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HYPERCONTRACTIVITY FOR GLOBAL FUNCTIONS AND

SHARP THRESHOLDS

PETER KEEVASH, NOAM LIFSHITZ, EOIN LONG, AND DOR MINZER

1. Introduction

The field of analysis of Boolean functions is centered around the study of func-
tions on the discrete cube {0, 1}n, via their Fourier–Walsh expansion, often using
the classical hypercontractive inequality for the noise operator, obtained indepen-
dently by Bonami [17], Gross [35] and Beckner [10]. In particular, the fundamental
Kahn-Kalai-Linial (KKL) theorem of Kahn, Kalai and Linial [43] applies hyper-
contractivity to obtain structural information on Boolean valued functions with
small ‘total influence’/ ‘edge boundary’ (see Section 1.2); such functions cannot be
‘global’: they must have a coordinate with large influence.

The theory of sharp thresholds is closely connected (see Section 1.3) to the
structure of Boolean functions of small total influence, not only in the KKL setting
of uniform measure on the cube, but also in the general p-biased setting. However,
we will see below that the hypercontractivity theorem is ineffective for small p. This
led Friedgut [29], Bourgain [29, appendix], and Hatami [38] to develop new ideas
for proving p-biased analogues of the KKL theorem. The theme of these works
can be roughly summarised by the statement: an effective analogue of the KKL
theorem holds for a certain class of ‘global’ functions. However, these theorems
were incomplete in two important respects:

• Sharpness: Unlike the KKL theorem, they are not sharp up to constant
factors.

• Applicability: They are only effective in the ‘dense setting’ when μp(f) is
bounded away from 0 and 1, whereas the ‘sparse setting’ μp(f) = o(1) is
needed for many important open problems.

Main result. The fundamental new contribution of this paper is a hypercontrac-
tive theorem for functions that are ‘global’ (in a sense made precise below). This
has many applications, of which the following are included in this paper (subsequent
applications will be discussed in Section 1.6).

• We strengthen Bourgain’s Theorem by obtaining an analogue of the KKL
theorem that is both quantitatively tight and applicable in the sparse
regime.
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• We prove a variant form of the Kahn-Kalai Isoperimetric Conjecture con-
cerning the structure of functions that are close to optimal for the edge-
isoperimetric inequality.

• We obtain a sharp threshold result for global monotone functions in the
spirit of the Kahn-Kalai Threshold Conjecture.1

• We obtain a p-biased generalisation of the seminal invariance principle of
Mossel, O’Donnell and Oleszkiewicz [63] (itself a generalisation of the Berry-
Esseen theorem from linear functions to polynomials of bounded degree),
thus opening the door to p-biased versions of its many striking applications
in Hardness of Approximation and Social Choice Theory (see O’Donnell
[64, Section 11.5]) and Extremal Combinatorics (see Dinur–Friedgut–Regev
[21]).

1.1. Hypercontractivity of global functions. Before formally stating our main
theorem, we start by recalling (the p-biased version of) the classical hypercontrac-
tive inequality. Let2 p ∈

(
0, 1

2

]
. For r ≥ 1 we write ‖ · ‖r (suppressing p from our

notation) for the norm on Lr({0, 1}n, μp).

Definition 1.1 (Noise operator). For x ∈ {0, 1}n we define the ρ-correlated dis-
tribution Nρ(x) on {0, 1}n: a sample y ∼ Nρ(x) is obtained by, independently for
each i, setting yi = xi with probability ρ, or otherwise (with probability 1− ρ) we
resample yi with P(yi = 1) = p. We define the noise operator Tρ on L2({0, 1}n, μp)
by

Tρ (f) (x) = Ey∼Nρ(x) [f (y)] .

Hölder’s inequality gives ‖f‖r ≤ ‖f‖s whenever r ≤ s. The hypercontractivity
theorem gives an inequality in the other direction after applying noise to f ; for
example, for p = 1/2, r = 2 and s = 4 we have

‖Tρf‖4 ≤ ‖f‖2
for any ρ ≤ 1√

3
. A similar inequality also holds when p = o(1), but the correlation

ρ has to be so small that it is not useful in applications; e.g. if f(x) = x1 (the

‘dictator’ or ‘half cube’), then ‖f‖2 =
√
μp(f) =

√
p and Tρf(x) = Ey∼Nρ(x)y1 =

ρx1 + (1 − ρ)p, so ‖Tρf‖4 > (E[ρ4x4
1])

1/4 = ρp1/4. Thus we need ρ = O(p1/4) to
obtain any hypercontractive inequality for general f .

Local and global functions. To resolve this issue, we note that the tight exam-
ples for the hypercontractive inequality are local, in the sense that a small number
of coordinates can significantly influence the output of the function. On the other
hand, many functions of interest are global, in the sense that a small number of co-
ordinates can change the output of the function only with a negligible probability;
such global functions appear naturally in Random Graph Theory [2], Theoretical
Computer Science [29] and Number Theory [30]. Our hypercontractive inequal-
ity will show that constant noise suffices for functions that are global in a sense
captured by generalised influences, which we will now define.

1Subsequent to the 2019 version of this paper, the Kahn-Kalai Threshold Conjecture has been
proved, see [5, 27, 65]. The proof techniques are completely different to ours, in that no Fourier
Analysis is involved, although one can identify in their proof strategy some elements of our notion
of globality.

2The case where p > 1
2
is similar.
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Let f : {0, 1}n → R. For S ⊂ [n] and x ∈ {0, 1}S , we write fS→x for the function
obtained from f by restricting the coordinates of S according to x (if S = {i} is
a singleton we simplify notation to fi→x). We write |x| for the number of ones in
x. For i ∈ [n], the ith influence is Ii(f) = ‖fi→1 − fi→0‖22, where the norm is with
respect to the implicit measure μp. In general, we define the influence with respect
to any S ⊂ [n] by sequentially applying the operators f 
→ fi→1−fi→0 for all i ∈ S,
as follows.

Definition 1.2. For f : {0, 1}n → R and S ⊂ [n] we let (suppressing p in the
notation)

IS (f) = Eμp

[( ∑
x∈{0,1}S

(−1)|S|−|x| fS→x

)2
]
.

We say f has β-small generalised influences if IS [f ] ≤ β E[f2] for all S ⊆ [n].

The reader familiar with the KKL theorem and the invariance principle may
wonder why it is necessary to introduce generalised influences rather than only
considering influences (of singletons). The reason is that under the uniform mea-
sure the properties of having small influences or small generalised influences are
qualitatively equivalent, but this is no longer true in the p-biased setting for small
p (consider f(x) = x1x2+···+xn−1xn

‖x1x2+···+xn−1xn‖ ).

We are now ready to state our main theorem, which shows that global3 functions
are hypercontractive for a noise operator with a constant rate. Moreover, our result
applies to general Lr norms and product spaces (see Section 3), but for simplicity
here we just highlight the case of (4, 2)-hypercontractivity in the cube.

Theorem 1.3. Let p ∈
(
0, 1

2

]
. Suppose f ∈ L2 ({0, 1}n , μp) has β-small generalised

influences (for p). Then ‖T1/5f‖4 ≤ β1/4‖f‖2.

We now move on to demonstrate the power of global hypercontractivity in the
contexts of isoperimetry, noise sensitivity, sharp thresholds, and invariance. We
emphasise that Theorem 1.3 is the only new ingredient required for these appli-
cations, so we expect that it will have many further applications to generalising
results proved via usual hypercontractivity on the cube with uniform measure.

1.2. Isoperimetry and influence. Stability of isoperimetric problems is a promi-
nent open problem at the interface of Geometry, Analysis and Combinatorics. This
meta-problem is to characterise sets whose boundary is close to the minimum pos-
sible given their volume; there are many specific problems obtained by giving this
a precise meaning. Such results in Geometry were obtained for the classical setting
of Euclidean Space by Fusco, Maggi and Pratelli [33] and for Gaussian Space by
Mossel and Neeman [62].

The relevant setting for our paper is that of the cube {0, 1}n, endowed with the
p-biased measure μp. We refer to this problem as the (p-biased) edge-isoperimetric

3Strictly speaking, our assumption is stronger than the most natural notion of global functions:
we require all generalised influences to be small, whereas a function should be considered global if it
has small generalised influences IS(f) for small sets S. However, in practice, the hypercontractivity
Theorem is typically applied to low-degree truncations of Boolean functions (see Section 3.1), when
there is no difference between these notions, as IS(f) = 0 for large S.
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stability problem. We identify any subset of {0, 1}n with its characteristic Boolean
function f : {0, 1}n → {0, 1}, and define its ‘boundary’ as the (total) influence4

I [f ] =

n∑
i=1

Ii [f ] , where each Ii [f ] = Pr
x∼μp

[f (x⊕ ei) = f (x)] ,

i.e. the ith influence Ii [f ] of f is the probability that f depends on bit i at a random
input according to μp. (The notion of influence for real-valued functions, given
in Section 1.1, coincides with this notion for Boolean-valued functions.) When
p = 1/2 the total influence corresponds to the classical combinatorial notion of
edge-boundary.5

The KKL theorem of Kahn, Kalai and Linial [43] concerns the structure of
functions f : {0, 1}n → {0, 1}, considering the cube under the uniform measure,
with variance bounded away from 0 and 1 and with total influence is upper bounded
by some number K. It states that f has a coordinate with influence at least e−O(K).
The tribes example of Ben-Or and Linial [11] shows that this is sharp.

p-Biased versions. The p-biased edge-isoperimetric stability problem is somewhat
understood in the dense regime (where μp (f) is bounded away from 0 and 1)
especially for Boolean functions f that aremonotone (satisfy f (x) ≤ f (y) whenever
all xi ≤ yi). Roughly speaking, most edge-isoperimetric stability results in the dense
regime say that Boolean functions of small influence have some ‘local’ behaviour (see
the seminal works of Friedgut–Kalai [31], Friedgut [28,29], Bourgain [29, Appendix],
and Hatami [38]). In particular, Bourgain (see also [64, Chapter 10]) showed that
for any monotone Boolean function f with μp (f) bounded away from 0 and 1 and
pI [f ] ≤ K there is a set J of O (K) coordinates such that μp (fJ→1) ≥ μp (f) +

e−O(K2). This result is often interpreted as ‘almost isoperimetric (dense) subsets
of the p-biased cube must be local’ or on the contrapositive as ‘global functions
have large total influence’. Indeed, if a restriction of a small set of coordinates can
significantly boost the p-biased measure of a function, then this intuitively means
that it is of a local nature.

For monotone functions, the conclusion in Bourgain’s theorem is equivalent (see

Section 4) to having some set J of size O(K) with IJ (f) ≥ e−O(K2). Thus Bour-
gain’s theorem can be viewed as a p-biased analogue of the KKL theorem, where
influences are replaced by generalised influences. However, unlike the KKL The-
orem, Bourgain’s result is not sharp, and the anti-tribes example of Ben-Or and
Linial only shows that the K2 term in the exponent cannot drop below K.

As a first application of our hypercontractivity theorem we replace the term

e−O(K2) by the term e−O(K), which is sharp by Ben-Or and Linial’s example, see
Section 4.

Theorem 1.4. Let p ∈
(
0, 1

2

]
, and let f : {0, 1}n → {0, 1} be a monotone Boolean

function with μp (f) bounded away from 0 and 1 and I [f ] ≤ K
p . Then there is a set

J of O (K) coordinates such that μp (fJ→1) ≥ μp (f) + e−O(K).

4Everything depends on p, which we fix and suppress in our notation.
5For the vertex boundary, stability results showing that approximately isoperimetric sets are

close to Hamming balls were obtained independently by Keevash and Long [49] and by Przykucki
and Roberts [66].
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For general functions we prove a similar result, where the conclusion μp (fJ→1) ≥
μp (f) + e−O(K) is replaced with IJ (f) ≥ e−O(K).

The sparse regime. On the other hand, the sparse regime (where we allow any
value of μp(f)) seemed out of reach of previous methods in the literature. Here
Russo [67], and independently Kahn and Kalai [42], gave a proof of the p-biased
isoperimetric inequality: pI [f ] ≥ μp (f) logp (μp (f)) for every f . They also showed
that equality holds only for the monotone subcubes. Kahn and Kalai posed the
problem of determining the structure of monotone Boolean functions f that they
called d-optimal, meaning that pI [f ] ≤ dμp (f) logp (μp (f)), i.e. functions with total
influence within a certain multiplicative factor of the minimal value guaranteed by
the isoperimetric inequality. Their conjecture states that for any constant C > 0
there are constantsK, δ > 0 such that if f is C log (1/p)-optimal then there is a set J
of ≤ K log 1

μp(f)
coordinates such that μp (fJ→1) ≥ (1+δ)μp(f) (see [42, Conjecture

4.1(a)]).
Our variant form of the Kahn–Kalai Isoperimetric Conjecture applies to func-

tions satisfying the slightly stronger assumption of C log (1/p)-optimality with C
sufficiently small; the conjecture requires an arbitrary constant C, although we note
that the conjecture was previously open even for C-optimal functions! Furthermore,
we compensate for our stronger hypothesis in the following result by obtaining a
much stronger conclusion than that asked for by Kahn and Kalai, which is sharp
up to the constant factor C.

Theorem 1.5. Let p ∈
(
0, 1

2

]
, K ≥ 1 and let f be a Boolean function with pI [f ] <

Kμp (f). Then there is a set J of at most CK coordinates, where C is an absolute
constant, such that μp (fJ→1) ≥ e−CK .

Note that if f is log(1/p)
100C -optimal then Theorem 1.5 applies with

K =
log1/p(1/μp(f))

100C
log(1/p) =

log(1/μp(f))

100C
,

giving a set J of size at most CK such that

μp(fJ→1) ≥ e−CK = e− log(1/μp(f))/100 = μp(f)
0.01.

1.3. Sharp thresholds. The results of Friedgut and Bourgain mentioned above
also had the striking consequence that any ‘global’ Boolean function has a sharp
threshold, which was a breakthrough in the understanding of this phenomenon, as
it superseded many results for specific functions.

The sharp threshold phenomenon concerns the behaviour of μp(fn) for p around
the critical probability, defined as follows. Consider any sequence fn : {0, 1}n →
{0, 1} of monotone Boolean functions. For t ∈ [0, 1] let pn(t) = inf{p : μp(fn) ≥ t}.
In particular, pcn := pn(1/2) is commonly known as the ‘critical probability’ (which
we think of as small in this paper). A classical theorem of Bollobás and Thomason
[16] shows that for any ε > 0 there is C > 0 such that pn(1 − ε) ≤ Cpn(ε).
This motivates the following definition: we say that the sequence (fn) has a coarse
threshold if for each ε > 0 the length of the interval [pn(ε), pn(1 − ε)] is Θ(pcn),
otherwise we say that it has a sharp threshold.

The classical approach for understanding sharp thresholds is based on the

Margulis–Russo formula
dμp(f)

dp = Iμp
(f), see [58] and [67]. Here we note that

if f has a coarse threshold, then by the Mean Value Theorem there is a constant
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ε > 0, some p with μp(f) ∈ (ε, 1− ε) and pIμp
(f) = Θ(1), so one can apply various

results mentioned in Section 1.2. Thus Bourgain’s Theorem implies that there is a

set J of O (K) coordinates such that μp′ (fJ→1) ≥ μp′ (f) + e−O(K2). While this
approach is useful for studying the behaviour of f around the critical probability,
it rarely gives any information regarding the location of the critical probability.
Indeed, many significant papers are devoted to locating the critical probability of
specific interesting functions, see e.g. the breakthroughs of Johansson, Kahn and
Vu [41] and Montgomery [60].

A general result was conjectured by Kahn and Kalai for the class of Boolean

functions of the form fn : {0, 1}(
[n]
2 ) → {0, 1}, whose input is a graph G and whose

output is 1 if G contains a certain fixed graph H. For such functions there is a
natural ‘expectation heuristic’ pEn for the critical probability, namely the least value
of p such that the expected number of copies of any subgraph of H in G (n, p) is
at least 1/2. Markov’s inequality implies pcn ≥ pEn . The hope of the Kahn–Kalai
Threshold Conjecture (see [42, Conjecture 2.1]) is that there is a corresponding
upper bound up to some multiplicative factor, i.e. pcn = O

(
pEn log n

)
. They also

outlined a proof strategy based on their Isoperimetric Conjecture discussed above,
which was partly the motivation for our work.

While the Isoperimetric Conjecture remains open, the Threshold Conjecture has
now been resolved by Park and Pham [65], building on advances on the sunflower
conjecture [5] and Talagrand’s fractional version of the Threshold Conjecture [27].
Nevertheless, even given the Threshold Conjecture, it remains a challenging task to
determine some specific thresholds for which it is hard to estimate the expectation
threshold. For example, it is open to determine the thresholds for designs in random
hypergraphs (except for the recent solution for Latin Squares and Steiner Triple
Systems independently in [40, 45]).

Thus there are still potential applications for Theorem 1.5 for estimating thresh-
olds in cases where one lacks techniques for estimating the expectation threshold. In
particular, we note the following consequence, after combining with Russo’s Lemma.
Let f be a monotone Boolean function. We say that f is M -global in an interval I
if for each set J of size ≤ M and each p ∈ I we have μp (fJ→1) ≤ μp (f)

0.01
.

Theorem 1.6. There exists an absolute constant C such that the following holds for
any monotone Boolean function f with critical probability pc and p ≤ pc. Suppose
for some M > 0 that f is M -global in the interval [p, pc] and that μp (f) ≥ e−M/C .
Then pc ≤ MCp.

To see the utility of Theorem 1.6, imagine that one wants to bound the critical
probability as pcn ≤ p, but instead of showing μp(fn) ≥ 1

2 one can only obtain a

weaker lower bound μp (f) ≥ e−M/C , where f is M -global; then one can still bound

the critical probability as pcn ≤ MO(1)p.

1.4. Noise sensitivity. Studying the effect of ‘noise’ on a Boolean function is a
fundamental paradigm in various contexts, including hypercontractivity (as in Sec-
tion 1.1) and Gaussian isoperimetry (via the invariance principle, see Section 8).
Roughly speaking, a function f is ‘noise sensitive’ if f(x) and f(y) are approxi-
mately independent for a random input x and a random small perturbation y of x;
an equivalent formulation (which we adopt below) is that the ‘noise stability’ of f
is small (compared to μp (f)). Formally, we use Definition 1.7.
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Definition 1.7. The noise stability Stabρ(f) of f ∈ L2({0, 1}n, μp) is defined by

Stabρ (f) = 〈f,Tρf〉 = Ex∼μp
[f (x)Tρf (x)] .

A sequence fn of Boolean functions is said to be noise sensitive if for each fixed ρ
we have Stabρ (fn) = μp (fn)

2
+ o (μp (fn)).

Note that everything depends on p, but this will be clear from the context, so
we suppress p from the notation Stabρ. Kahn, Kalai, and Linial [43] (see also
[64, Section 9]) showed that sparse subsets of the uniform cube are noise sensitive,
where we recall that the sequence (fn) is sparse if μp (fn) = o (1) and dense if
μp (fn) = Θ (1).

The relationship between noise and influence in the cube under the uniform mea-
sure was further studied by Benjamini, Kalai, and Schramm [14] (with applications
to percolation), who gave a complete characterisation: a sequence (fn) of monotone
dense Boolean functions is noise sensitive if and only if the sum of the squares of
the influences of fn is o (1). Schramm and Steif [68] proved that any dense Boolean
function on n variables that can be computed by an algorithm that reads o (n) of the
input bits is noise sensitive. Their result had the striking application that the set
of exceptional times in dynamical critical site percolation on the triangular lattice,
in which an infinite cluster exists, is of Hausdorff dimension in the interval

[
1
6 ,

31
36

]
.

Ever since, noise sensitivity was considered in many other contexts (see e.g. the
recent results and open problems of Lubetzky–Steif [57] and Benjamini-Brieussel
[13]).

The p-biased setting. In contrast to the uniform setting, in the p-biased setting
for small p it is no longer true that sparse sets are noise sensitive (e.g. consider
dictators). Our main contribution to the theory of noise sensitivity is showing that
‘global’ sparse sets are noise sensitive. Formally, we say that a sequence fn of
sparse Boolean functions is weakly global if for any ε, C > 0 there is n0 > 0 so that
μp ((fn)J→1) < ε for all n > n0 and J of size at most C.

Theorem 1.8. Any weakly global sequence of Boolean functions is noise sensitive.

Besides being of interest in its own right, noise sensitivity provides an alternative
approach for proving results on sharp thresholds. In particular, we obtain the
following consequence which will underpin our combinatorial applications in the
companion paper on Extremal Combinatorics.

Theorem 1.9. For any ζ > 0 there is C0 > 1 so that for any ε, p, q ∈ (0, 1/2) with
q ≥ (1+ ζ)p and C > C0, writing r = C log ε−1 and δ = C−r, any monotone (r, δ)-
global Boolean function f whose p-biased measure is at most δ satisfies μq(f) ≥
ε−1μp(f).

1.5. The invariance principle. Besides the applications of Theorem 1.3 to
isoperimetry, sharp thresholds and noise sensitivity discussed above, in Section 8 we
will also generalise the Invariance Principle of Mossel, O’Donnell and Oleszkiewicz
[63] to the p-biased setting: we show that if a low degree function on the p-biased
cube is global (has small generalised influences) then it is close in distribution to a
low degree function on Gaussian space.

We defer a precise statement of the Invariance Principle to Section 8; here we
instead highlight the following application to a variant of the ‘Majority is Stablest’
Theorem of Mossel, O’Donnell and Oleszkiewicz [63] (see also [61]). We need the

Licensed to University of Oxford. Prepared on Fri Aug  9 20:54:31 EDT 2024 for download from IP 129.67.246.57.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



252 P. KEEVASH, N. LIFSHITZ, E. LONG, AND D. MINZER

following notation for its statement. The p-biased α-Hamming ball is the function
Hα : {0, 1}n → {0, 1} with Hα(x) = 1 if and only if |{i : xi = 1}| ≥ t, where t ∈ N

is chosen to minimise |α− μp(Hα)|.

Corollary 1.10. For each ε > 0, there exists δ > 0, such that the following holds.
Let ρ ∈ (ε, 1− ε), let n > δ−1, and let f, g ∈ L2({0, 1}n, μp). Suppose that IS [f ] ≤ δ
and that IS [g] ≤ δ for each set S of at most δ−1 coordinates. Then

〈Tρf, g〉 ≤
〈
TρHμp(f), Hμp(g)

〉
+ ε.

1.6. Further applications of global hypercontractivity. Here we survey some
additional applications of global hypercontractivity, mostly subsequent to the 2019
version of this paper.

(1) Exotic settings: Noise sensitivity of sparse sets is related to small-set expan-
sion on graphs, which has found many applications in Computer Science.
Here the interpretation of Theorem 1.8 is that although not all small sets
in the p-biased cube expand, global small sets do expand. Results of a
similar nature were proved for the Grassmann graph [54] and the Johnson
graph [53]. The former result was essential in the proof of the 2-to-2 Games
Conjecture, a prominent problem in the field of hardness of approximation.
In subsequent works [24,25,47] hypercontractive results for global functions
are proven for various domains by reducing to the p-biased cube and using
Theorem 1.3; these methods are strong enough to establish global hyper-
contractivity results for general product domains, as well as domains that
are not product but instead are product-like (such as the Johnson graph,
the multislice and the symmetric group). In [24], they were also shown to be
powerful enough to give an alternative proof for global-hypercontractivity
style results over the Grassmann graph [54].

(2) Extremal Combinatorics: The junta method, introduced by Dinur and
Friedgut [20] and further developed by Keller and Lifshitz [51], is a pow-
erful tool for solving problems in Extremal Combinatorics via the sharp
threshold phenomenon. Specifically, it is useful for the study of the Turán
problem for hypergraphs, where one asks how large can a k-uniform hyper-
graph on n vertices be if it does not contain a copy of a given hypergraph
H. This method was applied in [51] to resolve many such questions for a
wide class of hypergraphs called expanded hypergraphs in which the edge
uniformity can be linear in n, although the number of edges in H is fixed.

In a companion paper [46], we apply the sharp threshold technology
developed in the current paper to the regime where the number of edges of
H can grow with n, thus settling many cases of the Huang–Loh–Sudakov
conjecture [39] on cross matchings in uniform hypergraphs and the Füredi–
Jiang–Seiver conjecture [32] on path expansions.

In another companion paper [47], we apply the theory of global hyper-
contractivity to extremal problems for codes with forbidden intersections.
What is the largest subset A ⊆ [m]n in which no two vectors agree on ex-
actly t coordinates? We solve this question for any m > 2 and n > n0(t),
thereby strengthening the more classical version of the question regarding
intersecting codes due to Ahlswede and Khachatrian [4] and independently
by Frankl and Tokushige [26].
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(3) Product-free Sets: A subset A of a group G is called product-free if it
contains no solutions to the equation ab = c. What is the largest size of a
product-free set in a given group G? This question was posed in 1985 by
Babai and Sós [6], both for general groups and with specific attention to
the alternating group An. The problem for An has recently been resolved
in [48]. Moreover, the structure of families that achieve the maximum size
is exactly determined, as well as stability results that give structure for
any sizable product-free set in An. Besides building on earlier work by
Gowers [34] and Eberhard [22], a key component in the proof is a global
hypercontractivity result for the symmetric group Sn, established in [25]
and directly motivated by the current work.

(4) Error Correcting Codes: The Reed-Muller code is one of the most useful
codes in Theoretical Computer Science. A fundamental question on its local
testability concerns the effectiveness of the so-called ‘flat tester’, which
queries a random affine subspace and accepts if the restriction forms a
degree d polynomial. Suppose f : Fn

2 → F2, d ∈ N, ε > 0 is small and with
probability at least 1− ε for a random affine (d+ 1)-dimensional subspace
A the restriction f |A is a polynomial of degree d. Must f be close to a
degree d polynomial?

A new approach for deriving an optimal testing result is derived in [44],
using global hypercontractivity over the affine Grassmann graph as a key
component. The new method is able to recover the results of [15] and
improves upon the results for larger fields [37]. Also, it is more general and
thus is more likely to work for a richer class of codes (the technique of [15] is
very specific to the Reed-Muller code, and also has tower-type dependency
on the field size due to use of the Density Hales-Jewett Theorem).

(5) Hypercontractivity over High Dimensional Expanders: High-dimensional
expanders can be thought of as sparse analogues of the Johnson graph,
so morally speaking one expects analogous results in the setting, although
these are often much harder to prove. Motivated by some of the ideas
herein (and in subsequent works), new hypercontractive estimates have
been proved in the setting of high-dimensional expanders [9, 36]. These
have potential to be useful in this emerging field of study, e.g. as a new tool
to prove mixing results.

(6) Algorithms for Unique-Games over Specialized Instances: As discussed ear-
lier, global hypercontractivity has its roots in the proof of the 2-to-2-Games
Conjecture, wherein a baby form of global hypercontractivity plays a cru-
cial role. Subsequent study regarding the more well-known sibling of 2-
to-2-Games, known as the Unique-Games Conjecture, has mostly focused
on whether global hypercontractivity can also be used to eliminate certain
avenues towards a proof of the Unique-Games Conjecture. In particular,
in [7,8] the authors show that global hypercontractivity can be used in the
realm of Sum-of-Squares algorithms to show that Unique-Games instances
over specialized graphs, such as the Johnson graph and the Grassmann
graph, can be solved efficiently.

Organisation. The organisation of this paper is as follows. After introducing
some background on Fourier analysis on the cube in the next section, we prove
Theorem 1.3 in Section 3. In Section 4 we establish the equivalence between the
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two notions of globalness referred to above, namely control of generalised influences
and insensitivity of the measure under restriction to a small set of coordinates.
Section 5 concerns the total influence of global functions, and includes the proofs of
our stability results for the isoperimetric inequality (Theorems 1.4 and 1.5) and our
first sharp threshold result (Theorem 1.6). In Section 6 we prove our result on noise
sensitivity and apply this to deduce an alternative sharp threshold result. Section
7 generalises our hypercontractivity result in two directions: we consider general
norms and general product spaces. In Section 8 we prove our p-biased version of
the Invariance Principle and sketch its application to a variant of the ‘Majority is
Stablest’ theorem and a sharp threshold result for almost monotone functions. We
end with some concluding remarks.

2. Notations

Here we summarise some notation and basic properties of Fourier analysis on
the cube. We fix p ∈ (0, 1) and suppress it in much of our notation, i.e. we consider
{0, 1}n to be equipped with the p-biased measure μp, unless otherwise stated. We let

σ =
√
p(1− p) (the standard deviation of a p-biased bit). For each i ∈ [n] we define

χi : {0, 1}n → R by χi (x) =
xi−p
σ (so χi has mean 0 and variance 1). We use the

orthonormal Fourier basis {χS}S⊂[n] of L
2 ({0, 1}n , μp), where each χS :=

∏
i∈S χi.

Any f : {0, 1}n → R has a unique expression f =
∑

S⊂[n] f̂(S)χS where {f̂(S)}S⊂[n]

are the p-biased Fourier coefficients of f . Orthonormality gives the Plancherel

identity 〈f, g〉 =
∑

S⊂[n] f̂(S)ĝ(S). In particular, we have the Parseval identity

E[f2] = ‖f‖22 = 〈f, f〉 =
∑

S⊂[n] f̂(S)
2. For F ⊂ {0, 1}n we define the F-truncation

fF =
∑

S∈F f̂(S)χS. Our truncations will always be according to some degree

threshold r, for which we write f≤r =
∑

|S|≤r f̂(S)χS.

For i ∈ [n], the i-derivative fi and i-influence Ii(f) of f are

fi = Di [f ] = σ
(
fi→1 − fi→0

)
=

∑
S:i∈S

f̂ (S)χS\{i}, and

Ii(f) = ‖fi→1 − fi→0‖22 = σ−2
E[f2

i ] =
1

p(1−p)

∑
S:i∈S

f̂(S)2.

The influence of f is

I(f) =
∑
i

Ii(f) = (p(1− p))−1
∑
S

|S|f̂(S)2.(2.1)

In general, for S ⊂ [n], the S-derivative of f is obtained from f by sequentially
applying Di for each i ∈ S, i.e.

DS(f) = σ|S|
∑

x∈{0,1}S

(−1)|S|−|x|fS→x =
∑

T :S⊂T

f̂(T )χT\S .

The S-influence of f (as in Definition 1.2) is

IS(f) = σ−2|S|‖DS (f) ‖22 = σ−2|S|
∑

E:S⊂E

f̂(E)2.(2.2)

Recalling that a function f has α-small generalised influences if IS(f) ≤ αE[f2]

for all S ⊂ [n], we see that this is equivalent to E[DS (f)
2
] ≤ ασ2|S|

E[f2] for all
S ⊂ [n].
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HYPERCONTRACTIVITY FOR GLOBAL FUNCTIONS 255

3. Hypercontractivity of functions with small generalised

influences

In this section we prove our hypercontractive inequality (Theorem 1.3), which is
the fundamental result that underpins all of the results in this paper.

The idea of the proof is to reduce hypercontractivity in μp to hypercontractivity
in μ1/2 via the ‘replacement method’ (the idea of Lindeberg’s proof of the Central
Limit Theorem, and of the proof of Mossel, O’Donnell and Oleszkiewicz [63] of
the invariance principle). Throughout this section we fix f : {0, 1}n → R and

express f in the p-biased Fourier basis as
∑

S f̂(S)χp
S, where χp

S =
∏

i∈S χp
i and

χp
i (x) =

xi−p
σ (the same notation as above, except that we introduce the superscript

p to distinguish the p-biased and uniform settings).

For 0 ≤ t ≤ n we define ft =
∑

S f̂(S)χt
S, where

χt
S =

∏
i∈S∩[t]

χ
1/2
i (x)

∏
i∈S\[t]

χp
i (x) ∈ L2(Ωt),

with Ωt = ({0, 1}[t], μ1/2)× ({0, 1}[n]\[t], μp).

Thus ft interpolates from f0 = f ∈ L2({0, 1}n, μp) to fn =
∑

S f̂(S)χ
1/2
S ∈

L2({0, 1}n, μ1/2). As {χt
S : S ⊂ [n]} is an orthonormal basis we have ‖ft‖2 = ‖f‖2

for all t.
We also define noise operators Tt

ρ′,ρ on L2(Ωt) by Tt
ρ′,ρ(g)(x) = Ey∼Nρ′,ρ(x)

[f(y)],

where to sample y from Nρ′,ρ(x), for i ≤ t we let yi = xi with probability ρ′ or
otherwise we resample yi from μ1/2, and for i > t we let yi = xi with probability ρ

or otherwise we resample yi from μp. Thus T
t
ρ′,ρ interpolates from T0

ρ′,ρ = Tρ (for

μp) to Tn
ρ′,ρ = Tρ′ (for μ1/2).

We record the following estimate for 4-norms of p-biased characters:

λ := E[(χp
i )

4] = σ−4(p(1− p)4 + (1− p)p4) = σ−2((1− p)3 + p3) ≤ σ−2.

The core of our argument by replacement is Lemma 3.1 which controls the evo-
lution of E[(Tt

2ρ,ρft)
4] = ‖Tt

2ρ,ρft‖44 for 0 ≤ t ≤ n. Note that expectations are with
respect to Ωt−1 on the left-hand-side and Ωt on the right-hand-side.

Lemma 3.1. E[(Tt−1
2ρ,ρft−1)

4] ≤ E[(Tt
2ρ,ρft)

4] + 3λρ4E[(Tt
2ρ,ρ((Dtf)t))

4].

Proof. We write

ft = χ
1/2
t g + h and ft−1 = χp

t g + h, where

g = (Dtf)t =
∑
S:t∈S

f̂(S)χt
S\{t} =

∑
S:t∈S

f̂(S)χt−1
S\{t} = (Dtf)t−1, and

h = Ext∼μ1/2
ft =

∑
S:t/∈S

f̂(S)χt
S =

∑
S:t/∈S

f̂(S)χt−1
S = Ext∼μp

ft−1.

We also write

Tt
2ρ,ρft = 2ρχ

1/2
t d+ e and Tt−1

2ρ,ρft−1 = ρχp
t d+ e, where

d = Tt
2ρ,ρg = Tt−1

2ρ,ρg and e = Tt
2ρ,ρh = Tt−1

2ρ,ρh.

We can calculate the expectations in the statement of the lemma by conditioning
on all coordinates other than xt, i.e. Ex[·] = Ex′ [Ext

[· | x′]] where x′ is obtained
from x = (x1, . . . , xn) by removing xt. It therefore suffices to establish the required
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inequality for each fixed x′ with expectations over the choice of xt; thus we can
treat d and e as constants, and it suffices to show

(3.1) Ext∼μp
[(ρdχp

t (xt) + e)4] ≤ Ext∼μ1/2
[(2ρdχ

1/2
t (xt) + e)4] + 3λρ4d4.

As χp
t has mean 0, we can expand the left hand side of (3.1) as

(ρd)4E[(χp
t )

4] + 4e(ρd)3E[(χp
t )

3] + 6e2(ρd)2E[(χp
t )

2] + e4 ≤ 3λ(dρ)4 + 8(deρ)2 + e4,

where we bound the second term using Cauchy-Schwarz and then AM-GM by

4·E[(dρχp
t )

4]1/2·E[(deρχp
t )

2]1/2≤2
(
E[(dρχp

t )
4] + E[(deρχp

t )
2]
)
= 2(λ(dρ)4+(deρ)2).

Similarly, as E[χ
1/2
t ] = E[(χ

1/2
t )3] = 0, we can expand the first term on the right

hand side of (3.1) as

(2ρd)4E[(χ
1/2
t )4]+6e2(2ρd)2E[(χ

1/2
t )2]+e4 = (2ρd)4+6(2ρde)2+e4 ≥ 8(deρ)2+e4.

The lemma follows. �

Now we apply the Lemma 3.1 inductively to prove the following estimate.

Lemma 3.2. ‖Ti
2ρ,ρfi‖44 ≤

∑
S⊂[n]\[i](3λρ

4)|S|‖Tn
2ρ,ρ((DSf)n)‖44 for all 0 ≤ i ≤ n.

Proof. We prove the inequality by induction on n−i simultaneously for all functions
f . If n = i then equality holds trivially. Now suppose that i < n. By Lemma 3.1
with t = i+ 1, and the induction hypothesis applied to f and Dtf with i replaced
by t, we have

‖Ti
2ρ,ρfi‖44 ≤ ‖Tt

2ρ,ρft‖44 + 3λρ4‖Tt
2ρ,ρ((Dtf)t)‖44

≤
∑

S⊂[n]\[t]
(3λρ4)|S|‖Tn

2ρ,ρ((DSf)n)‖44

+ 3λρ4
∑

S⊂[n]\[t]
(3λρ4)|S|‖Tn

2ρ,ρ((DSDtf)n)‖44

=
∑

S⊂[n]\[i]
(3λρ4)|S|‖Tn

2ρ,ρ((DSf)n)‖44.

�

In particular, recalling that T0
2ρ,ρ = Tρ on μp and Tn

2ρ,ρ = T2ρ on μ1/2, the case
i = 0 of Lemma 3.2 is as follows.

Proposition 3.3. ‖Tρf‖44 ≤
∑

S⊂[n](3λρ
4)|S|‖T2ρ((DSf)n)‖44.

The 4-norms on the right hand side of Proposition 3.3 are with respect to the uni-
form measure μ1/2, where we can apply standard hypercontractivity (the ‘Beckner-

Bonami Lemma’) for ρ ≤ 1/2
√
3 to obtain ‖T2ρ((DSf)n)‖44 ≤ ‖(DSf)n‖42 =

‖DSf‖42 = σ4|S|IS [f ]
2. Recalling that λ ≤ σ−2, we deduce the following bound

for ‖Tρf‖44 in terms of the generalised influences of f .

Theorem 3.4. If ρ ≤ 1/
√
12 then

‖Tρf‖44 ≤
∑
S⊂[n]

(3λρ4)|S|‖DSf‖42 ≤
∑
S⊂[n]

(3σ2ρ4)|S|IS [f ]
2.
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HYPERCONTRACTIVITY FOR GLOBAL FUNCTIONS 257

Now we deduce our hypercontractivity inequality. It is convenient to prove the
following slightly stronger statement, which implies Theorem 1.3 using ‖DSf‖22 =
σ2|S|IS [f ] ≤ λ−|S|IS [f ] and ‖T1/5f‖4 ≤ ‖T1/

√
24f‖4 (any Tρ is a contraction in Lp

for any p ≥ 1).

Theorem 3.5. Let f ∈ L2 ({0, 1}n , μp) with all ‖DSf‖22 ≤ βλ−|S|
E[f2]. Then

‖T1/
√
24f‖4 ≤ β1/4‖f‖2.

Proof. By Theorem 3.4 applied to T1/
√
2f with ρ = 1/

√
12 we have

‖T1/
√
24f‖44 ≤

∑
S⊂[n]

(3λρ4)|S|‖DST1/
√
2f‖42.

As

‖DST1/
√
2f‖22 =

∑
E:S⊂E

2−|E|f̂(E)2 ≤
∑

E:S⊂E

f̂(E)2 = ‖DSf‖22 ≤ βλ−|S|
E[f2]

we deduce

‖T1/
√
24f‖44 ≤

∑
S⊂[n]

∑
E:S⊂E

βE[f2]2−|E|f̂(E)2 = βE[f2]
∑
E

f̂(E)2 = β‖f‖42.

�

3.1. Hypercontractivity in practice. We will mostly use the following applica-
tion of the hypercontractivity theorem.

Lemma 3.6. Let f be a function of degree r. Suppose that IS [f ] ≤ δ for all |S| ≤ r.
Then

‖f‖4 ≤ 5rδ
1
4 ‖f‖1/22 .

The proof uses Lemma 3.7, which is immediate from the Fourier expression in
(2.2).

Lemma 3.7. IS [f
≤r] ≤ IS [f ] for all S ⊂ [n] and IS [f

≤r] = 0 if |S| > r.

Proof of Lemma 3.6. Write f = T1/5(h), where h =
∑

|T |≤r 5
|T |f̂(T )χT . We will

bound the 4-norm of f by applying Theorem 1.3 to h, so we need to bound the
generalised influences of h.

By Lemma 3.7, for S ⊂ [n] we have IS [h] = 0 if |S| > r. For |S| ≤ r, we have

IS [h] = σ−2|S|
∑

T :S⊂T,|T |≤r

52|T |f̂(T )2 ≤ 52rIS [f ] ≤ 52rδ = α‖h‖22,

where α = 52rδ/‖h‖22. By Theorem 1.3, we have

‖f‖4 = ‖T1/5h‖4 ≤ α
1
4 ‖h‖2 = 5r/2δ

1
4

√
‖h‖2 ≤ 5rδ

1
4

√
‖f‖2.

In the final inequality we used ‖h‖2 ≤ 5r‖f‖2, which follows from Parseval. �
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4. Characterising global functions

Above we have introduced two notions of what it means for a Boolean function
f to be global. The first globalness condition, which appears e.g. in Theorem 1.4,
is that the measure of f is not sensitive to restrictions to small sets of coordinates.
The second condition is a bound on generalised influences IS(f) for small sets S. In
this section we show that we can move freely between these notions for two classes
of Boolean functions: namely sparse ones and monotone ones.

Throughout we assume p ≤ 1/2, which does not involve any loss in generality in
our main results; indeed, if p > 1/2 we can consider the dual f∗(x) = 1− f(1− x)
of any Boolean function f , for which μ1−p(f

∗) = 1−μp(f) and Iμ1−p
(f∗) = Iμp

(f).
We start by formalising our first notion of globalness.

Definition 4.1. We say that a Boolean function f is (r, δ)-global if μp (fJ→1) ≤
μp (f) + δ for each set J of size at most r.

We remark that Definition 4.1 is a rather weak notion of globalness, so it is quite
surprising that it suffices for Theorems 1.5 and 1.8, where one might have expected
to need the stricter notion that μp(fJ→1) is close to μp(f).

Lemma 4.2 shows that if a sparse Boolean function is global in the sense of
Definition 4.1 then it has small generalised influences.

Lemma 4.2. Suppose that f : {0, 1}n → {0, 1} is an (r, δ)-global Boolean function
with μp(f) ≤ δ. Then IS

(
f≤r

)
≤ IS (f) ≤ 8rδ for all S ⊂ [n] with |S| ≤ r.

Proof. The first inequality is from Lemma 3.7. Next, we estimate

√
IS (f) =

∥∥∥∥∥∥
∑

x∈{0,1}S

(−1)|S|−|x| fS→x

∥∥∥∥∥∥
2

≤
∑

x∈{0,1}S

‖fS→x‖2 =
∑

x∈{0,1}S

√
μp(fS→x).

(4.1)

Next we fix x ∈ {0, 1}S and claim that μp(fS→x) ≤ 2rδ. By substituting this
bound in (4.1) we see that this suffices to complete the proof. Let T be the set
of all i ∈ S such that xi = 1. Since f is nonnegative, we have μp(fT→1) ≥
(1− p)|S\T | μp(fS→x). As f is (r, δ)-global and μp(f) ≤ δ, we have μp (fT→1) ≤ 2δ,

so μp(fS→x) ≤ (1 − p)|T |−r2δ ≤ 2rδ, where for the last inequality we can assume
T = ∅, as μp (f∅→1) = μp(f) ≤ δ ≤ 2rδ. This completes the proof. �

Next we show an analogue of Lemma 4.2 replacing the assumption that f is
sparse by the assumption that f is monotone.

Lemma 4.3. Let f : {0, 1}n → {0, 1} be a monotone Boolean (r, δ)-global function.
Then IS [f ] ≤ 8rδ for every nonempty S of size at most r.

The proof is based on Lemma 4.4 showing that globalness is inherited (with
weaker parameters) under restriction of a coordinate.

Lemma 4.4. Suppose that f is a monotone (r, δ)-global function. Then for each i:

(1) fi→1 is (r − 1, δ)-global,

(2) μp (fi→0) ≥ μp (f)− pδ
1−p ,

(3) fi→0 is
(
r − 1, δ

1−p

)
-global.
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HYPERCONTRACTIVITY FOR GLOBAL FUNCTIONS 259

Proof. To see (1), note that for any J with |J | ≤ r − 1 we have μp((fi→1)J→1) =
μp(fJ∪{i}→1) ≤ μp(f) + δ ≤ μp(fi→1) + δ, where the last inequality holds as f is
monotone. Statement (2) follows from the upper bound μp (fi→1) ≤ μp (f)+ δ and

μp (fi→0) =
μp(f)−pμp(fi→1)

(1−p) .

For (3), we note that by monotonicity μp ((fi→0)S→1) ≤ μp

(
f{i}∪S→1

)
. As f is

(r, δ)-global,

μp

(
fS∪{i}→1

)
≤ μp (f) + δ ≤ μp (fi→0) + δ +

pδ

1− p
= μp (fi→0) +

δ

1− p
,

using (2). Hence, fi→0 is
(
r, δ

1−p

)
-global. �

Proof of Lemma 4.3. We argue by induction on r. In the case where r = 1, Lemma
4.4 and monotonicity of f imply (using p ≤ 1/2)

Ii (f) = μp (fi→1)− μp (fi→0) ≤ δ +
pδ

1− p
≤ 2δ.

Now we bound IS∪{i} (f) for r > 1 and S of size r − 1 with i /∈ S.
Note that DS∪{i} (f) = DS [Di(f)]. By the triangle inequality, we have√

IS∪{i} (f) = σ−r‖DS∪{i}(f)‖2 = σ1−r‖DS(fi→1)−DS(fi→0)‖2

≤
√
IS [fi→1] +

√
IS [fi→0].

By the induction hypothesis and Lemma 4.4 the right hand side is at most
√
8r−1δ +

√
8r−12δ ≤

√
8rδ.

Taking squares, we obtain IS∪{i} (f) ≤ 8rδ. �

We conclude this section by showing the converse direction of the equivalence
between our two notions of globalness, i.e. if the generalised influences of a function
f are small then f is global in the sense of its measure being insensitive to restric-
tions to small sets. (We will not use the lemma in the sequel but include the proof
for completeness.)

Lemma 4.5. Let f : {0, 1}n → {0, 1} be a Boolean function and let r > 0. Suppose
that IS [f ] ≤ δ for each nonempty set S of at most r coordinates. Then f is (r, 9rδ)-
global.

Proof. To facilitate a proof by induction on r we prove the slightly stronger state-
ment that f is (r,

∑r
i=1 9

i−1δ)-global. Suppose first that r = 1. Our goal is to show
that if Ii[f ] ≤ δ, then μp(fi→1)− μp(fi→0) ≤ δ, and indeed,

μp(fi→1)− μp(fi→0) ≤ Pr[fi→1 = fi→0] = ‖fi→1 − fi→0‖22 = Ii[f ] ≤ δ.

Now suppose that r > 1 and that the lemma holds with r − 1 in place of r. The
lemma will follow once we show that for all i and all nonempty sets S of size at
most r − 1, we have IS [fi→1] ≤ 9δ. Indeed, the induction hypothesis and the
n = 1 case will imply that for each set S of size at most r and each i ∈ S we have

μp(fS→1) ≤ μp(fi→1) +
∑r−1

i=1 9i−1 · 9δ ≤ μp(f) +
∑r

i=1 9
i−1δ.

We now turn to showing the desired upper bound on the generalised influences of
fi→1. Let S be a set of size at most r−1. Recall that IS [fi→1] = σ−2|S|‖DS [fi→1]‖22.
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We may assume that i /∈ S for otherwise the generalised influence IS [fi→1] is 0. We
make two observations. Firstly, we have

DS∪{i}[f ] = σ(DS[fi→1]−DS [fi→0]).

Secondly, conditioning on the output of the coordinate i we have

‖DS [f ]‖22 = p‖DS [fi→1]‖22 + (1− p)‖DS[fi→0]‖22,

which implies ‖DS [fi→0]‖2 ≤
√
2‖DS [f ]‖2. We may now apply the triangle inequal-

ity on the first observation and use the second observation to obtain√
IS [fi→1] = σ−|S|‖DS [fi→1]‖2 = σ−|S|‖σ−1DS∪{i}[f ] + DS [fi→0]‖2

≤ σ−(|S|+1)‖DS∪{i}[f ]‖2 + σ−|S|‖DS [fi→0]‖2
≤ σ−(|S|+1)‖DS∪{i}[f ]‖2 +

√
2σ−|S|‖DS [f ]‖2

=
√
IS∪{i}[f ] +

√
2IS [f ] ≤ (1 +

√
2)
√
δ ≤ 3δ.

Taking squares, we obtain the desired upper bound on the generalised influences of
fi→1. �

5. Total influence of global functions

In this section we show that our hypercontractive inequality (Theorem 1.3) im-
plies our stability results for the isoperimetric inequality, namely Theorems 1.4 and
1.5. We also deduce our first sharp threshold result, Theorem 1.6.

5.1. The spectrum of sparse global sets. The key step in the proofs of The-
orems 1.5 and 1.8 is to show that the Fourier spectrum of global sparse subsets
of the p-biased cube is concentrated on the high degrees. We recall first a proof
that in the uniform cube (i.e. cube with uniform measure), all sparse sets have this
behaviour (not just the global ones). Our proof is based on ideas from Talagrand
[70] and Bourgain and Kalai [19].

Theorem 5.1. Let f be a Boolean function on the uniform cube, and let r > 0.
Then ∥∥f≤r

∥∥2
2
≤ 3rμ1/2 (f)

1.5 .

The idea of the proof is to bound
∥∥f≤r

∥∥2
2
=
〈
f≤r, f

〉
via Hölder by

∥∥f≤r
∥∥
4
‖f‖4/3,

bound the 4-norm via hypercontractivity and express the 4/3-norm in terms of the
measure of f using the assumption that f is Boolean. For future reference, we
decompose the argument into two lemmas, the first of which applies also to the p-
biased setting and the second of which requires hypercontractivity, and so is specific
to the uniform setting. Theorem 5.1 follows immediately from Lemmas 5.2 and 5.3.

In Lemma 5.2 we consider {−1, 0, 1}-valued functions so that it can be applied
to either a Boolean function or its discrete derivative.

Lemma 5.2. Let f : {0, 1}n → {0, 1,−1}, let F be a family of subsets of [n], and

let g(x) = fF (x) =
∑

S∈F f̂(S)χS(x). Then ‖g‖22 ≤ ‖g‖4‖f‖1.52 , where the norms
can be taken with respect to an arbitrary p-biased measure.

Proof. By Plancherel and Hölder’s inequality, E[g2] = 〈f, g〉 ≤ ‖f‖4/3‖g‖4, where
‖f‖4/3 = E[f2]3/4 = ‖f‖1.52 as f is {−1, 0, 1}-valued. �
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Applying Lemma 5.2 with g = f≤r, we obtain a lower bound on the 4-norm of
g. We now upper bound it by appealing to the Hypercontractivity Theorem.

Lemma 5.3. Let g be a function of degree r on the uniform cube. Then ‖g‖4 ≤√
3
r ‖g‖2.

Proof. Let h be the function, such that T1/
√
3h = g, i.e. h =

∑
|S|≤r

√
3
|S|

ĝ (S)χS .

Then the Hypercontractivity Theorem implies that ‖g‖4 ≤ ‖h‖2, and by Parseval

‖h‖2 ≤
√
3
r‖g‖2. �

We shall now adapt the proof of Theorem 5.1 to global functions on the p-biased
cube. The only part in the above proof that needs an adjustment is Lemma 5.3,
and in fact we have already provided the required adjustment in Section 3 in the
form of Lemma 3.6.

Theorem 5.4. Let r ≥ 1, and let f : {0, 1}n → {0, 1,−1}. Suppose that IS [f≤r] ≤ δ

for each set S of size at most r. Then E[(f≤r)2] ≤ 54r/3δ
1
3E

[
f2

]
.

Proof. Applying Lemma 3.6 with g = f≤r, we obtain the upper bound ‖g‖4 ≤
5rδ

1
4 ‖g‖0.52 . Since the function f takes values only in the set {0, 1,−1}, we may

apply Lemma 5.2. Combining it with the upper bound on the 4-norm of g, we
obtain

‖g‖22 ≤ ‖g‖4‖f‖1.52 ≤ 5rδ
1
4 ‖g‖0.52 ‖f‖1.52 .

Rearranging, and raising everything to the power 4
3 , we obtain ‖g‖22 ≤ 54r/3δ

1
3 ‖f‖22.

�

Let us say that f is ε-concentrated above degree r if ‖f≤r‖22 ≤ ε‖f‖22. The
significance of Theorem 5.4 stems from the fact that it implies the following result
showing that for each r, ε > 0 there exists a δ > 0 such that any sparse (r, δ)-global
function is ε-concentrated above degree r.

Corollary 5.5. Let r ≥ 1. Suppose that f is an (r, δ)-global Boolean function with

μp (f) ≤ δ. Then E[(f≤r)2] ≤ 20rδ
1
3μp(f).

Proof. By Lemma 4.2, for each S of size r we have IS
[
f≤r

]
≤ IS [f ] ≤ 8rδ. Then

Theorem 5.4 implies ‖f≤r‖22 ≤ 54/3r(8rδ)1/3‖f‖22 ≤ 20rδ
1
3 ‖f‖22, where since f is

Boolean we have ‖f‖22 = μp(f). �

5.2. Isoperimetric stability. We are now ready to prove our variant of the Kahn-
Kalai Conjecture and sharp form of Bourgain’s Theorem, both of which can be
thought of as isoperimetric stability results. Both proofs closely follow existing
proofs and substitute our new hypercontractivity inequality for the standard hyper-
contractivity theorem: for the first we follow a proof of the isoperimetric inequality,
and for the second the proof of KKL given by Bourgain and Kalai [19] (their main
idea is to apply the argument we gave in Theorem 5.1 for each of the derivatives of
f).

Proof of Theorem 1.5. We prove the contrapositive statement that for a sufficiently
large absolute constant C, if f is a Boolean function such that μp(fJ→1) ≤ e−CK

for all J of size at most CK, then pI[f ] ≥ Kμp(f). Let f be such a function, and
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set δ = e−CK . Provided that C ≥ 2, f is (2K, δ)-global, and has p-biased measure
at most δ. By Corollary 5.5, we have

‖f≤2K‖22 ≤ 202Kδ
1
3μp (f) ≤ μp (f) /2,

provided that C is sufficiently large. Hence,

‖f>2K‖22 = ‖f‖22 − ‖f≤2K‖22 ≥ μp (f) /2.

By (2.1) on page 254 we obtain p(1− p)I[f ] ≥ 2K‖f>2K‖22, so pI[f ] ≥ Kμp(f). �

Next we require Lemma 5.6 which bounds the norm of a low degree truncation
in terms of the total influence.

Lemma 5.6. Let r ≥ 0. Suppose that for each nonempty set S of size at most r,
IS

[
f≤r

]
≤ δ. Then

‖f≤r‖22 ≤ μp(f)
2 + 10r−1δ

1
3 σ2I[f ].

Proof. Let gi := fi→1 − fi→0. Then for each S of size at most r − 1 with i /∈ S we
have

IS [g
≤r−1
i ] = IS∪{i}[f

≤r] ≤ δ,

and for each S containing i we have IS [(gi)
≤r−1]=0. By Theorem 5.4, E[((gi)

≤r−1)2]

≤ 54(r−1)/3δ
1
3E[g2i ]. The lemma now follows by summing over all i, using

∑
i E[g

2
i ] =

I[f ]:

‖f≤r‖22 =
∑
|S|≤r

f̂(S)2 ≤ f̂(∅)2 +
∑
|S|≤r

|S|f̂(S)2

= μp(f)
2 + σ2

∑
i

E[((gi)
≤r−1)2]

≤ μp(f)
2 + 10r−1δ1/3σ2I[f ].

�

We now establish a variant of Bourgain’s Theorem for general Boolean functions,
in which we replace the conclusion on the measure of a restriction by finding a large
generalised influence.

Theorem 5.7. Let f : {0, 1}n → {0, 1}. Suppose that pI[f ] ≤ Kμp (f) (1− μp(f)).
Then there exists an S of size 2K, such that IS [f ] ≥ 10−30K .

Proof. Let r = 2K and let δ = 10−30K . Suppose for contradiction that IS [f ] ≤ δ
for each set S of size at most r. By Lemma 5.6,

‖f≤r‖22 − μp(f)
2 ≤ 10r−1δ1/3σ2I[f ] < pI[f ]/2K ≤ μp(f)(1− μp(f))/2.

On the other hand, by Parseval

‖f−f≤r‖22 =
∑
|S|>r

f̂(S)2≤ r−1
∑
|S|>r

|S|f̂(S)2≤ r−1p(1−p)I[f ] ≤ μp(f)(1−μp(f))/2.

However, these bounds contradict the fact that

μp(f)(1− μp(f)) = ‖f‖22 − μp(f)
2 = ‖f≤r‖22 − μp(f)

2 + ‖f − f≤r‖22.
�

Proof of Theorem 1.4. The theorem follows immediately from Theorem 5.7 and
Lemma 4.3. �
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5.3. Sharpness examples. We now give two examples showing sharpness of the
theorems in this section, both based on the tribes function of Ben-Or and Linial
[11].

Example 5.8. We consider the anti-tribes function f = fs,w : {0, 1}n → {0, 1} de-
fined by s disjoint sets T1, . . . , Ts⊂ [n] each of size w, where f(x)=

∏s
j=1 maxi∈Tj

xi,

i.e. f(x) = 1 if for every j we have xi = 1 for some i ∈ Tj , otherwise f(x) = 0. We
have μp(f) = (1− (1− p)w)s and I[f ] = μp(f)

′ = sw(1 − p)w−1(1 − (1 − p)w)s−1.
We choose s, w with s(1 − p)w = 1 (ignoring the rounding to integers) so that
μp(f) = (1 − s−1)s is bounded away from 0 and 1, and K = (1 − p)pI[f ] =
pw(1 − s−1)−1μp(f) = Θ(pw). Thus log s = w log(1 − p)−1 = Θ(K). However,

for any J ⊂ [n] with |J | = t ≤ s we have μp(fJ→1) ≤ (1 − s−1)s−t ≤ 2t/sμp(f),

so to obtain a density bump of e−o(K) we need t = e−o(K)s = eΩ(K) � K. Thus
Theorem 1.4 is sharp.

Example 5.9. Let f(x) = fs,w(x)
∏

i∈T xi with fs,w as in Example 5.8 and T ⊂ [n]
a set of size t disjoint from ∪jTj . We have μp(f) = pt(1 − (1 − p)w)s and I[f ] =
μp(f)

′ = tpt−1(1 − (1 − p)w)s + ptsw(1 − p)w−1(1 − (1 − p)w)s−1. We fix K > 1

and choose s, w with s(1 − p)w = K, so that μp(f) = pt(1 − K/s)s = pte−Θ(K)

for s > 2K and p(1 − p)I[f ] = μp(f)((1 − p)t + pwK(1 − K/s)−1) = μp(f)Θ(K)
if pw = Θ(1) and t = O(K). For any J ⊂ [n] with |J | = t + u ≤ t + s we have
μp(fJ→1) ≤ (1 − K/s)s−u ≤ e−K(1−u/s) ≤ e−K/2 unless u > s/2 = Θ(K). Thus
Theorem 1.5 is sharp.

5.4. Sharp thresholds: The traditional approach. In this section we deduce
Theorem 1.6 from our edge-isoperimetric stability results and the Margulis–Russo
Lemma. Recall that a monotone Boolean function is M -global in an interval if

μp (fJ→1) ≤ μp (f)
0.01

for each p in the interval and set J of size M . We prove the
following slightly stronger version of Theorem 1.6.

Theorem 5.10. There exists an absolute constant C such that the following holds
for any monotone Boolean function f that is M -global in some interval [p, q]: if
q ≤ pc and μp (f) ≥ e−M/C then

(5.1) μq (f) ≥ μp(f)
( p

q )
1/C

.

In particular, q ≤ MCp.

Proof. By Theorem 1.5, since f is M -global throughout the interval, there exists a

constant C such that Ix [f ] ≥
μx(f) log(

1
μx(f)

)

Cx for all x in the interval [p, q]. By the
Margulis-Russo lemma,

d

dx
log (− log(μx (f))) =

μx(f)
′

μx(f) log(μx (f))
=

Ix[f ]

μx(f) log(μx (f))
≤ −1

Cx

in all of the interval [p, q]. Hence,

log (− log(μq(f))) ≤ log(− log(μp(f)))−
log( qp )

C
.

The first part of the theorem follows by taking exponentials, multiplying by −1,
and then taking exponentials again. To see the final statement, note that q ≤ pc
implies μq (f) ≤ 1

2 . We cannot have q ≥ M cp, as then the right hand side in (5.1)

would be larger than e−
1
C > 1/2 for large C. To obtain Theorem 1.6 we substitute

q = pc. �

Licensed to University of Oxford. Prepared on Fri Aug  9 20:54:31 EDT 2024 for download from IP 129.67.246.57.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



264 P. KEEVASH, N. LIFSHITZ, E. LONG, AND D. MINZER

6. Noise sensitivity and sharp thresholds

We start this section by showing that sparse global functions are noise sensitive;
Theorem 1.8 follows immediately from Theorem 6.1.

Theorem 6.1. Let ρ ∈ (0, 1), and let ε > 0. Let r = log(2/ε)
log(1/ρ) , and let δ = 20−3r−1ε3.

Suppose that f is an (r, δ)-global Boolean function with μp (f) < δ. Then

Stabρ (f) ≤ εμp (f) .

Proof. We have

〈Tρf, f〉 ≤
∑
|S|≤r

f̂ (S)2 + ρr
∑
|S|>r

f̂ (S)2 ≤ E

[(
f≤r

)2]
+

ε

2
μp(f).

The statement now follows from Corollary 5.5, which gives E[(f≤r)2] ≤ 20rδ1/3E[f2]
< εμp(f)/2. �

In the remainder of this section, following [56], we deduce sharp thresholds from
noise sensitivity via the following directed noise operator, which is implicit in the
work of Ahlberg, Broman, Griffiths and Morris [3] and later studied in its own right
by Abdullah and Venkatasubramanian [1].

Definition 6.2. Let D (p, q) denote the unique distribution on pairs (x, y) ∈
{0, 1}n × {0, 1}n such that x ∼ μp, y ∼ μq, all xi ≤ yi and {(xi,yi) : i ∈ [n]} are
independent. We define a linear operator Tp→q : L2({0, 1}n, μp) → L2({0, 1}n, μq)
by

Tp→q (f) (y) = E(x,y)∼D(p,q) [f (x) |y = y] .

The directed noise operator Tp→q is a version of the noise operator where bits
can be flipped only from 0 to 1. The associated notion of directed noise stability,
i.e. 〈f,Tp→qf〉μq

, is intuitively a measure of how close a Boolean function f is to

being monotone. Indeed, for any (x,y) with all xi ≤ yi we have f (x) f (y) ≤ f (x),
with equality if f is monotone, so

〈f,Tp→qf〉 = E(x,y)∼D(p,q) [f (x) f (y)] ≤ E(x,y)∼D(p,q) [f (x)] = μp (f) ,

with equality if f is monotone.6 We note that the adjoint operator (Tp→q)� :
L2({0, 1}n, μq) → L2({0, 1}n, μp) defined by 〈Tp→qf, g〉 =

〈
f, (Tp→q)� g

〉
satisfies

(Tp→q)
�
= Tq→p, where

Tq→p (g) (x) = E(x,y)∼D(p,q) [g (y) |x = x] .

The following simple calculation relates these operators to the noise operator.

Lemma 6.3. Let 0 < p < q < 1 and ρ = p(1−q)
q(1−p) . Then (Tp→q)

�
Tp→q = Tρ on

L2({0, 1}n, μp).

Proof. We need to show that the following distributions on pairs of p-biased bits
(x,x′) are identical: (a) let x be a p-biased bit, with probability ρ let x′ = x,
otherwise let x′ be an independent p-biased bit, (b) let (x,y) ∼ D(p, q) and then
(x′,y) ∼ D(p, q) | y. It suffices to show P(x = x′) is the same in both distributions.
We condition on x. Consider x = 1. In distribution (a) we have P(x′ = 0) =
(1 − ρ)(1 − p). In distribution (b) we have P(y = 1) = 1 and then P(x′ = 0) =

6The starting point for [56] is the observation that this inequality is close to an equality if f is
almost monotone.
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1 − p/q = (1 − ρ)(1− p), as required. Now consider x = 0. In distribution (a) we
have P(x′ = 1) = (1 − ρ)p. In distribution (b) we have P(y = 1) = q−p

1−p and then

P(x′ = 1 | y = 1) = p/q, so P(x′ = 1) = p(q−p)
q(1−p) = (1− ρ)p, as required. �

We now give an alternative way to deduce sharp threshold results, using noise
sensitivity, rather than the traditional approach via total influence (as in the proof of
Theorem 5.10). Our alternative approach has the following additional nice features,
both of which have been found useful in Extremal Combinatorics (see [56]).

(1) To deduce a sharp threshold result in an interval [p, q] it is enough to show
that f is global only according to the p-biased distribution. This is a milder
condition than the one in the traditional approach that requires globalness
throughout the entire interval.

(2) The monotonicity requirement may be relaxed to “almost monotonicity”.

Proposition 6.4. Let f : {0, 1}n → {0, 1} be a monotone Boolean function. Let

0 < p < q < 1 and ρ = p(1−q)
q(1−p) . Then μq(f) ≥ μp(f)

2/Stabρ (f).

Proof. By Cauchy–Schwarz and Lemma 6.3,

μp (f)
2 = 〈Tp→qf, f〉2μq

≤ 〈Tp→qf,Tp→qf〉μq
〈f, f〉μq

= 〈Tρf, f〉μp
μq (f) .

�

The above proof works not only for monotone functions, but also for functions
where the first equality above is replaced by approximate equality (which is a
natural notion for a function to be “almost monotone”).

We conclude this section by noting that Theorem 1.9 (sharp thresholds for global
functions) is immediate from Theorem 6.1 and Proposition 6.4.

7. General hypercontractivity

In this section we generalise Theorem 1.3 in two different directions. One direc-
tion is showing hypercontractivity from general q-norms to the 2-norm (rather than
merely treating the case q = 4); the other is replacing the cube by general product
spaces.

7.1. Hypercontractivity with general norms. We start by describing a more
convenient general setting in which we replace characters on the cube by arbitrary
random variables. To motivate this setting, we remark that one can extend the
proof of Theorem 3.4 to any random variable of the form

(7.1) f =
∑
S⊂[n]

aS
∏
i∈S

Zi,

where Z1, . . . , Zn are independent real-valued random variables having expectation
0, variance 1 and 4th moment at most σ−2. To motivate the analogous setting for
general integers q > 2, we note that the characters χp

i satisfy

E[|χp
i |q] ≤ ‖χp

i ‖q−2
∞ ‖χp

i ‖22 ≤ σ2−q.

This suggests replacing the 4th moment condition by ‖Zi‖qq ≤ σ2−q. Given f as in
(7.1), we define the (generalised) derivatives by substituting the random variables
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Zi for the characters χp
i in our earlier Fourier formulas, i.e.

Di[f ] =
∑

S: i∈S

aS
∏

j∈S\{i}
Zi and DT (f) =

∑
S:T⊂S

aS
∏

j∈S\T
Zi.

Similarly, we adopt analogous definitions of the generalised influences and noise
operator, i.e.

IS [f ] = ‖σ−|S|DS [f ]‖22 and Tρ[f ] =
∑
S

ρ|S|aS
∏
i∈S

Zi.

We prove the following hypercontractive inequality.

Theorem 7.1. Let q ≥ 2 be an even integer and Z1, . . . , Zn be independent
real-valued random variables satisfying

E[Zi] = 0, E[Z2
i ] = 1, and E[|Zi|q] ≤ σ2−q.

Let f =
∑

S⊂[n] aS
∏

i∈S Zi and ρ < 1
2q1.5 . Then

‖Tρf‖qq ≤
∑
S⊂[n]

σ(2−q)|S|‖DS(f)‖q2.

Theorem 7.1 is a qualitative generalisation of Theorem 3.4 (with smaller ρ, which
we do not attempt to optimise). The following generalised variant of Theorem 1.3
follows by repeating the proof of Theorem 1.3 in Section 3.

Theorem 7.2. For q > 2 and Zi’s as in Theorem 7.1, let f =
∑

S⊂[n] aS
∏

i∈S Zi

let δ > 0, and let ρ ≤ (2q)−1.5. Suppose that IS [f ] ≤ β‖f‖22 for all S ⊂ [n]. Then

‖Tρ[f ]‖q ≤ β
q−2
2q ‖f‖2.

We now begin with the ingredients of the proof of Theorem 7.1, following that
of Theorem 3.4. For 0 ≤ t ≤ n let

ft =
∑
S

aSχ
t
S , where χt

S =
∏

i∈S∩[t]

χ
1/2
i

∏
i∈S\[t]

Zi.

Here, just as in Section 3, the function ft interpolates from the original function

f0 = f to fn =
∑

S aSχ
1/2
S ∈ L2({0, 1}n, μ1/2). As {χt

S : S ⊂ [n]} are orthonormal
we have ‖ft‖2 = ‖f‖2 for all t.

As before, we define the noise operators Tt
ρ′,ρ on a function f =

∑
S aSχ

t
S by

Tt[f ] =
∑
S

ρ′|S∩[t]|ρ|S\[t]|aSχ
t
S .

Thus Tt
ρ′,ρ interpolates from T0

ρ′,ρ = Tρ (for the original function) to Tn
ρ′,ρ = Tρ′

(for μ1/2).
Our goal will now be to adjust Lemma 3.1 to the general setting, which is similar

in spirit to the 4-norm case, although somewhat trickier. It turns out that the case
n = 1 poses the main new difficulties, so we start with this in Lemma 7.3.

Lemma 7.3. Let q > 2 be an even integer and Z be a random variable satisfying
E[Z] = 0,E[Z2] = 1,E[|Z|q] ≤ σ2−q. Let e, d ∈ R and ρ ∈ (0, 1

2q ]. Then ‖e +

ρdZ‖qq ≤ ‖e+ dχ
1
2 ‖qq + σ2−qdq.
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Proof. If e = 0 then the lemma is trivial, so we assume e = 0. If e < 0 we can
multiply e, d, Z and χ

1
2 all by −1 and get an equivalent statement of this form

where now e > 0, hence we assume henceforth that e > 0 (we used the fact that the

distribution of χ
1
2 is invariant under multiplication by a sign and the assumptions

on Z are also invariant under multiplication by a sign). By rescaling (d, e) to (d/e, 1)
we can also assume that e = 1.

It will be convenient to consider both sides of the inequality as functions of d:
we write

f(d) = ‖1 + ρdZ‖qq and g(d) = ‖1 + dχ
1
2 ‖qq + σ2−qdq.

As f(0) = g(0), it suffices to show that f ′(0) = g′(0) and f ′′ ≤ g′′ everywhere.
Let us compute the derivatives. We have

f ′ = E[q (1 + ρdZ)q−1 ρZ] = ρqE[(1 + ρdZ)q−1Z] and

f ′′ = (q − 1)qρ2E[(1 + ρdZ)q−2Z2].

Differentiating g we obtain

g′ = qE
[ (

1 + dχ
1
2

)q−1

χ
1
2

]
+ qσ2−qdq−1 and

g′′ = q(q − 1)E
[ (

1 + dχ
1
2

)q−2 (
χ

1
2

)2 ]
+ q(q − 1)dq−2σ2−q]

≥ q(q − 1)/2 + q(q − 1)dq−2σ2−q.

Thus g′(0) = f ′(0) = 0 and it remains to show f ′′ ≤ g′′ everywhere. Our strategy
for bounding f ′′ is to decompose the expectation over two complementary events E1

and E2, where E1 is the event that |1 + ρdZ| ≤ |dZ| (and E2 is its complementary
event). We write f ′′ = f ′′

1 + f ′′
2 , where each

f ′′
i = (q − 1)qρ2E[|1 + ρdZ|q−2Z21Ei

].

First we note the bound

f ′′
1 ≤ q(q − 1)ρ2dq−2

E[|Z|q] ≤ q(q − 1)dq−2σ2−q.

Given the above lower bound on g′′, it remains to show f ′′
2 ≤ q(q − 1)/2. On the

event E2 we have

|dZ| ≤ |1 + ρdZ| ≤ 1 + |ρdZ|.
Rearranging, we obtain |ρdZ|(ρ−1 − 1) ≤ 1. Since ρ−1 ≥ 2q, we get

1 + |ρdZ| ≤ 1 +
1

2q − 1
.

Using E[Z2] = 1 this yields

f ′′
2 ≤ q(q − 1)ρ2

(
1 +

1

2q − 1

)q−2

≤
√
eρ2q(q − 1) ≤ q(q − 1)/2.

Hence f ′′ = f ′′
1 + f ′′

2 ≤ g′′ for any value of d. This completes the proof of the
lemma. �

We are now ready to show the replacement step.

Lemma 7.4. E[(Tt−1
2qρ,ρft−1)

q] ≤ E[(Tt
2qρ,ρft)

q] + σ2−q
E[(Tt

2qρ,ρ((Dtf)t))
q].
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Proof. We write

ft = χ
1/2
t g + h and ft−1 = χp

t g + h, where

g = (Dtf)t =
∑
S:t∈S

aSχ
t
S\{t} =

∑
S:t∈S

aSχ
t−1
S\{t} = (Dtf)t−1, and

h = Ext∼μ1/2
ft =

∑
S:t/∈S

aSχ
t
S =

∑
S:t/∈S

aSχ
t−1
S = EZt

ft−1.

We also write

Tt
2qρ,ρft = 2qρχ

1/2
t d+ e and Tt−1

2qρ,ρft−1 = ρZtd+ e, where

d = Tt
2qρ,ρg = Tt−1

2qρ,ρg and e = Tt
2qρ,ρh = Tt−1

2qρ,ρh.

Conditioning on all coordinates other than Zt, we use Lemma 7.3 with ρ′ = 1
2q and

d′ = ρ
ρ′ d to argue that the left hand side of the lemma is equal to

‖ρ′Zt
ρ

ρ′
d+ e‖qq = ‖e+ ρ′d′Zt‖qq ≤ ‖e+ d′χ

1/2
t ‖qq + σ2−qd′

q

= ‖e+ 2qρdχ
1/2
t ‖qq + σ2−q(2qρd)q.

Taking expectation over the coordinates outside Zt and using 2qρ ≤ 1 concludes
the proof. �

From now on, everything is similar to Section 3. We may apply Lemma 7.4
inductively to obtain.

Lemma 7.5. ‖Ti
2qρ,ρfi‖qq ≤

∑
S⊂[n]\[i] σ

(2−q)|S|‖Tn
2qρ,ρ((DSf)n)‖qq for all 0 ≤ i ≤

n.

In particular, recalling that T0
2qρ,ρ = Tρ on the original function and Tn

2qρ,ρ =
T2qρ on μ1/2, the case i = 0 of Lemma 7.5 is as follows.

Proposition 7.6. ‖Tρf‖qq ≤
∑

S⊂[n] σ
(2−q)|S|‖T2qρ((DSf)n)‖qq.

The q-norms on the right hand side of Proposition 7.6 are with respect to the
uniform measure μ1/2, where we can apply standard hypercontractivity with noise

rate ≤ 1/
√
q − 1 to obtain

‖T2qρ((DSf)n)‖qq ≤ ‖(DSf)n‖q2 = ‖DSf‖q2.

This completes the proof of Theorem 7.1.
In the case where the Zi have different qth moments, the proof can be adjusted

to give a better upper bound. We write

(7.2) E[Zq
i ] = σ2−q

i , σS =
∏
i∈S

σi and IS [f ] = ‖ 1

σS
DS [f ]‖22.

The proof of Theorem 7.1 yields the following variant of Theorem 3.4.

Theorem 7.7. Let q ≥ 2 be an even integer, let 0 < ρ ≤ 1
2q1.5 , and let f =∑

aS
∏

i∈S Zi with Zi as in (7.2). Then

‖Tρf‖qq ≤
∑
S⊂[n]

σ2−q
S ‖DS [f ]‖q2.

Licensed to University of Oxford. Prepared on Fri Aug  9 20:54:31 EDT 2024 for download from IP 129.67.246.57.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HYPERCONTRACTIVITY FOR GLOBAL FUNCTIONS 269

The following variant of Theorem 1.3 follows from Theorem 7.7. The proof is
similar to the one given in Section 3, where Theorem 1.3 is deduced from Theorem
3.4.

Theorem 7.8. Let q > 2 be an even integer, β > 0 and 0 < ρ ≤ 1
2q1.5 . Suppose

f =
∑

S⊂[n] aS
∏

i∈S Zi with Zi as in (7.2) has IS [f ] ≤ β‖f‖22 for all S ⊂ [n]. Then

‖Tρf‖q ≤ β
q−2
2q ‖f‖2.

Finally, we state the following variant of Lemma 3.6, which is easy to deduce
from Theorem 7.8 (mimicking the proof of Lemma 3.6).

Lemma 7.9. Let q>2 be an even integer and δ>0. Suppose f=
∑

S⊂[n] aS
∏

i∈S Zi

with Zi as in (7.2) has IS [f ] ≤ δ for all |S| ≤ r and f has degree at most r. Then

‖f‖q ≤ (2q)1.5rδ
q−2
2q ‖f‖

2
q

2 .

7.2. A hypercontractive inequality for product spaces. Now we consider the
setting of a general discrete product space (Ω, ν) =

∏n
t=1(Ωt, νt). We assume pt =

minωt∈Ωt
νt(ωt) ∈ (0, 1/2) for each t ∈ [n], and we write p = mint pt. We recall the

projections EJ on L2(Ω, ν) defined by (EJf)(ω) = EωJ
[f(ω) | ωJ ], the generalised

Laplacians LS defined by composing Lt for all t ∈ S, where Ltf = f −Etf , and the
generalised influences IS [f ] = E[LS [f ]

2]
∏

i∈S σ−2
i , where σ2

i = pi(1− pi).
We will require the theory of orthogonal decompositions in product spaces, which

we summarise following the exposition in [64, Section 8.3]. For f ∈ L2(Ω, ν) and
J, S ⊂ [n] we write f⊂J = EJf and define f=S =

∑
J⊂S(−1)|S\J|f⊂J (inclusion-

exclusion for f⊂J =
∑

S⊂J f=S). This decomposition is known as the Efron–

Stein decomposition [23]. The key properties of f=S are that it only depends on
coordinates in S and it is orthogonal to any function that depends only on some
set of coordinates not containing S; in particular, f=S and f=S′

are orthogonal
for S = S′. We note that f = f⊂[n] =

∑
S f=S . We have similar Plancherel/

Parseval relations as for Fourier decompositions, namely 〈f, g〉 =
∑

S f=Sg=S , so
E[f2] =

∑
S(f

=S)2.
Our goal in this section is to prove a hypercontractive inequality for the Efron–

Stein decomposition in the spirit of Theorem 3.4. The noise operator is defined by
Tρ[f ] =

∑
S⊂[n] ρ

|S|f=S . It also has a combinatorial interpretation, which is similar

to the usual one on the p-biased setting. Given x ∈ Ω, a sample y ∼ Nρ(x) is chosen
by independently setting yi to xi with probability ρ and resampling it from (Ωi, νi)
with probability 1 − ρ. In the general product space setting there are no good
analogues to Di[f ] and DS [f ], so we instead work with the Laplacians, which have
similar Fourier formulae: Li[f ] =

∑
S: i∈S f=S and LT [f ] =

∑
S:T⊂S f=S . In the

special case where Ωi = {0, 1} we have ‖LS [f ]‖2 = ‖DS [f ]‖2. It will be convenient
to write σS =

∏
i∈S σi.

The main result of this section is Theorem 7.10.

Theorem 7.10. Let f ∈ L2(Ω, ν), let q > 2 be an even integer, and let ρ ≤ 1
4q1.5 .

Then
‖Tρf‖qq ≤

∑
S⊂[n]

σ2−q
S ‖LS [f ]‖q2.

The idea of the proof is as follows. We encode our function f ∈ L2(Ω, ν) as

a function f̃ :=
∑

S ‖f=S‖2χS for appropriate χS =
∏

i∈S χi (in fact, these will
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be biased characters on the cube). We then bound ‖Tρf‖q by ‖Tρf̃‖q and use
Theorem 7.8 to bound the latter norm.

The main technical component in the proof of Theorem 7.10 is Proposition 7.11
below.

Proposition 7.11. Let q ≥ 2 be an even integer, let g ∈ L2(Ω, ν) let χS =
∏

i∈S χi,
where χi are independent random variables having expectation 0, variance 1, and
satisfying E[χj

i ] ≥ σ2−j
i for each integer j ∈ (2, q]. Let g̃ =

∑
S⊂[n] ‖g=S‖2χS. Then

‖g‖q ≤ ‖g̃‖q.

Below, we fix χS as in Proposition 7.11, and let ◦̃ denote the operator mapping
a function g ∈ L2(Ω, ν) to the function

∑
S⊂[n] g

=SχS .

To prove Proposition 7.11, we will expand out ‖g‖qq and ‖g̃‖qq according to their
definitions and compare similar terms: namely, we show that a term of the form
E[
∏q

i=1 g
=Si ] is bounded by the corresponding term in ‖g̃‖qq, i.e.∏q

i=1 ‖g=Si‖2E[
∏q

i=1 χSi
]. We now establish such a bound.

We begin with identifying cases in which both terms are equal to 0, and for that
we use the orthogonality of the decomposition {g=S}S⊂[n]. Afterwards, we only

rely on the fact that g=S depends only on the coordinates in S.

Lemma 7.12. Let q be some integer, let g ∈ L2(Ω, ν), and let S1, . . . , Sq ⊂ [n] be
some sets. Suppose that some j ∈ [n] belongs to exactly one of the sets S1, . . . , Sq.
Then

E

[
q∏

i=1

g=Si

]
= 0 and E

[
q∏

i=1

χSi

]
= 0.

Proof. Assume without loss of generality that j ∈ S1. The second equality
E [

∏q
i=1 χSi

] = 0 follows by taking expectation over χj , using the independence
between the random variables χi. For the first equality, observe that the function∏q

i=2 g
=Si depends only on coordinates in S2 ∪ · · · ∪ Sq ⊂ [n] \ {j}. Hence the

properties of the Efron–Stein decomposition imply

0 =

〈
g=S1 ,

q∏
i=2

g=Si

〉
= E

[
q∏

i=1

g=Si

]
.

�

Thus we only need to consider terms corresponding to S1, . . . , Sq in which each
coordinate appears in at least two sets. To facilitate our inductive proof we work
with general functions fi that depend only on coordinates of Si (rather than only
with the functions of the form g=Si).

Lemma 7.13. Let f1, . . . , fq ∈ L2(Ω, ν) be functions that depend on sets S1, . . . ,
Sq respectively. Let Ti for i = 3, . . . , q be the set of coordinates covered by the sets
S1, . . . , Sq exactly i times. Then∣∣∣∣∣E

[
q∏

i=1

fi

]∣∣∣∣∣ ≤
q∏

i=1

‖fi‖2 ·
q∏

j=3

σ2−j
Tj

.

Proof. The proof is by induction on n, simultaneously for all functions. We start
with the case n = 1, which we prove by reducing to the case that all fi are equal.
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The case n = 1. Here each fi either depends on a single input or is constant and
depends only on the empty set. We may assume that none of the fi’s is constant,
as otherwise we may eliminate it from the inequality by dividing by |fi|. By the
generalised Hölder inequality we have∣∣∣∣∣E

[
q∏

i=1

fi

]∣∣∣∣∣ ≤
q∏

i=1

‖fi‖q.

Hence the case n = 1 of the lemma will follow once we prove it assuming all the fi
are equal.

The n = 1 case with equal fi’s. We show that if (Ω, ν) is a discrete probability
space in which any atom has probability at least p, then ‖f‖qq ≤ ‖f‖q2σ2−q, where

σ =
√
p(1− p).

While the inequality ‖f‖2 ≤ ‖f‖q holds in any probability space, the reverse
inequality holds in any measure space where each atom has measure at least 1.
Accordingly, we consider the measure ν̃ on Ω defined by ν̃(x) = ν(x)p−1. Then

‖f‖qq,ν = p‖f‖qq,ν̃ ≤ p‖f‖q2,ν̃ = p1−
q
2 ‖f‖q2,ν ≤ σ2−q‖f‖q2,ν .

This completes the proof of the n = 1 case.

The inductive step. Let f1, . . . , fq∈L2(Ω, ν) be functions. Let x∼
∏n−1

i=1 (Ωi, νi).
By the n = 1 case we have:∣∣∣∣∣E

[
q∏

k=1

fk

]∣∣∣∣∣ =
∣∣∣∣∣Ex

[
E

[
q∏

k=1

(fk)[n−1]→x

]]∣∣∣∣∣ ≤ Ex

[
q∏

k=1

‖(fk)[n−1]→x‖2σj
n

]
,

writing j = min{0, 2 − j′} where n ∈ Tj′ , noting that at most j′ of the functions
(fk)[n−1]→x depend on n. The lemma now follows by applying the inductive hypoth-
esis to the functions f∗

k (x) = ‖(fk)[n−1]→x‖2 (depending on coordinates S∗
k ⊂ Sk),

using
∥∥∥∥(fk)[n−1]→x

∥∥
2

∥∥
2,x

= ‖fk‖2. �

Proof of Proposition 7.11. As q ≥ 2 is even, we wish to upper bound

‖g‖qq = E[|g|q] = E[gq] =
∑

S1,...,Sq

E

[
q∏

i=1

g=Si

]

by ∑
S1,...,Sq

E

[
q∏

i=1

χSi

]
q∏

i=1

‖g=Si‖2.

We upper bound each term participating in the expansion of gq by the corresponding
term in g̃q. In the case the sets Si cover some element exactly once, Lemma 7.12
implies that both terms are 0. Otherwise, the sets Si cover each element either 0
times or at least 2 times; let Ti be the set of elements of S1, . . . , Sq appearing in
exactly i of the sets (as in Lemma 7.13). By the assumption of the proposition, we

have E [
∏q

i=1 χSi
] ≥

∏q
i=3 σ

2−|Ti|
Ti

. The proof is concluded by combining this with

the upper bound on E
[∏q

i=1 g
=Si

]
following from Lemma 7.13 with fi = g=Si . �
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Proof of Theorem 7.10. Let σ′
i =

√
(pi/4)(1− pi/4). We choose χi to be the pi

4 -

biased character, χi = xi−pi/4
σ′
i

. Clearly χi has mean 0 and variance 1. We also

claim that E
[
χj
i

]
≥ (σi)

2−j for all integers j > 2. Indeed,

E

[
χj
i

]
≥ pi

4

(
1− pi/4

σ′
i

)j

≥ (1− pi/4)
j−1

(σ′
i)

j−2

≥ (1− pi/4)
(
2
√
1− pi/4

√
1− pi

)j−2

σ2−j
i ,

which is at least σ2−j
i as pi ≤ 1/2. Hence all of the conditions of Proposition 7.11

hold.
Denote σ′

S =
∏

i∈S σ′
i and set h = T 1

2
f , g = T 1

2q1.5
h. By Proposition 7.11 and

Theorem 7.7 we have

‖T 1
4q1.5

f‖qq = ‖g‖qq ≤ ‖g̃‖qq ≤
∑
S

(σ′
S)

2−q‖DS [h̃]‖q2.

We note that by Parseval, the 2-norm of h̃ and its derivatives are equal to the
2-norm of h and its Laplacians, and thus the last sum is equal to∑

S

(σ′
S)

2−q‖LS [h]‖q2 ≤
∑
S

(σS)
2−q‖LS [f ]‖q2.

In the last inequality we used σ′
S ≥ 2−|S|σS and ‖LS [h]‖q ≤ 2−q|S|‖LS [f ]‖q2 (which

follows from Parseval). This completes the proof of the theorem. �

8. An invariance principle (for global functions)

Invariance (also known as Universality) is a fundamental paradigm in Probabil-
ity, describing the phenomenon that many random processes converge to a specific
distribution that is the same for many different instances of the process. The pro-
totypical example is the Berry-Esseen Theorem, giving a quantitative version of the
Central Limit Theorem (see e.g. [64, Section 11.5]). More sophisticated instances
of the phenomenon that have been particularly influential on recent research in
several areas of Mathematics include the universality of Wigner’s semicircle law
for random matrices (see [59]) and of Schramm–Loewner evolution (SLE) e.g. in
critical percolation (see [69]).

In the context of the cube, the Invariance Principle is a powerful tool devel-
oped by Mossel, O’Donnell and Oleszkiewicz [63] while proving their ‘Majority is
Stablest’ Theorem, which can be viewed as an isoperimetric theorem for the noise
operator. Roughly speaking, the result (in a more general form due to Mossel
[61]) is that ‘majority functions’ (characteristic functions of Hamming balls) min-
imise noise sensitivity among functions that are ‘far from being dictators’. The
Invariance Principle converts many problems on the cube to equivalent problems
in Gaussian Space; in particular, ‘Majority is Stablest’ is converted into an isoperi-
metric problem in Gaussian Space which was solved by a classical theorem of Borell
[18] (half-spaces are isoperimetric).

In the basic form (see [64, Section 11.6]) of the Invariance Principle, we consider
a multilinear real-valued polynomial f of degree ≤ k and wish to compare f(x)
to f(y), where x and y are random vectors each having independent coordinates,
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according to a smooth (to third order) test function φ. (Comparison of the cu-
mulative distributions requires φ to be a step function, but this can be handled
by smooth approximation.) The version of [64, Remark 11.66] shows that if the
coordinates xi have mean 0, variance 1 and are suitably hypercontractive (satisfy
‖a+ ρbxi‖3 ≤ ‖a+ bxi‖2 for any a, b ∈ R), and similarly for yi, then

(8.1)
∣∣E[φ(f(x))]− E[φ(f(y))]

∣∣ ≤ 1
3‖φ

′′′‖∞ρ−3k
∑
i∈[n]

Ii(f)
3/2.

The hypercontractivity assumption applies e.g. if the coordinates are standard
Gaussians or p-biased bits (renormalised to have mean 0 and variance 1) with p
bounded away from 0 or 1, but if p = o(1) then we need ρ = o(1), in which case their
theorem becomes ineffective. We will apply our hypercontractivity inequality to
obtain an invariance principle that is effective for small probabilities and functions
with small generalised influences. We adopt Setup 8.1.

Setup 8.1. Let σ1, . . . , σn > 0, let X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn)
be random vectors with independent coordinates, where Xi and Yi are real-valued
random variables with mean 0, variance 1, and satisfy ‖Xi‖33 ≤ σ−1

i and ‖Yi‖33 ≤
σ−1
i . Let f ∈ R[v] be a multilinear polynomial of degree d in n variables v =

(v1, . . . , vn). Let φ ∈ C3(R) be continuously thrice differentiable.

For S ⊂ [n] we write f̂(S) for the coefficient in f of vS =
∏

i∈S vi. We write

WS(f) =
∑

J:S⊂J f̂(J)2 and similarly to Section 7.1 we define the generalised

influences by IS [f ] = WS(f)
∏

i∈S σ−2
i .

We write Tρ[f ] =
∑

S⊂[n] ρ
|S|f̂(S)vS.

Now we state our invariance principle, which compares f(X) to f(Y).

Theorem 8.2. Under Setup 8.1, if IS [f ] ≤ ε for each nonempty set S, then

|E[φ(f(X))]− E[φ(f(Y))]| ≤ 212d‖φ′′′‖∞W∅(f)
√
ε.

The term W∅(f) can be replaced by either E[f(X)2] or E[f(Y)2] as they are all
equal.

Theorem 8.2 can be informally interpreted as saying that if a multilinear, low
degree polynomial f is global then the distribution of f(X) is essentially indepen-
dent of the distribution of X given the mean and variance of each coordinate. In
particular, it does not make much difference whether we plug in p-biased characters
or uniform characters. A posteriori, this may be seen as an intuitive explanation for
Theorem 1.3 given the standard hypercontractivity theorem for the uniform cube.

Next, we set up some notations and preliminary observations for the proof of
Theorem 8.2. Throughout we fix X, Y, f , and φ as in Setup 8.1. We write

XS =
∏

i∈S Xi, and similarly for Y. Recall that f =
∑

S f̂(S)vS is a (formal)

multilinear polynomial in R[v] of degree d. Note that f(X) =
∑

S f̂(S)XS has

E[f(X)2] =
∑

S f̂(S)2, as EX2
S = 1 and E[XSXT ] = 0 for S = T . The random

variable f(X) has the orthogonal decomposition f =
∑

S f=S with each f=S =

f̂(S)XS. Further note that LSf(X) =
∑

J:S⊂J f̂(J)XJ so we have the identities

IS [f ]
∏
i∈S

σ2
i = E[(LSf(X))2] = E[(LSf(Y))2] =

∑
J:S⊂J

f̂(J)2 = WS(f).

We apply the replacement method as in Section 3 (and as in the proof of the
original invariance principle by Mossel, O’Donnell and Oleszkiewicz [63]). For 0 ≤
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t ≤ n, define Z:t = (Z:t
1 , . . . ,Z

:t
n) = (Y1, . . . ,Yt,Xt+1, . . . ,Xn), and note that

f(Z:t) has the orthogonal decomposition f(Z:t) =
∑

S f(Z:t)=S with

f(Z:t)=S = f̂(S)ZS = f̂(S)YS∩[t]XS\[t].

Proof of Theorem 8.2. We adapt the exposition in [64, Section 11.6]. As Z:0 = X
and Z:n = Y we have by telescoping and the triangle inequality

|E[φ(f(X))]− E[φ(f(Y))]| ≤
n∑

t=1

|E[φ(f(Z:t−1))]− E[φ(f(Z:t))]|.

Consider any t ∈ [n] and write

f(Z:t−1) = Ut +ΔtXt and f(Z:t) = Ut +ΔtYt, where

Ut = Etf(Z
:t−1) = Etf(Z

:t) and Δt = Dtf(Z
:t−1) = Dtf(Z

:t).

Both of the functions Ut and Δt are independent of the random variables Xt and
Yt.

By Taylor’s Theorem,

φ(f(Z:t−1)) = φ(Ut) + φ′(Ut)ΔtXt +
1
2φ

′′(Ut)(ΔtXt)
2 + 1

6φ
′′′(A)(ΔtXt)

3, and

φ(f(Z:t)) = φ(Ut) + φ′(Ut)ΔtYt +
1
2φ

′′(Ut)(ΔtYt)
2 + 1

6φ
′′′(A′)(ΔtYt)

3,

for some random variables A and A′. As Xt and Yt have mean 0 and variance 1 we
have 0 = E[φ′(Ut)ΔtYt] = E[φ′(Ut)ΔtXt] and E[φ′′(Ut)(Δt)

2] = E[φ′′(Ut)(ΔtYt)
2]

= E[φ′′(Ut)(ΔtXt)
2], so

|E[φ(f(Z:t−1))]− E[φ(f(Z:t))]| ≤ 1
6‖φ

′′′‖∞(E[|ΔtXt|3] + E[|ΔtYt|3])
≤ 1

3‖φ
′′′‖∞σ−1

t ‖Δt‖33.
In the last inequality, we have viewed the expectation E[|ΔtXt|3] (and similarly the
expectation E[|ΔtYt|3]) as being over Xt and over all of the coordinates in Z:t−1

except for its tth coordinate, notingXt depends only on the former random variable
whereas Δt depends only on the latter random variables. The function Δt is the
function Dt[f ] applied on random variables satisfying the hypothesis of Lemma 7.9
for q = 3. Moreover, IS [Dt[f ]] is either 0 when t ∈ S, or σ2

t IS∪{t}[f ] when t /∈ S, in

which case IS [Dtf ] ≤ σ2
t ε. Hence, by Lemma 7.9 (with q = 3), we obtain

‖Δt‖33 ≤ 64.5dσt

√
ε‖Δt‖22 = 64.5dσt

√
ε ·

∑
S�t

f̂(S)2.

Hence,
n∑

t=0

1
3‖φ

′′′‖∞σ−1
t ‖Δt‖33 ≤ 64.5d

√
ε13‖φ

′′′‖∞
∑
S

|S|f̂(S)2 ≤ 64.5d
√
εd3‖φ

′′′‖∞W∅(f).

This completes the proof of the theorem since 64.5d d
3 ≤ 212d. �

8.1. Applications of the invariance principle. As mentioned in Section 1, one
consequence of our Invariance Principle is a variant of the ‘Majority is Stablest’
Theorem of Mossel, O’Donnell and Oleszkiewicz [63] (see also [61]). We omit the
proof of Corollary 1.10), as it goes along the same lines of [61] (see also [64, Chapter
11]).

As an additional application, one can obtain the following sharp threshold result
for almost monotone Boolean functions. This statement asserts that any such
function which is global has a sharp threshold. Let us remark that we have already
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established such a result in the sparse regime (see Section 6). On the other hand,
the version below applies in the dense regime.

With notation as in Section 6, we say that f is (δ, p, q)-almost monotone if
p < q ∈ (0, 1) and choosing x,y ∼ D(p, q) gives Pr[f(y) = 0, f(x) = 1] < δ. We say
that f has an ε-coarse threshold in an interval [p, q] if μp(f) > ε and μq(f) < 1− ε.

Corollary 8.3. For each ε > 0, there exists δ > 0, such that the following holds.
Let p < q < 1

2 , and suppose that q > (1 + ε)p. Let f be a (δ, p, q)-almost monotone
Boolean function having an ε-coarse threshold in an interval [p, q]. Then there exists
a set S of size at most 1

δ , such that IS [f ] ≥ δ either with respect to the p-biased
measure or with respect to the q-biased measure.

The proof is similar to the one given by Lifshitz [56], so we only sketch it.

Sketch of proof. First we observe that Corollary 1.10 extends to the one sided noise
operator. Let f1 = f be the function viewed as a function on the p-biased cube,
and let f2 = f be the function viewed as a function on the q-biased cube. So
assuming for contradiction that IS [f ] ≤ δ for each S, we obtain an upper bound on
〈Tp→qf1, f2〉μq

of the form 〈Tp→qHμp(f), Hμq(f)〉μq

However, the (δ, p, q)-almost monotonicity of f implies the lower bound
〈Tp→qf1, f2〉μq

〉 ≥ μp(f)− δ.
Standard estimates on 〈Tp→qHμp(f), Hμq(f)〉μq

show that the lower bound and
the upper bound cannot coexist provided that δ is sufficiently small (see [56]). �

9. Concluding remarks

We are optimistic that our sharp threshold result in the sparse regime will have
many applications in the same vein as the applications of the classical sharp thresh-
old results, e.g. to Percolation [12], Complexity Theory [29], Coding Theory [55],
and Ramsey Theory [30].

In particular, despite the recent solution of the Kahn–Kalai Threshold Conjec-
ture, there remain challenging open problems on thresholds that are potentially
amenable to our sharp threshold theorem (Theorem 1.6).

Our variant of the Kahn–Kalai Isoperimetric Conjecture is only effective in the
p-biased setting for small p, whereas the corresponding known results [50,52] for the
uniform measure are substantial weaker. This leaves our current state of knowledge
in a rather peculiar state, as in many related problems the small p case seems harder
than the uniform case! A natural open problem is to give a unified approach
extending both results for all p.

Our final open problem is to obtain a generalisation of Hatami’s Theorem to the
sparse regime, i.e. to obtain a density increase from μp (f) = o (1) to μq (f) ≥ 1− ε
under some pseudorandomness condition on f ; we expect that such a result would
have profound consequences in Extremal Combinatorics.
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