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Abstract. We prove that any quasirandom graph with n vertices and rn edges can be decomposed
into n copies of any fixed tree with r edges. The case of decomposing a complete graph establishes
a conjecture of Ringel from 1963.
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1. Introduction

This paper concerns the following conjecture posed by Ringel [30] in 1963.

Ringel’s Conjecture. For any tree T with n edges, the complete graph K2nC1 has a
decomposition into 2nC 1 copies of T .

We prove this conjecture for large n, via the following theorem which is a general-
isation to decompositions of quasirandom graphs into trees of the appropriate size. For
the statement and throughout we use the following quasirandomness definition: we say
that a graph G on n vertices is .�; s/-typical if every set S of at most s vertices has
..1˙ �/d.G//jS jn common neighbours, where d.G/ D e.G/

�
n
2

��1 is the density of G.

Theorem 1.1. There is s 2 N such that for all p > 0 there exist �; n0 such that for any
n � n0 such that p.n � 1/=2 2 Z and any tree T of size p.n � 1/=2, any .�; s/-typical
graph G on n vertices of density p can be decomposed into n copies of T .

The case p D 1 of Theorem 1.1 establishes Ringel’s conjecture for large n, a result
also recently obtained independently by Montgomery, Pokrovskiy and Sudakov [28] by
different methods, along the lines of their proof of an asymptotic version in [27]. They
show that certain edge-colourings of K2nC1 contain a rainbow copy of T , such that the
required T -decomposition can be obtained by cyclically shifting this rainbow copy. This
approach is specific to the complete graph, and does not apply to the more general setting
of quasirandom graphs as in Theorem 1.1.

Ringel’s conjecture was well-known as one of the major open problems in the area of
graph packing, whose history we will now briefly discuss. In a graph packing problem,
one is given a host graphG and another graphF and the task is to fit as many edge-disjoint
copies of F intoG as possible. If the size (number of edges) of F divides that ofG, it may
be possible to find a perfect packing, or F -decomposition of G. More generally, given a
family F of graphs of total size equal to the size of G, we seek a partition of (the edge set
of) G into copies of the graphs in F .

These problems have a long history, going back to Euler in the eighteenth century. The
flavour of the problem depends very much on the size of F . The earliest results concern F
of fixed size, in which case F -decompositions can be naturally interpreted as combinat-
orial designs. For example, Kirkman [22] showed that Kn has a triangle decomposition
whenever n satisfies the necessary divisibility conditions n � 1 or 3 mod 6; for historical
reasons, such decompositions are now known as Steiner Triple Systems. Wilson [32–35]
generalised this to any fixed-sized graph in the 70’s, and Keevash [19] to decompositions
into complete hypergraphs, thus estalishing the Existence Conjecture for designs. A dif-
ferent proof and a generalisation to F -decompositions for hypergraphs F were given
by Glock, Kühn, Lo and Osthus [13]. A further generalisation that captures many other
design-like problems, such as resolvable hypergraph designs (the general form of Kirk-
man’s celebrated “Schoolgirl Problem”), was given by Keevash [17].

There is also a large literature on F -decompositions where the number of vertices
of F is comparable with, or even equal to, that of G. Classical results of this type are
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Walecki’s 1882 decompositions ofK2n into Hamilton paths, and ofK2nC1 into Hamilton
cycles. There are many further results on Hamilton decompositions of more general host
graphs, notably the solution in [8] of the Hamilton Decomposition Conjecture, namely the
existence of a decomposition by Hamilton cycles in any 2r-regular graph on n vertices,
for large n and 2r � bn=2c.

Much of the literature on F -decompositions for large F concerns decompositions into
trees. Besides Ringel’s conjecture, the other major open problem of this type is a conjec-
ture of Gyárfás [14], saying thatKn should have a decomposition into any family of trees
T1; : : : ; Tn where each Ti has i vertices. Both conjectures have a large literature of partial
results; we will briefly summarise the most significant of these (but see also [6,10,21,24]).
Joos, Kim, Kühn and Osthus [15] proved both conjectures for bounded degree trees.
Ferber and Samotij [11] and Adamaszek, Allen, Grosu and Hladký [1] obtained almost
perfect packings of almost spanning trees with maximum degree O.n=log n/. These res-
ults were generalised by Allen, Böttcher, Hladký and Piguet [4] to almost perfect packing
of spanning graphs with bounded degeneracy and maximum degree O.n=log n/. Allen,
Böttcher, Clemens and Taraz [3] extended [4] to perfect packings provided linearly many
of the graphs are slightly smaller than spanning and have linearly many leaves. After the
arXiv posting of the current paper, Allen, Böttcher, Clemens, Hladký, Piguet and Taraz [2]
proved the Gyarfás Conjecture for trees of maximum degree O.n=logn/. This maximum
degree bound ofO.n=logn/ is a fundamental barrier for the methods in the above papers,
as they use randomised embeddings, for which a maximum degree bound O.n=log n/ is
necessary for concentration of probability. While the results of Montgomery, Pokrovskiy
and Sudakov [26, 27] mentioned above also use probabilistic methods, they are able to
circumvent the maximum degree barrier by methods such as the cyclic shifts mentioned
above.

Our proof proceeds via a rather involved embedding algorithm, discussed and form-
ally presented in the next section, in which the various subroutines are analysed by a wide
range of methods, some of which are adaptations of existing methods (particularly from
[3, 26], and also our own recent methods in [20] for the “generalised Oberwolfach prob-
lem”, which are in turn based on [17]), but most of which are new, including a method
for allocating high degree vertices via partitioning and edge-colouring arguments and
a method for approximate decompositions based on a series of matchings in auxiliary
hypergraphs.

1.1. Notation

Given a graphG D .V;E/, when the underlying vertex set V is clear, we will also writeG
for the set of edges. So jGj is the number of edges ofG. Usually jV j D n. The edge density
d.G/ of G is jGj=

�
n
2

�
. We write NG.x/ for the neighbourhood of a vertex x in G. The

degree of x inG is dG.x/D jNG.x/j. For A� V.G/, we writeNG.A/ WD
T
x2ANG.x/;

note that this is the common neighbourhood of all vertices in A, not the neighbourhood
of A.
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We often write G.x/ D NG.x/ to simplify notation. In particular, if M is a matching
then M.x/ denotes the unique vertex y (if it exists) such that xy 2 M . We also write
M.S/ D

S
x2S M.x/, which is not consistent with our notation NG.S/ for common

neighbourhoods, but we hope that no confusion will arise, as we only use this notation if
M is a matching, when all common neighbourhoods are empty.

We say G is .�; s/-typical if

jNG.S/j D ..1˙ �/d.G//
jS jn for all S � V.G/ with jS j � s.

In a directed graph J with x 2 V.J /, we write NCJ .x/ for the set of out-neighbours
of x in G and N�G .x/ for the set of in-neighbours. We let d˙G .x/ WD jN

˙
G .x/j. We define

common out/in-neighbourhoods N˙J .A/ D
T
x2AN

˙
J .x/:

The vertex set V.G/ will often come with a cyclic order, identified with the natural
cyclic order on Œn� D ¹1; : : : ; nº. For any x 2 V we write xC for the successor of x, so if
x 2 Œn� then xC is xC 1 if x ¤ n or 1 if x D n. Write SC D ¹xC W x 2 Sº for S � V.G/.
We define the predecessor x� similarly. Given x;y in Œn� we write d.x; y/ for their cyclic
distance, i.e. d.x; y/ D min ¹jx � yj; n � jx � yjº.

We say that an event E holds with high probability (whp) if

P .E/ > 1 � exp.�nc/ for some c > 0 and n > n0.c/.

We note that by a union bound for any fixed collection E of such events with jEj of
polynomial growth whp all E 2 E hold simultaneously.

We omit floor and ceiling signs for clarity of exposition.
We write a� b to mean 8b > 0 9a0 > 0 8 0 < a < a0.
We write a˙ b for an unspecified number in Œa � b; aC b�.

2. Proof overview and algorithm

Suppose we are in the setting of Theorem 1.1: we are given a .�; 250�8
3
/-typical graph G

on n vertices of density p, where n�1� �� p, and we need to decomposeG into n cop-
ies of some given tree T with p.n � 1/=2 edges. In this section we present the algorithm
by which this will be achieved. After describing and motivating the algorithm, we present
the formal statement in the next subsection, then various lemmas analysing certain sub-
routines over the following few subsections. We defer the analyses of the approximate
decomposition to Section 3 and the exact decomposition to Section 4.

As discussed in the introduction, the most significant technical challenge not
addressed by previous attempts on Ringel’s Conjecture is the presence of high degree
vertices, so naturally these will receive special treatment. Our algorithm will consider
three separate cases for the tree T (similarly to [26]), one of which (Case L) handles trees
in which almost all (i.e. all but o.n/) vertices belong to large stars (i.e. of size> n1�o.1/).
Case L is handled by the subroutine LARGE STARS, which will be discussed later in this
overview. The other two cases for T are Case S, when T has linearly many leaves in
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small stars, and Case P, when T has linearly many vertices in vertex-disjoint long bare
paths. In both Case S and P, we apply essentially the same “approximate step” algorithm
to embed edge-disjoint copies of F D T nPex, obtained from T by removing the part that
will be embedded in the “exact step”, so Pex consists of stars in Case S and of bare paths
in Case P. The overview of the proof according to these cases is illustrated by Figure 1.

The heart of the approximate step is the subroutine APPROXIMATE DECOMPOSITION,
where in each step we extend our partial embeddings .�w W w 2 W / of F by defining
them on some set Ai which is suitably nice: Ai is independent, has linear size, has no
vertices of degree > no.1/, and every vertex of Ai has at most four previously embed-
ded neighbours. We find these extensions simultaneously via a matching in an auxiliary
hypergraph Hi (see Figure 2), which has an edge denoted “�w.u/Dx” whenever it is
possible to define “�w.u/Dx” for some w 2 W , u 2 Ai , x 2 V D V.G/. We encode
the various constraints that must be satisfied by the embeddings in the definition of these
edges. Thus “�w.u/Dx” includes (as an auxiliary vertex in V.Hi /) all arcs �!yx where
y D �w.b/ is a previously defined embedding of some neighbour b of a; this ensures that
we maintain edge-disjointness of the embeddings of F . We also include in “�w.u/Dx”
auxiliary vertices uw and xw, to ensure that every �w.u/ is defined at most once and �w
is injective.

We ensure that Hi is suitably nice (its edges can be weighted so that every vertex
has weighted degree 1 C o.1/ and all weighted codegrees are n�o.1/), in which case it
is well-known from the large literature developing Rödl’s semi-random “nibble” [31],
in particular [16], that one can find an almost perfect matching that is (in a certain sense)
quasirandom (we use a convenient refined formulation of this statement recently presented
in [9]). The quasirandomness of this matching is important for several reasons, including
quasirandomness of the extensions of the embeddings to Ai , which in turn implies that
later hypergraphs Hj with j > i are suitably nice (with weaker specific parameters), and
so the process can be continued.

The above sketch yields an alternative method for approximate decomposition res-
ults along the lines of those mentioned in the introduction, but has not yet dealt with
high degree vertices. We will partition V.F / into A0; A1; : : : ; Ai� , where Ai for i � 1
are the nice sets described above, and A0 is not nice – in particular, there is no bound
on the degree of vertices in A0. We start the embedding of F in the subroutine HIGH

DEGREES by embedding vertices sequentially in a suitable order, where when we con-
sider some a 2 A0 we define �w.a/ for all w 2W simultaneously via a random matching
Ma D ¹�w.a/w W w 2 W º in an auxiliary bipartite graph Ba � V �W , where the defin-
ition of Ba encodes constraints that must be satisfied by the embedding: we only allow
an edge vw if v … Im �w and v is adjacent via unused edges to all �w.b/ where b is
a previously embedded neighbour of a. (For simplicity we have suppressed several fur-
ther details in the above description which will be discussed below.) The important point
about this construction is that each v 2 V has to accommodate the vertex a for a unique
embedding �w , so however large the degrees in T may be, the total demand for “high
degree edges” is the same at every vertex, and can be allocated to a digraph H which is
an orientation of a quasirandom subgraph of G.
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≥ n1−c

≤ p+n

≥ p−n
≤ n1−c

≥ p+n/(100K)

CASE L

LARGE STARS (i–iv)

LARGE STARS (v)

LARGE STARS (vi)

HIGH DEGREES, INTERVALS, EMBED A0

APPROXIMATE DECOMPOSITION

CASE S

SMALL STARS

CASE P

PATHS

TREE PARTITION

T

= = =

+ + +

+ +

Fig. 1. The three cases of the proof and the subroutines of the algorithm which embed each part
of T . From left to right, Case L: almost all vertices lie in large stars; Case S: linearly many vertices
lie in small stars; Case P: linearly many vertices lie in long bare paths. Red denotes high degree
vertices and their neighbours. Blue denotes the part embedded in the exact step.

This digraph H is one of many oriented quasirandom subgraphs into which G is par-
titioned by the subroutine DIGRAPH, where each piece is reserved for embedding certain
subgraphs of F , with arcs directed from earlier to later vertices. BesidesH , these include
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HiAi ×W Ji

e1

e2

e3 e4

u2w1

x3w1

u1w2 x2w2

u3w3 x3w3

u4w3

ϕw1
(u2) = x3

ϕw2
(u1) = x2

ϕw3
(u3) = x3

ϕw3
(u4) = x3

ϕw1(v2)x3

ϕw1
(v3)x3

ϕw3(v6)x3

ϕw1(v4)x3

ϕw2
(v1)x2−→

Gi

u1

u2

u3

u4

Ai

Av0
i

⋃
i′∈[i−1]Ai′A0

v0

v1
v2

v3

v4

v6

Fig. 2. Part of the hypergraph Hi , where a section of F ŒAi ; A<i � and some of the corresponding
edges of Hi are illustrated. Here, u1 2 Ahi

i , u2 2 Alo
i and u3; u4 2 Ano

i . In a previous embedding,
we set �w1.v3/ D �w3.v6/ D x1, and now the arc e2 D x3x1 would be used by the potential
embeddings “�w1.u2/ D x3” (purple edge), “�w3.u3/ D x3” (green edge) and “�w3.u4/ D x3”
(blue edge). In particular, at most one of these embeddings is allowed.

graphs Ggg
0

i i 0 for embedding subgraphs F 0ŒAgi ; A
g0

i 0 �, according to a partition of each Ai
into Ahi

i , Alo
i , Ano

i . Here Ahi
i consists of vertices adjacent to some vertex with many neigh-

bours in Ai (which will lie in A0 and be unique), Alo
i consists of vertices adjacent to some

vertex in A0 (which will be unique) that does not have many neighbours in Ai , and Ano
i

consists of vertices with no neighbours in A0. To ensure concentration of probability the
above sets are not defined if they would have size o.n/, in which case the correspond-
ing vertices are instead added to A0. By partitioning G in this manner we can ensure
edge-disjointness when embedding different parts of F separately. To ensure injectivity
of the embeddings, we also randomly partition V �W into various subgraphs in which
w-neighbourhoods prescribe the allowed images in �w of the various parts of the decom-
position of V.T /. In particular, while constructing the high degree digraph H , we also
construct J hi

i � V �W so that each �w.Ahi
i / will be approximately equal to J hi

i .w/.
The separate treatment of these parts of Ai and careful construction of A0 to ensure

the uniqueness properties mentioned above is designed to handle a considerable technical
difficulty that we glossed over above when describing the embedding ofA0. Our approach
to the approximate decomposition discussed above depends on maintaining quasirandom-
ness, but we cannot ensure that jA0j=n is negligible compared with 1=i�, where i� is the
number of steps in the approximate decomposition, so a naive analysis will fail due to
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Ai

Ahi
i

Aa
i

Ab
i

Alo
i

Ano
i

A∆

A∗

AD

A∗∗
Bi∗+1

A0

A1

Ai∗

≥ ∆

≤ 4 ≤ p−1
max≥ δn

a
b

Fig. 3. Partition of F obtained in TREE PARTITION. Red edges are from T n F and green edges are
F -edges from A0 to Ai (so Alo

i ).

blow-up of the error terms. We therefore partition A0 into A�, A�� and A00, which are
embedded sequentially, where jA�j=n and jA��j=n are negligible compared with 1=i�,
and so do not contribute much to the error terms. For A00, we cannot entirely avoid large
error terms, but we can confine them to a set of o.n/ bad vertices, via arguments based on
Szemerédi regularity; these arguments require degrees inA00 to be bounded independently
of n, so A�� is introduced to handle degrees that are !.1/ but < no.1/. The careful choice
of partition ensures that these bad error terms are only incurred by vertices in Alo.

At this point, we return to consider various details glossed over in the above descrip-
tion of HIGH DEGREES. While the embedding via random matchings ensures that every
vertex of G has the same demand of high degree edges, we also need to plan ahead when
embedding A� � A0 (which contains the very high degree vertices) so that it will be pos-
sible to allocate the other ends of these edges to distinct vertices for each w, i.e. so that
�w.u/¤ �w.u

0/whenever u¤ u0. To achieve this in DIGRAPH, we randomly partition V
into .Uh W h 2 Œm�/, with m D n1�o.1/, where each Uh will accommodate those ends of
high degree edges corresponding to colour h in a certain properlym-edge-coloured bipart-
ite multigraph in V �W , i.e. �!yx is available for H if yw has colour h and x 2 Uh. Thus
x D �w.u/ 2 Uh and x0 D �w.u

0/ 2 Uh0 are distinct automatically if h ¤ h0, and due
to properness of the colouring if h D h0, because c determines a unique y 2 V.G/, so a
unique a D ��1w .y/ 2 A�.

The above multigraphM in V �W consists of copies ofM �a �Ma for each a 2 A�,
with the copies distinguished by labels `aij , where for each a 2 A� and part Ai in which
a has many neighbours, the number of labels `aij is proportional to the degree of a in Ai .
An edge yw of label `aij in M h means that H arcs �!yx with x 2 Uh will be allocated
to edges au of F with a D ��1w .y/ and u 2 NF .a/ \ Ai . For typicality we require for
any a and i that the number of edges in each M h with some label `aij is approximately
independent of h.



Ringel’s tree packing conjecture in quasirandom graphs 1777

This is achieved by a construction based on cyclic shifts, which we will now sketch,
suppressing some details. We partition V into V0 and .Vv� W v� 2 V �/ and W into W0
and .Ww� W w� 2 W �/, where V0 and W0 are small, V � and W � are copies of Œm�, and
all Vv� ; Ww� have the same size. The matchings Ma are chosen as M 0

a [M
�
a , where

V.M 0
a /D V0 [W0 and if vw 2M �a then v 2 Vv� ,w 2Ww� with v� D xa Cw�, accord-

ing to some cyclic shifts .xa W a 2 A�/, carefully chosen to ensure edge-disjointness. We
construct a labelled multigraph in V � � W � analogously to that in V � W , and obtain
label-balanced matchingsM h for all h 2 Œm� as cyclic shifts of some fixed label-balanced
matching M 0 in V � �W �, where for each v�w� 2 M 0 with some label `aij we include
in M h all edges of M �a of the same label between Vv�Ch and Ww�Ch.

The above description of M h is over-simplified, as in fact we construct two such
matchings, one handling vertices of huge degree (almost linear) and the other handling
vertices with degree that is high but not huge. The version of M 0 for non-huge degrees
is constructed by the same hypergraph matching methods as in the above description of
the approximate step embeddings, but these do not apply to huge degrees (the codegree
bound fails) so we instead apply a result of Barát, Gyárfás and Sárközy [5] on rainbow
matchings in properly coloured bipartite multigraphs. The construction is illustrated in
Figure 4.

The exact steps in Cases S and P are handled by adapting existing methods in the lit-
erature. In Case P, the subroutines INTERVALS and PATHS are adaptations of the methods
we used in [20] for the “generalised Oberwolfach Problem” of decomposing any quasir-
andom even regular oriented graph into prescribed cycle factors; we refer the reader to
this paper for a detailed discussion of these methods. In Case S, we find the required stars
by adapting an algorithm of [3]: we find an orientation of the unused graph so that the
outdegree of each vertex is precisely the total size of stars it requires in all copies of T ,
and then process each vertex in turn, using random matchings to partition its outneigh-
bourhood into stars of the correct sizes, while maintaining injectivity of the embeddings.

It remains to consider the exact step in Case L, when almost every vertex of T is a leaf
adjacent to a vertex of very large degree; this is more challenging and requires new meth-
ods (the arguments used in Case S fail due to lack of concentration of probability). The
most difficult constraint to satisfy is injectivity of the embeddings, so we build this into
the construction explicitly: we randomly partition V.G/ into sets U a for each star centre
a and require each embedding to choose most of its leaves for its copy of a within U a.
Each edge xy of G, say with x 2 U a, y 2 U b , will be randomly allocated one of two
options: (i) x is a leaf of a star in some embedding �w with �w.a/ D y, or (ii) y is a
leaf of a star in some embedding �w0 with �w0.b/ D x. A final balancing step will swap
edges between stars (thus slightly bending the rules on leaf allocation) so that all stars are
exactly as required; see Figure 5. The above sketch can be implemented for decomposing
a quasirandom graph into star forests, but there is a considerable extra difficulty caused
by the constraints imposed by the initial embedding of the small part of T not contained
in the large stars.

A naive approach to this embedding can easily cause many edges of G to be unusable
according to the rules for U a as described above. Indeed, for each edge xy of G, the two
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a b

Ai Ai′′ Ai′

≥Λ ≥Λ
<Λ

(a, i), (b, i′′) ∈ QΛ, (a, i′) ∈ Q∆ W ∗ V ∗

B′
∆

multiplicity Ma
i

xa = m, xb = m− 1

W V

Ww∗

Vv∗

Ma

M 0
a

W0 V0

W V

Mb

M 0
b

W0 V0

M ∗
b

ℓaij

ℓaij′

ℓbi′′ j
′′

W ∗ V ∗

M ′
Λ

w∗

v∗

ℓai′j

W ∗ V ∗

M

W V

M 1
≥Λ

Ww∗+1

Vv∗

Vv∗+1

Vv∗+2

Vv∗+3

haij = 1

W0 V0

M 0
a

label ℓai∗

label ℓai∗
W V

M 1
<Λ

W0 V0

hai′j = 1

M 0
a

Ma[Ww∗−1, Vv∗] label ℓai′∗

label ℓai′∗

D1
x

x

U1

H∗
ai(x)

H∗
ai′(x)

H∗
bi′′(x)

Vv∗

Vv∗+1

Vv∗+2

Vv∗+3

V0

hiP1
= <Λ

hiP2
= <Λ

hiP3
= ≥Λ

Fig. 4. From left to right, top to bottom: two high degree vertices a;b; the multigraphB 0
�

where line
thickness represents multiplicity; the matchingsMa;Mb betweenW and V ; the matchingsM 0

ƒ
;M

on W �; V �; the matchings M 1
�ƒ
;M 1

<ƒ
; the graph D1x for x 2 U1 with components P coloured to

represent the random choice hiP 2 ¹�ƒ;<ƒº; the resulting edges of H�ai at x.
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u u′

x v z
Ua U c Ud Ua′

U b U b′

w wu′ w′

wx wu′ w

wv

u u′

x v z
Ua U c Ud Ua′

U b U b′

w wu′ w′

w wv wu′

wx

Fig. 5. A single step of the algorithm to modify the green star which is too small and the red star
which is too large.

options as described above will both become unavailable during the initial embedding if
we choose both �w.a0/ D x for some a0 and �w0.b0/ D y for some b0. We therefore keep
track of a digraph J that records these constraints and choose the initial embedding so
that each edge of G always has at least one of its two options available. To control these
constraints, we also introduce partitions of each U a into three parts, and also of the set
W indexing the embeddings into three parts, and impose two different patterns for match-
ing parts of U a with parts of W according to whether or not a vertex has large degree.
The digraph J and its use in defining available sets for the embedding are illustrated in
Figure 6.

Ua

U b

U b
1

U b
2

U b
3

Awb
a

Im φw

φw(b)

U1W1

x
y

z

w′
w

w′′

Fig. 6. Left: The available set Awba for w 2 W1 and a 2 S . The black arcs are some arcs in J ; they
forbid their U b-endvertices from Awba . The red arcs would be added to J if the labelled vertex is
chosen for �w .a/. Right: A pair of edges wy, w0x that must be avoided by the matching defining
the embeddings of a, and a swap that may be implemented by Lemma 2.7 to remove wy. Red edges
define images of a and blue edges define images of some other vertices.

2.1. Formal statement of the algorithm

The input to the algorithm consists of a .�; s/-typical graph G on n vertices of density p,
where s D 250�8

3
, n�1 � � � p, and a tree T with p.n � 1/=2 edges. We fix 0 < c0 �

c � 1 and parameters

n�1 � � � �� � p� � �C � pC � p; and � D nc ; ƒ D n1�c :
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Recall that a leaf in T is a vertex of degree 1 in T . We call an edge a leaf edge if it
contains a leaf. We call a star a leaf star if it consists of leaf edges. We call a path in T a
k-path if it has length k (that is, k edges), and call it bare if its internal vertices all have
degree 2 in T . By Lemma 2.9 below we can choose a case for T in ¹L; S; P º satisfying

� Case L: all but at most pCn vertices of T belong to leaf stars of size �ƒ,

� Case S: at least p�n vertices of T belong to leaf stars of size � ƒ,

� Case P: T contains pCn=.100K/ vertex-disjoint bare 8K-paths.

In Case L go to LARGE STARS, otherwise continue. We let � D �� in Case S or � D �C
in Case P, and define further parameters

� � � 0 � D�1 � ı � pmin � "1 � � � � � "iC � pmax � "� p0 � �� s�1; p;

with iC D 7 log "�1 and � 0 � K�1 � d�1 � D�1 in Case P. Given k 2 N, a tree T
and S � V.T /, the k-span spankT .S/ of S in T is obtained by starting with S� D S and
iteratively adding any S 0 � V.T / n S� with jS 0j 2 Œk� such that T ŒS� [ S 0� has fewer
components than T ŒS��, until there is no such S 0. Clearly there are at most jS j iterations,
so jspankT .S/j � .k C 1/jS j. Note also that

jspankT .spankT .A/ [ B/ n spankT .A/j � .k C 1/jBj:

For k 2 N let Ak D ¹u W dT .u/ � kº.

TREE PARTITION

(i) Let A� D span4T .A
�/. In Case S let Pex be a union of leaf stars in T n T ŒA��, each

of size � ƒ, with jPexj D p�n=2˙ƒ. In Case P let Pex be the vertex-disjoint union
of two leaf edges in T n T ŒA�� and pCn=.101K/ bare 8K-paths in T n T ŒA��.
Obtain F from T by deleting all edges of Pex and F � from F by deleting all vertices
of A�.

(ii) Define disjoint independent sets C1; : : : ; Ci� in F � as follows. At step i � 1, let
Bi D V.F

�/ n
S
j<i Cj , let C 0i be the set of v 2 Bi with

dF �ŒBi �.v/ � 3 and dF �Œ
S
j<i Cj �

.v/ � p�1max;

and let Ci be a maximum independent set in F �ŒC 0i �. If jCi j < "n let i� D i � 1 and
stop, otherwise go to the next step.

(iii) LetA0D span4T ŒA
�[Bi�C1�,A��D span4T .A

D/nA� andA00DA0n.A
�[A��/. For

i 2 Œi�� letAi DCi�C1�i nA0 and for k 2N letAki D ¹a 2A
k W jNF .a/\Ai j ��º.

For a 2 A�i let Aai D NF .a/ \ Ai . Let

Ahi
i D

[
a2A�

i

Aai ; A<ƒi D

[
a2A�

i
nAƒ
i

Aai ; A
�ƒ
i D

[
a2Aƒ

i

Aai :

Obtain F 0 from F by deleting all edges ab with a 2 A�i and b 2 Aai for some i . Let
Alo
i D ¹u 2 Ai W jNF 0.u/ \ A0j D 1º. Let Ano

i D ¹u 2 Ai W NF .u/ \ A0 D ;º.
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(iv) For j 2 Œ4�, let ıj D ı:1jC:6 and let .ı1; : : : ;ı4/D .no;�ƒ;<ƒ; lo/. For each j 2 Œ4�,
while jAıji j < ıjn for all i , move Aıji to A0, let A0 D span4T ŒA0 [A

ıj

i �, and update
A<ƒi ; A

�ƒ
i ; Alo

i ; A
no
i .

(v) If
S
i A

hi
i D ;, move A� to A��, i.e. redefine A�� as A�� [ A� and A� as ;.

Let Ahi D
S
i A

hi
i and define Ano; Alo similarly.

For k 2 N, let

Q�
D ¹.a; i/ W � � jNF .a/ \ Ai j < ƒº � A

�
� Œi��;

Qƒ
D ¹.a; i/ W jNF .a/ \ Ai j � ƒº � A

ƒ
� Œi��:

We introduce parameters

mai D d�
�:2
jAai je1a2A�

i
; ma D

X
i

mai ; m D
X
a2A�

ma:

Let� be an order on V.T / with A� � A�� � A00 � A1 � � � � � Ai� � V.Pex/ n V.T / and
jN<.v/\X j � 1whenever v 2X 2 ¹A�;A��;A00º. For v 2V.T /we let<vD¹u W u� vº,
N<.v/ D NF 0.v/ \<v, N�.v/ D N<.v/ [ ¹vº and N>.v/ D NF 0.v/ n<v.

We stress the use of F 0 in this notation, which ensures that N>.a/ \ Ahi
i D ; for

all a 2 A0: otherwise we would have a vertex not in A0 adjacent to two vertices of A0,
but this contradicts the definition of A0 as a span. We list here some other immediate
consequences of the definition of A0 that will often be used without comment.

� jA�j � 5n=� and jA��j � 5n=D.

� Any u 2 A�1 has jN<.u/ \ A0j � 1.

� Any uv 2 F ŒA�1� has j.N<.u/ [N<.v// \ A0j � 1.

� There is no �3-path in T n A0 with both ends in Ahi [ Alo.

We also note that jN>.v/j � p�1max for all v 2 A�1, and jN<.v/j � 4 for all v 2 V.T /. To
see the latter, note that if v 2 A�1 then v has at most three earlier neighbours in A�1 and
at most one in A0, whereas if v 2 A0 then v has at most one earlier neighbour in each of
A�, A�� and A00.

Write n D mn� C n0 with jn0 � n��:1j < m. Recall that we adopt the natural cyclic
orders on Œm� and Œn�, addition wraps, and d.�; �/ is cyclic distance. Whenever an algorithm
is required to make a choice, it aborts if it is unable to do so (we will show whp it does
not abort).

Given bipartite graphs B;Z � X � Y with jX j D jY j we write M D MATCH.B;Z/

to mean that M is a random perfect matching from Lemma 2.7. (The choice of Z will
ensure edge-disjointness of the embeddings.)

HIGH DEGREES

(i) Choose xa 2 Œm� for a 2 A� in � order, arbitrarily subject to d.xa; xa0/ > 3d for all
a0 � a, and d.xa; xa0/ ¤ d.xb; xb0/ for all a0 2 N<.a/ and bb0 2 F Œ<a�.
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(ii) Choose independent uniformly random partitions of V.G/ into V0 of size n0 and
Vv� , v� 2 V �, of size n�, and W into W0 of size n0 and Ww� , w� 2 W �, of size n�,
where V � D W � D Œm�.

(iii) For each a 2 A� in � order we will define all �w.a/ by choosing a perfect matching
Ma D ¹�w.a/w W w 2W º. Let Ba � V �W consist of all vw where v … Im�w and
each �w.b/v with b 2 N<.a/ is an unused edge of G. Let Za � V �W consist of
all �w.b/w with b 2 N<.a/.
Let B0a D BaŒV0; W0� and Bw

�

a D BaŒVxaCw� ; Ww� � for w� 2 W �. Define Z0a and
Zw
�

a similarly.
Let Ma DM

0
a [M

�
a with

M 0
a D MATCH.B0a ; Z

0
a/ and M �aD

[
w�

MATCH.Bw
�

a ; Zw
�

a /:

We randomly identify V.G/ with Œn�, cyclically ordered as above. Recall that each
x 2 Œn� has successor xC D x C 1 (where nC 1 means 1) and predecessor x� D x � 1
(where 0 means n). Let di D d=.2s/i�1 for i 2 Œ2s C 1�. We write n D ridi C si with
ri 2 N and 0 � si < di , and let

P ij D

´
¹kdi C j W 0 � k � riº if j 2 Œsi �;

¹kdi C j W 0 � k � ri � 1º if j 2 Œdi � n Œsi �:

For each i 2 Œs C 1� and j 2 Œdi � we define a partition of Œn� into a family of cyclic
intervals Iij defined as all Œx; y�� where x 2 P ij and y is the next element of P ij in the
cyclic order. (So jIij j D n=di ˙ 1, each I 2 Iij has jI j � di , and Iij \ Iij 0 D ; for j ¤ j 0.)
We let Ii D

S
j2Œdi �

Iij . (So for every z 2 Œn�, exactly one Œx; y�� 2 Ii has x D z, and
exactly one Œx; y�� 2 Ii has y D z.)

INTERVALS

(i) In Case S let xXw D V n �w.A�/, xpw WD n�1j xXw j for allw 2W and go to DIGRAPH;
otherwise (in Case P) continue. For eachw2W independently choose i.w/2Œ2sC1�
and j.w/ 2 Œdi.w/� uniformly at random. Let Wi D ¹w W i.w/ D iº.

(ii) For each w 2 W , let Aw include each interval of I
i.w/

j.w/
independently with probab-

ility 1=2.
Let �w consist of all I 2 Aw such that both neighbouring intervals I˙ of I are not
in Aw .

(iii) For each w 2 W , let Xw include each I 2 �w with probability .1 � �/n�1jPexj

independently, let Xw D
S

Xw , xXw D V n .�w.A�/ [ Xw [ .Xw/C/ and xpw D
n�1j xXw j.

(iv) Obtain Yw � Xw as follows. Remove any I from Xw that intersects �w.A�/, let
ti D min ¹jX.I /j W I 2 Iiº, where X.I / WD ¹w 2 Wi W I 2 Xwº, then delete each
I 2 Ii with i 2 Œ2s C 1� from jX.I /j � ti sets Xw with w 2 X.I /, independently
uniformly at random.
Let Yw D

S
Yw and Y.I / D ¹w 2 Wi W I 2 Ywº.
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EMBED A0

(i) For each xy 2 G� WD G n
S
w �w.T ŒA

��/ independently let P .xy 2 G0/ D p0=p.
For each w 2 W and x 2 xXw independently let P .�!xw 2 J0/ D p0= xpw .

(ii) Extend the embeddings �w of T ŒA�� to T ŒA0� in � order, where for each a 2

A0 nA
� we choose a perfect matchingMaD¹�w.a/w Ww 2W ºDMATCH.Ba;Za/,

where Za D ¹�w.b/w W b 2 N<.a/º and Ba � V � W consists of all vw with
v 2 NJ0.w/ n Im�w where each �w.b/v with b 2 N<.a/ is an unused edge of G0.

For i; i 0 2 Œi�� and g; g0 2 ¹hi; lo;noº, let pgg
0

i i 0 D n
�1jF 0ŒA

g
i ;A

g0

i 0 �j C pmin and pgi0 D
n�1jF 0ŒA

g
i ; A0�j C pmin. We also write pgg

0

i0 D p
g
i0 for all g0 for uniform notation later.

For i 2 Œi��, g 2 A�i [ ¹lo; noº let ˛gi D jA
g
i jn
�1, ˛lo D jA

lojn�1, ˛no D jA
nojn�1

and ˛0 D jA0jn�1.
Let ˛hi

i D �
:2mi=n and ˛hi D

P
i ˛

hi
i D �

:2m=n D jAhijn�1 ˙��:9.
Let pex D n

�1jPexj. Let p0ex D .
7
8
� �/pex in Case P or pex � p0ex � 1 in Case S.

We note some identities and estimates for our parameters:

p.n � 1/=2 D jT j D jT ŒA0�j C jF
0
j C jAhi

j C jPexj;

1C p.n � 1/=2 D jV.T /j D jV.F /j C jV.Pex/ n V.F /j;X
i;i 0;g;g0

p
gg0

i i 0 � n
�1
jF 0j 2 Œ0; pmin

:9�;
X
i

˛
g
i D n

�1
jAg j;

p=2 �
X

p
gg0

i i 0 � ˛hi � pex 2 Œ0; pmin
:9�;

p=2 � .˛hi C ˛lo C ˛no C pex/ 2 Œ0; "
:9�;

xpw D

´
1 � jA0jn

�1 in Case S,

xp ˙ d�:9 with xp D .1 � ˛0/.1 � .1 � �/pex=8/ in Case P:

These estimates imply that the assignment of probabilities to mutually exclusive events
in DIGRAPH (vii) below is valid (i.e. the probabilities have sum � 1). For ı 2 ¹<ƒ;�ƒº,
let

mı D
X

.a;i/2Qı

mai ; pı D mı=m;

and define labels
Lı D ¹`aij W .a; i/ 2 Q

ı; j 2 ŒM a
i �º where M a

i 2 ¹bm
a
i =pıc; dm

a
i =pıeº

and jLıj D m.

DIGRAPH

(i) For each a 2 A� let M 0a denote the perfect matching between V � and W � consist-
ing of all v�w� with w� 2 W � and v� D xa C w� 2 V �. Let B 0ai be the bipartite
multigraph formed by M a

i copies of M 0a labelled by `aij , j 2 ŒM a
i �. For k 2 N

let B 0
k
D
S
.a;i/2Qk B

0
ai and Bk be the bipartite multigraph formed by M a

i copies
of M �a for each .a; i/ 2 Qk labelled by `aij , j 2 ŒM a

i �.

(ii) Let M 0ƒ be a largest matching in B 0ƒ with at most one edge of each label. Define a
partialm-edge-colouring .M h

�ƒ W h 2 Œm�/ of Bƒ, where for each h 2 Œm� and edge
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v�w� of M 0ƒ with some label `aij we include in M h
�ƒ all edges of M �a with label

`aij between Vv�Ch and Ww�Ch.

(iii) Let .H ; !/ be the weighted 3-graph where for each v�w� labelled `aij with
.a; i/ 2 Q� we include v�w�`aij with weight m�1. Let M be a random matching
obtained from Lemma 2.8 applied to .H ; !/. Define matchings M h

<ƒ � B� for
h 2 Œm�, where for each edge v�w�`aij of M we include in M h

<ƒ all edges of M �a
with label `aij between Vv�Ch and Ww�Ch.

(iv) Partition V as .Uh W h 2 Œm�/ uniformly at random. Fix distinct haij 2 Œm� for each
`aij 2 Lı and ı 2 ¹<ƒ;�ƒº (recalling jLıj D m). For all `aij 2 Lı, add a copy

of M 0
a with every edge labelled `aij to M haij

ı . Let p1 D p � p0 and let
�!
G1 be a

uniformly random orientation of G1 WD G� n .G0 [ ¹xy W d.x; y/ � 3dº/.

(v) For h 2 Œm� and x 2 Uh let Dh
x be the graph on N��!

G1
.x/ consisting of all yy0 with

y ¤ y0 such that yw 2M h
�ƒ and y0w 2M h

<ƒ for some w 2 W with x 2 xXw . For
each connected componentP ofDh

x independently choose one of P .hiP Dı/D pı
for ı 2 ¹�ƒ;<ƒº. For each y 2 P with some yw 2M h

hiP with label `aij include
�!yx in H�ai and let w.�!yx/ D w.

(vi) For each �!yx 2
�!
G1 independently choose at most one of

P .�!yx 2
�!
Gex/ D 2pex=p1, or

P .�!yx 2
�!
GG
ii 0/ D 2p

gg0

i i 0 =p1 for 1 � i 0 < i � i� and g; g0 2 ¹hi; lo; noº, or

P .�!yx 2
�!
GG
i0 / D 2p

g
i0=p1 for i 2 Œi�� and g 2 ¹hi; lo; noº, or

P .�!yx 2
�!
G 0i / D 2pmax=p1 for i 2 Œi��, or

P .�!yx 2 H/ D 2˛hi=p1 xpw if x 2 xXw ,

where w D w.�!yx/, and if �!yx 2 H a
i WD H \ H�ai include �!xw 2 J ai . Let J hi

i DS
a2A�

i
J ai and J hi D

S
i J

hi
i and

�!
Gi D

S
g;g0;j

�!
GG
ij .

(vii) Let J 0 be the set of �!xw … J0 [ J hi with x 2 xXw . For �!xw 2 J 0 let pxw D xpwp1 �
2˛hi hixw , where hixw is 1 if w D w.�!yx/ for some y or 0 otherwise. For each
�!xw 2 J 0 independently choose at most one of

P .�!xw 2 Jex/ D p
0
ex=pxw or P .�!xw 2 J lo

i / D ˛
lo
i =pxw or

P .�!xw 2 J no
i / D ˛

no
i =pxw or P .�!xw 2 J 0i / D pmax=pxw .

Let J lo D
S
i J

lo
i and J no D

S
i J

no
i .

(viii) In Case P, for each �!yx 2
�!
Gex independently let P .�!yx 2 J 0ex/D

7
8

or P .�!yx� 2 JKex /

D
1
8

.

Some edges of G may not be allocated by this process. Note that arcs in J ŒV;W � are
all directed from V to W , so we will often suppress the direction and think of J ŒV;W � as
a graph.
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For uu0 2 F 0ŒAgi ; A
g0

i 0 � with i; i 0 2 Œ0; i�� and g; g0 2 ¹hi; lo; noº let
�!
GG
i0 D

�!
GG
i0 for

every i and let
�!
Guu0 D

�!
GG
ii 0 and puu0 D p

gg0

i i 0 , recalling that pgg
0

i0 D p
g
i0 for all g0.

For g 2 A� [ ¹lo; noº, u 2 Agi let Au D A
g
i , Ju D J

g
i , ˛u D ˛

g
i .

For �!xw 2 Ju we also write A�!
xw
D Au, J�!

xw
D Ju, ˛�!

xw
D ˛u.

APPROXIMATE DECOMPOSITION

For i D 1; : : : ; i� apply the following steps.

(i) Let .Hi ; !/ be the weighted hypergraph Hi with vertex parts
�!
Gi , Ji and Ai �W ,

where for each u 2 Ai and �!xw 2 Ju such that  �xy 2
�!
Guv for all y D �w.v/ with

v 2 N<.u/ we include an edge labelled “�w.u/Dx” consisting of uw, �!xw and all
such �xy, with weight

!.“�w.u/Dx”/ WD jAuj�1
Y

v2N<.u/

p�1uv :

(ii) Define !0 on Hi by !0.e/ D .1 � :5"i /!.e/=Q.e/ where Q.e/ is the maximum of
1 and all !.Hi Œv�/ WD

P
¹!.e/ W v 2 eº with v 2 e. Let Mi be a random matching

obtained by applying Lemma 2.8 to .Hi ; !
0/. For each “�w.u/Dx” in Mi extend

�w by setting �w.u/ D x.

(iii) For each a 2 Ai in any order, let Wa D ¹w 2 W W �w.a/ undefinedº, let Va 2
�
V
jWaj

�
be uniformly random, and define ¹�w.a/w W w 2 Waº D MATCH.Ba; Za/, where
ZaD¹�w.b/w W b 2N<.a/º andBa �Va �Wa consists of all vw with v 2NJ 0

i
.w/ n

Im�w and each �w.b/v for b 2 N<.a/ an unused edge of G0i .

To avoid confusion, we emphasise that Hi is a digraph and Hi is a hypergraph.
We sometimes use bold font as above to avoid confusion between v 2 V.Hi / and v 2
V.Hi / D V.G/. We define “time” during the algorithm by a parameter t taking values
in a set T with the following elements: 0 is the start, ta for a 2 V.T / is the time (if it
exists) at which some �w.a/ are defined by choosing a matching Ma, thi is the end of
HIGH DEGREES, tint is the end of INTERVALS, tG0 is after choosing G0 and J0, t�� is the
end of embedding A��, t0 is the end of EMBED A0, times ti and tCi for i 2 Œi�� are just
before and just after we extend the embeddings according to the matching Mi (so t1 is
the end of DIGRAPH). For any time t ¤ 0 we let t� be the time just before t .

We write P t and Et for conditional probability and expectation given the history of
the algorithm up to time t . For t 2 T and w 2 W let At;w be the set of w-embedded
vertices at time t . We write At if it is independent of w.

We denote the graph remaining after the approximate decomposition by G0ex D

G n
S
w2W �w.F /.

We complete the T -decomposition of G by the “exact step” algorithms below: we
apply SMALL STARS in Case S, PATHS in Case P, and LARGE STARS in Case L.

SMALL STARS

(i) For x 2 V.G/ let Lx be the set of all uw where u is a leaf of a star in Pex with centre
��1w .x/.
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(ii) Let D be a uniformly random orientation of G0ex. While not all dCD .x/ equal jLxj,
choose uniformly random x; y; z with jLxj > dCD .x/, jLy j < d

C

D .y/, z 2 N
C

D .y/\

N�D .x/ and reverse �!yz, �!zx.

(iii) For each x 2 V.G/ in arbitrary order, define �w.u/ for all uw 2 Lx by

Mx D ¹¹uw; �w.u/º W uw 2 Lxº D MATCH.Fx ;;/;

where Fx � Lx � NCD .x/ consists of all ¹uw; yº with uw 2 Lx , y 2 NCD .x/ \
NJex.w/ n Im�w .

PATHS

(i) Call x 2 V.G/ odd if the parity of dG0ex
.x/ differs from that of the number of w such

that x D �w.a/ where a is the end of a bare path in Pex. Let X be the set of odd
vertices. Let a1`1, a2`2 be the leaf edges in Pex, with leaves `1, `2. Throughout, let
Gfree D ¹unused edgesº.

(ii) Define all �w.`1/ by M1 D ¹�w.`1/w W w 2 W º D MATCH.B1; Z1/, where

Z1 D ¹�w.a1/wºw2W and B1 D ¹vw W v 2 NJex.w/; v�w.a1/ 2 Gfreeº:

(iii) Fix X 0 � X , W 0 � W with jX 0j D jW 0j D jX j=2. Define �w.`2/ for w 2 W 0 by
M 02 D ¹�w.`2/w W w 2 W

0º D MATCH.B 02;Z
0
2/, where Z02 D ¹�w.a2/wºw2W 0 and

B 02 D ¹vw W w 2 W
0; v 2 NJex.w/ \X

0; v�w.a2/ 2 Gfreeº.

(iv) Let V 0 D .V n X/ [ X 0. Define �w.`2/ for w 2 W n W 0 by M2 D ¹�w.`2/w W

w 2W nW 0º DMATCH.B2;Z2/, whereZ2 D ¹�w.a2/wºw2W nW 0 andB2 D ¹vw W
w 2 W nW 0; v 2 NJex.w/ \ V

0; v�w.a2/ 2 Gfreeº.

(v) For each w 2 W fix 8d.x; y/-paths P xyw for each Œx; y� 2 Yw centred in vertex-
disjoint bare .8d.x; y/C 2/-paths in Pex. Extend each �w to an embedding of Pex nS
xy P

xy
w so that ��1w .x/, ��1w .yC/ are the ends of P xyw , according to a random

greedy algorithm, where in each step, in any order, we define some �w.a/ D z,
uniformly at random with z 2 Jex.w/ n Im�w and zz0 2 Gfree whenever z0 D �w.b/
with b 2 NT .a/.

(vi) Apply Theorem 4.6 to decompose Gfree into .Gw W w 2 W / such that each Gw is
a vertex-disjoint union of 8d.x; y/-paths �w.P

xy
w /, Œx; y� 2 Yw , internally disjoint

from Im�w .

LARGE STARS

(i) Let � be the union of all maximal leaf stars in T that have size � ƒ. Let F D T n � .
Let S be the set of star centres of � and SC D ¹v 2 V.T / W dT .v/�ƒº.
PartitionW asW1 [W2 [W3 with

ˇ̌
jWi j � n=3

ˇ̌
< 1 for each i . For each v 2 V.G/

independently choose exactly one of P .v 2 U ai /D d� .a/=.3j� j/ with a 2 S , i 2 Œ3�.
Let Ui D

S
a U

a
i .

While
P3
iD1

ˇ̌
jWi j � jUi j

ˇ̌
> 0 relocate a vertex between the U ai so as to decrease

this sum.
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(ii) Fix an order � on V.F / starting with some u0 2 SC such that N<.u/ D ¹v � u W
vu 2 F º D ¹u�º has size 1 for all u ¤ u0 2 V.F /. Fix distinct �w.u0/, w 2 W ,
with �w.u0/ 2 Ui whenever w 2 Wi .

(iii) Throughout, updateGfreeD ¹unused edgesº, the image Im�w of �w , and a digraph J
on V.G/ consisting of all�!yx with y D �w.a/ and x 2U a \ Im�w for somew 2W ,
a 2 S .

(iv) For each a 2 V.F / n ¹u0º in � order let M a
i D ¹�w.a/w W w 2 Wiº D

MATCH.Bai ; Z
a
i /, i 2 Œ3�, thus defining all �w.a/, with Bai ; Z

a
i as follows.

� If a … SC letZai D ¹�w.a
�/wºw2Wi and defineBai �Ui�1 �Wi (withU0 WDU3)

by
NBa

i
.w/ D Awa WD Ui�1 \NGfree.�w.a

�// n Im�w :

If jUi�1j < jWi j, choose �w.a/w 2 Bai uniformly at random, update Bai and
remove w from its vertex set. If jUi�1j > jWi j, remove some randomly chosen
u 2 Ui�1 from Bai .

� If a 2 SC let Zai D ¹vw W v 2 ¹�w.a
�/º [ .U a \ Im�w/ºw2Wi and define Bai �

Ui �Wi by NBa
i
.w/ D Awa D

S
b2S A

wb
a where

Awba D U
b
i \NGfree.�w.a

�// n
�
Im�w [N

C

J .Im�w \ U
a/ [N�J .�w.b//

�
:

(v) OrientGfree asDD
S
w2W Dw , where for each xy 2Gfree with x 2U a and y 2U b ,

if �!xy 2 J we have �!yx 2Dw where �w.a/D y, if �!yx 2 J we have �!xy 2Dw where
�w.b/ D x, otherwise we make one of these choices independently with probabil-
ity 1=2.

(vi) While
† WD

X
w2W

X
a2S

jdCDw .�w.a// � d� .a/j > 0;

we fix u D �w.a/ with dCDw .u/ < d� .a/ and u0 D �w0.a0/ with dCDw0 .u
0/ < d� .a

0/,
and apply a uniformly random xvz-move for uwu0w0, defined as follows. Choose
xvz with ¹ �vu0; �zu0;�!vx;�!xuº � D unmoved, with x … Im �w , with v … Im �w0 [

Im�wx where �wx .b/ D x, u 2 U b , with u0 … Im�wv where �wv .c/ D v, x 2 U c ,
and with z 2 NCDw0 .u

0/ n Im�wu0 where �wu0 .d/ D u
0, v 2 U d . The xvz-move for

uwu0w0 reverses the path u0vxu in D, assigning �!ux 2 Dw , �!xv 2 Dwx , �!vu0 2 Dwv
and �zu0 2 Dwu0 .

2.2. Preliminaries

Here we gather some well-known results concerning concentration of probability and
Szemerédi regularity, and also a result on random perfect matchings in quasirandom
bipartite graphs, which is perhaps new (although the proof technique via switchings is
somewhat standard).
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We start with the following classical inequality of Bernstein (see e.g. [7, (2.10)]) for
sums of bounded independent random variables. (In the special case of a sum of inde-
pendent indicator variables we will simply refer to the “Chernoff bound”.)

Lemma 2.1. LetX D
Pn
iD1Xi be a sum of independent random variables with jXi j < b

for each i . Let v D
Pn
iD1 E.X2i /. Then

P .jX � EX j > t/ < 2e�t
2=.2.vCbt=3//:

We also use McDiarmid’s bounded differences inequality, which follows from
Azuma’s martingale inequality (see [7, Theorem 6.2]).

Definition 2.2. Suppose f W S !R where S D
Qn
iD1 Si and b D .b1; : : : ; bn/ 2 Rn. We

say that f is b-Lipschitz if for any s; s0 2 S that differ only in the i th coordinate we have
jf .s/ � f .s0/j � bi . We then also say that f is v-varying where v D

Pn
iD1 b

2
i =4.

Lemma 2.3. SupposeZ D .Z1; : : : ;Zn/ is a sequence of independent random variables,
and X D f .Z/, where f is v-varying. Then P .jX � EX j > t/ � 2e�t

2=.2v/.

We say that a random variable is .�; C /-dominated if we can write Y D
P
i2Œm� Yi

such that jYi j � C for all i and
P
i2Œm� E

0jYi j < �, where E0jYi j denotes the expectation
conditional on any given values of Yj for j < i . The following lemma follows easily from
Freedman’s inequality [12].

Lemma 2.4. If Y is .�; C /-dominated, then P .jY j > 2�/ < 2e��=.6C/.

Next we recall some definitions (not quite in standard form) pertaining to Szemerédi
regularity. A bipartite graph B � X � Y with jBj D d jX j jY j is "-regular if

jBŒX 0; Y 0�j D d jX 0j jY 0j ˙ "jX j jY j for all X 0 � X , Y 0 � Y .

If also jB.x/ \ Y j D .1˙ "/d jY j and jB.y/ \X j D .1˙ "/d jX j for all x 2 X , y 2 Y
then B is "-super-regular. We will need the well-known “pair condition” discovered inde-
pendently by several pioneers in the theory of Szemerédi regularity (we refer to [23] for
the history and a version of the following statement).

Lemma 2.5. Let " < 2�200 and B � X � Y with jX j D jY j D m, where jNB.x/\ Y j >
.d � "/m for all x 2 X and jNB.xx0/ \ Y / < .d C "/2m for all but � 2"m2 pairs xx0

in X . Then B is "1=6-regular.

We also require the following lemma; the proof is standard, so we omit it.

Lemma 2.6. Let n�1 � ˛ � ˇ � d; r�1; D�1 and G be an ˛-super-regular bipartite
graph with parts X and Y of size � n and density d.G/ � d . Suppose H is a �r-
multigraph on Y of maximum degree D. Then for all but at most ˇjX j vertices x we
have X

e2HŒNG.x/�

d.G/�jej D jH j ˙ ˇjY j:
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Next we present a result on random perfect matchings in super-regular bipartite
graphs. GivenM;Z � X � Y , anMZMZ is a 4-cycle that alternates betweenM andZ.
We also write MZMZ for the number of MZMZ’s.

Lemma 2.7. Let n�1� ˛� d and B;Z � X � Y with jX j D jY j D n. Suppose Z has
maximum degree < n:4 and B is ˛-super-regular with density d.B/ � d . Then there is
a distribution on perfect matchings M of B with MZMZ D 0 such that P .xy 2M/ D

.1˙ ˛:98/.d.B/n/�1 for any edge xy, and for any X 0 � X , Y 0 � Y , whp

jMŒX 0; Y 0�j D jBŒX 0; Y 0�j.d.B/n/�1 ˙ n:8:

Proof. Let M be the set of perfect matchings of B . It is well-known (and easy to see by
Hall’s theorem) that M¤ ;. We consider a Markov chain on M where the transition from
any M 2M is a uniformly random swap, defined by choosing a 6-cycle C in B that is
M -alternating (every other edge is in M ) and swapping C \M with C nM , subject
to the new edges C nM not forming any new MZMZ’s. It is well-known that every
Markov chain on a finite state space has a stationary distribution (which is not necessarily
unique). Fix some stationary distribution � and let M � �.

To analyse the chain, we start with an estimate for the number of swaps for any
given M . Let GM be the auxiliary tripartite graph with parts X1; X2; X3 each a copy
of X , where for i 2 Œ3�, xi 2 Xi , x0iC1 2 XiC1 we have xix0iC1 2 GM if M.xi /x0iC1 2
B nM (and X4 WD X1). Note that M -alternating 6-cycles in G correspond to triangles
in GM . Each GM ŒXi ; XiC1� is a copy of B nM , so is 2˛-super-regular, and so by the
triangle counting lemma, GM has .1˙ ˛:99/.d.B/n/3 triangles. Each edge in M forms
an MZMZ with � n:8 other edges, each forbidding � n possible swaps, so the number
of swaps is .1˙ ˛:99/.d.B/n/3 ˙ n2:8 D .1˙ 1:1˛:99/.d.B/n/3.

Next we claim that � is supported on M0 WD ¹M W MZMZ D 0º. To see this, first
note that in any step of the chain, MZMZ is non-increasing. Also, the M -alternating
6-cycles that remove any given e fromM correspond to triangles in GM containing some
given vertex. There are .1˙ ˛:99/d.B/3n2 such triangles, of which � n1:8 are forbidden.
Letting p�eM denote the probability that e is removed by a transition from M we have
p�eM D .1 ˙ 2:2˛:99/n�1. In particular, if MZMZ > 0 then it decreases with positive
probability. Thus M0 is an absorbing class, so the claim holds.

Next we estimate P .e 2M/ for any given e 2 B . Let MŒe�D ¹M 2M W e 2M º. For
M 2M nMŒe� let pCeM denote the probability that e is added by a transition fromM . The
M -alternating 6-cycles for adding e correspond to a choice in some common neighbour-
hood NGM .x1/ \ NGM .x2/. Thus there are .1˙ ˛:99/d.B/2n such 6-cycles, of which
� 4n:4 are forbidden, so pCeM D .1˙ 2:2˛

:99/d.B/�1n�2. Now

P .e 2M/ D
X

M2MŒe�

�M D
X

M2MŒe�

�M .1 � p
�e
M /C

X
M2MnMŒe�

�Mp
Ce
M ;

so
P
M2MŒe� �Mp

�e
M D

P
M2MnMŒe� �Mp

Ce
M and hence

.1˙ 4:5˛:99/n�1P .e 2M/ D d.B/�1n�2P .e …M/;
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giving
P .e 2M/ D .1˙ 5˛:99/.d.B/n/�1:

To obtain the final property, we consider uniformly random partitions .Xi W i 2 I /
of X and .Yi W i 2 I / of Y with jXi j D jYi j D

p
n˙ 1 for each i . We let M D

S
i2I Mi

where for each i , Mi � �i independently with �i a stationary distribution of the above
chain for Bi D BŒXi ; Yi � and Zi D ZŒXi ; Yi �. By Chernoff bounds whp each Bi is 1:1˛-
super-regular with d.Bi / D d.B/˙ n�:1. By the above analysis, for each e,

P .e 2M/ D
X
i

P .e 2Mi / D
X
i

.n�1jXi j/
2.1˙ 5.1:1˛/:99/.d.Bi /jXi j/

�1

D .1˙ 6˛:99/.d.B/n/�1:

It remains to estimate jMŒX 0; Y 0�j D
P
i MŒX 0i ; Y

0
i �, where X 0i D X 0 \ Xi , Y 0i D

Y 0 \ Yi . By Chernoff bounds, whp BŒX 0i ; Y
0
i � D n

�1jBŒX 0; Y 0�j ˙ n:76 for each i , so

EjMŒX 0i ; Y
0
i �j D .1˙ 6˛

:99/.d.B/
p
n/�1.n�1jBŒX 0; Y 0�j ˙ n:76/:

Also,

EjMŒX 0i ; Y
0
i �j
2
D EjMŒX 0i ; Y

0
i �j C

X
e¤e02BŒX 0

i
;Y 0
i
�

P .¹e; e0º �Mi / < 2n;

as P .¹e; e0º �Mi / D .1˙ 6˛
:99/.d.Bi /jXi j/

�2 for each ¹e; e0º by similar arguments to
those above. The required estimate for jMŒX 0; Y 0�j now follows from Lemma 2.1.

We conclude this subsection with a result on matchings in weighted hypergraphs,
along the lines of the literature stemming from the Rödl nibble mentioned in the overview
above. The following lemma is a slight adaptation of a convenient general setting of the
nibble recently provided by Ehard, Glock and Joos [9]. Given a weighted hypergraph
.H;!/, we call a function f W

�
H
�r

�
! R clean if f .I /D 0 whenever I is not a matching.

For H 0 � H let

f .H 0/ D
X
¹f .E/ W E 2

�
H 0

�r

�
º and f .H 0; !/ D

X²
!.E/f .E/ W E 2

�
H 0

�r

�³
;

where !.E/D
Q
e2E !.e/. For S;T 2

�
H
�r

�
we also let fS .T /D f .S [ T / if T \ S D;,

and fS .T / D 0 otherwise.

Lemma 2.8. Let C�1 � ˛ � ˇ � r�1; `�1 and .H; !/ be a weighted �r-graph with
!.e/ � C�1 for all e 2 H , and !.HŒv�/ � 1, !.HŒuv�/ < C�ˇ for all u ¤ v 2 V.H/.
Then there is a distribution on matchings M in H such that

f .M/ D .1˙ C�ˇ /f .H; !/ with probability � 1 � e�C
˛

for any clean function f on
�
H
�`

�
with fS .H; !/ � C�ˇf .H;!/ whenever S ¤ ;.

The proof of Lemma 2.8 is essentially the same as that of [9, Theorem 1.3], with a
few modifications as follows. The statement in [9]:
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� applies to unweighted hypergraphs of maximum degree � and maximum codegree
< �1�ˇ ; our version can be reduced to this version by considering a multihypergraph
where the multiplicity of an edge e is b�2!.e/c, say;

� gives a (deterministic) matching M satisfying the required conclusion for a suitably
small set of functions f ; this is obtained by proving the existence of a distribution on
matchings as in our statement and taking a union bound;

� applies to functions on
�
H
`

�
, from which a version for functions on

�
H
�`

�
is easily

deduced.

2.3. Tree partition

We start our analysis of the algorithm by considering the subroutine TREE PARTITION.

Lemma 2.9. We can choose a case in ¹L; S; P º for T and we have i� < iC. Also,
jA0j � 6"n, and for each i , jAai j � � and jAıji j � ın if non-empty, with Aai \ A

a0

i 0 D ;

for ai ¤ a0i 0.

Proof. To see that we can choose a case for T , we suppose that T does not satisfy Case L
or Case S, and show that it must satisfy Case P. Here we rely on the well-known fact
that any tree with few leaves must have many vertices in long bare paths (we will use
the precise statement given by [27, Lemma 4.1]). Let T 0 be the tree obtained from T by
removing all leaf stars of size � ƒ. Then jV.T 0/j � pCn, as T does not satisfy Case L.

We claim that T 0 has < 2p�n leaves. To see this, let � be the set of maximal leaf
stars of T 0. For each S 2 � obtain S 0 from S by deleting all leaves of T 0 that are not
leaves of T . Note that jS 0j � ƒ, or we would have removed S when defining T 0. ThenP
S2� jS

0j < p�n, as T does not satisfy Case S. Also,
P
S2� jS n S

0j < n=ƒ as each leaf
in any S n S 0 is the centre of a leaf star in T of size � ƒ. The claim follows.

Now [27, Lemma 4.1] implies that T 0 has > pCn=.50K/ vertex-disjoint bare 8K-
paths. At most n=ƒ of these contain the centre of some star removed when obtaining T 0

from T , so > pCn=.100K/ are bare paths of T , as required.
Next we bound i�. Recall that at step i � 1 we let Bi D V.F �/ n

S
j<i Cj and C 0i be

the set of v 2 Bi with

dF �ŒBi �.v/ � 3 and dF �Œ
S
j<i Cj �

.v/ � p�1max:

We have jC 0i j > jBi j=3� 2pmaxn, as < 2pmaxn vertices fail the second condition, and the
set X of vertices failing the first condition satisfies 3jX j �

P
x2X dF �ŒBi �.v/ < 2jBi j.

Next we let Ci be a maximum independent set in F �ŒC 0i �; we have jCi j � jC 0i j=2 as trees
are bipartite. If jCi j < "n we let i� D i � 1 and stop, otherwise we proceed to the next
step, noting that jCi j > jBi j=7. There can be at most iC D 7 log "�1 steps, otherwise we
would continue past a step i with jBi j < .6=7/i

C

n < "n.
For the remaining statements, we first note that the bounds for and disjointness of

the sets Aai are immediate from the algorithm and the definition of A0 as a span. Finally,
we consider step (iv) of TREE PARTITION. For each j 2 Œ4�, there are at most iC steps
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where we move some Aıji to A0 if it has size < ıjn, thus adding < 5ıjn vertices to A0
after including any forced by the definition as a span. Note that by choice of the order
ı1; : : : ; ı4 it is not possible for some Aıji to be moved to A0 and then to reappear at a
later step. At the end of the process, any surviving Aıji has size

jA
ıj

i j > ıjn �
X
j 0>j

5iCıj 0n � ıjn.1 � 5.4 � j /ı
�:1iC/ � ın:

This completes the proof.

2.4. High degrees

Continuing through the algorithm, the following lemma shows that the subroutine HIGH

DEGREES is whp successful, and the image of each embedding is well-distributed with
respect to common neighbourhoods in G.

Lemma 2.10. Whp HIGH DEGREES does not abort, and

P t
�
a .�w.a/ 2 NG.S// D .1˙ ı/p

jS j

for any a 2 A�, w 2 W and S � V.G/ with jS j � s.

We make some preliminary observations before giving the proof. First, we write the
proof assuming jN<.a/j � 4 for all a 2 A� rather than using our real bound jN<.a/j � 1,
so that it is more obvious how to apply the same proof to obtain Lemma 2.11. We
note that the choices of xa for a 2 A� are possible. Indeed, at each step, we forbid
� 6d jA�j � 30dn=� choices of xa with d.xa; xa0/ � 3d for some a0 � a, and < 5n=�
choices with d.xa; xa0/D d.xb; xb0/ for some a0 2N<.a/ and bb0 2 F Œ<a�. We also note
the following estimate for common neighbourhoods, which is immediate from a (hyper-
geometric) Chernoff bound: whp for any S � V.G/with jS j � s andX D V0 orX D Vv�
with v� 2 V � we have

jNG.S/ \X j D ..1˙ 1:1�/p/
jS j
jX j:

Proof of Lemma 2.10. We can condition on partitions of V and W satisfying the above
estimates for jNG.S/ \ X j. First we consider the choices of .M �a W a 2 A

�/, which are
independent of .M 0

a W a 2 A
�/. For each a 2 A�, w� 2W �, v� D xa Cw� we will show

that Lemma 2.7 applies to choose M �a ŒVv� ;Ww� � D MATCH.Bw
�

a ; Zw
�

a /, where Bw
�

a �

Vv� �Ww� satisfies Bw
�

a .w/ D NGt�a .�w.N<.a/// \ Vv
� n �w.<a/, where Gt � G is

the graph of unused edges at time t . For each v 2 V there is a unique edge w�w.a/ 2Ma

with �w.a/ D v, which uses jN<.a/j edges at v, so G n Gt has maximum degree �
jT ŒA��j � 5n=�. Note that the constraint that �w.a/�w.a0/ is unused for all a0 2 N<.a/
is automatically satisfied as d.xa; xa0/ ¤ d.xb; xb0/ for all bb0 2 F Œ<a�.

We also note that Za D ¹�w.b/w W b 2 N<.a/º has maximum degree � 4.
At time t , letH t

w� be the hypergraph on V.G/ with edges etw D �w.N<.a/\At / for
w 2 Ww� . Note that H t

w� is a matching, as M �
b

is a matching for each b 2 N<.a/ and
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�w.b/ 2 Vw�Cxb with distinct xb . We let Bt be the “bad” event that

jH t
w� ŒNG.v/�j ¤ ..1˙ 7�/p/

jN<.a/\At jn�

for some v 2 V.G/, a 2 A�, w� 2 W �. We let � be the smallest t such that Bt occurs, or
1 if there is no such t . We fix a 2 A� and bound P .� D ta/.

We claim that Bw
�

a is � 0-super-regular of density .1 ˙ 5�/pjN<.a/j. To show this,
we first lighten our notation, writing t D t�a and H D H t

w� , which has edges ew D
�w.N<.a// for w 2 Ww� . Any v 2 Vv� has degree jHŒNGt .v/�j ˙ j¹w 2 Ww� W
v 2 �w.<a/ºj D jHŒNG.v/�j as v�w.a0/ is unused for all a0 2 N<.a/ and all w 2 Ww� ,
and v D �w.a00/ for some a00 2 <a and w 2 Ww� iff xa D v� � w� D xa00 . As Bt does
not hold for t < ta, v has degree ..1˙ 7�/p/jN<.a/jn�. Any w 2 Ww� has degree

jNG.�w.N<.a/// \ Vv� j D ..1˙ 1:1�/p/
jN<.a/jn� D .1˙ 5�/p

jN<.a/jn�:

For any V 0 � Vv� , W 0 � Ww� we have

jBw
�

a ŒV 0; W 0�j D
X
w2W 0

jNG.�w.N<.a/// \ V
0
j D

X
v2V 0

jH 0ŒNG.v/�j;

where H 0 D ¹ew W w 2 W 0º, so we have jBw
�

a ŒV 0; W 0�j D pjN<.a/jjV 0j jW 0j ˙ � 0n2� by
Lemma 2.6. This proves the claim.

Thus Lemma 2.7 applies, giving P t
�
a .vw 2M �a /D .1˙ ı=2/.p

jN<.a/jn�/
�1 for any

vw 2 Bw
�

a , so P t
�
a .�w.a/ 2 NG.S// D .1˙ ı/p

jS j for any w 2 Ww� and S � V.G/
with jS j � s.

To bound P .Bta/, note that H t
w� only changes when we choose M �

b
for b 2 N<.a/.

Fix v and write W t D ¹w W etw 2 H
t
w� ŒNG.v/�º, where t D t�

b
. For any w 2 W t we have

e
tb
w 2 H

tb
w� iff �w.b/ 2 NG.v/, so jH tb

w� j D jM
�
b
ŒW t ; NG.v/�j, which by Lemma 2.7 is

whp
jBw

�

a ŒNG.v/;W
t �j..1˙ 5�/pjN<.a/jn/�1 ˙ n:8 D .1˙ 7�/pjW t

j:

Thus whp Bta does not hold for any a, so � D1.
Now we consider the choice ofM 0

a DMATCH.B0a ;Z
0
a/, whereZa DZaŒV0;W0� and

Ba � V0 �W0 is defined by B0a .w/ D NGt .�w.N<.a/// \ V0 n �w.<a/. Let H t
a be the

hypergraph on V0 with edges etw D �w.N<.a/ \ At / \ V0 for w 2 W0. Let B 0t be the
“bad” event that for some a 2 A� we have

jH t
aŒNGt .v/�j ¤ ..1˙ �

0/p/jN<.a/\At jn0:

We let � 0 be the smallest t such that B 0t occurs, or1 if there is no such t . We fix a 2 A�

and bound P .� 0 D ta/.
Similarly to the arguments for M �a , as B 0t does not hold, Ba is � 0-super-regular of

density .1˙ 5�/pjN<.a/j, using the maximum degree bound on G nGt to estimate com-
mon neighbourhoods jNGt .S/\ V0j for degrees ofw 2W0, recalling that n0 > n��:1=2,
and estimating jBaŒV 0; W 0�j D

P
v2V 0 jH

0ŒNGt .v/�j by Lemma 2.6 applied to Gt and
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H 0 D ¹etw W w 2 W
0º, which has maximum degree at most 16, as for each b; b0 2 N<.a/

and w 2 W0 there is a unique w0 2 W0 with �w.b/ D �w0.b0/.
Again we similarly deduce P t

�
a .vw 2 Ba/ D .1 ˙ ı=2/.pjN<.a/jn0/

�1 for any
vw 2 Ba, so P t

�
a .�w.a/ 2 NG.S// D .1˙ ı/p

jS j for any w 2 W0 and S � V.G/ with
jS j � s. To bound P .B 0ta/, note that whp jH t

aŒNG.v/�j D ..1˙ �
0=2/p/jN<.a/\At jn0 by

the same argument as for M �a , and by the maximum degree bound on G n Gt we can
replace G by Gt in this estimate, changing � 0=2 to � 0. Thus whp B 0ta does not hold for
any a, so � 0 D1, as required.

Note that G n G� has maximum degree � jT ŒA��j < 5n=�, as for each v 2 V.G/
there is a unique edge w�w.a/ 2 Ma with �w.a/ D v, which uses jN<.a/j edges at v.
Thus G� is .1:1�; s/-typical, so whp the graphs G0 and G1 defined in EMBED A0 are
.1:2�; s/-typical.

We omit the proof of the following lemma, as it is similar to and simpler than the
previous one.

Lemma 2.11. For any a 2 A0 n A�, w 2 W , x; y 2 V.G/, writing Awa for the set of y
such that �w.a/ D y is possible given the history at time t�a , whp

P t
�
a .�w.a/ D y/ D .1˙D

�:9
˙ ˛:90 1a2A00

/jAwa j
�1;

so whp P t
�
a .�w.a/ 2 NG1.x// D .1˙D

�:9 ˙ ˛:90 1a2A00
/p1.

2.5. Intervals

Next we record some properties of the subroutine INTERVALS that are needed for the exact
step in Case P (handled by the subroutine PATHS). We omit the proof, which is essentially
the same as that of the corresponding lemma in [20] (the only change is the deletion of
the negligible sets �w.A�/). We say that S � Œn� is d -separated if d.a; a0/ � d for all
distinct a; a0 in S . For disjoint S; S 0 � Œn� we say .S; S 0/ is d -separated if d.a; a0/ � d
for all a 2 S , a0 2 S 0.

Lemma 2.12. In Case P,

(i) P thi.x 2 xXw/ D xpw ˙�
�:9 for all w 2 W and x 2 V.G/,

(ii) any subset of ¹¹x 2 xXwº W w 2 W; x 2 V.G/º is independent if it does not include
any pair ¹x 2 xXwº, ¹x0 2 xXwº with d.x; x0/ � 3d ,

(iii) whp jY.I /j D ti D
.1��/jPexj
8.2sC1/di

˙ n��:9 for all I 2 Ii , i 2 Œ2s C 1�,

(iv) whp jYw j D .1 � �/jPexj=8˙ n�
�:9 for all w 2 W ,

(v) for any U � V.G/, whp for any disjoint R;R0 � W of sizes � s we have

jU \N�Jint
.R/ \N�xJ .R

0/j D jU j
�
1
8
.1 � �/pex

�jRj Y
w2R0

xpw ˙ n�
�:1;

where Jint D ¹
�!xw W x 2 Ywº and xJ D ¹�!xw W x 2 xXwº,
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(vi) whp for any disjoint S; S 0 � V of sizes � s,

� if S [ S 0 is 3d -separated then

j¹w W S � Yw ; S
0
� xXwºj D

X
w2W

�
1
8
.1 � �/pex

�jS j
xpjS
0j

w ˙ n��:1;

� if .S;S 0/ is 3d -separated then j¹w WS �Yw ; S 0� xXwºj � 2�2sn.18 .1� �/pex/
jS j.

2.6. Digraph

Our next lemma summarises various properties of the decompositions ofG andW �V.G/
constructed in the subroutine DIGRAPH. Many of these properties are straightforward
consequences of the definition and Chernoff bounds. The most significant conclusion is
part (viii), showing that the high degree digraph H allocates roughly the correct number
of edges to each vertex x for each role ai where i 2 Œi��, a 2 A�i . For each such ai we
let M 0ai consist of all v�w� with some label `aij , where v�w� 2 M 0ƒ if .a; i/ 2 Qƒ or
v�w�`aij 2M if .a; i/ 2 Q�.

We write Gex for the underlying graph of
�!
Gex and define other underlying graphs

similarly. We define JK
0

ex by JK
0

ex ŒV; W � D Jint D ¹
�!xw W x 2 Ywº and �!xy 2 JK

0

ex ŒV �,
�!xy� 2 JKex ŒV �, thus removing the “twist”: if for some edge xy of Gex we add �!xy� to JKex
then we add �!xy to JK

0

ex .

Lemma 2.13. (i) P thi.xy 2 �/ D d�.�/=p independently for each xy 2 G�, where
� 2 ¹Gex;G

gg0

i i 0 ;G
0
iº, and d�.Gex/D 2pex, d�.Ggg

0

i /D p
gg0

i i 0 and d�.G0i /D pmax,

(ii) P thi.�!xw 2 ‰/ D d�.‰/ for ‰ 2 ¹J hi; J lo
i ; J

no
i ; Jex; J

0
i º, where d�.J gi / D ˛

g
i for

g 2 ¹lo; noº, d�.J hi/ D ˛hi, d�.Jex/ D p
0
ex, d�.J 0i / D pmax,

(iii) any subset E of the events in (i) and (ii) is conditionally independent given any
history of the algorithm at time t0 if it has no pairs that are equivalent or mutually
exclusive,

(iv) whp each � as in (i) is .1:2�; s/-typical of density d.�/ D d�.�/˙��:9,

(v) for any w 2W , u 2 V.F /, distinct v1; : : : ; vs0 2 NF .u/ with s0 � s and x1; : : : ; xs0
in V.G/, whp ˇ̌̌

N�Ju.w/ \

s0\
iD1

NC�!
Guvi

.xi /
ˇ̌̌
D jAuj

s0Y
iD1

.1˙ 1:2�/puvi ;

(vi) in Case P, for all disjoint S�;SC� V andR�W each of size� s, for any k;k�;kC
in ¹0;K 0º, writing `0 D 7=8 and `K0 D 1=8, we have

jN�
Jkex
.R/ \NC

J
kC
ex

.SC/ \N
�

J
k�
ex
.S�/j

D .`k�pex/
jS�j.`kCpex/

jSCj.`kpex/
jRjn˙ �:9n:

Also jW \NCJint
.S�/\N

C

J 0ex
.SC/j is .pex=8/

jS�j.7pex=8/
jSCjn˙ �:9n if S� [SC is

3d -separated, or is � 2�3s.pex=8/
jS�j.7pex=8/

jSCjn if .S�; SC/ is 3d -separated,
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(vii) whp each jM 0ai j=M
a
i is in .1 � n�c

0

; 1�,

(viii) whp all d˙
Ha
i

.x/, dC
Ja
i

.x/ and d�
Ja
i

.w/ are .1˙ ı/jAai j and N�
Ja
i

.w/ \ N�
Ja
0

i0

.w/ D

H a
i \H

a0

i 0 D ; whenever ai ¤ a0i 0.

Proof. We start by briefly justifying statements (i)–(iv), which are fairly straightforward
from the definition of the algorithm. The outcome of HIGH DEGREES determines G� at
time thi, whereG nG� has maximum degree< jA�j � 5n=�. For each xy independently,
we include it inG0 with probability p0=p. Excluding < 6dn such xy with d.x; y/ � 3d ,
the remainder have P .xy 2 G1/ D 1 � p0=p D p1=p. In DIGRAPH (iv) each is then
directed as�!xy or�!yx, each with probability 1=2, and then in (vi) independently included in
at most one � as in (i) with probability d�.�/=p1, so with overall probability d�.�/=p1.
We note that xy may instead be included in H , again independently for all edges. This
justifies statement (i), and then (iv) is immediate by typicality and Chernoff bounds.

For (ii), we start the calculation for each P thi.�!xw 2 ‰/ by multiplying xpw ˙ ��:9

for the event ¹x 2 xXwº and then p1 D 1 � p0 for ¹�!xw … J0º. This gives xpwp1,
which equals pxw if w is not some w.�!yx/, and then we put �!xw 2 ‰ with probability
d�.‰/=pxw , giving an overall probability d�.‰/. On the other hand, if w is some w.�!yx/
then we include �!xw in J hi with probability 2˛hi=.p1 xpw/, so with overall probability 2˛hi,
or otherwise �!xw is available for other ‰ with probability xpwp1 � 2˛hi, which we define
to be pxw in this case, giving the same overall probabilities for P thi.�!xw 2 ‰/.

For (iii), we emphasise that we only have conditional independence given the his-
tory at time t0, rather than independence, due to the dependence between ¹x 2 xXwº and
¹y 2 xXwº when d.x; y/ � 3d . This still suffices to prove concentration statements in two
steps: first showing concentration of the conditional expectation under the random choices
in INTERVALS, and then concentration under the random choices in DIGRAPHS. We illus-
trate this for (v), omitting the similar proof of (vi) via Lemma 2.12. For any 3d -separated
Y � V , for each y 2 Y independently we have P .y 2 xXw/D xpw ˙��:9, so by Chernoff
bounds whp jY \ xXw j D xpw jY j ˙ 2��:9n. Then for each y 2 Y \ xXw we have

P tint
�
y 2 N�Ju.w/ \

s0\
iD1

NC�!
Guvi

.xi /
�
D ˛u xp

�1
w

s0Y
iD1

puvi :

By partitioning
Ts0

iD1NG.xi / into 3d -separated sets we deduce (v) by a Chernoff bound.
For (vii), first note that for ı 2 ¹<ƒ;�ƒº, ifmı¤ 0, thenmı� ım, so pı� ı. We also

recall that
P
.a;i/2QƒM

a
i D m. As B 0ƒ is a union of m matchings each of size m, by [5,

Theorem 2] of Barát, Gyárfás and Sárközy we have jM 0ƒj � m�m
:51, soM a

i � jM
0
ai j �

m:51 < n�:4M a
i for each .a; i/ 2 Qƒ. For .a; i/ 2 Q� we apply Lemma 2.8 to H with

f .v�w�`a0i 0j 0/D 1a0Da;i 0Di . To see that this is valid, we takeDDm, so each edge weight
is D�1, and note that each !.H Œv��/ or !.H Œw��/ is m�1

P
.a;i/2Q�M

a
i D 1. Also, for

any v�w� with some label `aij we have !.H Œv�w��/ � m�1d��:2ƒ=ıe < D1�c2 , say.
Thus Lemma 2.8 gives jM 0ai j D .1˙ n

�c0/M a
i , recalling that c0� c, as required for (v).

For (viii), we analyse the construction of H , which is illustrated in Figure 4. The
disjointness statements and d�

Ja
i

.w/ D dC
Ha
i

.�w.a// are clear from the definition of the
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algorithm, so it remains to establish the degree estimates. It suffices to show all d˙
H�
ai

.x/

are .1 ˙ :1ı/p1 xpmai n=m; indeed, for each �!yx 2 H�ai we have �!yx 2 H a
i ,

�!yx 2 H ,
where P .�!yx 2 H/ D ˛hi=p1. xp ˙ d

�:9/ independently, so the estimates on d˙
Ha
i

.x/ hold
whp by Chernoff bounds.

Consider d�
H�
ai

.x/ for x 2 Uh, h 2 Œm�. It suffices to estimate the contribution from

V n V0, as jV0j D n0 is negligible by comparison with the error term in the required
estimate. Let ı 2 ¹<ƒ; �ƒº be such that .a; i/ 2 Qı. For each v�w� 2 M 0ai we
include in M h

ı all edges of M �a with label `aij between Vv�Ch and Ww�Ch. There are

.1˙ d�:8/ xpp1n=m such edges yw with �!yx 2
�!
G1 and x 2 xXw whp under the choices of

.Vv� W v
� 2 V �/, intervals and orientation ofG1. For each such yw, in some component P

of Dh
x , we have P .hiP D ı/ D pı, independently for distinct P , so

Ed�
H�
ai

.x/ D pıjM
0
ai j � .1˙ 2d

�:8/ xpp1n=m:

Under the orientation of G1, whp jP j < log2 n for each P by Chernoff bounds. Then
d�
H�
ai

.x/ is a log2 n-Lipschitz function of independent decisions of all hiP , so Lemma 2.3
gives the required estimate on d�

H�
ai

.x/.
Finally, consider dC

H�
ai

.y/ for y 2 V.G/. If y 2 V0, then there are exactly M a
i values

of h 2 Œm� for which there is an edge yw 2 M h
ı with label `aij for some j . If y … V0,

then there are exactly M 0ai values of h 2 Œm� for which there is an edge yw 2 M h
ı with

label `aij for some j , as each v�w� 2 M 0ai satisfies v� D xa C w�, determining some
h 2 Œm� such that y 2 Vv�Ch, and some edge yw 2 M h

ı \M
�
a , where w 2 Ww�Ch. By

typicality and Chernoff bounds whp each jUh \NC�!
G1
.y/j is .1˙ 1:1�/p1n=m. For each

x 2 Uh \ N
C
�!
G1
.y/ independently P .hix D ı/ D pı, writing hix D hiP where P is the

component of Dh
x containing y. The events ¹x 2 xXwº are independent for distinct x in

any 3d -separated set, so by partitioning Uh into 3d such sets, applying a Chernoff bound
to each, we obtain the required estimate on dC

H�
ai

.y/, noting that it only depends on the

number M a
i or jM 0ai j of h 2 Œm� such that M h

ı includes yw with some label `aij , and not
on the set of such h, which is yet to be determined when choosing the matchings Ma.

3. Approximate decomposition

In this section we analyse the subroutine APPROXIMATE DECOMPOSITION, which applies
hypergraph matchings to embed most of F in Cases S and P.

3.1. Hypergraph matchings

The main goal of this section is the following lemma, which will allow us to apply
Lemma 2.8 to the hypergraph matchings chosen in APPROXIMATE DECOMPOSITION,
i.e. all auxiliary vertices have !0-weighted degree close to and not exceeding 1, and all
!0-weighted codegrees are small; statement (ii) concerns the degree that a pair ux would
have if it were introduced as an auxiliary vertex (but we do not do this to avoid additional
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complications in analysing the relationship between !0 and !). The “bad” graphs and sets
appearing in the lemma will be defined and analysed in Lemma 3.2.

Lemma 3.1. Whp for each i 2 Œi��,

(i) !0.Hi Œv�/ 2 .1 � 2"
:8; 1� for all v 2 V.Hi /,

(ii)
P
w2W !0.“�w.u/Dx”/ D 1˙ 2":8 for all x 2 V.G/, u 2 Ai ,

(iii) !0.e/ > .1C 2"i /�1!.e/ for all e D “�w.u/Dx” with u 2 Ai n .Abad
w \NF 0.A

lo//,
�!xw 2 Ji n J

bad,

(iv) !0.Hi Œuw�/ 2 .1 � 2"i ; 1 � :5"i � for all u 2 Ai n .Abad
w \NF 0.A

lo//,

(v) !0.Hi Œvv0�/ < ��:9 for all v; v0 � V.Hi /.

To satisfy the hypotheses of Lemma 2.8 for .Hi ; !
0/ we let C D n and ˇ D c=2.

Then the edge weights satisfy !0.“�w.u/Dx”/ � jAuj�1 � C�1, the codegree condition
holds by Lemma 3.1 (v), and the vertex weights satisfy !0.Hi Œv�/D

P
¹!0.e/ W v 2 eº �

1 � :5"i by definition of !0.
Next we define and bound the “bad” graphs and sets appearing in Lemma 3.1. For

each i write Alo
i D A��i [ A

0
i , where for u 2 Alo

i with N<.u/ \ A0 D ¹u0º we include
u in A��i if u0 2 A� [ A�� or in A0i if u0 2 A00. Let Swi be the multiset on A00 where
for each u 2 A0i with N<.u/ \ A0 D ¹u0º we include �w.u0/, with multiplicity, so that
jSwi j D jA

0
i j. Note that all multiplicities in Swi are � D by definition of A00. Let

J bad
i D ¹

�!xw 2 J lo
i W jS

w
i \N

�
�!
G1
.x/j ¤ p1jS

w
i j ˙ �

0nº and J bad D
S
i J

bad
i ;

B D ¹x 2 V.G/ W dJ bad.x/ > ı3nº and Abad
w WD .A

lo [ Ano/ \
S
x2B N>.�

�1
w .x//:

Lemma 3.2. Whp jBj < ı4n and dJ bad.w/; jAbad
w j < ı

3n for all w 2 W .

Proof. We start by bounding dJ bad.w/ for each w 2 W . We may assume jA00j > �
0n=D,

otherwise jSwi j � �
0n for all i , w, and then J bad D ;. AsG is .�; s/-typical, a well-known

non-partite variant of Lemma 2.5 implies that G is � :1-regular. Writing X D �w.A00/, as
jX j; j xXw nX j � �

0n=D, standard regularity properties imply that GŒX; xXw nX� is � :01-
regular of density p ˙ � :01. Then Chernoff bounds imply that whp zG D ¹uv W u 2 X ,
v 2 xXw nX , �!uv 2

�!
G1º is � :001-regular of density p1˙ � :001. By Lemma 2.6 applied with

G D zG and H D ¹¹�w.u0/º W u0 2 A00º we deduce dJ bad
i
.w/ < � 0n, so dJ bad.w/ < ı7n,

say. As
ı3njBj �

X
x2B

dJ bad.x/ �
X
w2W

dJ bad.w/ < jW jı7n;

we have jBj < ı4n. Since d>.u/ � p�1max for every u 2 A�1, we conclude that jAbad
w j <

p�1maxj�
�1
w .B/j < ı3n.

Henceforth, we assume Lemmas 3.1 and 3.2 for all i 0 < i , our aim being to show that
they hold for i . First we establish various properties of the matchings Mi 0 for i 0 < i that
will be used in the proof. We let Ai;w D AtC

i
;w
n Ati ;w , which is the set of u 2 Ai such

that �w.u/ is defined by the matching Mi , and let A0i;w D Ai n Ai;w .
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Lemma 3.3. For all 0 < i 0 � i , w 2 W , W 0 � W , X � V.G/, U � Alo
i 0 [ A

no
i 0 , whp

(i) jA0i 0;w j < 2:1"i 0 jAi 0 j,

(ii) j¹w 2 W W �w.u/ 2 Xºj < 1:1jX j C� for all u 2 Alo
i 0 [ A

no
i 0 ,

(iii) j¹w 2 W W ��1w .x/ 2 U ºj < 1:1jU j C� for all x 2 V.G/,

(iv) j¹w 2 W W u 2 Abad
w ºj < 5ı

4n for all u 2 Alo
i 0 [ A

no
i 0 ,

(v) :4"i 0 jW 0j � ıjAuj < j¹w 2 W 0 W u 2 A0i 0;wºj < 2:1"i 0 jW
0j C ıjAuj for all u 2 Ai 0 ,

(vi)
P
u2A

g

i
jF 0ŒN>.u/; A

0
i 0;w �j and jF 0ŒAgi ; A

0
i 0;w �j are < 9p�1max"i 0 jA

g
i j for all g in

¹hi; lo; noº.

Proof. We write jAi 0;w j D f .Mi 0/, where f is defined on Hi 0 by f .“�0w.u
0/Dx0”/ D

1w0Dw . We have f .Hi 0 ;!
0/D

P
u02Ai0

!0.Hi 0 Œu
0w�/� .1� 2"i 0/jAi 0 j � ı

3n by Lemmas
3.2 and 3.1 (iv). For any e 2 Hi 0 we have f¹eº.Hi 0 ; !

0/ � !0.e/ � 1 < C�ˇf .Hi 0 ; !
0/.

By Lemma 2.8, whp

f .Mi 0/ D .1˙ C
�ˇ /f .Hi 0 ; !

0/ � 1 � 2:1"i 0 ;

so jA0i 0;w0 j < 2:1"i 0 jAi 0 j.
Statements (ii) and (iii) are similar, using Lemma 3.1 (ii). For (iv), we have

j¹w 2 W W u 2 Abad
w ºj �

X
v2N<.u/

j¹w W �w.v/ 2 Bºj � 4:4jBj C 4� < 5ı4n

by (ii) and Lemma 3.2.
For (v) we write j¹w 2 W 0 W u 2 A0i 0;wºj D jW

0j C �:9 � f .Mi 0/ redefining f by
setting f .;/ D �:9 and f .“�w.u0/Dx”/ D 1w2W 0;u0Du. Then

0 � �:9 C
X
w2W 0

!0.Hi 0 Œuw�/ � f .Hi 0 ; !
0/ < j¹w 2 W W u 2 Abad

w ºj:

By Lemma 3.1 (iv) we see that if u 2 Ahi
i 0 , then :5"i 0 jW 0j < jW 0j C�:9 � f .Hi 0 ; !

0/ <

2"i 0 jW
0j and if u 2 Alo

i 0 [ A
no
i 0 then (iv) implies

:5"i 0 jW
0
j � 5ı4n < jW 0j C�:9 � f .Hi 0 ; !

0/ < 2"i 0 jW
0
j C 5ı4n;

and f¹eº.Hi 0 ; !
0/ � 1 for all e, so by Lemma 2.8, whp (ii) holds.

For (vi), we write 1C jAgi j
�1
P
u2A

g

i
jF 0ŒAi 0;w ;N>.u/�j D f .Mi 0/, where f .;/D 1

and
f .“�w.u0/Dx0”/ D 1wDw0 jA

g
i j
�1

X
u2A

g

i

jNF 0.u
0/ \N>.u/j:

Using Lemma 3.1 (iv) we have

f .Hi 0 ; !
0/ � 1 > .1 � 2"i 0/jA

g
i j
�1

X
u2A

g

i

X
u02Ai0

jNF 0.u
0/ \N>.u/j

D .1 � 2"i 0/jA
g
i j
�1

X
u2A

g

i

jF 0ŒAi 0 ; N>.u/�j

and

f¹eº.Hi 0 ; !
0/ � jA

g
i j
�1 max

u0

X
v2N>.u0/

jN<.v/j < 4p
�1
maxjA

g
i j
�1 < C�ˇf .Hi 0 ; !

0/:
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By Lemma 2.8, whp

jA
g
i j
�1

X
u2A

g

i

jF 0ŒA0i 0;w ; N>.u/�j < 2:1"i 0 jA
g
i j
�1

X
u2A

g

i

jF 0ŒAi 0 ; N>.u/�j � 9p
�1
max"i 0 :

The second bound is similar so we omit the proof.

We conclude this subsection by deducing Lemma 3.1 (for i ) from the following estim-
ates on !-weighted degrees, which thus become the main goal of this section and which
we will prove assuming Lemmas 3.2–3.4 for all i 0 < i .

Lemma 3.4. Whp for each i 2 Œi��,

(i) !.Hi Œuw�/ D 1˙ "i for all uw 2 Ai �W ,

(ii) !.Hi Œ
�!xw�/ is 1˙ :5":8 for all xw in Ji and is 1˙ "i if �!xw … J bad,

(iii) !.Hi Œ
 �xy�/ is 1˙ ":8 for all �xy 2

�!
Guv , and is 1˙ "i if v … Alo or y … B ,

(iv)
P
w2W !.“�w.u/Dx”/ D 1˙ "i for all x 2 V.G/, u 2 Ai .

Proof of Lemma 3.1 for i . We have already noted that all !0-weighted degrees are at most
1 � :5"i , so it remains to prove the lower bounds. Statements (i) and (ii) are immediate
from !0.e/ > .1C ":8/�1.1� :5"i /!.e/ for any e 2Hi , obtained by applying the defin-
ition of !0, using Lemma 3.4.

For (iii), if e D “�w.u/Dx” with u 2 Ai n .Abad
w \ NF 0.A

lo//, then !.Hi Œ
 �xy�/ D

1˙ "i for all y D �w.v/, v 2 N<.u/ and if �!xw 2 Ji n J bad, then !.Hi Œ
�!xw�/ D 1˙ "i

by Lemma 3.4, so

!0.e/ > .1C "i /
�1.1 � :5"i /!.e/ > .1C 1:6"i /

�1!.e/

by definition.
For (iv), note that for any e 2 Hi containing uw with u in Ahi

i or Ano
i n A

bad
w we have

!0.e/ > .1C 1:6"i /
�1!.e/, so

!0.Hi Œuw�/ > .1C 1:6"i /
�1!.Hi Œuw�/ > 1 � 2"i :

If instead u 2 Alo n Abad
w then, by Lemma 3.1 (iii), !0.Hi Œuw�/ is at least the sum of

.1C 1:6"i /
�1!.e/ where e D “�w.u/Dx” over x with �!xw … J bad, so

!0.Hi Œuw�/ > .1C 1:6"i /
�1!.Hi Œuw�/ � ı

3n � .1˙ :5":8/�1p�4maxjAuj
�1 > 1 � 2"i :

For (v), we consider codegrees according to the various types of vertices. First we
note that each !0.“�w.u/Dx”/� 2p�4maxjAuj

�1. For each u, jAuj ��, so this easily gives
the codegree bound for the pairs appearing in the following bounds: jHi Œuw; vw�j D 0,
jHi Œ
�!xw;�!yw�j D 0, jHi Œuw;

�!xw�j � 1, jHi Œuw;
 �xy�j � 2. If “�w.u/Dx” contains �!xw and

 �xy then u 2 N>.v/ where �w.v/ D y, so jHi Œ
�!xw; �xy�j is at most �, or at most p�1max if

v 2 A�1, or 0 if v 2 A0 and �!xw 2 J hi. These weighted codegrees are therefore at most
2�p�4max.ın/

�1 or 2p�4max�
�1 < ��:9.

It remains to bound !0.Hi Œ
 �xy; �xy0�/. Suppose  �xy 2

�!
Gu0v0 and  �xy0 2

�!
Gu0v00

, with
u0v0 2 F

0ŒAi ; Aj � and u0v00 2 F
0ŒAi ; Aj 0 �, say with j 0 � j . We have j > 0 as jN<.u/\

A0j � 1 for all u 2 A�1, and as F ŒAhi� D ; we have jAu0 j jAv0 j � ın�.
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Suppose first that j 0 <j . Let f be the function on Hj [ ¹;º, where f .;/D��:99 and
each f .“�w.v/Dz”/ is 2p�4maxjAu0 j

�1 if z D y, v 2 Av0 and there are u 2 Au0 \N>.v/
and v0 2 N<.u/\Av0

0
with �w.v0/ D y0, or 0 otherwise. If j 0 > 0, then for each w 2 W

there is at most one v0 with �w.v0/ D y0, at most p�1max choices of u 2 Ai \ N>.v0/, and
at most four choices of v 2 N<.u/, so

f .Hj ; !
0/ � ��:99 C 8np�9maxjAv0 j

�1
jAu0 j

�1 < 2��:99:

If j 0 D 0, then there are at most � choices of u 2 Ai \ N>.v0/, and u 2 Alo, so every
v 2 N<.u/ in Av0 lies in Ano, so

f .Hj ; !
0/ � ��:99 C 8n�p�8max.ın/

�2 < 2��:99:

As f¹eº.Hj ; !
0/ � 2p�4max�

�1 < C�ˇf .Hj ; !
0/, by Lemma 2.8 whp

!0.Hi Œ
 �xy; �xy0�/ < f .Mj / D .1˙ C

�ˇ /f .Hj ; !
0/ < ��:9:

Now suppose j 0 D j . Then j ¤ 0 and we cannot have v0, v00 both in Ahi by definition
of A0 as a span, so jAv0 j jAv00 j � ın�. Let f be the function on

�
Hj
2

�
[ ¹;º, where

f .;/D��:99 and each f .“�w.v/Dz”; “�w.v0/Dz0”/ is 2p�4maxjAu0 j
�1 if z D y, z0 D y0,

v 2 Av0 , v 2 Av0
0

and there is u 2 Au0 \ N>.v/ \ N>.v
0/, or 0 otherwise. For each

u 2 Au0 there are � 12 choices of .v; v0/ so

f .Hj ; !
0/ � ��:99 C 24np�12max jAv0 j

�1
jAv0

0
j
�1 < 2��:99:

As above, by Lemma 2.8, whp f .Mj / < �
�:9.

3.2. Potential embeddings

We define a hypergraph H with vertex partsG, A�1 �W and V.G/�W , which contains
all potential edges of all Hi , in the following sense. Given w 2 W , u 2 V.T / and an
injection f W N�.u/! V.G/ such that f .u0/f .u/ 2 G for all u0 2 N<.u/ we let Pw.f /
be the “potential edge” containing u 2 V.T /, f .u/ 2 V.G/ and f .u0/f .u/ 2 G for all
u0 2 N<.u/. For any u 2 S � N�.u/ and injection f 0 W S ! V.G/ we let Pw.f 0/ be the
set of all Pw.f / 2 H such that f restricts to f 0 on S . We use the notation Pw.u! x/

when S D ¹uº with f .u/ D x and Pw.uv !
 �xy/ when S D ¹u; vº with f .u/ D x,

f .v/ D y.
For each time t we introduce a measure !t on H where each !t .Pw.f // estimates

the probability given the history at time t that thew-embedding will be consistent with f .
We define !t by the following formula involving other estimated probabilities that will
be discussed below:

!t .Pw.f // D !
�
t .Pw W u! x/

Y
v2N<.u/

pt .uv/
�1!�t .Pw W v ! f .v//:

The key parameter in this formula is !�t .Pw W u! x/, which will estimate the probab-
ility P t .�w.u/ D x/ given the history at time t that we will have “�w.u/Dx”. We also
associate an edge probability pt .uv/ to each v 2 N<.u/, where pt .uv/ D 1 if t � tv ,
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otherwise pt .uv/ is p if t < t0, is p1 if t0 � t < t1, or is puv for t � t1. The intuition for
the formula is that conditional on “�w.u/Dx”, the events �w.v/ D f .v/ become about
pt .uv/

�1 times more likely and are roughly independent. In our calculations it will be
sufficient to work only with !�t .Pw W u! x/, so the formula for the measure !t above
can be thought of as just an intuitive explanation for why the calculations work (it is not
logically necessary for the proof).

Note that we have introduced similar notation for two different quantities, namely
!�t .Pw W u! x/ and !t .Pw.u! x// D

P
¹!t .Pw.f // W Pw.f / 2 Pw.u! x/º; they

will be approximately equal. In general, for any u 2 S � N�.u/ and any injection f 0 W
S ! V.G/ we will have

!t .Pw.f
0//�!�t .Pw W f

0/ WD!�t .Pw W u! x/
Y

u02Sn¹uº

pt .uu
0/�1!�t .Pw W u

0
! f .u0//:

Another important example of this will be

!t .Pw.uv!
 �xy//� !�t .Pw W uv!

 �xy/D pt .uv/
�1!�t .Pw W u! x/!�t .Pw W u! y/:

Initially, we let all !�0 .Pw W u! x/ WD n�1. (One can check that typicality of G gives
!0.Pw.u! x//D .1˙ � :9/!�0 .Pw W u! x/.) For t � tuw , i.e. times after �w.u/ has been
defined, we let !�t .Pw W u! x/ WD 1“�w.u/Dx”. We thus have !t .Pw.f 0//D !�t .Pw W f

0/

at times t after �w.u/ has been defined for all u 2 N�.u/ n S . In particular, if t � tu0 for
all u0 2 N<.u/ then there is at most one f with f .u/D x consistent with the history, and
we have !t .Pw.f //D !�t .Pw W u! x/. Furthermore, for u 2 Ai , when we come to step
i of APPROXIMATE DECOMPOSITION we will have !�ti .Pw W u! x/D !.“�w.u/Dx”/.

Now we define !�t .Pw W u! x/ for general t and u 2 V.F /. As mentioned above,
we let !�0 .Pw W u! x/ D n�1 and !�t .Pw W u! x/ D 1“�w.u/Dx” for t � tuw . At each
time t < tuw where the possibility of “�w.u/Dx” depends on an event in the algorithm,
if the event fails we let !�t .Pw W u! x/ D 0, and if it succeeds we will divide by an
estimate for its probability, thus approximately preserving the conditional expectation of
the surviving weight. We let P tw.u! �/ be the set of x such that !�t .Pw W u! x/ ¤ 0

and define P tw.� ! x/, P t� .u! x/ in analogy, and also define P tw.� !
 �xy/ to be the set

of uv 2 F 0 such that !�t .Pw W u! x/ ¤ 0 and !�t .Pw W v ! y/ ¤ 0.
During HIGH DEGREES, we will have P t

�
u0 .�w.u

0/x 2 G/ � p when we embed any
u0 2N<.u/\A

�, so if this occurs we let !�tu0 .Pw W u! x/ WD p�1!�t�
u0
.Pw W u! x/. So

at the end of HIGH DEGREES, !�thi
.Pw W u! x/ is p�jN<.u/\A

�jn�1 for x 2 P thi
w .u! �/

or 0 otherwise. (Note that our estimate ignores the possibility that “�w.u/Dx” may be
impossible due to requiring an edge of G nG�.)

In INTERVALS, we require x 2 xXw , which by Lemma 2.12 (i) occurs with probability
� xpw , and then we let !�tint

.Pw W u! x/ be xp�1w !�thi
.Pw W u! x/ for x 2 P tint

w .u! �/

or 0 otherwise.
In EMBED A0, after choosing G0 and J0, there are two cases. If u 2 A�1 we let

!�tG0
.Pw W u ! x/ D p

�jN<.u/\A0nA
�j

1 !�thi
.Pw W u ! x/ for x 2 P

tG0
w .u ! �/ and 0

otherwise. Indeed (recalling u 2 A�1), for any x 2 P tint
w .u! �/ we have x 2 P

tG0
w .u! �/
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iff for u0 2N<.u/\A0 nA� we have x�w.u0/ 2G1, which occurs with probability p1. If
u 2 A0 nA

� we require �!xw 2 J0, which for available x has probability p0= xpw , and then
we let !�tG0 .Pw W u! x/ be p�10 !�thi

.Pw W u! x/ for x 2 P
tG0
w .u! �/ or 0 otherwise.

During the embedding of A0, i.e. EMBED A0 (ii), after choosing some �w.a/ at time
t D ta, for u 2 A0 n A� we let !�t .Pw W u ! x/ be !�t�.Pw W u ! x/ if au … T , or
if au 2 T we let !�t .Pw W u ! x/ be p�10 !�t�.Pw W u ! x/ for x 2 P tw.u ! �/ or 0
otherwise. So !�t0.Pw W u! x/ is p�jNT .v/\A0nA

�j

0 !�thi
.Pw W u! x/ for x 2 P t0w .u! �/

or 0 otherwise. For u 2 A�1, if au 2 F 0 we let !�t .Pw W u! x/ be p�11 !�t�.Pw W u! x/

for x 2 P tw.u! �/ or 0 otherwise.
For DIGRAPH, we let !�t1.Pw W u! x/ be

jAuj
�1

Y
v2N<.u/\A0

p�1uv for x 2 P t1w .u! �/

or 0 otherwise. To justify this, we first consider u 2 Aai , a 2 A�i , when N<.u/\A0 D ;,
and all d˙

Ha
i

.y/ D .1˙ ı/jAuj by Lemma 2.13 (viii). If u 2 Ano
i we must choose �!xw 2

J no
i with probability pxw= xpw � ˛no

i =pxw D ˛
no
i = xpw . If instead u 2 Alo

i , we must choose
 �����
x�w.v/ as an arc of

�!
Guv for all edges x�w.v/ of G1 with v 2 N<.u/ \ A0, each with

probability 1
2
� 2puv=p1 D puv=p1 independently, and �!wx 2 Ju with probability ˛lo

i = xpw .
During APPROXIMATE DECOMPOSITION, we let !�t .Pw W u ! x/ be equal to

jAuj
�1
Q
v2N<.u/\At;w

p�1uv for x 2 P tw.u! �/ or 0 otherwise; we will see that whenever

we embed v 2 N<.u/, we have P .
 �����
x�w.v/ 2

�!
Gu/ � puv . We note that !�ti .Pw W u! x/

D!.“�w.u/Dx”/, as mentioned above. We emphasise that the !�t .Pw W u! x/ are defin-
itions (with justifications provided only for intuition), and it is the sets P tw.u! x/ which
change during the algorithm.

We use the notation !�t .Pw W u! x/ with a set of vertices in place of one or more of
w;u;x to denote a sum of !�t .Pw W u! x/ over these sets, for example !�t .PW W u! x/

or !�t .Pw W V.T /! x/ or !�t .PW W F
0ŒAi ;Aj �!

 �xy/. To see the connection to weighted
degrees in Lemma 3.4, observe that “�w.u/Dx” 2 Hi iff x 2 P tiw .u! �/, so

!.Hi Œuw�/ D
X
¹!.“�w.u/Dx”/ W x 2 P tiw .u! �/º D !

�
ti
.Pw W u! N�Ju.w//

D !�ti .Pw W u! V.G//

and similarly !.Hi Œ
�!xw�/D !�ti .Pw WA�!xw! x/ and !.Hi Œ

 �xy�/D !�ti .PW W F
0ŒA

g
i ;A

g0

j �

!
 �xy/ when �xy 2 Ggg

0

ij .
We conclude this subsection with the following lemma, which implies the estimate on

the weighted degrees !.Hi Œuw�/ in Lemma 3.4 (i). The proof is immediate from Lemma
2.13 (v), as x 2 P tw.u! �/ for t � t1 iff x 2 NJu.w/ \

T
v2N<.u/\At;w

NC�!
Guv

.�w.v//.

Lemma 3.5. For all u 2 A�1, w 2 W and t � t1 we have

jP tw.u! �/j D .1˙ 5�/!
�
t .Pw W u! x/�1 D .1˙ 5�/jAuj

Y
v2N<.u/\At;w

puv:
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3.3. J degrees

In this subsection we prove the estimates in Lemma 3.4 (v) concerning weighted degrees
!.Hi Œ

�!xw�/ D !�ti .Pw W A�!xw ! x/ for �!xw in Ji . We start with the following estimate at
time t1.

Lemma 3.6. For all �!xw 2 J hi
i [ J

no
i we have !�t1.Pw W A�!xw ! x/D 1. For all �!xw 2 J lo

i

whp !�t1.Pw W A�!xw ! x/ D 1˙ :3":8.

Proof. If �!xw 2 J hi
i [ J

no
i then P t1w .� ! x/ D A

g
i , where g D no if �!xw 2 J no

i or g D a
if �!xw 2 J ai for some a 2 A�i . We have !�t1.Pw W u! x/ D jA

g
i j
�1 for all u 2 Agi , so

!�t1.Pw W A
g
i ! x/ D 1.

Now we consider the evolution of !�t .Pw W A
lo
i ! x/. Initially !�0 .Pw W A

lo
i ! x/ D

jAlo
i jn
�1 D ˛lo

i . During HIGH DEGREES, for each u 2 Alo
i , when we embed some a 2 A�,

if a … N<.u/ we have !�ta.Pw W u! x/ D !�t�a .Pw W u! x/, whereas if a 2 N<.u/, as
P t
�
a .�w.a/ 2 NG.x// D .1˙ ı/p by Lemma 2.10 we have

Et
�
a !�ta.Pw W u! x/ D P t

�
a .�w.a/ 2 NG.x//p

�1!�t�a .Pw W u! x/

D .1˙ ı/!�t�a .Pw W u! x/:

As jN<.u/j � 4 we have E0!�thi
.Pw W A

lo
i ! x/ D .1 ˙ ı/4˛lo

i . For concentration, we
bound each j!�ta.Pw W A

lo
i ! x/� !�t�a .Pw W A

lo
i ! x/j by !�t�a .Pw W A

lo
i \N>.a/! x/

< �p�4max.ın/
�1, so by Lemma 2.4 whp !�thi

.Pw W A
lo
i ! x/ D .1˙ 5ı/˛lo

i .
After INTERVALS, we can assume x 2 xXw , and then

!�tint
.Pw W A

lo
i ! x/ D xp�1w !�thi

.Pw W A
lo
i ! x/:

After EMBED A0, similarly to the above analysis for HIGH DEGREES, using Lemma 2.11
in place of Lemma 2.10, whp

!�t��.Pw W A
lo
i ! x/ D .1˙ 5D�:9/!�tint

.Pw W A
lo
i ! x/

and

!�t0.Pw W A
lo
i ! x/ D .1˙ 5D�:9 ˙ 5˛:90 /!

�
tint
.Pw W A

lo
i ! x/

D .1˙ :1":8/!�tint
.Pw W A

lo
i ! x/:

After DIGRAPH, the part J gi of J containing�!xw is determined; we can assume gD lo,
as we have already considered the other cases. Each !�t1.Pw W u! x/ is 0 unless u 2 Alo

i

and we have the eventEu that
 �����
x�w.u

0/ in
�!
Guu0 for the unique u0 2N<.u/\A0, in which

case !�t1.Pw W u! x/ D jAlo
i j
�1p�1uu0 . By Lemma 2.13 we have

Et0!�t1.Pw W A
lo
i ! x/ D

X
u2Alo

i

P t0.Eu/jA
lo
i j
�1p�1uu0

D

X
u2Alo

i

.puu0=p1/ � !
�
t0
.Pw W u! x/ xpw.˛

lo
i /
�1.p1=puu0/˙�

�:9
D 1˙ :2":8:

For concentration, note that for each x�w.u0/ 2 G�, the assignment in DIGRAPH affects
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!�t1.Pw W A
lo
i ! x/ by � jN>.u0/ \ Alo

i jp
�1
maxjA

lo
i j
�1 � �p�1max.ın/

�1. Consequently, by
Lemma 2.4, whp !�t1.Pw W A

lo
i ! x/ D 1˙ :3":8.

Next we give a significantly better estimate for !�t1.Pw W A
g
i ! x/ for �!xw … J bad

i .

Lemma 3.7. If �!xw 2 J lo
i n J

bad
i then whp !�t1.Pw W A

lo
i ! x/ D 1˙ "1.

Proof. By the proof of Lemma 3.6, whp

!�t0.Pw W A
��
i ! x/ D !�t��.Pw W A

��
i ! x/ D .1˙ 6D�:9/. xpwn/

�1
jA��i j ˙ ı;

and it suffices to show !�t0.Pw W A
0
i ! x/ D . xpwn/

�1jA0i j ˙ ı. For any u 2 A0i we have

!�t0.Pw W u! x/ D .puu0=p1/ � !
�
tint
.Pw W u! x/ � 1u02Sw

i
\N��!

G1

.x/;

so by definition of J bad
i we have

!�t0.Pw W A
0
i ! x/ D .p1 xpwn/

�1
jSwi \N

�
�!
G1
.x/j D . xpwn/

�1
jA0i j ˙ ı:

The lemma follows.

Next we give an estimate that will be used in several further lemmas below. For any
U � V.T / n A0 we let �2.U / D ¹v W distT nA0.v; U / � 2º, where dist denotes graph
distance. For w 2 W we let

Uw D ¹u 2 P
�
w.� ! x/ \ �2.Alo/ W N<.u/ \ A

bad
w ¤ ;º:

Lemma 3.8. If u … Uw and u0 2 N<.u/ \ Ai 0 thenX
x02N��!

Guu0

.x/

!0.“�w.u0/Dx0”/ D .1˙ 2:2"i 0/puu0 :

Proof. We note that

!0.“�w.u0/Dx0”/ D .1˙ 2"i 0/!.“�w.u0/Dx0”/

for any x0 2 P ti0w .u0 ! �/ n NJ bad.w/. Indeed, this holds by Lemma 3.1 (iii) for i 0, as
u0 … Abad

w \NF 0.A
lo/ by definition of Uw . We deduce

!.“�w.u0/Dx0”/ D !�ti0 .Pw W u
0
! x0/ D jAu0 j

�1
Y

v2N<.u0/\A<i0

p�1u0v

D ..1˙ 5�/jP
ti0
w .u0 ! �/j/�1

by Lemma 3.5, so
P
x02N��!

Guu0

.x/ !
0.“�w.u0/Dx0”/ equals

.1˙ 2:1"i 0/jP
ti0
w .u0 ! �/j�1 � jP

ti0
w .u0 ! �/ \N��!

Guu0
.x/j ˙ p�4maxı

2;

with ˙p�4maxı
2 accounting for x0 2 NJbad.w/ when u0 … Ahi, and so !0.“�w.u0/Dx0”/ �

p�4max.ın/
�1. The lemma now follows by Lemma 2.13, similarly to the discussion before

Lemma 3.5.
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Now we consider the evolution of !�t .Pw W A�!xw ! x/ during some step i 0 < i of
APPROXIMATE DECOMPOSITION. For lighter notation we write � D ti 0 and � 0 D tCi 0 .

Lemma 3.9. Whp !�� 0.Pw W A�!xw ! x/ D .1˙ ":9i 0 /!
�
� .Pw W A�!xw ! x/.

Proof. We consider the function  on
�

Hi0
�4

�
, where  .Eu/ D 0 except if there is u 2

P �w.� ! x/\A>i 0 n Uw such that Eu consists of disjoint edges “�w.u0/Dx0” with �xx0 2
�!
Guu0 for each u0 2 N<.u/ \ Ai 0 , and then  .Eu/ D jAuj�1

Q
u02N<.u/\A�i0

p�1uu0 . Now,

for u … Uw with N<.u/\A0i 0;w D ;, given x 2 P �w.u! �/, we have x 2 P �
0

w .u! �/ iff
Eu �Mi 0 , and for such x we have  .Eu/ D !.“�w.u/Dx”/. Thus

!�� 0.Pw W A�!xw ! x/ D
X
¹!.“�w.u/Dx”/ W x 2 P �

0

w .u! �/º D  .Mi 0/˙� ˙�
0
 ;

where

� D
X
¹!�� 0.Pw W u! x/ W N<.u/ \ A

0
i 0;w ¤ ;º � p

�4
maxjA�!xw j

�1
jF 0ŒA0i 0;w ; A�!xw �j

< 9"i 0p
�5
max;

�0 D
X
u2Uw

!�� 0.Pw W u! x/ � p�5maxjA
bad
w j jA�!xw j

�1 < p�5maxı
2:

Here we have bounded � by Lemma 3.3 (vi), and �0 by Lemma 3.2, also assuming
jA�!
xw
j � ın, as we may, because if �!xw 2 J hi then Uw D ;, using Ahi \ �2.Alo/ D ; by

the definition of A0 as a 4-span.
Next we estimate  .Hi 0 ; !

0/, which equalsX
u2P �w.�!x/nUw

jAuj
�1

Y
u002N<.u/\A�i0

p�1uu00
Y

u02N<.u/\Ai0

X
x02N��!

Guu0

.x/

!0.“�w.u0/Dx0”/:

By Lemma 3.8 we have

 .Hi 0 ; !
0/

D

X
u2P �w.�!x/nUw

jAuj
�1

Y
u002N<.u/\A<i0

p�1uu00
Y

u02N<.u/\Ai0

p�1uu0.1˙ 2:2"i 0/puu0

D .1˙ 8:9"i 0/.!
�
� .Pw W A�!xw ! x/˙ p�5maxı

2/;

with the error term as in the estimate for �0 . The lemma now follows from Lemma 2.8,
noting that jEu \ Eu0 j � 1 (otherwise u; u0 would have two common neighbours), and
for any e D “�w.u0/Dx0” we have

f¹eº.Hi 0 ; !
0/ �

X
u2N>.u0/

2jAuj
�1p�4max � 2p

�5
max�

�1 < C�ˇ .Hi 0 ; !
0/:

Similarly to Lemma 2.11, we have the following estimates during the embedding
of A0i 0;w (which has size < 2:1"i 0n by Lemma 3.3).
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Lemma 3.10. For any w 2 W , W 0 � W , a 2 A0i 0;w \ A
g0

i 0 , x; y 2 V.G/, i
0; i 2 Œi��,

g; g0 2 ¹hi; lo; noº, writing Awa for the set of y such that �w.a/ D y is possible given the
history at time t�a , whp

(i) P t
�
a .�w.a/ D y/ D .1˙ "

:9
i 0 /jA

w
a j
�1,

(ii) P t
�
a .�w.a/ 2 N

�
�!
GG
ii0

.x// D .1˙ ":9i 0 /p
gg0

i i 0 ,

(iii) j¹w 2 W 0 W �w.a/ 2 N��!
GG
ii0

.x/ºj D .1˙ ":9i 0 /p
gg0

i i 0 jW
0j ˙ n:8.

Proof. Recall that for each a 2Ai 0 in any order, we letWa D ¹w 2W W �w.a/ undefinedº,
let Va 2

�
V
jWaj

�
be uniformly random, and define

Ma D ¹�w.a/w W w 2 Waº D MATCH.Ba; Za/;

where Za D ¹�w.b/w W b 2 N<.a/º and Ba � Va � Wa consists of all vw with v 2
NJ 0

i
.w/ n Im�w and each

 �����
v�w.b/ for b 2 N<.a/ an unused edge of G0i 0 .

To justify the application of Lemma 2.7 in defining Ma, we first note that by
Lemma 3.3 (v), jWaj > :3"i 0n for all a 2 Ai 0 . Also Za has maximum degree � 4. We
also claim that whp Ba is ":7i 0 -super-regular of density .1˙ ":7i 0 /p

jN<.a/jC1
max . To see this,

we argue similarly to Lemmas 2.10 and 2.11, except that Lemma 2.6 is not applicable, so
we instead apply Lemma 2.5. We have jWaj D jVaj � :3"i 0n. We let Gfree � G

0
i 0 denote

the graph of unused edges, and let B be the bad event that G0i 0 n Gfree has each vertex of
degree > :1":9i 0 n. We will establish the claim at any step before B occurs, assuming the
claim for all b � a, and deduce that whp B does not occur.

Consider any R 2
�
Wa
�2

�
. We have

NBa.R/ D Va \N
�

J 0
i0
.R/ \NCGfree

�\
w2R

�w.N<.a//
�
n

[
w2R

Im�w :

As B does not occur, by Lemma 2.13 and a Chernoff bound, whp

jNBa.R/j D .1˙ "
:8
i 0 /.p

jN<.a/jC1
max /jRjjVaj;

unless R D ¹w;w0º with �w.N<.a// \ �w0.N<.a// ¤ ;; by Lemma 2.8 there are whp
< n1:5 such pairs R.

Now consider any R0 2
�
Va
�2

�
. Let W t be the set of w such that �w.b/ 2 N�G0

i0
.R0/ for

all b 2 N<.a/ with �w.b/ defined at time t . As B does not occur,

jNBa.R
0/j D jWa \N

C

J 0
i0
.R0/ \W t�a j ˙ :5":9i 0 n:

For any b 2 N<.a/ and w 2 NC
J 0
i0
.R0/, if �w.b/ is defined by Lemma 2.7 during HIGH

DEGREES or APPROXIMATE DECOMPOSITION then similarly to the proof of Lem-
ma 2.11, writing � D t�

b
and � 0 D tb , whp

jW � 0
j D jM bŒN�

G0
i0
.R0/;W � �j D .1˙ ":8j /p

jR0j
max jW

�
j

by Lemma 2.7, assuming the claim for b 2 Aj with j < i 0.
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Now suppose �w.b/ is defined by the hypergraph matching in Hj . We consider the
function f on Hj with f .“�w.u/Dx”/ D 1w2W � 1uDb1x2N�

G0
i0
.R0/, so

f .Hj ; !
0/ D

X
x2N�

G0
i0
.R0/

X
w2W �

!0.“�w.b/Dx”/:

Similarly to the proof of Lemma 3.8, if b … Abad
w thenX

x2N�
G0
i0
.R0/

!0.“�w.b/Dx”/ D .1˙ 2:2"j /pjR
0j

max :

By Lemma 3.3 (iv), whp j¹w W b 2 Abad
w ºj < 5ı

4n, so

f .Hj ; !
0/ D

X
x2N�

G0
i0
.R0/

X
w2W �

!0.“�w.b/Dx”/ D .1˙ 2:3"j /jN�G0
i0
.R0/j jW �

j;

and by Lemma 2.8, whp jW � 0 j D .1˙ 3"j /p
jR0j
max jW

� j.
Together with Lemma 2.13 (ii) this proves the claim, and so justifies the definition

of Ma. Statements (i)–(iii) of the lemma now follow directly from Lemma 2.7, consider-
ingMaŒW

0;N��!
GG
ii0

.x/� for (iii). Also, whp every vertex degree inG0i 0 nGfree is .:1":9i 0 n; 4/-

dominated from (i), so whp B does not occur.

We deduce the following estimate similarly to the proof of Lemma 3.6, using
Lemma 3.10 in place of Lemma 2.11.

Lemma 3.11. Whp !�ti0C1.Pw W A�!xw ! x/ D .1˙ ":8i 0 /!
�

t
C

i0

.Pw W A�!xw ! x/.

We conclude by deducing the estimates on!.Hi Œ
�!xw�/D!�ti .Pw WA�!xw! x/ required

for Lemma 3.4. By Lemma 3.6, whp !�t1.Pw W A�!xw ! x/ D 1˙ :3":8, and by Lemmas
3.9 and 3.11, whp

!�ti0C1.Pw W A
�!
xw
! x/ D .1˙ 2":8i 0 /!

�

t
C

i0

.Pw W A�!xw ! x/;

so !�ti .Pw W A�!xw ! x/ D 1 ˙ :4":8. Also, if �!xw … J bad
i then by Lemma 3.7, whp

!�t1.Pw W A�!xw ! x/ D 1 ˙ "1, and repeating the previous calculations shows that
!�ti .Pw W A�!xw ! x/ D 1˙ 3":8i�1 D 1˙ "i . This completes the proof of Lemma 3.4 (ii).

3.4. G degrees

This subsection concerns !.Hi Œ
 �xy�/ for  �xy 2

�!
Gi . We start by establishing Lem-

ma 3.4 (iii), which is Lemma 3.12 below, as this is needed for the analysis (and also
for Lemma 4.2 below).

Lemma 3.12. Whp !�ti .PW W u! x/ D 1˙ "i for each x 2 V.G/ and u 2 Ai .

We start with the corresponding estimate at time t1.

Lemma 3.13. Whp !�t1.PW W u! x/ D 1˙ "1 for each x 2 V.G/ and u 2 Ai .
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Proof. We consider cases according to the location of u.
If u 2 Aai with a 2 A�i then !�t1.Pw W u ! x/ D jAuj

�11�w.a/x2Hai
, and hence

!�t1.PW W u! x/ D jAuj
�1d�

Ha
i

.x/ D 1˙ "1 by Lemma 2.13 (viii).

If u 2Ano
i then !�t1.Pw W u! x/D jAuj

�11�!
xw2Ju

, so by Lemma 2.13 and a Chernoff
bound whp !�t1.PW W u! x/ D 1˙��:1.

If u 2 Alo
i then !�t1.Pw W u ! x/ D p�1u jAuj

�11�!
xw2Ju

1�w.u0/2N��!
Gu0

.x/, where

N<.u/\A0 D ¹u
0º. For each x0 2 NG�.x/ there is a unique w0 2 W with �w0.u0/ D x0,

so
!�t1.PW W u! x/ D

X
x02NG� .x/

p�1u0 jAuj
�11 �

xx02
�!
Gu0
1�!
xw02Ju

:

As jNG�.x/j D .1˙ 2�/pn, by Lemma 2.13 and a Chernoff bound whp !�t1.PW W u! x/

D 1˙ 3� .

Next we consider the evolution of !�t .PW W u! x/ at step i 0 < i in the approximate
decomposition, again writing � D ti 0 , � 0 D tCi 0 .

Lemma 3.14. Whp !�� 0.PW W u! x/ D .1˙ ":8i 0 /!
�
� .PW W u! x/.

Proof. Let W 0 D ¹w 2 P �� .u! x/ W u … Uwº. Consider the function  on
�

Hi0
�4

�
where

 .I / D 0 except if there is w 2 W 0 such that I consists of disjoint edges “�w.u0/Dx0”
with �xx0 2

�!
Guu0 for each u0 2 N<.u/ \ Ai 0 , and then

 .I / D jAuj
�1

Y
u02N<.u/\A�i0

p�1uu0 :

Note that !�� 0.PW W u! x/ D  .Mi 0/˙� ˙�
0
 , where

� D p
�4
maxjAuj

�1
X

u02N<.u/\Ai0

j¹w 2 NJu.x/ W u
0
2 A0i 0;wºj

< 4p�4maxjAuj
�1.2:1"i 0dJu.w/C ıjAuj/ < "

:9
i 0 ;

�0 D p
�4
maxjAuj

�1
j¹w 2 W W u 2 Uwºj

� p�4max.ın/
�1

X
u02N<.u/

j¹w W u0 2 Abad
w ºj < ı:

Here we have used Lemmas 3.3 and 2.13 (ii, viii) to estimate � , and for �0 we have
used Lemmas 3.2 (v) and 3.3 (iv), also noting that if�0 ¤ 0 then u;u0 … Ahi by definition
of A0, so jAuj � ın. Finally,

 .Hi 0 ; !
0/

D

X
w2W 0

jAuj
�1

Y
u02N<.u/\A�i0

p�1uu0
Y

u02N<.u/\Ai0

X
x02N��!

Guu0

.x/

!0.“�w.u0/Dx0”/

D .1˙ 9"i 0/!
�
� .PW W u! x/

by Lemma 3.8, and the lemma now follows from Lemma 2.8.
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We deduce Lemma 3.12 (i.e. Lemma 3.4 (iv)) from the previous two lemmas and the
following estimate which holds similarly to Lemma 3.11, using Lemma 3.10 (iii).

Lemma 3.15. Whp all !�ti0C1.PW W u! x/ D .1˙ ":8i 0 /!
�

t
C

i0

.PW W u! x/.

Now we turn to the degrees of �xy 2
�!
Gi . We consider !�t .PW W F

0ŒA
g
i ; A

g0

j �!
 �xy/,

where �xy 2
�!
GG
ij , 0 � j < i , and for convenient notation we label arcs of F 0ŒAgi ; A

g0

j � as

uv with u 2 Agi , v 2 Ag
0

j . Recall that
�!
GG
i0 D

�!
GG
i0 for all g0. We start with an estimate at

time t1.

Lemma 3.16. Whp !�t1.PW W F
0ŒA

g
i ; A

g0

j �!
 �xy/ D 1˙ "1 for all �xy 2

�!
GG
ij .

Proof. We consider cases according to g; g0; i; j where 0 � j < i .
We start with the case  �xy 2

�!
GG
i0 . For each uv 2 F 0ŒAlo

i ; A0�, w 2 W we have
!�t1.Pw W uv !

 �xy/ D 0, except for the unique wv 2 W with �wv .v/ D y, for which

!�t1.Pwv W uv !
 �xy/ D !�t1.Pwv W u! x/ D .plo

i0jA
lo
i j/
�11xwv2J lo

i
;

so !�t1.PW W uv !
 �xy/ D .plo

i0jA
lo
i j/
�11xwv2J lo

i
. The wv are distinct, so the events

¹xwv 2 J lo
i º are independent. Each affects !�t1.PW W uv!

 �xy/ by< p�1uv p
�1
max.ın/

�1, so
by Lemma 2.4, whp

!�t1.PW W F
0ŒAlo

i ; A0�!
 �xy/ D .puvn/

�1
jF 0ŒAlo

i ; A0�j ˙ n
�:4

D p�1uv .puv � pmin/˙ n
�:4
D 1˙ "1:

Next consider the case �xy 2
�!
GG
ij , j 2 Œi � 1�. For each uv 2 F 0ŒAhi

i ;A
no
j �, w 2W we

have !�t1.Pw W uv!
 �xy/D 0, except if�!xw 2 Ju and�!yw 2 Jv , when !�t1.Pw W uv!

 �xy/

D .puvjAuj jAvj/
�1. We have �!xw 2 Ju iff �w.a/ 2 N�Ha

i

.x/, where u 2 Aai , and as
d.x; y/ > 3d since any close edges were removed from G1, the events  �xy 2

�!
Guv ,

¹
�!xw 2 Juº and ¹�!yw 2 Jvº are conditionally independent given HIGH DEGREES. By

Lemma 2.13 and a Chernoff bound, whp there are .1 ˙ ��:6/˛vd�Ha
i

.x/ choices of w
with !�t1.Pw W uv !

 �xy/ ¤ 0, so

!�t1.PW W uv !
 �xy/ D .1˙��:6/d�Ha

i
.x/p�1uv jAuj

�1n�1 D .1˙ :2"1/.puvn/
�1

by Lemma 2.13, giving the required estimate.
The case �xy 2

�!
GG
ij , j 2 Œi � 1�, is similar to the previous one.

Now consider the case �xy 2
�!
GG
ij , j 2 Œi � 1�. For each uv 2 F 0ŒAno

i ;A
no
j �, w 2W we

have !�t1.Pw W uv!
 �xy/D 0, except if�!xw 2 Ju and�!yw 2 Jv , when !�t1.Pw W uv!

 �xy/

D .puvjAuj jAvj/
�1. By a Chernoff bound, whp

!�t1.PW W uv !
 �xy/ D

X
w2W

!�t1.Pw W uv !
 �xy/ D .puvn/

�1
˙ n�1:4;

giving the required estimate.
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Finally, consider the case �xy 2
�!
GG
ij , j 2 Œi � 1�. (The case �xy 2

�!
GG
ij is similar, and this

is the last case by the definition of A0 as a 4-span.) For each uv 2 F 0ŒAlo
i ; A

no
j �, w 2 W

we have !�t1.Pw W uv !
 �xy/ D 0, except in the event Euvw that �!xw 2 Ju, �!yw 2 Jv

and  �xx0 2
�!
GG
i0 , where x0 D �.u0/, ¹u0º D N<.u/ \ A0, when !�t1.Pw W uv !

 �xy/ D

.puvp
lo
i0jAuj jAvj/

�1. For each x0 2 V.G/ there is a unique w0 2 W with �w0.u0/ D x0,
so

!�t1.PW W uv !
 �xy/ D

X
w2W

!�t1.Pw W uv !
 �xy/

D

X
x02N��!

G1

.x/

1Euvw .puvp
lo
i0jAuj jAvj/

�1:

We have
Et0!�t1.PW W uv !

 �xy/ D .plo
i0=p1/d

�
�!
G1
.x/.puvp

lo
i0n

2/�1;

where whp d��!
G1
.x/ D .1 ˙ 2�/p1n. Note that the decisions on �!xw and �!yw affect

!�t1.PW W uv !
 �xy/ by < .puvp

lo
i0/
�1.pmaxın/

�2. For each  �xx0, there are n choices
of w0, which determines u0 D ��1w0 .x

0/, then < � choices for each of u and v, so the
decision on ¹ �xx0 2 G lo

i0º affects !�t1.PW W uv !
 �xy/ by < n�.puvp

lo
i0/
�1.pmaxın/

�2.
The required estimate now follows from Lemma 2.1.

Next we consider the evolution of !�t .PW W F
0ŒA

g
i ; A

g0

j �!
 �xy/ at step i 0 < i in the

approximate decomposition, again writing � D ti 0 , � 0 D tCi 0 .

Lemma 3.17. At step i 0 < i whp !�� 0.PW W F
0ŒA

g
i ; A

g0

j �!
 �xy/

� is .1˙ :7":8/!�� .PW W F
0ŒA

g
i ; A

g0

j �!
 �xy/ for each 0 � j < i and �xy 2

�!
GG
ij ,

� is .1˙ "8i 0/!
�
� .PW W F

0ŒA
g
i ; A

g0

j �!
 �xy/ if j ¤ i 0 or y … B or �xy … Gno;lo.

Proof. We start with the case j < i 0. We note for each uv 2 F 0ŒAgi ; A
g0

j �, w 2 W that
!�� .Pw W uv !

 �xy / and !�� 0.Pw W uv !
 �xy/ are 0 unless �w.v/ D y, in which case

!�� .Pw W uv !
 �xy/ D !�� .Pw W u! x/, and !�� 0.Pw W uv !

 �xy/ D !�� 0.Pw W u! x/.
By Lemma 3.14 we deduce

!�� 0.PW W F
0ŒA

g
i ; A

g0

j �! xy/ D
X
u2A

g

i

jN<.u/ \ A
g0

j j.1˙ "
:8
i 0 /!

�
� .PW W u! x/

D .1˙ ":8i 0 /!
�
� .PW W F

0ŒA
g
i ; A

g0

j �! xy/:

Now we may assume j � i 0. Suppose j D i 0. We consider the function  on
�

Hi0
�4

�
,

where  .E/ D 0 except if there are w 2 W and uv 2 P �w.� !
 �xy/ \ F 0ŒA

g
i ; A

g0

i 0 � with

u … Uw such that E consists of disjoint edges “�w.u0/Dx0” with  �xx0 2
�!
Guu0 for each

u0 2 N<.u/ \ Ai 0 and x0 D y when u0 D v, and then

 .E/ D !�� 0.Pw W u! x/ D jAuj
�1

Y
u02N<.u/\A�i0

p�1uu0 :
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Note that !�� 0.Pw W F
0ŒA

g
i ; A

g0

i 0 �!
 �xy/ D  .Mi 0/˙� ˙�

0
 , where

� D
X
uvw

¹!�� 0.Pw W uv !
 �xy/ W N<.u/ \ A

0
i 0;w ¤ ;º

�

X
wW
�!
xw2J

g

i

X
v2A�!

yw

jF 0ŒA0i 0;w ; N>.v/ \ A
g
i �jp

�8
maxjA

g
i j
�1
jA�!
yw
j
�1

< 9"i 0p
�9
maxd

C

J
g

i

.x/jA
g
i j
�1

< ":9i 0 ;

�0 D
X
vw

¹!�� 0.Pw W uv !
 �xy/ W u 2 Uwº

� p�8maxn.ın/
�2

X
u02N<.u/

j¹w W u0 2 Abad
w ºj < ı

:9:

Here the bound on � follows from Lemmas 3.3 (vi) and 2.13, and the bound on �0 by
Lemmas 3.3 (iv) and 3.2, also noting that if �0 ¤ 0 then u; v … Ahi by definition of A0,

so jAgi j; jA
g0

j j � ın.
Next we estimate  .Hi 0 ; !

0/, which equalsX
uvw2S;u…Uw

h
jAuj

�1
Y

u002N<.u/\A�i0

p�1uu00 !
0.“�w.v/Dy”/

Y
u02N<.u/\Ai0n¹vº

guu0.xw/
i
;

where S WD ¹uvw W w 2 W;uv 2 P �w.� !
 �xy/ \ F 0ŒA

g
i ; A

g0

j �º and by Lemma 3.8,

guu0.xw/ WD
X

x02N��!
Guu0

.x/

!0.“�w.u0/Dx0”/ D .1˙ 2:2"i 0/puu0 :

To obtain the required estimates in the case j D i 0, by Lemma 2.8 it suffices to show
that !0.“�w.v/Dy”/ is .1˙ :6":8/!.“�w.v/Dy”/ when v 2 Alo (which is equivalent to
 �xy 2 Gno;lo) and that if v … Alo or y … B then the sum of

f .uvw/ WD .jAuj jAvj/
�1

Y
u02N<.u/\A�i0

p�1uu0
Y

v02N<.v/\A�i0

p�1vv0

over uvw 2 S for which�!yw 2 J bad is at most
p
ı, the sum of f .uvw/ over uvw 2 S with

v 2Abad
w \N<.A

lo/ is at most
p
ı, and for every other uvw 2 S we have !0.“�w.v/Dy”/

D .1˙ 2"i 0/!.“�w.v/Dy”/.
So first assume v 2Alo. For each y0D �w.v0/, v0 2N<.v/, as v 2Alo we have v0 …Alo,

so !.Hi 0 Œ
 �yy0�/ D 1˙ "i 0 by Lemma 3.4 (iii) for i 0. Parts (i), (iii) imply that !.Hi 0 Œv�/ D

1˙ :5":8 for v D vw;�!yw, so !0.“�w.v/Dy”/ D .1 � :5"i /.1˙ :5":8/!.“�w.v/Dy”/,
as required.

Next, suppose y …B or v …Alo. Consider those uvw 2 S with�!yw 2 J bad. Then y …B
and v 2 Alo, since otherwise �!yw … J bad. So u … Ahi by the definition of A0, and therefore
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jAuj; jAvj � ın. Since y … B , there are < ı3n choices of w with �!yw 2 J bad, so the sum
of f .uvw/ with �!yw 2 J bad is � ı3n

P
uv p

�8
maxjAuj

�1jAvj
�1 <

p
ı.

All other terms uvw have �!yw … J bad. Consider those uvw 2 S with v 2 Abad
w \

N<.A
lo/. Then v; u 2 Ano by the definition of A0 as a 4-span, so jAuj; jAvj � ın. Each

remainingw has< ı3n choices of v 2 Abad
w by Lemma 3.2, so the total sum of these terms

f .uvw/ is �
P
w ı

3np�9maxjAuj
�1jAvj

�1 <
p
ı.

Since all other terms uvw have �!yw … J bad, by Lemma 3.4 (iii) for i 0 we may assume
that there are (not necessarily distinct) v0; v00 2 N<.v/ with �w.v0/ 2 B and v00 2 Alo,
or else we have !0.“�w.v/Dy”/ D .1 � :5"i 0/.1 ˙ "i 0/!.“�w.v/Dy”/. But then v 2
Abad
w \N<.A

lo/, proving the claim and completing the case j D i 0.
Finally, we suppose i 0 < j < i . We consider the function on

�
Hi0
�8

�
, where .E/D 0

except if there are w 2 W and uv 2 P �w.� ! xy/ \ F 0ŒA
g
i ; A

g0

j � with u … Uw such that

E consists of disjoint edges “�w.u0/Dx0” with  �xx0 2
�!
Guu0 for each u0 2 N<.u/ \ Ai 0

and �yx0 2
�!
Gvv0 for each v0 2N<.v/\Ai 0 , and then  .E/D f .uvw/. Note that we have

!�� 0.PW W F
0ŒA

g
i ;A

g0

j �!
 �xy/D  .Mi 0/˙� ˙�

0
 , with� as in the case j D i 0 and

� 0 D
X
uvw

¹!�� 0.Pw W uv !
 �xy/ W N<.v/ \ A

0
i 0;w ¤ ;º

�

X
wW
�!
xw2J

g

i

p�8maxjA
g
i j
�1
jA�!
yw
j
�1p�1maxjF

0ŒA0i 0;w ; A�!yw �j

< 9"i 0p
�10
max

X
wW
�!
xw2J

g

i

jA
g
i j
�1 < ":9i 0

by Lemmas 3.3 (vi) and 2.13. Now we estimate

 0.Hi 0 ; !
0/ D

X
uvw2S;u…Uw

h
f .uvw/

Y
u02N<.u/\Ai0

guu0.xw/
Y

v02N<.v/\Ai0

gvv0.yw/
i
:

By Lemma 3.8, guu0.xw/ D .1˙ 2:2"i 0/puu0 and gvv0.yw/ D .1˙ 2:2"i 0/pvv0 , so

 0.Hi 0 ; !
0/ D .1˙ ":9i 0 /!

�
� .PW W F

0ŒA
g
i ; A

g0

j �!
 �xy/:

The lemma now follows from Lemma 2.8.

Similarly to Lemma 3.11, we also have the following estimate.

Lemma 3.18. Whp

!�ti0C1.PW W F
0ŒA

g
i ; A

g0

j �!
 �xy/ D .1˙ ":8i 0 /!

�

t
C

i0

.PW W F
0ŒA

g
i ; A

g0

j �!
 �xy/:

We conclude the proof of Lemma 3.4 (and so of Lemma 3.1) by deducing the estimates
on !.Hi Œ

 �xy�/ D !�ti .PW W F
0 !
 �xy/ required for Lemma 3.4. For any  �xy 2

�!
GG
ij , by

Lemma 3.16, whp !�t1.PW WF
0ŒA

g
i ;A

g0

j �!
 �xy/D 1˙ "1. At step i 0 < i , by Lemmas 3.17

and 3.18, whp !�� 0.PW W F
0ŒA

g
i ; A

g0

j �!
 �xy/ is .1˙ :7":8/!�� .PW W F

0ŒA
g
i ; A

g0

j �!
 �xy/,
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and is .1˙ 3":8i 0 /!
�
� .PW W F

0ŒA
g
i ; A

g0

j �!
 �xy/ if j ¤ i 0 or y … B or �xy … Gno;lo. Thus

!.Hi Œ
 �xy�/D !�ti .PW W F

0ŒA
g
i ;A

g0

j �!
 �xy/ is 1˙ ":8, and is 1˙ 4":8i�1D 1˙ "i if j ¤ i 0

or y … B or �xy … Gno;lo.

4. Exact decomposition

In this section we complete the proof of our main theorem in each of the cases S, P
and L. We start in the first subsection with some properties of the leftover graph from the
approximate decomposition required for Cases S and P, then analyse each case separately
over the following subsections.

4.1. Leftover graph

In both Cases S and P the approximate decomposition constructs edge-disjoint copies Fw ,
w 2 W of F D T n Pex. The leftover graph G0ex D G n

S
w2W �w.F / is obtained from

Gex by adding all unused edges of G n Gex (and removing any orientations). We require
the following typicality properties.

Lemma 4.1. For any w 2 W and S 2
�
V.G/
�s

�
, whp

jN�Jex
.w/ \G0ex.S/j D .1˙ p

:9
0 /p

0
ex.2pex/

jS jn:

As in Lemma 2.13, a stronger form of this estimate holds with Gex in place of G0ex,
so it suffices to bound the maximum degree in the unused subgraph of G n Gex. Given
the trivial bounds whp �.G0/ < 1:1p0n and �.G0i / < 1:1pmaxn, the following estimate
implies Lemma 4.1.

Lemma 4.2. Whp the unused subgraph of each Ggg
0

i i 0 has maximum degree < 5":8n.

Proof. We fix x 2 V.G/ and consider separately the contributions to the unused degree ux
of x from N˙�!

GG
ii0

.x/. For indegrees, let f be the function on Hi defined by

f .“�w.u/Dx0”/ D 1x0Dx1u2Ag
i
jN<.u/ \ A

g0

i 0 j:

We have

f .Hi ; !
0/ D

X
¹!0.Hi Œ

 �xy�/ W y 2 N��!
GG
ii0

.x/º � .1 � 2":8/d˙�!
GG
ii0

.x/

by Lemma 3.1, so by Lemma 2.8 whp this contribution to ux is < 2:1":8n.
For outdegrees, first note that if i 0 D 0 then for each u 2 A0 there is a unique w 2 W

with “�w.u/Dx”, for which we use jN>.u/ \ A
g
i j out-arcs at x. Thus we use exactly

F 0ŒA0; A
g
i � D n.p

g
i0 � pmax/ out-arcs at x, so this contribution is whp < 2pmaxn. Now

for i 0 2 Œi � 1�, let fi 0 be the function on Hi 0 defined by

fi 0.“�w.u/Dx0”/ D 1x0Dx1u2Ag0
i0
jN>.u/ \ A

g
i j:
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By Lemma 3.1 we have

fi 0.Hi 0 ; !
0/ D

X
u2A

g0

i0

jN>.u/ \ A
g
i j

X
w2W

!0.“�w.u/Dx”/ � .1 � 2":8/jF 0ŒAg
0

i 0 ; A
g
i �j:

As jF 0ŒAg
0

i 0 ; A
g
i �j D n.p

gg0

i i 0 � pmax/, this contribution is whp < 2:1":8n.

4.2. Small stars

Here we conclude the proof of Theorem 1.1 in Case S, where Pex is a union of leaf stars
in T n T ŒA��, each of size � ƒ D n1�c , with jPexj D pexn D p�n=2˙ n

1�c . We start
with some further properties of the approximate decomposition needed in this case.

Lemma 4.3. (i) For any x 2 V and R 2
�
V
�2

�
, whp

† WD
X

w2NJex .R/

dPex.�
�1
w .x// D .1˙ "/.p0ex/

jRj
jPexj:

(ii) For any y 2 V and w 2 W , whpX
x2Gex.y/

dPex.�
�1
w .x// D .1˙ "/2pexjPexj:

Proof. We prove (i) and omit the similar proof of (ii). We consider the contribution to †
from each a 2 V.F / according to its location in T .

For each a in A0 we define Ma D ¹�w.a/w W w 2 W º D MATCH.Ba; Za/. By Lem-
ma 2.7, for each b 2N<.a/ andw 2W we have P t

�
b .�w.b/2NG.x//D .1˙ :1�

0/p, and
if �w.b/ 2 NG.x/ for all b 2 N<.a/ then P t

�
a .�w.a/ D x/ D .1˙ :1�

0/.pjN<.a/jn/�1.
By Lemma 2.4, whp the contribution to † from A0 is

†ŒA0� WD
X
a2A0

X
w2NJex .R/

1�w.a/DxdPex.a/ D .1˙ :3�
0/jNJex.R/j

X
a2A0

dPex.a/=n

D .1˙ � 0/.p0ex/
jRj

X
a2A0

dPex.a/:

Now we consider the contribution from Ai with i 2 Œi��. By the proof of Lemma 3.12,
whp X

w2Jex.R/

!0.“�w.u/Dx”/ D !�ti .PJex.R/ W u! x/ D .1˙ "i /.p
0
ex/
jRj

for each i 2 Œi��, u 2 Ai . The function f on Hi defined by

f .“�w.u/Dx0”/ D 1x0Dx1w2NJex .R/
dPex.u/

has

f .Hi ; !
0/ D

X
u2Ai

dPex.u/
X

w2NJex .R/

!0.“�w.u/Dx”/ D .1˙ "i /.p0ex/
jRj

X
u2Ai

dPex.u/:
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By Lemma 2.8, whp the contribution to † from the hypergraph matching embedding Ai
is

†ŒAi � WD f .Mi / D
X
u2Ai

dPex.u/j¹w 2 NJex.R/ W “�w.u/Dx” 2 Hi ; u … A
0
i;wºj

D .1˙ 2"i /.p
0
ex/
jRj

X
u2Ai

dPex.u/:

It remains to consider the contribution from defining �w.a/ for w 2Wa by ¹�w.a/w W
w 2WaºDMATCH.Ba;Za/, whereZaD¹�w.b/w W b 2N<.a/º andBa �Va �Wa con-
sists of all vw with v 2 NJ 0

i
.w/ n Im�w and each �w.b/v for b 2 N<.a/ an unused edge

ofG0i . Here Va 2
�
V
jWaj

�
is uniformly random, so P .x 2 Va/D jWaj=n. By Lemma 3.3 (ii),

:3"in < jWaj < 2:2"in.
Similarly to the above analysis of A0, whp there are .1 ˙ :1� 0/pjN<.a/jmax jNJex.R/j

choices of w 2 NJex.R/ with �w.b/ 2 NG0
i
.x/ for all b 2 N<.a/, and for each such

w we have P t
�
a .�w.a/ D x/ D .1˙ :1�

0/.p
jN<.a/j
max jWaj/

�1. Thus the contribution from
defining �w.a/ for a 2 Ai , w 2 Wa is whpX

a2Ai

dPex.a/j¹w 2 Wa \NJex.R/ºj=n < 3:1"i†ŒAi �:

Summing all contributions gives the stated estimate.

In the subroutine SMALL STARS we start by finding an orientation D of the leftover
graph G0ex such that each dCD .x/ is jLxj, where Lx is the set of all uw where u is a leaf
of a star in Pex with centre ��1w .x/. By the case R D ; of Lemma 4.3 (i), whp jLxj D
.1˙ "/jPexj. To construct D, we start with a uniformly random orientation of G0ex, and
while not all dCD .x/ are jLxj, choose uniformly random x;y;z with jLxj>dCD .x/, jLy j<
dCD .y/, z 2 N

C

D .y/ \N
�
D .x/ and reverse �!yz, �!zx.

To analyse this process, we first note that by typicality of G0ex (Lemma 4.1) and
a Chernoff bound, whp dCD .x/ D .1 ˙ 1:1p:70 /pexn D jLxj ˙ 2p

:7
0 n for each x and

jNCD .y/ \ N
�
D .x/j � p

2
exn=2 for all x, y. Thus each vertex v plays the role of x or y at

most 2p:70 n times. We let B be the bad event that we reverse> :2p:60 n arcs at any vertex v.
We will show that whp B does not occur. At any step before B occurs where we con-
sider x and y as above, the number of choices for z is whp > :49p2exn � p

:6
0 n > :48p

2
exn.

Thus at any step, v plays the role of z with probability < 1=.:48p2exn/, so the number of
such steps is .�; 1/-dominated with � < 2p:70 n

2=.:48p2exn/ < :1p
:6
0 n. By Lemma 2.4 we

deduce that whp B does not occur, so we can construct D with all dCD .x/ D jLxj.
Now for each x 2 V.G/ in arbitrary order, we define �w.u/ for all uw 2 Lx by

Mx D ¹¹uw; �w.u/º W uw 2 Lxº D MATCH.Fx ;;/, where Fx � Lx �NCD .x/ consists
of all ¹uw; yº with uw 2 Lx , y 2 NCD .x/ \NJex.w/ n Im�w .

To analyse this process, we consider

Zx D ¹¹uw; yº 2 Lx � .N
C

D .x/ \ Jex.w/ \ Im�w/º

and let Bx be the bad event that Zx has every vertex of degree > :1p:9exjLxj. Recall that
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pex � p0ex � 1 in Case S and at the beginning of SMALL STARS we have Im �w \

NJex.w/ D ;.

Lemma 4.4. Whp under the construction of D, if Bx does not occur then Fx is p:02ex -
super-regular of density .1˙ p:8ex/p

0
ex.

Proof. Any R 2
�NC
D
.x/

�2

�
has

jNFx .R/j D
X

w2NJex .R/

dPex.�
�1
w .x//˙ :1jRjp:9exjLxj D .1˙ :1p

:8
ex/.p

0
ex/
jR0j
jPexj

by Lemma 4.3. Any R0 2
�
Lx
�2

�
has

jNFx .R
0/j D

ˇ̌̌
NCD .x/ \

\
uw2R0

Jex.w/
ˇ̌̌
˙ :1jR0jp:9exjLxj;

which by Lemma 4.1 and a Chernoff bound is whp .1˙ :1p:8ex/.p
0
ex/
jR0jjPexj unless R0 D

¹uw; u0wº for some w; there are <
P
w2W dPex.�

�1
w .x//2 < n2�c such R0. The lemma

now follows from Lemma 2.5.

By Lemma 2.7 we can choose Mx D ¹¹uw; �w.u/º W uw 2 Lxº D MATCH.Fx ; ;/,
and P .�w.u/ D y/ D .1˙ p:01ex /.p

0
exjPexj/

�1 for all ¹uw; yº 2 Fx .
It remains to show that whp no Bx occurs. We define a stopping time � as the first x

for which Bx occurs and bound P .� D x/.
First we bound dZx .uw/ for uw 2 Lx . For any y 2 NCD .x/, when processing any x0

before x we defined �w.u
0/ for dPex.�

�1
w .x0// leaves u0 of ��1w .x0/, each of which

could be y if y 2 NCD .x
0/\ Jex.w/, with probability < .:9p0exjPexj/

�1. Thus dZx .uw/ is
.�; n1�c/-dominated with

� D
X
x0

jNCD .xx
0/ \ Jex.w/jdPex.�

�1
w .x0//.:9p0exjPexj/

�1 < 1:2p2exn;

so by Lemma 2.4, whp dZx .uw/ < 3pexjLxj.
Now we bound dZx .y/ for y 2 NCD .x/. For any uw 2 Lx with w 2 Jex.y/, when

processing any x0 2 N�D .y/ before x, we had �w.u/D y for some leaf u with probability
< dPex.�

�1
w .x0//.:9p0exjPexj/

�1. Thus dZx .y/ is .�; n1�c/-dominated with

� D .:9p0exjPexj/
�1

X
uw2Lx

1w2Jex.y/

X
x02N�

D
.y/

dPex.�
�1
w .x0//

< .:9p0exjPexj/
�1
� jLexj � .1C "/pexjPexj

by Lemma 4.3 (ii), so whp dZx .w/ < 3jLxjpex=p
0
ex.

Thus whp no Bx occurs, as required.

4.3. Paths

Here we conclude the proof of Theorem 1.1 in Case P, where Pex is the vertex-disjoint
union of two leaf edges in T n T ŒA�� and pCn=.101K/ bare 8K-paths in T n T ŒA��.
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The first phase of the PATHS subroutine fixes parity, as follows. We call x 2 V.G/ odd
if the parity of dG0ex

.x/ differs from that of the number of w such that x D �w.a/ where
a is the end of a bare path in Pex. We let X be the set of odd vertices and a1`1, a2`2 be
the leaf edges in Pex, with leaves `1, `2.

First we define all �w.`1/ by M1 D ¹�w.`1/w W w 2 W º D MATCH.B1; Z1/, where
Z1 D ¹�w.a1/wºw2W and B1 D ¹vw W v 2 NJex.w/; v�w.`1/ 2 Gfreeº. Lemma 2.7
applies, as Z1 is a matching and similarly to the proof of Lemma 3.10, whp B1 is p:50 -
super-regular with density .1˙ p:50 /p

0
expex. Similarly, Lemma 2.7 applies to justify the

definition of �w.`2/ for w 2 W 0 by M 02 D ¹�w.`2/w W w 2 W
0º D MATCH.B 02; Z

0
2/ and

�w.`2/ for w 2 W n W 0 by M2 D ¹�w.`2/w W w 2 W n W
0º D MATCH.B2; Z2/. By

construction, there are no odd vertices after the embeddings of `1 and `2.
Next for eachw 2W we need 8d.x;y/-paths P xyw in Pex for each Œx;y� 2 Yw centred

in vertex-disjoint bare .8d.x;y/C 2/-paths in Pex. We greedily choose these paths within
the bare 8K-paths in Pex that exist by definition of Case P. By Lemma 2.12, the total
number of vertices required by these paths isX

¹8d.x; y/C 2 W Œx; y� 2 Ywº D 8jYw j C jYw j D .1 � �/jPexj ˙ nd
�:9:

At most d�:9jPexj vertices of the bare 8K-paths cannot be used due to rounding errors,
so as d�1 � � the algorithm to choose all P xyw can be completed.

Now we extend each �w to an embedding of Pex n
S
xy P

xy
w so that ��1w .x/, ��1w .yC/

are the ends of P xyw , according to a random greedy algorithm, where in each step, in any
order, we define some �w.a/ D z, uniformly at random with z 2 Jex.w/ n Im �w and
zz0 2 Gfree whenever z0 D �w.b/ with b 2 NT .a/. Writing E for the set of ends of paths
in Pex, for any vertex y we use j¹w W ��1.y/ 2 Eºj < 1:1jEj < jPexj=.3K/ edges at y
due to it playing the role of an end.

Let Xy be the number of additional edges used at y during the random greedy
algorithm, and let B be the bad event that anyXy > :1�:9n. We claim that whp B does not
occur. To see this, consider any step before B occurs, and suppose we are defining �w.a/.
Let R be the set of b 2 NT .a/ such that �w.b/ has been defined and note that jRj � 2. By
Lemma 4.1 there are ..1˙ p:90 /pex/

jRjp0exn choices of z 2 Jex.w/ \ NG0ex
.R/, of which

we forbid < 2�pexn in Im�w and < �:9n if B has not occurred. As � D �C � pC (and
pC � 13pex) we can choose z, and any z is chosen with probability < .:9p2exp

0
exn/

�1.
Thus Xy is .�; 2/-dominated with

� D .:9p2exp
0
exn/

�1
X

w2Jex.y/

ˇ̌̌
Pex n

[
xy

P xyw

ˇ̌̌
< 1:2�p�1ex n;

so by Lemma 2.4, whp Xy < :1�:9n, which proves the claim.
Thus the random greedy algorithm can be completed, and the remaining graphGfree is

an �:9-perturbation ofGex, i.e. jGex.x/4Gfree.x/j< �
:9n for any x 2 V . By construction,

every dGfree.x/ is even. The following lemma will complete the proof of Theorem 1.1 in
Case P.
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Lemma 4.5. One can decomposeGfree into .Gw W w 2W / such that eachGw is a vertex-
disjoint union of 8d.x; y/-paths �w.P

xy
w / between x and yC for Œx; y� 2 Yw , internally

disjoint from Im�w .

The proof of Lemma 4.5 is similar to the corresponding arguments in [20], so we will
be brief and give more details only where there are significant differences. We require
the following result on wheel decompositions; see [20] for its derivation from [17] and
discussion of how it provides the required paths. The statement requires a few definitions.
An 8-wheel consists of a directed 8-cycle (called the rim), another vertex (called the hub),
and an arc from each rim vertex to the hub. We obtain the special 8-wheel

�!
W K
8 by giving

all arcs colour 0 except that one rim edge �!xy and one spoke �!yw have colour K.

Theorem 4.6. Let n�1 � ı � ! � 1, s D 250�8
3

and d � n. Let J D J 0 [ JK be
a digraph with arcs coloured 0 or K, with V.J / partitioned as .V; W / where !n �
jV j; jW j � n, such that all arcs in J ŒV;W � point towards W and J ŒW � D ;. Then J has
a
�!
W K
8 -decomposition such that every hub lies in W if the following hold:
Divisibility: d�J .w/D 8d

�

JK
.w/ for allw 2W , and for all v 2 V we have d�J .v;V /D

dCJ .v; V / D d
C

J .v;W / and d�
JK
.v; V / D dC

JK
.v;W /.

Regularity: each 3d -separated copy of
�!
W K
8 in J has a weight in Œ!n�7; !�1n�7�

such that for any arc �!e there is total weight 1˙ ı on wheels containing �!e .
Extendability: for all disjoint A;B � V and L �W each of size � s, for any a; b; ` 2

¹0;Kº we have jNCJa.A/ \N
�

Jb
.B/ \N�

J `
.L/j � !n, and furthermore, if .A;B/ is 3d -

separated then jNC
J 0
.A/ \NC

JK
.B/ \W j � !n.

Proof of Lemma 4.5. Recall that we constructed Jex in DIGRAPH, such that for every
xy 2 Gex, we have exactly one of �!xy 2 J 0ex, �!yx 2 J 0ex, �!xy� 2 JKex , �!yx� 2 JKex , and there
are also �!yw 2 J 0exŒV; W �. Add the arcs JKex ŒV; W � D ¹

�!xw W x 2 Ywº. It suffices to find
an �:6-perturbation L of Jex, i.e. L is obtained from Jex by adding, deleting or recolour-
ing at most �:6n arcs at each vertex, where LŒV � corresponds to Gfree under twisting, and
N�L .w/�V n Im�w for eachw, and a setE of edge-disjoint copies of

�!
W K
8 inL, such that

Theorem 4.6 applies to give a
�!
W K
8 -decomposition of L0 WD L n

S
E. This will suffice, by

taking eachGw to consist of the union of the 8-paths that correspond under twisting to the
rim 8-cycles of the copies of

�!
W K
8 containing w. Here an arc of L corresponds to an edge

xy 2 Gfree under twisting if it is �!xy 2 L0 or �!yx 2 L0 or �!xy� 2 LK or �!yx� 2 LK (which
is a more flexible notion than in [20], as it does not depend on the orientation of L.)

Whenever we make a series of 
n2 modifications to Jex of some type which involves
changing edges at some intermediate vertex z, we always ensure that no vertex plays the
role of z more than 
��:1n times. There will always be more than, say, 2�:1n valid choices
of z, by Lemmas 2.12 and 2.13, and thus we can avoid the set of at most �:1n overused
vertices. This series of modifications will add 
��:1 to the perturbation constant.

We start by deleting arcs corresponding to Gex n Gfree, adding arcs �!xy for each xy 2
Gfree nGex, replacing any �!xy of colour K where d.x; y/ < 3d with �!xyC of colour 0 and
deleting arcs �!yw in LŒV;W � with y 2 N�Jex

.w/ \ Im�w . Next we delete or add arbitrary
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arcs �!yw with y 2 V n .Im �w [ .Yw/
C [ N�Jex

.w// until each d�L .w/ D 8jYw j, and so
jLŒV; W �j D jLŒV �j. We require < �:9n such arcs for each w, by Lemma 2.12 and the
bounds on Xy during the embedding of Pex n

S
xy P

xy
w .

While jL0ŒV �j> jL0ŒV;W �jwe replace some�!xy 2L0ŒV � by�!xy� 2LK ŒV �, or while
jL0ŒV �j < jL0ŒV; W �j we replace some �!xy 2 LK ŒV � by �!xyC 2 L0ŒV �, continuing until
jL0ŒV;W �j D jL0ŒV �j, and hence jLK ŒV;W �j D jLK ŒV �j.

Next we balance degrees in LK . While there are x; y in V with d�
LK
.x; V / >

dC
LK
.x;W / and d�

LK
.y;V / < dC

LK
.y;W /, we choose z 2 V such that�!zx 2LK ,�!zyC 2L0

and replace these arcs by�!zxC 2L0,�!zy 2LK . While there are x;y in V with dC
LK
.x;V />

dC
LK
.x;W / and dC

LK
.y;V / < dC

LK
.y;W /, we choose z 2 V such that�!xz 2LK ,�!yzC 2L0

and replace these arcs by �!yz 2 LK , �!xzC 2 L0. We continue until

dC
LK
.v; V / D d�

LK
.v; V / D dC

LK
.v;W / for all v 2 V .

Now we require some new modifications which do not appear in [20]. We start by not-
ing that each dL.x; V / is even. To see this, note that as LŒV � corresponds to Gfree under
twisting, we have

dL.x; V / D dGfree.x/C d
�

LK
.x�; V / � d�

LK
.x; V /

D dGfree.x/C d
C

LK
.x�; W / � dC

LK
.x;W / D dGfree.x/;

where the last equality follows from interval properties (listed before the definition of
INTERVALS). While there are x; y 2 V with dL.x; V / < 2dCL .x; W / and dL.y; V / >
2dCL .y; W /, we add �!yw to L0 and remove �!xw from L0 for some w 2 NC

L0
.x; W / n

NCL .y;W / with y … Im�w . We continue until

dL.v; V / D 2d
C

L .v;W / for all v 2 V .

While there are x; y in V with dC
L0
.x; V / > dC

L0
.x;W / and dC

L0
.y; V / < dC

L0
.y;W /,

we choose z 2 V such that�!xz 2L0,�!yz 2L0 and replace these arcs by�!zx 2L0,�!zy 2L0.
Now dCL .v; V / D d

C

L .v;W / for all v 2 V . Thus L satisfies the required divisibility con-
ditions, and is an �:6-perturbation of Jex, and LŒV � corresponds to Gfree under twisting.
It remains to satisfy the extendability and regularity conditions of Theorem 4.6. A sum-
mary of the argument is as follows (we omit the details as they are very similar to those
in [20]). There are many wheels on each arc, so we can greedily cover all �!xy 2 LŒV � with
edge-disjoint wheels, incurring an insignificant perturbation of L. A stronger version of
the extendability hypothesis with Jex in place of L holds by Lemmas 2.12 and 2.13, and
so it holds for the perturbation L. By typicality, the regularity condition is satisfied by
assigning the same weight OW to every wheel, choosing OW so that any arc is in � OW �1

wheels.

4.4. Large stars

Here we conclude the proof of Theorem 1.1 in Case L, where all but at most pCn vertices
of T belong to leaf stars of size � ƒ D n1�c . The argument is self-contained: there is no
approximate step, and the entire embedding is achieved by the subroutine LARGE STARS.
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We start by letting � be the union of all maximal leaf stars in T that have size � ƒ.
We let F D T n � ; by assumption jV.F /j � pCn. We let SC D ¹v 2 V.T / W dT .v/�ƒº,
so that jSCj < 2� and S � SC � V.F /, where S is the set of star centres of � .

We partition W as W1 [ W2 [ W3 with
ˇ̌
jWi j � n=3

ˇ̌
< 1 for each i . For each

v 2 V.G/, we independently choose at most one of P .v 2 U ai / D d� .a/=.3j� j/

with a 2 S , i 2 Œ3�. By Chernoff bounds, whp jU ai j D nd� .a/=.3j� j/ ˙ n
:9. We let

Ui D
S
a U

a
i . While

P3
iD1

ˇ̌
jWi j � jUi j

ˇ̌
> 0, we relocate a vertex so as to decrease this

sum, thus relocating < n:9 to or from any U ia , so < 3�n:9 < n:99 in total.
Noting that F is a tree, we can fix an order � on V.F / such that N<.u/ D ¹v � u W

vu 2 F º D ¹u�º has size 1 for all u ¤ u0 2 V.F /. We fix distinct �w.u0/, w 2 W
with �w.u0/ 2 Ui whenever w 2 Wi . We construct edge-disjoint copies Fw of F by
considering a 2 Fw in � order, defining all �w.a/ by M a

i D ¹�w.a/w W w 2 Wiº D

MATCH.Bai ; Z
a
i /, i 2 Œ3�, and updating

Gfree D ¹unused edgesº; Z D ¹vw W v 2 V.Fw/º;

J D ¹�!xx0 W x D �w.a/; x
0
2 Z.w/ \ U aºw2W;a2S :

By construction G nGfree and Z both have maximum degree � jV.F /j � pCn.

Lemma 4.7. Every edge is used at most once and J has no 2-cycles.

Proof. First note that as Bai .w/ � Gfree.�w.a
�// n Z.w/ for all i; w, we embed each

�w.a/ to a vertex not yet used by Fw so that �w.a�/�w.a/ is an unused edge. Further-
more, when a 2 S , for each �xx0 2 J , by excluding �w.a/ 2 NCJ .Z.w/\ U

a/ we do not
add �!xx0 to J due to x D �w.a/, x0 2 Z.w/ \ U a, and by excluding N�J .�w.b// \ U

b

where x0 2 U b we do not add �!xx0 to J due to x D �w.b/, x0 D �w.a/ 2 Z.w/ \ U b .
As before, by including all �w.a�/w in Zai we ensure thatM a

i does not require the same
edge of Gfree twice. Furthermore, when a 2 S , by including all vw with v 2 U a \Z.w/
we ensure that M a

i does not add both arcs of any 2-cycle to J : we cannot add �!xx0, �xx0

with x0 D �w0.a/ 2 U a \Z.w/ and x D �w.a/ 2 U a \Z.w0/ as xwx0w0 would be an
M a
i Z

a
i M

a
i Z

a
i . The lemma follows.

Next we note that for all i 2 Œ3�,w 2Wi we haveBai .w/�Ui 0 , where i 0 D i � 1a…SC .
We record some simple consequences of this observation:

� Z.w/ \ UiC1 D ; for any w 2 Wi .

� Z.x/ \Wi�1 D N
�
J .x/ \ Ui�1 D N

C

J .x/ \ UiC1 D ; for any x 2 Ui .

� Ifw 2Wi thenZ.w/\Ui only contains �w.a/with a 2 SC, so has size� jSCj � 2�.

� If x 2Ui , b 2 S thenNCJ .x/\U
b
i DZ.M

b
i .x//\U

b
i has size� 2�, asM b

i .x/ 2Wi .

� If x 2 U bi then Z.x/ \Wi only contains M a
i .x/ with a 2 SC, so jZ.x/ \Wi j � 2�.

� If x 2 U bi then N�J .x/ \ Ui DM
b
i .Z.x/ \Wi / has size � 2�.

� Each Zai has maximum degree � 2�.

By construction, Bai is a balanced bipartite graph. To justify the application of Lem-
ma 2.7 in choosing M a

i , it remains to establish the following.
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Lemma 4.8. Bai is p:15C -super-regular.

Proof. We first consider �ai � Ui 0 �Wi with i 0 D i � 1a…SC defined byN�a
i
.w/D Ui 0 \

G.�w.a
�//. For any R 2

�
Ui0
�2

�
we have

N�a
i
.R/ D ¹w 2 Wi W R � G.�w.a

�//º DM a�

i .NG.R/ \ Ui 0/;

so jN�a
i
.R/j D jNG.R/\ Ui 0 j D ..1˙ 1:1�/p/

jRjjWi j whp by typicality and a Chernoff

bound. Similarly, the setN�a
i
.R0/D Ui 0 \

T
w2R0 G.�w.a

�// forR0 2
�
Wi
�2

�
whp has size

..1˙ 1:1�/p/jR
0jjUi 0 j.

Now we will show that �ai n B
a
i has maximum degree � 5pCn. To see this, we first

note that we have a contribution � 4jV.F /j � 4pCn to any degree in �ai n B
a
i due to

edges in Z or G n Gfree (including the � 1 vertex that is the image of a … SC for two
w;w0). There are no other contributions for a … SC, so we consider a 2 SC and so i 0 D i .
First we estimate the contribution to degrees of w 2 Wi and to degrees of x 2 Ui due to
x 2 N�J .�w.b/ \ U

b
i / for b 2 S , which we claim are both � 4�2. Indeed, for w 2 Wi

the contribution is �
P
b2S jN

�
J .�w.b// \ Ui j � 2jS j� � 4�

2. For x 2 Ui , we count
w 2 Wi if �w.b/ D y 2 NCJ .x/, where y 2 Ui as w 2 Wi ; b 2 S , so this contribution is
�
P
b jN

C

J .x/ \ U
b
i j � 4�

2.
It remains to estimate the contribution to degrees of w 2 Wi and to degrees of x 2 Ui

due to x 2 NCJ .Z.w/ \ U
a/, which we claim are both � 8�3. To see this, first note that

we must havew 2Z.y/ for some y 2N�J .x/\U
a, and x 2Z.w0/\U bi for some b with

�w0.b/ D y 2 Z.w/. We note that w0 2 Wi , as otherwise x 2 Z.w0/ implies w0 2 WiC1
and y D �w0.b/ implies y 2 UiC1, which contradicts y 2 Z.w/. Thus we have � 2�
choices for each w0 2 Z.x/ \ Wi , then y 2 Z.w0/ \ Ui , then w 2 Z.y/ \ Wi , which
proves the claim. The lemma now follows from Lemma 2.5.

Thus we can apply Lemma 2.7, so eachM a
i D¹�w.a/w Ww2WiºDMATCH.Bai ;Z

a
i /

can be chosen and has P .vw 2 M a
i / D .1˙ p

:1
C/.pn/

�1 for all vw 2 Bai . In particular,
we can complete step (iv), thus choosing edge-disjoint copies Fw of F .

Lemma 4.9. For x 2 V , w 2 W , a 2 S , whp

jU a \ V.Fw/j < 1:1pCjU
a
j and jN˙J .x/ \ U

a
j < :1p:9CjU

a
j:

Proof. The first statement holds by Lemma 2.4, as jU a \ V.Fw/j is .�; 1/-dominated
with

� D .1˙ p:1C/.pn/
�1

X
u2V.F /

jBui .w/ \ U
a
j D .1˙ 1:1p:1C/jV.F /jn

�1
jU aj:

Next recall for x 2 Ui that N�J .x/ \ Ui�1 D N
C

J .x/ \ UiC1 D ;, jN
�
J .x/ \ Ui j � 2�

and jNCJ .x/ \ Ui j D
P
b jN

C

J .x/ \ U
b
i j � 4�

2.
To bound jNCJ .x/\U

a
i�1j, note that for anyw 2W there are< 1:1pCjU aj choices of

x0 2 U a \ V.Fw/, for which we add �!xx0 to J if M a
i chooses xw. Thus jNCJ .x/\ U

a
i�1j
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is .�; 1/-dominated with � < n � 1:1pCjU
aj � .1˙ p:1C/.pn/

�1, so by Lemma 2.4 whp
< :01p:9CjU

aj.
Finally, for x 2 U bi we have N�J .x/ \ U

a
iC1 D M

b.Z.x// \ U aiC1, which by Lem-
ma 2.7 whp has size

jM b
iC1ŒZ.x/ \WiC1; U

a
iC1�j < jZ.x/j jU

a
iC1j=.:99pjWiC1j/C n

:8 < :01p:9CjU
a
j:

We deduce jN˙J .x/j < :1p
:9
Cn, so the underlying graph zJ of J has maximum degree

< :2p:9Cn.
In step (v) we orientGfree asD D

S
w2W Dw , where for each xy 2Gfree with x 2 U a

and y 2 U b , if �!xy 2 J we have �!yx 2Dw where �w.a/D y, if �!yx 2 J we have �!xy 2Dw
where �w.b/ D x, or otherwise we make one of these choices independently with prob-
ability 1=2. We define ZC � V �W by ZC.w/ D V.Fw/ [ V.Dw/.

Lemma 4.10. Whp dCDw .x/ and jZC.w/ \ U aj are .1˙ p:8C/d� .a/ for all x D �w.a/,
w 2 W , a 2 S .

Proof. First note by typicality and Chernoff bounds that whp there are

.1C 2�/nd� .a/p=j� j ˙ 1:1pCjU
a
j D .1˙ p:85C /2d� .a/

choices of v 2 U a \Gfree.x/ after step (iv). Excluding< :2p:9CjU
aj choices with xv 2 zJ ,

for all other v independently P .�!xv 2 Dw/ D 1=2. The lemma follows by a Chernoff
bound and Lemma 4.9.

To analyse step (vi), we first observe that initially the sets NCDw .�w.a// are disjoint
over a 2 S and disjoint from V.Fw/, and this is preserved by each move; moreover, each
move decreases † by 2, and if (vi) does not abort we have Dw [ Fw D T for every w.
So it suffices to show that (vi) does not abort. We start with an estimate for the number
of moves for any uwu0w0 that are original, meaning that they are present at the end of
step (v) before any arcs are moved.

Lemma 4.11. Any u D �w.a/, u0 D �w0.a
0/ whp have > 9000�1p3n2d� .a

0/ original
uwu0w0-moves.

Proof. We estimate the number of moves by sequentially choosing x, v then z. Sup-
pose u 2 U b and w0 2 Wi , so u0 D �w0.a

0/ 2 Ui . Suppose u0 2 U b
0

. We claim there
are whp > :08pn choices of x 2 Ui \ N�D .u/ n Z

C.w/. To see this, note that there are
.1˙ p:8C/pn=3 choices of x 2 Ui \Gfree.u/. Excluding < p:9Cn with xu or x�w.b/ in zJ ,
for all others independently P .x 2 N�D .u/ n Z

C.w// � 1=4, so the claim holds by a
Chernoff bound. Consider any such x, say with x 2 U ci , and let wx DM b.x/ 2 Wi .

We claim there are whp > :01p2n choices of v 2 Ui�1 \ N�D .x/ \ N
C

D .u
0/ n

.ZC.w0/ [ ZC.wx/ [M c.ZC.u0///. To see this, note that there are .1 ˙ p:8C/p
2n=3

choices of v 2 Ui�1 \ Gfree.x/ \ Gfree.u
0/. For any such v, say in U di�1, we have

v0 WD �w0.d/ 2 Ui , so �!vv0 … J , and so P . �vv0 2 D/ � 1=2. Similarly, vx WD �wx .d/ has
P . �vvx 2 D/ � 1=2 independently. Also v 2 M c.ZC.u0/ n Z.u0//, wv WD M c.v/ 2
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ZC.u0/ nZ.u0/, ��!yvu
0 2 D, where yv D �wv .b0/ 2 Ui�1 as wv 2 Wi�1. Since each v

corresponds to a unique yv , the number of yv with ��yvu0 2 J is dCJ .u
0/ � :1p:9Cn. Exclud-

ing such v, for all others we have ��yvu0 … J and so P .v 2 M c.ZC.u0/ n Z.u0/// � 1=2

independently. Excluding a further < p:9Cn choices of v in Z.w0/[Z.wx/[M c.Z.u0//

or with vx or vu0 in zJ , any other v contributes independently with probability � 2�5, so
the claim follows by a Chernoff bound.

Fix any such v, say with v 2 U d , and let wu
0

D M d .u0/ 2 Wi�1. Similarly to the
above, there are whp> :16d� .a

0/ choices of z 2Ui�1 \NCDw0 .u
0/ nZC.wu

0

/, as there are

.1˙ p:8C/d� .a
0/=3 choices in U a

0

i�1 \Gfree.u
0/ and letting z0 D �wu0 .a

0/ 2 Ui , excluding
at most :1p:9CjU

a0 j vertices z such that �zz0 2 J , each other z has P . �zz0 2 D/ � 1=2. The
lemma follows.

After t moves, we let Bt denote the bad event that any vertex y is incident to > p:7Cn
moved arcs or to > p:7CjU

qj arcs �!yy0 with y0 2 U q for some q. We let � be the smallest t
such that Bt occurs, or1 if there is no such t . At any step t < � requiring a move for some
uwu0w0 with �w0.a0/ D u0, as Bt does not hold there are > 10�4p3n2d� .a

0/ moves. To
complete the proof it therefore suffices to show whp � D1. We fix t and bound P .� D t /
as follows.

We start by showing that whp < p:7Cn arcs are moved at any y. To see this, note first
that the number of times y plays the role of u or u0 in a move isX

w2W

jdCDw .y/ � d� .�
�1
w .y//j <

X
a

p:8Cd� .a/ < p
:8
Cn:

Now fix uwu0w0 with �w0.a0/ D u0. Then y plays the role of x or v in < nd� .a
0/ moves,

so with probability < 104p�3n�1. The number of moves where y plays x or v is there-
fore .�; 1/-dominated, where � < p:8Cn

2 � 104p�3n�1 < :1p:7Cn, so by Lemma 2.4 this
number is whp< :2p:7Cn. Furthermore, y 2 U a

0

plays the role of z in< n2 moves, so with
probability< 104p�3d� .a

0/�1. The number of such moves is therefore .�;1/-dominated,
where

� < 104p�3d� .a
0/�1

X
w

jdCDw .�w.a
0// � d� .a

0/j < :1p:7Cn;

so by Lemma 2.4 this number is whp < :2p:7Cn. The claim follows.
Now, given uwu0w0, any arc �!yy0 with y0 2 U q plays the role of  �vu0 or �!xu in <

nd� .q/ moves, so with probability < 104p�3n�1, and the role of �!vx in < d� .q/ moves,
so with probability < 104p�3n�2, and the role of �zu0 in < n2 moves, so with probability
104p�3d� .q/

�1. Thus for any q 2 S and y D �w.q/, the number of moved �!yy0 with
y0 2 U q is .�; 1/-dominated, where

� < 104p�3n�1 � p:8CnjU
q
j C 104p�3n�2 � p:8Cn

2
jU qj

C 104p�3d� .q/
�1
� jdCDw .y/ � d� .q/j jU

q
j

< :1p:7CjU
q
j;

so by Lemma 2.4 this number is whp < p:7CjU
qj. This completes the proof.
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5. Concluding remarks

In this paper we have developed a variety of embedding techniques that are sufficiently
flexible to resolve a generalised form of Ringel’s Conjecture that applies to quasirandom
graphs, and which promise to have more general applications to packings of a family of
trees, as would be required for a solution of Gyárfás’ Conjecture.
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