proof of the theorem. □

5 PROOF OF THE COROLLARY

First recall the main theorems (Theorem 1.3 and Theorem 1.4) from [12].

Theorem 5.1 [12]. For all 𝑑 ∈ ℕ, there exist 𝐶𝑑 so that for all 𝑡 ∈ (0, 1), there exist 𝐶𝑑,𝑡, Δ𝑑,𝑡 > 0 so
that if 𝐴, 𝐵 ⊂ ℝ𝑑 of the same volume satisfy 𝛿 ∶= 𝛿𝑡(𝐴, 𝐵) < Δ𝑑,𝑡 , then (up to translation) we have

| co(𝐴 ∪ 𝐵) ⧵ 𝐴| ⩽ 𝐶𝑑
√
𝛿
𝑡
|𝐴| and

| co(𝐴) ⧵ 𝐴| + | co(𝐵) ⧵ 𝐵| ⩽ 𝐶𝑑,𝑡𝛿|𝐴|.
The corollary follows quickly.

Proof of Corollary 1.4. Let𝐶𝑑,𝑡 ∶= max{𝑐𝑑,𝑡(Δ𝑑,𝑡)−1∕2, 𝑐′𝑑𝑡
−1∕2}, where 𝑐′

𝑑
andΔ𝑑,𝑡 are the constants

from Theorem 5.1 and 𝑐𝑑,𝑡 is the constant from Theorem 1.1.
Distinguish two cases; either 𝛿 < Δ𝑑,𝑡 or Δ𝑑,𝑡 ⩽ 𝛿 < 𝑡𝑑. In the former case, Theorem 5.1 gives

(after translation)

| co(𝐴 ∪ 𝐵) ⧵ 𝐴| ⩽ 𝑐′𝑑𝑡−1∕2𝛿1∕2|𝐴| ⩽ 𝐶𝑑,𝑡𝛿1∕2|𝐴|.
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10 van HINTUM and KEEVASH

In the latter case, we find by Theorem 1.1 that

| co(𝐴 ∪ 𝐵) ⧵ 𝐴| ⩽ | co(𝐴 ∪ 𝐵)| ⩽ 𝑐𝑑,𝑡|𝐴| ⩽ 𝐶𝑑,𝑡(Δ𝑑,𝑡)1∕2|𝐴| ⩽ 𝐶𝑑,𝑡𝛿1∕2|𝐴|.
Combining the cases gives the first result in the corollary. The second result follows similarly. □
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