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Abstract. We prove that any quasirandom graph with n vertices and rn edges can be decomposed
into n copies of any fixed tree with r edges. The case of decomposing a complete graph establishes
a conjecture of Ringel from 1963.
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1. Introduction

This paper concerns the following conjecture posed by Ringel [30] in 1963.

Ringel’s Conjecture. For any tree 7 with n edges, the complete graph K>, has a
decomposition into 2n + 1 copies of T'.

We prove this conjecture for large n, via the following theorem which is a general-
isation to decompositions of quasirandom graphs into trees of the appropriate size. For
the statement and throughout we use the following quasirandomness definition: we say
that a graph G on n vertices is (&, s)-typical if every set S of at most s vertices has
((1 £ £)d(G))'S'n common neighbours, where d(G) = .e(G)(;)_1 is the density of G.

Theorem 1.1. There is s € N such that for all p > 0 there exist &, ng such that for any
n > ng such that p(n — 1)/2 € Z and any tree T of size p(n — 1)/2, any (&, s)-typical
graph G on n vertices of density p can be decomposed into n copies of T .

The case p = 1 of Theorem 1.1 establishes Ringel’s conjecture for large n, a result
also recently obtained independently by Montgomery, Pokrovskiy and Sudakov [28] by
different methods, along the lines of their proof of an asymptotic version in [27]. They
show that certain edge-colourings of K541 contain a rainbow copy of 7', such that the
required 7'-decomposition can be obtained by cyclically shifting this rainbow copy. This
approach is specific to the complete graph, and does not apply to the more general setting
of quasirandom graphs as in Theorem 1.1.

Ringel’s conjecture was well-known as one of the major open problems in the area of
graph packing, whose history we will now briefly discuss. In a graph packing problem,
one is given a host graph G and another graph F and the task is to fit as many edge-disjoint
copies of F into G as possible. If the size (number of edges) of F divides that of G, it may
be possible to find a perfect packing, or F-decomposition of G. More generally, given a
family ¥ of graphs of total size equal to the size of G, we seek a partition of (the edge set
of) G into copies of the graphs in .

These problems have a long history, going back to Euler in the eighteenth century. The
flavour of the problem depends very much on the size of F. The earliest results concern F
of fixed size, in which case F-decompositions can be naturally interpreted as combinat-
orial designs. For example, Kirkman [22] showed that K, has a triangle decomposition
whenever 7 satisfies the necessary divisibility conditions n = 1 or 3 mod 6; for historical
reasons, such decompositions are now known as Steiner Triple Systems. Wilson [32-35]
generalised this to any fixed-sized graph in the 70’s, and Keevash [19] to decompositions
into complete hypergraphs, thus estalishing the Existence Conjecture for designs. A dif-
ferent proof and a generalisation to F-decompositions for hypergraphs F were given
by Glock, Kiihn, Lo and Osthus [13]. A further generalisation that captures many other
design-like problems, such as resolvable hypergraph designs (the general form of Kirk-
man’s celebrated “Schoolgirl Problem”), was given by Keevash [17].

There is also a large literature on F-decompositions where the number of vertices
of F is comparable with, or even equal to, that of G. Classical results of this type are
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Walecki’s 1882 decompositions of K5, into Hamilton paths, and of K5, into Hamilton
cycles. There are many further results on Hamilton decompositions of more general host
graphs, notably the solution in [8] of the Hamilton Decomposition Conjecture, namely the
existence of a decomposition by Hamilton cycles in any 2r-regular graph on n vertices,
for large n and 2r > |n/2].

Much of the literature on F-decompositions for large F concerns decompositions into
trees. Besides Ringel’s conjecture, the other major open problem of this type is a conjec-
ture of Gyarfas [14], saying that K, should have a decomposition into any family of trees
Ty, ..., T, where each T; has i vertices. Both conjectures have a large literature of partial
results; we will briefly summarise the most significant of these (but see also [6,10,21,24]).
Joos, Kim, Kiihn and Osthus [15] proved both conjectures for bounded degree trees.
Ferber and Samotij [11] and Adamaszek, Allen, Grosu and Hladky [1] obtained almost
perfect packings of almost spanning trees with maximum degree O(n/logn). These res-
ults were generalised by Allen, Bottcher, Hladky and Piguet [4] to almost perfect packing
of spanning graphs with bounded degeneracy and maximum degree O(n/logn). Allen,
Bottcher, Clemens and Taraz [3] extended [4] to perfect packings provided linearly many
of the graphs are slightly smaller than spanning and have linearly many leaves. After the
arXiv posting of the current paper, Allen, Bottcher, Clemens, Hladky, Piguet and Taraz [2]
proved the Gyarfas Conjecture for trees of maximum degree O (n/logn). This maximum
degree bound of O(n/logn) is a fundamental barrier for the methods in the above papers,
as they use randomised embeddings, for which a maximum degree bound O(n/logn) is
necessary for concentration of probability. While the results of Montgomery, Pokrovskiy
and Sudakov [26,27] mentioned above also use probabilistic methods, they are able to
circumvent the maximum degree barrier by methods such as the cyclic shifts mentioned
above.

Our proof proceeds via a rather involved embedding algorithm, discussed and form-
ally presented in the next section, in which the various subroutines are analysed by a wide
range of methods, some of which are adaptations of existing methods (particularly from
[3,26], and also our own recent methods in [20] for the “generalised Oberwolfach prob-
lem”, which are in turn based on [17]), but most of which are new, including a method
for allocating high degree vertices via partitioning and edge-colouring arguments and
a method for approximate decompositions based on a series of matchings in auxiliary
hypergraphs.

1.1. Notation

Given a graph G = (V, E), when the underlying vertex set V is clear, we will also write G
for the set of edges. So |G| is the number of edges of G. Usually |V | = n. The edge density
d(G) of G is |G|/(5). We write Ng(x) for the neighbourhood of a vertex x in G. The
degree of x in G is dg (x) = |Ng (x)|. For A € V(G), we write NG (A) :=(yeq NG (x);
note that this is the common neighbourhood of all vertices in A, not the neighbourhood
of A.
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We often write G(x) = Ng(x) to simplify notation. In particular, if M is a matching
then M(x) denotes the unique vertex y (if it exists) such that xy € M. We also write
M(S) = U es M(x), which is not consistent with our notation Ng(S) for common
neighbourhoods, but we hope that no confusion will arise, as we only use this notation if
M is a matching, when all common neighbourhoods are empty.

We say G is (§, s)-typical if

ING(S)| = (1 £ £)d(G)!SIn forall S € V(G) with |S| < s.

In a directed graph J with x € V(J), we write NJ+ (x) for the set of out-neighbours
of x in G and N (x) for the set of in-neighbours. We let dét (x) := |N§ (x)|. We define
common out/in-neighbourhoods NF(A4) = (e 4 N7 (x).

The vertex set V(G) will often come with a cyclic order, identified with the natural
cyclic order on [n] = {1,...,n}. For any x € V we write x© for the successor of x, so if
xe€n]thenxTisx + lifx £Znorlifx =n Write ST ={xT:x € S} for S C V(G).
We define the predecessor x~ similarly. Given x, y in [n] we write d(x, y) for their cyclic
distance, i.e. d(x, y) = min{|x — y|,n — |x — y|}.

We say that an event E holds with high probability (whp) if

P(E) > 1 —exp(—n€) forsomec > 0andn > no(c).

We note that by a union bound for any fixed collection & of such events with |&| of
polynomial growth whp all £ € & hold simultaneously.

We omit floor and ceiling signs for clarity of exposition.

We write a < btomean Vb > 03ag >0V 0 <a < aop.

We write a & b for an unspecified number in [a — b, a + b].

2. Proof overview and algorithm

Suppose we are in the setting of Theorem 1.1: we are given a (£, 25%8°)-typical graph G
on n vertices of density p, where n™! < £ <« p, and we need to decompose G into 1 cop-
ies of some given tree T with p(n — 1)/2 edges. In this section we present the algorithm
by which this will be achieved. After describing and motivating the algorithm, we present
the formal statement in the next subsection, then various lemmas analysing certain sub-
routines over the following few subsections. We defer the analyses of the approximate
decomposition to Section 3 and the exact decomposition to Section 4.

As discussed in the introduction, the most significant technical challenge not
addressed by previous attempts on Ringel’s Conjecture is the presence of high degree
vertices, so naturally these will receive special treatment. Our algorithm will consider
three separate cases for the tree T (similarly to [26]), one of which (Case L) handles trees
in which almost all (i.e. all but o(n)) vertices belong to large stars (i.e. of size > n 1=o()y,
Case L is handled by the subroutine LARGE STARS, which will be discussed later in this
overview. The other two cases for T are Case S, when T has linearly many leaves in
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small stars, and Case P, when T has linearly many vertices in vertex-disjoint long bare
paths. In both Case S and P, we apply essentially the same “approximate step” algorithm
to embed edge-disjoint copies of F' = T \ P, obtained from 7" by removing the part that
will be embedded in the “exact step”, so Pex consists of stars in Case S and of bare paths
in Case P. The overview of the proof according to these cases is illustrated by Figure 1.

The heart of the approximate step is the subroutine APPROXIMATE DECOMPOSITION,
where in each step we extend our partial embeddings (¢, : w € W) of F by defining
them on some set A; which is suitably nice: A; is independent, has linear size, has no
vertices of degree > n°(1), and every vertex of A; has at most four previously embed-
ded neighbours. We find these extensions simultaneously via a matching in an auxiliary
hypergraph J; (see Figure 2), which has an edge denoted “¢,, (1)=x" whenever it is
possible to define “¢,, (u)=x" for some w € W, u € A;, x € V = V(G). We encode
the various constraints that must be satisfied by the embeddings in the definition of these
edges. Thus “¢,, (u)=x" includes (as an auxiliary vertex in V(J;)) all arcs yX where
y = ¢y () is a previously defined embedding of some neighbour b of a; this ensures that
we maintain edge-disjointness of the embeddings of F'. We also include in “¢, (1)=x"
auxiliary vertices uw and xw, to ensure that every ¢,, (1) is defined at most once and ¢,
is injective.

We ensure that J; is suitably nice (its edges can be weighted so that every vertex
has weighted degree 1 + o(1) and all weighted codegrees are n=°("), in which case it
is well-known from the large literature developing Rodl’s semi-random “nibble” [31],
in particular [16], that one can find an almost perfect matching that is (in a certain sense)
quasirandom (we use a convenient refined formulation of this statement recently presented
in [9]). The quasirandomness of this matching is important for several reasons, including
quasirandomness of the extensions of the embeddings to A;, which in turn implies that
later hypergraphs #; with j > i are suitably nice (with weaker specific parameters), and
so the process can be continued.

The above sketch yields an alternative method for approximate decomposition res-
ults along the lines of those mentioned in the introduction, but has not yet dealt with
high degree vertices. We will partition V(F) into Ay, Ay, ..., Aj*, where A; for i > 1
are the nice sets described above, and Ay is not nice — in particular, there is no bound
on the degree of vertices in Ag. We start the embedding of F in the subroutine HIGH
DEGREES by embedding vertices sequentially in a suitable order, where when we con-
sider some a € Ao we define ¢y, (a) for all w € W simultaneously via a random matching
M, = {¢y(@)w : w € W} in an auxiliary bipartite graph B, C V x W, where the defin-
ition of B, encodes constraints that must be satisfied by the embedding: we only allow
an edge vw if v ¢ Im ¢, and v is adjacent via unused edges to all ¢, (b) where b is
a previously embedded neighbour of a. (For simplicity we have suppressed several fur-
ther details in the above description which will be discussed below.) The important point
about this construction is that each v € V' has to accommodate the vertex a for a unique
embedding ¢,,, so however large the degrees in 7" may be, the total demand for “high
degree edges” is the same at every vertex, and can be allocated to a digraph H which is
an orientation of a quasirandom subgraph of G.
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T

TREE PARTITION

CASE P

p4n/(100K)

LARGE STARS (i-iv) HIGH DEGREES, INTERVALS, EMBED A,

LARGE STARS (v) APPROXIMATE DECOMPOSITION

W

LARGE STARS (vi) E SMALL STARS PATHS

Fig. 1. The three cases of the proof and the subroutines of the algorithm which embed each part
of T'. From left to right, Case L: almost all vertices lie in large stars; Case S: linearly many vertices
lie in small stars; Case P: linearly many vertices lie in long bare paths. Red denotes high degree
vertices and their neighbours. Blue denotes the part embedded in the exact step.

This digraph H is one of many oriented quasirandom subgraphs into which G is par-
titioned by the subroutine DIGRAPH, where each piece is reserved for embedding certain
subgraphs of F, with arcs directed from earlier to later vertices. Besides H, these include
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O, (1‘12)433 Dy (1‘}4)903

Bus (V6) 3
Bu, (v3)T3

¢w2 (1}1)12

Puy (U2) = 3
Puy (1) = 2
Pu, (u3) = 3
un(ua) = 7 =

A x W H; J;

Fig. 2. Part of the hypergraph J;, where a section of F[A;, A<;] and some of the corresponding
edges of J; are illustrated. Here, u; € A]i‘i, Uy € A%O and us3,uy € A;.“’. In a previous embedding,
we set ¢y, (v3) = ¢uw;(ve) = X1, and now the arc eo = x3x1 would be used by the potential
embeddings “¢y, (u2) = x3” (purple edge), “¢w;(43) = x3” (green edge) and “¢y5 (ug) = x3”
(blue edge). In particular, at most one of these embeddings is allowed.

graphs Gfi”,’/ for embedding subgraphs F’ [A;.g , Af,/], according to a partition of each 4;
into AM, Al°, A™°. Here AM consists of vertices adjacent to some vertex with many neigh-
bours in 4; (which will lie in A¢ and be unique), Ai." consists of vertices adjacent to some
vertex in Ag (which will be unique) that does not have many neighbours in 4;, and A;°
consists of vertices with no neighbours in Ag. To ensure concentration of probability the
above sets are not defined if they would have size o(n), in which case the correspond-
ing vertices are instead added to Ag. By partitioning G in this manner we can ensure
edge-disjointness when embedding different parts of F' separately. To ensure injectivity
of the embeddings, we also randomly partition V' x W into various subgraphs in which
w-neighbourhoods prescribe the allowed images in ¢, of the various parts of the decom-
position of V(T'). In particular, while constructing the high degree digraph H, we also
construct J¥ C V x W so that each ¢, (A™) will be approximately equal to J (w).
The separate treatment of these parts of A; and careful construction of A to ensure
the uniqueness properties mentioned above is designed to handle a considerable technical
difficulty that we glossed over above when describing the embedding of Ay. Our approach
to the approximate decomposition discussed above depends on maintaining quasirandom-
ness, but we cannot ensure that | Ag|/ 7 is negligible compared with 1/i*, where i * is the
number of steps in the approximate decomposition, so a naive analysis will fail due to
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hi
Aj

i ,1
= E Pma:

A Avo
Bies1 v 5

A[) —_—

A
Ay

Fig. 3. Partition of F obtained in TREE PARTITION. Red edges are from T \ F and green edges are
F-edges from Ag to A; (so Ai.o).

blow-up of the error terms. We therefore partition A¢ into A*, A** and Ay, which are
embedded sequentially, where |A*|/n and |A**|/n are negligible compared with 1/i*,
and so do not contribute much to the error terms. For Ay, we cannot entirely avoid large
error terms, but we can confine them to a set of o(n) bad vertices, via arguments based on
Szemerédi regularity; these arguments require degrees in A;, to be bounded independently
of n, so A** is introduced to handle degrees that are w(1) but < n°M)_ The careful choice
of partition ensures that these bad error terms are only incurred by vertices in A'°.

At this point, we return to consider various details glossed over in the above descrip-
tion of HIGH DEGREES. While the embedding via random matchings ensures that every
vertex of G has the same demand of high degree edges, we also need to plan ahead when
embedding A* C Ay (which contains the very high degree vertices) so that it will be pos-
sible to allocate the other ends of these edges to distinct vertices for each w, i.e. so that
¢dw (1) # Py (') whenever u £ u’. To achieve this in DIGRAPH, we randomly partition V'
into (Uy, : h € [m]), with m = n'=°M where each Uy, will accommodate those ends of
high degree edges corresponding to colour / in a certain properly m-edge-coloured bipart-
ite multigraphin V' x W, i.e. yx is available for H if yw has colour 4 and x € Uy. Thus
X = ¢y (u) € Uy and x’ = ¢y, (u') € Uy are distinct automatically if 2 # h’, and due
to properness of the colouring if 7 = I/, because ¢ determines a unique y € V(G), so a
unique @ = ¢, (y) € A*.

The above multigraph M in IV x W consists of copies of M) ~ M, for eacha € A*,
with the copies distinguished by labels £4;;, where for each a € A* and part A4; in which
a has many neighbours, the number of labels £,;; is proportional to the degree of a in A;.
An edge yw of label £,;; in M h means that H arcs y_x> with x € Uy will be allocated
to edges au of F witha = ¢,'(y) and u € N (a) N A;. For typicality we require for
any a and i that the number of edges in each M” with some label £, j is approximately
independent of /.
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This is achieved by a construction based on cyclic shifts, which we will now sketch,
suppressing some details. We partition V' into V and (Vy= : v* € V*) and W into W
and (Wy= : w* € W*), where Vy and Wy are small, V* and W* are copies of [m], and
all V=, W= have the same size. The matchings M, are chosen as M, ao U M}, where
V(M2) = VoUW and if vw € M} then v € Vyyx, w € Wy,» with v* = x,, + w*, accord-
ing to some cyclic shifts (x, : a € A*), carefully chosen to ensure edge-disjointness. We
construct a labelled multigraph in V* x W* analogously to that in V' x W, and obtain
label-balanced matchings M" for all h € [m] as cyclic shifts of some fixed label-balanced
matching M’ in V* x W*, where for each v*w* € M’ with some label £,;; we include
in M" all edges of M of the same label between V4 p, and Wy,=1p.

The above description of M" is over-simplified, as in fact we construct two such
matchings, one handling vertices of huge degree (almost linear) and the other handling
vertices with degree that is high but not huge. The version of M’ for non-huge degrees
is constructed by the same hypergraph matching methods as in the above description of
the approximate step embeddings, but these do not apply to huge degrees (the codegree
bound fails) so we instead apply a result of Barat, Gyarfas and Sarkozy [S] on rainbow
matchings in properly coloured bipartite multigraphs. The construction is illustrated in
Figure 4.

The exact steps in Cases S and P are handled by adapting existing methods in the lit-
erature. In Case P, the subroutines INTERVALS and PATHS are adaptations of the methods
we used in [20] for the “generalised Oberwolfach Problem” of decomposing any quasir-
andom even regular oriented graph into prescribed cycle factors; we refer the reader to
this paper for a detailed discussion of these methods. In Case S, we find the required stars
by adapting an algorithm of [3]: we find an orientation of the unused graph so that the
outdegree of each vertex is precisely the total size of stars it requires in all copies of T,
and then process each vertex in turn, using random matchings to partition its outneigh-
bourhood into stars of the correct sizes, while maintaining injectivity of the embeddings.

It remains to consider the exact step in Case L, when almost every vertex of 7T is a leaf
adjacent to a vertex of very large degree; this is more challenging and requires new meth-
ods (the arguments used in Case S fail due to lack of concentration of probability). The
most difficult constraint to satisfy is injectivity of the embeddings, so we build this into
the construction explicitly: we randomly partition V' (G) into sets U for each star centre
a and require each embedding to choose most of its leaves for its copy of @ within U¥.
Each edge xy of G, say with x € U%, y € U®, will be randomly allocated one of two
options: (i) x is a leaf of a star in some embedding ¢,, with ¢, (a) = y, or (ii) y is a
leaf of a star in some embedding ¢, with ¢, (b) = x. A final balancing step will swap
edges between stars (thus slightly bending the rules on leaf allocation) so that all stars are
exactly as required; see Figure 5. The above sketch can be implemented for decomposing
a quasirandom graph into star forests, but there is a considerable extra difficulty caused
by the constraints imposed by the initial embedding of the small part of T not contained
in the large stars.

A naive approach to this embedding can easily cause many edges of G to be unusable
according to the rules for U¢ as described above. Indeed, for each edge xy of G, the two
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M} M

[ L J [ L ]
Laij

® L ] ® .
Laijr Lairj

@ L ] ®

L

Vet
hip1 =<A—

hip, = <A —
Viera
hi])& = ZA% f

Vo

\4
label £,

Vo

Fig. 4. From left to right, top to bottom: two high degree vertices a, b; the multigraph B /A where line
thickness represents multiplicity; the matchings M, Mp between W and V'; the matchings M 1’\, M

on W*, V*; the matchings M; A Mi > the graph D ,lc for x € U; with components P coloured to
represent the random choice hip € {>A, <A}; the resulting edges of H;‘i at x.
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Fig. 5. A single step of the algorithm to modify the green star which is too small and the red star
which is too large.

options as described above will both become unavailable during the initial embedding if
we choose both ¢y, (@) = x for some a’ and ¢, (b’) = y for some b’. We therefore keep
track of a digraph J that records these constraints and choose the initial embedding so
that each edge of G always has at least one of its two options available. To control these
constraints, we also introduce partitions of each U¢ into three parts, and also of the set
W indexing the embeddings into three parts, and impose two different patterns for match-
ing parts of U“ with parts of W according to whether or not a vertex has large degree.
The digraph J and its use in defining available sets for the embedding are illustrated in
Figure 6.

6u(0) -
i !

Avb el

Im ¢, Ué’ e 1
=

Ut .

U® U,

Ub

Fig. 6. Left: The available set Ag’b for w € Wy and a € S. The black arcs are some arcs in J; they
forbid their U”-endvertices from Ag’b. The red arcs would be added to J if the labelled vertex is
chosen for ¢y, (a). Right: A pair of edges wy, w’x that must be avoided by the matching defining
the embeddings of @, and a swap that may be implemented by Lemma 2.7 to remove wy. Red edges
define images of a and blue edges define images of some other vertices.

2.1. Formal statement of the algorithm

The input to the algorithm consists of a (&, s)-typical graph G on n vertices of density p,
where s = 25087 =1 « & < p,and atree T with p(n — 1)/2 edges. We fix 0 < ¢/ <
¢ < 1 and parameters

Nl KELK - K p- < K pp L p, and A=n, A=n'""
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Recall that a leaf in T is a vertex of degree 1 in T. We call an edge a leaf edge if it
contains a leaf. We call a star a leaf star if it consists of leaf edges. We call apathin T a
k-path if it has length k (that is, k edges), and call it bare if its internal vertices all have
degree 2 in 7. By Lemma 2.9 below we can choose a case for T in {L, S, P} satisfying
e (Case L: all but at most p4 n vertices of 7' belong to leaf stars of size >A,

e Case S: at least p_n vertices of T belong to leaf stars of size < A,

e Case P: T contains pyn/(100K) vertex-disjoint bare 8 K -paths.

In Case L go to LARGE STARS, otherwise continue. We let n = n— in Case S or n = 14+
in Case P, and define further parameters

ECE KD KK poin K 81 K- L g1 K poax K 8 K po K<L s™p,

with it = 7loge™! and & « K™ <« d7' « D' in Case P. Given k € N, a tree T
and S C V(T), the k-span span’% (S) of S in T is obtained by starting with $* = § and
iteratively adding any S" C V(T) \ S* with |S’| € [k] such that T[S* U S’] has fewer
components than 7'[S*], until there is no such S’. Clearly there are at most | S| iterations,
SO |span];(S)| < (k + 1)|S|. Note also that

|span’. (span’-(4) U B) \ spank(4)| < (k + 1)|B|.
Fork € N let A* = {u : dr(u) > k}.
TREE PARTITION

(i) Let A* = span}. (A2). In Case S let Py be a union of leaf stars in 7'\ T[A*], each
of size < A, with | Pex| = p—n/2 4+ A.In Case P let P be the vertex-disjoint union
of two leaf edges in T\ T[A*] and p4n/(101K) bare 8K -paths in T\ T[A*].
Obtain F from T by deleting all edges of Pex and F* from F by deleting all vertices
of A*.

(ii) Define disjoint independent sets Cy, ..., C;x in F* as follows. At step i > 1, let
B; = V(F*)\ U, <; Cj, let C/ be the set of v € B; with

dp(51() <3 and  dps),_, c;1(0) < P

and let C; be a maximum independent set in F*[C/]. If |C;| < enleti* =i — 1 and
stop, otherwise go to the next step.

(iii) Let Ag =span}[A*U Bjx41], A** =spant(AP)\ A* and Ay = Ao\ (A* U A**). For
i €[i*]let A; = Ci=41-; \ Ap andfork € N let A¥ = {a € A¥: |Np(a) N A;| > A}.
Fora € AiA let A = Np(a) N A;. Let

A=) 4, att= | an axh = 4
A A\ g4A A
acA; acAT\A; acA;

Obtain F’ from F by deleting all edges ab with a € AiA and b € A? for some i. Let
A}" ={u € A; :|Npr(u)NAg| =1}. Let A7° ={u € A; : Nr(u) N Ao = 0}.
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(iv) For j € [4],1et$; = §-U+6andlet (o1,...,04) = (no,>A, <A,lo). Foreach j € [4],
while |A:.)j | < §jn forall i, move A;)j to Ao, let Ag = span}[4¢ U A;’], and update
AT ATA Al A,

(v) If |J; AM = 0, move A* to A**, i.e. redefine A** as A** U A* and A* as 0.

Let AM = | J; A and define A™, A similarly.
For k € N, let

0% ={(a,i): A <|Np(a) N A;| < A} € A® x [i*],
0" ={(a,i): [INF(a) N A;] = A} € A® x [i*].

We introduce parameters

mi = [A2 A Nlgeqn. ma =D mi. m= 3" ma

i acA®

Let < be an order on V(T) with A* < A™* < Ay < A; < -+ < Aj» < V(Pe) \ V(T) and
IN<(v) N X| <1wheneverveX e{A*, A** Ay}. Forve V(T)welet <v ={u:u<v},
N<(v) = Np/(v) N <v, N<(v) = N<(v) U{v} and N~ (v) = Nr/(v) \ <v.

We stress the use of F’ in this notation, which ensures that N (a) N A?i = @ for
all a € Ap: otherwise we would have a vertex not in A¢ adjacent to two vertices of Ao,
but this contradicts the definition of Ay as a span. We list here some other immediate
consequences of the definition of Ay that will often be used without comment.
|A*| <5n/A and |[A**| < 5n/D.

Anyu € Ay has [No(u) N Ao < 1.

Any uv € F[A>1] has [(N<(u) U N<(v)) N Ao| < 1.

e There is no <3-pathin 7'\ Ao with both ends in A" U A",

We also note that | N~ (v)| < p,L forallv € Asy, and [N<(v)| < 4 forallv € V(T). To
see the latter, note that if v € A>; then v has at most three earlier neighbours in A>; and

at most one in Ay, whereas if v € A then v has at most one earlier neighbour in each of
A*, A** and Aj,.

Write n = mny + ng with |[ng —nA™!| < m. Recall that we adopt the natural cyclic
orders on [m] and [n], addition wraps, and d (-, -) is cyclic distance. Whenever an algorithm
is required to make a choice, it aborts if it is unable to do so (we will show whp it does
not abort).

Given bipartite graphs B, Z C X x Y with | X| = |Y| we write M = MATCH(B, Z)
to mean that M is a random perfect matching from Lemma 2.7. (The choice of Z will
ensure edge-disjointness of the embeddings.)

HIGH DEGREES

(i) Choose x, € [m] fora € A* in < order, arbitrarily subject to d (x4, x,7) > 3d for all
a’ < a,and d(xg, xq) # d(xp, xp) foralla’ € N<(a) and bb' € F[<a].
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(i1) Choose independent uniformly random partitions of V(G) into Vj of size no and
Vyx, v* € V*, of size n«, and W into Wy of size ng and Wy, w* € W*, of size n.,
where V* = W* = [m].

(iii) For each a € A* in < order we will define all ¢, (@) by choosing a perfect matching
M, = {pp(@)w:w e W}.Let B, €V x W consist of all vw where v ¢ Im ¢, and
each ¢, (b)v with b € N (a) is an unused edge of G. Let Z, C V x W consist of
all ¢y, (b)w with b € N.(a).

Let B? = B,[V,, Wy] and B['l”* = Ba[Vx,+w*, Wyw+] for w* € W*. Define Z? and
Z¥" similarly.
Let M, = M2 U M} with

M = MATCH(BY. Z3) and M=|_JMaTCH(BY",Z}").
w*
We randomly identify V(G) with [r], cyclically ordered as above. Recall that each
x € [n] has successor xT = x + 1 (where n + 1 means 1) and predecessor x~ = x — 1
(where 0 means n). Let d; = d/(2s)' ! for i € [2s + 1]. We write n = r;d; + s; with
ri € Nand 0 <s; < d;, and let

pi tkdi +j:0<k <ri} if j €[],
I {kdi +j:0<k<ri—1) ifje[d]\ [si].

For each i € [s + 1] and j € [d;] we define a partition of [r] into a family of cyclic
intervals d} defined as all [x, y~] where x € P/ and y is the next element of P/ in the
cyclic order. (So |4;| =n/d; £1,each I € d} has|I| < d;,and J}; N J;, =@ forj #j'.)
We let ' = Uje[d,-] d}. (So for every z € [n], exactly one [x, y~] € 4 has x = z, and
exactly one [x, y"] € ' has y = z.)

INTERVALS

(i) InCase Slet Xy =V \ ¢ (A*), P :=n"1| Xy | forall w € W and go to DIGRAPH;
otherwise (in Case P) continue. For each w € W independently choose i (w) €[2s+1]
and j(w) € [djq)] uniformly at random. Let W; = {w : i(w) = i}.

(i) For each w € W, let A,, include each interval of *",’% independently with probab-
ility 1/2.

Let S, consist of all I € A, such that both neighbouring intervals /* of I are not
in oy,.

(iii) For each w € W, let X, include each I € §,, with probability (1 — n)n~!| Ps|
independently, let X,y = (J Xw, Xu = V \ (90 (4*) U Xy U (Xy)T) and py, =
n Xyl

(iv) Obtain ¥, C X, as follows. Remove any I from X, that intersects ¢, (A*), let
ti =min{|X ()| : I € 4'}, where X(I) :={w € W; : I € X, then delete each
I € " withi € [25s + 1] from | X (I)| — t; sets X, with w € X (I), independently
uniformly at random.

LetYy =Yy and ¥(I) ={w e W; : [ € Yy, }.
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EMBED Ay

(i) Foreachxy € G* := G \ |, ¢w (T [A*]) independently let P(xy € Go) = po/p.
For each w € W and x € X,, independently let P(Xw € Jo) = po/ pw-

(ii) Extend the embeddings ¢, of T[A*] to T[Ao] in < order, where for each a €
Ag \ A* we choose a perfect matching M, = {¢y, (a)w : w € W} = MATCH(B,, Z,),
where Z, = {¢py(b)w : b € No(a)} and B, C V x W consists of all vw with
v € Nyj,(w) \ Im ¢, where each ¢, (b)v with b € N(a) is an unused edge of Gg.

Fori,i’ € [i*] and g, g’ € {hi,lo,no}, let p;.gﬁ/ =n"1 F'[A%, A‘l.g//]| + Pmin and p&y =
n~Y|F'[A%, Ao]| + Pmin. We also write p5¥ = ps, for all g’ for uniform notation later.
Fori € [i*], g € AiA U {lo,no} let of = [Af|n™", oo = |A°|n7", oo = |A™ 0!
and ag = |Ag|n~1.
Letal = A2m;/nand ay; = ) ; ol = A?m/n = [AM|n~! £ A0,
Let pex = n 1| Pel. Let pl, = (% — 1)) pex in Case P or pexy < pl, < 1in Case S.
We note some identities and estimates for our parameters:
pn—1)/2=|T| = [T[Ao]| + |F'| + |A™] + | Pex],
L+ pn—1/2= V(D) = [V(F)| + |V(Pe) \ V(F)|.
SO —n T F €0 puin®). Y af =074,
ii’,g,8" i
p/2 - Zplglé/’ — Ohi — Pex € [07 pmin'g]’
p/2 - (Othi + oo + Opo + pex) € [O’ 8,9]’
_ 1= |Ao|n~! in Case S,
p+d° with p = (1 —ag)(1 — (1 — ) pex/8) in Case P.

w =

These estimates imply that the assignment of probabilities to mutually exclusive events
in DIGRAPH (vii) below is valid (i.e. the probabilities have sum < 1). Foro € {<A,>A},

let
me = Z mi, po=mo/m,
(a,i)eQ°
and define labels

Lo ={laij : (a,i) € Q°,j € [M{']} where M} € {[m/po],[m{/ps]}
and |Lo| = m.

DIGRAPH

(i) Foreacha € A% let M . denote the perfect matching between V* and W* consist-
ing of all v*w* with w* € W* and v* = x, + w* € V*. Let B); be the bipartite
multigraph formed by M copies of M/, labelled by £4;;, j € [M{]. For k € N
let B; = U 4.iyeor By and By be the bipartite multigraph formed by M;* copies
of M} for each (a,i) € O labelled by £y;;, j € [MF].

(ii) Let M} be a largest matching in B, with at most one edge of each label. Define a
partial m-edge-colouring (MfA 1 h € [m]) of B, where for each & € [m] and edge
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(iii)

(iv)

)

(vi)

(vii)

(viii)

v*w* of M) with some label £,;; we include in MfA all edges of M with label
Laij between Vi« p and Wyyx yp.

Let (H#,w) be the weighted 3-graph where for each v*w™* labelled £,;; with
(a,i) € Q® we include v*w*{,;; with weight m~1. Let M be a random matching
obtained from Lemma 2.8 applied to (#, w). Define matchings M i‘ A © Ba for
h € [m], where for each edge v*w*{,;; of M we include in MﬁA all edges of M}
with label £,;; between Vi« p and Wy= 1 p.

Partition V' as (Up, : h € [m]) uniformly at random. Fix distinct &4;; € [m] for each
Laij € Lo and o € {<A, >A} (recalling |Lo| = m). For all {4;; € Lo, add a copy
of M? with every edge labelled £,;; to MIai7 et p1 = p — po and let ?})1 be a
uniformly random orientation of Gy := G* \ (Go U {xy : d(x,y) > 3d}).

For h € [m] and x € Uy, let D" be the graph on N_é (x) consisting of all yy’ with
vy # y’ such that yw € MfA and y'w € MﬁA for some w € W with x € X . For

each connected component P of D’ independently choose one of P (hip = o) = p,
foro € {>A, <A}. Foreach y € P with some yw € M}ﬁp with label £,;; include

— . —
yXin H}; and let w(yX) = w.

—
For each yx € G independently choose at most one of

P(7% € Gex) = 2pex/ 1, oF

P(yx € 8”6/) = prﬁ'//pl forl <i’<i <i*andg,g € {hi,lo,no}, or
P(yX € Eﬁfj) =2pf/p1fori €[i*] and g € {hi,lo,no}, or

Py € a/) = 2Ppmax/ p1 fori € [i*], or

P(yx € H) = 20mi/ p1 Pw if x € Xy,

where w = w(yX), and if yXx € H? := H N HY include xw € J¢. Let JM =

. . — —
Udean Jf and J" = J; Jf' and Gi = Uy 1, GF

Let J' be the set of X0 ¢ Jo U JM with x € X,.For Xu € J' let pxw = pwp1 —
20 hiyy, Where hiy,, is 1 if w = w(y_x)) for some y or 0 otherwise. For each
xw € J' independently choose at most one of

P(XW € Joy) = P/ Pxw OF P(xw € JP) = al°/prw or

POt € J{°) = of°/pxw o P(W € J)) = Puax/ Pro-
Let J'° = | J; J!° and J™ = |, J.

In Case P, for each y% € ax independently let P(yX € Jo) = % or P(yX~ € Jelf )
1

=3

Some edges of G may not be allocated by this process. Note that arcs in J[V, W] are
all directed from V to W, so we will often suppress the direction and think of J[V, W] as
a graph.
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For uu’ € F'[A%, A% ] with i,i’ € [0,i*] and g. ¢’ € {hi,lo, no} let G.G = GS for
every i and let G — GO _ eg . gg’ _ ¢ /
ry i and let Gy = G;3, and p,, = p;j; , recalling that p;;7 = pj, forall g’.
For g € A2 U{lo,no},u € Af let Ay = A%, J, = JE, o = af.

—> .
For xw € Jy, we also write Ay = Ay, J3 = Ju, a5 = o

APPROXIMATE DECOMPOSITION
Fori = 1,...,i* apply the following steps.

(1) Let (#;, w) be the weighted hypergraph #; with vertex parts a, Jiand A; x W,
where for each u € 4; and X0 € Ju, such that ﬁ € 6,“) for all y = ¢y, (v) with
v € N<(u) we include an edge labelled “¢,, (u)=x" consisting of uw, XW and all
such ﬁ with weight

oo @=x") =A™ [] pi-
vEN< (u)

(ii) Define @’ on J; by @’(e) = (1 — .5¢;)w(e)/ Q(e) where Q(e) is the maximum of
1l and all w(H;[v]) := D> {w(e) : v € e} with v € e. Let M; be a random matching
obtained by applying Lemma 2.8 to (J;, w’). For each “¢, (u)=x" in M; extend
¢y by setting ¢y, (u) = x.

(iii) For each a € A; in any order, let W, = {w € W : ¢, (a) undefined}, let V, € (IV{’/aI)
be uniformly random, and define {¢,, (@)w : w € W,} = MATCH(B,, Z,), where
Zs=A{dpy(b)w:be N(a)}and B, C V, x W, consists of all vw withv € Nj/(w) \
Im ¢, and each ¢y, (b)v for b € N (a) an unused edge of G;. l

To avoid confusion, we emphasise that H; is a digraph and J#; is a hypergraph.
We sometimes use bold font as above to avoid confusion between v € V(J;) and v €
V(H;) = V(G). We define “time” during the algorithm by a parameter ¢ taking values
in a set 7 with the following elements: O is the start, #, for a € V(T) is the time (if it
exists) at which some ¢, (a) are defined by choosing a matching M,, f; is the end of
HIGH DEGREES, fiy is the end of INTERVALS, fg,, is after choosing Go and Jo, t«+ is the
end of embedding A**, 1o is the end of EMBED A, times #; and ¢;7 for i € [i*] are just
before and just after we extend the embeddings according to the matching M; (so ¢ is
the end of DIGRAPH). For any time ¢ # 0 we let ¢~ be the time just before ¢.

We write P? and E? for conditional probability and expectation given the history of
the algorithm up to time ¢. For t € 7 and w € W let A;,, be the set of w-embedded
vertices at time . We write A, if it is independent of w.

We denote the graph remaining after the approximate decomposition by G. =
G\ Upew du(F).

We complete the 7-decomposition of G by the “exact step” algorithms below: we
apply SMALL STARS in Case S, PATHS in Case P, and LARGE STARS in Case L.

SMALL STARS

(i) For x € V(G) let Ly be the set of all uw where u is a leaf of a star in P, with centre

by ().
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(i)

(iii)

Let D be a uniformly random orientation of G. . While not all d 3‘ (x) equal |Ly],
choose uniformly random x, y, z with |Ly| > dg(x), [Ly| < dg(y), z € Ng(y) N
Np (x) and reverse y_f, 7x.

For each x € V(G) in arbitrary order, define ¢, (1) for all uw € Ly by
M, = {{uw, ¢pyp(1)} : uw € Ly} = MATCH(Fy, 0),

where Fy C L, X N;(x) consists of all {uw, y} with uw € Ly, y € N;(x) N
Ny, (w) \ Im ¢y, .

PATHS

®

(i)

(iii)

@iv)

v)

(vi)

Call x € V(G) odd if the parity of dg; (x) differs from that of the number of w such
that x = ¢, (a) where a is the end of a bare path in Pe. Let X be the set of odd
vertices. Let a1 €1, a»{, be the leaf edges in P, with leaves £1, £,. Throughout, let
Giree = {unused edges}.

Define all ¢y, (€1) by My = {¢p (£1)w : w € W} = MATCH(B1, Z;), where

Zl = {¢w(a1)w}w€W and Bl = {vw vV E NJCX(LU), U¢w(a1) € Gfree}'

Fix X' C X, W C W with | X'| = |W'| = |X|/2. Define ¢y, (¢{,) for w € W’ by
M = {¢pw(lr)w : w € W'} = MATCH(B), Z}), where Z), = {¢y (a2)W}wew and
By ={vw:we W, veNj (w)NX, vdy(az) € Gree}-

Let V' = (V \ X) U X’. Define ¢, (£5) for w € W\ W by My = {¢w({2)w :
we W\ W'} = MATCH(B>, Z,), where Z, = {¢y (a2)W}yew\w’ and B, = {vw :
weW\W,veNj (W) NV, vdy(az) € Grree)-

For each w € W fix 8d(x, y)-paths Py’ for each [x, y] € ¥,, centred in vertex-
disjoint bare (84 (x, y) + 2)-paths in Pe,. Extend each ¢, to an embedding of Pey \
Usy Po’ so that ¢, (x), ¢,," (yT) are the ends of Py, according to a random
greedy algorithm, where in each step, in any order, we define some ¢, (a) = z,
uniformly at random with z € Jex(w) \ Im ¢y, and zz" € Gyee Whenever z/ = ¢y, (b)
with b € Nr(a).

Apply Theorem 4.6 to decompose Ggee into (G, : w € W) such that each Gy, is
a vertex-disjoint union of 8d(x, y)-paths ¢y, (Py”), [x. ¥] € Y, internally disjoint
from Im ¢y, .

LARGE STARS

®

Let S be the union of all maximal leaf stars in 7 that have size > A.Let F =T \ S.
Let S be the set of star centres of S and ST = {v € V(T) : d7 (v)=>A}.

Partition W as W7 U W, U W3 with ||Wi| —n/S} < 1 for each i. For each v € V(G)
independently choose exactly one of P (v € U#) = dg(a)/(3|S|) witha € §,i € [3].
LetU; = Ua Uia.

While 21-3:1 ‘ |W;| — |U; || > 0 relocate a vertex between the U so as to decrease
this sum.
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(ii) Fix an order < on V(F) starting with some 1o € ST such that No(u) = {v < u :
vu € F} = {u~} has size 1 for all u # uo € V(F). Fix distinct ¢y, (o), w € W,
with ¢y, (1) € U; whenever w € W;.

(iii) Throughout, update G = {unused edges}, the image Im ¢, of ¢, and a digraph J
on V(G) consisting of all yX with y = ¢, (a) and x € U% N Im ¢,, for some w € W,
aes.

(iv) For each a € V(F) \ {uo} in < order let M = {¢pyp(@)w : w € W;} =
MATCH(B{, Z{), i € [3], thus defining all ¢, (a), with B, Z{ as follows.

o Ifa ¢ Stlet Z8 = {¢u(a™)w}wew, and define BY C U;_y x W; (with Uy := Us)
by
NBIF‘ (w) = AZ) = Ui—1 N NG (Pw(a™)) \ Imy,.

If |Ui—1| < |W;|, choose ¢y (a)w € Bf uniformly at random, update B{ and
remove w from its vertex set. If |U;_1| > |W;|, remove some randomly chosen
u € U;—y from Bf.

o IfaeStlet Z¢ = {vw:v € {¢py(a )} U (U NImey)}wew, and define B <
Ui x Wi by Npa(w) = A7 = Upes AL® where

ALY = UP 0 NGy (dw (@) \ (Im @y U NS (Im ¢y, N U*) U N (¢ (b))

(v) Orient Ggee as D = UweW Dy, where foreach xy € Ggee withx € U% and y € U?,
if X3 € J we have yX € Dy, where ¢, (a) = y, if yx € J we have Xy € D,, where
¢w(h) = x, otherwise we make one of these choices independently with probabil-
ity 1/2.

(vi) While
=) Y ldf ($ul@) —ds(a)] >0,
weW aeS

we fix u = ¢y, (a) with d;w (u) < ds(a) and u’ = ¢y (a’) withd (') < ds(a’),
and apply a uniformly random xvz-move for uwu’w’, defined as follows. Choose
xvz with {ﬁ/, 0, vx, ﬁ} C D unmoved, with x ¢ Im ¢, with v ¢ Im ¢, U
Im ¢y, x where ¢yx (b) = x, u € U, with u’ ¢ Im v where ¢y (c) = v, x € US,
and with z € ND+w/ (') \ Im¢,,.v where ¢ ./ (d) = u', v € U?. The xvz-move for
uwu’w’ reverses the path u’vxu in D, assigning UX € Dy, X0 € Dyx, 0l € Dy
and Zu’ € D .

2.2. Preliminaries

Here we gather some well-known results concerning concentration of probability and
Szemerédi regularity, and also a result on random perfect matchings in quasirandom
bipartite graphs, which is perhaps new (although the proof technique via switchings is
somewhat standard).
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We start with the following classical inequality of Bernstein (see e.g. [7, (2.10)]) for
sums of bounded independent random variables. (In the special case of a sum of inde-
pendent indicator variables we will simply refer to the “Chernoff bound”.)

Lemma 2.1. Let X =) ;_, X; be a sum of independent random variables with | X;| < b
foreachi.Letv =Y 7_ E(X?). Then

P(X —EX|>1) < Do~ 1?/@(v+b1/3))

We also use McDiarmid’s bounded differences inequality, which follows from
Azuma’s martingale inequality (see [7, Theorem 6.2]).

Definition 2.2. Suppose f : S — R where S =[]/_,; S; and b = (by,...,b,) € R". We
say that f is b-Lipschitz if for any s, s’ € S that differ only in the i th coordinate we have
| /(s) — f(s")| < b;. We then also say that f is v-varying where v = >_7_, b? /4.

Lemma 2.3. Suppose Z = (Z1, ..., Zy) is a sequence of independent random variables,
and X = f(Z), where f is v-varying. Then P(|X —EX| > t) < 2e~12/@v),

We say that a random variable is (i, C)-dominated if we can write Y =), epm) Yi
such that |Y;| < C foralli and ;1. E'|Y:| < w, where E'[Y;| denotes the expectation
conditional on any given values of Y; for j < i. The following lemma follows easily from
Freedman’s inequality [12].

Lemma 2.4. If'Y is (i, C)-dominated, then P(|Y| > 2u) < 2e =1/ (6C),

Next we recall some definitions (not quite in standard form) pertaining to Szemerédi
regularity. A bipartite graph B C X x Y with |B| = d|X||Y | is e-regular if

IBIX".Y']| = d|X'||Y'| £|X||Y| forallX'C X,Y' CY.

Ifalso |[B(x)NY| ==L e)d|Y|and |B(y)N X|=(1xe)d|X|forallx e X,yeY
then B is e-super-regular. We will need the well-known “pair condition” discovered inde-
pendently by several pioneers in the theory of Szemerédi regularity (we refer to [23] for
the history and a version of the following statement).

Lemma 2.5. Lete <272 and B C X x Y with |X| = |Y| = m, where |[Np(x) N Y| >
(d — &)m forall x € X and |Np(xx') NY) < (d + €)?>m for all but < 2em? pairs xx’
in X. Then B is 81/6-regular.

We also require the following lemma; the proof is standard, so we omit it.

Lemma 2.6. Letn ! K o < B K d,r™', D™ and G be an a-super-regular bipartite
graph with parts X and Y of size > n and density d(G) > d. Suppose H is a <r-
multigraph on Y of maximum degree D. Then for all but at most B|X| vertices x we
have

Y. dG) I =|H|£p|Y].

e€H[Ng (x)]
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Next we present a result on random perfect matchings in super-regular bipartite
graphs. Given M, Z C X xY,an MZM Z is a 4-cycle that alternates between M and Z.
We also write M ZM Z for the number of MZM Z’s.

Lemma2.7. Letn ' < o < dand B,Z C X xY with |X| = |Y| = n. Suppose Z has
maximum degree < n'* and B is a-super-regular with density d(B) > d. Then there is
a distribution on perfect matchings M of B with MZM Z = 0 such that P(xy € M) =
(1 £ a®®)(d(B)n)~! for any edge xy, and forany X' € X, Y' C Y, whp

IM[X'.Y']| = |B[X".Y'||(d(B)n)"! £n?.

Proof. Let M be the set of perfect matchings of B. It is well-known (and easy to see by
Hall’s theorem) that M # @. We consider a Markov chain on M where the transition from
any M € M is a uniformly random swap, defined by choosing a 6-cycle C in B that is
M -alternating (every other edge is in M) and swapping C N M with C \ M, subject
to the new edges C \ M not forming any new M ZM Z’s. It is well-known that every
Markov chain on a finite state space has a stationary distribution (which is not necessarily
unique). Fix some stationary distribution p and let M ~ p.

To analyse the chain, we start with an estimate for the number of swaps for any
given M. Let Gy be the auxiliary tripartite graph with parts X, X5, X3 each a copy
of X, where fori € [3], x; € X;, x; | € X;41 we have x;x;; € Guy if M(x;)x;,, €
B\ M (and X4 := X;). Note that M -alternating 6-cycles in G correspond to triangles
in Gy. Each Gp[X;, Xi+1] is a copy of B \ M, so is 2a-super-regular, and so by the
triangle counting lemma, Gy has (1 & a°°)(d(B)n)? triangles. Each edge in M forms
an M ZM Z with < n-® other edges, each forbidding < n possible swaps, so the number
of swaps is (1 & a®?)(d(B)n)® £ n?>® = (1 £ 1.1a"°°)(d(B)n)>.

Next we claim that p is supported on Mg := {M : MZMZ = 0}. To see this, first
note that in any step of the chain, M ZM Z is non-increasing. Also, the M -alternating
6-cycles that remove any given e from M correspond to triangles in G containing some
given vertex. There are (1 & a°°)d(B)3n? such triangles, of which < n!-® are forbidden.
Letting p,/ denote the probability that e is removed by a transition from M we have
pyf = (1 £2.2¢°°)n~!. In particular, if MZMZ > 0 then it decreases with positive
probability. Thus M is an absorbing class, so the claim holds.

Next we estimate P(e € M) for any givene € B. Let M[e] ={M € M : e € M }. For
M e M\ Mle] let p;,}e denote the probability that e is added by a transition from M. The
M -alternating 6-cycles for adding e correspond to a choice in some common neighbour-
hood Ng,, (x1) N Ng,, (x2). Thus there are (1 & a*?)d(B)*n such 6-cycles, of which
< 4n-* are forbidden, so py¢ = (1 £2.2¢°°)d(B)~'n~2. Now

PleeM)= Y um= ) un(l-p)+ D wmpry.
MeMle] MeM[e] MeM\Mle]

SO ZMG,M[e] UM Py, = ZMG,M\M[e] MMp;f and hence

(1 +£450n 'P(e e M) =d(B) 'n"2P(e ¢ M),
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giving
P(e € M) = (1 £ 5a°°)(d(B)n)"".

To obtain the final property, we consider uniformly random partitions (X; : i € I)
of X and (Y; :i € I) of Y with | X;| = |Y;| = /n £ 1 foreachi. Welet M = J;; M;
where for each i, M; ~ u; independently with p; a stationary distribution of the above
chain for B; = B[X;, Y;] and Z; = Z[X;, Y;]. By Chernoff bounds whp each B; is 1.1a-
super-regular with d(B;) = d(B) & n—!. By the above analysis, for each e,

PleeM)=>) PleeM)=> (n"|X;i)>(1£5(1.1a)*)(d(B;)| X; )"

= (1 + 6a°)(d(B)n)"'.

It remains to estimate |[M[X', Y']| = >, M[X],Y/], where X/ = X' N X;, Y/ =
Y’ N'Y;. By Chernoff bounds, whp B[X/.Y/] = n~!|B[X’,Y']| £ n"7¢ for each i, so

EIM[X]. Y]l = (1 £ 6a*)(d(B)v/n)~ (n"|B[X".Y']| £n).
Also,

EIMX. YI? =EIM[X.. Y1+ >  P({ee}<M)<2n,
e#e’€B[X],Y]]

asP({e.e’} € M;) = (1 &+ 6a°°)(d(B;)|X;|)~2 for each {e, ¢’} by similar arguments to
those above. The required estimate for |M [X', Y’]| now follows from Lemma 2.1. [

We conclude this subsection with a result on matchings in weighted hypergraphs,
along the lines of the literature stemming from the R6dl nibble mentioned in the overview
above. The following lemma is a slight adaptation of a convenient general setting of the
nibble recently provided by Ehard, Glock and Joos [9]. Given a weighted hypergraph
(H,w), we call a function f : (fr) — R clean if f(I) = 0 whenever I is not a matching.
For H' C H let

fHY =Y {fE):Ec(T)) and f(H.0)=) {w(E)f(E) L E € (fr)}

where w(E) = [[,cgw(e).For S, T € (fr) wealsolet f5(T)= f(SUT)iIfT NS =0,

and fs(T) = 0 otherwise. -

Lemma 2.8. Let C7! K a <« B < r~ 1 7 and (H, w) be a weighted <r-graph with

w(e) > C 7 foralle € H, and w(H[v]) < 1, o(H[uv]) < C™ forallu # v € V(H).

Then there is a distribution on matchings M in H such that
f(M)=(1+CP)f(H w) with probability > 1 — e~ €*

for any clean function f on (ge) with fs(H,w) < C~P f(H,w) whenever S # @.

The proof of Lemma 2.8 is essentially the same as that of [9, Theorem 1.3], with a
few modifications as follows. The statement in [9]:



Ringel’s tree packing conjecture in quasirandom graphs 1791

e applies to unweighted hypergraphs of maximum degree A and maximum codegree
< A'7B; our version can be reduced to this version by considering a multihypergraph
where the multiplicity of an edge e is | A%w(e) |, say;

e gives a (deterministic) matching M satisfying the required conclusion for a suitably
small set of functions f; this is obtained by proving the existence of a distribution on
matchings as in our statement and taking a union bound;

e applies to functions on (IZ ), from which a version for functions on (fe) is easily
deduced. -

2.3. Tree partition
We start our analysis of the algorithm by considering the subroutine TREE PARTITION.

Lemma 2.9. We can choose a case in {L, S, P} for T and we have i* < it. Also,
|Ag| < 6en, and for each i, |A?| > A and |A:->j| > 8n if non-empty, with A N A;‘,’ =0
forai #a'i’.

Proof. To see that we can choose a case for T', we suppose that 7" does not satisfy Case L
or Case S, and show that it must satisfy Case P. Here we rely on the well-known fact
that any tree with few leaves must have many vertices in long bare paths (we will use
the precise statement given by [27, Lemma 4.1]). Let T’ be the tree obtained from T by
removing all leaf stars of size > A. Then |V(T’)| > p4n, as T does not satisfy Case L.

We claim that 7’ has < 2p_n leaves. To see this, let § be the set of maximal leaf
stars of T’. For each S € § obtain S’ from S by deleting all leaves of 7" that are not
leaves of T. Note that |S’| < A, or we would have removed S when defining 7’. Then
D ges IS’ < p—n,as T does not satisfy Case S. Also, Y geg |S \ 8’| <n/A aseach leaf
inany S \ S’ is the centre of a leaf star in T of size > A. The claim follows.

Now [27, Lemma 4.1] implies that T’ has > p.n/(50K) vertex-disjoint bare 8K -
paths. At most n/ A of these contain the centre of some star removed when obtaining 7’
from T', so > pyn/(100K) are bare paths of T, as required.

Next we bound i *. Recall that at step i > 1 we let B; = V(F*) \ U, ; C; and C{ be
the set of v € B; with

dp+ () <3 and  dpe;_, c,1(0) < Py

We have |C/| > | B;i|/3 — 2 pmax!, as < 2 pmaxnt Vertices fail the second condition, and the
set X of vertices failing the first condition satisfies 3| X| < ", .y dr=[5;1(v) < 2|B;].
Next we let C; be a maximum independent set in F*[C/]; we have |C;| > |C/|/2 as trees
are bipartite. If |C;| < en we let i* = i — 1 and stop, otherwise we proceed to the next
step, noting that |C;| > | B;|/7. There can be at most i ¥ = 7log ™! steps, otherwise we
would continue past a step i with |B;| < (6/ 7)i+n < en.

For the remaining statements, we first note that the bounds for and disjointness of
the sets AY are immediate from the algorithm and the definition of A¢ as a span. Finally,
we consider step (iv) of TREE PARTITION. For each j € [4], there are at most i T steps



P. Keevash, K. Staden 1792

where we move some A?j to A if it has size < §;n, thus adding < 58;n vertices to Ag
after including any forced by the definition as a span. Note that by choice of the order
o1,...,04 it is not possible for some A;j to be moved to Ay and then to reappear at a
later step. At the end of the process, any surviving A;j has size

A7 > 8in— Y 5iT8m = §n(1—5(4— /)5 iy) = én.

J">Jj

This completes the proof. u

2.4. High degrees

Continuing through the algorithm, the following lemma shows that the subroutine HIGH
DEGREES is whp successful, and the image of each embedding is well-distributed with
respect to common neighbourhoods in G.

Lemma 2.10. Whp HIGH DEGREES does not abort, and
P'a (¢ (a) € NG(S)) = (1 £ 8)p!®!
foranya € A*, w € Wand S C V(G) with |S| < s.

We make some preliminary observations before giving the proof. First, we write the
proof assuming | N<(a)| < 4 for all ¢ € A* rather than using our real bound |N<(a)| < 1,
so that it is more obvious how to apply the same proof to obtain Lemma 2.11. We
note that the choices of x, for a € A* are possible. Indeed, at each step, we forbid
< 6d|A*| <30dn/A choices of x, with d (x4, xs7) < 3d for some a’ < a, and < 51n/A
choices with d (x4, x4/) = d(xp, xp) for some a’ € N<(a) and bb’ € F[<a]. We also note
the following estimate for common neighbourhoods, which is immediate from a (hyper-
geometric) Chernoff bound: whp for any S € V(G) with |S| <sand X = Vpor X = V=
with v* € V* we have

ING(S) N X| = ((1 £ 1.1&) p)SI| x|.

Proof of Lemma 2.10. We can condition on partitions of V' and W satisfying the above
estimates for |Ng(S) N X|. First we consider the choices of (M) : a € A*), which are
independent of (M(? ta € A*).Foreacha € A*, w* € W*, v* = x, + w* we will show
that Lemma 2.7 applies to choose M [Vy*, Wyy*] = MATCH(B;”*, Z;"*), where B}l”* C
Vyx x Wy satisfies Bl’l”*(w) = Ng,- (Ppw(N<(a))) N Vy= \ ¢y(<a), where G; € G is
the graph of unused edges at time ¢. For each v € V there is a unique edge w¢y, (@) € M,
with ¢y, (a) = v, which uses |N<(a)| edges at v, so G \ G; has maximum degree <
|T[A*]] < 5n/A. Note that the constraint that ¢y, (a)¢y, (a’) is unused for all @’ € N<(a)
is automatically satisfied as d (x4, Xo7) 7 d(xp, xpr) for all bb’ € F[<a].

We also note that Z, = {¢, (b)w : b € N.(a)} has maximum degree < 4.

Attime ¢, let H. . be the hypergraph on V(G) with edges el, = ¢, (N<(a) N A;) for
w € Wyx. Note that H . is a matching, as M} is a matching for each b € N-(a) and
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dw (b) € Vipx 4, with distinct x,. We let B, be the “bad” event that
|HL [NG ()] # (1% 7)) N<@N4ilp,

for some v € V(G),a € A*, w* € W*. We let © be the smallest ¢ such that B; occurs, or
oo if there is no such z. We fix a € A* and bound P(t = 1,).

We claim that BY Tis & -super-regular of density (1 + 5&)p!N<@I To show this,
we first lighten our notation, writing r = ¢; and H = H ., which has edges e,, =
dw(N<(a)) for w € Wy=+. Any v € Vy+ has degree |H[Ng,(v)]| £ [{w € Wy :
V € ¢y(<a)}| = |H[Ng()]| as vey (a’) is unused for all @’ € N-(a) and all w € Wy,
and v = ¢y, (a”) for some a” € <a and w € Wy iff x, = v* — w™* = x,4v. As B; does
not hold for 7 < t,, v has degree ((1 £ 7€) p)N<@lpn,. Any w € W,+ has degree

ING (¢w(N<(@))) N Vx| = ((1 £ 1.1&) p) M@, = (1 £ 58) p!N<@lp, |
For any V' C V,x, W' C Wy« we have

B[V . W)= Y [Na(pw(N<(@) N V'| = Y |H'[N)I.

weWw’ veV’/

where H' = {e,, : w € W'}, so we have |BX [V/, W']| = pN<@I V' |W’| + £'n? by
Lemma 2.6. This proves the claim.

Thus Lemma 2.7 applies, giving P/a (vw € M) = (1 + §/2)(pN<@lp, )~ for any
vw € B}l"*, s0 Pl (¢, (a) € Ng(S)) = (1 = 8)p!S! for any w € Wy« and S € V(G)
with |S] <'s.

To bound IP(B;«), note that H) .. only changes when we choose M’ for b € N-(a).
Fix v and write W' = {w : e}, € H} .[Ng(v)]}, where t = t,". For any w € W' we have
ey € H. iff ¢y (b) € Ng(v), so |H%| = |[M}[W?!, Ng(v)]|, which by Lemma 2.7 is
whp

|BY" [Ng (). W!|((1 & 58) pN<@ln) ™t £ = (1 £78) p| W],

Thus whp B« does not hold for any a, so T = oo.

Now we consider the choice of M(? = MATCH(Bg, Zg), where Z, = Z,4[Vy, Wo] and
B, € Vo x W, is defined by B2(w) = Ng, (¢w (N<(a))) N Vo \ ¢ (<a). Let H! be the
hypergraph on Vp with edges e!, = ¢y, (N<(a) N A;) NV, for w € Wy. Let B; be the
“bad” event that for some a € A* we have

|H}[Ng, (0)]] # ((1 £ &) p)N=@ndilp,

We let 7/ be the smallest ¢ such that i)’; occurs, or oo if there is no such . We fix a € A*
and bound P(z" = 1,).

Similarly to the arguments for M, as 8B, does not hold, B, is &'-super-regular of
density (1 & 5&) pN<@I ysing the maximum degree bound on G \ G; to estimate com-
mon neighbourhoods | Ng, (S) N V| for degrees of w € Wy, recalling that ng > nA™1/2,
and estimating | B[V’ W']| = > ey’ |H'[Ng, (v)]| by Lemma 2.6 applied to G; and
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H' = {e!, : w € W'}, which has maximum degree at most 16, as for each b,b’ € N(a)
and w € W, there is a unique w’ € Wy with ¢y, (b) = ¢y (D).

Again we similarly deduce P% (vw € B,) = (1 + §/2)(p'N<@lng)~1 for any
vw € By, s0 Pl (¢y,(a) € Ng(S)) = (1 £ 8)p!S! for any w € Wy and S € V(G) with
|S| < s. To bound P (B}, ), note that whp |H:[Ng (v)]| = ((1 £ £'/2) p)N<@ndilyy by
the same argument as for M, and by the maximum degree bound on G \ G; we can
replace G by G in this estimate, changing §’/2 to &’. Thus whp B, does not hold for
any a, so T/ = 00, as required. [

Note that G \ G* has maximum degree < |T[A*]| < 5n/A, as for each v € V(G)
there is a unique edge w¢y, (@) € M, with ¢, (a) = v, which uses |N<(a)| edges at v.
Thus G* is (1.1&, s)-typical, so whp the graphs Gy and G; defined in EMBED Ay are

(1.2¢, s)-typical.
We omit the proof of the following lemma, as it is similar to and simpler than the
previous one.

Lemma 2.11. Foranya € Ao \ A*, w € W, x,y € V(G), writing AY for the set of y
such that ¢y, (a) =y is possible given the history at time t;, whp

Pa (¢ (a) = y) = (1 £ D77 £ ag lueqy) AT |7,

s0 whp P'a (¢ (@) € Ng, (x)) = (1 £ D™° £ o’ Lyea) 1.

2.5. Intervals

Next we record some properties of the subroutine INTERVALS that are needed for the exact
step in Case P (handled by the subroutine PATHS). We omit the proof, which is essentially
the same as that of the corresponding lemma in [20] (the only change is the deletion of
the negligible sets ¢, (A*)). We say that S C [n] is d-separated if d(a,a’) > d for all
distinct a, a’ in S. For disjoint S, S’ C [n] we say (S, S’) is d-separated if d(a,a’) > d
foralla € S,a’ € S'.

Lemma 2.12. In Case P,
(i) Phi(x € Xy) = pw £ A™° forallw € W and x € V(G),

(ii) any subset of {{x € Xy} :w € W, x € V(G)} is independent if it does not include
any pair {x € Xy}, {x’ € Xy} with d(x,x") < 3d,

(i) whp |Y(I)| = 1; = % +nA~° forall I € §%,i € 25 + 1],

iv) whp |Yw| = (1 — n)|Pex|/8 £ nA™° forallw € W,

(V) forany U C V(G), whp for any disjoint R, R’ C W of sizes < s we have

_ _ Rl 7T - -
UNN; (RNN7(R) = |U|(5(A=mpe) " [] Pw£nA™",

weR’

where Jiy = {XW : x € Yy} and J = {XW : x € Xy},
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(vi) whp for any disjoint S, S’ C V of sizes < s,
e if S U S’ is 3d-separated then

— S| g7 _
{w:S S Yy 8" S X}l = ) (30 —n)pa) P £~
wew

o if (S.S) is 3d-separated then |{w:S C Yy, S’ C Xy} > 2_2sn(é(1 — ) pex)'Sl.

2.6. Digraph

Our next lemma summarises various properties of the decompositions of G and W x V(G)
constructed in the subroutine DIGRAPH. Many of these properties are straightforward
consequences of the definition and Chernoff bounds. The most significant conclusion is
part (viii), showing that the high degree digraph H allocates roughly the correct number
of edges to each vertex x for each role ai wherei € [i*],a € AiA. For each such ai we
let M), consist of all v*w™ with some label {,;;, where v*w* € M} if (a,i) € 04 or
v¥w*ly; € Mif (a,i) € Q4.

We write G for the underlying graph of E)ex and define other underlying graphs
similarly. We define JX' by JX'[V, W] = Ji = (X0 : x € Yy, } and Xy € JX'[V] &
Xy € JX[V], thus removing the “twist”: if for some edge xy of Gex we add Xy to JK
then we add Xy to JX'.

Lemma2.13. (i) Phi(xy € T') = d*(I")/ p independently for each xy € G*, where
T €{Gex. GE5 .G}, and d* (Gex) = 2pex, d*(GEE) = pff and d*(G)) = pmax.
. L i n —
(i) Phi(xw € ¥) = df(\ll) for W e {Jh Jlo g Jo, J!}, where d*(JF) = of for
g € {IO,HO}, d*(-]hl) = Chi, d*(-]ex) = Péx, d*(',i/) = Pmax
(iii) any subset & of the events in (i) and (ii) is conditionally independent given any
history of the algorithm at time to if it has no pairs that are equivalent or mutually

exclusive,

(iv) whp each T as in (i) is (1.2, s)-typical of density d(T') = d*(I') &= A™,

(V) forany w € W, u € V(F), distinct vy, ...,y € Np(u) withs' <sand x1,...,Xy
in V(G), whp

N7 @) N YNE @] = [4ul [T % 1.26) puy,
i=1

Ui i=1
(vi) in Case P, for all disjoint S_, S+ C V and R C W each of size <, forany k., k_,k
in {0, K'}, writing £y = 7/8 and Lx: = 1/8, we have
[Ny (R) N N;;;i+ (S+) NN (S-)]
= (tk_pe) ¥ (kg o)™+ (E pe) !l £ 17%n.
Also [W NN (S2) NN o (S1)]is (pex/8) 51 (Tpex/8)5+n £ 0% if S_ U Sy is
3d-separated, or is > 2735 (pex /8)5=(Tpex /8) 15+ if (S_, S4) is 3d-separated,
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(vii) whp each |M;|/M& isin (1 —n=", 1],
(viii) whp all dgia (%), d;:u (x) and d;ia (w) are (1 £ 8)|A%| and N (w) N N;a/, (w) =

’/ . .
Hf N HS = @ whenever ai # a'i’.

1

Proof. We start by briefly justifying statements (i)—(iv), which are fairly straightforward
from the definition of the algorithm. The outcome of HIGH DEGREES determines G* at
time i, where G \ G* has maximum degree < |A*| < 5n/A. For each xy independently,
we include it in Gy with probability po/p. Excluding < 6dn such xy with d(x, y) < 3d,
the remainder have P(xy € G1) = 1 — po/p = p1/p. In DIGRAPH (iv) each is then
directed as x_y> or y_x), each with probability 1/2, and then in (vi) independently included in
at most one I as in (i) with probability d*(I")/ p1, so with overall probability d *(T")/ p;.
We note that xy may instead be included in H, again independently for all edges. This
justifies statement (i), and then (iv) is immediate by typicality and Chernoff bounds.

For (ii), we start the calculation for each P™ (X1 € W) by multiplying p,, £ A~
for the event {x € X, } and then p; = 1 — po for {X®W ¢ Jo}. This gives py p1,
which equals py, if w is not some w(y—x)), and then we put W € ¥ with probability
d*(V)/ pxw, giving an overall probability *(¥). On the other hand, if w is some w(yX)
then we include X in J™ with probability 2/ (p1 Puw ), so with overall probability 2z,
or otherwise X is available for other ¥ with probability py, p1 — 2y, which we define
to be pyy in this case, giving the same overall probabilities for P (Xw € W).

For (iii), we emphasise that we only have conditional independence given the his-
tory at time 7o, rather than independence, due to the dependence between {x € X, } and
{y € Xy} when d(x, y) < 3d. This still suffices to prove concentration statements in two
steps: first showing concentration of the conditional expectation under the random choices
in INTERVALS, and then concentration under the random choices in DIGRAPHS. We illus-
trate this for (v), omitting the similar proof of (vi) via Lemma 2.12. For any 3d -separated
Y C V,foreach y € Y independently we have P(y € Xy) = pw £+ A2, so by Chernoff
bounds whp |Y N Xy | = pw|Y | = 2A~%n. Then for each y € ¥ N X,, we have

s/

s/
Pl (y € NJ_u (w) N q Ng,uvi (xi)) = O‘uﬁ,;l l_ll Puv; -
1= 1=

By partitioning ﬂf/zl Ng (x;) into 3d -separated sets we deduce (v) by a Chernoff bound.

For (vii), first note that for o € {<A,>A}, if mo # 0, then mo > m, so p, > §. We also
recall that Z(a,i)GQA M¢? = m. As B’ is a union of m matchings each of size m, by [5,
Theorem 2] of Bardt, Gyérfds and Sérkozy we have |M} | > m —m=>!,so M? —|M].| <
m>! < n=*M¢ for each (a,i) € Q™ For (a,i) € Q2 we apply Lemma 2.8 to J with
S w* Ly jr) = lar=q,ir=i. To see that this is valid, we take D = m, so each edge weight
is D71, and note that each w(H# [v*]) or w(H[w*]) is m ™! > @.iyeos M = 1. Also, for
any v*w* with some label £,;; we have w(H[v*w*]) <m~1[AT2A /8] < D1=¢* say.
Thus Lemma 2.8 gives |[M/;| = (1 & n_c/)Mi“, recalling that ¢’ < ¢, as required for (v).

For (viii), we analyse the construction of H, which is illustrated in Figure 4. The
disjointness statements and dj_i“ (w)=d ;i" (¢ (a)) are clear from the definition of the
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algorithm, so it remains to establish the degree estimates. It suffices to show all d If* (x)
ai

are (1 £ .18) p1 pm¢n/m; indeed, for each VX € H}; we have VX € Hf & yx € H,
where P(y% € H) = an/p1(p £ d—°) independently, so the estimates on d If{l (x) hold
whp by Chernoff bounds. l

Consider d ;. (x) for x € Uy, h € [m]. It suffices to estimate the contribution from
VA T, as | V| = ng is negligible by comparison with the error term in the required
estimate. Let o € {<A, >A} be such that (a,i) € Q°. For each v*w* € M/, we
include in M(f‘ all edges of M} with label £,;; between Vyxyp and Wy« p. There are
(1 £ d~8)ppyn/m such edges yw with yX € 61 and x € X,, whp under the choices of
(Vyx : v* € V*), intervals and orientation of G;. For each such yw, in some component P
of D i’ we have P(hip = o) = p,, independently for distinct P, so

Edg. (x) = pol M| - (1 £2d=%)5pin/m.

Under the orientation of Gy, whp |P| < log? n for each P by Chernoff bounds. Then
dy« (x)isa log? n-Lipschitz function of independent decisions of all hip, so Lemma 2.3
giV(gs the required estimate on d . (x).

Finally, consider d ;;* (y) fory € V(G).If y € Vp, then there are exactly M values
of h € [m] for which there is an edge yw € M with label L4;j for some j.If y ¢ Vo,
then there are exactly M/, values of & € [m] for which there is an edge yw € M! with
label £;; for some j, as each v*w* € M/, satisfies v* = x, + w*, determining some
h € [m] such that y € Vy 4, and some edge yw € M N M}, where w € Wy« . By
typicality and Chernoff bounds whp each |U, N N2 (y)| is (1 & 1.1€) pyn/m. For each
xeUy,n Ng,l (y) independently P (hiy = o) = pGol, writing hi, = hip where P is the

component of ch’ containing y. The events {x € X,,} are independent for distinct x in
any 3d -separated set, so by partitioning Uy, into 3d such sets, applying a Chernoff bound
to each, we obtain the required estimate on d 1—;*. (), noting that it only depends on the

number M or |[M;| of h € [m] such that M includes yw with some label £4ij, and not
on the set of such %, which is yet to be determined when choosing the matchings M,. =

3. Approximate decomposition

In this section we analyse the subroutine APPROXIMATE DECOMPOSITION, which applies
hypergraph matchings to embed most of F' in Cases S and P.

3.1. Hypergraph matchings

The main goal of this section is the following lemma, which will allow us to apply
Lemma 2.8 to the hypergraph matchings chosen in APPROXIMATE DECOMPOSITION,
i.e. all auxiliary vertices have w’-weighted degree close to and not exceeding 1, and all
w'-weighted codegrees are small; statement (ii) concerns the degree that a pair ux would
have if it were introduced as an auxiliary vertex (but we do not do this to avoid additional
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complications in analysing the relationship between @’ and w). The “bad” graphs and sets
appearing in the lemma will be defined and analysed in Lemma 3.2.

Lemma 3.1. Whp for eachi € [i*],
() o' (H;[v]) € 1 =28, 1] forallv € V(J;),
(i) Y pew @ o W)=x") = 1% 2¢® forall x € V(G), u € A,
(i) w'(e) > (14 2&;) Lw(e) forall e = “py,(u)=x" withu € A; \ (A%4 N Np:(A)),
W e J; \ Jhd
(v) o' (Hi[uw]) € (1 —2¢;, 1 —.5¢;] forallu € A; \ (A5 N Np/(A°)),
V) o' (H;[wv']) < A= forall v, v" C V(H;).

To satisfy the hypotheses of Lemma 2.8 for (#;, w’) we let C = n and 8 = ¢/2.
Then the edge weights satisfy o’ (“¢y, (u)=x") > |A,|~! > C~1, the codegree condition
holds by Lemma 3.1 (v), and the vertex weights satisfy ’(J;[v]) = Y {w'(e) :v € e} <
1 — .5¢; by definition of w’.

Next we define and bound the “bad” graphs and sets appearing in Lemma 3.1. For
each i write A)° = A** U A!, where for u € A with N<(u) N Ag = {u’} we include
uin A" if u’ € A* U A or in A} if u’ € Aj. Let S} be the multiset on A; where
for each u € A} with No(u) N Ag = {u’} we include ¢y, (u’), with multiplicity, so that
|S}”| = |A}|. Note that all multiplicities in S} are < D by definition of Aj. Let

JP = (e J° ISP N N_, ()| # p1|SP| £ &n} and JP =, JP,
={x € V(G) : djwua(x) > 83n} and A% := (AU A™) N U,cp N> (¢, (x)).
Lemma 3.2. Whp |B| < §*n and d yoa(w), |A2Y| < 83n forallw € W.

Proof. We start by bounding d jwa(w) for each w € W. We may assume |Ay| > £'n/D,
otherwise |S! | < &'n forall i, w, and then J* = @. As G is (&, s)-typical, a well-known
non-partite variant of Lemma 2.5 implies that G is &-!-regular. Writing X = ¢y, (A}), as
|X|,|Xw \ X| > &n/D, standard regularity properties imply that G[X, Xo \ X]is £01-
regular of densuy » + £91. Then Chernoff bounds imply that whp G = {uv : u € X,
ve Xw \ X,uv e G1} is £-001 regular of density p; & £:9°1. By Lemma 2.6 applied with
G =G and H = {{¢p, )} 1t € Al o) we deduce dead(lU) < £'n, so dywa(w) < 87n,
say. As
8n|B| <) dpma(x) < Y dpma(w) < [W[87n,
x€B wew

we have |B| < §*n. Since d= (u) < p.L for every u € A1, we conclude that |A%| <
pmdx|¢w1(3)| < 83 |

Henceforth, we assume Lemmas 3.1 and 3.2 for all i’ < i, our aim being to show that
they hold for i. First we establish various properties of the matchings M; for i’ < i that
will be used in the proof. We let 4; ., = At+ \ Ay, w, which is the set of u € A; such
that ¢, (1) is defined by the matching M;, and let AO =A; \ Aiw-
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Lemma 3.3. Forall0 <i’ <i,w e W, W C W, X CV(G), U C A% U AY, whp
() |AD | <2.1er|Ar],
(i) [{w e W : ¢y (u) € X}| < L1X|+ A forallu € A9 U A™,
(iii) [{w e W : ' (x) € U} < LIU| + A forall x € V(G),
(v) {w e W :u € A%} < 58% forallu € Ai.(f U A7,
V) e |W'|=68|Ay|l <[{lw e W' :uce A?/,w}| < 2.1ei|W'| + 8| Ay| forallu € Ay,
VD) Yyeas [F'IN> (), AY L and |F'[AF, A, 1| are < ppaeir|AF| for all g in
{hi, lo, no}.

Proof. We write |Ai/ | = f(M;r), where f is defined on H;» by f(“¢.,(u')=x"") =
ly/=w. Wehave f(H;,0') = Zu/eA,-, o' (Hir[u'w]) > (1 —2&;7)|Air| — §3n by Lemmas
3.2 and 3.1 (iv). For any e € #;» we have fio(Hir,@') < '(e) < 1 < C7P f(Hyr, o).
By Lemma 2.8, whp
FMi) =0 £CP) I, 0)>1-2.1¢p,

Nej |A?’,w’| < 2.18,’/|A,’/|.

Statements (ii) and (iii) are similar, using Lemma 3.1 (ii). For (iv), we have

fwe W :ue AP < Z {w : ¢ (v) € B} < 4.4|B| + 4A < 58*n
vEN< (u)

by (ii) and Lemma 3.2.

For (v) we write [{w € W' :u € A?,,w}| = |[W/| + A® — f(M;) redefining f by
setting (@) = A and f(“¢y (u')=x") = lyew’ w=u. Then

0=A%+ > o (Hofuw)) — f(Hy.0) < [{w e W :u e AR
wew’
By Lemma 3.1 (iv) we see that if u € A, then Sey/|[W'| < [W'| + A® — f(Hyr,0') <
2e;/|W'| and if u € A} U A% then (iv) implies
Sep|W/ | =58% < |W'|+ A° — f(Hir, ') < 2ei|W'| + 58*n,

and fiey(Hiv, ') < 1 for all e, so by Lemma 2.8, whp (ii) holds.

For (vi), we write 1 + |Af |71 Y, c4¢ | F/[Airw. N> )]| = f(M;r), where f(9) = 1
and

SCuw @) =x") = Tyzw | AF |71 D [Np(@') 0 N= ().

ueAf
Using Lemma 3.1 (iv) we have

fHyr. )= 1> (1=2e)| A5 Y " > [Np/(u) N N> ()]
ueAf u'€A;r
= (1=2e)[Af [T Y |F/[Air, N> )|
ueAf
and
fiey(Hir, ) < | A% max D IN<()| < 4ppilAF TN < C7P [, o).
veEN> (1)
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By Lemma 2.8, whp

|51 |FAD , No@)]] < 2.1e0|AF |70 Y |F/[Air. N> ()] < 9ppaeir-
uedf ucAf

The second bound is similar so we omit the proof. ]

We conclude this subsection by deducing Lemma 3.1 (for i) from the following estim-
ates on w-weighted degrees, which thus become the main goal of this section and which
we will prove assuming Lemmas 3.2-3.4 for all i’ < i.

Lemma 3.4. Whp for eachi € [i*],
(1) o(H;iuw]) =1+L¢g foralluw e A; x W,
(i) w(H[xW]) is 1 £ .58 forall xw in J; and is 1 % &; if X ¢ J ",
(iil) w(HG[Xy]) is 1+ &8 forall Xy € 6,“,, andis 1 £ ¢; ifv ¢ A°ory ¢ B,
(V) Y pew @Cdww)=x") =1+x¢; forallx € V(G), u € A;.

Proof of Lemma 3.1 for i. We have already noted that all w’-weighted degrees are at most
1 — .5¢;, so it remains to prove the lower bounds. Statements (i) and (ii) are immediate
from w’(e) > (1 + &®)71(1 — .5¢;)w(e) for any e € H;, obtained by applying the defin-
ition of ', using Lemma 3.4.

For (iii), if € = “¢y, (u)=x" with u € 4; \ (459 N Np:(A4°)), then w(H; X)) =
1+ forall y = ¢y (v), v € Ne(u) and if X0 € J; \ J, then w(H; [xW]) = 1 + &;
by Lemma 3.4, so

w'(e) > (1+¢&) 11— .58)w(e) > (1 + 1.66;) ‘w(e)
by definition.

For (iv), note that for any e € J; containing uw with u in A?i or AP\ A% we have
w'(e) > (1 + 1.66;) 'w(e), so

o' (H;[uw]) > (1 + 1.68) Lo (H;[uw]) > 1 —2s;.

If instead u € A"\ A% then, by Lemma 3.1 (iii), o'(J;[uw]) is at least the sum of
(1 + 1.66;) ' (e) where e = “¢y, (u)=x" over x with X1 ¢ J", s0

o' (F; [uw]) > (1 4+ 1.66;) Lo (H; [uw]) —8%n - (1 + .58'8)_1p;:)(|Au|_l > 1 —2¢;.

For (v), we consider codegrees according to the various types of vertices. First we
note that each @’ (“¢hy, (u)=x") < 2p, 4 |A,|~!. Foreach u, |4,| > A, so this easily gives
the codegree bound for the pairs appearing in the following bounds: |#;[uw, vw]| = 0,
|H; [XW, yw]| = 0, | H; [uw, xw]| < 1, |H;[uw, Xy]| < 2. If “¢y (u)=x" contains X and
X7 then u € N= (v) where ¢y, (v) = y, so |H;[xw, Xy]| is at most A, or at most Piaif
vV E Asq,0or0if v € 4Ap and Xw € JM. These weighted codegrees are therefore at most
28pF (Sn)or2pt AT < A0,

It remains to bound o’ (H#;[Xy, Xy']). Suppose Xy 6u0v0 and Xy’ € 6"01’6’ with
uovg € F'[A;, Aj] and ugvyy € F'[A;, Ajr], say with j' < j. We have j > 0as [N<(u) N
Ag| < 1forallu € A>y, and as F[A"] = @ we have |4y, | |Ay,| > SnA.
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Suppose first that j’ < j. Let f be the function on J; U {0}, where f (@) = A~°° and
each f(“py(v)=z")is 2po2 |Ay, | if z = y, v € Ay, and there are u € Ay, N N> (v)
and v’ € Nc(u) N Ay with ¢y, (v") = y’, or 0 otherwise. If j’ > 0, then for each w € W
there is at most one v’ with ¢y, (v') = y’, at most p,, L choices of u € 4; N N-(v'), and
at most four choices of v € N.(u), so

F(Hy. ) = A7+ 8np | Avg | A |7h < 247

If j/ = 0, then there are at most A choices of u € A4; N N=(v'), and u € A", so every
v € No(u) in Ay, lies in A™, so

f(H;, ') < A= 4 8nAp.8 (6n)™2 <2077,
AS fiey(H;,0) <2pt ATV < C7P f(H;, '), by Lemma 2.8 whp
o (F 3y, 53D < f(M) = 1 £CTFP) f(H;,0') < A7

Now suppose j’ = j. Then j # 0 and we cannot have v, vy both in AM by definition
of Ao as a span, so |Ay,| |Av6| > énA. Let f be the function on (Jgf) U {@}, where
F0) = A= and each £(“du (v)=2", "o () =2") is 2Pk |Aug |V iz = ¥, 2" = ',
VE Ayy, UV E A"6 and there is u € Ay, N N>(v) N Nx(v’), or 0 otherwise. For each
u € Ay, there are < 12 choices of (v, v’) so

F(H,0') = A7+ 24np 2| Au, |7 Ay |7 <247

As above, by Lemma 2.8, whp f(M;) < A, n

3.2. Potential embeddings

We define a hypergraph # with vertex parts G, A>; x W and V(G) x W, which contains
all potential edges of all J¢;, in the following sense. Given w € W, u € V(T') and an
injection f : N<(u) — V(G) such that f(u’) f(u) € G forall u’ € N.(u) we let Py, (f)
be the “potential edge” containing u € V(T), f(u) € V(G) and f(u') f(u) € G for all
u' € No(u). Forany u € S € N<(u) and injection f’: S — V(G) we let Py, (f’) be the
set of all Py, (f) € J such that f restricts to f/ on S. We use the notation Py, (4 — x)
when S = {u} with f(u) = x and P, (uv — Xy) when S = {u, v} with f(u) = x,
Jf)=y.

For each time ¢ we introduce a measure @, on J where each w;(Py,(f)) estimates
the probability given the history at time ¢ that the w-embedding will be consistent with f.
We define w; by the following formula involving other estimated probabilities that will
be discussed below:

o1 (Pu(f) = of (Pw u—x) [] p@) of(Py:v— f(v).
vEN< (u)

The key parameter in this formula is w} (Py : ¥ — x), which will estimate the probab-
ility P* (¢ (1) = x) given the history at time ¢ that we will have “¢,, (u)=x". We also
associate an edge probability p;(uv) to each v € N<(u), where p;(uv) = 1if t > ¢,
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otherwise p;(uv) is pift < ty,is py ifto <t < ty, oris py, fort > t;. The intuition for
the formula is that conditional on “¢y, (4)=x", the events ¢, (v) = f(v) become about
p:(uv)~! times more likely and are roughly independent. In our calculations it will be
sufficient to work only with w} (P, : u — x), so the formula for the measure w, above
can be thought of as just an intuitive explanation for why the calculations work (it is not
logically necessary for the proof).

Note that we have introduced similar notation for two different quantities, namely
wf (Py :u — x) and @; (Py(u — x)) = 3 {o:(Py(f)) : Pu(f) € Py(u — x)}; they
will be approximately equal. In general, for any u € § € N<(u) and any injection f’ :
S — V(G) we will have

0 (Py(f) mof (Py: f)i=of(Py:u—x) ] pi@u) of (Py ' — f0)).
u’ eS\{u}

Another important example of this will be
<— * . <oy -1 % . * .
Wi (Py(uv = Xy)) ~ 0 (Py 1 uv = Xy) = p;(uv) o, (Py 1 u = x)w; (Py 1u — y).

Initially, we let all g (Py, : u — x) := n~'. (One can check that typicality of G gives
wo(Py(u—x)) = (1 £&2)wg (Py :u — x).)Fort > t,y, i.e. times after ¢y, (1) has been
defined, we let } (Py 1 u — X) := lug, (u)=x~. We thus have w; (Py, (f')) = o] (Py : ')
at times ¢ after ¢, (1) has been defined for all u € N<(u) \ S. In particular, if # > ¢,/ for
all u’ € N (u) then there is at most one f with f(#) = x consistent with the history, and
we have w; (Py (f)) = of (Py : u — x). Furthermore, for u € A4;, when we come to step
i of APPROXIMATE DECOMPOSITION we will have a);'; (Py i u — x) = w(“py(u)=x").

Now we define w; (Py : u — x) for general t and v € V(F). As mentioned above,
welet wg (Py :u — x) = n~! and o] (Py i u — X) = leg, y=x» fOrt > tyy. At each
time ¢ < t,, where the possibility of “¢,, (1)=x" depends on an event in the algorithm,
if the event fails we let o/ (Py : u — x) = 0, and if it succeeds we will divide by an
estimate for its probability, thus approximately preserving the conditional expectation of
the surviving weight. We let P! (u — -) be the set of x such that w}(Py, : u — x) # 0
and define P! (- — x), P!(u — x) in analogy, and also define P} (- — ﬁ) to be the set
of uv € F'such that o/ (Py : u = x) Z0and o} (Py : v — y) # 0.

During HIGH DEGREES, we will have P"«’ (¢, (u')x € G) &~ p when we embed any
u’ € No(u) N A*, so if this occurs we let a);“u/(Pw U —>X) = p_la)t*u—/ (Py :u — x).So
at the end of HIGH DEGREES, @} (Py 1 u — x) is p~IN<@NA™ =1 for x € Pli(u — )
or 0 otherwise. (Note that our estimate ignores the possibility that “¢,, (1)=x"" may be
impossible due to requiring an edge of G \ G*.)

In INTERVALS, we require x € X, which by Lemma 2.12 (i) occurs with probability
~ P, and then we let wy (Py : u — x) be ﬁ;lw,’;i(Pw cu — x) for x € Pi(u — )
or 0 otherwise.

In EMBED Ay, after choosing Gy and Jy, there are two cases. If u € A>; we let

TIN<GONANAT] () (Py :u — x) for x € P,ZGO (u— -)and O

a);kGO(Pw ‘U > X) = p; Wy

otherwise. Indeed (recalling u € A>), forany x € Pl (u — -) we have x € P,LG" (u—>)
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iff foru’ € N<(u) N Ag \ A* we have x¢, (u’) € G1, which occurs with probability p;. If
u € Ag \ A* we require X € Jo, which for available x has probability po/ Py, and then
we let a);“GO (Py :u — x) be pala)t’;i(Pw ‘u — x)forx e P,LGO (u — -) or 0 otherwise.

During the embedding of Ay, i.e. EMBED Ay (ii), after choosing some ¢, (a) at time
t =14, foru e Ag \ A* we let w;(Py : u — x) be 0/~ (Py :u — x) ifau ¢ T, or
if au € T we let o (Py 1 u — x) be pylw} (Py :u — x) for x € PL(u — ) or 0
otherwise. So wy (Py : u — x) is pJ‘NT(")nAO\A*la);;i(Pw ‘u — x) forx € PO —-)
or 0 otherwise. Foru € As1, ifau € F’ weletw}(Py :u — x) be py o} (Py :u — x)
for x € P (u — -) or 0 otherwise.

For DIGRAPH, we let j, (Py : u — x) be

| Ay~ l_[ p,:vl forx € Pl}(u — )
veN(u)NAg

or 0 otherwise. To justify this, we first consider u € A%, a € AiA, when N<(u) N Ag = 0,
and all d;;a (») = (1 £8)|Ay| by Lemma 2.13 (viii). If u € A}° we must choose X0 €
J ' with plrobability gw/p_w -al/pxw = al/Py. If instead u € A!°, we must choose
Xy (v) as an arc of Gy, for all edges x¢y, (v) of G1 with v € N.(u) N Ap, each with
probability % -2puv/ P1 = Puv/ p1 independently, and wx € J, with probability a%" /Pw-

During APPROXIMATE DECOMPOSITION, we let w}(Py : u — x) be equal to
|Aul ™ Tloen—ayna, , Puv for x € Pl (u — -) or 0 otherwise; we will see that whenever

—
we embed v € N.(u), we have P(x¢y, (v) € G,) & pyy. We note that a)t*l, (Py :u — x)
= w(“¢w (u)=x"), as mentioned above. We emphasise that the @} (Py, : u — x) are defin-
itions (with justifications provided only for intuition), and it is the sets P/ (u — x) which
change during the algorithm.

We use the notation w} (Py, : u — x) with a set of vertices in place of one or more of
w, U, x to denote a sum of @} (Py, : u — x) over these sets, for example w; (Pw : u — X)
orwy(Py, : V(T) — x) or o (Pw : F'[4;, Aj] — X7). To see the connection to weighted
degrees in Lemma 3.4, observe that “¢y, (u)=x" € H; iff x € Pl (u — -), so

o(Hi[uw]) = Z {w(“pwW)=x"): x € Pli(u— )} = wt*i (Py :u — Ny (w))
= o (Py :u — V(G))
and similarly o(J#; [xW]) = wg (Py : A — x) and o (H; [Xy)) = wp (Pw : F’[Af?’,Af/]
— Xy) when ¥y € G£*'.
We conclude this subsection with the following lemma, which implies the estimate on

the weighted degrees w(H; [uw]) in Lemma 3.4 (i). The proof is immediate from Lemma
2.13(v),asx € Py, (u — ) fort > 11 iff x € Ny, (W) N Nyen_wnd; » Ng) (Pw (v)).

Lemma 3.5. Forallu € A>;, w € W andt > t; we have

|Phu— )| =1 x50 (Py:u—>x)" =0£58)4ul  []  Puw-
veN<(u)NAr w
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3.3. J degrees

In this subsection we prove the estimates in Lemma 3.4 (v) concerning weighted degrees
w(H;[xW]) = wg (Py : Ay — x) for XW in J;. We start with the following estimate at
time f7.

Lemma 3.6. Forall X € JMU JM° we have oy (Py : Az — x) = 1. For allxw € Jl
whp of (Py 1 Ay — x) = 1+ 3e8.

Proof. If X € J U JM then Py} (- — x) = Af, where g = noif i € J® org = a
if X1 € J¢ for some a € A2, We have of (Py :u — x) = [A¥|7! forall u € A, so
oy (Py : Af > x) =1

Now we consider the evolution of »} (P, : A — x). Initially wg (Py, : A® — x) =
|A°|n~! = @°. During HIGH DEGREES, for each u € A°, when we embed some a € A*,
ifa ¢ N<(u) we have w; (Py 1 u — x) = o;=(Py : u — x), whereas if a € N<(u), as
Pla (¢py(a) € Ng(x)) = (1 & §)p by Lemma 2.10 we have

IEta_a);; (Py :u — x) =Pl (¢py(a) € Ng(x))p_la);"; (Py :u — x)
= (1 £ 8w (Py 1 u — X).

As |N<(u)| < 4 we have ]an);';i(Pw : A® — x) = (1 £ §)*al°. For concentration, we
bound each |of (Py : A — x) — a);"u— (Py : A® — x)| by a);"u— (Py : A® N N=(a) — x)
< Ap.4 (8n)~!, so by Lemma 2.4 whp a);‘;ing : Ai.o —x)= (1% 58)0{%".

After INTERVALS, we can assume x € X,,, and then

wp (Py : AP — x) = ﬁujla);i(Pw D AR = x).

After EMBED Ay, similarly to the above analysis for HIGH DEGREES, using Lemma 2.11
in place of Lemma 2.10, whp

wf, (Py: AP - x) = (1 £5D %)) (Py : AP — x)
and
wg (Py - A® - x)=(1+5D"° £ 5a(')9)w:n[(Pw D AR - x)
==+ .le‘S)a)Zm(Pw D AR = x).

After DIGRAPH, the part Jig of J containing X is determined; we can assume g =lo,

as we have already considered the other cases. Each a);"l (Py :u — x)isOunless u € Ai."
. = . . .
and we have the event E,, that x¢b, (') in Gy, for the unique u’ € N<(u) N Ao, in which
case ] (Py :u — x) = |AP|™" p;},. By Lemma 2.13 we have
Ew) (Py : AP = x) = Y PO(E)|AP™ pb
ueA?
= D> (puw/p1) - 0 (P 2w = )P (@) (p1/ puw) £ A7 = 1 £ 265
ueA?

For concentration, note that for each x¢,, (u') € G*, the assignment in DIGRAPH affects
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wf (Py : AP — x) by < [N-(u') N AP|p L AR|~1 < Ap ) (8n)~!. Consequently, by
Lemma 2.4, whp o} (Py : Al — x) = 1 £ 3¢%. n

Next we give a significantly better estimate for o}, (Py : Af — x) for XW ¢ J .
Lemma 3.7. If Xt € J[° \ J then whp w} (Py : A® — x) = 1 £ ¢y
Proof. By the proof of Lemma 3.6, whp

wp (Py t AT = x) = 0], (Py : AT - x) = (1 £ 6D ™) (pun) ' A*| £ 6,
and it suffices to show wy (Py : A} — x) = (pwn)~'|A}| £ 8. For any u € A} we have

Gi(Pu = 5) = (e[ p0) - 05 (P 1= ) Lyespon o)
so by definition of J* we have
wp (Py 1 A] — x) = (P1Pwn) 'SP N Nél ()| = (pwn) 'AL| £38.
The lemma follows. ]

Next we give an estimate that will be used in several further lemmas below. For any
U CV(T)\ Ao we let T2(U) = {v : disty\4,(v. U) < 2}, where dist denotes graph
distance. For w € W we let

Up = {u € PL(-— x)NT?(A4"°) : Ne(u) N A% £ g}
Lemma 3.8. Ifu ¢ Uy, andu’ € N.(u) N Aj’ then
3 0 (Pu)=x") = (1 £ 2260) puw.

x’eN—Z, (x)
Guu’

Proof. We note that

O ()=x") = (1 & 28)0(“ (') =)

for any x’ € Py’ (u’ — ) \ Nywa(w). Indeed, this holds by Lemma 3.1 (iii) for i, as
u' ¢ A% N Np/(A°) by definition of U,,. We deduce

o(“puW)=x") = of,(Py 1w — x') = [Aw|™! I o
vEN<(u)NA ;s

= ((1 £ 58)| Py (' — )"

by Lemma 3.5,80 3 ven= () @ (“¢w(u')=x"") equals
uu/

(1% 2.0e0)| Py ' — )7+ [P (0 > ) O NS ()] £ pr 8,

ax

with £ p;4 §2 accounting for x’ € Ny, ,(w) when u’ ¢ A", and so @' (“¢y, (')=x"") <
Pid (8n) 1. The lemma now follows by Lemma 2.13, similarly to the discussion before
Lemma 3.5. u
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Now we consider the evolution of w/(Py : Ar; — x) during some step i’ < i of
APPROXIMATE DECOMPOSITION. For lighter notation we write t = ;- and t/ = ti‘f.

Lemma 3.9. Whp 0 (Py : Ay — x) = (1 £ &)} (Py : Ay — X).

‘7:(4’) where ¥ (E,) = 0 except if there is u €

PI(-— x) N A=;s \ Uy such that E, consists of disjoint edges “¢y, (u')=x"" with XX’ €
am/ foreach u’ € N.(u) N A;r, and then ¥ (Ey,) = |Ay|™! [Twen-ayna_, P Now,
foru ¢ Uy, with Nc(u) N A?/,w =0, givenx € PJ(u — -), we have x € I’u’)/(u — ) iff
E, € M, and for such x we have ¥ (E,) = o (“¢y (u)=x"). Thus

Proof. We consider the function { on (

0} (Py : Agg — X) = Y _{0(“puw@)=x"): x € P (4 — )} = (M) = Ay £ Al

where
Ay =Y {0(Py :u—x): Nc) N A), # 0} < pok | Az | T IF[A) . Al
< 98i’pr;:x’
Ay = Y of(Puiu—x) < pdl AW A < pad
uely

Here we have bounded Ay by Lemma 3.3 (vi), and Aip by Lemma 3.2, also assuming
|A| > n, as we may, because if xw € J" then Uy, = @, using A" N T'2(A4°) = @ by
the definition of A as a 4-span.

Next we estimate ¥ (J#;/, w’), which equals

oA I e T] Yo & Chu)=x").
uePL(—x)\Uy u”’eN<(u)NA;r weN<u)NA;y x’eN=, (x)

uu’

By Lemma 3.8 we have

Y (Hir, )

= > 14 T P T1 P £2280) pua

uePL(—x)\Uy u”’eN<(u)NA_;s weN<(u)NA;
(1 £ 8.96;) (0} (Py : Ay — X) & pr28?),

with the error term as in the estimate for Aip. The lemma now follows from Lemma 2.8,
noting that |E, N E,/| < 1 (otherwise u, u’ would have two common neighbours), and
for any e = “¢, (u')=x"" we have

Sy, o) < Y7 20 AT ok < 2ppn AT < CTPy (). =
ueN= (u')

Similarly to Lemma 2.11, we have the following estimates during the embedding
of A?/’w (which has size < 2.1g;-n by Lemma 3.3).
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Lemma 3.10. For any w € W, W' C W, a € A%, N A%, x.y € V(G), i'.i € [i*]
g. g € {hi,lo,no}, writing AY for the set of y such that ¢,(a) = y is possible given the
history at time t;, whp

(i) Pla (pu(@) = y) = (1 £ &) A7,

(i) P (gu (@) € N5, (0) = (1 £ 52)pf5

(i) {w e W' : ¢y(a) € NZ, M =1 xe)psf W | £nb.
Proof. Recall that for each a € A; in any order, we let W, = {w € W : ¢, (a) undefined},
letV, (IVKQ ‘) be uniformly random, and define

M, = {pp(@)w : w € W,;} = MATCH(Bgy, Z,),

where Z, = {¢w(D)w : b € N<(a)} and B, C V, x W, consists of all vw with v €
NJI_/ (w) \ Im ¢, and each vy, (b) for b € N-(a) an unused edge of G;,.

To justify the application of Lemma 2.7 in defining M,, we first note that by
Lemma 3.3 (v), |W,| > .3¢;/n for all a € A;s. Also Z, has maximum degree < 4. We
also claim that whp B, is siz-super-regular of density (1 £ 8;7) prllﬁf @1 Ty see this,
we argue similarly to Lemmas 2.10 and 2.11, except that Lemma 2.6 is not applicable, so
we instead apply Lemma 2.5. We have |W,| = [V,| > .3&;/n. We let G S G}, denote
the graph of unused edges, and let B be the bad event that G/, \ Gy has each vertex of
degree > .lsi?n. We will establish the claim at any step before 8 occurs, assuming the
claim for all » < a, and deduce that whp 8B does not occur.

Consider any R € (Zg) We have
Na,(R) = Va N N7 (R) N NG () duN<@)) \ | my.
' weR weR

As 8B does not occur, by Lemma 2.13 and a Chernoff bound, whp
INB, (R)| = (1 £ &) (plhz @RI,

unless R = {w, w’} with ¢, (N<(a)) N ¢y (N<(a)) # @; by Lemma 2.8 there are whp
< n'* such pairs R.
Now consider any R’ € (IS/‘;) Let W' be the set of w such that ¢, (b) € Ng, (R') for

all b € N(a) with ¢, (b) defined at time ¢. As B does not occur,
INB,(R))| = |[Wa NN, (R)NW'a| £ 5¢;7n.
For any b € N.(a) and w € N;? (R'), if ¢y, () is defined by Lemma 2.7 during HIGH

DEGREES or APPROXIMATE DECOMPOSITION then similarly to the proof of Lem-
ma 2.11, writing t = ¢,” and v =tp, whp

max

(W = [MP[Ng, (R). W]l = (1 £ &) plR]| W]

by Lemma 2.7, assuming the claim for b € A; with j < i’.
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Now suppose ¢y, (b) is defined by the hypergraph matching in #;. We consider the
function f on #; with f(“¢y (u)=x") = lyewr 1u=b1x€Ng, (R')> SO

SO )= Y Y o (“pu(b)=x").

xENE;/ (R)yweWw?
Similarly to the proof of Lemma 3.8, if b ¢ A% then

Y 0 Culb)=x) = (1 £2.2¢) iRl
xEN(;,_/ (R)

By Lemma 3.3 (iv), whp [{w : b € A%9}| < 58*n, so
fH = 3 Y o Chub)=x") = (1£236) NG, (R W],

XENE;, (R)YweWw?
and by Lemma 2.8, whp |[W7| = (1 + 3ej)p,|£;‘ [WE|.
Together with Lemma 2.13 (ii) this proves the claim, and so justifies the definition
of M,. Statements (i)—(iii) of the lemma now follow directly from Lemma 2.7, consider-
ing M, [W’, N_;’.,G ()] for (iii). Also, whp every vertex degree in G/, \ Giree is (. lsi?n, 4)-

123
dominated from (i), so whp B does not occur. ]

We deduce the following estimate similarly to the proof of Lemma 3.6, using
Lemma 3.10 in place of Lemma 2.11.

Lemma 3.11. Whp wf,  (Py @ Ay — x) = (1% 82§)w:+ (Py 1 Az — X).

We conclude by deducing the estimates on w(#; [XW]) = wy, (Py : Ay — x) required
for Lemma 3.4. By Lemma 3.6, whp a)t*l (Py : A > x)=1=x .3¢8, and by Lemmas
39and3.11, whp

o, (Pw: Ay = x) = (1% 28;§)w;}(Pw A — x),

50 @) (Py 1 Agy — x) = 1 £ 4e3. Also, if XW ¢ J™ then by Lemma 3.7, whp

a)t*l(Pw : Az — x) = | £ &1, and repeating the previous calculations shows that
wt*i (Py Az —>x)=1=% 38;-8_1 = 1 % ¢;. This completes the proof of Lemma 3.4 (ii).

3.4. G degrees

This subsection concerns w(J;[Xy]) for Xy € 6, We start by establishing Lem-
ma 3.4 (iii), which is Lemma 3.12 below, as this is needed for the analysis (and also
for Lemma 4.2 below).

Lemma 3.12. Whp a);*lj (Pw :u —x)=1=x¢; foreachx € V(G) andu € A;.
We start with the corresponding estimate at time #;.

Lemma 3.13. Whp of (Pw :u — x) = 1 £ &1 foreach x € V(G) and u € A;.
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Proof. We consider cases according to the location of u.

If u € A with a € AiA then of (Py :u — x) = |Au|_11¢w(a)x€H{" and hence
of (Pw :u — x) = |Ay| ™ dya(x) = 1 £ &; by Lemma 2.13 (viii).

Ifu € AY° then wf (Py 1u — x) = |4, |7'1
bound whp /' (Pw :u — x) = 1£ A~

If u € AP then wf (Py :u — x) = p, ' [Au| ey, 1¢w(u’)EN%> (x)» Where

so by Lemma 2.13 and a Chernoff

—
xXwey’

u0
N<(u) N Ag = {u'}. For each x" € Ng=(x) there is a unique w’ € W with ¢ (1) = x/,

S0
wf (Pw :u — x) = Z Pud | Aul™ llx eG)lwaJu
x’€Ngx*(x)
As [Ng=(x)| = (1 & 2§) pn, by Lemma 2.13 and a Chernoff bound whp w;, (Pw :u — x)
=1+ 3¢ [

Next we consider the evolution of ®}(Pw : u — x) at step i’ < i in the approximate
decomposition, again writing t = t;7, T/ = ti'i'.

Lemma 3.14. Whp 0%, (P :u — x) = (1 £ )X (Pw 1 u — x).

Proof. Let W ={w € P*(u — x) : u ¢ Uy }. Consider the function v on (‘% i) Where
Y (I) = 0 except if there is w € W’ such that I consists of disjoint edges “¢y, (u")=x"

with Xx’ € E)W/ for each u’ € N-(u) N A;/, and then
vih=14" [ e
w'eN<)NA;s
Note that o, (Pw :u — x) = ¥(Mir) £ Ay £ A:p, where

Ay = pamldd™ >0 Hw e Ngj(x):u' € 4) )
weN<(u)NA;s

< dppd AN @A eprd g, (w) + 8| Au]) < &)
A:ﬁ - pmax|A | 1|{w EW:ue Uw}|

< @B Y [{w i € AR <.
u' eN<(u)

Here we have used Lemmas 3.3 and 2.13 (ii, viii) to estimate Ay, and for A:/, we have
used Lemmas 3.2 (v) and 3.3 (1v), also noting that if A’ # 0thenu,u’ ¢ Abi by definition
of Ay, so |Ay| > én. Finally,

Y (Hir, @)
= > 4™ I rw T] Y W Chu)=x")
wew’ wWeN<(m)NAjs uweEN<(m)NA;» x’eNZ,  (x)

uu’

=1+ %o (Pw :u — x)

by Lemma 3.8, and the lemma now follows from Lemma 2.8. [
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We deduce Lemma 3.12 (i.e. Lemma 3.4 (iv)) from the previous two lemmas and the
following estimate which holds similarly to Lemma 3.11, using Lemma 3.10 (iii).

Lemma 3.15. Whp all o},  (Pw :u —x) = (1% 8:§)w*+ (Pw 1 u — x).

l

Now we turn to the degrees of Xy € G We consider o/ (Pw : F’ [Ag Ag ] — xy)

where xy € 8G 0 < j < i, and for convenient notation we label arcs of F’ [Ag Ag ] as
uv withu € Af ,U € Aj’.' . Recall that ag = ag for all g’. We start with an estimate at
time 7.

Lemma 3.16. Whp o} (Pw : F'[A%, 45| > X3) = 1 £ &, forall £y € GZ.

Proof. We consider cases according to g, g’,i, j where 0 < j <.

We start with the case Xy € E)lg For each uv € F/[AP, Ag], w € W we have
o (Py : uv — 5@) = 0, except for the unique w¥ € W with ¢, (v) = y, for which

e —
wf (Pyv 1 uv — Xy) = @f (Pyv 1 u — x) = (pio]AR]) 11wa€Ji10,

so o, (Pw :uv — ) = (p1°|Al°|)_11xwv€J10 The w" are distinct, so the events

{xw® € J°} are independent. Each affects o, (Pw 1uv — Xy) by < Pk pd (8n)~1, so
by Lemma 2.4, whp

o} (Pw 1 F'[AR, Ag] — X3) = (puon) "' |F'[AX. Ao]| £n~*
- puv (Puv — Pmin) £ n~t=1+e.

Next consider the case Xy € a?, j €[i —1]. Foreach uv € F'[AY, AF], we W we
have wy, (Py :uv — ) =0, except if X € J,, and yw € J,, when oy (Py 1uv — )

= (puv|Au| |Ay])~L. We have Xw € Jy, iff ¢ (a) € N ,,(x) where u € A?, and as
d (x y) > 3d since any close edges were removed from Gy, the events Xy € Guv,
{(XW € Jy} and {yw € J,} are conditionally independent given HIGH DEGREES. By
Lemma 2.13 and a Chernoff bound, whp there are (1 £ A™®a,d;, He (x) choices of w
with of (Py @ uv — ) # 0, so

of (Pw 1uv > Xy) = (1 £ A~ Vdgga () pry | Aul "0 = (1 £ 261)(puvn) ™!
by Lemma 2.13, giving the required estimate.
The case Xy € 6(} J € [i — 1], is similar to the previous one.

Now consider the case Xy € 6G J €li —1]. Foreachuv € F'[A}°, APl w e W we

have wy, (Py 1 uv — Xy) =0, except if xw € J,, and yw € J,, when oy, (Py 1uv — )
= (puv|Au||Av|)~'. By a Chernoff bound, whp

o (Pw 1 uv — ) = Z wy, (Py :uv — ) = (puon) ' £ 0714,
wew

giving the required estimate.
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Finally, consider the case 5@ € aJG, j €[i —1]. (The case 5@ € Z})lf is similar, and this
is the last case by the definition of A as a 4-span.) For each uv € F’[Ai.", A;’."], weW
we have a)t*l(Pw UV — )(5) = 0, except in the event E,,, that X0 € Jy, y_w) e Jy
and Xx' € E)ig, where x" = @), {u'} = N<(u) N Ao, when of (Py : uv — ) =
(Puv Pyl Aul | Av])~". For each x" € V(G) there is a unique w’ € W with ¢y (u’) = X/,

5 wZ(PW3MU—>ﬁ)=Zw;(Pw:uv—>ﬁ)
wew
= Z 1By (PuvP§%|Au| |Av|)_1-
x’eN— (x)
Gy
We have

E°wf (Pw : uv — Xy) = (Pl-%/pl)a%l () (puv pign®) ™",

where whp d= (x) = (1 + 2§)pin. Note that the decisions on Xw and yw affect
wf (Pw : uv S X¥) by < (Puv )" (Pmax8n) 2. For each XX/, there are n choices
of w’, which determines u’ = ¢} (x’), then < A choices for each of u and v, so the
decision on {Xx’ € G} affects wy, (Pw :uv — Xy) by < NA(Puv P1S) ™ (Pmaxdn) 2.
The required estimate now follows from Lemma 2.1. ]

g

’
Next we consider the evolution of @} (Pw : F'[A] Af ] - Xy) atstep i’ < i in the

. o . . .« ’ +
approximate decomposition, again writing t = 7, T’ = 1.

Lemma 3.17. At step i’ < i whp o(Pw : F'[A, A5 — 53)

4

o is(1+.7e¥)0k(Pw : F’[Af,Ajg,] — Xy) foreach0 < j <iand Xy € EZG

o is (1+&8)w?(Pw : F'[Af Af/] —> X)) ifj #i'ory ¢ BorXy ¢ G,

i

Proof. We start with the case j < i’. We note for each uv € F'[A?, Af/], w € W that

l
wF(Py : uv - %7 ) and 0 (Py :uv — Xy) are 0 unless ¢y, (v) = y, in which case
W (Py 1 uv — ) = w? (Py :u — x), and 0}, (Py : uv — ) = 0l (Py :u — X).
By Lemma 3.14 we deduce
w;(Pw : F'[A, AT ] — xy)

1

Z IN<(u) N A}g/|(1 + &)X (Pw : u — x)

uedf

= (1t & (Pw : F’[Af?’,A_f/] — xy).

Now we may assume j > i’. Suppose j = i’. We consider the function ¥ on (‘zl‘" ),

where ¥ (E) = 0 except if there are w € W and uv € P (- — )N F'[Af, Af,,] with
u ¢ U, such that E consists of disjoint edges “¢y, (u')=x"" with Xx' € 6,“,/ for each

u’ € No(u) N A;» and x’ = y when u’ = v, and then

Y(E) = 0} (Py i u — x) = |Ay|™! [ Pk,
weN<WNA,;s
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1

Note that  (Py : F'[A$, A5] — 57) = (M) £ Ay £ Al,, where

Ay =Y {0} (Py :uv — X3) : No(u) N A, , # 0}

uvw

IA

Do D IFAY . N (o) N AF] | prs | AF [T Ay !

—
wixwel? VeA5;

< 961" Praxd 1 (0) | AT |7

<&,
Y=Y APy uv > X7) 1w € Uy)
vw
< posn(m) 2 > Jwu € A% < 5°.

u' eN<(u)

Here the bound on Ay, follows from Lemmas 3.3 (vi) and 2.13, and the bound on Aﬁp by
Lemmas 3.3 (iv) and 3.2, also noting that if A’ # 0 then u, v ¢ AM by definition of Ay,
s0 |Af[.14%'| = én.

Next we estimate ¥ (#;/, '), which equals

ool T meCh=m T gwew)

uvweS, u¢Uy u”€N<(u)ﬂA§l-/ weN<u)NA;\{v}

where S := {uvw : w € W,uv € P (- — ﬁ) N F’[Af, A}?/]} and by Lemma 3.8,

Guw (Xxw) = Z o' (“Ppu W)=x") = (1 & 2.2&i) pyu.
x’GN%uu/ (x)
To obtain the required estimates in the case j = i/, by Lemma 2.8 it suffices to show
that ' (“¢, (V)=y") is (1 £ .66F)w(“¢y, (v)=y") when v € A (which is equivalent to
Xy € G™°) and that if v ¢ A'° or y ¢ B then the sum of

favw) = (414D ] e ] Pov

weN<(u)NA_; v'eEN<(v)NAL;/

over uvw € S for which yw € J% is at most /8, the sum of f(uvw) over uvw € S with
v e A% N N_(A4") is at most +/8, and for every other uvw € S we have o’ (“¢, (V)=y")
= (1 £ 2&) w0 pw (v)=y").

So first assume v € A'°. For each y' = ¢, (v/), v € N<(v), as v € A'° we have v’ ¢ A",
s0 w(Hi[yy']) = 1 £ & by Lemma 3.4 (iii) for i’. Parts (i), (iii) imply that o (H;/[v]) =
1+ .5¢8 for v = vw, YW, s0 @' (“Pp (V)=y") = (1 — .56))(1 £ 563w (“pw (v)=)"),
as required.

Next, suppose y ¢ B or v ¢ A'. Consider those uvw € S with yw € J4. Then y ¢ B
and v € A%, since otherwise yw ¢ J"9. Sou ¢ A™ by the definition of Ao, and therefore



Ringel’s tree packing conjecture in quasirandom graphs 1813

| Ay, |Ay| > 8n. Since y ¢ B, there are < 831 choices of w with yw € J®9, so the sum
of f(uvw) with y € J®is < 83n Y, p8 | Ay~ Ay~ < V6.

All other terms uvw have )7177 ¢ J". Consider those uvw € S with v € Atl’l‘j‘d N
N-(A"). Then v,u € A™ by the definition of 4¢ as a 4-span, so |4y, |4,| > 8n. Each
remaining w has < §3n choices of v € Abaql by Lemma 3.2, so the total sum of these terms
Flrvw) is = 3, Enpd Al 4] e V3.

Since all other terms uvw have yw ¢ J*d by Lemma 3.4 (iii) for i’ we may assume
that there are (not necessarily distinct) v/, v” € N<(v) with ¢, (v') € B and v” € A",
or else we have o’ (“¢y (v)=y") = (1 — .58i)(1 £ &i")w(“¢y (v)=y”). But then v €
A% N N_(A°), proving the claim and completing the case j = i’.

Finally, we suppose i’ < j < i. We consider the function ¥ on ( ) where ¢ (E) =

except if there are w € W and uv € P5(- — xy) N F’ [Ag Ag ] with u ¢ Uy, such that

E consists of disjoint edges “¢y, (u')=x"" with X e Guu/ for each u’ € No(u) N Ay

and yx' € 61”,/ for each v/ € N<(v) N A;s, and then ¥ (E) = f(uvw). Note that we have
WX (Pw : F'[Af, Ag ] = Xy) = ¥(Mir) & Ay + A, with Ay as in the case j =i’ and

Ay = Z {0} (Py :uv > Xy) : No(v) N 47, , # 0}

uvw
1 1
= Z P AS 1™ |[As 1™ P | F'1AD Azl
wixwelf
< 9¢;r p 10 Z |AS |7t < &)

—
wixwesf

by Lemmas 3.3 (vi) and 2.13. Now we estimate

ya)= Y [faw)  [] gwtw) [ gwow)]

uvweS, ugUy, w eN<(u)NA;r v/ eN<(v)NA;/
By Lemma 3.8, gy, (xw) = (1 £ 2.2¢;7) pyy and goy (Yw) = (1 £ 2.2;7) pyyr, SO
Y (Hir.o') = (1 £ )0k (P : F'[AS, A% ] — %5).
The lemma now follows from Lemma 2.8. ]
Similarly to Lemma 3.11, we also have the following estimate.
Lemma 3.18. Whp

wf,, (Pw: F'[A, 48] > 5) = (1 £ ¢} Jory (P : FI[A], A5] > £3).

We conclude the proof of Lemma 3.4 (and so of Lemma 3.1) by deducing the estimates
on w(H;[Xy]) = wp(Pw : F' — %7) required for Lemma 3.4. For any Xy € G” ,
Lemma 3.16, whp o}, (Pw : F'[A?, Ag ]—>Xy)=1=4¢e,.Atstepi’ <i, by Lemmas3.17

and 3.18, whp ¥, (Pw : F' [A‘ig,Ag ] = Xy)is (1 £ .7e®)wk (Pw : F'[AS, Ag 1 - %),
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and is (1 £ 3¢})w? (Pw : F'[Af, Af/] — Xy)if j #i’ory ¢ B or Xy ¢ G™". Thus
(H;[Xy]) =w; (Pw: F’[A‘ig,A}g,] —Xy)is1+ &8 andis 1 t4ed  =1xeifj#i’
ory ¢ BorXy ¢ Gl

4. Exact decomposition

In this section we complete the proof of our main theorem in each of the cases S, P
and L. We start in the first subsection with some properties of the leftover graph from the
approximate decomposition required for Cases S and P, then analyse each case separately
over the following subsections.

4.1. Leftover graph

In both Cases S and P the approximate decomposition constructs edge-disjoint copies Fy,,
w e W of F =T\ Pe. The leftover graph G/, = G \ U, e dw (F) is obtained from
G« by adding all unused edges of G \ G¢ (and removing any orientations). We require
the following typicality properties.

Lemma 4.1. Foranyw € W and S € (Vi(j)) whp

INJ. (W) N GL(S)] = (1 £ pg) pl2pex)S'n.

As in Lemma 2.13, a stronger form of this estimate holds with G in place of G,
so it suffices to bound the maximum degree in the unused subgraph of G \ Ge. Given
the trivial bounds whp A(Gy) < 1.1pon and A(G]) < 1.1pman, the following estimate
implies Lemma 4.1.

Lemma 4.2. Whp the unused subgraph of each Gfﬁ " has maximum degree < 5¢8n.

Proof. We fix x € V(G) and consider separately the contributions to the unused degree 1
of x from NEGE  (x). For indegrees, let f be the function on J; defined by

FCuw)=x"") = Ly=xl,e a8 IN<() N AL |.
We have

f(%i»w,) — Z{(D,(%l [ﬁ]) 1y € N—;:IG/ (X)} = (1 — ng)diGt:IG/ (X)

by Lemma 3.1, so by Lemma 2.8 whp this contribution to uy is < 2.1&"8n.

For outdegrees, first note that if i” = 0 then for each u € A there is a unique w € W
with “¢,, (u)=x", for which we use |Nx(u) N Af| out-arcs at x. Thus we use exactly
F'[Ao. Af ] =n( pfo — Pmax) out-arcs at x, so this contribution is whp < 2 pp,xn. Now
fori’ € [i — 1], let fis be the function on J;/ defined by

firC“pw(W)=x"") = 1x’=x1ueA$’,/ |N>(u) N A§|-
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By Lemma 3.1 we have

S0y = > IN) NAS| Y o ()=x") = (1—26%)| F'[4F, Af]].

/
ueAf, wew

As |F’[A;.g,,, A8 = n(pfié,”, — Pmax), this contribution is whp < 2.1&8n. n

4.2. Small stars

Here we conclude the proof of Theorem 1.1 in Case S, where P is a union of leaf stars
in T\ T[A*], each of size < A = n'~¢, with | Poy| = pext = p_n/2 £ n'=¢. We start
with some further properties of the approximate decomposition needed in this case.

Lemma4.3. (i) Foranyx € Vand R € (<Vz) whp

Si= Y dr ') = (£ ) (pl) TPl

weN j., (R)

(ii) Foranyy € V andw € W, whp
Y dri (' () = (1 £ €)2pes| Pesl.

x€Gex(¥)

Proof. We prove (i) and omit the similar proof of (ii). We consider the contribution to
from each a € V(F) according to its location in 7.

For each a in Ay we define M, = {¢py(a)w : w € W} = MATCH(B,, Z,). By Lem-
ma 2.7, foreach b € N_(a) and w € W we have P’ (¢, (h) € Ng(x)) = (1 £ .1§')p, and
if ¢ (b) € Ng(x) for all b € N(a) then P% (¢ (a) = x) = (1 £ .1&)(pN<@Ip)~1,
By Lemma 2.4, whp the contribution to X from Ay is

SAoli= > Y lg@=xdp, (@) = (1 £ 3E) Ny (R)] Y dp,(a)/n

ac€Ap weNy, (R) acAop

=1 £E) PR Y dp(a).

acAy

Now we consider the contribution from A; with i € [i*]. By the proof of Lemma 3.12,
whp

D 0 Cpup)=x") = o} (Prr) :u — x) = (1 £&)(pl)"
weJex (R)

for eachi € [i*], u € A;. The function f on J; defined by
f(“qbw (M)ZX/”) = 1x’=x1wENJeX(R)dPex (u)
has

fOo) =Y dp, ) Y = o Chpp)=x")=1xe)p )" > dp, ).

UEA; weN ., (R) UEA;
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By Lemma 2.8, whp the contribution to ¥ from the hypergraph matching embedding A;
is

S[Ail i= f(Mi) = Y dp, l{w € Ny (R) : " (u)=x" € Hi,u ¢ A7}

UEA;

= (1 +26) (Pl D" dp ().

UEA;

It remains to consider the contribution from defining ¢y, (a) for w € W, by {¢y (a)w :
w € W,} = MATCH(B,, Z,), where Z, = {¢y (b)w : b € N<(a)} and B, €V, x W, con-
sists of all vw with v € NJI_/ (w) \ Im ¢, and each ¢, (b)v for b € N-(a) an unused edge
of G/.Here V, € (\Vllja\) is uniformly random, so P (x € V,;) = |W,|/n. By Lemma 3.3 (ii),
3ein < |W,| < 2.2¢;n.

Similarly to the above analysis of Ay, whp there are (1 + .lé’)prllﬁf(a)HNJex(Rﬂ
choices of w € Ny_(R) with ¢, (b) € NG? (x) for all b € N<(a), and for each such

w we have P (¢ (a) = x) = (1 £ .18 (pXc@!|W,|)~!. Thus the contribution from
defining ¢, (a) fora € A;, w € W, is whp

Y dp,(@){w € Wa NNy (R)}]/n < 3.1 T[A4;].

acA;

Summing all contributions gives the stated estimate. ]

In the subroutine SMALL STARS we start by finding an orientation D of the leftover
graph G/, such that each d B’ (x) is |Lyx|, where Ly is the set of all uw where u is a leaf
of a star in P, with centre ¢,,!(x). By the case R = @ of Lemma 4.3 (i), whp |Lx| =
(1 £ &)| Px|. To construct D, we start with a uniformly random orientation of G/, and
while not all dz{ (x) are | L[, choose uniformly random x, y, z with | L, | > dD+ x), Lyl <
d;(y), z € Nz{(y) N Np (x) and reverse V2, ZX.

To analyse this process, we first note that by typicality of G, (Lemma 4.1) and
a Chernoff bound, whp dj} (x) = (1 & 1.1py/)pexn = |Lx| & 2pi/n for each x and
|NBL (y) N Np(x)| = pZn/2 for all x, y. Thus each vertex v plays the role of x or y at
most 2 p67n times. We let B be the bad event that we reverse > .2 p('fn arcs at any vertex v.
We will show that whp 8B does not occur. At any step before B occurs where we con-
sider x and y as above, the number of choices for z is whp > .49pezxn - prn > .48p2n.
Thus at any step, v plays the role of z with probability < 1/(.48 pezxn), so the number of
such steps is (u, 1)-dominated with o < 2p;'n?/(.48p2n) < .1pfn. By Lemma 2.4 we
deduce that whp 8 does not occur, so we can construct D with all d g (x) = |Lx|.

Now for each x € V(G) in arbitrary order, we define ¢y, (1) for all uw € L, by
M, = {{uw, ¢y (1)} :uw € Ly} = MATCH(Fy, @), where Fyy C Ly X N;(x) consists
of all {uw, y} withuw € Ly, y € Ng(x) NNy, (w)\Imey.

To analyse this process, we consider

Zy = {{uw,y} € Ly X (Ng(x) N Jex(w) NIm ¢y )}

and let B, be the bad event that Z, has every vertex of degree > .1p;)|Ly|. Recall that
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Dex K pl, < 1in Case S and at the beginning of SMALL STARS we have Im ¢, N
NJeX (w) =40.

Lemma 4.4. Whp under the construction of D, if By does not occur then Fy is p2-
super-regular of density (1 £ p2)p. .

+
Proof. Any R € (¥ ng)) has

INE (R = > dp, (93" (x) £ 1R p3) Ll = (1 £ .1p3) (pL)®| Py
wEN_[CX(R)

by Lemma 4.3. Any R’ € (é’é) has

INE (RO = [N @) 0 () )] £ 1R 2L,
UwWER’
which by Lemma 4.1 and a Chernoff bound is whp (1 £ .1p;8)(p)®'l| Pey| unless R =
{uw, u'w} for some w; there are < Y_, ey dp. (¢, (x))* < n?>~¢ such R’. The lemma
now follows from Lemma 2.5. ]

By Lemma 2.7 we can choose M, = {{uw, ¢, ()} : uw € L.} = MATCH(FYx, 9),
and P(¢u (1) = ) = (1 £ p3")(pix| Pex) ™! for all {fuw, y} € Fi.

It remains to show that whp no B, occurs. We define a stopping time t as the first x
for which 8, occurs and bound P (7 = x).

First we bound dz, (uw) foruw € L. Forany y € Ng (x), when processing any x’
before x we defined ¢y, (1) for dp, (¢, (x')) leaves u’ of ¢,1(x’"), each of which
could be y if y € N (x) N Jex(w), with probability < (.9pL,| Pex|) ™. Thus dz, (uw) is
(i, n'=¢)-dominated with

=Y NG (xx) N Jex(w)ldp, (d3," (X)) (9pl| Pex) ™ < 1.2p% 1,
x/
so by Lemma 2.4, whp dz, (Uw) < 3pex|Lx|.
Now we bound dz, (y) for y € Ng(x). For any uw € L, with w € J(y), when

processing any x’ € N () before x, we had ¢y, (1) = y for some leaf u with probability
<dp, (9 (X)) (9pL | Pex|)™L. Thus dz, (v) is (i, n'~¢)-dominated with

=Pl D lweraoy Y. de (@, (X))

uweLy x’eNp (»)
< ('9péx|PeX|)_l “|Lex| - (1 + &) pex| Pex|
by Lemma 4.3 (ii), so whp dz . (w) < 3|Lx|pex/ Pl
Thus whp no By occurs, as required.

4.3. Paths

Here we conclude the proof of Theorem 1.1 in Case P, where P is the vertex-disjoint
union of two leaf edges in T \ T[A*] and p4+n/(101K) bare 8K -paths in 7"\ T[A*].
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The first phase of the PATHS subroutine fixes parity, as follows. We call x € V(G) odd
if the parity of dg; (x) differs from that of the number of w such that x = ¢y, (a) where
a is the end of a bare path in P.,. We let X be the set of odd vertices and a1 €1, axf> be
the leaf edges in Pex, with leaves £1, £5.

First we define all ¢, (£1) by M1 = {¢p (£1)w : w € W} = MATCH(By, Z1), where
Zy = {¢pw(awlyew and By = {vw : v € Nj_(w), vy, (£1) € Gree}. Lemma 2.7
applies, as Z; is a matching and similarly to the proof of Lemma 3.10, whp B is py-
super-regular with density (1 £ py’) pl, pex. Similarly, Lemma 2.7 applies to justify the
definition of ¢, (£2) for w € W’ by M) = {¢py,({2)w : w € W'} = MATCH(B), Z/) and
¢ () for w e W \ w’ by M, = {pwUr)w :w e W \ W/} = MATCH(B,, Z>5). By
construction, there are no odd vertices after the embeddings of £; and £,.

Next for each w € W we need 8d (x, y)-paths Py” in P for each [x, y] € Y,, centred
in vertex-disjoint bare (8d(x, y) + 2)-paths in Pex. We greedily choose these paths within
the bare 8 K-paths in P that exist by definition of Case P. By Lemma 2.12, the total
number of vertices required by these paths is

> (8d(x.y) +2:[x.y) € Yo} = 8Vu| + [Yu| = (1 = )| Pa| £ nd ™.

At most d %] Py| vertices of the bare 8 K-paths cannot be used due to rounding errors,
soas d ! < 7 the algorithm to choose all Py can be completed.

Now we extend each ¢, to an embedding of Pex \ U, Pw” 50 that ¢, (x), ¢, (v 1)
are the ends of P,,”, according to a random greedy algorithm, where in each step, in any
order, we define some ¢, (a) = z, uniformly at random with z € J(w) \ Im ¢, and
22" € Gyee Whenever z/ = ¢y, (b) with b € N7 (a). Writing E for the set of ends of paths
in Py, for any vertex y we use |[{w : ¢"1(y) € E}| < 1.1|E| < | P|/(3K) edges at y
due to it playing the role of an end.

Let X, be the number of additional edges used at y during the random greedy
algorithm, and let B be the bad event that any X, > .17-?n. We claim that whp B does not
occur. To see this, consider any step before B occurs, and suppose we are defining ¢y, (a).
Let R be the set of b € Ny (a) such that ¢, (b) has been defined and note that | R| < 2. By
Lemma 4.1 there are ((1 + p(?)pex)‘R'péxn choices of z € Jex(w) N Ngz, (R), of which
we forbid < 2npech in Im ¢y, and < 1°n if B has not occurred. As n = ny < p4 (and
P+ < 13pex) we can choose z, and any z is chosen with probability < (.9p2 pL.n)~'.
Thus X, is (¢, 2)-dominated with

w=(9p2pl.n)* Z P\ U PX < 1.2np;'n,

weJex(¥) xy

so by Lemma 2.4, whp X,, < .1°°n, which proves the claim.

Thus the random greedy algorithm can be completed, and the remaining graph Gy is
an 1% -perturbation of Gey, i.€. |Gex (x) A Grree(x)| < 7°°n for any x € V. By construction,
every dg,..(x) is even. The following lemma will complete the proof of Theorem 1.1 in
Case P.
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Lemma 4.5. One can decompose Gy into (G, - w € W) such that each G, is a vertex-
disjoint union of 8d(x, y)-paths ¢y, (Py’ ) between x and y™ for [x, y] € Yy, internally
disjoint from Im ¢y,.

The proof of Lemma 4.5 is similar to the corresponding arguments in [20], so we will
be brief and give more details only where there are significant differences. We require
the following result on wheel decompositions; see [20] for its derivation from [17] and
discussion of how it provides the required paths. The statement requires a few definitions.
An 8-wheel consists of a directed 8-cycle (called the rim), another vertex (called the hub),
and an arc from each rim vertex to the hub. We obtain the special 8-wheel W)SK by giving
all arcs colour 0 except that one rim edge x_y> and one spoke )71)) have colour K.

Theorem 4.6. Letn™' < § < @ < 1,5 =258 andd < n. Let J = J° U JX be
a digraph with arcs coloured 0 or K, with V(J) partitioned as (V, W) where wn <
[V, |W| < n, such that all arcs in J[V, W] point towards W and J[W] = @. Then J has
a I/_V>8K -decomposition such that every hub lies in W if the following hold:

Divisibility: d; (w) = SdJ_K (w) forallw € W, and forallv € V we have d; (v,V) =
df .V)=dj@.W)andd;(v.V) =d (v, W).

Regularity: each 3d-separated copy of ﬁ/)sK in J has a weight in [on~"7, 0™ 'n~7]
such that for any arc ¢ there is total weight 1 & § on wheels containing z.

Extendability: for all disjoint A, B CV and L C W each of size < s, forany a,b,{ €
{0, K} we have |N}’; 4)n N7, (B)N N7, (L)| > wn, and furthermore, if (A, B) is 3d-
separated then |N;;)(A) N NJ+1< (B)NW| > wn.

Proof of Lemma 4.5. Recall that we constructed Jex in DIGRAPH, such that for every
xy € G, we have exactly one ofx_y) eJ9, y_x) eJo, x_y)f € Jelx(, y_x)’ € Jelx(, and there
are also yw € J2[V, W]. Add the arcs JK[V, W] = {XW : x € Yy ). It suffices to find
an 77'6-perturbati0n L of J, i.e. L is obtained from J. by adding, deleting or recolour-
ing at most 7°°n arcs at each vertex, where L[V] corresponds to Gy, under twisting, and
Ny (w) €V \ Im¢,, foreach w, and a set E of edge-disjoint copies of I/_V)SK in L, such that

Theorem 4.6 applies to give a ﬁ/)f -decomposition of L’ := L \ | J E. This will suffice, by
taking each G, to consist of the union of the 8-paths that correspond under twisting to the
rim 8-cycles of the copies of WSK containing w. Here an arc of L corresponds to an edge
xy € Giree under twisting if itis xy € L% or yx € L® or X3~ € LX or yX~ € LX (which
is a more flexible notion than in [20], as it does not depend on the orientation of L.)

Whenever we make a series of yn? modifications to J of some type which involves
changing edges at some intermediate vertex z, we always ensure that no vertex plays the
role of z more than yn~!n times. There will always be more than, say, 2'!n valid choices
of z, by Lemmas 2.12 and 2.13, and thus we can avoid the set of at most n'ln overused
vertices. This series of modifications will add yn~! to the perturbation constant.

We start by deleting arcs corresponding to Gex \ Giree, adding arcs x_y> for each xy €
Grree \ Gey, replacing any Xy of colour K where d(x, y) < 3d with X3+ of colour 0 and
deleting arcs y_w> in L[V, W] with y € N;. (w) N Im ¢y, . Next we delete or add arbitrary
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arcs yw with y € V' \ (Im¢y, U (V)1 U Nj (w)) until each dj (w) = 8|Yy|, and so
|L[V, W]| = |L[V]|. We require < n-°n such arcs for each w, by Lemma 2.12 and the
bounds on X, during the embedding of P \ ny Py .

While |LO[V]| > | L°[V, W]| we replace some X3 € L°[V] by X3~ € LX[V], or while
|LO[V]| < |L°[V, W]| we replace some xy € LX[V] by X3 € L°[V], continuing until
|LO[V, W]| = |L°[V]|, and hence |LX[V, W]| = |LX[V]].

Next we balance degrees in LX. While there are x, y in V with dix(x, V) >
dLK(x, W)andd ¢ (y,V) < erK (y, W), we choose z € V such that X € LK —y>+ elf
and replace these arcs by ZXtelO, z_y> € LX . While there are x, y in V with d K (x,V)>
d:K(x, W) anddL+K(y V) <d K(y W), we choose z € V such that X2 € LK,)TZ) eL®

and replace these arcs by yz € LK ,xzt e L°. We continue until
dfHe(,V) = dix(, V)= dzr,((v, W) forallv e V.

Now we require some new modifications which do not appear in [20]. We start by not-
ing that each dr (x, V) is even. To see this, note that as L[V'] corresponds to Gy under
twisting, we have

dr(x,V) =dgg.(x) +d x(x7, V) —d x(x, V)
= G (¥) + dfx (T W) —df (x, W) = dg,... (¥),
where the last equality follows from interval properties (listed before the definition of
INTERVALS). While there are x, y € V with dr(x, V) < 2d+(x W) and dp(y, V) >
2dL+(y, W), we add yw to L° and remove xw from L° for some w € N 0(x W)\
N L+ (y, W) with y ¢ Im ¢,,. We continue until

dp(v,V) = 2d2'(v, W) forallveV.

While there are x, y in V' with dZ'O(x, V)y>d (x W) and d 0(y V) <d O(y W),
we choose z € V such that Xz € L°, yZ € L° and replace these arcs by zx € L°, z_y> e L.
Now d L+ W, V)=d ZF (v, W) for all v € V. Thus L satisfies the required divisibility con-
ditions, and is an 5®-perturbation of J.,, and L[V] corresponds to Gy, under twisting.
It remains to satisfy the extendability and regularity conditions of Theorem 4.6. A sum-
mary of the argument is as follows (we omit the details as they are very similar to those
in [20]). There are many wheels on each arc, so we can greedily cover all x_y) € L[V] with
edge-disjoint wheels, incurring an insignificant perturbation of L. A stronger version of
the extendability hypothesis with J. in place of L holds by Lemmas 2.12 and 2.13, and
so it holds for the perturbatlon L. By typicality, the regulanty condition is satisfied by
assigning the same weight W to every wheel, choosing W so that any arc is in ~ w1
wheels. ]

4.4. Large stars

Here we conclude the proof of Theorem 1.1 in Case L, where all but at most p4.n vertices
of T belong to leaf stars of size > A = n'~¢. The argument is self-contained: there is no
approximate step, and the entire embedding is achieved by the subroutine LARGE STARS.
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We start by letting $ be the union of all maximal leaf stars in 7" that have size > A.
Welet F = T \ §; by assumption |V(F)| < psn. Welet ST = {v € V(T) : dr(v)>A},
sothat |[ST| <2Aand S € S+ C V(F), where S is the set of star centres of .

We partition W as W) U W, U W3 with ||W,| —n/3| < 1 for each i. For each
v € V(G), we independently choose at most one of P(v € Uf) = ds(a)/(3|S])
with @ € S, i € [3]. By Chernoff bounds, whp |U?| = nds(a)/(3|8]) £ n°. We let
Ui =, Uf. While 21'3=1 ||Wl| — Ui || > 0, we relocate a vertex so as to decrease this
sum, thus relocating < n-° to or from any Ué, so < 3An° < 1% in total.

Noting that F' is a tree, we can fix an order < on V(F') such that Nc(u) = {v < u :
vu € F} = {u™} has size 1 for all u # ug € V(F). We fix distinct ¢y, (1g), w € W
with ¢y, (uo) € U; whenever w € W;. We construct edge-disjoint copies F, of F' by
considering a € Fy, in < order, defining all ¢, (a) by M{ = {¢py(@)w : w € W;} =
MATCH(B{, Z{), i € [3], and updating

Giee = {unused edges}, Z ={vw:v € V(Fy)},

J = {35 1 x = ¢p(a), X' € Z(w) N U pew, aes-
By construction G \ Gy and Z both have maximum degree < |V(F)| < p4n.
Lemma 4.7. Every edge is used at most once and J has no 2-cycles.

Proof. First note that as Bf (w) € Giree(¢w (7)) \ Z(w) for all i, w, we embed each
¢w(a) to a vertex not yet used by Fy, so that ¢y, (@™ )¢y, (a) is an unused edge. Further-
more, when a € S, for each Xx € J, by excluding ¢y, (a) € N}" (Z(w) N U*) we do not
add XX’ to J due to x = ¢y (a), x’ € Z(w) N U?, and by excluding Ny (¢w (b)) N ub
where x’ € U? we do not add X%’ to J due to x = ¢y (b), x' = ¢ (a) € Z(w) N UP.
As before, by including all ¢y, (¢~ )w in Z{ we ensure that M/ does not require the same
edge of Ggee twice. Furthermore, when a € S, by including all vw with v € U% N Z(w)

we ensure that M;* does not add both arcs of any 2-cycle to J: we cannot add xx, Xx/

with X" = ¢y (a) € U N Z(w) and x = ¢y (a) € U N Z(w') as xwx’w” would be an
MAZEMEZE. The lemma follows. |

Next we note that for all i € [3], w € W; we have Bf (w) C U;s, where i’ =i — lygs+-
We record some simple consequences of this observation:
o Z(w)NUjt+1 = 0 forany w € W;.
e Z(x)NWi—y = N7 (x) NUi—; = N (x) N Uj41 = 9 for any x € Uj.
e If w € W; then Z(w) N U; only contains ¢, (a) witha € ST, so has size < |ST| < 2A.
o IfxeU;,beSthenNj(x)NU? =Z(Mp(x)) N Up has size <2A, as M? (x) € W;.
e Ifx € Ul.b then Z(x) N W; only contains M7 (x) witha € S, s0 |Z(x) N W;| < 2A.
o If x € U} then Ny (x) N U; = MP(Z(x) N W;) has size < 2A.
e Each Z¢ has maximum degree < 2A.

By construction, B{ is a balanced bipartite graph. To justify the application of Lem-
ma 2.7 in choosing M#, it remains to establish the following.
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Lemma 4.8. B is p'ﬁs-super-regular.

Proof. We first consider I'j’ C Uy x W; withi’ =i — 1,45+ defined by N]"l{l (w)=Uir N
G(¢y(a™)). Forany R € (Z’Z’) we have

Nra(R) = {w € Wi : R € G(¢w(a™))} = M{" (Ng(R) N Up),

o) |N1"l{l (R)| = |Ng(R) N Uir| = ((1 & 1.1&) p)'RI|W; | whp by typicality and a Chernoff
bound. Similarly, the set Nre (R') = Uy N (yep G(¢uw (a7)) for R’ € (%:) whp has size
(1 £ 1.18) p) KUy .

Now we will show that I'# \ Bf has maximum degree < 5pn. To see this, we first
note that we have a contribution < 4|V(F)| < 4pn to any degree in I'f \ B due to
edges in Z or G \ Gy (including the < 1 vertex that is the image of a ¢ S for two
w, w’). There are no other contributions fora ¢ S +, sowe considera € ST andsoi’ =i.
First we estimate the contribution to degrees of w € W; and to degrees of x € U; due to
x € Ny (¢uw(b) N Ul.b) for b € S, which we claim are both < 4A2. Indeed, for w € W;
the contribution is < ) ;¢ [N (9w (b)) N U;| < 2|S|A < 4A2. For x € U;, we count
we W ifeg,(b)=y ¢ N;r(x), where y € U; as w € W;, b € S, so this contribution is
<3, INF(x)NUP| <4A2

It remains to estimate the contribution to degrees of w € W; and to degrees of x € U;
duetox € Nf (Z(w) N U%), which we claim are both < 8A3. To see this, first note that
we must have w € Z(y) forsome y € Ny (x) NU%,and x € Z(w’) N Uib for some b with
dw (b)) = y € Z(w). We note that w’ € W;, as otherwise x € Z(w’) implies w’ € W4
and y = ¢y (b) implies y € U;41, which contradicts y € Z(w). Thus we have < 2A
choices for each w’ € Z(x) N W;, then y € Z(w') N U;, then w € Z(y) N W;, which
proves the claim. The lemma now follows from Lemma 2.5. ]

Thus we can apply Lemma 2.7, so each M = {¢y, (a)w :w € W;} = MATCH(B{, Z¢)
can be chosen and has P(vw € M#) = (1 + p'ﬁ)(pn)_1 for all vw € B{. In particular,
we can complete step (iv), thus choosing edge-disjoint copies Fy, of F.

Lemmad.9. Forx e V,we W,a e S, whp
U N V(Fy)| < 1.1p4|U%| and |NF(x)NU?| < .1p2|U%|.

Proof. The first statement holds by Lemma 2.4, as |U% N V(Fy)| is (u, 1)-dominated
with

p=EpHEn™ Y7 B w) N U = (1 LipH VR~ U9,
ueV(F)

Next recall for x € U; that N; (x) N U;j—; = N;'(x) NUiy1 =0, Ny (x) NU;| <2A
and [N (x) NU;| = 3, N (x) N UP| < 4A2.

To bound |NJJr (x) NU |, note that for any w € W there are < 1.1p4 |U%| choices of
x' € U% N V(Fy), for which we add XX’ to J if M chooses xw. Thus [N (x) N U2 |
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is (i, 1)-dominated with u < n - 1.1p4|U%| - (1 + pi)(pn)_l, so by Lemma 2.4 whp
<.01p?|U“|.

Finally, for x € U, b we have N;y(x)nUy
ma 2.7 whp has size

A= =MP(Z(x)NU, £ 1> which by Lem-

|MPA1Z () O Wi R < | Z@HUE 1/ (99 Wit ) + 18 < 01p2|U%|. m

We deduce |NJjE )] <1 p'f;’n, so the underlying graph J of J has maximum degree
< 2pin.

In step (v) we orient Gy as D = Uw ew Duw, where for each xy € Gy withx € U?
and y € U if X3 € J we have yx € Dy, where ¢, (a) = y,if yx € J we have X3 € Dy,
where ¢, (b) = x, or otherwise we make one of these choices independently with prob-
ability 1/2. We define ZT C V x W by Z1(w) = V(Fy) U V(Dy).

Lemma 4.10. Whp d;w (x) and |ZT(w) N U%| are (1 £ pf)dg (a) for all x = ¢y (a),
weW,aels.

Proof. First note by typicality and Chernoff bounds that whp there are
(1 +28)nds(@)p/IS| £ L1p1|U%| = (1 £ p°)2ds(a)

choices of v € U? N Gee (x) after step (iv). Excluding < .2p:’ 2|U4| choices with xv € J,
for all other v independently P(xv € Dy) = 1/2. The lemma follows by a Chernoff
bound and Lemma 4.9. ]

To analyse step (vi), we first observe that initially the sets N [)Lw (¢w (a)) are disjoint
over a € S and disjoint from V(F,,), and this is preserved by each move; moreover, each
move decreases X by 2, and if (vi) does not abort we have D, U F,, = T for every w.
So it suffices to show that (vi) does not abort. We start with an estimate for the number
of moves for any uwu’w’ that are original, meaning that they are present at the end of
step (v) before any arcs are moved.

Lemma 4.11. Any u = ¢y (a), u' = ¢y (a’) whp have > 9000~ p3n2ds(a’) original
uwu'w’-moves.

Proof. We estimate the number of moves by sequentially choosing x, v then z. Sup-
pose u € UY and w’' € W, so u’ = ¢y (a’) € U;. Suppose u’ € UP'. We claim there
are whp > .08pn choices of x € U; N Np, (u) \ Z T (w). To see this, note that there are

1+ p+)pn/3 choices of x € U; N Ggree(1). Excluding < p+n with xu or x¢, (b) in J,
for all others independently P(x € N, (u) \ Z*(w)) > 1/4, so the claim holds by a
Chernoff bound. Consider any such x, say with x € Uic, and let w* = M? (x) e W;.

We claim there are whp > .01p2n choices of v € U;_; N Npy(x) N Ng'(u’) \
(ZT(w) U ZT(w*) U M(Z*('))). To see this, note that there are (1 £ p:f)p?n/3
choices of v € Uj—; N Ggee(x) N Ggee(u’). For any such v, say in Ul [» we have
V' = ¢y (d) € Ui, s0 00" ¢ J, and so P(30' € D) < 1/2. Similarly, v* := ¢ x (d) has
P(3v* € D) < 1/2 independently. Also v € MS(ZH ')\ Z(')) & w® := M (v) €
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ZTW)\ Z(') < you' € D, where y, = ¢ (') € Uj_y as w® € W;_;. Since each v
corresponds to a unique y,, the number of y, with f}v—u’ eJis d;’ w)=<.1 pfn. Exclud-
ing such v, for all others we have y,u’ ¢ J and so P(v € M°(Z+ ')\ Z('))) < 1/2
independently. Excluding a further < pfn choices of v in Z(w’) U Z(w*) U M€ (Z ("))
or with vx or vu’ in J, any other v contributes independently with probability > 27>, so
the claim follows by a Chernoff bound.

Fix any such v, say with v € U4, and let w* = M4 (') € W;_,. Similarly to the
above, there are whp > .16ds (a’) choices of z € U;_; N N;w/ W)\ Z T (w"), as there are
1+ pf)dg (a’)/3 choices in Ul.“_/1 N Giree(u') and letting 2’ = ¢, (a’) € U, excluding
at most .1pf|U"/| vertices z such that 2z’ € J, each other z has P(32’ € D) < 1/2. The
lemma follows. |

After t moves, we let B; denote the bad event that any vertex y is incident to > pf n
moved arcs or to > p'_Z|Uq| arcs yy’ with y’ € U4 for some g. We let 7 be the smallest 7
such that B, occurs, or oo if there is no such z. At any step ¢ < t requiring a move for some
uwu'w’ with ¢y (a’) = u’, as B; does not hold there are > 107 p3n?ds(a’) moves. To
complete the proof it therefore suffices to show whp 7 = co. We fix ¢t and bound P(t = ¢)
as follows.

We start by showing that whp < p _Z n arcs are moved at any y. To see this, note first
that the number of times y plays the role of u or u’ in a move is

Yo ldg, ) —ds(@,' ) < Y pids(a) < pin.

wew

Now fix uwu’w’ with ¢,y (a”) = u’. Then y plays the role of x or v in < nds(a’) moves,
so with probability < 10* p~3n~!. The number of moves where y plays x or v is there-
fore (, 1)-dominated, where u < p:fn?-10*p=3n~" < .1p:/n, so by Lemma 2.4 this
number is whp < .2p1n. Furthermore, y € U< plays the role of z in < n? moves, so with
probability < 10* p~3dg (a’)~!. The number of such moves is therefore (i, 1)-dominated,
where
u<10*p~2ds(a)™' Y ldf (pu(@)) —ds(a)] < 1pin.
w

so by Lemma 2.4 this number is whp < .2 p'j n. The claim follows.

Now, given uwu’w’, any arc yy’ with y’ € U4 plays the role of du’ or Xu in <
nds(gq) moves, so with probability < 10* p~3rn~1, and the role of vX in < ds(g) moves,
so with probability < 10* p~3n~2, and the role of $u’ in < n? moves, so with probability
10*p~3dg(q)~". Thus for any ¢ € S and y = ¢, (¢), the number of moved y3’ with
y' € U is (u, 1)-dominated, where

w<10*p73n~t pBu|U| +10%p 73072 p:Bn? U1
+10*p2ds(q)™" - 1df (v) —ds(q)| U]
<.1p]|lu],

so by Lemma 2.4 this number is whp < p1|U‘1 |. This completes the proof.
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5. Concluding remarks

In this paper we have developed a variety of embedding techniques that are sufficiently
flexible to resolve a generalised form of Ringel’s Conjecture that applies to quasirandom
graphs, and which promise to have more general applications to packings of a family of
trees, as would be required for a solution of Gyarfas’ Conjecture.
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