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1. Introduction

1.1. Spin models

A central notion at the intersection of combinatorics and statistical physics is that of 
a graph homomorphism. Let G and H be graphs (possibly with loops). We call a function 
f : V (G) → V (H) a homomorphism (or H-colouring) if the map preserves edges, that is, 
f(e) ∈ E(H) for all e ∈ E(G). We write Hom(G, H) for the set of homomorphisms from 
G into H. From a combinatorial perspective, graph homomorphisms provide a unifying 
framework for a number of important graph theory concepts. For the statistical physicist, 
homomorphisms arise in the study of spin models and their critical phenomena. Tools 
from each field have enriched the other and recent years have witnessed an explosion of 
literature at their interface.

A weighted graph is a pair (H, λ) where H is a graph (possibly with loops) and 
λ : V (H) → R>0 is a function assigning each vertex of H an ‘activity’ λv. Weighted 
graphs provide a rich set of probability distributions on the space Hom(G, H). Indeed, 
given a weighted graph (H, λ), we may define a probability measure μH,λ on Hom(G, H)
given by

μH,λ(f) :=
∏

v∈V (G) λf(v)

ZH
G (λ)

, (1.1)

for f ∈ Hom(G, H) where

ZH
G (λ) :=

∑
f∈Hom(G,H)

∏
v∈V (G)

λf(v) . (1.2)
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This type of probability distribution is called a spin model (with hard constraints) and 
the normalising factor ZH

G (λ) is the partition function of the model. One may think of 
the vertices of G as sites and the vertices of H as a set of particles (or spins) that can 
occupy these sites. The edges of G represent bonds between sites and the edges of H
represent constraints on which pairs of particles can occupy bonded sites. A spin model 
is then a probability distribution on the set of legal spin configurations on the sites of G. 
Two of our main motivating examples will be the following:

Example 1. The q-colouring model (zero-temperature anti-ferromagnetic Potts model):
H = Kq, λ ≡ 1. In this case μH,λ is the uniform measure over proper q-colourings of G
and ZH

G (λ) is the number of such colourings.

Example 2. The hard-core model: H = , that is, an edge {vin, vout} with a loop at 
vertex vout. We let λ(vout) = 1 and λ(vin) = x for some fixed x > 0 called the fugac-
ity. ZH

G (λ) is the hard-core model partition function (also known as the independence 
polynomial). In particular when x = 1, ZH

G (λ) is the number of independent sets in G.

In the statistical physics literature, spin models are traditionally studied on the inte-
ger lattice Zn, a setting where the phenomenon of phase coexistence can be rigorously 
studied. We mention two landmark results in this field. Galvin and Kahn [24] establish 
phase coexistence for the hard-core model on Zn where the fugacity is allowed to tend 
to 0 with n (see also [45]) and Peled and Spinka [50] prove phase coexistence for the 
q-colouring model. Informally these results show that in large subregions of Zn, a typical 
sample from μH,λ (with the appropriate choice of (H, λ)) exhibits long-range order by 
correlating with some dominant phase.

In this paper we study spin models on the n-dimensional discrete torus Zn
m where 

m is a fixed even integer and n is large. In this setting we establish the phase coex-
istence phenomenon in a strong form: we show that on Zn

m, the measure μH,λ can be 
closely approximated by a measure defined constructively as a random perturbation of 
a random dominant phase. The random perturbation has the distribution of a polymer 
model with convergent cluster expansion. Via the cluster expansion, we are able to gain 
an essentially complete probabilistic description of the measure μH,λ and hence a precise 
structural description of the set Hom(Zn

m, H). Establishing convergence of the cluster 
expansion is a non-trivial task and requires a combination of entropy tools, the method 
of graph containers and algebraic and isoperimetric properties of the torus. Our synthe-
sis of container and entropy methods has its roots in the work of Peled and Spinka [50]
and later appears in the work of Kahn and Park [38] (see Section 4 for a more detailed 
discussion of the use of entropy tools and the container method in this context).

In order to formally state our main result (Theorem 1.2 below) we require some 
preliminary notation and language from the theory of polymer models which we will 
now introduce.
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1.2. The defect polymer model

The n-dimensional discrete torus Zn
m is the graph on vertex set {0, . . . , m −1}n where 

two vertices x, y are adjacent if and only if there exists a coordinate i ∈ [n] such that 
xi = yi±1 (mod m) and xj = yj for all j �= i. The case m = 2 returns the n-dimensional 
hypercube for which we use the more familiar notation Qn. We note that when m is even, 
Zn

m is a bipartite graph and we denote its vertex classes by E , O. We note also that Zn
m

is a d-regular graph where d = (1 + 1m>2)n.
Given a weighted graph (H, λ) and A, B ⊆ V (H), we write A ∼ B if {a, b} ∈ E(H)

for all a ∈ A and b ∈ B. We call such a pair (A, B) a pattern. Letting λX :=
∑

v∈X λv

for X ⊆ V (H) we define

ηλ(H) := max{λAλB : A,B ⊆ V (H), A ∼ B} . (1.3)

Following Engbers and Galvin [14], we call a pattern (A, B) dominant if λAλB = ηλ(H), 
and we let Dλ(H) denote the collection of all dominant patterns. In Example 1 of the 
previous section, the dominant patterns are all pairs (A, B) where V (Kq) = A ∪ B

and {|A|, |B|} = {	q/2
, �q/2�}. In Example 2, there are two dominant patterns: 
({vout}, {vin, vout}) and ({vin, vout}, {vout}). We call a homomorphism f ∈ Hom(Zn

m, H)
a dominant colouring if f(E) ⊆ A, f(O) ⊆ B for some dominant pattern (A, B).

In the following, we let G denote Zn
m and we fix a weighted graph (H, λ). We say that 

a subset S ⊆ V (G) is G2-connected if the graph G2[S] is connected (here G2 denotes the 
square of the graph G). We will define a family P of G2-connected subsets of V (G) the 
elements of which we call polymers (see Definition 3.1 for a full description of P). For 
now we can safely think of P as the set of all G2-connected subsets of V (G).

Given a colouring f ∈ Hom(G, H) and a pattern (A, B), we say that f agrees with 
(A, B) at v ∈ V (G) if v ∈ O and f(v) ∈ A or if v ∈ E and f(v) ∈ B. We say that f
disagrees with (A, B) at v otherwise. For a subset S ⊆ V (G), let χA,B(S) be the set of 
f ∈ Hom(G, H) such that f disagrees with (A, B) at each v ∈ S and agrees with (A, B)
at each v ∈ V \S. We define the weight of S (with respect to (A, B)) to be

wA,B(S) =
∑

f∈χA,B(S)
∏

v∈V λf(v)

ηλ(H)mn/2 . (1.4)

We say two polymers γ1, γ2 are compatible if the graph distance between γ1, γ2 in 
G is > 2; that is if γ1 ∪ γ2 is not G2-connected. Otherwise we say that γ1 and γ2 are 
incompatible. We let Ω denote the family consisting of all sets of mutually compatible 
polymers. The weights wA,B allow us to construct a probability distribution νA,B on Ω. 
For Γ ∈ Ω, let

νA,B(Γ) =
∏

γ∈Γ wA,B(γ)
ΞA,B

, (1.5)
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where the normalising factor

ΞA,B =
∑
Γ∈Ω

∏
γ∈Γ

wA,B(γ) (1.6)

is the polymer model partition function. We thus have a polymer model for each dominant 
pattern (A, B). We call νA,B the (A, B) polymer model. Using these polymer models, we 
construct a probability distribution μ̂H,λ which will serve as a very good approximation 
to the measure μH,λ.

Definition 1.1. For f ∈ Hom(G, H), let μ̂H,λ(f) denote the probability that f is selected 
by the following three-step process:

1. Choose (A, B) ∈ Dλ(H) with probability proportional to ΞA,B.
2. Choose a random polymer configuration Γ ∈ Ω from the distribution νA,B.
3. Letting S =

⋃
γ∈Γ γ, select a colouring f ∈ χA,B(S) with probability proportional to ∏

v∈V λf(v).

We may now state our main theorem. For two probability measures μ and μ̂, we let 
‖μ̂− μ‖TV denote their total variation distance.

Theorem 1.2. For m ≥ 2 a fixed even integer and (H, λ) a fixed weighted graph, the 
measures μH,λ and μ̂H,λ on Hom(Zn

m, H) satisfy

‖μ̂H,λ − μH,λ‖TV ≤ e−Ω(mn/n2) .

Given a colouring f ∈ Hom(Zn
m, H) we may identify the dominant pattern (A, B)

which agrees most with f (breaking ties arbitrarily if necessary) and call the vertices 
at which f disagrees with (A, B) the defect vertices. We can think of Step 1 in the 
definition of μ̂H,λ as selecting the dominant pattern (A, B) which will agree most with 
f . Step 2 then identifies the defect vertices. Theorem 1.2 shows that up to very small 
error, the defect vertices of a sample from μH,λ have the distribution of a mixture of 
the polymer models νA,B . The power of Theorem 1.2 stems from the fact that each of 
these polymer models admits a convergent cluster expansion allowing us to obtain an 
essentially complete understanding of the measures νA,B and therefore of μH,λ also.

In the remainder of this introduction we discuss the various consequences of Theo-
rem 1.2.

1.3. The structure of Hom(Zn
m, H)

Theorem 1.2, combined with a large deviation result for the measures νA,B (see Theo-
rem 11.1), can be used to prove a detailed structural description of the set Hom(Zn

m, H).
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For a weighted graph (H, λ) and dominant pattern (A, B) ∈ Dλ(H), we say that an 
H-colouring of Zn

m is λ-balanced with respect to (A, B) if for each k ∈ A, the proportion 
of vertices of O coloured k is within 1/n of λk/λA and for each � ∈ B, the proportion of 
vertices of E coloured � is within 1/n of λ�/λB .

The following theorem provides a structural decomposition of the set Hom(Zn
m, H)

showing in particular that, with respect to the measure μH,λ, almost all elements of 
Hom(Zn

m, H) are λ-balanced with respect to some dominant pattern. In what follows we 
use a ± b to denote a quantity that lies in the interval [a − b, a + b].

Theorem 1.3. Fix a weighted graph (H, λ) and m ≥ 2 even. There is a partition of 
Hom(Zn

m, H) into |Dλ(H)| + 1 classes

Hom(Zn
m, H) = F (0) ∪

⋃
(A,B)∈Dλ(H)

F (A,B)

with the following properties. With μ = μH,λ,

1. μ(F (0)) ≤ e−Ω(mn/n3).
2. For (A, B) ∈ Dλ(H), each f ∈ F (A, B) is λ-balanced with respect to (A, B).
3. For each (A, B) ∈ Dλ(H),

μ(F (A,B)) = 1
ZH
G (λ)

ηλ(H)mn

2 ΞA,B

(
1 ± e−Ω(mn/n3)

)
.

Theorem 1.3 is inspired by a decomposition result of Engbers and Galvin [14, Theorem 
1.2]. We in fact prove a strengthening of Theorem 1.3 (Theorem 13.2), which directly 
strengthens [14, Theorem 1.2] and resolves conjectures of the authors in a strong form [14, 
Conjectures 6.1, 6.2, 6.3]. We defer a more detailed discussion of these conjectures to 
Section 13.

It is natural to wonder to what extent the measures of the classes F (A, B) in Theo-
rem 1.3 can differ. We remark that, in contrast to the examples of q-colouring and the 
hard-core model, it is easy to construct (H, λ) and (A, B), (A′, B′) ∈ Dλ(H) such that 
μ(F (A′, B′)) = o(μ(F (A, B))) (see the discussion after the proof of Theorem 13.2 for 
more).

As mentioned in the previous section, we will be able to gain a precise understanding 
of the measures νA,B and therefore also of the partition functions ΞA,B. Via conclusion 
3 of Theorem 1.3, we can therefore obtain detailed asymptotic expressions for the par-
tition function ZH

G (λ). In particular this yields a plethora of asymptotic formulae for 
combinatorial quantities such as the number of proper q-colourings and the number of 
independent sets in Zn

m.
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1.4. Asymptotic enumeration and the cluster expansion

In order to state our approximation results for partition functions ZH
G (λ) we first 

introduce the cluster expansion formally.
For a multiset Γ of polymers, the incompatibility graph, IΓ, is the graph with vertex 

set Γ and an edge between any two incompatible polymers. A cluster Γ is a finite ordered
multiset of polymers so that IΓ is connected. We let C denote the set of all clusters.

For a cluster Γ ∈ C and pattern (A, B) ∈ Dλ(H), we let

wA,B(Γ) := φ(IΓ)
∏
γ∈Γ

wA,B(γ) , (1.7)

where φ(F ) is the Ursell function of a graph F , defined by

φ(F ) := 1
|V (F )|!

∑
E⊆E(F )

spanning, connected

(−1)|E| . (1.8)

The cluster expansion of the partition function ΞA,B (as defined in (1.6)) is the formal 
power series

ln ΞA,B =
∑
Γ∈C

wA,B(Γ) . (1.9)

We refer the reader to Section 2 for a more detailed introduction to the cluster expansion.
As mentioned above, establishing the convergence of the expansion in (1.9) is a non-

trivial task and requires a careful combination of methods. We use the graph container 
method of Korshunov and Sapozhenko [39,52] to replace polymers with ‘approximate 
polymers’ that are less numerous than the polymers themselves. We then use entropy 
tools and isoperimetric properties of the torus to bound both the total number and total 
weight of polymers that have a fixed approximation. Crucially, we make an extra saving 
in the count on polymers by exploiting an algebraically constructed vertex partition of 
Zn

m with good ‘covering properties’ (Lemma 8.1).
Equipped with the convergence of the cluster expansion we obtain the following ap-

proximation result obtained by truncating the cluster expansions of ΞA,B. The size of a 
cluster Γ is ‖Γ‖ :=

∑
γ∈Γ |γ|. For k ≥ 1 we define

LA,B(k) :=
∑
Γ∈C:
‖Γ‖=k

wA,B(Γ) . (1.10)

Theorem 1.4. For m an even integer, k ∈ N and (H, λ) a weighted graph, we have

ZH
G (λ) = ηλ(H)mn

2
∑

(A,B)∈Dλ(H)

exp

⎧⎨
⎩

k−1∑
j=1

LA,B(j) + εk

⎫⎬
⎭
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where εk = O(mnn2(k−1)δnk) for some δ ∈ [0, 1) depending only on (H, λ). In particular 
there exists a constant K depending only on (H, λ) and m such that εK = o(1).

We emphasise that εK = o(1) for some constant K in Theorem 1.4 and so to compute 
an explicit asymptotic formula (correct up to a (1 + on(1)) factor) for ZH

G (λ) one only 
needs to compute a constant number of the terms LA,B(j). In Section 16 (see Theo-
rem 16.1) we show that for fixed (H, λ) and m, one can obtain an explicit expression for 
LA,B(j) as a function of n in time eO(j ln j). In particular obtaining an explicit asymp-
totic formula for ZH

G (λ) is a finite task. We can of course go further and obtain yet more 
detailed approximations to ZH

G (λ) by computing more of the terms LA,B(j).
To give a concrete example of the type of expression that arises in Theorem 1.4, we 

note that for a dominant pattern (A, B) ∈ Dλ(H),

LA,B(1) =
[

1
λA(λB)d

∑
v∈Ac

λv(λN(v)∩B)d + 1
λB(λA)d

∑
v∈Bc

λv(λN(v)∩A)d
]
mn

2 (1.11)

(where we recall that d = (1 + 1m>2)n, the degree of a vertex in Zn
m).

Theorem 1.4 contains a variety of asymptotic formulae for combinatorial quantities 
such as the number of proper q-colourings and the number of independent sets in Zn

m. 
As a special case we resolve a conjecture of Kahn and Park [38, Conjecture 5.2] on the 
number of proper q-colourings of the hypercube Qn for q ∈ {5, 6} (see Corollary 1.6).

Specialising to the case where m = 2, H = Kq and λ ≡ 1, we obtain an estimate for 
cq(Qn) := |Hom(Qn, Kq)|, the number of proper q-colourings of Qn.

Theorem 1.5. For q ≥ 3,

cq(Qn) = (1 + 1{q odd})
⌊q
2

⌋2n−1 ⌈q
2

⌉2n−1 (
q

	q/2


)
· exp {f(n) + o(f(n))} ,

as n → ∞ where

f(n) = �q/2�
2	q/2


(
2 − 2

�q/2�

)n

+ 	q/2

2�q/2�

(
2 − 2

	q/2


)n

.

In Section 17 we will strengthen Theorem 1.5 considerably, providing a detailed picture 
of the approximations to cq(Zn

m) contained in Theorem 1.4.
Galvin [20] proved the q = 3 case of Theorem 1.5 showing that c3(Qn) ∼ 6e22n−1 and 

recently Kahn and Park [38] established the case q = 4: c4(Qn) ∼ 6e22n . Kahn and Park 
also tentatively conjecture that the error term, o(f(n)), in Theorem 1.5 (a conjecture at 
the time) is negative. We will show that this is in fact not the case (see Theorem 17.4), 
this error term is positive for all q.

The expression in Theorem 1.5 was obtained by calculating LA,B(1) for a dominant 
pattern (A, B) ∈ Dλ(H) where H = Kq, λ ≡ 1. Theorem 1.5 does not give an asymp-
totic formula for cq(Qn) (correct up to a (1 + on(1)) factor) except in the cases q = 3
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and q = 4. However, there is no reason for us to stop at a calculation of LA,B(1). We 
collect some asymptotic formulae that arise from calculating more terms in the expan-
sion of Theorem 1.4. The following are all easily obtained by hand and the reader may 
enjoy deriving some further examples of their own. We let i(G) denote the number of 
independent sets in the graph G.

Corollary 1.6.

c5(Qn) ∼ 20 3
√
e · 62n−1

exp
{(

4
3

)n}

c6(Qn) ∼ 20 · 32n

exp
{(

4
3

)n}

c7(Qn) ∼ 70 · en/2122n−1
exp

{(
3
2

)n−1

+ 1
2

(
4
3

)n−1

+ n2 − n− 54
108

(
9
8

)n−1
}

c8(Qn) ∼ 70 · 42n

exp
{(

3
2

)n

+ n2 + 41n− 54
108

(
9
8

)n}

i(Zn
m) ∼ 2m

n/2+1 exp
{

mn

2d+1

}
for m = 2, 4, 6, 8, 10, 12, 14

i(Zn
m) ∼ 2m

n/2+1 exp
{

1
2

(m
4

)n

+ 2n(2n− 1)
(m

16

)n
}

for m = 16, 18, . . . , 62.

The first two expressions of Corollary 1.6 resolve a conjecture of Kahn and Park 
[38, Conjecture 5.2]. We also remark that the case m = 2 in the fifth expression of 
Corollary 1.6 is the asymptotic i(Qn) ∼ 2

√
e · 22n−1 , a classical result of Korshunov and 

Sapozhenko [39]. See also [23], [34] and [2] for further results on independent sets and 
the hard core model in the hypercube.

The expressions for cq(Qn) in Corollary 1.6 were obtained by calculating LA,B(1), 
LA,B(2) for a dominant pattern (A, B). In Section 17 we show that more gener-
ally, in order to obtain an asymptotic formula for cq(Zn

m), one necessarily has to 
compute the terms LA,B(1), . . . , LA,B(k − 1) where k is the least integer for which 
m(1 − 1/�q/2�)(1+1m>2)k < 1.

1.5. The defect distribution

Theorem 1.3 shows that with probability 1 − e−Ω(mn/n3), a sample from μH,λ agrees 
with a dominant colouring on all but a O(1/n) fraction of the vertices of Zn

m. Recall that 
we call the set of vertices at which an element f ∈ Hom(Zn

m, H) differs from its closest 
dominant colouring (breaking ties arbitrarily if necessary) the defect vertices of f . It is 
natural to ask for the distribution of the number of defect vertices in a sample from 
μH,λ. By Theorem 1.2 this amounts to understanding the distribution of the number of 
vertices of Zn

m contained in a sample from the polymer measures νA,B.



10 M. Jenssen, P. Keevash / Advances in Mathematics 430 (2023) 109212
We say that an event An occurs with high probability (whp) if P (An) → 1 as n → ∞. 
We use ‘ d−→’ to denote convergence in distribution as n → ∞. We let Pois(ρ) denote the 
Poisson distribution with mean ρ and let N(0, 1) denote the standard Normal distribution 
with mean 0 and variance 1.

We have the following central limit theorem for the measures νA,B.

Theorem 1.7. Fix m ≥ 2 even, (H, λ) a weighted graph and (A, B) ∈ Dλ(H). Let Γ
be a random configuration drawn from the distribution νA,B. Letting L := LA,B(1) and 
‖Γ‖ :=

∑
γ∈Γ |γ|,

1. if L → 0 as n → ∞, then ‖Γ‖ = 0 whp,
2. if L → ρ for some constant ρ > 0, then ‖Γ‖ d−→ Pois(ρ),
3. if L → ∞, then

‖Γ‖ − L√
L

d−→ N(0, 1) .

We record the following corollary of Theorem 1.7 in the case of the q-colouring model 
on Zn

m.

Corollary 1.8. Let X denote the number of defect vertices in a uniformly chosen q-
colouring of Zn

m.

• If m ∈ {2, 4} and q ∈ {3, 4} then X d−→ Pois(1),
• otherwise X−f(n)√

f(n)
d−→ N(0, 1), where

f(n) = mn

2

[
�q/2�
	q/2


(
1 − 1

�q/2�

)d

+ 	q/2

�q/2�

(
1 − 1

	q/2


)d
]
.

Specialising to the case m = 2, Corollary 1.8 shows that q-colourings of Qn exhibit 
a sharp change in behaviour from q = 4 to q = 5 where a typical q-colouring goes from 
having a constant number of defect vertices to an exponential number. This transition 
indicates why it is more difficult to enumerate q-colourings of Qn when q ≥ 5.

1.6. Generalised rank functions and height functions

A rank function on the Boolean lattice 2[n] is a function f : 2[n] → N such that 
f(∅) = 0 and

0 ≤ f(A ∪ {x}) − f(A) ≤ 1

for all A ⊆ [n] and x ∈ [n]\A. In an early application of entropy methods in combina-
torics, Kahn and Lawrenz [37] showed that the number of rank functions on 2[n] is at 
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most 2(1+o(1))2n−1 , thus resolving a conjecture of Athanasiadias [1]. The authors in fact 
consider a natural generalisation of the notion of rank function: a function f : 2[n] → N

is k-bounded, if f(∅) = 0 and

0 ≤ f(A ∪ {x}) − f(A) ≤ k

for all A ⊆ [n] and x ∈ [n]\A.1 Let Bk(n) denote the set of all k-bounded functions. 
Kahn and Lawrenz [37] show that

ln |Bk(n)| ≤ (1 + O(n−1/2))2n−1 ln
(⌊

k

2 + 1
⌋⌈

k

2 + 1
⌉)

and conjectured that in fact ln |Bk(n)| ≤ 2n−1 log
(⌊

k
2 + 1

⌋ ⌈
k
2 + 1

⌉)
+ O(1), [37, Con-

jecture 1]. We disprove this conjecture, providing an asymptotic expression for |Bk(n)|
which shows that the conjecture holds if and only if k = 1 or 2.

Theorem 1.9. For fixed k ≥ 1,

|Bk(n)| = (1 + 1k odd)
(⌊

k

2 + 1
⌋⌈

k

2 + 1
⌉)2n−1

exp
{

(1 + 1k even)
	k/2 + 1


(
2�k/2�

�k/2 + 1�

)n

(1 + o(1))
}
.

For the proof we construct a bijection between the set Bk(n) to a set of ‘rooted’ homo-
morphisms in Hom(Qn, H) for an appropriately chosen Cayley graph H. We then apply 
Theorem 1.4 (in particular more precise asymptotics than those recorded in Theorem 1.9
are available to us). In the special case of rank functions, such a bijection was already 
well-known: as observed by Mossel (see [36]), there is a bijection between the set of rank 
functions B1(n) and the set of height functions (also known as ‘cube-indexed random 
walks’)

F(n) := {f : V (Qn) → Z : f(0) = 0 and u ∼ v =⇒ |f(u) − f(v)| = 1}

(here 0 denotes the vertex (0, . . . , 0) of Qn). Randall (see [20]) observed that there is 
bijection between the set F(n) and the set of proper 3-colourings of Qn which assign the 
vertex 0 a fixed colour.

For f ∈ F(n), let

R(f) = |{f(x) : x ∈ V (G)}| ,

1 For notational convenience, we have modified the definition in [37] where f : 2[n] → N is said to be 
k-bounded if f(∅) = 0 and 0 ≤ f(A ∪ {x}) − f(A) < k for all A ⊆ [n] and x ∈ [n]\A.
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the size of the range of f . In Section 18 we sketch how a large deviation inequality for our 
polymer models (Theorem 11.1, a key ingredient in the proofs of Theorems 1.2 and 1.3) 
can be used to recover the following special case of a result due to Peled [44].

Henceforth we let log denote the base 2 logarithm and let ln denote the natural 
logarithm. The binary entropy function is the map H : [0, 1] → R given by

H(p) = −p log p− (1 − p) log(1 − p)

where we interpret 0 log 0 as 0.

Theorem 1.10. If t ∈ (0, 1], and f is chosen uniformly at random from F(n), then

log log (1/P (R(f) ≥ tn)) ∼ H(t/2)n .

The upper bound on P (R(f) ≥ tn) in Theorem 1.10 is a special case of [44, Theorem 
2.1] which applies to a general class of tori including Zn

m (where m is allowed to be large 
with respect to n) and provides strong bounds on P (R(f) ≥ k) for arbitrary k. The 
lower bound in Theorem 1.10 seems to be new, though it is not difficult and follows from 
a simple construction.

Another well-studied class of functions in this context are Lipschitz functions (see 
for example [44,47,46]). We note that the tools of this section extend naturally to the 
analysis of Lipschitz functions on Qn (and more generally Zn

m for m even) but we do not 
pursue the details here.

For more background, we refer the reader to Section 18.2.

1.7. Torpid mixing

In this section we discuss an algorithmic implication of Theorem 1.2. We establish tor-
pid mixing for a natural class of Markov chain algorithms (including Glauber dynamics) 
designed to sample from the space Hom(Zn

m, H).
The main tool we use for deriving algorithmic results from Theorem 1.2 is the notion of 

conductance of a Markov chain. Conductance was first introduced to the field of Markov 
chain algorithms by Jerrum and Sinclair [54].

Let M be an ergodic (i.e. connected and aperiodic) Markov chain on a finite state 
space Ω, with transition probabilities P (ω, ω′), ω, ω′ ∈ Ω. Let π denote the stationary 
distribution of M. For ω0 ∈ Ω, we denote by Pt,ω0(ω) the probability that the system is 
in the state ω at time t given that ω0 is the initial state. The mixing time of the Markov 
chain M is defined as

τM := min
{
t0 : max

ω0∈Ω
‖Pt,ω0 − π‖TV ≤ 1

e
, ∀t > t0

}

where ‖ · ‖TV denotes total variation distance.
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The Markov chains we consider will have state space Ω ⊆ Hom(Zn
m, H) for some fixed 

graph H. We call a Markov chain β-local if f1, f2 differ at ≤ βmn vertices whenever 
P (f1, f2) �= 0. In other words, the chain updates the colours of ≤ βmn vertices at each 
step. We only consider Markov chains that are ergodic.

If H is connected and bipartite, with vertex partition V (H) = V +∪V −, then any f ∈
Hom(Zn

m, H) satisfies either (i) f(O) ⊆ V +, f(E) ⊆ V − or (ii) f(E) ⊆ V +, f(O) ⊆ V −. 
In particular, if β < 1, a β-local Markov chain on Hom(Zn

m, H) cannot be connected. In 
this case, we let Hom+(Zn

m, H) denote the set of f satisfying (i) and let Hom−(Zn
m, H)

denote the set of f satisfying (ii). Further, we let μ+
H,λ denote the measure μH,λ condi-

tioned on Hom+(Zn
m, H) and define μ−

H,λ similarly.
Finally, let us call a non-bipartite weighted graph (H, λ) trivial if (H, λ) has only one 

dominant pattern. We say that (H, λ) is non-trivial otherwise. We call a bipartite (H, λ)
trivial if it only has two dominant patterns. Note that any bipartite (H, λ) has at least 
two dominant patterns since if (A, B) is dominant, then (B, A) is a distinct dominant 
pattern.

Theorem 1.11. For (H, λ) a fixed non-bipartite, non-trivial, weighted graph, there exists 
β > 0 such that for m ≥ 2 even, any β-local ergodic Markov chain M on Hom(Zn

m, H)
with stationary distribution μH,λ satisfies

τM = eΩ(mn/n2) .

For (H, λ) bipartite, the analogous statement holds with Hom(Zn
m, H) replaced with 

Hom±(Zn
m, H) and μH,λ replaced with μ±

H,λ.

In the case of the hard-core model, Theorem 1.11 follows from arguments of Galvin 
and Tetali [28] who establish torpid mixing for the Glauber dynamics of the hard-core 
model on a class of bipartite expander graphs. In the regime where n is fixed and m is 
large, analogues of Theorem 1.11 have been proved for specific choices of (H, λ) [8,22,26]. 
We return to this topic in the concluding remarks.

1.8. Outline

The outline for the remainder of this paper is as follows. In Section 2 we introduce 
abstract polymer models and the cluster expansion and in Section 3 we introduce the 
concrete polymer models that we work with in this paper and explore some of their basic 
properties.

In Section 4, we give an overview of the proof of our main theorem, Theorem 1.2 and 
show how it follows from two key lemmas (Lemmas 4.2 and 4.3). We also show how the 
asymptotic approximations to ZH

G (λ) in Theorem 1.4 follow from these key lemmas and 
the convergence of the cluster expansion.

In Section 5 we collect some standard tools based on entropy.
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In Sections 6 and 7 we establish some isoperimetric results in the discrete torus and 
introduce some notions from the theory of graph containers.

Sections 8, 9 and 10 are then dedicated to proving the convergence of the cluster 
expansion of our polymer models.

In Section 11 we show how the convergence of the cluster expansion can be used 
to prove a large deviation result for the polymer measures νA,B . In Section 12, we 
show how this large deviation result and an entropy argument can be used to establish 
the key lemmas, Lemmas 4.2 and 4.3, thus concluding the proof of our main theorem, 
Theorem 1.2 and Theorem 1.4.

In Section 13 we show how Theorem 1.2 can be used to give a precise structural 
description of the set Hom(Zn

m, H) thus resolving conjectures of Engbers and Galvin 
[14, Conjectures 6.1, 6.2, 6.3].

In Section 14 we prove the torpid mixing result, Theorem 1.11.
In Section 15 we prove Theorem 1.7 and Corollary 1.8 on the asymptotic distribution 

of the number of defect vertices.
In Section 16 we provide an algorithm for computing the terms of the cluster expan-

sion. In Section 17 we specialise the discussion to the q-colouring model and provide a 
detailed picture of the cluster expansion in this setting.

In Section 18 we prove Theorem 1.9 and then Theorem 1.10 on k-bounded functions 
and height functions.

In Section 19 we end with some concluding remarks and directions of future research.

1.9. Notation and terminology

Here we gather some notation for ease of reference.
For k ∈ N, we let [k] denote the set {1, . . . , k}. For a set X, we let 2X denote the 

power set of X and for k ∈ N let 
(
X
k

)
denote the collection of subsets of X of size k.

Given a graph G = (V, E) and x ∈ V , we let N(x) = {y ∈ V : x ∼ y} and for X ⊆ V , 
we let N(X) =

⋃
x∈X N(x). For X ⊆ V we let ∂(X) = N(X)\X, the vertex boundary

of X. We let X+ = X ∪ ∂(X). For v ∈ V , we let d(v) = |N(v)| and for a subset Y ⊆ V

we let dY (v) := |N(v) ∩ Y |. For two vertices u, v ∈ V we write dG(u, v) for the graph 
distance between u, v i.e. the length of the shortest path in G with endpoints u, v. For 
a set S ⊆ V , we let G[S] denote the graph with vertex set S and edge set E ∩

(
S
2
)
. For 

k ∈ N we let Gk denote the kth power of G, that is, the graph with vertex set V (G)
such that u ∼ v if and only if dG(u, v) ≤ k. We say a set S ⊆ V is Gk-connected if Gk[S]
is connected.

Throughout this paper we use log to denote the base 2 logarithm and we use ln to 
denote the natural logarithm.

Henceforth we can assume that we have fixed a weighted graph (H, λ) and an even 
integer m ≥ 2. Standard asymptotic notation such as O, Ω, o, Θ, is used under the as-
sumption n → ∞ and the implicit constants may depend on (H, λ) and m.
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2. Abstract polymer models and the cluster expansion

In this section we describe two classic tools from statistical physics, abstract poly-
mer models [40] and the cluster expansion. Both tools have been used extensively to 
study phase diagrams of lattice spin models. Following the breakthough work of Hel-
muth, Perkins and Regts [32], these tools (along with contour models from Pirogov-Sinai 
Theory) have found a wealth of applications in an algorithmic setting: namely the 
design of efficient approximate counting and sampling algorithms for spin models on 
graphs [6,9,19,31–33,42].

We have already encountered the terms ‘polymer’ and ‘cluster’ in the previous section. 
Indeed, the polymers from the introduction are concrete examples of a more general 
notion which we introduce now.

Let P be a finite set whose elements we call ‘polymers’. We equip P with a complex-
valued weight w(γ) for each polymer γ ∈ P as well as a symmetric and reflexive 
incompatibility relation between polymers. We write γ � γ′ if polymers γ and γ′ are 
incompatible. Let Ω be the collection of pairwise compatible sets of polymers from P, 
including the empty set of polymers. Then the polymer model partition function is

Ξ(P) =
∑
Γ∈Ω

∏
γ∈Γ

w(γ) ,

where the contribution from the empty set is 1.
For a multiset of polymers Γ, we define the incompatibility graph IΓ to be the graph 

on vertex set Γ where γ1 is adjacent to γ2 if and only if γ1, γ2 are incompatible. A cluster
is an ordered multiset of polymers whose incompatibility graph is connected. Let C be 
the set of all clusters. The cluster expansion is the formal power series in the weights 
w(γ)

ln Ξ(P) =
∑
Γ∈C

w(Γ) ,

where

w(Γ) = φ(IΓ)
∏
γ∈Γ

w(γ) ,

and φ is the Ursell function as defined in (1.8). In fact the cluster expansion is simply 
the multivariate Taylor series for ln Ξ(P) in the variables w(γ), as observed by Do-
brushin [12]. See also Scott and Sokal [53] for a derivation of the cluster expansion and 
much more.

A sufficient condition for the convergence of the cluster expansion is given by a theorem 
of Kotecký and Preiss.
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Theorem 2.1 (Kotecký and Preiss [40]). Let f : P → [0, ∞) and g : P → [0, ∞) be two 
functions. Suppose that for all polymers γ ∈ P,

∑
γ′

�γ

|w(γ′)|ef(γ′)+g(γ′) ≤ f(γ) , (2.1)

then the cluster expansion converges absolutely. Moreover, if we let g(Γ) =
∑

γ∈Γ g(γ)
and write Γ � γ if there exists γ′ ∈ Γ so that γ � γ′, then for all polymers γ,

∑
Γ∈C
Γ�γ

|w(Γ)| eg(Γ) ≤ f(γ) . (2.2)

As a preview of one of the applications of the above theorem, we remark that (2.2)
can be used to give tail bounds on the cluster expansion. This will allow us to show 
that certain truncations of the cluster expansion serve as good approximations to the 
logarithm of the partition function.

3. Concrete polymer models

In this section we formally introduce the concrete polymer models that will be the 
subject of study in this paper and explore some of their properties. These polymer 
models are a generalisation of those used by the current authors and Perkins [33] to 
design efficient approximate counting and sampling algorithms for the hard-core model 
and q-colouring model on bipartite expander graphs.

We repeat some of the notation and definitions from the introduction for the reader’s 
convenience. Throughout this paper we let G denote the n-dimensional discrete torus 
Zn

m, the graph on vertex set {0, . . . , m − 1}n where two vertices x, y are adjacent if and 
only if there exists a coordinate i ∈ [n] such that xi = yi ± 1 (mod m) and xj = yj for 
all j �= i. We consider only the case where m ≥ 2 is even, in which case G is a bipartite 
graph with vertex classes

E :=
{
x :

n∑
i=1

xi ≡ 0 (mod 2)
}

and O :=
{
x :

n∑
i=1

xi ≡ 1 (mod 2)
}

.

Note that we have |O| = |E| = mn/2. We also let V = V (G) = O ∪ E . When m = 2, 
the graph Zn

m is the familiar n-dimensional hypercube and we use the more standard 
notation Qn in this case. We note that Qn is an n-regular graph, whereas Zn

m is a 2n-
regular graph when m > 2. To avoid having to reiterate this distinction, we will simply 
say that Zn

m is d-regular, where d = (1 + 1m>2)n.
Recall that given a subset S ⊆ V , a colouring f and a pattern (A, B), we say that f

agrees with (A, B) at v ∈ V if v ∈ O and f(v) ∈ A or if v ∈ E and f(v) ∈ B. We say 
that f disagrees with (A, B) at v otherwise. Let χA,B(S) be the set of colourings f such 
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that f disagrees with (A, B) at each v ∈ S and agrees with (A, B) at each v ∈ V \S. For 
each pattern (A, B) we have a weight function wA,B : 2V → R where

wA,B(S) =
∑

f∈χA,B(S)
∏

v∈V λf(v)

ηλ(H)mn/2 . (3.1)

For a colouring f ∈ Hom(G, H) and subset S ⊆ V , we let fS denote the restriction of f
to S. A more convenient (from a computational perspective) form for the weight function 
wA,B is the following: let χ̂A,B(S) be the set of colourings fS+ where f ∈ χA,B(S). 
Given any h ∈ χ̂A,B(S), we may extend h to an element of χA,B(S) by arbitrarily 
assigning vertices of O\S+ colours from A and arbitrarily assigning vertices of E\S+

colours from B. Thus

wA,B(S) =
∑

f∈χ̂A,B(S)
∏

v∈S+ λf(v)

λ
|S+∩O|
A λ

|S+∩E|
B

. (3.2)

To illustrate the point, let us calculate wA,B(S) in the case where S = {v} for some 
v ∈ O. In this case χ̂A,B(S) is the set of homomorphisms f : G[v∪N(v)] → H such that 
f(v) ∈ Ac and f(N(v)) ⊆ B. Using (3.2), we have

wA,B(S) = 1
λAλd

B

∑
v∈Ac

λvλ
d
N(v)∩B .

We now define our collection of polymer models and partition functions. Recall that 
we say that S ⊆ V (G) is G2-connected if the graph G2[S] is connected (here G2 denotes 
the square of the graph G).

Definition 3.1. We say a subset γ ⊆ V is a polymer if it is G2-connected and |N(γ ∩
E)|, |N(γ ∩ O))| < (1 − α)mn/2 where 0 < α < 1 is some constant (dependent only on 
(H, λ)) which will be specified later (see (12.2)).

We say that two polymers γ1, γ2 are compatible, denoted γ1 ∼ γ2, if dG(γ1, γ2) > 2
(i.e. γ1 ∪ γ2 is not G2-connected).

We let P denote the set of all polymers in G and let Ω denote the family of all sets 
of mutually compatible polymers from P.

Definition 3.2. For each dominant pattern (A, B) ∈ Dλ(H), the (A, B) polymer model
is the polymer model with polymer set P, compatibility relation ∼ and weight function 
wA,B .

The partition function of the (A, B) polymer model is

ΞA,B =
∑
Γ∈Ω

∏
γ∈Γ

wA,B(γ) . (3.3)
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We thus have |Dλ(H)| distinct polymer models determined by the choice of weight 
function wA,B where (A, B) ∈ Dλ(H) (note that the set of polymers, P, is the same for 
each polymer model).

A useful property of the weight function is that it is multiplicative over G2-connected 
components of a set S.

Lemma 3.3. Let (A, B) ∈ Dλ(H). For S ⊆ V with G2-connected components γ1, . . . , γk
we have

wA,B(S) =
k∏

i=1
wA,B(γi) .

Proof. Since the γi are the G2-connected components of S, the sets γ+
i are mutually 

disjoint. Moreover there is a one-one correspondence between elements f ∈ χ̂A,B(S) and 
tuples (f1, . . . , fk) ∈ χ̂A,B(γ1) × . . .× χ̂A,B(γk). Using the expression (3.2) for the weight 
function we have

wA,B(S) =
∑

f∈χ̂A,B(S)
∏

v∈S+ λf(v)

λ
|S+∩O|
A λ

|S+∩E|
B

=
k∏

i=1

∑
f∈χ̂A,B(γi)

∏
v∈γ+

i
λf(v)

λ
|γ+

i ∩O|
A λ

|γ+
i ∩E|

B

=
k∏

i=1
wA,B(γi) . �

The partition function ΞA,B from (3.3) is the normalising constant of a probability 
distribution νA,B on Ω defined by

νA,B(Γ) =
∏

γ∈Γ wA,B(γ)
ΞA,B

. (3.4)

These measures allow us to build a new probability measure μ̂H,λ on Hom(G, H).

Definition 3.4. For f ∈ Hom(G, H), let μ̂H,λ(f) denote the probability that f is selected 
by the following four-step process:

1. Choose (A, B) ∈ Dλ(H) with probability proportional to ΞA,B.
2. Choose a random polymer configuration Γ ∈ Ω from the distribution νA,B.
3. Letting S =

⋃
γ∈Γ γ, select a colouring f ∈ χ̂A,B(S) with probability proportional to ∏

v∈S+ λf(v).
4. Independently assign each v ∈ O\S+ the colour i ∈ A with probability λi/λA and 

each v ∈ E\S+ the colour j ∈ B with probability λj/λB .

We note that this definition is equivalent to Definition 1.1 from the introduction where 
we have expanded the last step into two steps. We do this to emphasise the independence 
in Step 4 which will be useful for later calculations.
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We end this section by recording a couple of the basic properties of the measure μ̂H,λ.

Definition 3.5. Let (A, B) ∈ Dλ(H). We say that a colouring f ∈ Hom(G, H) is captured
by (A, B) if each of the G2-connected components of S(f) := (f−1(Ac) ∩O) ∪(f−1(Bc) ∩
E) is a polymer.

In the following lemma, we let f denote a random colouring chosen according to 
μ̂H,λ. Let D denote the random pattern selected at Step 1 in the definition of μ̂H,λ

(Definition 3.4). Moreover, we let

Z̃H
G (λ) := ηλ(H)m

n/2
∑

(A,B)∈Dλ(H)

ΞA,B . (3.5)

Lemma 3.6. Let f ∈ Hom(G, H).

(i) If f is captured by precisely p polymer models then

P (f = f) = p

∏
v∈V λf(v)

Z̃H
G (λ)

.

(ii) For (A, B) ∈ Dλ(H),

P (f = f | D = (A,B)) =
∏

v∈V λf(v)

ηλ(H)mn/2 · ΞA,B
· 1{f captured by (A,B)} .

Proof. We begin with the second claim. Fix f ∈ Hom(G, H), (A, B) ∈ Dλ(H) and let 
S = S(f) as in Definition 3.5. Let the G2-connected components of S be γ1, . . . , γk and 
let Γ = {γ1, . . . , γk}. If f is captured by the (A, B) polymer model then

P (f = f | D = (A,B)) =
∏

γ∈Γ wA,B(γ)
ΞA,B

·
∏

v∈V λf(v)∑
h∈χA,B(S)

∏
v∈V λh(v)

=
∏

v∈V λf(v)

ηλ(H)mn/2 · ΞA,B

where for the final equality we used (3.2) and Lemma 3.3. If f is not captured by the 
(A, B) polymer model then one of the G2-connected components of S is not a polymer 
and so the probability that Γ is selected at Step 2 in Definition 3.4 is 0. Therefore 
P (f = f | D = (A, B)) = 0. The first claim follows by noting that

P (D = (A,B)) = ΞA,B∑
(C,D)∈Dλ(H) ΞC,D

for any dominant pattern (A, B). �
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4. Overview of the proof

In this section we give an overview of the proof of our main theorem, Theorem 1.2. 
We also show how the proof of Theorem 1.2 ties in with the proof of Theorem 1.4 which 
provides detailed asymptotic approximations to the partition function ZH

G (λ).
Theorem 1.2 asserts that μ̂H,λ is very close to the original spin measure μH,λ (defined 

in (1.1)) in total variation distance. On the way to proving Theorem 1.2 we will also 
show that the linear combination of partition functions ΞA,B defined at (3.5) serves as a 
very good approximation to the spin model partition function ZH

G (λ) (defined in (1.2)).

Lemma 4.1. We have

1 − e−Ω(mn/n2) ≤ Z̃H
G (λ)

ZH
G (λ)

≤ 1 + e−Ω(mn/n2) .

In order to prove Lemma 4.1, we will show that almost every element of Hom(G, H)
is captured (see Definition 3.5) by precisely one polymer model. This is also key for the 
proof of Theorem 1.2.

Let Hom0(G, H), Hom1(G, H), Hom2(G, H) denote the sets of all colourings which 
are captured by 0, precisely one, and ≥ 2 dominant patterns respectively.

Lemma 4.2. There exists ζ = ζ(H, λ) < ηλ(H) so that

Z0 :=
∑

f∈Hom0(G,H)

∏
v∈V

λf(v) ≤ ζm
n/2 .

Lemma 4.3.

Z2 :=
∑

f∈Hom2(G,H)

∏
v∈V

λf(v) ≤ e−Ω(mn/n2)Z̃H
G (λ) .

We will prove Lemmas 4.2 and 4.3 in Section 12. We now show how both Lemma 4.1
and Theorem 1.2 follow from these two lemmas.

Proof of Lemma 4.1 assuming Lemmas 4.2 and 4.3. By Lemma 3.6 (i) we have

Z̃H
G (λ) =

∑
f∈Hom(G,H)

pf
∏
v∈V

λf(v) ,

where pf denotes the number of polymer models that capture f . Comparing this to

ZH
G (λ) =

∑
f∈Hom(G,H)

∏
v∈V

λf(v)

we obtain
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Z̃H
G (λ) + Z0 − 4qZ2 ≤ ZH

G (λ) ≤ Z̃H
G (λ) + Z0 − Z2 ,

where 4q is a bound on the number of dominant patterns. The lemma follows from 
Lemmas 4.2 and 4.3. �
Proof of Theorem 1.2 assuming Lemmas 4.2 and 4.3. Let μ, μ̂ denote μH,λ, μ̂H,λ respec-
tively. Recalling a formula for the total variation distance between discrete probability 
measures we have

‖μ− μ̂‖TV =
∑

f∈Hom(G,H):
μ̂(f)>μ(f)

μ̂(f) − μ(f) . (4.1)

We consider the contribution to the above sum from elements of Hom0(G, H), 
Hom1(G, H) and Hom2(G, H) separately. If f ∈ Hom0(G, H) then μ̂(f) = 0 by 
Lemma 3.6 (i) and so elements of Hom0(G, H) do not contribute to the sum in (4.1). 
Since Z̃H

G (λ) is within a factor 1 + e−Ω(mn/n2) of ZH
G (λ) by Lemma 4.1 (which holds by 

our assumption that Lemmas 4.2 and 4.3 hold) we have,

∑
f∈Hom1(G,H):

μ̂(f)>μ(f)

μ̂(f) − μ(f) =
∑

f∈Hom1(G,H):
μ̂(f)>μ(f)

(∏
v∈V λf(v)

Z̃H
G (λ)

−
∏

v∈V λf(v)

ZH
G (λ)

)

≤ e−Ω(mn/n2) (4.2)

where for the first equality we used Lemma 3.6 (i). To bound the contribution from 
elements of Hom2(G, H), we use Lemma 4.3 to obtain

∑
f∈Hom2(G,H):

μ̂(f)>μ(f)

μ̂(f) − μ(f) ≤
∑

f∈Hom2(G,H):
μ̂(f)>μ(f)

(
4q
∏

v∈V λf(v)

Z̃H
G (λ)

−
∏

v∈V λf(v)

ZH
G (λ)

)

≤ e−Ω(mn/n2) (4.3)

where again we use Lemma 3.6 (i) for the first inequality and the fact that elements of 
Hom2(G, H) are captured by ≤ 4q dominant patterns. The result follows by summing 
the bounds (4.2) and (4.3) to bound the sum in (4.1). �

In order to prove Theorem 1.2 it remains to prove Lemmas 4.2 and 4.3. A crucial step 
toward the proof of these lemmas is to verify that the Kotecký-Preiss condition (2.1)
holds for each of the polymer models introduced in Definition 3.2.

Lemma 4.4. There exist functions f : P → [0, ∞) and g : P → [0, ∞) such that for each 
(A, B) ∈ Dλ(H) and all polymers γ ∈ P we have
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∑
γ′:d(γ′,γ)≤2

wA,B(γ′)ef(γ′)+g(γ′) ≤ f(γ) . (4.4)

In particular the cluster expansion of ln ΞA,B converges absolutely.

We will prove Lemma 4.4 in Section 10. A key consequence of Lemma 4.4 is that it 
provides strong tail bounds for the cluster expansion. In order to state our tail bound, 
we introduce a family of parameters that will play an important role throughout this 
paper. For a dominant pattern (A, B) ∈ Dλ(H) let

δA,B := max
{

max
v∈Bc

λN(v)∩A

λA
, max
u∈Ac

λN(u)∩B

λB

}
. (4.5)

In Section 10 we prove the following.

Lemma 4.5. For (A, B) ∈ Dλ(H) and k ∈ N,

∞∑
j=k

|LA,B(j)| = O
(
mnd2(k−1)δdkA,B

)
.

We note that δA,B < 1 for each dominant pattern (A, B) and so Lemma 4.5 does 
indeed provide an effective tail bound.

Lemma 4.6. δA,B < 1 for each (A, B) ∈ Dλ(H).

Proof. Let (A, B) ∈ Dλ(H). For any u ∈ Ac there must exist w ∈ B such that u � w

else A ∪ {u} ∼ B contradicts the fact that (A, B) is a dominant pattern. In other 
words, N(u) ∩ B �= B, so λN(u)∩B < λB for all u ∈ Ac. Similarly λN(v)∩A < λA for all 
v ∈ Bc. �

To end this section we show how the following, refined version of Theorem 1.4 follows 
from the above results.

Theorem 4.7. For m an even integer, k ∈ N and (H, λ) a weighted graph, we have

ZH
G (λ) = ηλ(H)mn

2
∑

(A,B)∈Dλ(H)

exp

⎧⎨
⎩

k−1∑
j=1

LA,B(j) + εk,A,B

⎫⎬
⎭

where εk,A,B = O(mnn2(k−1)δdkA,B).

Proof of Theorem 4.7 assuming Lemmas 4.2, 4.3and 4.5. Let k ∈ N. By Lemma 4.5

ln ΞA,B =
∞∑
j=1

LA,B(j) =
k−1∑
j=1

LA,B(j) + εk,A,B (4.6)
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where εk,A,B = O(mnd2(k−1)δdkA,B). The result follows from Lemma 4.1 (which holds by 
our assumption that Lemmas 4.2 and 4.3 hold). �

In the next section we introduce the entropy tools that play a central role in the 
proofs of Lemmas 4.2 and 4.4. Pioneered by Kahn and Lawrenz [37], entropy methods 
have seen a huge range of applications in the study of graph homomorphisms and beyond 
(see for example [14,15,27,35,36,38,48,50]). The proof of Lemma 4.2 is an adaptation of a 
delicate entropy argument due to Engbers and Galvin [14]. Entropy arguments will also 
play a central role in the proof of Lemma 4.4. Roughly speaking, to prove Lemma 4.4 we 
need to balance two quantities: (i) the number of polymers of a given size and (ii) the 
total weight (or ‘cost’) of polymers of that size. In actuality, rather than fixing the size, 
a more complicated constraint will be used but we defer the details for now. A careful 
combination of entropy tools, the graph container method, isoperimetric and algebraic 
properties of the torus will ultimately allow us to balance (i) and (ii) and verify the 
Kotecký-Preiss condition.

Starting with the work of Korshunov and Sapozhenko [39], the graph container method 
has been widely applied in the study of spin models on the torus and integer lattice (see 
for example [17,20,22,23,21,24–26,28,38,39,44,45,48,50]). As noted in the introduction, 
the synthesis of container and entropy methods first appears in the work of Peled and 
Spinka [50] and later appears in the work of Kahn and Park [38] (with our treatment 
following the latter more closely).

5. Entropy tools

In this section we gather some tools based on entropy. In what follows all random 
variables will be discrete. Recall that we use log to denote the base 2 logarithm and that 
the binary entropy function is the map H : [0, 1] → R given by

H(p) = −p log p− (1 − p) log(1 − p) ,

where we interpret 0 log 0 as 0. The entropy of a random variable X is

H(X) =
∑
x

−P (X = x) logP (X = x) .

The inequality that makes entropy a useful tool for counting is

H(X) ≤ log |range(X)| , (5.1)

and we have equality if and only if X has the uniform distribution. For two random 
variables X and Y , the conditional entropy of X given Y is

H(X|Y ) = −
∑
y

P (Y = y)
∑
x

P (X = x | Y = y) logP (X = x | Y = y) .
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We collect a few useful properties of entropy in the form of a lemma.

Lemma 5.1.

1. H(X, Y ) = H(X) + H(Y |X),
2. H(X1, . . . , Xn|Y ) ≤

∑
i H(Xi|Y ),

3. if Z is determined by Y , then H(X|Y ) ≤ H(X|Z).

For a random vector X = (X1, . . . , Xk) and S ⊆ [k], set XS = (Xi : i ∈ S). We also 
use the following version of Shearer’s Lemma.

Lemma 5.2. If X = (X1, . . . , Xk) is a random vector and ϕ : 2[k] → R≥0 satisfies

∑
S
i

ϕ(S) ≥ 1 for each i ∈ [k] ,

then for any partial order ≺ on [k],

H(X) ≤
∑
S⊆[k]

ϕ(S)H(XS |(Xi : i ≺ S)) ,

where i ≺ S means i ≺ s for all s ∈ S.

Throughout the paper we will also use the following standard estimate on binomial 
coefficients in terms of the binary entropy function.

(
x

≤ βx

)
:=

�βx�∑
i=0

(
x

i

)
≤ 2H(β)x where x ∈ N, β ∈ [0, 1/2] .

We refer the reader to [11] for more background on information theory.

6. Isoperimetry in the torus

In this short section we collect some isoperimetric properties of the torus. These results 
will be key for bounding the weights of polymers.

Our first lemma gives a lower bound on the bipartite expansion factor of the torus. 
The following proof is an adaptation of an argument due to Christofides, Ellis and the 
second author [10, Theorem 3].

Lemma 6.1. If X ⊆ E , O with |X| = βmn/2, where 0 < β ≤ 1 then

|N(X)| ≥ |X|
(

1 + 4
√

2 · (1 − β)
2√

)
.

m n
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Proof. We proceed by induction on n and note that the case n = 1 is simple to verify 
(note that if m = 2 then β > 0 implies β = 1). We let En, On denote the even/odd side 
of the bipartition of the graph Zn

m (we make the dependence on n explicit to clarify the 
induction step). For a subset Y ⊆ Zn

m and i ∈ Zm we let

Yi :=
{
(y1, . . . , yn−1) ∈ Zn−1

m : (y1, . . . , yn−1, i) ∈ Y
}
.

We note that since X ⊆ On or X ⊆ En, we have Xi ⊆ On−1 or X ⊆ En−1 for each i. 
Letting |Xi| = βim

n−1/2, we may appeal to the inductive hypothesis to conclude that

|N(Xi)| ≥ |Xi|
(

1 + 4
√

2 · (1 − βi)
m2

√
n− 1

)
(6.1)

for each i ∈ Zm. Now, we have

|N(X)| =
∑
i∈Zm

|N(X)i| =
∑
i∈Zm

|N(Xi) ∪Xi+1 ∪Xi−1| . (6.2)

Let δ = 4
√

2β(1 − β)/(m
√
n) and suppose that |βi − βi+1| ≥ δ for some i ∈ Zm. By the 

above inequality and the fact that |N(Xi) ∪ Xi+1 ∪ Xi−1| ≥ max{|Xi−1|, |Xi|, |Xi+1|}
we would then have

|N(X)| ≥ δmn−1/2 +
∑
i∈Zm

|Xi| = δmn−1/2 + |X| = |X|
(

1 + 4
√

2 · (1 − β)
m2√n

)
.

We may therefore assume that |βi − βi+1| < δ for each i ∈ Zm. Since β =
∑

i βi/m we 
have βi ∈ (β −mδ/4, β + mδ/4) for each i. By (6.1) and (6.2) we have

|N(X)| ≥ |X| + mn−1

2
∑
i∈Zm

4
√

2 · βi(1 − βi)
m2

√
n− 1

.

Letting g(β) = β(1 − β), we would therefore be done if we could show that

1
m

∑
i∈Zm

g(βi) ≥ g(β)
√

1 − 1/n .

Since g is concave, the minimum of the sum 
∑

i∈Zm
g(βi) under the constraints β =∑

i βi/m and βi ∈ [β − mδ/4, β + mδ/4] for all i is achieved when half of the βi take 
value β −mδ/4 and the other half take value β + mδ/4. Therefore

1
mg(β)

∑
i∈Zm

g(βi) ≥
g(β −mδ/4) + g(β + mδ/4)

2g(β)

= 1 − m2δ2
16β(1 − β)
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= 1 − 2β(1 − β)
n

≥ 1 − 1/(2n)

≥
√

1 − 1/n

where we have used the inequality 
√

1 − x ≤ 1 − x/2 for x ∈ [0, 1]. �
We remark that Riordan [51] exhibited an ordering of the vertices of Zn

m whose initial 
segments have minimal vertex boundary for their size. We suspect that initial segments of 
Riordan’s ordering restricted to E give the correct lower bound for Lemma 6.1. However, 
the approximate statement of Lemma 6.1 will suffice for our purposes.

We will also make use of the fact that sets of polynomial size have much more sub-
stantial expansion. The following is a consequence of [51, Theorem 1.1].

Lemma 6.2. There exists C > 0 such that if X ⊆ V , |X| = O(n4) then |N(X)| ≥ C|X|, 
and if |X| ≤ n/2, then |N(X)| ≥ n|X| − 2|X|(|X| − 1).

7. Approximate polymers

In this section we introduce some tools belonging to the graph container method 
introduced by Korshunov and Sapozhenko [39,52]. The results of this section are a minor 
modification of known results in this area. In particular, we adapt the arguments from 
the excellent exposition of Galvin [20].

Recall from the introduction to Section 5 that our goal is to balance the number of 
polymers satisfying a certain constraint with the total weight of such polymers.

Sapozhenko’s approximation tools will allow us to replace polymers by ‘approximate 
polymers’ which are far less numerous, but retain enough information so that we can 
effectively bound the total weight of polymers with a given approximation.

We write 2V to denote the power set of V . For a subset Y ⊆ V and v ∈ V , we let 
dY (v) := |N(v) ∩ Y |. Recall that G is a d-regular graph where d = (1 + 1m>2)n.

Let ψ = ψ(d) > 0. A ψ-approximating pair for a subset X ⊆ V is a pair (F, S) ∈
2V × 2V satisfying

F ⊆ N(X), S ⊇ X , (7.1)

dV \F (u) ≤ ψ ∀u ∈ S (7.2)

and

dS(v) ≤ ψ ∀v ∈ V \F . (7.3)

We think of ψ as small compared to d and so conditions (7.2) and (7.3) say that 
the graph between S and V \F is sparse. On the other hand the graph between X
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and V \N(X) is empty. We therefore view S as an approximation of X and F as an 
approximation of N(X).

For any g ∈ N, let

H(g) = {X ⊆ V : X is G2-connected, |N(X)| = g} . (7.4)

Our goal in this section is to prove the following.

Lemma 7.1. Let ψ ≤ d/2. There is a family U = U(g) ⊆ 2V × 2V with

|U| ≤ 2O(g(log d)/ψ+d)

such that every X ∈ H(g) has a ψ-approximating pair in U .

The key point here is that the bound on the size of U(g) is much smaller than the size 
of H(g).

We say that a set Y ⊆ V covers a set X ⊆ V if each x ∈ X has a neighbour in Y , 
and each y ∈ Y has a neighbour in X (note that this relation is symmetric despite the 
asymmetric terminology).

Lemma 7.2. Let X ⊆ V , then there exists a set Y ⊆ V such that Y covers X and 
|Y | ≤ 4|N(X)|/d.

Proof. Let � = 2k be the largest power of 2 less than or equal to n. We label the first 
� coordinates of V = {0, . . . , m − 1}n with elements of the group Zk

2 , that is we fix a 
bijection φ : [�] → Zk

2 . We then define the function Φ : V → Zk
2 given by

Φ(x) =
∑
i∈[�]

xi · φ(i) .

Observe that for each i ∈ [�], the set N(X) ∩ Φ−1(φ(i)) covers X and one such set 
must have size at most |N(X)|/� ≤ 2|N(X)|/n. The result follows by recalling that 
d = (1 + 1m>2)n. �

The function Φ in the above proof was inspired by a construction of Linial, Meshulam 
and Tarsi [43] used to bound the chromatic number of the graph on vertex set {0, 1}n
where x ∼ y if and only if x and y are at Hamming distance 2. A similar construction 
will reappear in the next section in a crucial role (see Lemma 8.1).

For the remainder of this section, it will be useful to generalise our notion of a G2-
connected set: for k ∈ N, say that a subset S ⊆ V (G) is Gk-connected if the graph Gk[S]
is connected (here Gk denotes the kth power of the graph G).

The following well-known lemma is a useful enumeration tool when considering Gk-
connected sets.
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Lemma 7.3 ([7], Lemma 2.1). In a graph of maximum degree at most Δ, the number of 
connected, induced subgraphs of order t containing a fixed vertex v is at most (eΔ)t−1.

Lemma 7.4. For all g ∈ N, there exists a family V = V(g) ⊆ 2V with

|V| ≤ 2O(g(log d)/d+d)

such that for any X ∈ H(g), V contains a set which covers X.

Proof. Given X ∈ H(g), Lemma 7.2 gives us a set F ⊆ N(X) which covers X where 
|F | ≤ 4g/d. Moreover, since every vertex of F is adjacent to a vertex of X and vice 
versa, we see that F must be G4-connected. We may therefore take V to be the set of 
all G4-connected subsets of V of size at most 4g/d. Note that G4 has maximum degree 
≤ d4 and so the number of G4-connected sets of some size t, through a given vertex in 
G is, by Lemma 7.3, at most (ed4)t−1. The number of G4-connected subsets of V of size 
at most 4g/d is therefore at most

md

4g/d∑
t=1

(ed4)t−1 = 2O(g(log d)/d+d) . �

In order to prove Lemma 7.1, it will suffice to prove the following.

Lemma 7.5. Let ψ ≤ d/2. For each Y ⊆ V there is a family W = W(Y, g) ⊆ 2V × 2V
with

|W| ≤ 2O(g(log d)/ψ)

such that any X ⊆ V covered by Y with |N(X)| = g has a ψ-approximating pair in W.

Indeed, letting

U(g) =
⋃

Y ∈V(g)

W(Y, g)

where V(g) and W(Y, g) are the families from Lemmas 7.4 and 7.5, it is clear that U(g)
has the properties claimed in Lemma 7.1. It remains to prove Lemma 7.5.

We give an algorithm which, given a set X ⊆ V and Y ⊆ N(X), produces a ψ-
approximating pair for X.

Algorithm 1:

Input: (X, Y ) ∈ 2V × 2V such that Y ⊆ N(X).

Step 1: Set F ′ = Y . If {u ∈ X : dN(X)\F ′(u) ≥ ψ} �= ∅, pick u in this set and update F ′

by F ′ ←− F ′ ∪N(u). Repeat until {u ∈ X : dN(X)\F ′(u) ≥ ψ} = ∅.
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Step 2: Set S′ = {u ∈ V : dV \F ′(u) ≤ ψ}. If {w ∈ V \N(X) : dS′(w) ≥ ψ} �= ∅, pick w
in this set and update S′ by S′ ←− S′\N(w). Repeat until {w ∈ V \N(X) : dS′(w) ≥
ψ} = ∅.

Output: (S, F ) = (S′, F ′ ∪ {w ∈ V : dS′(w) ≥ ψ}).

Lemma 7.6. The output of Algorithm 1 is a ψ-approximating pair for X.

Proof. To see that F ⊆ N(X) first note that at termination, F ′ ⊆ N(X) since Y ⊆
N(X), and the vertices added to F ′ in Step 1 are all in N(X). Moreover {w ∈ V :
dS′(w) ≥ ψ} ⊆ N(X) else Step 2 would not have terminated. To see that S ⊇ X, note 
that initially S′ ⊇ X else Step 1 would not have terminated and Step 2 deletes from S′

only neighbours of V \N(X).
To verify (7.2), note that at the start of Step 2, dV \F ′(u) ≤ ψ for all u ∈ S′ by 

definition and F ′ ⊆ F and S ⊆ S′. Condition (7.3) is immediate from the definition 
of F . �

We now prove Lemma 7.5 (and hence also Lemma 7.1).

Proof of Lemma 7.5. Let Y ⊆ V . We will show that as the input (X, Y ) to Algorithm 1 
runs over X such that Y covers X and |N(X)| = g, we get at most 2O(g(log d)/ψ) distinct 
outputs. We are then done by taking W to be the set of these outputs.

Suppose then that Y covers X where |N(X)| = g. Since Y covers X we have 
X ⊆ N(Y ) and Y ⊆ N(X). In particular |Y | ≤ g. Consider Algorithm 1 with input 
(X, Y ). The output of Step 1 of the algorithm is determined by the set of u’s whose 
neighbourhoods are added to F ′ in Step 1, and the set of w’s whose neighbourhoods are 
removed from S′ in Step 2.

Each iteration in Step 1 reduces the size of N(X)\F ′ by at least ψ, so there are at 
most g/ψ iterations. The u’s in Step 1 are all drawn from X and hence N(Y ), a set of 
size at most dg (since |Y | ≤ g). The number of possible outputs for Step 1 is therefore 
at most (

dg

≤ g/ψ

)
= 2O(g(log d)/ψ).

We perform a similar analysis on Step 2. At the start of Step 2, dN(X)(u) ≥ d −ψ for 
each u ∈ S′ so that

|S′|(d− ψ) ≤
∑
u∈S′

dN(X)(u) =
∑

u∈N(X)

dS′(u) ≤ dg

and so initially |S′| ≤ 2g (since ψ ≤ d/2). Each iteration in Step 2 reduces the size of S′

by at least ψ, so there are at most 2g/ψ iterations. Each iteration draws a vertex w from 
N(S′), a set whose elements are all at distance at most 4 from Y (indeed, S′ ⊆ N(F ′)
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by definition, F ′ ⊆ N(X) and X ⊆ N(Y )). We thus have |N(S′)| ≤ d4g and so as in 
Step 1, the total number of outputs for Step 2 is 2O(g(log d)/ψ). �
8. Grouping polymers and decomposing the torus

In this section we build on the results of the previous one in order to enumerate poly-
mers satisfying certain constraints. One of these constraints corresponds to a measure of 
‘roughness’ of the polymer which we refer to as the neighbourhood distribution (see (8.4)
below). Again, as outlined at the beginning of Section 5, our current goal is to verify the 
Kotecký-Preiss condition (2.1) (for suitably chosen functions f and g) for each of our 
polymer models (Lemma 4.4). A key component in our enumeration steps will be the 
entropy tools introduced in Section 5. We will also rely on an algebraically constructed 
vertex partition of Zn

m which enjoys good ‘covering properties’ (see Lemma 8.1). We note 
that this is one of the key places where we take advantage of the specific structure of 
the torus.

A quirk of our algebraic construction is that the results of this section go through 
more easily if the dimension of the torus is assumed to be a power of 2. In the general 
case, we must decompose the torus into a collection of subtori each of dimension n′ where 
n′ is divisible by a large power of 2. The reason for this will become clearer after our 
covering property is stated formally. First we define our decomposition of G into subtori.

Choose k ∈ N such that

� := 2k = Θ(
√
d log4 d) . (8.1)

The precise value of � will become relevant in the next section (see the proof of 
Lemma 9.1). Let 0 ≤ p ≤ � − 1 be such that p ≡ n (mod �). We split the torus G = Zn

m

into mp subtori in the following way. For x ∈ {0, . . . , m − 1}p let

Tx := G [{v = (v1, . . . , vn) ∈ V : (vn−p+1, . . . , vn) = x}] .

We note that Tx
∼= Zn−p

m for each x ∈ {0, . . . , m − 1}p. We let G′ denote the graph that 
is the disjoint union of all the Tx and note that V (G′) = V (G) = V . For v ∈ V , let N ′(v)
denote the neighbourhood of v in G′ and let d′(v) denote the degree of v in G′. We allow 
for similar modifications of degree notation, for example if X ⊆ V we let d′X(v) denote 
the size of the set N ′(v) ∩X. We note that Tx is a d′-regular graph where

d− 2� ≤ d′ = (1 + 1m>2)(n− p) ≤ d . (8.2)

We may now introduce the covering property alluded to above.

Lemma 8.1. There exists a vertex partition V = V1 ∪ . . .∪V� with the following property. 
For each i ∈ [�] and v ∈ V ,
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d′Vi
(v) = d′/� .

Proof. Fix a bijection

φ : [�] → Zk
2 .

For t ∈ N, let t denote the element of [�] for which t ≡ t (mod �). We consider the 
function Φ : V → Zk

2 given by

Φ(v) =
∑
t∈[n]

vt · φ
(
t
)
.

Let Vi denote the set of v ∈ V such that Φ(v) = φ(i) and note that V1 ∪ . . . ∪ V� forms 
a partition of V . For t ∈ [n], let et = (0, . . . , 1, . . . , 0) ∈ V be the standard basis vector 
in direction t. For v ∈ V we have

N ′(v) = {v ± e1, . . . , v ± en−p}

(where the addition is componentwise modulo m). Since for t ∈ [n]

Φ(v ± et) = Φ(v) + φ(t) ,

we have for s ∈ {1, . . . , (n − p)/�}

{Φ(v ± et) : (s− 1)� + 1 ≤ t ≤ s�} = Zk
2 .

For each i ∈ [�], we therefore have (n − p)/� distinct values of t ∈ [n − p] for which 
Φ(v ± et) = φ(i) (or equivalently v ± et ∈ Vi). It follows that for each i ∈ [�], d′Vi

(v) =
(1 + 1m>2)(n − p)/� = d′/�. �

The fact each vertex v ∈ V has identical degree (with respect to G′) into each set 
Vi will be crucial. By contrast, if we were to consider degrees with respect to G in the 
above lemma, we would find that dVi

(v) takes one of two values. This seemingly minor 
discrepancy introduces an imperfect covering system in an application of Shearer’s lemma 
in the proof of the main enumeration result of this section (Lemma 8.3). The resulting 
error term produces a bound that is too weak for our purposes.

Before stating our polymer enumeration result we require some preliminaries. We 
define

N (g) = {X ⊆ V : |N(X)| = g} ,

and note that this differs from the definition of H(g) (see (7.4)) in that the elements of 
N (g) need not be G2-connected.
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For the remainder of this section we fix

0 < ψ < d/3 . (8.3)

For a pair (F, S) ∈ 2V × 2V , we let

N (g, F, S) := {X ∈ N (g) : (F, S) is a ψ-approximating pair for X } .

For a set X ⊆ V , we define the neighbourhood distribution of X to be the multiset

DX := {d′X(v) : v ∈ N(X)} . (8.4)

We emphasise that in the definition of DX , v ranges over the set N(X) rather than 
N ′(X) and so some elements of the multiset may be 0. It turns out that the weight 
of a subset X ⊆ V in our polymer models (as defined in (3.1)) is closely related to 
its neighbourhood distribution and so it will be useful to group sets according to their 
distribution.

Our goal is to enumerate the number of polymers γ ∈ N (g) with a fixed ψ-
approximating pair (F, S) and neighbourhood distribution D (Lemma (8.3) below). 
Fixing the degree distribution is a rather delicate constraint and the covering lemma 
(Lemma 8.1) is crucial for dealing with this. Roughly speaking, our strategy is to spec-
ify a set X ∈ N (g) with a given neighbourhood distribution as follows: first specify 
N(X) ∩Vi (with Vi as in Lemma 8.1) for some i and then specify X by selecting subsets 
of N ′(u) for each u ∈ N(X) ∩Vi. By Lemma 8.1, each vertex will be specified d′/� times 
which we account for with an application of Shearer’s Lemma. We choose the subsets of 
N ′(u) to have sizes compatible with the fixed neighbourhood distribution. We do this for 
each i and then average. We gain a critical entropy saving from the fact that on average 
the sets N(X) ∩ Vi are smaller than the full neighbourhood N(X) by a factor of �.

Let D be a multiset of size g and let (F, S) ∈ 2V × 2V . We define

N (D,F, S) := {X ∈ N (g, F, S) : DX = D} .

Let us also define

x = xF,S,D : F → N (8.5)

to be a function that maximises the quantity

∏
v∈F

(
d′S(v)
x(v)

)

subject to the constraint {x(v) : v ∈ F} ⊆ D (multiset inclusion). Note that we use the 
convention 

(0) = 1.
0
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In the following we will make use of the classical theorem of Hardy and Ramanujan 
[29] on integer partitions. An integer partition of a natural number k is a multiset of 
natural numbers whose elements sum to k. We let p(k) denote the number of integer 
partitions of k.

Theorem 8.2 (Hardy and Ramanujan [29]).

p(k) ∼ 1
4k

√
3
eπ

√
2k/3 as k → ∞ .

We will not need the precise asymptotics of the above theorem, the bound p(k) =
eO(

√
k) will suffice for our purposes. The paper of Hardy and Ramanujan [29] in fact 

begins with an elementary proof of this weaker bound.
We may now state our main enumeration lemma.

Lemma 8.3. For (F, S) ∈ 2V × 2V and multiset D of size g we have

|N (D,F, S)| ≤ 2O(g(log d)/�+
√
dg�)+(g−|F |)ψ/d′ ∏

v∈F

(
d′S(v)
x(v)

)1/d′

,

where x = xF,S,D is defined in (8.5).

Proof. Let V = V1 ∪ . . .∪ V� be the partition of V from Lemma 8.1. With this partition 
in mind, we refine our view of the set N := N (D, F, S) in the following way. Let us fix 
an ordered �-tuple Π = (Π1, . . . , Π�), where each Πi is a multiset of elements in [d′] and 
D =

⋃
i Πi (multiset union). For each i ∈ [�], we let N (Πi) denote the elements X ∈ N

for which

Πi = {d′X(v) : v ∈ Vi ∩N(X)} ,

and we let

N (Π) :=
�⋂

i=1
N (Πi) .

We now bound the number of tuples Π for which N (Π) is non-empty. Observe that 
by Lemma 8.1, for X ∈ N we have

∑
v∈Vi

d′X(v) =
∑
v∈X

d′Vi
(v) = d′|X|/� ≤ dg/� .

For N (Π) to be non-empty, the non-zero elements of Πi must therefore be an integer 
partition of some integer ki ≤ dg/�. The number of choices for each Πi is therefore at 
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most 2O(
√
dg/�) by Theorem 8.2 (note that there are < g choices for the multiplicity of 0

in Πi) and so the number of choices for Π = (Π1, . . . , Π�) is at most

2O
(√

dg�
)
.

We may therefore bound the size of N by

|N | ≤ 2O
(√

dg�
)
max

Π
|N (Π)| . (8.6)

Given Π = (Π1, . . . , Π�), we bound the size of N (Π) via the following inequality which 
follows from the definition of N (Π)

|N (Π)| ≤ min
i

|N (Πi)| ≤
(

�∏
i=1

|N (Πi)|
)1/�

. (8.7)

Fix i ∈ [�] and let X ∈ N (Πi).
Recall that (F, S) is a ψ-approximating pair for X and so by condition (7.2) in the 

definition of an approximating pair

(d− ψ)|S| ≤
∑
v∈S

dF (v) =
∑
v∈F

dS(v) ≤ dg .

For the final inequality we used that |F | ≤ |N(X)| = g by condition (7.1). Since ψ < d/3
by assumption (8.3) we have

|S| ≤ 2g (8.8)

and so

|N(S)| ≤ 2dg . (8.9)

We have N(X) ⊆ N(S) by (7.1). There are therefore at most 
(2dg
|Πi|

)
choices for Vi∩N(X). 

Let us fix such a choice and denote it by Ni. Fix a function

π : Ni → {0, . . . , d′} ,

such that {π(v) : v ∈ Ni} = Πi. Crudely there are at most d|Ni| = d|Πi| choices for the 
function π. We now bound the number of choices for X ∈ N (Πi) such that Vi ∩N(X) =
Ni and

d′X(v) = π(v) for each v ∈ Ni .

Recall that by Lemma 8.1, for every v ∈ V , we have d′V (v) = d′/�. Let

i
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S′ = {v ∈ S : d′Ni
(v) = d′/�}

and note that X ⊆ S′ as Ni = Vi ∩ N(X). Let Ψ denote the family of subsets X ⊆ S′

such that

d′X(v) = π(v) for each v ∈ Ni.

We will estimate |Ψ| by bounding the entropy H(X), where X is a uniformly random 
element of Ψ. For each v ∈ Ni, let Xv = X ∩N ′(v). Note that by definition of S′, each 
vertex w ∈ S′ is contained in d′/� of the sets {N ′(v) : v ∈ Ni}. Let Fi := Vi ∩ F . It 
follows by (5.1) and Shearer’s Lemma (Lemma 5.2), that

log |Ψ| = H(X) ≤ �

d′

∑
v∈Ni

H(Xv)

≤ �

d′

∑
v∈Ni

log
(
d′S(v)
π(v)

)

≤ �

d′

(∑
v∈Fi

log
(
d′S(v)
π(v)

)
+ |Ni\Fi|ψ

)

≤ �

d′

(∑
v∈Fi

log
(
d′S(v)
xi(v)

)
+ |Ni\Fi|ψ

)

where xi := xFi,S,Πi
(see (8.5)). For the penultimate inequality we used d′S(v) ≤ ψ for 

each v ∈ Ni\Fi by the definition of an approximating pair.
Putting everything together we have

|N (Πi)| ≤
(

2dg
|Πi|

)
d|Πi|

[
2(|Πi|−|Fi|)ψ

∏
v∈Fi

(
d′S(v)
xi(v)

)]�/d′

.

By (8.7) we then have

|N (Π)| ≤
[

�∏
i=1

(
2dg
|Πi|

)
d|Πi|2(|Πi|−|Fi|)ψ�/d′ ∏

v∈Fi

(
d′S(v)
xi(v)

)�/d′]1/�

≤
(

2dg
g/�

)
dg/�2(g−|F |)ψ/d′ ∏

v∈F

(
d′S(v)
x(v)

)1/d′

= 2O(g(log d)/�)+(g−|F |)ψ/d′ ∏
v∈F

(
d′S(v)
x(v)

)1/d′

.

The lemma follows from (8.6). �
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We remark that the important factor in the above lemma is the product of binomial 
coefficients. It will be useful to keep the following bound in mind:

∏
v∈F

(
d′S(v)
x(v)

)1/d′

≤
∏
t∈D

(
d′

t

)1/d′

≤ exp2

{∑
t∈D

H(t/d′)
}

. (8.10)

The right hand side should be compared with the entropy terms that arise in our bound 
for the total weight of polymers with a given neighbourhood distribution (Lemma 9.2 to 
appear in the next section).

One could now bound the number of polymers γ ∈ H(g) with a given neighbourhood 
distribution simply by summing the bounds of Lemma 8.3 over all approximating pairs 
in U(g) (as defined in Lemma 7.1). However, it turns out to be too costly to specify the 
entire neighbourhood distribution of a polymer and we have to settle for specifying only 
part of it.

Definition 8.4. Let γ ∈ P be such that |N(γ ∩ E)| ≥ |N(γ ∩O)|, and suppose (F, S) is a 
ψ-approximating pair for γ. We call the pair

(γ ∩ E , S ∩ O)

a fingerprint of the polymer γ. We make the same definition with the roles of E , O
reversed.

Note that multiple polymers may have the same fingerprint. Our goal is to bound the 
number of possible fingerprints R = (ρ, T ) such that R is the fingerprint of a polymer 
γ with |N(γ)| = g and the neighbourhood distribution of ρ is D. Call the set of all 
such fingerprints R(g, D). Given (F, S) ∈ 2V × 2V , let R(g, D, F, S) denote the set of 
R ∈ R(g, D) such that R is the fingerprint for some γ ∈ H(g) with ψ-approximating 
pair (F, S). Finally let

RE(g,D) = {R ∈ R(g,D) : R = (ρ, T ) where ρ ⊆ E} ,

and

RE(g,D, F, S) = {R ∈ R(g,D, F, S) : R = (ρ, T ) where ρ ⊆ E} ,

and define RO(g, D) and RO(g, D, F, S) similarly.

Lemma 8.5. For all g, (F, S) ∈ 2V × 2V and multisets D,

|RE(g,D, F, S)| ≤ 2O(g(log d)/�+
√
dg�)+(|D|−|F∩O|)ψ/d′ ∏

v∈F∩O

(
d′S∩E(v)
x(v)

)1/d′

,

where x = xF∩O,S∩E,D (as defined in (8.5)). The same bound holds with O, E swapped.
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Proof. Let R = (ρ, T ) ∈ RE(g, D, F, S), so that (F ∩O, S∩E) is a ψ-approximating pair 
for the set ρ. Note that by the definition of a fingerprint we also have |D| = |N(ρ)| ≤ g. 
By Lemma 8.3, there are therefore at most

2O(g(log d)/�+
√
dg�)+(|D|−|F∩O|)ψ/d′ ∏

v∈F∩O

(
d′S∩E(v)
x(v)

)1/d′

,

choices for ρ. The final claim of the lemma follows by symmetry. �
9. Bounding weights with entropy

In this section we establish a bound on the total weight of polymers in the set H(g)
(as defined in (7.4)). This will be a crucial step toward the proof of Lemma 4.4 (verifying 
the Kotecký-Preiss condition). We complete the proof of Lemma 4.4 in the next section.

Recall from Definition 3.1 that for a polymer γ, |N(γ∩O)|, |N(γ ∩E)| < (1 −α)mn/2
where α = α(H, λ) will be specified later (see (12.2)).

Lemma 9.1. There exists ξ > 0 (depending on m and (H, λ)) such that for d4 ≤ g ≤
(1 − α)mn/2, we have

∑
γ∈H(g)

w(γ) ≤ e−ξg/(
√
d log2 d) .

There are two broad steps in the proof of Lemma 9.1. In the first step, we bound the 
total weight of all polymers with a given fingerprint. In the second step, we sum over 
different classes of fingerprints and appeal to Lemma 8.5 (a bound on the number of 
fingerprints satisfying a certain set of constraints). To carry out the first step, we require 
a careful entropy argument inspired by Kahn and Park [38].

Given a fingerprint R, let P(R) denote the set of all polymers γ ∈ P with fingerprint 
R. Henceforth we let q denote the number of vertices in H and identify V (H) with 
{1, . . . , q}.

For the next lemma we introduce the following parameter of the weighted graph 
(H, λ):

r = r(H,λ) := mini λi

λ1 + . . . + λq
. (9.1)

For the remainder of this section we set

ψ = r2d/3

and note 0 < ψ < d/3 so that the definition is consistent with assumption (8.3). We note 
also that
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ψ < r2d′/2 (9.2)

by (8.1) and (8.2).
In the following lemma, we bound polymer weights w(γ) via the inclusion Hom(G, H)

⊆ Hom(G′, H) (recall the definition of G′ from the start of the previous section). Al-
though this may seem wasteful, it will help streamline the comparison with the polymer 
count of Lemma 8.3.

Lemma 9.2. Suppose R = (ρ, T ) is a fingerprint of a polymer in H(g). Then

∑
γ∈P(R)

w(γ) ≤ exp2

{
−
∑
t∈D

H (t/d′) − r|Dψ|
5 + 3qg

d′

}
.

where D is the neighbourhood distribution of ρ and Dψ is the multiset of elements in D
which are ≤ ψ.

For the proof the following notation will be useful. For c ⊆ V (H), let

n(c) := |{v ∈ V (H) : v ∼ c}| .

For a graph F let

η(F ) := max{|A||B| : A,B ⊆ V (F ), A ∼ B} , (9.3)

that is η(F ) = ηι̇(F ) (as defined in (1.3)) where ι̇ : V (F ) → R takes only the value 1
(we say that F is unweighted in this case).

Proof of Lemma 9.2. Suppose γ ∈ P(R). Recall from (3.1) that

w(γ) =
∑

f∈χA,B(γ)
∏

v∈V λf(v)

ηλ(H)mn/2 ,

where χA,B(γ) is the set of colourings f ∈ Hom(G, H) such that f disagrees with (A, B)
at each v ∈ γ and agrees at each v ∈ V \γ. Let χ(ρ, T ) denote the set of colourings f
such that f disagrees with (A, B) at each v ∈ ρ and agrees at each v ∈ V \(ρ ∪ T ). Note 
that we do not specify whether f agrees or disagrees with (A, B) on the vertices of T . 
Suppose without loss of generality that ρ ⊆ E . Since γ ∩ E = ρ and γ ∩ O ⊆ T for each 
γ ∈ P(R) we have

∑
γ∈P(R)

w(γ) ≤
∑

f∈χ(ρ,T )
∏

v∈V λf(v)

ηλ(H)mn/2 . (9.4)

Our strategy is to use a standard ‘blowup trick’ that allows us bound the right hand 
side of (9.4) by counting homomorphisms into a blowup of H. Having reduced to a 
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counting problem, we may bring entropy tools to bear. However, the blowup trick only 
works if the weight function λ takes only rational values. We deal with general λ via a 
limiting argument.

Claim 9.3. If λ : V (H) → R>0 takes only rational values, then
∑

f∈χ(ρ,T )
∏

v∈V λf(v)

ηλ(H)mn/2 ≤ exp2

{
−
∑
t∈D

H (t/d′) − r|Dψ|
5 + 3qg

d′

}
.

Proof. First we introduce the blowup trick then we introduce the entropy arguments. 
Since λ takes only rational values, letting V (H) = [q] we may write,

λ(i) = ai
b

for each i ∈ [q], where ai, b are positive integers. For the sake of uniqueness, we assume 
b is chosen as small as possible.

Define the blowup H[λ] = H(a1, . . . , aq), to be the graph on vertex set W1 ∪ . . .∪Wq

where the Wi are disjoint, |Wi| = ai for all i and x ∼ y if and only if x ∈ Wi, y ∈ Wj for 
some pair {i, j} ∈ E(H). For a vertex v ∈ V (H[λ]), we let v denote the unique i ∈ [q] for 
which v ∈ Wi. We extend this notation to subsets Y ⊆ H[λ], letting Y := {y : y ∈ Y }.

We let A[λ] =
⋃

i∈A Wi and define B[λ] similarly. Let χ(ρ, T, λ) denote the set of 
f ∈ Hom(G, H[λ]) such that f disagrees with (A[λ], B[λ]) at each v ∈ ρ and agrees at 
each v ∈ V \(ρ ∪ T ). We have

|χ(ρ, T, λ)| =
∑

f∈χ(ρ,T )

∏
v∈V

af(v)

and also (recalling the definition (9.3))

η(H[λ]) = b2ηλ(H) ,

so that

|χ(ρ, T, λ)|
η(H[λ])mn/2 =

∑
f∈χ(ρ,T )

∏
v∈V λf(v)

ηλ(H)mn/2 .

We have therefore related the quantity we want to bound to the size of the set χ(ρ, T, λ). 
We bound |χ(ρ, T, λ)| using an entropy argument.

Suppose that f ∈ χ(ρ, T, λ) is chosen uniformly at random. For ease of notation we 
write Nu instead of N ′(u) for a vertex u ∈ V in the following. Recall that for a colouring 
f and set X ⊆ V , we write fX for the restriction of f to X.

By Lemma 5.1 we may decompose the entropy of f as

H(f) = H(fE) + H(fO|fE) . (9.5)
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We bound these terms separately. Let U = N ′(ρ) ∪ T ⊆ O. With an application of 
Shearer’s lemma (Lemma 5.2) in mind we define the function ϕ : 2E → R≥0 by

ϕ(S) =

⎧⎪⎪⎨
⎪⎪⎩

1/d′ if S = Nu for some u ∈ U,

1 − d′U (u)/d′ if S = {u} for some u ∈ E ,
0 otherwise.

Observe that 
∑

S
u ϕ(S) = 1 for each u ∈ E and so we may apply Lemma 5.2 to obtain

H(fE) ≤
∑
u∈U

1
d′
H(fNu

) +
∑
u∈E

(
1 − d′U (u)

d′

)
H(fu) . (9.6)

Turning to the second term of (9.5), we have by Lemma 5.1,

H(fO|fE) ≤
∑
u∈U

H(fu|f(Nu)) +
∑

u∈O\U
H(fu) . (9.7)

For a vertex u ∈ V , let

I(u) = 1
d′
H(fNu

) + H(fu|f(Nu)) = 1
d′

[
H(fNu

|f(Nu)) + H(f(Nu))
]

+ H(fu|f(Nu)) .

Then by (9.5), (9.6) and (9.7) we may write

H(f) ≤
∑
u∈U

I(u) +
∑
u∈E

(
1 − d′U (u)

d′

)
H(fu) +

∑
u∈O\U

H(fu). (9.8)

Again we bound each term individually. For a subset c ⊆ V (H), let ac :=
∑

i∈c ai. For 
the second sum we note that f(u) ∈ A[λ] for each u ∈ E\ρ, d′U (u) = d′ for each u ∈ ρ

and |A[λ]| = aA so that

∑
u∈E

(
1 − d′U (u)

d′

)
H(fu) ≤

∑
u∈E\ρ

(
1 − d′U (u)

d′

)
log aA = (mn/2 − |U |) log aA .

For the third sum in (9.8) we simply use f(u) ∈ B[λ] for each u ∈ E\U so that

∑
u∈O\U

H(fu) ≤ (mn/2 − |U |) log aB .

It remains to bound the first sum in (9.8). For any u ∈ V we may bound I(u) as 
follows:
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I(u) ≤ max
c⊆V (H)

{
1
d′
H(fNu

|f(Nu) = c) + H(fu|f(Nu) = c)
}

+ 1
d′
H(f(Nu)) (9.9)

≤ max
c⊆[q]

{
log ac + log an(c)

}
+ q

d′

≤ log η(H[λ]) + q

d′
. (9.10)

For the second inequality we used (5.1), noting that there are at most ad′
c possible 

colourings of Nu given that f(Nu) = c, and that there are at most 2q choices for c.
For u ∈ N ′(ρ) we will improve on the bound (9.10) by considering vertices in Nu∩ρ, on 

which f disagrees with the pattern (A[λ], B[λ]). Let du denote d′ρ(u). Since f ∈ χ(ρ, T, λ)
we know that f(Nu ∩ ρ) ⊆ (A[λ])c and f(Nu\ρ) ⊆ A[λ]. By (9.9), we then have

I(u) ≤ max
c⊆V (H)

{
du
d′

log ac∩Ac +
(

1 − du
d′

)
log ac∩A + log an(c)

}
+ q

d′
. (9.11)

Holding c fixed and considering ac∩Ac , ac∩A as continuous variables which sum to ac, 
the above expression is maximised when ac∩Ac = du

d′ ac and ac∩A =
(
1 − du

d′

)
ac and so

I(u) ≤ −H(du/d′) + max
c⊆V (H)

{log ac + log an(c)} + q

d′

≤ −H(du/d′) + log η(H) + q

d′
. (9.12)

The appearance of the −H(du/d′) terms here is key. These ‘entropy penalties’ will exactly 
balance the binomial terms in our polymer count, Lemma 8.3 (see also (8.10)).

Recalling the definition of r (9.1), we have

r = r(H,λ) = mini ai
a1 + . . . + aq

.

If du ≤ ψ, we can do better in (9.11) by considering ac∩Ac , ac∩A as integer variables 
which sum to ac. In this case, since ψ < rd′ by (9.2), the expression in (9.11) is maximised 
when ac∩Ac = mini ai and ac∩A = ac − mini ai. We then have

I(u) ≤ max
c⊆V (H)

{log(ac − min
i

ai) + log an(c)} + q/d′

≤ max
c⊆V (H)

{log ac + log an(c) + log(1 − r)} + q/d′

≤ log(1 − r) + log η(H[λ]) + q/d′

≤ −H(du/d′) − r/5 + log η(H[λ]) + q/d′ . (9.13)

For the final inequality we used du/d′ ≤ ψ/d′ ≤ r2/2 and H(x) ≤ − log(1 − r) − r/5 for 
0 ≤ x ≤ r2/2.
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By (9.10), (9.12) and (9.13),

∑
u∈U

I(u) ≤ |U |
(
log η(H[λ]) + q

d′

)
−
∑
t∈D

H(t/d′) − r|Dψ|/5 .

Combining our bounds on the three sums in (9.8), we have

log |χ(ρ, T, λ)| = H(f) ≤ mn

2 log η(H[λ]) −
∑
t∈D

H

(
t

d′

)
− r|Dψ|

5 + q|U |
d′

.

Recall that R is a fingerprint of a polymer γ ∈ H(g) and so |N ′(ρ)| ≤ g. Moreover, since 
T ⊆ S where S is a part of a ψ-approximating pair (F, S) of γ we have |T | ≤ 2g by (8.8)
and so |U | ≤ 3g. The claim follows. �

It remains to deal with the case where λ takes irrational values. We proceed by a 
limiting argument. Choose a sequence (λk) where λk : V (H) → Q>0 and λk → λ

pointwise. Note that, as k → ∞,

ηλk(H) → ηλ(H) (9.14)

and (recalling (9.1))

r(H,λk) → r(H,λ) . (9.15)

With Claim 9.3 applied to H[λk] and letting ψk := r2(H, λk)/3 we obtain

∑
f∈χ(ρ,T )

∏
v∈V λk(f(v))

ηλk(H)mn/2 ≤ exp2

{
−
∑
t∈D

H (t/d′) − rk|Dψk
|

5 + 3qg
d′

}
.

Taking the limit k → ∞, using (9.14) and (9.15), and returning to (9.4) we obtain

∑
γ∈P(R)

w(γ) ≤ exp2

{
−
∑
t∈D

H (t/d′) − r|Dψ|
5 + 3qg

d′

}
. �

By summing over possible fingerprints, we can bound the total weight of polymers in 
H(g).

Proof of Lemma 9.1. Let Δ denote the collection of multisets D for which R(g, D) �= ∅
(defined in the discussion following Definition 8.4). For D ∈ Δ, the non-zero elements 
of D must be an integer partition of some multiple of d′ which is ≤ gd′ and so by 
Theorem 8.2

|Δ| ≤ 2O(
√
gd) . (9.16)
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Recall from Lemma 9.2 that for D ∈ Δ, Dψ is the multiset of elements in D that are 
≤ ψ.

Claim 9.4. If (F, S) ∈ 2V × 2V is such that RE(g, D, F, S) �= ∅ then

|D| − |F ∩ O| ≤ |Dψ| .

The same statement holds with O, E swapped.

Proof. Let (ρ, T ) ∈ RE(g, D, F, S) so that (F ∩O, S ∩E) is an approximating pair for ρ. 
By (7.1) and (7.3) in the definition of a ψ-approximating pair, we have dρ(v) ≤ dS∩E(v) ≤
ψ for each v ∈ O\F . Since D is the neighbourhood distribution of ρ, we thus have at 
least |N(ρ)\(F ∩O)| = |D| −|F ∩O| elements of D which are ≤ ψ. The claim holds with 
O, E swapped by symmetry. �

Recall from (8.1) that we chose k ∈ N such that

� = 2k = Θ(
√
d log4 d) (9.17)

and that d − 2� ≤ d′ ≤ d from (8.2).
Let Δ1 ⊆ Δ be the collection of multisets D ∈ Δ such that |Dψ| > g(log d)2/�. Let 

Δ0 = Δ\Δ1. Suppose that D ∈ Δ1. Then

∑
R∈R(g,D)

∑
γ∈P(R)

w(γ)

≤ 2
∑

(F,S)∈U(g)

∑
R∈RE(g,D,F,S)

∑
γ∈P(R)

w(γ)

≤ 2
∑

(F,S)∈U(g)

∑
R∈RE(g,D,F,S)

exp2

{
−
∑
t∈D

H(t/d′) − r|Dψ|/5 + 3qg/d′
}

≤ 2O(g(log d)/�)+|Dψ|ψ/d′ ∏
t∈D

(
d′

t

)1/d′

exp2

{
−
∑
t∈D

H(t/d′) − r|Dψ|/5
}

≤ 2−Ω(g(log d)2/�) . (9.18)

For the first inequality we use Corollary 7.1 where the factor of 2 accounts for the sum 
over RO(g, D, F, S) by symmetry. For the second inequality we use Lemma 9.2. For the 
third inequality we used Corollary 7.1, Lemma 8.5 and Claim 9.4. For the final inequality 
we use r ≤ 1/2 in collecting the Dψ terms.

Let us assume now that D ∈ Δ0. It will be useful to refine the notion of approximation 
for polymers γ ∈ H(g) with a fingerprint in RE(g, D) by taking advantage of the fact 
that any approximating pair for γ must specify almost all of N(γ ∩ E). Indeed suppose 
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that γ ∈ H(g) such that |N(γ ∩ E)| ≥ |N(γ ∩ O)|. We call (F, S) ∈ 2V × 2V a super-
approximating pair for γ if (F, S) is an approximating pair for γ and moreover

N(γ ∩ E) = F ∩ O and N(S ∩ E) = F ∩ O . (9.19)

Claim 9.5. There exists a family U∗ = U∗(g) ⊆ 2V × 2V such that

|U∗| ≤ 2O(g(log d)3/�) (9.20)

with the following property: for each D ∈ Δ0 and γ ∈ H(g) with fingerprint in RE(g, D), 
there exists (F, S) ∈ U∗ such that (F, S) is a super-approximating pair for γ.

We first show how our lemma follows from Claim 9.5.
Let D ∈ Δ0 and suppose that (F, S) ∈ U∗ is such that RE(g, D, F, S) �= ∅. Recall that 

polymers are defined to be G2-connected subsets γ ⊆ V such that |N(γ∩E)|, |N(γ∩O)| <
(1 − α)mn/2 and so |F ∩ O| < (1 − α)mn/2 by (9.19). Since N(S ∩ E) = F ∩ O (again 
by (9.19)), we have by Lemma 6.1,

|S ∩ E| =
(
1 − Ω(1/

√
n)
)
|F ∩ O| . (9.21)

Noting that |F ∩O| ≥ g/2, by (9.19) and the definition of a fingerprint (Definition 8.4), 
we thus have

eG′(F ∩ O, (S ∩ E)c) = d′(|F ∩ O| − |S ∩ E|) = Ω(g
√
d) . (9.22)

We pause here to highlight the fact that we used vertex isoperimetry in G to obtain (9.21)
and then degree regularity in G′ to deduce (9.22), an edge isoperimetric inequality in G′. 
We now use this edge expansion to more effectively bound the product in Lemma 8.5. We 
remark that edge expansion in G alone would not suffice for this purpose since boundary 
edges in G might be missing in G′.

Returning to the proof, note that since |D| = |F∩O| by (9.19), we have by Lemma 8.5,

|RE(g,D, F, S)| ≤ 2O(g(log d)/�)
∏

v∈F∩O

(
d′S∩E(v)
x(v)

)1/d′

, (9.23)

where x = xF∩O,S∩E,D (as defined in (8.5)).
Recall that D ∈ Δ0 so that all but at most g(log d)2/� elements of D are greater that 

ψ. Suppose that x(v) ≥ ψ, then for x(v) ≤ x ≤ d′ we have
(
x− 1
x(v)

)/(
x

x(v)

)
= 1 − x(v)/x ≤ 1 − ψ/d′.

Recalling the value of � from (9.17) we have
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∏
v∈F∩O

(
d′S∩E(v)
x(v)

)
≤ (1 − ψ/d′)eG′ (F∩O,(S∩E)c)−gd(log d)2/�

∏
t∈D

(
d′

t

)

= (1 − ψ/d′)Ω(g
√
d)
∏
t∈D

(
d′

t

)
.

Returning to (9.23) we therefore have

|RE(g,D, F, S)| ≤ 2−Ω(g/
√
d)
∏
t∈D

(
d′

t

)1/d′

.

Thus by Lemma 9.2

∑
R∈RE(g,D,F,S)

∑
γ∈P(R)

w(γ) ≤ 2−Ω(g/
√
d)
∏
t∈D

(
d′

t

)1/d′

exp2

{
−
∑
t∈D

H(t/d′) + 3qg/d′
}

≤ 2−Ω(g/
√
d) . (9.24)

By Claim 9.5 we have
∑

γ∈H(g)

w(γ) ≤ 2
∑

D∈Δ1

∑
R∈RE(g,D)

∑
γ∈P(R)

w(γ) + 2
∑

D∈Δ0

∑
(F,S)∈U∗

∑
R∈RE(g,D,F,S)

∑
γ∈P(R)

w(γ) .

The factors of 2 account for the sums over RO(g, D) by symmetry. By the bounds (9.16), 
(9.18), (9.20) and (9.24) we have that the right hand side is at most 2−Ω(g/(

√
d log2 d))

(recall that g ≥ d4 by assumption).
It remains to verify Claim 9.5.

Proof of Claim 9.5. Let (F, S) ∈ U(g) where U(g) is the set from Corollary 7.1 and let

VF,S :=
{

(F ∩ O) ∪Q : Q ∈
(

N(S ∩ E)
≤ g(log d)2/�

)}
⊆ 2O .

For X ⊆ V let B(X) := {v ∈ V : N(v) ⊆ X}. Define

U∗ :=
⋃

(F,S)∈U(g)

⋃
X∈VF,S

((F ∩ E) ∪X, (S ∩ O) ∪B(X)) .

We now show that U∗ has the desired properties. Let D ∈ Δ0 and let γ ∈ H(g) such 
that |N(γ ∩ E)| ≥ |N(γ ∩ O)|. Let ρ := γ ∩ E have neighbourhood distribution D. By 
Corollary 7.1 there exists (F, S) ∈ U(g) such that (F, S) is an approximating pair for γ. 
In particular by (7.1), F∩O ⊆ N(ρ) ⊆ N(S). By Claim 9.4, |N(ρ)\(F∩O)| ≤ g(log d)2/�
and so N(ρ) ∈ VF,S . It follows that the pair

(F ′, S′) = ((F ∩ E) ∪N(ρ), (S ∩ O) ∪B(N(ρ)))
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belongs to U∗. It is easy to verify that (F ′, S′) is a super-approximating pair for γ. It 
remains to bound on the size of U∗.

For (F, S) ∈ U(g) we have |N(S)| ≤ 2dg by (8.9) and so |VF,S | ≤
( 2dg
≤g(log d)2/�

)
=

2O(g(log d)3/�). By Corollary 7.1 we thus have

|U∗| ≤ 2O(g(log d)/ψ+g(log d)3/�) = 2O(g(log d)3/�) � �
10. Verifying the Kotecký-Preiss condition

In this section we prove Lemma 4.4. That is, we verify the Kotecký-Preiss condi-
tion (2.1) for each of our polymer models with suitable functions f and g. We then 
use this lemma to establish tail bounds on the cluster expansions of the log partition 
functions ln ΞA,B . In particular we prove a more detailed version Lemma 4.5.

Proof of Lemma 4.4. With ξ as in Lemma 9.1 and r as defined in (9.1), let

f(γ) = |γ|/d and g(γ) =
{
r|N(γ)|/3 if |N(γ)| ≤ d4

ξ|N(γ)|/(4
√
d log2 d) otherwise .

(10.1)

Let us fix a dominant pattern (A, B) ∈ Dλ(H). We denote wA,B simply by w. We 
want to show that the condition (4.4) holds with the above choice of f and g. That is, 
we want to show that

∑
γ′:d(γ′,γ)≤2

w(γ′)ef(γ′)+g(γ′) ≤ f(γ) (10.2)

for all polymers γ ∈ P.
We will in fact show that for each v ∈ V (G)

∑
γ′:γ′
v

w(γ′) · ef(γ′)+g(γ′) ≤ 1
d3 = f(γ)

d2|γ| , (10.3)

for all γ ∈ P. By summing this inequality over all v at distance at most 2 from γ in G
(noting that there are ≤ d2|γ| such vertices) we establish (10.2).

We split the sum appearing in (10.3) according to the size of |N(γ′)|. First we consider 
those γ′ for which |N(γ′)| ≥ d4. By Lemma 9.1 we have

(1−α)mn/2∑
g=d4

∑
γ∈H(g)

w(γ) · ef(γ)+g(γ) ≤
(1−α)mn/2∑

g=d4

eξg/(2
√
d log2 d)

∑
γ∈H(g)

w(γ)

≤
∞∑

4

e−ξg/(2
√
d log2 d)
g=d
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≤ 1
2d3 . (10.4)

for d sufficiently large.
Next we consider the contribution to the sum in (10.3) coming from polymers γ ∈ H(g)

where g ≤ d4. To this end, we need the following bound on the weight of a polymer. 
Recall that for S ⊆ V we let ∂(S) = N(S)\S and S+ = N(S) ∪ S.

Claim 10.1. For (A, B) ∈ Dλ(H) and γ ∈ P we have

w(γ) ≤ (1 − r)|∂γ|r−|γ| .

Proof. By (3.2) we have

w(γ) =
∑

f∈χ̂A,B(γ)
∏

v∈γ+ λf(v)

λ
|γ+∩O|
A λ

|γ+∩E|
B

,

where χ̂A,B(γ) denotes the set of possible restrictions fγ+ where f ∈ χA,B(γ).
Given any v ∈ Ac there must exist a w ∈ B such that v � w else A ∪ {v} ∼ B

contradicting the fact that (A, B) is a dominant pattern. Similarly for each v ∈ Bc there 
is a w ∈ A such that v � w. It follows that

∑
f∈χ̂A,B(γ)

∏
v∈γ+

λf(v) ≤ λ
|γ∩O|
Ac

(
λB − min

i∈B
λi

)|∂γ∩E|
λ
|γ∩E|
Bc

(
λA − min

i∈A
λi

)|∂γ∩O|
,

and so

w(γ) ≤
(

1 − mini∈A λi

λA

)|∂γ∩O|(
1 − mini∈B λi

λB

)|∂γ∩E|(
λAc

λA

)|γ∩O|(
λBc

λB

)|γ∩E|
.

(10.5)

The result follows by comparing the above quotients to r. �
If |N(γ)| = g ≤ d4 then it follows from Lemma 6.2 that |γ| ≤ g/(Cd). We then have 

by Claim 10.1

w(γ) ≤ (1 − r)g/2 r−g/(Cd) ,

for d sufficiently large.
Note that the graph G2 has maximum degree at most d2 and so by Lemma 7.3 the 

number of G2-connected sets of size t containing a fixed vertex v is at most (ed2)t−1. 
Note also if γ �= ∅ then |N(γ)| ≥ d. It follows that
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d4∑
g=d

∑
γ∈H(g):

γ
v

w(γ) · ef(γ)+g(γ) ≤
d4∑
g=d

(e2d2/r)g/(Cd) (1 − r)g/2 egr/3 ≤ 1
2d3 (10.6)

for d sufficiently large. By summing (10.4) and (10.6), we obtain (10.3) and hence also 
(10.2). This concludes the proof. �

We end this section by using Lemma 4.4 to establish strong tail bounds on the cluster 
expansion of ln ΞA,B .

Recall that for a dominant pattern (A, B) ∈ Dλ(H)

δA,B := max
{

max
v∈Bc

λN(v)∩A

λA
, max
u∈Ac

λN(u)∩B

λB

}
,

and recall that δA,B < 1 (Lemma 4.6). Recall also that for k ≥ 1 we define

LA,B(k) =
∑
Γ∈C:
‖Γ‖=k

wA,B(Γ) .

The following lemma extends Lemma 4.5.

Lemma 10.2. Let (A, B) ∈ Dλ(H) and let δ = δA,B.

LA,B(1) = Θ(mnδd) .

Moreover for t ≥ 1 fixed

∞∑
k=t

|LA,B(k)| = O(mnd2(t−1)δdt) ,

and for s ≥ 0 fixed

∞∑
k=1

ks|LA,B(k)| = (1 + o(1))LA,B(1) as n → ∞ . (10.7)

In particular,

ln ΞA,B =
∞∑
j=1

LA,B(j) = Θ(mnδd) . (10.8)

Proof. Let us fix (A, B) ∈ Dλ(H). For ease of notation we let Lk = LA,B(k) and w =
wA,B .
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The first claim follows by recalling the formula

L1 =
[

1
λAλd

B

∑
v∈Ac

λvλ
d
N(v)∩B + 1

λBλd
A

∑
v∈Bc

λvλ
d
N(v)∩A

]
mn

2

and using the definition of δ (4.5).
Suppose that k ∈ N is fixed. We now bound Lk from above. Let Γ be a cluster with 

‖Γ‖ = k. Since V (Γ) :=
⋃

S∈Γ S is a G2-connected set of size at most k, there are 
O(mnd2(k−1)) possibilities for V (Γ) by Lemma 7.3. Given a set X ⊆ V (Qn) of size at 
most k, there are at most a constant number of clusters Γ of size k such that V (Γ) = X. 
The number of clusters of size k is therefore O(mnd2(k−1)).

Suppose now γ is a polymer with |γ ∩ O| = i and |γ ∩ E| = j where i + j ≤ k. Using 
the fact that |∂(γ ∩O)| ≥ di −O(1) and |∂(γ ∩E)| ≥ dj−O(1) by Lemma 6.2 and (3.2), 
we have

w(γ) = O

⎛
⎜⎜⎝ 1
λdj
Aλdi

B

∑
v1,...,vi∈Ac

u1,...,uj∈Bc

λd
N(u1)∩A · · ·λd

N(uj)∩A · λd
N(v1)∩B · · ·λd

N(vi)∩B

⎞
⎟⎟⎠

= O
(
δd(i+j)

)
,

(this is a refinement of Claim 10.1 in the case where the size of the polymer is constant). 
Thus if Γ is a cluster of size k then w(Γ) = O

(
δdk

)
(note that k is fixed so that the 

Ursell function φ(Γ) is bounded by a constant). We therefore have

Lk = O(mnd2(k−1)δdk) . (10.9)

We now show how the lemma follows from the following claim.

Claim 10.3. For s ≥ 0, t ≥ 1 fixed, there exists a constant K such that for n sufficiently 
large,

∑
k>K

ksLk ≤ δtd .

Combining Claim 10.3 with (10.9) (for each k ≤ K), we have

∞∑
k=1

ksLk = L1 +
K∑

k=2

O
(
mnd2(k−1)δdk

)
+ O(δtd) = L1 + O(mnd2δ2d) ,

and also

∞∑
Lk =

K∑
O(mnd2(k−1)δdk) + O(δtd) = O(mnd2(t−1)δdt) .
k=t k=t
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The lemma follows. It remains to establish Claim 10.3.

Proof of Claim 10.3. Having established the Kotecký-Preiss condition (Lemma 4.4) for 
our polymer model (with f, g as in (10.1)), we may apply Theorem 2.1. In particular, 
applying (2.2) where γ = {v} is a single vertex polymer we have

∑
Γ∈C

Γ�{v}

|wA,B(Γ)| eg(Γ) ≤ 1/d . (10.10)

Recall that we write Γ � {v} if there exists γ ∈ Γ so that {v} � γ. For each Γ ∈ C, 
Γ � {v} for some v ∈ V and so by summing (10.10) over all v ∈ V we obtain

∑
Γ∈C

|wA,B(Γ)|eg(Γ) ≤ mn/d ,

(recall that g(Γ) :=
∑

γ∈Γ g(γ)). By (10.1), the definition of the function g(·), we have 
for any cluster Γ and n sufficiently large,

eg(Γ)/2 ≥ ‖Γ‖s . (10.11)

Moreover, there is a constant K = K(m, H, λ) such that if Γ is a cluster of size > K, 
then for n large

eg(Γ)/2 ≥ mn · δ−td . (10.12)

Thus

∑
k>K

ksLk ≤
∑
Γ∈C

‖Γ‖>K

|w(Γ)|eg(Γ)/2 ≤ δtd ,

where for the first inequality we used (10.11) and for the second inequality we used (10.10)
and (10.12). � �
11. Large deviations for polymer configurations

In this section we use the Kotecký-Preiss condition (Lemma 4.4) established in the 
previous section to prove a large deviation result for the total size of all polymers in a 
random sample from the polymer measure νA,B (as defined in (3.4)). As a corollary, we 
show that a typical sample from μ̂H,λ has very few defect vertices and is ‘highly-balanced’ 
in a sense that we will make precise later in the section.

In the next section we use these results to prove Lemmas 4.2 and 4.3 and hence also 
Theorem 1.2. The results of this section will also play a key role in Sections 13 and 18.



M. Jenssen, P. Keevash / Advances in Mathematics 430 (2023) 109212 51
The proof of the following theorem and the proofs in Section 15, exploit a connection 
between the cluster expansion and cumulant generating functions. Recently Cannon and 
Perkins [9] made novel use of this connection to prove correlation decay results for the 
hard-core model on unbalanced bipartite graphs. Our treatment parallels that of the first 
author and Perkins [34] who prove a large deviation result and central limit theorems 
for the hard-core model on Qn.

Suppose X is a random variable whose moment generating function EetX is defined 
for t in a neighbourhood of 0. We will use the cumulant generating function of X, defined 
as

ht(X) = lnEetX , (11.1)

that is, the logarithm of the moment generating function.

Theorem 11.1. Let (A, B) ∈ Dλ(H) and let δ = δA,B (as defined in (4.5)). Let Γ be a 
random configuration drawn from the distribution νA,B. There exist constants C, c > 0, 
depending on (H, λ) and m, such that if t ≥ C · dδd, then

P (‖Γ‖ ≥ tmn) ≤ e−c·tmn/n .

Proof. Let w denote wA,B and let Ξ denote ΞA,B. We introduce an auxiliary polymer 
model with modified polymer weights:

w̃(S) = w(S)e|S|/d .

Let Ξ̃ be the associated polymer model partition function. Recall that Ω denotes the 
collection of all sets of mutually compatible polymers. We have

Ξ̃
Ξ = 1

Ξ
∑
Γ∈Ω

∏
γ∈Γ

w̃(γ) = 1
Ξ
∑
Γ∈Ω

e‖Γ‖/d
∏
γ∈Γ

w(γ) = Ee‖Γ‖/d

where Γ is a random polymer configuration drawn according to νA,B (the unmodified 
polymer model). In other words

h1/d(‖Γ‖) = ln Ξ̃ − ln Ξ . (11.2)

We claim that the cluster expansion of ln Ξ̃ converges absolutely. Indeed let v ∈ V be 
a fixed vertex. The sum in the Kotecký-Preiss condition (10.3) for the polymer model 
with modified weights w̃(·) with f and g as in (10.1) is

∑
γ
v

|w̃(γ)|ef(γ)+g(γ) =
∑
γ
v

|w(γ)|ef(γ)+g(γ)+|γ|/d .
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Returning to inequalities (10.4) and (10.6), we observe that they both equally hold with 
f(γ) replaced by f(γ) + |γ|/d. We conclude that

∑
γ
v

|w̃(γ)|ef(γ)+g(γ) ≤ 1/d3. (11.3)

In other words we have verified the Kotecký-Preiss condition (10.3) for the modified 
polymer model and so the cluster expansion of ln Ξ̃ converges absolutely. Using (11.2)
and the bound Ξ ≥ 1, then applying Lemma 10.2 (noting that the proofs remain valid 
with the modified weights), gives

h1/d(‖Γ‖) ≤ ln Ξ̃

≤
∑
Γ∈C

|w̃(Γ)|

= O(mnδd) . (11.4)

By Markov’s inequality we have,

P [‖Γ‖ > tmn] = P
[
e‖Γ‖/d > etm

n/d
]

≤ e−tmn/dEe|Γ|/d .

Applying the bound (11.4) gives

P [‖Γ‖ > tmn] ≤ exp
[
− tmn

d
+ O(mnδd)

]
.

The result follows. �
For s > 0, and weighted graph (H, λ), we say that a colouring f ∈ Hom(G, H) is 

(s, λ)-balanced with respect to (A, B) if for each k ∈ A, the proportion of vertices of 
E coloured k is within s of λk/λA and for each � ∈ B, the proportion of vertices of O
coloured � is within s of λ�/λB .

The following lemma shows that with high probability, a colouring sampled from 
the measure μ̂H,λ (as defined in Definition 3.4) is well-balanced with respect to some 
dominant pattern.

Recall that we call the set of vertices at which a colouring f ∈ Hom(Zn
m, H) differs 

from its closest dominant colouring (breaking ties arbitrarily if necessary) the defect 
vertices of f .

Lemma 11.2. Let f denote a random element of Hom(G, H) sampled according to μ̂H,λ, 
let D denote the random dominant pattern selected at Step 1 in the definition of μ̂H,λ

(Definition 3.4) and let Γ be the random polymer configuration selected at Step 2. Let X
denote the number of defect vertices of f . The following hold:
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(i)

P (X = ‖Γ‖) ≥ 1 − e−Ω(mn/n2) .

(ii) If (A, B) ∈ Dλ(H) and CdδdA,B ≤ t ≤ 1/(4d), with C as in Theorem 11.1, then

P (X ≥ tmn | D = (A,B)) ≤ e−Ω(tmn/n) .

(iii) If (A, B) ∈ Dλ(H) and s ≥ 10Cd2δdA,B, then

P (f is (s, λ)-balanced wrt (A,B) | D = (A,B)) ≥ 1 − e−Ω(s2mn) − e−Ω(smn/n2) .

Proof. We begin by proving (i) and (ii) in conjunction. Let (A, B) ∈ Dλ(H) and 
CdδdA,B ≤ t ≤ 1/(4d). By Theorem 11.1, we have

P (‖Γ‖ ≤ tmn | D = (A,B)) ≥ 1 − e−Ω(tmn/n) . (11.5)

Let Γ+ denote 
⋃

γ∈Γ γ+ and let ‖Γ+‖ :=
∑

γ∈Γ |γ+|.
For k ∈ A, let Zk denote the number of vertices in O\Γ+ that receive colour k

conditioned on the event D = (A, B). Since the vertices of V \Γ+ are coloured at Step 4 
in the definition of μ̂H,λ we see that

Zk ∼ Bin(|O\Γ+|, λk/λA) .

For k ∈ B we define Zk similarly and note that Zk ∼ Bin(|E\Γ+|, λ�/λB). Since t ≤
1/(4d) and ‖Γ+‖ ≤ (d + 1)‖Γ‖, if ‖Γ‖ ≤ tmn, then |O\Γ+|, |E\Γ+| ≥ mn/6.

For k ∈ A, let Yk denote the number of vertices of O that receive colour k in the 
colouring f conditioned on the event D = (A, B). Define Yk similarly for k ∈ B. Note 
that for k ∈ A ∪B,

0 ≤ Yk − Zk ≤ ‖Γ+‖ . (11.6)

By Chernoff’s bound (applied to the random variables Zk) and a union bound we 
then have

P

(
min

k∈A∪B
Yk = Ω(mn)

∣∣∣∣ ‖Γ‖ ≤ tmn,D = (A,B)
)

≥ 1 − e−Ω(mn) . (11.7)

Suppose that the events D = (A, B), mink∈A∪B Yk = Ω(mn), and ‖Γ‖ ≤ tmn all hold. 
If (C, D) ∈ Dλ(H) is a dominant pattern distinct from (A, B), then either A\C �= ∅ or 
B\D �= ∅ and so, since mink∈A∪B Yk = Ω(mn), f must disagree with (C, D) on Ω(mn)
vertices. On the other hand, since D = (A, B), f disagrees with (A, B) on ‖Γ‖ ≤ tmn

vertices. We conclude that (A, B) must be the closest dominant pattern to f and X =
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‖Γ‖. Conclusion (ii) therefore follows from (11.5) and (11.7) and (i) follows by taking 
t = 1/(4d) in (11.5) and (11.7) for each (A, B) ∈ Dλ(H).

We now turn to (iii). By Theorem 11.1 again we have that if s ≥ 10C · d2δd, then

P

(
‖Γ+‖ ≤ s

|O|
4

∣∣∣∣ D = (A,B)
)

≥ 1 − e−Ω(smn/n2) . (11.8)

For k ∈ A, by (11.6) and Chernoff’s bound (applied to Zk), we also have that

P

(∣∣∣∣ Yk

|O| −
λk

λA

∣∣∣∣ ≤ s

∣∣∣∣ ‖Γ+‖ ≤ s
|O|
4 ,D = (A,B)

)
≥ 1 − e−Ω(s2mn) . (11.9)

The analogous statement holds for k ∈ B. Conclusion (iii) follows from (11.8), (11.9)
and a union bound. �
12. Capturing by polymer models

In this section we prove Lemmas 4.2 and 4.3, which together show that almost all 
elements of Hom(G, H) are captured by precisely one polymer model.

In Section 4, we showed how Lemmas 4.2 and 4.3 imply both Lemma 4.1 and our main 
result Theorem 1.2. This will therefore conclude the proof of these results. We also showed 
how Lemmas 4.2, 4.3 and 4.5 imply Theorem 4.7 which provides asymptotic formulae for 
the partition function ZH

G (λ). Since we established Lemma 4.5 by proving Lemma 10.2, 
this will also conclude the proof of Theorem 4.7 (a refinement of Theorem 1.4).

We begin by recalling some terminology from Sections 3 and 4. Recall from Defini-
tion 3.1 that a polymer is a G2-connected set γ such that |N(γ ∩ O)|, |N(γ ∩ E)| <
(1 − α)mn/2 where α = α(H, λ) will be specified later in the section (see (12.2)). We 
say a colouring f ∈ Hom(G, H) is captured by (A, B) ∈ Dλ(H) if each of the G2-
connected components of (f−1(Ac) ∩O) ∪ (f−1(Bc) ∩E) is a polymer (cf. Definition 3.5). 
Hom0(G, H), Hom1(G, H), Hom2(G, H) denote the sets of all colourings which are cap-
tured by 0, precisely one, and ≥ 2 dominant patterns respectively.

We first prove Lemma 4.3 which we restate for convenience. Recall the definition of 
Z̃H
G (λ) from (3.5).

Lemma 12.1.

Z2 :=
∑

f∈Hom2(G,H)

∏
v∈V

λf(v) ≤ e−Ω(mn/n2)Z̃H
G (λ) .

Proof. As before, let f denote a random element of Hom(H, G) selected according to 
μ̂H,λ. Let D denote the random dominant pattern selected at Step 1 in the definition of 
μ̂H,λ (Definition 3.4).

Let us fix two distinct dominant patterns (A, B) and (C, D) (we may assume two 
dominant patterns exist else the conclusion of the lemma holds trivially). Let F ⊆



M. Jenssen, P. Keevash / Advances in Mathematics 430 (2023) 109212 55
Hom(H, G) denote the subset of colourings that are captured by both (A, B) and (C, D). 
There exists a constant s > 0 (depending only on (H, λ)) such that a colouring cannot be 
(s, λ)-balanced with respect to both (A, B) and (C, D). We may therefore partition F as 
F = FA,B∪FC,D where FA,B consists of those elements of F that are not (s, λ)-balanced 
with respect to (A, B) (and similarly for FC,D).

It follows from Lemma 3.6 (ii) and Lemma 11.2 (iii) that

P (f ∈ FA,B |D = (A,B)) =
∑

f∈FA,B

∏
v∈V λf(v)

ηλ(H)mn/2 · ΞA,B
≤ e−Ω(mn/n2) .

Since there are only a constant number of pairs of dominant patterns we have
∑

f∈Hom2(G,H)

∏
v∈V

λf(v) ≤ e−Ω(mn/n2)ηλ(H)m
n/2

∑
(A,B)∈Dλ(H)

ΞA,B . �

We now prove Lemma 4.2 which is a more cumbersome task. To help in this endeavour 
we adapt an artful entropy argument of Engbers and Galvin [14]. We note that the 
proof of Lemma 4.2 does not rely on the convergence of the cluster expansion, and may 
therefore be considered as independent of Sections 6–11. Again we restate the lemma.

Lemma 12.2. There exists ζ = ζ(H, λ) < ηλ(H) so that

Z0 :=
∑

f∈Hom0(G,H)

∏
v∈V

λf(v) ≤ ζm
n/2 .

Before giving the proof we require some preliminaries and notation. Let

V ∗ = {x ∈ V : xn = 0, x ∈ E} .

For v ∈ V , and 0 ≤ i ≤ m − 1, let

vi := v + (0, . . . , 0, i)

and let

C(v) := {v0, . . . , vm−1} .

For v ∈ V , set

Mv := N(v)\{v1, vm−1}

and

MC(v) :=
⋃

Mu .

u∈C(v)
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We note that the subgraph of Zn
m induced by MC(v) is a disjoint union of 2n − 2 cycles 

of length m (when m ≥ 4) or n − 1 disjoint edges (when m = 2).
To carry out a judicious application of Shearer’s Lemma, Engbers and Galvin con-

struct a partial order on V with certain desirable properties. We record one of these 
properties here in the form of a lemma.

Lemma 12.3 (Engbers and Galvin [14]). There exists a partial order ≺ on V such that 
for all v ∈ V ∗

MC(v) ⊆ {u : u ≺ C(v)}.

We are now in a position to prove our lemma.

Proof of Lemma 12.2. We proceed with an entropy argument and blowup trick similar 
to that used in the proof of Lemma 9.2. First for each i ∈ [q], let us fix a sequence of 
rationals (λi,k)k∈N such that λi,k → λi. For each k we may write

(λ1,k, . . . , λq,k) = (a1,k/bk, . . . , aq,k/bk) ,

where ai,k, bk ∈ N. Let Hk := H(a1,k, . . . , aq,k), that is the graph on vertex set U1,k ∪
. . . ∪ Uq,k where the Ui,k are disjoint, |Ui,k| = ai,k for all i and x ∼ y if and only if 
x ∈ Ui,k, y ∈ Uj,k for some pair {i, j} ∈ E(H). For a vertex v ∈ V (Hk), we let v denote 
the unique i ∈ [q] for which v ∈ Ui,k. For Y ⊆ V (Hk), we let Y := {y : y ∈ Y }. For 
convenience let us set H0 := H.

For a vertex v ∈ V ∗ and colouring f ∈ Hom(G, Hk), let

Pv(f) := (f(Mv0), . . . , f(Mvm−1)) .

We write (A0, . . . , Am−1) to indicate tuples of sets Ai ⊆ V (H). Write alt(A, B) to 
denote the alternating tuple (A, B, . . . , A, B). We say that A = (A0, . . . , Am−1) is ideal
if A = alt(A, B) for some (A, B) ∈ Dλ(H). For f ∈ Hom(G, Hk), we call a vertex u ∈ V ∗

ideal (wrt f) if Pv(f) is ideal. For X ⊆ V ∗, let HomX(G, Hk) denote the set of all 
f ∈ Hom(G, Hk) for which the set of ideal vertices of V ∗ is precisely X. Note that

∑
f∈HomX(G,H)

∏
v∈V

λf(v),k = |HomX(G,Hk)|/bm
n

k . (12.1)

For β ∈ (0, 1], let

Homβ(G,Hk) :=
⋃

X∈( V ∗
≤β|V ∗|)

HomX(G,Hk) ,

that is Homβ(G, Hk) is the set of all f ∈ Hom(G, Hk) for which ≤ β|V ∗| vertices of V ∗

are ideal.
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Establishing the following claim will complete the proof.

Claim 12.4. There exists ζ = ζ(H, λ) < ηλ(H) and β = β(H, λ) > 0 such that for n
sufficiently large

∑
f∈Homβ(G,H)

∏
v∈V

λf(v) ≤ ζm
n/2 .

Indeed if f ∈ Hom(G, H) has > β|V ∗| ideal vertices in V ∗, then by pigeonholing we 
can find a set V ∗∗ ⊆ V ∗ such that |V ∗∗| ≥ 4−qβ|V ∗| and Pv(f) = alt(A, B) for all 
v ∈ V ∗∗ for some fixed (A, B) ∈ Dλ(H). Letting U =

⋃
v∈V ∗∗ C(v), we have |U ∩ O| =

|U ∩ E| = m|V ∗∗|/2 ≥ 2−2q−1βmn/2. Moreover fU+ agrees with the pattern (A, B). We 
set

α = α(H,λ) := 2−2q−1β (12.2)

and declare this to be the parameter appearing in Definition 3.1 of a polymer (a polymer 
is a G2-connected subset γ ⊆ V such that |N(γ ∩ E)|, |N(γ ∩ O))| < (1 − α)mn/2).

As in Definition 3.5, let S(f) = (f−1(Ac) ∩ O) ∪ (f−1(Bc) ∩ E), the set of vertices 
at which f disagrees with (A, B). Since fU+ agrees with the pattern (A, B), we have 
S(f) ∩U+ = ∅ and so S(f)+∩U = ∅. By the choice of α, both U ∩O and U ∩E have size 
at least αmn/2 and so each of the G2-connected components of S(f) is a polymer i.e. 
f is captured by (A, B). We conclude that Hom0(G, H) ⊆ Homβ(G, H) and the lemma 
follows. It remains to prove Claim 12.4.

Proof of Claim 12.4. Fix X ∈
(

V ∗

≤β|V ∗|
)

and choose f ∈ HomX(G, Hk) uniformly at 
random. Following [14] we will upper bound H(f) by Shearer’s Lemma (Lemma 5.2). 
We take as our covering family {MC(v) : v ∈ V ∗} together with (1 + 1{m>2})(n − 1)
copies of C(v) for each v ∈ V ∗. Each vertex of G is covered (1 + 1{m>2})(n − 1) times 
and so by Lemmas 5.2 and 12.3 we have

H(f) ≤
∑
v∈V ∗

H(fC(v)|fMC(v)) +
(1 + 1{m=2}

2n− 2

) ∑
v∈V ∗

H(fMC(v)) . (12.3)

For a tuple A = (A0, . . . , Am−1) where each Ai ⊆ V (H), we let zk(A) denote the 
number of ways of choosing (x0, . . . , xm−1) with xi ∈ Uyi,k where yi ∈ Ai for each 
i and y0 ∼ . . . ∼ ym−1 ∼ y0. Let z(A) denote the sum of 

∏m−1
i=0 λxi

over all tuples 
(x0, . . . , xm−1) with xi ∈ Ai for each i and with x0 ∼ . . . ∼ xm−1 ∼ x0. Observe that as 
k → ∞

zk(A)/bmk → z(A) (12.4)

for any tuple A.
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We let n(A) denote the tuple (n(A0), . . . , n(Am−1)) where we recall that for A ⊆
V (H), n(A) denotes the common neighbourhood of A in H. We bound the terms in the 
first sum of (12.3) as follows:

H(fC(v)|fMC(v)) ≤ H(fC(v)|Pv(f))

≤
∑
A

P [Pv(f) = A]H(fC(v)|Pv(f) = A)

≤
∑
A

P [Pv(f) = A] log zk(n(A)) , (12.5)

where the sum is over all tuples A = (A0, . . . , Am−1) where each Ai ⊆ V (H). The final 
inequality follows from the fact that C(v) induces a cycle of length m in G and so if 
Pv(f) = A we must have for i ∈ {0, . . . , m − 1}, f(vi) ∈ Uyi,k for some yi ∈ n(Ai) where 
the yi form a cycle in H.

To bound the terms in the second sum of (12.3) we write

H(fMC(v)) = H(fMC(v) |Pv(f)) + H(Pv(f))

≤
(

2n− 2
1 + 1{m=2}

)∑
A

P [Pv(f) = A] log zk(A) + qm . (12.6)

The inequality follows from the fact that MC(v) induces 2n − 2 cycles (when m ≥ 4) or 
n − 1 disjoint edges (when m = 2) and that there are at most 2qm possible values that 
Pv(f) can take. Summing the bounds (12.5) and (12.6) gives

H(fC(v)|fMC(v)) +
(1 + 1{m=2}

2n− 2

)
H(fMC(v)) ≤

∑
A

P [Pv(f) = A] log(zk(A)zk(n(A))

+ qm

n− 1 .

Summing this inequality over v ∈ V ∗, recalling that the vertices of X ⊆ V ∗ are ideal 
and the vertices of V ∗\X are not, and using (12.3) we obtain

H(f)

≤ |X|max
A

log(zk(A)zk(n(A)) + (|V ∗| − |X|) max
A

not ideal

log(zk(A)zk(n(A))) + qm

n− 1 |V
∗|

≤ mn−1

2

[
β max

A
log(zk(A)zk(n(A)) + (1 − β) max

A
not ideal

log(zk(A)zk(n(A))) + qm

n− 1

]
.

Subtracting mn log bk from both sides of the above inequality, taking the limit k → ∞
and using (12.1) and (12.4) gives
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log

⎛
⎝ ∑

f∈HomX(G,H)

∏
v∈V

λf(v)

⎞
⎠ (12.7)

≤ mn−1

2

[
β max

A
log(z(A)z(n(A)) + (1 − β) max

A
not ideal

log(z(A)z(n(A)) + qm

n− 1

]
.

Now, for A = (A0, . . . , Am−1) we have the inequality

z(A) ≤
m−1∏
i=0

λAi

and so

z(A)z(n(A)) ≤
m−1∏
i=0

λAi
λn(Ai) . (12.8)

Observe that for A ⊆ V (H) we have λAλn(A) ≤ ηλ(H) with equality if and only if 
(A, n(A)) is a dominant pattern. Returning to (12.8) we see that

max
A

z(A)z(n(A)) ≤ ηλ(H)m , (12.9)

with equality only if (Ai, n(Ai)) ∈ Dλ(H) for each i. We will now show that if A is not 
ideal then

z(A)z(n(A)) < ηλ(H)m . (12.10)

By (12.9) we may assume that A = (A0, . . . , Am−1) where (Ai, n(Ai)) ∈ Dλ(H) for 
all i. Observe that if (A, B) ∈ Dλ(H) then

n(B) = A and n(A) = B . (12.11)

Indeed it is clear that A ⊆ n(B) and the inclusion cannot be strict else (n(B), B) is 
a pattern with λAλB < λn(B)λB contradicting the fact that (A, B) is dominant. The 
equality n(A) = B follows similarly.

Since A is not ideal, we may assume without loss of generality that (A0, A1) is not a 
dominant pattern and so A1 �= n(A0). For A, B ⊆ V (H), let p(A, B) be the set of pairs 
(a, b) ∈ A ×B such that a � b. We have

z(A) ≤

⎛
⎝λA0λA1 −

∑
{x,y}∈p(A0,A1)

λxλy

⎞
⎠m−1∏

i=2
λAi

and
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z(n(A)) ≤

⎛
⎝λn(A0)λn(A1) −

∑
{x,y}∈p(n(A0),n(A1))

λxλy

⎞
⎠m−1∏

i=2
λn(Ai) .

If both p(A0, A1) and p(n(A0), n(A1)) are empty then A0 ∼ A1 and n(A0) ∼ n(A1)
hence A1 ⊆ n(A0) and n(A0) ⊆ n(n(A1)). Since (A1, n(A1)) is a dominant pattern we 
have A1 = n(n(A1)) by (12.11) and so n(A0) = A1 contrary to assumption. We conclude 
that one of p(A0, A1) and p(n(A0), n(A1)) is non-empty and so z(A)z(n(A)) < ηλ(H)m
which proves (12.10). Letting

η′ :=
(

max
A

not ideal

z(A)z(n(A))
)1/m

< ηλ(H)

and returning to (12.7) we have

log

⎛
⎝ ∑

f∈HomX(G,H)

∏
v∈V

λf(v)

⎞
⎠ ≤ mn

2

[
β log ηλ(H) + (1 − β) log η′ + q

n− 1

]
. (12.12)

It follows from (12.12) that

log

⎛
⎝ ∑

f∈Homβ(G,H)

∏
v∈V

λf(v)

⎞
⎠ ≤ mn

2

[
β log ηλ(H) + (1 − β) log η′ + H(β)

m
+ q

n− 1

]
.

The claim follows by choosing β = β(H, λ) sufficiently small and n sufficiently 
large. � �
13. A structure theorem for Hom(Zn

m, H)

In this section we show how the results proved thus far can be used to prove Theo-
rem 1.3 and resolve conjectures of Engbers and Galvin [14, Conjectures 6.1, 6.2, 6.3].

Recall that for s > 0 and a weighted graph (H, λ), we say that an H-colouring of Zn
m

is (s, λ)-balanced with respect to (A, B) if for each k ∈ A, the proportion of vertices of 
E coloured k is within s of λk/λA and for each � ∈ B, the proportion of vertices of O
coloured � is within s of λ�/λB .

Theorem 1.3 was inspired by the following theorem of Engbers and Galvin.

Theorem 13.1 (Engbers and Galvin [14]). Fix an even integer m ≥ 2 and a weighted 
graph (H, λ) where λ takes only rational values. There is a partition of Hom(Zn

m, H)
into |Dλ(H)| + 1 classes

Hom(Zn
m, H) = F (0) ∪

⋃
F (A,B)
(A,B)∈Dλ(H)
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with the following properties (we write μ for μH,λ).

1. μ(F (0)) ≤ e−Ω(n).
2. For (A, B) ∈ Dλ(H), each f ∈ F (A, B) is (e−Ω(n), λ)-balanced w.r.t. (A, B).
3. If A �= B is such that (A, B), (B, A) ∈ Dλ(H) then

μ(F (A,B)) = μ(F (B,A))
(
1 ± e−Ω(n)

)
.

4. If (A, B), (Ã, B̃) ∈ Dλ(H) are such that ϕ(A) = Ã and ϕ(B) = B̃ for some weight 
preserving automorphism ϕ of (H, λ), then

μ(F (A,B)) = μ(F (Ã, B̃))
(
1 ± e−Ω(n)

)
.

5. For each (A, B) ∈ Dλ(H), x ∈ O, y ∈ E, k ∈ A and � ∈ B,

Pμ(f(x) = k|f ∈ F (A,B)) = λk

λA

(
1 ± e−Ω(n)

)

and

Pμ(f(y) = �|f ∈ F (A,B)) = λ�

λB

(
1 ± e−Ω(n)

)
.

Engbers and Galvin note that Theorem 13.1 does not make a general statement about 
the measures of the sets F (A, B), however they conjecture an explicit formula for the 
asymptotics of lnμ(F (A, B)) [14, Conjectures 6.1, 6.2]. They go on to conjecture [14, 
Conjecture 6.3] that there is a decomposition of Hom(Zn

m, H) satisfying the conclusions of 
Theorem 13.1 such that μH,λ(F (0)) ≤ e−mn/p(n) for some polynomial p(n) whose degree 
depends only on (H, λ) and m. We remark that although Theorem 13.1 includes the 
restriction that λ takes rational values, both of the aforementioned conjectures are made 
for an arbitrary weighted graph (H, λ). The following theorem resolves these conjectures 
in a strong form.

We have the following strengthening of Theorem 1.3.

Theorem 13.2. Fix a weighted graph (H, λ) and m ≥ 2 even. There exists ξ ∈ (0, 1) such 
that if ξd ≤ s ≤ 1 then there is a partition of Hom(Zn

m, H) into |Dλ(H)| + 1 classes

Hom(Zn
m, H) = F (0) ∪

⋃
(A,B)∈Dλ(H)

F (A,B)

with the following properties. With μ = μH,λ and t := min{s2, s/n2},

1. μ(F (0)) ≤ e−Ω(tmn).
2. For (A, B) ∈ Dλ(H), each f ∈ F (A, B) is (s, λ)-balanced with respect to (A, B).
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3. For each (A, B) ∈ Dλ(H),

μ(F (A,B)) = 1
ZH
G (λ)

ηλ(H)mn

2 ΞA,B

(
1 ± e−Ω(tmn)

)
.

4. For each (A, B) ∈ Dλ(H), x ∈ O, y ∈ E, k ∈ A and � ∈ B,

Pμ(f(x) = k|f ∈ F (A,B)) = λk

λA

(
1 ± e−Ω(n)

)

and

Pμ(f(y) = �|f ∈ F (A,B)) = λ�

λB

(
1 ± e−Ω(n)

)
.

Proof. Let μ, μ̂ denote μH,λ, μ̂H,λ respectively. Recall that Hom0(G, H), Hom1(G, H), 
Hom2(G, H) denote the sets of all colourings which are captured (cf. Definition 3.5) by 
0, precisely one, and ≥ 2 dominant patterns respectively. Let E(0) = Hom0(G, H) ∪
Hom2(G, H) and note that by Lemmas 12.1 and 12.2,

μ̂(E(0)) ≤ e−Ω(mn/n2) . (13.1)

We now consider the partition

Hom1(G,H) =
⋃

(A,B)∈Dλ(H)

E(A,B) ,

where E(A, B) denotes the set of colourings f ∈ Hom1(G, H) which are captured by the 
(A, B) polymer model.

As in Lemma 12.1, we let

Z2 =
∑

f∈Hom2(G,H)

∏
v∈V

λf(v) .

Fix (A, B) ∈ Dλ(H). Since each element of E(A, B) is captured by the (A, B) polymer 
model and no others we have by Lemma 3.6 (i) that

1
Z̃H
G (λ)

(
ηλ(H)m

n/2ΞA,B − 4qZ2

)
≤ μ̂(E(A,B)) ≤ 1

Z̃H
G (λ)

ηλ(H)m
n/2ΞA,B .

(13.2)

Here 4q is used as a crude upper bound for |Dλ(H)|.
Let

ρ := max δA,B ,

(A,B)∈Dλ(H)
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with δA,B as defined in (4.5). Note that ρ < 1 since δA,B < 1 for each (A, B) (Lemma 4.6). 
Pick

max{m−1/4, ρ1/2} < ξ < 1 . (13.3)

Suppose that s ≥ ξd. Let us fix (A, B) ∈ Dλ(H) and let F (A, B) denote the set of ele-
ments of E(A, B) that are (s, λ)-balanced with respect to (A, B). Let t := min{s2, s/n2}. 
By Lemma 11.2 (iii) we have

μ̂(E(A,B)\F (A,B)) ≤ e−Ω(tmn) . (13.4)

Let F (0) = E(0) ∪
⋃

(A,B)∈Dλ(H)(E(A, B)\F (A, B)), and consider the partition

Hom(G,H) = F (0) ∪
⋃

(A,B)∈Dλ(H)

F (A,B) .

By (13.1), (13.4) and Theorem 1.2, the above partition satisfies conclusions 1 and 2 of 
our theorem. It remains to verify conclusions 3 and 4. By (13.2), (13.4) and Lemma 12.1,

μ̂(F (A,B)) =
(
1 ± e−Ω(tmn)

) 1
Z̃H
G (λ)

ηλ(H)m
n/2ΞA,B . (13.5)

By Theorem 1.2, the same holds for μ(F (A, B)) and so, applying Lemma 4.1, we obtain 
conclusion 3. Before we turn to conclusion 4, we use (13.5) to prove the following simple 
lower bound on μ̂(F (A, B)).

Claim 13.3.

μ̂(F (A,B)) ≥ e−O(mnρd+q) . (13.6)

Proof of Claim 13.3. By Lemma 10.2,

ln ΞA,B = O(mnδdA,B) .

Using the crude bound |Dλ(H)| ≤ 4q we have

Z̃H
G (λ) := ηλ(H)m

n/2
∑

(A,B)∈Dλ(H)

ΞA,B ≤ 4qηλ(H)m
n/2eO(mnρd) .

The claim follows from (13.5), noting that ΞA,B ≥ 1 and tmn → ∞ by the definition 
of t. �

We now turn to conclusion 4. As before, let D denote the random pattern selected at 
Step 1 in the definition of μ̂ (Definition 3.4). First we bound the probability
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Pμ̂(f(x) = k | D = (A,B)) .

Let Γ be the random polymer configuration selected at Step 2 in the definition of μ̂
conditioned on the event D = (A, B). In particular Γ has distribution νA,B . Let Γ+

denote the union 
⋃

γ∈Γ γ+. By symmetry, Pμ̂(v ∈ Γ+) is the same for each v ∈ O. Let us 
denote this probability by pO and define pE similarly. Then by Lemma 10.2 and (15.1)
we have

(pO + pE)mn/2 = E
∣∣Γ+∣∣ ≤ (d + 1)E |Γ| = O(dmnδdA,B) ,

and so

pO + pE = e−Ω(n) .

It follows that

Pμ̂ (f(x) = k | D = (A,B)) = Pμ̂

(
f(x) = k | D = (A,B), x /∈ Γ+)+ e−Ω(n)

= λk/λA + e−Ω(n) , (13.7)

where for the final equality we used that if x /∈ Γ+, then x is coloured at Step 4 in the 
definition of μ̂.

By (13.1) and (13.4) the symmetric difference of the events {D = (A, B)} and {f ∈
F (A, B)} has μ̂-measure e−Ω(tmn). By Claim 13.3,

Pμ̂(f ∈ F (A,B)) ≥ 4−q−1e−O(mnρd) .

By (13.3) we have tmn → ∞ and also t/ρd → ∞. It then follows that

Pμ̂ (f(x) = k | f ∈ F (A,B)) = Pμ̂ (f(x) = k | D = (A,B))
(
1 ± e−Ω(tmn)

)

and so by (13.7)

Pμ̂ (f(x) = k | f ∈ F (A,B)) = λk/λA + e−Ω(n) .

Finally using the fact that ‖μ − μ̂‖TV ≤ e−Ω(mn/n2) (Theorem 1.2), conclusion 4 fol-
lows. �

We note that if (A, B), (Ã, B̃) ∈ Dλ(H) are such that ϕ(A) = Ã and ϕ(B) = B̃

for some weight preserving automorphism ϕ of (H, λ), then ΞA,B = ΞÃ,B̃ . Similarly 
if (A, B) ∈ Dλ(H) where A �= B then ΞA,B = ΞB,A. Conclusion 3 of Theorem 13.2
therefore strengthens conclusions 3 and 4 of Theorem 13.1 significantly. Moreover by 
the cluster expansion ln ΞA,B =

∑∞
j=1 LA,B(j) and Lemma 10.2 we can obtain detailed 
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explicit asymptotic formulae for each μ(F (A, B)) in Theorem 13.2 (see Section 16 for an 
algorithm to compute the terms LA,B(j)).

As mentioned in the introduction, one may wonder to what extent the measures of the 
classes F (A, B) in Theorem 13.2 can differ. We note that it is easy to construct a weighted 
graph (H, λ) with two dominant patterns (A, B), (A′, B′) such that δA′,B′ < δA,B (as 
defined at (4.5)). In particular, by (10.8) and Theorem 13.2,

ln(μ(F (A′, B′)/μ(F (A,B)) ∼ ln(ΞA′,B′/ΞA,B) ∼ −mnδdA,B .

We end this section by showing that the tradeoff in Theorem 13.2 between the size of 
μ(F (0)) and the degree to which the elements of F (A, B) are balanced (see conclusions 
1 and 2) is essentially optimal.

Proposition 13.4. Let ξ be as in Theorem 13.2, ξd ≤ s = o(1), and let

Hom(Zn
m, H) = F (0) ∪

⋃
(A,B)∈Dλ(H)

F (A,B)

be a partition of Hom(Zn
m, H) such that for (A, B) ∈ Dλ(H), each f ∈ F (A, B) is 

(s, λ)-balanced with respect to (A, B). Then

μ(F (0)) = e−O(s2mn) .

Proof sketch. Fix (A, B) ∈ Dλ(H), and let F denote the set of f ∈ Hom(Zn
m, H) such 

that f(O) ⊆ A, f(E) ⊆ B and f is not (s, λ)-balanced with respect to (A, B). Since 
s = o(1), each f ∈ F is not (s, λ)-balanced with respect to any dominant pattern (in 
fact we only require s to be less than a sufficiently small constant). Thus F ⊆ F (0).

Consider the random experiment where we independently assign each v ∈ O the colour 
k ∈ A with probability λk/λA and each v ∈ E the colour � ∈ B with probability λ�/λB . 
By tightness of the Chernoff bound,

∑
f∈F

∏
v∈V λf(v)

ηλ(H)mn/2 = e−O(s2mn). (13.8)

As before, let ρ = max(A,B)∈Dλ(H) δA,B . By Theorem 4.7 we then have

μ(F (0)) ≥ μ(F ) =
∑

f∈F

∏
v∈V λf(v)

ZH
G (λ)

=
∑

f∈F

∏
v∈V λf(v)

ηλ(H)mn/2 · e−O(mnρd+q) = e−O(s2mn),

where for the final equality we used (13.8) and ξ > max{m−1/4, ρ1/2} (see (13.3)). �
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14. Torpid mixing via conductance

In this section we show how Theorem 1.11 can be deduced from our decomposition 
result Theorem 13.2. We will make use of a well-known conductance argument, using a 
form of the argument presented in [13].

Let M be an ergodic (connected and aperiodic) Markov chain on a finite state space 
Ω, with transition probabilities P (ω, ω′), ω, ω′ ∈ Ω and stationary distribution π.

Let X ⊆ Ω and Y ⊆ Ω\X satisfy π(X) ≤ 1/2 and P (ω, ω′) = 0 for all ω ∈ X, ω′ ∈
Ω\(X ∪ Y ). Then from [13, Claim 2.3] we have

τM ≥ π(X)
8π(Y ) . (14.1)

We will apply this bound when π(Y ) is small. Intuitively, Y acts as a bottleneck: for the 
chain to leave the set X it must pass through Y . If π(Y ) is small, the chain is unlikely 
to pass through Y , which drives up the mixing time.

Proof of Theorem 1.11. We use the conductance argument outlined above. Let μ = μH,λ

and let

β := min
(A,B)∈Dλ(H)

min
{

mink∈A λk

λA
,
min�∈B λ�

λB

}
.

Consider the decomposition from Theorem 13.2 with s = β/(2q)

Hom(Zn
m, H) = F (0) ∪

⋃
(A,B)∈Dλ(H)

F (A,B) .

Suppose that (H, λ) is non-bipartite and non-trivial and so has at least two dominant 
patterns. Suppose also that (A, B) is such that μ(F (A, B)) is minimal and so in particular 
μ(F (A, B)) ≤ 1/2. Let X = F (A, B) and Y = F (0). By (13.6) and Theorem 1.2 we also 
have

μ(X) ≥ e−O(mnρd+q) , (14.2)

where ρ = max(A,B)∈Dλ(H) δA,B < 1.
Suppose now that (C, D) is a dominant pattern distinct from (A, B) and note that 

either A\C �= ∅ or B\D �= ∅. Without loss of generality suppose A\C �= ∅. Let f1 ∈
F (A, B), f2 ∈ F (C, D). By conclusion 2 of Theorem 13.2, f1 is (s, λ)-balanced with 
respect to (A, B) and f2 is (s, λ)-balanced with respect to (C, D). Letting k ∈ A\C we 
then have

|f−1
1 (k)\f−1

2 (k)| ≥ (β − s− |C|s) m
n

≥ βmn
2 4
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and so f1 and f2 differ in at least βmn/4 vertices.
Now let M be a (β/5)-local ergodic Markov chain on Hom(Zn

m, H) with transition 
probabilities P (f1, f2), f1, f2 ∈ Hom(Zn

m, H) and stationary distribution μ. By the above, 
P (f1, f2) = 0 for all f1 ∈ X, f2 ∈ (X ∪ Y )c (i.e. for the chain to leave X it must pass 
through Y ). By conclusion 1 of Theorem 13.2, the conductance bound (14.1) and (14.2), 
we therefore have

τM ≥ μ(X)
8μ(Y ) = eΩ(mn/n2) .

The proof of the second statement of the theorem, dealing with bipartite (H, λ), goes 
through with trivial modifications and so we omit it. �

We end this section by remarking that the assumption of ergodicity in Theorem 1.11
is a non-trivial restriction. We illustrate this with the example where H = K4, i.e. 4-
colourings of Zn

m. Let H denote the graph on vertex set Hom(Zn
m, K4) where two vertices 

f1, f2 are adjacent if and only f1(v) �= f2(v) for precisely one vertex v ∈ V (Zn
m). It is 

well-known that H has isolated vertices for any m ≥ 2 (these are referred to as frozen 
colourings: updating the colour of any single vertex results in a non-proper colouring). 
One can use Theorem 1.2 to show that the component structure of H undergoes a phase 
transition at m = 256 in the following sense: If m < 256 is even then H has a giant 
connected component occupying 1 − o(1) of the vertices whereas if m > 256 the largest 
component of H occupies an exponentially small fraction of the total number of vertices. 
If m = 256, then the largest component in H is polynomially small. This transition 
is driven by the appearance of copies of the three dimensional hypercube Q3 which is 
4-coloured in such a way that no single vertex update is valid (i.e. a frozen colouring of 
Q3). We omit the details for brevity.

15. The defect distribution

In this section we prove our central limit theorem for the distribution of the number 
of vertices in a sample from the defect distributions νA,B (Theorem 1.7).

We begin with some preliminaries on cumulants of random variables. Recall 
from (15.1), the cumulant generating function of a random variable X, ht(X) = lnEetX . 
The �th cumulant of X is defined by taking derivatives of ht(X) and evaluating at 0:

κ�(X) = ∂�ht(X)
∂t�

∣∣∣∣∣
t=0

.

In fact the cumulants of X are related to the moments of X by a non-linear change of 
basis (see e.g. [41]). In particular, κ1(X) = EX and κ2(X) = var(X). Moreover, if a 
random variable X has a distribution determined by its moments, and if for a sequence 

of random variables Xn we have limn→∞ κ�(Xn) = κ�(X) for all � ≥ 1, then Xn
d−→ X
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(recall that d−→ denotes convergence in distribution). We will use this in conjunction 
with the following fact.

Fact 1. If X has a Poisson distribution with mean m, then κr(X) = m for all r. If X has 
a standard normal distribution (mean 0, variance 1) then κ1(X) = 0, κ2(X) = 1, and 
κ�(X) = 0 for all � ≥ 3.

We will also use the following basic property of cumulants.

Fact 2. If X is a random variable, a, b ∈ R and � ≥ 2, then κ�(aX + b) = a�κ�(X).

We are now in a position to prove Theorem 1.7.

Proof of Theorem 1.7. For brevity let us denote the weight function wA,B (see (3.1)) by 
w and denote the partition function ΞA,B (see (3.3)) by Ξ. For t ≥ 0, let us define the 
modified weight function

wt(γ) = w(γ)et|γ|

and let Ξt denote the accompanying modified partition function. We then have

ht(‖Γ‖) = log Ξt − log Ξ .

As was shown in the proof of Theorem 11.1, the cluster expansion of log Ξt converges 
absolutely for t ≤ 1/d (see inequality (11.3)).

log Ξt =
∑
Γ∈C

wt(Γ) =
∑
Γ∈C

w(Γ)et‖Γ‖ .

It follows that for fixed s ∈ N

κs(‖Γ‖) = ∂s log Ξt

∂ts

∣∣∣∣∣
t=0

(15.1)

=
∑
Γ∈C

‖Γ‖sw(Γ)

=
∞∑
k=1

ksLA,B(k)

= (1 + o(1))LA,B(1) , (15.2)

where for the last inequality we used (10.7) from Lemma 10.2.
Let L1 = LA,B(1). If L1 → 0, then κ�(‖Γ‖) → 0 for each � so that ‖Γ‖ = 0 whp. 

If L1 → ρ > 0 then κ�(‖Γ‖) → ρ for each � so that ‖Γ‖ d−→ Pois(ρ). Finally suppose 
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that L1 → ∞ and let Y denote (‖Γ‖ −E‖Γ‖)/
√

var‖Γ‖. We have κ1(Y ) = EY = 0. By 
Fact 2 and (15.2) we have, for � ≥ 2,

κ�(Y ) = κ�(‖Γ‖)
(var‖Γ‖)�/2 = κ�(‖Γ‖)

κ2(‖Γ‖)�/2
= (1 + o(1))LA,B(1)1−�/2

so that κ2(Y ) → 1 and κ�(Y ) → 0 for � ≥ 3. We conclude that Y d−→ N(0, 1) by 
Fact 1. �
Proof of Corollary 1.8. We specialise to the q-colouring model so that (H, λ) = (Kq, ι̇)
where ι̇ ≡ 1. We denote μ̂H,λ, μH,λ by μ̂, μ respectively. Let X̂ denote the number of 
defect vertices in a sample from μ̂. Note that since ‖μ −μ̂‖ ≤ e−Ω(mn/n2) by Theorem 1.2, 
it suffices to establish the statement of the corollary with μ̂ and X̂ in place of μ and X.

Let Γ denote the random polymer configuration selected at Step 2 in the definition 
of μ̂. By Lemma 11.2 (i) we have that X̂ = ‖Γ‖ with probability ≥ 1 − e−Ω(mn/n2). 
The result follows from Theorem 1.7 and the symmetry of the dominant patterns in 
(Kq, ι̇). �
16. Computing terms of the cluster expansion

In this section we give a general description of the terms in the cluster expansion of 
ΞA,B and provide an algorithm for computing these terms as an explicit function of n. 
Combined with Theorem 1.4, this provides, for fixed (H, λ) and m ≥ 2 even, a finite 
time algorithm to compute an asymptotic formula (correct up to a multiplicative factor 
(1 + o(1))) for the partition function ZH

G (λ) (such as those presented in Corollary 1.6).
For the following lemma we recall that for (A, B) ∈ Dλ(H)

LA,B(k) =
∑
Γ∈C:
‖Γ‖=k

wA,B(Γ)

and

δA,B = max
{

max
v∈Bc

λN(v)∩A

λA
, max
u∈Ac

λN(u)∩B

λB

}
. (16.1)

Lemma 16.1. Fix a weighted graph (H, λ), a dominant pattern (A, B) ∈ Dλ(H), m ≥ 2
even and k ∈ N. We have

LA,B(k) = mn
∑
i∈I

pi(n) · αn
i ,

where I is an index set of size at most eO(k log k) and for each i ∈ I, αi ∈ [0, δkA,B)
depends only on (H, λ) and pi is a polynomial of degree at most 2(k−1) whose coefficients 
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depend only on (H, λ). Moreover the αi and the coefficients of the polynomials pi can all 
be computed in time eO(k log k).

Proof. For v ∈ V we say i ∈ [n] is an active coordinate of v if vi �= 0. For S ⊆ V we 
define the active coordinates of S to be the union of the sets of active coordinates of 
the elements of S. For a cluster Γ, we define the active coordinates of Γ to be the active 
coordinates of the set V (Γ) =

⋃
S∈Γ S.

For j, k, a ∈ N, let Gj,k,a denote the set of all clusters Γ containing 0 with ‖Γ‖ = k

and |V (Γ)| = j and whose set of active coordinates is precisely [a]. Note that if S ⊆ V is 
a G2-connected set of size j containing 0 then S has at most 2(j− 1) active coordinates. 
Therefore, if Gj,k,a �= ∅ we must have a ≤ 2(j − 1).

By symmetry of coordinates and vertex transitivity of Zn
m we have

LA,B(k) = mn
k∑

j=1

1
j

2(j−1)∑
a=1

(
n

a

) ∑
Γ∈Gj,k,a

wA,B(Γ) . (16.2)

We first show how to efficiently generate the sets Gj,k,a, then we show how to efficiently 
compute the weights wA,B(Γ).

Claim 16.2. For k ∈ N, j ∈ [k], and a ∈ [2k] the set Gj,k,a has size eO(k log k) and can be 
generated in time eO(k log k).

Proof of Claim 16.2. First we construct the list Lj of all G2-connected subsets of V of 
size j which contain 0 = (0, . . . , 0) and whose set of active coordinates are a subset of 
[2k]. We do so iteratively. Let 1 ≤ t < j and suppose we have constructed the list Lt. 
For each S ∈ Lt and v ∈ S, we run through the list of vertices w at distance ≤ 2 from 
v such that the active coordinates of w are a subset of [2k], and we add S ∪ {w} to 
the list Lt+1 if w /∈ S. Note that there are at most 4

(2k
2
)

+ 2k ≤ 8k2 choices for w. 
This procedure generates the whole list Lt+1 and shows that |Lt+1| ≤ 8tk2|Lt| and so 
|Lj | ≤ j!(8k2)j = eO(k log k).

Let La
j denote the subset of Lj consisting of those sets whose active coordinates are 

precisely [a]. Note that we can generate the list La
j in time eO(k log k) by checking the 

elements of Lj one by one.
We now generate the list Gj,k,a. To do so we run through each S ∈ La

j and create 
the list of clusters Γ with ‖Γ‖ = k and V (Γ) = S. We claim that this can be done 
in time eO(k log k). Recall that a cluster Γ with ‖Γ‖ = k is an ordered set of polymers 
Γ = (γ1, . . . , γ�) such that 

∑�
i=1 |γi| = k. Let us fix S ∈ La

j . Since there are at most 
2k ordered integer partitions of k, it suffices to show that for a fixed such partition 
(j1, . . . , j�) (so that 

∑
i ji = k) we may find, in time eO(k log k), all clusters (γ1, . . . , γ�)

for which |γi| = ji for all i, and 
⋃

i γi = S. To do this we can simply check each element 
of 

(
S
j1

)
× . . . ×

(
S
j�

)
(a set of size at most eO(k log k)) to see if it constitutes a legitimate 

cluster. �
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We now turn to computing the weights wA,B(Γ) in (16.2). For S ⊆ V , let χ̃A,B(S)
denote the set of all colourings of G[S] which disagree with (A, B) at every vertex of S.

Claim 16.3. If S ⊆ V is a G2-connected set of size at most k whose active coordinates 
lie in [2k], then we can write

wA,B(S) =
∑

f∈χ̃A,B(S)

βf · αd
f

where 0 ≤ αf < δ
|S|
A,B, βf ≥ 0 and both can be computed in time polynomial in k.

Note that if |S| ≤ k, then |χ̃A,B(S)| = eO(k) and we can list the elements of χ̃A,B(S)
by brute force in eO(k) time.

We recall that for a cluster Γ, wA,B(Γ) := φ(Iγ) 
∏

γ∈Γ wA,B(γ) where φ(Iγ) is the 
Ursell function of the graph Iγ (as defined in (1.8)). The Ursell function φ(Iγ) is an 
evaluation of the Tutte polynomial of Iγ and therefore can be computed in time eO(k)

by an algorithm of Björklund, Husfeldt, Kaski, and Koivisto [5, Theorem 1].
The lemma therefore follows from (16.2) and Claims 16.2 and 16.3. It remains to prove 

Claim 16.3.

Proof of Claim 16.3. Recall from (3.2) that

wA,B(S) =
∑

f∈χ̂A,B(S)
∏

v∈S+ λf(v)

λ
|S+∩O|
A λ

|S+∩E|
B

, (16.3)

where χ̂A,B(S) is the set of all colourings of G[S+] which disagree with (A, B) precisely 
on S.

For f ∈ χ̃A,B(S) and v ∈ ∂S ∩ O, let A(f, v) denote the subset of A available to v
given the colouring f of G[S]. More precisely A(f, v) = A ∩

⋂
u∈NG(v)∩S NH(f(u)). For 

v ∈ ∂S ∩ E , define B(f, v) similarly. Then

∑
f∈χ̂A,B(S)

∏
v∈S+

λf(v) =
∑

f∈χ̃A,B(S)

∏
v∈S

λf(v)
∏

u∈∂S∩O
λA(f,u)

∏
w∈∂S∩E

λB(f,w) .

Let S̄ be the set of vertices in V which are either contained in S or have ≥ 2 neighbours 
in S. By grouping elements of ∂S\S̄ according to their unique neighbour in S we may 
rewrite the right hand side as

∑
f∈χ̃A,B(S)

∏
v∈S

λf(v)
∏

u∈S̄∩∂S∩O

λA(f,u)
∏

w∈S̄∩∂S∩E

λB(f,w)
∏

x∈S∩E
λ
d−dS̄(x)
A∩N(f(x))

∏
y∈S∩O

λ
d−dS̄(y)
B∩N(f(y)) .

We now consider the denominator in (16.3). Note that
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|S+ ∩ O| = |S̄ ∩ O| +
∑

v∈S∩E
(d− dS̄(v)) ,

and similarly for |S+ ∩ E|. Thus

wA,B(S) =
∑

f∈χ̃A,B(S)

[
1

λ
|S̄∩O|
A λ

|S̄∩E|
B

∏
v∈S

λf(v)
∏

u∈S̄∩∂S∩O

λA(f,u)
∏

w∈S̄∩∂S∩E

λB(f,w)

∏
x∈S∩E

(
λA∩N(f(x))

λA

)d−dS̄(x) ∏
y∈S∩O

(
λB∩N(f(y))

λB

)d−dS̄(y)
]
.

For each f ∈ χ̃A,B(S) the corresponding term in the above sum takes the form βf ·αd
f

where αf < δ
|S|
A,B by (16.1), the definition of δA,B . We now show that the set S̄ can be 

generated in time polynomial in k and that |S̄| ≤ k2 so that αf , βf can be computed in 
time polynomial in k.

Since Zn
m has maximum codegree 2, by considering the joint neighbourhood of each 

pair of elements in S, we have |S̄| ≤ k + 2
(
k
2
)

= k2. Now let u, v ∈ S be distinct. Since 
the active coordinates of S are contained in [2k], each element of N(u) ∩N(v) must differ 
from u and v in a coordinate in [2k]. We may therefore generate the set N(u) ∩N(v), 
and hence also S̄, in time polynomial in k. � �
17. Counting proper q-colourings

In the previous section we gave a general description of the terms of the cluster 
expansion of the log partition functions ln ΞA,B along with an algorithm for how to 
compute these terms. In this section we specialise to the case of the uniform measure on 
q-colourings and present a more detailed picture of the cluster expansion. In particular, 
we prove a strengthening of Theorem 1.5 and prove Corollary 1.6, thus resolving [38, 
Conjecture 5.2].

Throughout this section we let (H, λ) = (Kq, ι̇) where ι̇ ≡ 1. We let V (Kq) = [q]. The 
dominant patterns of (Kq, ι̇) are the pairs (A, B) where A ∪ B = [q] and {|A|, |B|} =
{�q/2�, 	q/2
}.

17.1. Typical polymers

Define the type of a G2-connected set S ⊆ V to be the isomorphism class of the induced 
subgraph G2[S]. For any fixed type T , we denote by nT the number of G2-connected 
sets of type T . Let us call a set S ⊆ V typical if it is G2-connected, its type is a tree, 
S is a subset of one of the partition classes E , O and for every edge {u, v} in G2[S], the 
codegree of u and v in G is 2 (we note that this last condition is redundant in the case 
where m = 2). The reason for considering such sets is that almost all G2-connected sets 
of a fixed size are typical and the weights of these sets take a particularly simple form 
(see Lemma 17.2). For a tree T , let n′

T denote the number of typical sets of type T .
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Lemma 17.1. Let t ∈ N and let T be a type with t vertices. If T is a tree then

n′
T = (cT + o(1))mnn2t−2 and nT − n′

T = O(mnn2t−3)

where cT =
( 1+31m>2

2
)t−1 |Aut(T )|−1. If T is not a tree then

nT = O(mnn2t−3) .

Proof. Since T is a connected graph we may fix an ordering (x1, . . . , xt) of the vertices 
of T so that Ti := T [{x1, . . . , xi}] is connected for all i ∈ [t]. We let di denote the degree 
of the vertex xi in the graph Ti.

Let hi denote the number of injective graph homomorphisms from Ti to G2. We note 
that h1 = mn and

nT = ht/|Aut(T )| . (17.1)

We will construct an injective graph homomorphism ϕ : T → G2 recursively as follows. 
Suppose that we have constructed an injective graph homomorphism ϕi : Ti → G2 for 
some i ≤ t −1. We will extend ϕi to an injective graph homomorphism ϕi+1 : Ti+1 → G2. 
Let Ei denote the set of possible choices for ϕi+1(xi+1). We consider two cases.

If di+1 > 1, then ϕi+1(xi+1) must lie in the joint neighbourhood of ϕi(x) and ϕi(y)
for some x, y ∈ V (Ti). For any pair of vertices u, v ∈ V their codegree in G2 is at most 
4n and so

|Ei| ≤ 4n . (17.2)

Suppose now that di+1 = 1. We note that u ∈ Ei if and only if u is adjacent to ϕi(xi)
and non-adjacent to ϕi(xj) for j < i in G2. Again using the fact that the maximum 
codegree in G2 is at most 4n we have

|Ei| = (1 + 31m>2)
(
n

2

)
+ O(n) . (17.3)

If T is not a tree then di+1 > 1 for some i ≤ t − 1. It follows by (17.2) and (17.3) that 
ht = O(mnn2(t−1)−1) = O(mnn2t−3). The bound nT = O(mnn2t−3) follows from (17.1).

Suppose now that T is a tree so that di+1 = 1 for all i ≤ t − 1. Let h′
i denote the 

number of injective graph homomorphisms from Ti to G2 whose image is typical. Let 
E′

i ⊆ Ei be the set of possible choices for ϕi+1(xi+1) so that ϕi+1(xi), ϕi+1(xi+1) have 
codegree 2 in G (in particular xi, xi+1 both lie in E or O). Given u ∈ Ei, we have u /∈ E′

i

if and only if either u is adjacent to ϕi(xi) in G or the codegree of u and ϕi(xi) is 1 (the 
latter is only possible when m > 2). It follows that

|Ei\E′
i| ≤ 4n . (17.4)
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By (17.3) and (17.4), we have

h′
t = (1 + o(1))(1 + 31m>2)t−12−(t−1)mnn2(t−1)

and ht − h′
t = O(mnn2t−3). The result follows by (17.1) and the analogous identity 

n′
T = h′

t/|Aut(T )|. �
Lemma 17.2. Fix k ∈ N and let γ be a polymer of size k. We have

wA,B(γ) = O

((
1 − 1

�q/2�

)dk
)

.

Moreover if γ is typical of type T , then if γ ⊆ O

wA,B(γ) = |B|k
|A|k

(
1 − 1

|B|

)dk−k+1

and if γ ⊆ E

wA,B(γ) = |A|k
|B|k

(
1 − 1

|A|

)dk−k+1

.

Proof. We let w denote wA,B. By (10.5), noting that in this setting λi = 1 for all i and 
{λA, λB} = {�q/2�, 	q/2
},

w(γ) = O

((
1 − 1

�q/2�

)|∂γ|)
.

Since the size of γ is k, a constant, we have by Lemma 6.2 that |∂γ| = dk−O(1) and so

w(γ) = O

((
1 − 1

�q/2�

)dk
)

.

Suppose now that γ is typical and of type T where T is a tree on k vertices. We may 
abuse notation slightly and let T denote the graph G2[γ] (as well as the isomorphism 
class of this graph). Suppose that γ ⊆ O (the proof where γ ⊆ E is identical). Let a = |A|
and let b = |B|. Since γ is typical we have |N(γ)| = dk − 2(k − 1).

By (16.3)

wA,B(γ) = |χ̂A,B(γ)|
a|γ|b|N(γ)| = |χ̂A,B(γ)|

akbdk−2(k−1) (17.5)

where χ̂A,B(γ) is the set of all colourings of G[γ+] which disagree with (A, B) precisely 
on γ. Since γ ⊆ O, χ̂A,B(γ) is the set of proper colourings f : γ+ → B. Fix a map 
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c : γ → B and suppose that we want to extend it to an element of χ̂A,B(γ). For every 
vertex v ∈ N(γ) we have b − 1 choices for its colour except if v ∈ N(u) ∩N(w) for some 
u, w ∈ γ where c(u) �= c(v). For such a vertex we have b − 2 choices for its colour. We 
therefore have

|χ̂A,B(γ)| =
∑

c:γ→B

(b− 1)dk−2(k−1)
(
b− 2
b− 1

)∑
{u,v}∈E(T ) 1c(u)�=c(v)

= (b− 1)dk−3(k−1)(b− 2)k−1
∑

c:γ→B

(
b− 1
b− 2

)∑
{u,v}∈E(T ) 1c(u)=c(v)

.

Though not essential for the proof, we note that this final sum is an evaluation of the 
b-state Potts model partition function of the graph T . It is well known that the Potts 
model partition function is the same for all trees T on k vertices and indeed a simple 
induction on k reveals that

∑
c:γ→B

x
∑

{u,v}∈E(T ) 1c(u)=c(v) ≡ b(x + b− 1)k−1 .

We therefore have

|χ̂A,B(γ)| = b(b− 1)dk−k+1 .

The result now follows from (17.5). �
17.2. Terms of the cluster expansion

In this section we show how Lemmas 17.1 and 17.2 can be used to provide a detailed 
picture of the cluster expansion. Recall that we are in the specialised setting (H, λ) =
(Kq, ι̇) where λ ≡ 1, so that the expression LA,B(k) (as defined in (1.10)) is the same for 
all dominant patterns (A, B) by symmetry. We therefore denote LA,B(k) simply by Lk.

Let Tk denote the set of trees on k vertices.

Lemma 17.3. For k ∈ N fixed, as n → ∞

Lk = (1 + o(1))ck
(

1 − 1
�q/2�

)dk

mnn2k−2

where

ck = (1 + 1q even)(1 + 31m>2)k−1

2k(�q/2� − 1)k−1
�q/2�k
	q/2
k

∑ 1
|Aut(T )| .
T∈Tk
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Proof. Let Γ be a cluster of size k. By Lemma 17.2

w(Γ) = φ(IΓ)
∏
γ∈Γ

w(γ) = O

((
1 − 1

�q/2�

)dk
)

(17.6)

where φ(IΓ) is the Ursell function of the incompatibility graph of Γ as defined in (1.8).
We say a cluster Γ is of type T if the set V (Γ) :=

⋃
γ∈Γ γ is of type T . Similarly we 

say Γ is typical if V (Γ) is typical.
Note that given a set X ⊆ V of size at most k, there are at most a constant (dependent 

on k) number of clusters Γ of size k such that V (Γ) = X. The number of clusters of size 
k and type T is therefore O(nT ) (recall that nT is the number of G2-connected sets of 
type T ).

For T ∈ Tk, let Ck(T ) denote the set of all typical clusters Γ of type T with ‖Γ‖ = k. 
Then by Lemma 17.1 and (17.6)

Lk =
∑
Γ∈Ck

w(Γ) =
∑
T∈Tk

∑
Γ∈Ck(T )

w(Γ) + O

((
1 − 1

�q/2�

)dk

mnn2k−3

)
. (17.7)

Let us now fix T ∈ Tk. Since T is a tree, for 1 ≤ � ≤ k, deleting � − 1 edges from 
T results in a graph with precisely � connected components. Therefore the number of 
vertex partitions V (T ) = V1 ∪ . . . ∪ V� for which T [Vi] is connected for each i is 

(
k−1
�−1

)
. 

Thus if X ⊆ V is of type T , the number of clusters Γ ∈ Ck(T ) consisting of � polymers 
with V (Γ) = X is �!

(
k−1
�−1

)
(recall that a cluster is an ordered multiset of polymers). 

Moreover for any such cluster Γ, the incompatibility graph IΓ is a tree on � vertices and 
so has Ursell function φ(IΓ) = (−1)�−1/�!. If X = V (Γ) is typical with X ⊆ E , then by 
Lemma 17.2, letting a = |A|, b = |B|,

w(Γ) = 1
�! (−1)�−1 a

k

bk

(
1 − 1

a

)dk−k+�

;

we obtain the same formula with a, b swapped if X ⊆ O. Recalling that n′
T denotes the 

number of typical sets of type T , we then have

∑
Γ∈Ck(T )

w(Γ) = n′
T

2

k∑
�=1

(
k − 1
�− 1

)
(−1)�−1 a

k

bk

(
1 − 1

a

)dk−k+�

+ n′
T

2

k∑
�=1

(
k − 1
�− 1

)
(−1)�−1 b

k

ak

(
1 − 1

b

)dk−k+�

= n′
T

2

[
ak

bk(a− 1)k−1

(
1 − 1

a

)dk

+ bk

ak(b− 1)k−1

(
1 − 1

b

)dk
]
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= (1 + o(1))(1 + 1q even)n
′
T

2
�q/2�k

	q/2
k(�q/2� − 1)k−1

(
1 − 1

�q/2�

)dk

.

The result follows from (17.7) and Lemma 17.1. �
The above lemma shows that each term Lk is positive for large n. Theorem 1.4 then 

shows that in order to compute an expression for cq(Zn
m) that is correct up to a multi-

plicative (1 + o(1)) factor, one necessarily has to compute L1, . . . , Lk−1 where k is the 
least integer for which Lk = o(1). By Lemma 17.3, this is the least integer k such that 
m(1 − 1/�q/2�)(1+1m>2)k < 1.

17.3. The hypercube

To end this section we specialise to the case where m = 2 and fully determine L1, L2
in order to arrive at the expressions for cq(Qn) stated in Corollary 1.6. The calculations 
required to compute the expressions for i(Zn

m) in Corollary 1.6 are similar and so we 
omit them.

The following is a strengthening of Theorem 1.5.

Theorem 17.4. For q ≥ 4

cq(Qn) = (1 + 1{q odd})
(

q

	q/2


)⌊q
2

⌋2n−1 ⌈q
2

⌉2n−1

· exp {L1 + L2 + ε} ,

where

L1 = �q/2�
2	q/2


(
2 − 2

�q/2�

)n

+ 	q/2

2�q/2�

(
2 − 2

	q/2


)n

,

L2 = 2n
[

q − 1
2(	q/2
 − 1)(�q/2� − 1) · n

(
1 − 1

	q/2


)n(
1 − 1

�q/2�

)n

+ 	q/2
2

8 �q/2�2 (	q/2
 − 1)3
(n2 − n− 2(	q/2
 − 1)3)

(
1 − 1

	q/2


)2n

+ �q/2�2

8 	q/2
2 (�q/2� − 1)3
(n2 − n− 2(�q/2� − 1)3)

(
1 − 1

�q/2�

)2n
]
,

and

ε = O

((
1 − 1

�q/2�

)3n

2nn4

)
.

Proof. The result will follow from Theorem 1.4 once we verify the expressions for L1, L2.
Let (A, B) be a dominant pattern. For ease of notation we let a = |A| = 	q/2
 and 

b = |B| = �q/2�.
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Polymers There are two types of polymer of size 1: a single vertex in O and a single 
vertex in E . There are 2n−1 of the first type and each has weight ba (1 − 1

b )
n. There are 

2n−1 of the second type and each has weight ab (1 − 1
a )n.

There are three types of polymer of size 2:

(i) two vertices in O at distance 2 in Qn,
(ii) two vertices in E at distance 2, and
(iii) an edge of Qn.

There are 2n−3n(n − 1) of type (i) and each has weight

b(b− 1)
a2 · (b− 2)2(b− 1)2n−4

b2n−2 + b

a2 · (b− 1)2n−2

b2n−2 = 1
a2 (b2 − 3b + 3)(1 − 1

b )
2n−3 .

The first term in the sum on the LHS accounts for colourings where the two vertices of 
the polymer receive distinct colours in B and the second term accounts for colourings 
where the two vertices receive the same colour. Similarly, there are 2n−3n(n − 1) of type 
(ii) and each has weight 1

b2 (a2 − 3a + 3)(1 − 1
a )2n−3. There are n2n−1 of type (iii) and 

each has weight (1 − 1
a )n−1(1 − 1

b )
n−1.

Clusters There are two cluster types of size 1, each consisting of single polymer of size 
1, with Ursell function 1 and count and weight given above. Thus

L1 = a

2b

(
2 − 2

a

)n

+ b

2a

(
2 − 2

b

)n

.

There are four types of clusters of size 2:

1. An ordered pair of incompatible polymers of size 1 both from O,
2. An ordered pair of incompatible polymers of size 1 both from E ,
3. An ordered pair of incompatible polymers of size 1, one from O and one from E ,
4. One polymer of type (i), (ii) or (iii) above.

There are 2n−1 + 2n−2n(n − 1) of type 1, with Ursell function −1/2 and weight 
b2

a2 (1 − 1
b )

2n. There are 2n−1 + 2n−2n(n − 1) of type 2, with Ursell function −1/2 and 

weight a2

b2 (1 − 1
a )2n. There are n2n of type 3, with Ursell function −1/2 and weight 

(1 − 1
a )n(1 − 1

b )
n. The rest have Ursell function 1 with counts and weights given above.

All together this gives:

L2 = 2n
[

a + b− 1
2(a− 1)(b− 1) · n

(
1 − 1

a

)n(
1 − 1

b

)n

+ a2

2 3 (n2 − n− 2(a− 1)3)
(

1 − 1
)2n
8b (a− 1) a
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+ b2

8a2(b− 1)3 (n2 − n− 2(b− 1)3)
(

1 − 1
b

)2n
]
. �

The expressions for cq(Qn) in Corollary 1.6 follow once we observe that εn = o(1) for 
q ∈ {5, 6, 7, 8}.

18. k-Bounded functions and height functions

In this section we apply our detailed understanding of the set Hom(Qn, H) (for ap-
propriately chosen H) in order to prove Theorem 1.9 and then Theorem 1.10.

18.1. k-Bounded functions

Recall from the introduction that a function f : 2[n] → N is k-bounded if f(∅) = 0
and

0 ≤ f(A ∪ {x}) − f(A) ≤ k

for all A ⊆ [n] and x ∈ [n]\A. We let Bk(n) denote the set of all k-bounded functions on 
2[n]. Recall also that

F(n) = {f : V (Qn) → Z : f(0) = 0 and u ∼ v =⇒ |f(u) − f(v)| = 1} .

As observed by Mossel (see [36]), there is a bijection from B1(n) (rank functions) to 
the set F(n). The next lemma generalises this observation, giving a bijection from Bk(n)
to an appropriate class of functions f : V (Qn) → Z.

Given a subset S ⊆ N, let

Lip(Qn;S) := {f : V (Qn) → Z : f(0) = 0 and u ∼ v =⇒ |f(u) − f(v)| ∈ S} .

In particular F(n) = Lip(Qn; {1}).

Lemma 18.1. There exists a bijection

ϕ : Bk(n) → Lip(Qn;Sk) ,

where

Sk = {0, . . . , k} ∩ (k + 2Z) .

Proof. Throughout we identify 2[n] with V (Qn) = {0, 1}n in the usual way. For v ∈
V (Qn), we let |v| :=

∑
i vi. Given f ∈ Bk(n), let ϕ(f) denote the map V (Qn) → Z given 

by
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v �→ 2f(v) − k|v| .

We claim that ϕ(f) ∈ Lip(Qn; Sk). Clearly ϕ(f)(0) = 0 since f(0) = 0. Now suppose 
u ∼ v in Qn and without loss of generality let |u| = |v| + 1. Then

|ϕ(f)(u) − ϕ(f)(v)| = |2f(u) − 2f(v) − k| ∈ Sk

since f ∈ Bk(n) and so 0 ≤ f(u) − f(v) ≤ k.
For g ∈ Lip(Qn; Sk), let ϕ′(g) denote the map V (Qn) → Q given by

v �→ (g(v) + k|v|)/2 .

It suffices to show that ϕ′(g) ∈ Bk(n) since then clearly ϕ, ϕ′ are inverse to each other. 
Note first that ϕ′(g)(0) = 0 since g(0) = 0. If k is even then g(v) is even for all v ∈ V (Qn). 
If k is odd then g(v) and |v| have the same parity for all v ∈ V (Qn). In either case the 
image of ϕ′(g) is a subset of Z. Suppose now that u ∼ v in Qn where |u| = |v| + 1. Then

ϕ′(g)(u) − ϕ′(g)(v) = g(u) − g(v) + k

2 ∈ {0, . . . , k}

since g ∈ Lip(Qn; Sk). This completes the proof. �
We now show that for any finite set S ⊆ N, there is a bijection between the sets 

Lip(Qn; S) and a subset of Hom(Qn, H) for an appropriately chosen graph H. To this 
end we define the following class of Cayley graphs. Given N ∈ N and S ⊆ ZN , let 
C(N ; S) denote the graph on vertex set ZN where u ∼ v if and only if u − v = ±x for 
some x ∈ S. Note that C(N ; S) has loops if 0 ∈ S. Let

Hom0(Qn, C(N ;S)) := {f ∈ Hom(G,C(N ;S)) : f(0) = 0}.

Suppose now f : V (Qn) → Z. Let ModN (f) denote the map V (Qn) → {0, . . . , N −
1} where ModN (f)(v) ≡ f(v) (mod N). The following lemma is an adaptation of [16, 
Proposition 2.1].

Lemma 18.2. Fix a finite set S ⊆ N ∪ {0}. For N ≥ 4 · maxS + 1

ModN : Lip(Qn;S) → Hom0(Qn, C(N ;S))

is a bijection.

Proof. We first show that ModN is injective. Indeed suppose that f, g ∈ Lip(Qn; S)
where f �= g. Since f(0) = g(0) = 0, there must exist {u, v} ∈ E(Qn) such that 
f(u) = g(u) =: x whereas f(v) �= g(v). Let s := maxS. Since f, g ∈ Lip(Qn; S), we have 
f(v), g(v) ∈ [x − s, x + s]. Since N > 2s, it follows that ModN (f)(v) �= ModN (g)(v).
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It remains establish surjectivity. For v ∈ V (Qn) = {0, 1}n, we let |v| :=
∑

i vi. We 
define a spanning tree T of Qn, rooted at 0, as follows. If |v| > 0, with j the first 
coordinate for which vj �= 0, let v∗ := (0, . . . , 0, vj − 1, vj+1, . . . , vn) be the parent of v
in T .

Suppose now that g ∈ Hom0(Qn, C(N ; S)). We will construct f ∈ Lip(Qn; S) such 
that g = ModN (f) recursively as follows. Set f(0) = 0. Suppose now that |v| > 0 and 
that we have defined f(w) for all w such that |w| < |v|. We then let f(v) be the unique 
integer z such that |f(v∗) − z| ∈ S and z ≡ g(v) (mod N). It remains to check that f is 
indeed an element of Lip(Qn; S). We need to check that

|f(u) − f(v)| ∈ S for all {u, v} ∈ E(Qn) . (†)

Note that by construction (†) holds for all pairs {v, v∗}. We proceed by induction on 
|u| + |v|. If |u| + |v| = 1 then u = v∗ or vice versa and so (†) holds. Suppose now that 
{u, v} ∈ E(Qn) with |u| + |v| > 1.

If min{i : ui �= 0} > min{i : vi �= 0} then u = v∗ and so (†) holds. If min{i :
ui �= 0} = min{i : vi �= 0}, then u ∼ u∗ ∼ v∗ ∼ v. By the induction hypothesis 
and the construction of f , |f(u) − f(u∗)|, |f(u∗) − f(v∗)|, |f(v) − f(v∗)| ∈ S and so 
|f(u) − f(v)| ≤ 3s. Moreover f(u) − f(v) ≡ g(u) − g(v) ≡ ±x (mod N) for some x ∈ S. 
We deduce that |f(u) − f(v)| ∈ S since N > 4s. �
Proof of Theorem 1.9. By Lemmas 18.1 and 18.2,

|Bk(n)| = |Hom0(Qn, C(N ;Sk))|

where Sk = {0, . . . , k} ∩ (k + 2Z) and N := 4k + 1. By vertex transitivity of C(N ; Sk)
we also have

|Bk(n)| = |Hom0(Qn, C(N ;Sk))| = 1
N

|Hom(Qn, C(N ;Sk))| . (18.1)

We now use Theorem 1.4 to obtain accurate asymptotics for |Hom(Qn, C(N ; Sk))| (and 
therefore also |Bk(n)|). Let H = C(N ; Sk). We begin by identifying the dominant pat-
terns of H. First let us establish some terminology. We call a set {y1, . . . , yt} ⊆ V (H) =
ZN , an interval if the elements of the set can be relabelled such that yi+1 = yi + 1 for 
all 1 ≤ i ≤ t − 1. Similarly, we call the set {y1, . . . , yt}, a skip interval if the elements of 
the set can be renamed such that yi+1 = yi + 2 for all 1 ≤ i ≤ t − 1.

Suppose now that (A, B) is a pattern in H and write B = {x1, . . . , x�} ⊆ ZN . Since 
a ∼ b in H for all a ∈ A, b ∈ B, we have

A ⊆ (x1 ± Sk) ∩ . . . ∩ (x� ± Sk) ⊆ ZN ,

where xi ± Sk := xi + (−Sk ∪ Sk). Now, if � ≤ k + 2,
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|(x1 ± Sk) ∩ . . . ∩ (x� ± Sk)| ≤ | − Sk ∪ Sk| − (�− 1) = k + 2 − �

with equality if and only if B is a skip interval. Thus,

|A||B| ≤ �(k + 2 − �) ≤
⌊
k

2 + 1
⌋⌈

k

2 + 1
⌉

with equality if and only if A, B are both skip intervals with {|A|, |B|} =
{⌊

k
2 +1

⌋
, 
⌈
k
2 +

1
⌉}

. If k is even and B = {x1, . . . , xk/2+1}, then

A = (x1 ± Sk) ∩ . . . ∩ (xk/2+1 ± Sk) = B .

If k is odd and B = {x1, . . . , x(k+3)/2} where xi+1 ≡ xi + 2 for 1 ≤ i ≤ (k + 1)/2, then

A = (x1 ± Sk) ∩ . . . ∩ (x(k+3)/2 ± Sk) = {x1 + 1, x2 + 1, . . . , x(k+1)/2 + 1} .

If k is even, we therefore have N dominant patterns (one for each choice of skip 
interval with k/2 + 1 elements). If k is odd we have 2N dominant patterns: we choose a 
skip interval B of length (k + 3)/2, then we have dominant patterns (A, B) and (B, A).

Given a dominant pattern (A, B), let us calculate LA,B(1) (as defined in (1.10)). Again 
we split into cases depending on the parity of k. If k is even, by symmetry we may assume 
that A = B = {0, 2, . . . , k}. Calculating LA,B(1) (e.g. by using the explicit expression 
(1.11)) we have

LA,B(1) = 2n−1

[
2

(k/2 + 1)n+1

∑
v∈Ac

|N(v) ∩B|n
]
.

If v = k+2t, where 1 ≤ t ≤ k/2 then N(v) ∩B = {2t, 2t +2, . . . , k} and so |N(v) ∩B| =
k/2 − t + 1. Similarly if v = −2t then |N(v) ∩ B| = k/2 − t + 1. For all other v ∈ Ac, 
N(v) ∩B = ∅. We therefore have

LA,B(1) = 2n+2

(k + 2)

k/2∑
t=1

(
2t

k + 2

)n

= 2n+2

(k + 2)

(
k

k + 2

)n

+ O

(
2n

(
k − 2
k + 2

)n)

and δA,B = k/(k + 2) (with δA,B as defined in (4.5)). By Lemma 10.2 we therefore have

∞∑
j=2

LA,B(j) = O

(
n22n

(
k

k + 2

)2n
)

.

By Theorem 4.7 we then have

|Bk(n)| =
(
k

2 + 1
)2n

exp
{

2n+2

k + 2

(
k

k + 2

)n

+ O

(
n22n

(
k

k + 2

)2n
)}
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(note we have N dominant patterns which cancels the factor of 1/N in (18.1)).
If k is odd, by symmetry we may assume that A = {1, 3, . . . , k}, B = {0, 2, . . . , k+1}. 

Then

LA,B(1) = 2n−1

[
1

|A||B|n
∑
v∈Ac

|N(v) ∩B|n + 1
|B||A|n

∑
v∈Bc

|N(v) ∩A|n
]
.

If v = k + 2t, where 1 ≤ t ≤ (k + 1)/2 then N(v) ∩B = {2t, 2t + 2, . . . , k + 1} and so 
|N(v) ∩B| = (k+1)/2 − t +1. Similarly if v = 1 −2t then |N(v) ∩B| = (k+1)/2 − t +1. 
For all other v ∈ Ac, N(v) ∩B = ∅.

If v = k + 2t + 1, where 1 ≤ t ≤ (k− 1)/2 then N(v) ∩A = {2t + 1, 2t + 3, . . . , k} and 
so |N(v) ∩A| = (k−1)/2 − t +1. Similarly if v = −2t then |N(v) ∩A| = (k−1)/2 − t +1. 
For all other v ∈ Bc, N(v) ∩A = ∅. Thus δA,B = (k + 1)/(k + 3) and

LA,B(1) = 2n+1

k + 1

(k+1)/2∑
t=1

(
2t

k + 3

)n

+ 2n+1

k + 3

(k−1)/2∑
t=1

(
2t

k + 1

)n

= 2n+1

k + 1

(
k + 1
k + 3

)n

+ O

(
2n

(
k − 1
k + 1

)n)
.

By Lemma 10.2

∞∑
j=2

LA,B(j) = O

(
n22n

(
k + 1
k + 3

)2n
)

and so if k ≥ 3, by Theorem 4.7,

|Bk(n)| = 2
(
k + 1

2

)2n−1 (
k + 3

2

)2n−1

exp
{

2n+1

k + 1

(
k + 1
k + 3

)n

+ O

(
2n

(
k − 1
k + 1

)n)}
.

We have a leading factor of 2 in the above since there are 2N dominant patterns and a 
factor of 1/N in (18.1).

If k = 1 then the error term is dominated by LA,B(2) and so

|B1(n)| =
(

1 + O

(
n2

2n

))
2e22n−1

.

For k ≥ 2, we may summarise our results as follows:

|Bk(n)| = (1 + 1k odd)
(⌊

k

2 + 1
⌋⌈

k

2 + 1
⌉)2n−1

exp
{

(1 + 1k even)
	k/2 + 1


(
2�k/2�

�k/2 + 1�

)n

+ ε

}

where
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ε =

⎧⎪⎨
⎪⎩
O

(
n22n

(
k

k+2

)2n
)

k even

O
(
2n

(
k−1
k+1

)n)
k odd . �

18.2. Height functions

As a further application of our large deviation result (Theorem 11.1), we now show 
how it can be used to prove Theorem 1.10. Recall that our goal is to estimate the 
probability that a uniformly chosen height function f ∈ F(n) takes > tn values (for t
fixed and n large). We let R(f) denote the size of the range of f .

The study of height functions (on Qn and more general graphs) and their concentration 
properties was initiated by Benjamini, Häggström and Mossel [3]. In [3] the authors 
conjecture that for any t > 0, if f is chosen uniformly at random from F(n), then 
P (R(f) > tn) converges to 0 as n → ∞. Kahn [36] resolved this conjecture in a strong 
form showing that there is in fact a constant b such that P (R(f) > b) = e−Ω(n). Later, 
Galvin [20] strengthened Kahn’s result further still showing that one can in fact take 
b = 5. We note that this lies in stark contrast to a subsequent result of Benjamini, Yadin, 
and Yehudayoff [4] who show that if the degree of G is ‘sub-logarithmic’, then the range 
of a random height function on G is super-constant.

Recently, Peled [44] vastly generalised the work of Galvin [20] obtaining results for 
a general class of tori including Zn

m (where m is allowed to be large with respect to n) 
and provides strong bounds on P (R(f) ≥ k) for arbitrary k. Since the upper bound on 
P (R(f) ≥ tn) in Theorem 1.10 is a special case of Peled’s result [44, Theorem 2.1], we 
sketch this part of the proof.

First we note that by Lemma 18.2, the map Mod5 is a bijection F(n) → Hom0(Qn, C5)
where C5 denotes a cycle of length 5. A closer look at the proof of Lemma 18.2 reveals 
that Mod3 provides a bijection F(n) → Hom0(Qn, K3) (this bijection is attributed to 
Randall in [20]). In the following it is slightly more convenient to work with this latter 
bijection.

Sketch proof of Theorem 1.10. Let f ∈ F(n). Note that since f(u), f(v) have opposite 
parity for all {u, v} ∈ E(Qn) and f(0) = 0 we have f(E) ⊆ 2Z and f(O) ⊆ 1 + 2Z.

Let t > 0 and suppose that R(f) ≥ tn. As remarked above, Mod3(f) ∈ Hom0(Qn, K3). 
Let (A, B) be the dominant pattern of (K3, ι̇) (where ι̇ ≡ 1) that agrees the most with 
Mod3(f) (breaking ties arbitrarily if necessary). We say an integer x is good if either x
is even and x (mod 3) ∈ A or x is odd and x (mod 3) ∈ B. We say an integer is bad
otherwise and note that if f(v) is a bad integer, then Mod3(f)(v) disagrees with (A, B)
at v.

Let p be the midpoint of the range of f . Since good and bad integers occur in alter-
nating intervals of length 3, we may choose {b, b + 1} ⊆ [p − 3, p + 3] such that b and 
b + 1 are both bad. Let

Vsmall := {v ∈ V (Qn) : f(v) ≤ b} and Vlarge := {v ∈ V (Qn) : f(v) ≥ b + 1}
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and note that Vsmall, Vlarge partition V (G). Choosing v, w ∈ V (Qn) so that f(v) − f(w)
is maximal, we have Bv(tn/2 − 4) ⊆ Vlarge and Bw(tn/2 − 4) ⊆ Vsmall. Suppose that 
|Vsmall| ≤ |Vlarge| (we argue similarly if |Vsmall| > |Vlarge|) so that

|Bw(tn/2 − 4)| ≤ |Vsmall| ≤ 2n−1 .

By Harper’s isoperimetric inequality [30, Theorem 1],

|∂Vsmall| ≥ |∂Bw(tn/2 − 4)| =
(

n

tn/2 − 3

)
.

Since f(u) = b + 1 for all u ∈ ∂Vsmall, and b + 1 is bad we have that Mod3(f) ∈
Hom0(Qn, K3) disagrees with (A, B) at each vertex of ∂Vsmall.

By Lemma 11.2 (ii) and Theorem 1.2, the probability that a uniformly chosen element 
of Hom(Qn, K3) disagrees with its closest dominant pattern at ≥

(
n

tn/2−3
)

vertices is at 
most

≤ exp
{
−Ω

(
1
n

(
n

tn/2 − 3

))}
.

The same is therefore also true of Hom0(Qn, K3). Since Hom0(Qn, K3) and F(n) are in 
bijection, it follows that if f is a uniformly chosen element of F(n), then

P (R(f) ≥ tn) ≤ exp
{
−Ω

(
1
n

(
n

tn/2

))}
= exp

{
−2H(t/2)n(1+o(1))

}
.

We now give a lower bound for P (R(f) ≥ tn). We construct a set of height functions 
f ∈ Hom(Qn, Z) with R(f) ≥ tn as follows. Let τ denote the least integer ≥ tn − 1 with 
the same parity as n such that 	τ/2
 is even. Let 1 = (1, . . . , 1) ∈ V (Qn). Let F denote 
the family of f : V (Qn) → Z satisfying the following constraints:

1. f(v) = d(v, 0) for all v ∈ B0(	τ/2
),
2. f(v) = τ − d(v, 1) for all v ∈ B1(�τ/2�),
3. f(v) = 	τ/2
 for all v ∈ E\(B0(	τ/2
) ∪B1(�τ/2�)),
4. f(v) ∈ {	τ/2
 − 1, 	τ/2
 + 1} for all v ∈ O\(B0(	τ/2
) ∪B1(�τ/2�)).

It is clear that F ⊆ Hom(Qn, Z) and R(f) = τ + 1 ≥ tn for all f ∈ F . Moreover,

|F| ≥ exp2
{
2n−1 − 2|B0(�τ/2�)|

}
≥ exp2

{
2n−1 −O

(
2H(t/2)n

)}
.

Since |Hom(Qn, Z)| ∼ 2e22n−1 by Theorem 1.4 and Lemma 18.2 (or alternatively [20, 
Corollary 1.5]), we have

P (R(f) ≥ tn) ≥ exp2

{
−O

(
2H(t/2)n

)}
. �
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19. Concluding remarks

We conclude by mentioning some open problems and directions for future research.

n fixed, m large.

• The techniques of this paper were inspired by tools used to analyse spin models on 
the integer lattice Zn. In this context, it is common to study the torus Zn

m (viewed as 
the integer lattice with ‘periodic boundary conditions’) where n is fixed and m → ∞.
The main obstacle in adapting the proofs of our paper to this setting is that the 
isoperimetric properties of the torus Zn

m become too weak in the limit m → ∞. One 
way to overcome this obstacle, inspired by [32], would be to replace our polymer 
models with contour models from Pirogov-Sinai theory (see also [18] for an excellent 
introduction to this topic). Roughly speaking, our polymer models encode the regions 
on which a colouring disagrees with a fixed dominant pattern whereas contour models 
can be used to encode the boundary between regions agreeing with distinct patterns. 
The advantage is that contour models encode configurations more efficiently, using 
fewer vertices to describe deviations from a dominant pattern. This type of approach 
was recently applied with great success by Peled and Spinka [48,50,49], to show that 
a general class of spin systems exhibit long-range order on Zn (see the end of this 
section).
Despite the obstacles posed by isoperimetry, we believe that the intuition provided 
by our polymer models is still a useful guide. In particular, in the regime where 
n is a fixed large constant and m is large with respect to n, we expect a typical 
configuration from μH,λ to globally agree with a single dominant pattern with regions 
of disagreeing vertices appearing in G2-connected components of size at most C logm
(where C may depend on n and (H, λ)).
As a starting point, we offer the following conjecture, inspired by Theorem 4.7. As 
usual we let G denote Zn

m.

Conjecture 19.1. For a fixed weighted graph (H, λ)

lim
m→∞

1
mn

lnZH
G (λ) = 1

2 ln ηλ(H) + (1 + on(1))ε(H,λ, n) , (19.1)

where the limit is taken over even m and

ε(H,λ, n) := max
(A,B)∈Dλ(H)

(
1

2λAλ2n
B

∑
v∈Ac

λvλ
2n
N(v)∩B + 1

2λBλ2n
A

∑
v∈Bc

λvλ
2n
N(v)∩A

)
.

We note that the expression in parentheses in the above conjecture is LA,B(1)/mn. 
The RHS of (19.1) is easily seen to be a lower bound. Specialising to the case of 
approximating cq(G), the number of proper q-colourings of G, the above conjecture 
predicts that for q even
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lim
m→∞

1
mn

ln cq(Zn
m) = ln(q/2) + (1 + on(1))(1 − 2/q)2n , (19.2)

where again we take the limit over even m. We obtain an analogous prediction for 
q odd. The current best upper bound is due to Peled and Spinka [50] whose results 
imply that there exists c > 0, such that for q fixed and n large, the LHS of (19.2) is 
at most 1

2 ln
(⌊

q
2
⌋ ⌈

q
2
⌉)

+ e
− cn

q3(q+log n) .
• In the regime where the dimension n is fixed and m is large, various analogues of our 

torpid mixing result Theorem 1.11 have been proved throughout the literature for 
specific choices of (H, λ): Galvin [22] established such a result in the case of the hard-
core model; Galvin and Randall [26] for the 3-colouring model; and Borgs, Chayes, 
Dyer and Tetali [8] for (H, λ) with carefully chosen λ. It would be interesting to study 
to what extent the intuition of Theorem 1.11, that non-trivial weighted graphs give 
rise to torpid mixing, holds true in this regime.

Odd sidelength. Throughout this paper we assumed that the sidelength m of the torus 
is even. It is natural to wonder what happens in the case where m is odd. One starting 
point would be to investigate the asymptotics of ZH

G (λ) for fixed odd m, and n → ∞. 
To our knowledge, even the asymptotics of i(Zn

3 ) are unknown.

General spin systems. The spin systems considered in this paper fit into a more general 
framework where one allows for soft interactions between spins. For a set of spins [q] and 
functions λ : [q] → R≥0 and δ : [q] × [q] → R≥0 where δi,j = δj,i for all i, j ∈ [q], one can 
define the probability of a configuration f : V (G) → [q] to be proportional to

∏
v∈V (G)

λf(v)
∏

{u,v}∈E(G)

δf(u),f(v) .

This well-studied class of probability distributions notably includes the Ising model and 
Potts model.

The results of Peled and Spinka [48,49] mentioned above, show that a general class 
of such spin systems exhibit long-range order in Zn. Soon after the first appearance of 
our paper, Peled and Spinka posted [49] (a companion to [48]) detailing this remarkable 
result. It would be very interesting to explore the extent to which the results of our paper 
enjoy generalisations in this setting.

Acknowledgments

We thank the anonymous referees for their careful reading of the paper and helpful 
comments.

References

[1] C.A. Athanasiadis, Algebraic combinatorics of graph spectra, subspace arrangements and Tutte 
polynomials, PhD thesis, Massachusetts Institute of Technology, 1996.

http://refhub.elsevier.com/S0001-8708(23)00355-9/bib5B02C73123E192E22EB685C7BD2C1C28s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib5B02C73123E192E22EB685C7BD2C1C28s1


88 M. Jenssen, P. Keevash / Advances in Mathematics 430 (2023) 109212
[2] J. Balogh, R.I. Garcia, L. Li, Independent sets in the middle two layers of boolean lattice, J. Comb. 
Theory, Ser. A 178 (2021) 105341.

[3] I. Benjamini, O. Häggström, E. Mossel, On random graph homomorphisms into Z, J. Comb. Theory, 
Ser. B 78 (1) (2000) 86–114.

[4] I. Benjamini, A. Yadin, A. Yehudayoff, Random graph-homomorphisms and logarithmic degree, 
Electron. J. Probab. 12 (2006) 12.

[5] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Computing the Tutte polynomial in vertex-
exponential time, in: Proceedings of the Forty-ninth Annual Symposium on Foundations of Com-
puter Science, FOCS 2008, IEEE, 2008, pp. 677–686.

[6] C. Borgs, J. Chayes, T. Helmuth, W. Perkins, P. Tetali, Efficient sampling and counting algorithms 
for the Potts model on Zd at all temperatures, in: Proceedings of the 52nd Annual ACM SIGACT 
Symposium on Theory of Computing, 2020, pp. 738–751.

[7] C. Borgs, J. Chayes, J. Kahn, L. Lovász, Left and right convergence of graphs with bounded degree, 
Random Struct. Algorithms 42 (1) (2013) 1–28.

[8] C. Borgs, J.T. Chayes, M. Dyer, P. Tetali, On the sampling problem for H-colorings on the hypercu-
bic lattice, in: Graphs, Morphisms, and Statistical Physics: DIMACS Workshop Graphs, Morphisms 
and Statistical Physics, March 19-21, 2001, DIMACS Center, vol. 63, American Mathematical Soc., 
2004, p. 13.

[9] S. Cannon, W. Perkins, Counting independent sets in unbalanced bipartite graphs, in: Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2020, 
pp. 1456–1466.

[10] D. Christofides, D. Ellis, P. Keevash, An approximate vertex-isoperimetric inequality for r-sets, 
Electron. J. Comb. 20 (4) (2013) P15.

[11] T.M. Cover, J.A. Thomas, Elements of information theory, John Wiley & Sons, 2012.
[12] R. Dobrushin, Estimates of semi-invariants for the Ising model at low temperatures, Transl. Am. 

Math. Soc. 2 (177) (1996) 59–82.
[13] M. Dyer, A. Frieze, M. Jerrum, On counting independent sets in sparse graphs, SIAM J. Comput. 

31 (5) (2002) 1527–1541.
[14] J. Engbers, D. Galvin, H-coloring tori, J. Comb. Theory, Ser. B 102 (5) (2012) 1110–1133.
[15] J. Engbers, D. Galvin, H-colouring bipartite graphs, J. Comb. Theory, Ser. B 102 (3) (2012) 726–742.
[16] O.N. Feldheim, R. Peled, Rigidity of 3-colorings of the discrete torus, Ann. Inst. Henri Poincaré, 

Probab. Stat. 54 (2018) 952–994.
[17] O.N. Feldheim, Y. Spinka, Long-range order in the 3-state antiferromagnetic Potts model in high 

dimensions, J. Eur. Math. Soc. 21 (5) (2019) 1509–1570.
[18] S. Friedli, Y. Velenik, Statistical mechanics of lattice systems: a concrete mathematical introduction, 

Cambridge University Press, 2017.
[19] A. Galanis, L.A. Goldberg, J. Stewart, Fast algorithms for general spin systems on bipartite ex-

panders, ACM Trans. Comput. Theory 13 (4) (2021) 1–18.
[20] D. Galvin, On homomorphisms from the Hamming cube to Z, Isr. J. Math. 138 (1) (2003) 189–213.
[21] D. Galvin, Sampling 3-colourings of regular bipartite graphs, Electron. J. Probab. 12 (2007) 481–497.
[22] D. Galvin, Sampling independent sets in the discrete torus, Random Struct. Algorithms 33 (3) 

(2008) 356–376.
[23] D. Galvin, A threshold phenomenon for random independent sets in the discrete hypercube, Comb. 

Probab. Comput. 20 (1) (2011) 27–51.
[24] D. Galvin, J. Kahn, On phase transition in the hard-core model on Zd, Comb. Probab. Comput. 

13 (2) (2004) 137–164.
[25] D. Galvin, J. Kahn, D. Randall, G.B. Sorkin, Phase coexistence and torpid mixing in the 3-coloring 

model on Zd, SIAM J. Discrete Math. 29 (3) (2015) 1223–1244.
[26] D. Galvin, D. Randall, Torpid mixing of local Markov chains on 3-colorings of the discrete torus, 

in: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society 
for Industrial and Applied Mathematics, 2007, pp. 376–384.

[27] D. Galvin, P. Tetali, On weighted graph homomorphisms, in: DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, vol. 63, 2004, pp. 97–104.

[28] D. Galvin, P. Tetali, Slow mixing of Glauber dynamics for the hard-core model on regular bipartite 
graphs, Random Struct. Algorithms 28 (4) (2006) 427–443.

[29] G.H. Hardy, S. Ramanujan, Asymptotic formulæ in combinatory analysis, Proc. Lond. Math. Soc. 
2 (1) (1918) 75–115.

[30] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Comb. Theory 1 (3) 
(1966) 385–393.

http://refhub.elsevier.com/S0001-8708(23)00355-9/bib6D177BD529A99914122E73639B06F727s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib6D177BD529A99914122E73639B06F727s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib03560A71AF84571E1C7A439A14078D56s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib03560A71AF84571E1C7A439A14078D56s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib2A297F68C631EB7E1C5FD4CC6A147F49s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib2A297F68C631EB7E1C5FD4CC6A147F49s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib18B5FA8325EC94F0BBB7F5285BF0D58Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib18B5FA8325EC94F0BBB7F5285BF0D58Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib18B5FA8325EC94F0BBB7F5285BF0D58Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib36AD2F534E881047746021DFAEF9F74Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib36AD2F534E881047746021DFAEF9F74Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib36AD2F534E881047746021DFAEF9F74Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib030DE78D20F80350C532A542BFE8A244s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib030DE78D20F80350C532A542BFE8A244s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibE78CCB943A001AC417440A94A021005Ds1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibE78CCB943A001AC417440A94A021005Ds1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibE78CCB943A001AC417440A94A021005Ds1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibE78CCB943A001AC417440A94A021005Ds1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1C4DAFA7ECB8426DC2D19D893F628047s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1C4DAFA7ECB8426DC2D19D893F628047s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1C4DAFA7ECB8426DC2D19D893F628047s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib96FC8BA3DBBFFF74799392570B5A7F05s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib96FC8BA3DBBFFF74799392570B5A7F05s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib40284A853886F8234571BC40F351F71Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib209E22EF6E0F94693B9C22265A9785E4s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib209E22EF6E0F94693B9C22265A9785E4s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib7D670E1B46436518B2E5688F6A9DD52Bs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib7D670E1B46436518B2E5688F6A9DD52Bs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibB90DD32DF4402B794FB4FFA7E04C7616s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib93136E72D91B9FED7D8BBE6435E7845Fs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib8A7A29ADBAAB160B959C471BF13EF3DFs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib8A7A29ADBAAB160B959C471BF13EF3DFs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibEBB161E5AAE8166F332AF0891192081Ds1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibEBB161E5AAE8166F332AF0891192081Ds1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib31A99321EE67E5ECF82301F040513866s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib31A99321EE67E5ECF82301F040513866s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibC009F02C48207266521B7DE70CEBE088s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibC009F02C48207266521B7DE70CEBE088s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibD4E1711F80C544BB0D7A44B7C1F5CC83s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib8C5469BE17F7F7AD93D7CAF18747745Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib8160AEE45CEDCE3EAA36841D17153AC6s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib8160AEE45CEDCE3EAA36841D17153AC6s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib21C24F1E148233620A3FD40CEE7BFB4As1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib21C24F1E148233620A3FD40CEE7BFB4As1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib8BFBD2D8D2E35C4532C911855BEFD591s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib8BFBD2D8D2E35C4532C911855BEFD591s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibFCDADF8A10AEAD8359ECACFB036C02DAs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibFCDADF8A10AEAD8359ECACFB036C02DAs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib2C0FB4F4F494F0F60E4A7E9519280284s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib2C0FB4F4F494F0F60E4A7E9519280284s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib2C0FB4F4F494F0F60E4A7E9519280284s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibB1938B07647CE84C1B157864EB8125F5s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibB1938B07647CE84C1B157864EB8125F5s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib3B387D4C52BCCEE3356199298A2279A1s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib3B387D4C52BCCEE3356199298A2279A1s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1E85CC043E588F79D2AB9DF8F3828050s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1E85CC043E588F79D2AB9DF8F3828050s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibE0380EDD8F8D4E880441662F9E9EEDA5s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibE0380EDD8F8D4E880441662F9E9EEDA5s1


M. Jenssen, P. Keevash / Advances in Mathematics 430 (2023) 109212 89
[31] T. Helmuth, M. Jenssen, W. Perkins, Finite-size scaling, phase coexistence, and algorithms for 
the random cluster model on random graphs, Ann. Inst. Henri Poincaré, Probab. Stat. 59 (2023) 
817–848.

[32] T. Helmuth, W. Perkins, G. Regts, Algorithmic Pirogov–Sinai theory, Probab. Theory Relat. Fields 
(2019) 1–45.

[33] M. Jenssen, P. Keevash, W. Perkins, Algorithms for #BIS-hard problems on expander graphs, SIAM 
J. Comput. 49 (4) (2020) 681–710.

[34] M. Jenssen, W. Perkins, Independent sets in the hypercube revisited, J. Lond. Math. Soc. (2020).
[35] J. Kahn, An entropy approach to the hard-core model on bipartite graphs, Comb. Probab. Comput. 

10 (3) (2001) 219–237.
[36] J. Kahn, Range of cube-indexed random walk, Isr. J. Math. 124 (1) (2001) 189–201.
[37] J. Kahn, A. Lawrenz, Generalized rank functions and an entropy argument, J. Comb. Theory, Ser. 

A 87 (2) (1999) 398–403.
[38] J. Kahn, J. Park, The number of 4-colorings of the Hamming cube, Isr. J. Math. (2020) 1–21.
[39] A. Korshunov, A. Sapozhenko, The number of binary codes with distance 2, Probl. Kibern. 40 

(1983) 111–130.
[40] R. Kotecký, D. Preiss, Cluster expansion for abstract polymer models, Commun. Math. Phys. 103 (3) 

(1986) 491–498.
[41] V. Leonov, A.N. Shiryaev, On a method of calculation of semi-invariants, Theory Probab. Appl. 

4 (3) (1959) 319–329.
[42] C. Liao, J. Lin, P. Lu, Z. Mao, Counting independent sets and colorings on random regular bipartite 

graphs, arXiv preprint, arXiv :1903 .07531, 2019.
[43] N. Linial, R. Meshulam, M. Tarsi, Matroidal bijections between graphs, J. Comb. Theory, Ser. B 

45 (1) (1988) 31–44.
[44] R. Peled, High-dimensional Lipschitz functions are typically flat, Ann. Probab. 45 (3) (2017) 

1351–1447.
[45] R. Peled, W. Samotij, Odd cutsets and the hard-core model on Zd, Ann. Inst. Henri Poincaré, 

Probab. Stat. 50 (2014) 975–998.
[46] R. Peled, W. Samotij, A. Yehudayoff, Grounded Lipschitz functions on trees are typically flat, 

Electron. Commun. Probab. 18 (2013).
[47] R. Peled, W. Samotij, A. Yehudayoff, Lipschitz functions on expanders are typically flat, Comb. 

Probab. Comput. 22 (4) (2013) 566–591.
[48] R. Peled, Y. Spinka, A condition for long-range order in discrete spin systems with application to 

the antiferromagnetic Potts model, arXiv preprint, arXiv :1712 .03699, 2017.
[49] R. Peled, Y. Spinka, Long-range order in discrete spin systems, arXiv preprint, arXiv :2010 .03177, 

2020.
[50] R. Peled, Y. Spinka, Rigidity of proper colorings of Zd, Invent. Math. (2022) 1–84.
[51] O. Riordan, An ordering on the even discrete torus, SIAM J. Discrete Math. 11 (1) (1998) 110–127.
[52] A. Sapozhenko, On the number of connected subsets with given cardinality of the boundary in 

bipartite graphs, Metody Diskret. Analiz. 45 (1987) 42–70.
[53] A.D. Scott, A.D. Sokal, The repulsive lattice gas, the independent-set polynomial, and the Lovász 

local lemma, J. Stat. Phys. 118 (5–6) (2005) 1151–1261.
[54] A. Sinclair, M. Jerrum, Approximate counting, uniform generation and rapidly mixing Markov 

chains, Inf. Comput. 82 (1) (1989) 93–133.

http://refhub.elsevier.com/S0001-8708(23)00355-9/bib9C74343A388532EB8D7FD6D7B0317730s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib9C74343A388532EB8D7FD6D7B0317730s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib9C74343A388532EB8D7FD6D7B0317730s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibE5AA16289453E3885B7DFF982AB83724s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibE5AA16289453E3885B7DFF982AB83724s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib96E2415EFF1B18A95D2967C5E2008A75s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib96E2415EFF1B18A95D2967C5E2008A75s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib40A0CF121442A515DD51863A5FEF687Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibB72D88F9138BC771AA22E21F74D72245s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibB72D88F9138BC771AA22E21F74D72245s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibFEA0F840A4EC048487BF2903BBFC3380s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib461F5EE90F940036A9A2D2108411BE65s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib461F5EE90F940036A9A2D2108411BE65s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib89EAA28D5349C65A3BEE9851E83E1D53s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib0022280F216C2EBDCA18BCF9E02C2CDBs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib0022280F216C2EBDCA18BCF9E02C2CDBs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib3847DC8708A8A1FEB395EE816E1B8A36s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib3847DC8708A8A1FEB395EE816E1B8A36s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibFB4EDA54FEE5FEE91BB7A5323C26C028s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibFB4EDA54FEE5FEE91BB7A5323C26C028s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibF1C874B727655D4D6A7E7106375101B1s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibF1C874B727655D4D6A7E7106375101B1s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib08CF6EC8E182999898BA87F4B475FF94s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib08CF6EC8E182999898BA87F4B475FF94s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib5A420DDEF00AF801FAC4EA3EB590FAB9s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib5A420DDEF00AF801FAC4EA3EB590FAB9s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib2550AA2AFB854A400737FA43ED3634CEs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib2550AA2AFB854A400737FA43ED3634CEs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibAA12583FD7C008706EB890A8B6813242s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibAA12583FD7C008706EB890A8B6813242s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1A1397E25B59EFD02ED4C35B325366FCs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1A1397E25B59EFD02ED4C35B325366FCs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1A84E140A1991823DC0ABEF056FF27E3s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1A84E140A1991823DC0ABEF056FF27E3s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib919EA02EED6251715F9260AA15CB1B3Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib919EA02EED6251715F9260AA15CB1B3Es1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib439E8A3A76206460E8FC1AF9D06B9483s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib1BA9A67B2D7358A5293543A108168E0Cs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibA511B23124B4617CC0171B60147C3830s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibA511B23124B4617CC0171B60147C3830s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib26EAA2AD2589659EB99BA9FFCED8F88Bs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bib26EAA2AD2589659EB99BA9FFCED8F88Bs1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibC3A16115156042716A5742273BC31FF8s1
http://refhub.elsevier.com/S0001-8708(23)00355-9/bibC3A16115156042716A5742273BC31FF8s1

	Homomorphisms from the torus
	1 Introduction
	1.1 Spin models
	1.2 The defect polymer model
	1.3 The structure of Hom(Znm,H)
	1.4 Asymptotic enumeration and the cluster expansion
	1.5 The defect distribution
	1.6 Generalised rank functions and height functions
	1.7 Torpid mixing
	1.8 Outline
	1.9 Notation and terminology

	2 Abstract polymer models and the cluster expansion
	3 Concrete polymer models
	4 Overview of the proof
	5 Entropy tools
	6 Isoperimetry in the torus
	7 Approximate polymers
	8 Grouping polymers and decomposing the torus
	9 Bounding weights with entropy
	10 Verifying the Kotecký-Preiss condition
	11 Large deviations for polymer configurations
	12 Capturing by polymer models
	13 A structure theorem for Hom(Znm,H)
	14 Torpid mixing via conductance
	15 The defect distribution
	16 Computing terms of the cluster expansion
	17 Counting proper q-colourings
	17.1 Typical polymers
	17.2 Terms of the cluster expansion
	17.3 The hypercube

	18 k-Bounded functions and height functions
	18.1 k-Bounded functions
	18.2 Height functions

	19 Concluding remarks
	Acknowledgments
	References


