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Abstract
We prove that any bounded degree regular graph with sufficiently strong spectral expansion contains an
induced path of linear length. This is the first such result for expanders, strengthening an analogous result
in the random setting by Draganić, Glock, and Krivelevich. More generally, we find long induced paths in
sparse graphs that satisfy a mild upper-uniformity edge-distribution condition.
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1. Introduction
The Longest Induced Path problem concerns finding a largest subset of vertices S in a graph G
such that the induced subgraphG[S] is a path. The decision problem of determining whether there
exists an induced path of a specified length is NP-complete. It is difficult and interesting even on
very specific graphs G. For example, the Snake-in-the-box Problem [1, 29, 32], motivated by the
theory of error-correcting codes [24], asks for the longest induced path in the hypercube graph. It
also features in the study of Detour Distance [6] and the spread of information in social networks
[20]. To illustrate the latter connection, we imagine that some person in a social network shares
some information with their connections (e.g. by posting it on their profile), who thenmight share
it with their connections, resulting to an information cascade, in which the longest induced path
represents the longest existing route for information transmission.

The classical literature on Random Graphs considers many problems on finding induced
subgraphs, starting from several independent papers [4, 21, 28] in the 1970’s calculating the
asymptotic independence number of G(n, p) for fixed p and large n. This was later extended by
Frieze [17] to p= c/n for large constant c (as noted in [8], this extends to all p≥ c/n). Erdős and
Palka [16] initiated the study of induced trees in G(n, p), which developed a large literature [9, 18,
25, 27] before its final resolution by de la Vega [10], showing that the size of the largest induced
tree matches the asymptotics found earlier for the independence number: it is ∼ 2 logq (np) for all
p≥ c/n for large constant c. The Longest Induced Path problem inG(n, p) is also classical [26, 31],
and was recently resolved asymptotically by Draganić, Glock, and Krivelevich [12].

We extend this line of research to spectral expanders in the following result. To set up notation,
let G be a d-regular graph on n vertices whose adjacency matrix has eigenvalues λ1 ≥ · · · ≥ λn.
Following Alon, we call G an (n, d, λ)-graph with λ =max{λ2,−λn}.
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Theorem 1.1. Let G be an (n, d, λ)-graph with λ < d3/4/100 and d < n/10. Then G contains an
induced path of length n

64d .

One may compare Theorem 1.1 with an analogous result in the random setting due to
Draganić, Glock, and Krivelevich [13]. Their result is stated in a pseudorandom setting but essen-
tially concerns random graphs, due to its strong assumptions on edge distribution (sublinear sets
have average degree < 3).

One may also interpret Theorem 1.1 within the theory of Graph Sparsity (see [28]), where
one general problem considers some graph class G and asks for the optimal function fG :N→N

such that any graph in G with a path of length kmust contain an induced path of length fG(k). For
example, if G is the class of C-degenerate graphs then Nešetřil and Ossona deMendez [28] showed
that fG(k)= �( log log k), whereas Defrain and Raymond [11] showed that fG(k)=O( log log k)2
even for C = 2. Letting G be the class of spectral expanders as in Theorem 1.1, also assuming
constant average degree, it is well-known that any such G contains a path of length n− o(n), so
Theorem 1.1 shows that fG(k)= �(k).

Our next result is in the same spirit as Theorem 1.1, replacing spectral expansion with an edge-
distribution condition, which is a mild upper-uniformity condition. Here and throughout the
paper we write

�(X)= �G(X)= {v ∈V(G) :N(v)∩ X �= ∅} and e(X, Y)= eG(X, Y)=
∑

x∈X,y∈Y
1xy∈E(G).

Theorem 1.2. Let G be a graph on n vertices with minimum degree d ≥ 28. Suppose for some
C > 1 that for all X, Y ⊆V(G) of sizes |X| = n

24Cd and |Y| = n
28C we have e(X, Y)< 25C|X||Y| dn

and e(�(X), Y)< C|X||Y| d2n . Then G contains an induced path of length n
25Cd .

The numerical constants in Theorem 1.2 are quite flexible; we have selected a convenient
choice that is whp satisfied in a subgraphG′ ⊆G(n, d/n) of minimum degree δ(G′)≥ 0.9d and size
N = |V(G′)| ≥ 0.9n, for d ≥ 220 and C = 100, say. Superimposing 220N/d vertex-disjoint 2−20d-
cliques has very little effect on the upper-uniformity condition, and clearly ensures that there is
no induced path of length > 220N/d, so Theorem 1.2 is tight up to the constant factor.

Next we will state our main result, which will easily imply the two results stated above. For
a third application in Ramsey Theory (a modest improvement on the multicolour induced-size-
Ramsey numbers of paths), we consider amore general problemwhere we are given graphsG′ ⊆G
and look for a long path in G′ that is induced in G.

Theorem 1.3. Suppose G and G′ are graphs on the same vertex set V with G′ ⊆G. Let d be the
minimum degree of G′ and s1, s2, � be positive integers with s1 + s2 + � < |V|. Suppose that

(1) eG′(X, Y)< d
4 s1 for all X, Y ⊆V with |X| = s1 and |Y| = � + s1 + s2.

(2) eG′(�G(X), Y)< d
4 s2 for all disjoint X, Y ⊆V with |X| = � + s1 and |Y| = s2.

Then G′ contains a path of length � which is induced in G, and can be found in time O(e(G)).

Our results are based upon a new version of the DFS graph search algorithm, tailored for appli-
cations on graphs with a weak local sparsity condition. The algorithm runs in timeO(e(G)), which
is clearly best possible. We describe this algorithm and prove our main theorem in Section 2; the
applications will be deduced in Section 3.

Notation.Besides the notation�(X) and e(X, Y) mentioned above, we also writeN(X)= �(X) \ X
for the external neighbourhood of X in G. We systematically avoid rounding notation for clarity
of presentation whenever it does not impact the argument.
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Algorithm

We initialise T := V , P := ∅, and S1 := ∅ and S2 := ∅.
We carry out our algorithm in rounds, stopping when S1 ∪ S2 = V .

Round

1. If P = ∅, take the next vertex v from T according to σ, remove it from T and push it to P .
Otherwise, let v be the vertex from the top of the stack of P .

2. If at least dG′ (v)
2 of the neighbours of v in G′ are inside NG(P − v), then remove v from P and add

it to S2.
3. Else, if at least dG′ (v)

2 of the neighbours of v in G′ are inside P ∪ S1 ∪ S2, then remove v from P ,
and add it to S1.

4. Otherwise, there is a vertex in NG′(v) \ (S1 ∪ S2 ∪P ∪NG(P − v)) ⊆ T . Push this vertex to P , and
remove it from T .

Figure 1. The algorithm used in the proof of Theorem 1.3.

2. The algorithm and its analysis
In this section we describe and analyse our algorithm (see Figure 1), thus proving our main result,
Theorem 1.3. As in the statement, we consider graphsG,G′ onV withG′ ⊆G. Let σ be an arbitrary
ordering of V . Throughout the algorithm we maintain a partition of V into four sets T, P, S1 and
S2, where T will be the set of vertices which have not yet been considered, P will be the set of
vertices in the current path, and S1 and S2 will be two different sets of discarded vertices. The
vertices of P are kept in a stack so that following the order in the stack gives a path in G′ which is
induced in G.

In the proof of Theorem 1.3, we will rely on the following observations. We omit their proofs,
as parts 1 to 4 are self-evident, and the complexity analysis for 6 is similar in spirit to that of
the standard DFS algorithm. Only the key property in 5 requires a little thought. The key point
is that whenever v is added to S2 the path P − v is the same as when v was added to P, so if it
satisfies the condition for joining S2 at any point in the algorithm then it does so immediately when
added to P.

Observation 2.1. The following hold during the execution of the algorithm.

(A) The vertices in P form a path in G′ which is induced in G.
(B) If a vertex v lands in P ∪ S1 ∪ S2, then it stays in this set until the algorithm terminates.
(C) When the algorithm terminates, we have S1 ∪ S2 =V.
(D) In each round, at most one vertex is added to S1 ∪ S2.
(E) (key property) If a vertex is added to S2, it is added there immediately in the round after the

round in which it appears in P.
(F) The algorithm can be implemented in time O(e(G)).

Now we analyse the algorithm, thus proving our main result.

Proof of Theorem 1.3. We consider the algorithm above applied to G and G′. Suppose for a
contradiction that it does not find the required path. By Item 1 at each step of the algorithm we
have |P| < �. Consider the round after which |S1| = s1 or |S2| = s2 for the first time; this has to
occur by Items 3 and 4. We distinguish two cases, according to whether |S1| = s1 or |S2| = s2.

The first case is that |S1| = s1, and so |S2| < s2. Each vertex added to S1 has at least d
2 of its G′-

neighbours in P ∪ S1 ∪ S2 when it is added, and these neighbours remain in P ∪ S1 ∪ S2 by Item 2.
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Thus at the round under consideration, we have |P ∪ S1 ∪ S2| ≤ � + s1 + s2 and eG′(S1, S1 ∪ S2 ∪
P)≥ s1 d4 , a contradiction with the first condition of the theorem.

The second case is that |S2| = s2, and so |S1| < s1. Each vertex added to S2 had at least d2 of itsG
′-

neighbours in �(P) at the time when it was added, and the path vertices at that time are either still
on the path or were added to S1, not S2, by the key property Item 5. Thus each vertex in S2 has at
least d

2 of its G′-neighbours in �(S1 ∪ P), so eG′(S2, �(S1 ∪ P))≥ s2 d4 . However, |P ∪ S1| ≤ � + s1,
so this contradicts the second condition of the theorem. �

3. Applications
Now we will apply our main result, Theorem 1.3, to prove the applications mentioned above, i.e.
Theorems 1.1 and 1.3, and an induced Ramsey result to be discussed below in Section 3.1.

First we prove our result on long induced paths in expanders. We use the following two well-
known properties of (n, d, λ)-graphs that can be found e.g. in the survey [23].

(E1) Expander Mixing Lemma [23, Lemma 2.4]:
∣∣∣e(A, B)− |A||B| dn

∣∣∣ ≤ λ
√|A||B| for any A, B⊆

V(G).
(E2) Simplified Alon-Boppana Bound [23, Claim 2.8]: λ2 ≥ d · n−d

n−1 .

Proof of Theorem 1.1. Suppose G is a (n, d, λ)-graph with λ < d3/4/100 and d < n/10. We will
apply Theorem 1.3 with G′ =G, � = s1 = n

64d and s2 = λ2

d2 n. We note that s1 + s2 + � < n. By
Property (E2) we have s2 ≥ n

d · n−d
n−1 > s1.

For condition (1), consider any X, Y ⊆V(G) with |X| = s1 and |Y| = � + s1 + s2 < 3s2. By
Property (E1) we have

e(X, Y)≤ s1 · 3s2 · d
n

+ λ
√
s1 · 3s2 ≤ λ2

d2
n+ λ2

d3/2
n<

n
1000

<
d
4
s1.

For condition (2), consider any X, Y ⊆V(G) with |X| = 2s1 and |Y| = s2. As G is d-regular we
have |�(X)| ≤ d|X|, so by Property (E1) we have

e(�(X), Y)≤ |�(X)||Y|d
n

+ λ
√|�(X)||Y| ≤ λ2

32d
n+ λ2√

32d
n≤ s2

d
4
.

Since all conditions of Theorem 1.3 are satisfied, there is an induced path of length � = n
64d . �

Now we prove our result on long induced paths in graphs satisfying an upper-uniformity edge-
distribution condition.

Proof of Theorem 1.2. Let G be a graph on n vertices with minimum degree d ≥ 28. Suppose
for some C > 1 that for all X, Y ⊆V(G) of sizes |X| = n

24Cd and |Y| = n
28C we have e(X, Y)<

25C|X||Y| dn and e(�(X), Y)< C|X||Y| d2n . To prove the theorem, it suffices to show that the
conditions of Theorem 1.3 are satisfied with � = s1 = n

25Cd and s2 = n
29C . First note that

s1 + s2 + � < n.
For condition (1), consider any X, Y ⊆V(G) with |X| = s1 and |Y| = � + s1 + s2. Enlarging X

and Y to sizes 2s1 = n
24Cd and 2s2 = n

28C , we have

e(X, Y)< 25C|X||Y|d
n

≤ 25C · 2s1 n
28C

d
n

= s1d/4,
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as required. For condition (2), consider anyX, Y ⊆V(G) with |X| = � + s1 and |Y| = s2. Enlarging
Y to size 2s2 = n

28C , we have

e(�(X), Y)< C|X||Y|d
2

n
≤ C

n
24Cd

2s2
d2

n
< ds2/4,

as required. This completes the proof. �

3.1 Induced-size-Ramsey number of paths
Here we consider a problem on induced-size-Ramsey numbers, combining two well-studied
extensions of the classical graph Ramsey problem, in which one colours some ‘host’ graph G
and seeks a monochromatic copy of some ‘target’ graph H. In the induced Ramsey problem, one
seeks monochromatic induced copies ofH and in the size-Ramsey problem one aims to minimise
the size e(G) of G. Induced-size-Ramsey problems combine both of these features: the k-colour
induced-size-Ramsey number r̂kind(H) is the smallest integer m such that there exists a graph G
on m edges such that every k-colouring of the edges of G contains a monochromatic copy of H
that is an induced subgraph of G. The main open problem in this direction is an old conjecture of
Erdős that for any graph H on n vertices one has r̂2ind(H)≤ 2O(n). For more background we refer
the reader to the survey [7] and recent papers [5, 14].

The case when H = Pn is a path has a large literature in its own right. Haxell, Kohayakawa,
and Łuczak [22] showed that r̂kind(Pn)=Ok(n), strengthening the analogous result of Beck [3]
for the (not necessarily induced) size-Ramsey number, which in itself was a $100 problem of
Erdős. While these results establish the order of magnitude as Ok(n), they do not say much about
the implicit constant, particularly in [22] due to the use of the regularity lemma. Even for the
two-colour size-Ramsey number of Pn, there is a substantial constant factor gap between the
best known lower bound [2] and upper bound [15]. For the multicolour induced-size-Ramsey
number, a significant recent improvement on [22] by Draganić, Glock, and Krivelevich [13] gives
r̂kind(Pn)=O(k3 log4 k)n. We will improve this to r̂kind(Pn)=O(k3 log2 k)n.

Theorem 3.1. For c= 105 and for all large enough k ∈N the following holds. Let G∼G(nk, c log kn ).
Then with high probability, for every k-colouring of the edges of G, there exists a monochromatic
path of length n

c3k log k which is induced in G.

Proof. Let p= c log k
n and let G∼G(nk, p). We first show that for � = s1 = s2 = n

c3k log k the
following hold with high probability

(a) eG(X, Y)< s1 c log k16 = n
16kc2 for all X ⊆V(G) with |X| = s1 and |Y| = � + s1 + s2.

(b) eG(�G(X), Y)≤ s2 c log k16 = n
16kc2 for all disjoint X, Y ⊆V(G) with |X| = |Y| = 2�.

(c) eG(X)≤ n
4c2k for |X| = s1 + s2 + �.

For 1, for any such X, Y we have Ee(X, Y)= p|X||Y| = 3n
c5k2 log k , so by Chernoff the bound

fails with probability at most e−
n
kc2 , say, and we can take a union bound over

(nk
�

)(nk
3�

) ≤ e
10n
kc3

choices for X, Y . Part 3 is similar. For 2, we first note that similarly to 1 we can assume for any
such X, Y that e(X, Y)< n

32kc2 , so it suffices to show e(N(X), Y)< n
32kc2 , where N(X)= �(X) \ X.

Also, by Chernoff we have P(e(X,V(G))> 2n/c2)< e−
n

10c2 , so by a union bound we can assume
|N(X)| ≤ e(X,V(G))≤ 2n/c2. We note that e(N(X), Y) is independent of the edges incident to X,
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so conditional on |N(X)| ≤ e(X,V(G))≤ 2n/c2, Chernoff gives P(e(N(X), Y)> n
32kc2 )< e−

n
800kc2 ,

so we can take a union bound.
Let G0 be the subgraph of G consisting of the edges of the densest colour class. As whp G has

(0.5− o(1))nck2 log k edges, G0 has at least (0.5− o(1))nck log k edges, so has average degree at
least c log k/2. Now, let G′ be a subgraph of G0 obtained by arbitrarily removing vertices with
degree less than c log k/4 one by one until this is no longer possible. Note that removing vertices
in this way can not decrease the average degree. This process must stop with more than s1 +
s2 + � vertices remaining, otherwise we reach a set of s1 + s2 + � vertices spanning at least (s1 +
s2 + �)c log k/4≥ n

2c2k edges, but this contradicts 3. To conclude, we apply Theorem 1.3 to the
graphs G[V(G′)] and G′ with parameters s1 = s2 = � and d = c log k/4, noting that 1 and 2 give
the required conditions of the theorem. �

Since G(nk, c log kn ) whp has �(nk2 log k) edges, Theorem 3.1 immediately gives the following.

Corollary 3.2. Multicolour induced-size-Ramsey numbers of paths satisfy r̂kind(Pn)=O(nk3 log2 k).
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[16] Erdős, P. and Palka, Z. (1983) Trees in random graphs. Discrete Math. 46(2) 145–150.
[17] Frieze, A. M. (1990) On the independence number of random graphs. Discrete Math. 81(2) 171–175.
[18] Frieze, A. M. and Jackson, B. (1987) Large induced trees in sparse random graphs. J. Comb. Theory Ser. B 42(2) 181–195.
[19] Garey, M. R. (1997) Computers and intractability: A guide to the theory of NP-completeness, Freeman. Fundamental

174.
[20] Gavril, F. (2002) Algorithms for maximum weight induced paths. Inform. Process. Lett. 81(4) 203–208.
[21] Grimmett, G. R. andMcDiarmid, C. J. H. (1975) On colouring random graphs. Cambridge University Press. pp313–324,

Mathematical Proceedings of the Cambridge Philosophical Society, 77
[22] Haxell, P. E., Kohayakawa, Y. and Łuczak, T. (1995) The induced size-Ramsey number of cycles. Comb. Prob. Comput.

4(3) 217–239.
[23] Hoory, S., Linial, N. and Wigderson, A. (2006) Expander graphs and their applications. Bullet. Am. Math. Soc. 43(4)

439–561.

https://doi.org/10.1017/S096354832400035X Published online by Cambridge University Press



282 N. Draganić and P. Keevash
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