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Abstract

We obtain new results on the Turdn number of any bounded degree uniform hyper-
graph obtained as the expansion of a hypergraph of bounded uniformity. These are
asymptotically sharp over an essentially optimal regime for both the uniformity and
the number of edges and solve a number of open problems in Extremal Combinatorics.
Firstly, we give general conditions under which the crosscut parameter asymptotically
determines the Turdn number, thus answering a question of Mubayi and Verstraéte.
Secondly, we refine our asymptotic results to obtain several exact results, including
proofs of the Huang—Loh—Sudakov conjecture on cross matchings and the Fiiredi—
Jiang—Seiver conjecture on path expansions. We have introduced two major new tools
for the proofs of these results. The first of these, Global Hypercontractivity, is used as
a ‘black box’ (we present it in a separate paper with several other applications). The
second tool, presented in this paper, is a far-reaching extension of the Junta Method,
which we develop from a powerful and general technique for finding matchings in
hypergraphs under certain pseudorandomness conditions.
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1 Introduction

A longstanding and challenging direction of research in Extremal Combinatorics,
initiated by Turdn in the 1940s, is that of determining the maximum size of a k-graph
(k-uniform hypergraph) H C ([Z]) on n vertices not containing some fixed k-graph F';
this is the Turdn number, denoted ex(n, F'). Turdn numbers of graphs (the case k = 2)
are quite well-understood (if F is not bipartite), but there are very few results even
for specific hypergraphs, let alone general results for families of hypergraphs (see the
survey [27]).

In this paper we prove a number of general results on Turan numbers for the family
of bounded degree expanded hypergraphs (see Sect. 1.2), thus solving several open
problems: a question of Mubayi and Verstraéte relating asymptotics of the Turdn
number to the crosscut (see Theorem 1.4), the Huang—Loh—Sudakov conjecture on
cross matchings (see Theorem 1.2) and the Fiiredi—Jiang—Seiver conjecture on path
expansions (see Corollary 1.7).

A striking feature of our results is their applicability across an essentially optimal
range of uniformities and sizes, which previously seemed entirely out of reach. This is
achieved via two new methods. The firstis a new sharp threshold theorem (see Theorem
3.4) derived from our theory of Global Hypercontractivity, which was presented in
the first version of this paper (https://arxiv.org/abs/1906.05568); that method is now
split off into a separate paper [29] with several other applications unrelated to the
questions of Extremal Combinatorics considered here. The second method is a far-
reaching extension of the Junta Method of Keller and Lifshitz [30] (which itself greatly
extended the applications of an approach initiated by Dinur and Friedgut [4]). A large
part of the technical work in this paper goes into developing a powerful and general
machinery for finding matchings in hypergraphs under certain pseudorandomness
conditions.

1.1 Cross Matchings

Before introducing the general setting of expanded hypergraphs, we first consider
an important case, which is in itself a source of many significant problems, namely
the problem of finding matchings. In both theory and application, a wide range of
significant questions can be recast as existence questions for matchings (see e.g. the
books [35, 39] and the survey [28]).

Perhaps the most well-known open question concerning matchings, due to Erdss
[11], asks how large a family F C ([Z]) can be if it does not contain an s-matching,
ie. sets {Ay,..., Ay} with A; N A; = ¢ for all distinct i, j € [s]. Two natural
families of such F are stars S,k s—1 := {A € ([Z]) : AN[s — 1] # ¢} and cliques

Crs—1:= (U“k_ 1]). Erd6s conjectured that one of these families is always extremal.

Conjecture 1.1 (Erd6s matching conjecture) Let n > ks and suppose that F C ([Z])
does not contain an s-matching. Then |F| < max {|Sn,k,5_1 [, |Ck,s_1|}.

This conjecture remains open, despite an extensive literature, of which we will
mention a few highlights. The case s = 2 is the classical Erd6s—Ko—Rado theorem
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[12]. Erd6s and Gallai [10] confirmed the conjecture for k = 2. The case k = 3 was
proven by Luczak and Mieczkowska [37] for large s and by Frankl [17] for all s.
Bollobis et al. [1] proved the conjecture provided n = Q(k3s), which was reduced
ton = Q(k2s) by Huang et al. [24] and finally to n = 2 (ks) by Frankl [13] (in fact
ton 2 2ks, improved by Frankl and Kupavskii [16] to n > 5ks /3 for large s), which
is the optimal order of magnitude for the extremal family to be a star rather than a
clique—or even to just contain s disjoint k-sets.

Our first result in this context is a cross version of that of Frankl, which proves
(a strengthened form of) a conjecture of Huang et al. [24]. Here we say that families
F1, ..., Fs cross contains a hypergraph {Ay, ..., Ay} (e.g. an s-matching) if A; € F;
foreachi € [s].

Theorem 1.2 There is a constant C > 0 so that ifn, s, ki, ..., ks € Nwith k; < é
and F; C ([,Z'[_]) with |F;| = |Sy k; s—11 foralli € [s], either Fi, ..., F cross contain
an s-matching, or there is J C [n] with |J| = s — 1 such that each F; = S, ;.7 =
(A€ ([,ZJ) CAN T # W)

Remark 1.3 Theorem 1.2 in the case that all k; = k was proved by Huang et al. [24]
for n = Q(k%s) and recently by Frankl and Kupavskii [15] for n = Q (ks log s); our
result applies to n = Q2 (ks), which is the optimal order of magnitude. Subsequent
to our work, a very different proof of the Huang—Loh—Sudakov Conjecture has been
given by Lu et al. [36]. We also obtain a strong stability result (see Theorem 6.1
below) which gives structural information even if we only assume that the size of each
family is within a constant factor of that of a star: either there is a cross matching or
some family correlates strongly with a star. Besides having independent interest, this
stability result will play a key role in the proof of our general Turdn results.

1.2 Expanded Hypergraphs

As mentioned above, there are very few general results on Turdn numbers for a family
of hypergraphs. One family for which there has been substantial progress is that of
expanded graphs (see the survey [38]). Given an r-graph G and k > r, the k-expansion
G* = G*(k) is the k-uniform hypergraph obtained from G by adding k — r new
vertices to each edge, i.e. G has edge set {¢ U S, : e € E(G)} where |S.| =k —r,
S.NV(G)=@and S, NS, = ¢ for all distinct e, ¢’ € E(G). In particular, a k-graph
s-matching is the k-expansion of a graph s-matching.

When G is a graph (the case r = 2), in the non-degenerate case when k is less than
the chromatic number x (G) the Turdn numbers ex(n, G'(k)) are well-understood
(see [38, Sect. 2]), so the main focus for ongoing research is the degenerate case
k > x(G). Here Frankl and Fiiredi [ 14] introduced the following important parameter
and corresponding construction that seems to often determine the asymptotics of the
Turdn number. For any r-graph G, we call S C V(G™) a crosscut if |[E N S| = 1 for
all E € G™. The crosscut o (G) of G is the size of the minimal such set, i.e.

o(G) :==min{|S|: S C V(GT) with |[EN S| =1forall E € GT}.
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It is easy to see that o (G) exists for k > r + 1 and that in this regime the parameter
does not depend on k. Clearly,

Spto(G)-1 = {A e () :14n[0(G) — 111 = 1}
is GT-free. Moreover, this simple construction determines the asymptotics of
ex(n, GT(k)) for n > no(k, G) for several graphs G, including paths [22, 31], cycles
[21,31] and trees [20, 32]. Given this phenomenon, according to Mubayi and Verstraéte
[38], one of the major open problems on expansions is to decide when the Turdn num-
ber is asymptotically determined by the crosscut construction. Our next result resolves
this problem for all bounded degree r-graphs (so in particular for graphs) in a range
of parameters that is optimal up to constant factors. Moreover, we also obtain a strong
structural approximation for any family that is close to extremal (see Theorem 1.8
below).

Theorem 1.4 Foranyr, A > 2 and ¢ > 0 there is C > 0 so that the following holds
for any r-graph G with s edges, maximum degree A(G) < A and o (G) > 2. For any
k.n € Nwith C <k <n/Cs we have ex(n, G*(k)) = (1 £&)IS\) | 6)_ -

Remark 1.5 Some lower bound on & is necessary to obtain the conclusion in Theorem
1.4. Indeed, we have already mentioned that the non-degenerate case k < x(G)
when G is a graph exhibits different behaviour (a complete partite k-graph shows that
ex(n,GT) =Qn /k)k ), and moreover, examples in [38] show that some lower bound
on k may be necessary even if G is bipartite (e.g. if G = Ko 9 then consider the
3-graph of triangles in a suitably dense random graph made G-free by edge deletions).
The upper bound on k in our result is also necessary up to the constant factor by
space considerations, as even the complete k-graph ([Z]) can only contain GT (k)
ifn > |V(GM)| = |V(G)| + (k — 2)s. With the exception of Frankl’s matching
theorem [13], Theorem 1.4 appears to be the only known Turdn result in which both
the uniformity k and the size s can vary over such a wide range.

Next we consider conditions under which we can refine the asymptotic result of
Theorem 1.4 and determine the Turdn number ex(n, G*) exactly. One complication
here is that crosscuts may be beaten by stars S, i, (G)—1, Where

7(G) = min{|S| |SNe|l>1foralle E(G)}

is the transversal number of G. Clearly t(G) < o (G). For fixed s, crosscuts cannot
be beaten by smaller stars, but this may not hold when s grows with 7, as then edges
with more than one vertex in the base of the star are significant. Another complication
is that lower order correction terms are necessary for certain G, e.g. for k-expanded
paths P;" (k) of length € for n > ng(k, £) we have ex(n, P;" (k)) = (’,1:}) =Skl
as predicted by the crosscut/star construction, but ex(n, P4+ (k) = (Z:{) + (Z:g), as
we can add all sets containing some fixed pair of vertices. This is analogous to the
familiar situation in extremal graph theory where we only expect exact results for
graphs that are critical with respect to the key parameter of the extremal construction.
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Accordingly, we introduce the following analogous concept of criticality for expanded
hypergraphs with respect to crosscuts and stars: we say that G is critical if it has an
edge e such that

o(G\e)=1(G\e) <t(G)=0(G).
We obtain the following general exact result for Turdn numbers.

Theorem 1.6 Foranyr, A > 2thereis C > 0 suchthat for any critical r-graph G with
s edges, maximum degree A(G) < A and C < k < n/Cs we have ex(n, GT (k)) =
|Sn.k.0(G)—11-

This result applies to many graphs considered in the previous literature, such as
paths of odd length. Paths of even length are not critical, but satisfy a generalised
criticality property: deleting one edge does not reduce the transversal number, but
deleting two edges (whether disjoint or intersecting) does reduce the crosscut number.
Thus we have the following natural construction for excluding any expanded path P;
of length £. Let j::,k,e = Sn k7 With |J| = o (Pp) — 1 if £ is odd, or if £ is even obtain

Fri .o from S, ¢y by adding {A € (") : 7 ¢ A}forsome T € (")). Clearly Fre

is P;-free. Fiiredi et al. [22] showed thatex(n, PZ‘) =|F; kel providedn > no(k, £),
and conjectured that this holds provided n > Ck£. We prove this conjecture.

Corollary 1.7 There is C > 0 so that if n,k,£ € Nand C < k < n/CL then
ex(n, P) = |y ol

1.3 Junta Approximation

In recent years, the Analysis of Boolean functions has found significant application in
Extremal Combinatorics, via the connection provided by the Margulis—Russo formula
between the sharp threshold phenomenon and influences of Boolean functions. This
approach was initiated by Dinur and Friedgut [4], who applied a theorem of Friedgut
[19] on Boolean functions of small influence to prove that large uniform intersecting
families can be approximated by juntas, i.e. families that depend only on a few coor-
dinates. This connection has since played a key role in intersection theorems for a
variety of settings, including graphs [6], permutations [7] and sets [8, 9].

The approach of Dinur and Friedgut was substantially generalised by Keller and
Lifshitz [30] to apply to a variety of Turdn problems on expanded hypergraphs. At a
very high level, their Junta Method is a version of the Stability Method in Extremal
Combinatorics, in that it consists of two steps: an approximate step that determines the
rough structure of families that are close to optimal, and an exact step that refines the
structure and determines the optimal construction. Their approximate step consisted
of showing that any G*-free family is approximately contained in a G*-free junta.

The crucial new difficulty that we need to address in this paper is allowing the
number of edges in G to grow as a function of n, whereas the previous works needed
it to be a fixed constant. Friedgut’s theorem can no longer be applied in this setting,
as we require a threshold result for Boolean functions f : {0, 1} — {0, 1} according
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to the p-biased measure p ), in the sparse regime where both p and w,(f) may be
functions of n that approach zero.

Our new sharp threshold result (see Theorem 3.4) provides the necessary improve-
ment on the analytic side which, when combined with a number of additional
combinatorial ideas, allow us to obtain the following junta approximation theorem.
For the statement, we introduce the notation G(r, s, A) for the family of all r-graphs
G with s edges and maximum degree A(G) < A. We also recall that S C V(GT) is
acrosscut if [EN S| = 1forall E € GT, and that o (G) denotes the minimum size of
a crosscut.

Theorem 1.8 Let G € G(r, s, A) and C >> rAe~ . Then for any G*-free F C ([Z])
with C < k < n/Cs, there is J C V(G) with |J| < o(G) — 1 and |F \ Spx.J| <
elSn k,0(G)—1l-

We note that Theorem 1.4 is immediate from Theorem 1.8, as for k > C > g1
we have

1
ex(n, G) 2 IS\ 6)-1] = (1= ©)ISnkoc)-11.

The set J in Theorem 1.8 will consist of all vertices of suitably large degree. Thus
]—'? := F \ Sn.k,s does not have any vertices of large degree, which we will think of
a pseudorandomness property.

While Theorem 1.8 suffices for asymptotic results, for our exact results we will
require the following refined junta approximation result proved in Sect.5, in which
we improve the bound on |]-"?|.

Theorem1.9 Let G € G(r,5,A), 0 < Cl « 8§ e €« A vand C <k <

n/Cs. Then for any G*-free F C ([Z]) with |F| > |Sp k,0G)—11 — 8(']:}) there is
J € (yeeny) with |F\ Sui gl < e(i7))-

1.4 Structure, Strategy and Techniques

To introduce our new techniques, we will first provide some context by indicating the
overall structure and where new ingredients are needed. In the proof of Theorem 1.8 we
will consider separately the two steps of showing |J| < o(G) — 1 and |F \ Sk, 7| <
&|Sn.k.o(G)—1]. For both steps we consider a two step embedding strategy for G,
where in the first step we embed! G in the ‘fat shadow’ of F (meaning that the image
of every edge has many extensions to an edge of F) and in the second step we ‘lift’
edges from the fat shadow to the original family.

This proof strategy is implemented in the next section, assuming results that will be
proved in later sections. The analysis of fat shadows and the embedding steps will be
carried out in Sect. 4. The lifting step requires results on cross matchings presented in
Sect. 3, which will also be used for the proof of the Huang—Loh—Sudakov Conjecture
in Sect. 6.

I For simplicity we are only describing the embedding strategy used to bound |F \ S, k. j[; the strategy
for bounding | /| is similar, but adapted so that J can play the role of a crosscut in G.
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These cross matching results in Sect. 3 and their further refinements in Sect.5 are
where we need the new techniques, arising from the interplay of two combinatorial
pseudorandomness notions with sharp threshold results from global hypercontractiv-
ity. After developing these techniques, the final three sections of the paper apply them
in conjunction with some additional combinatorial ideas to prove our exact results on
the Turdn numbers of expanded hypergraphs.

Pseudorandomness

An important theme throughout this paper will be the interplay between two pseu-
dorandomness notions: globalness and uncapturability. Informally, a hypergraph is
‘uncapturable’ if there is no small set that hits most of its edges and ‘global’ if one
cannot obtain a significant density increment by restricting to those edges that contain
some small fixed set. We will see that globalness implies uncapturability, and that
uncapturability can be ‘upgraded’ to globalness by taking appropriate restrictions.

Here we highlight an important new phenomenon for cross matchings with the
following result (a simplified form of Lemma 5.7). Whereas an extremal existence
result requires minimum density of order sk /n, we see that a pseudorandom existence
result only requires a density parameter of order (sk/n)¢ for any fixed constant d (see
the next section for the precise definition of uncapturability).

Lemma 1.10 Let F; C ([Z])fori € [s], where 2d < k < n/Cs withC > d > 1. If
each F; is (2ds, (2sk/n)d)-uncapturable then F1, ..., Fg cross contain a matching.

Sharp Thresholds

A classical theorem of Bollobas and Thomason [2] shows that any monotone property
(i.e. hypergraph) 7, C {0, 1}" has athreshold. Writing pf, (1) = inf{p : u,(D) > t},
this means that for any ¢ > 0 there is C > O such that px, (1 —¢) < Cpg, (¢). Many
natural properties exhibit the ‘sharp threshold phenomenon’ that C = 1 + o(1) as
n — oo. In particular, our results on Global Hypercontractivity give such a result for
global properties (see Theorem 3.4). Any hypergraph F has a global restriction F’
obtained by taking those edges containing some small fixed set, so our sharp threshold
result enables us to find 1, (F') > ., (F) for some p’ close to p.

We can now give a rough indication (omitting many details) of how this sharp
threshold result can be used to prove aresult in the direction of Lemma 1.10 (weakening
(sk/n)d to sk/Cn as in Lemma 3.1). Given uncapturable families Fi, ..., Fs, we
can upgrade to global families F7, ..., .7-"; , where we find a small set R partitioned
into (Rq, ..., Ry) and each ]-"l./ ={A\R; : A € F;, AN R = R;}. Via the sharp
threshold result we can then find further restrictions to pass to families F/, ..., F!
with o) (]—'l.” ) > up(F;), where p = k/n. This increase in density is sufficient to
find a cross matching by a weak form of the extremal result (translated to the product
measure setting), which can then be extended to a cross matching in the original
families.
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2 Globalness and Uncapturability

This section introduces the two key pseudorandomness concepts that will be funda-
mental throughout this paper. After some basic definitions in the first subsection, we
will define and analyse these pseudorandomness notions in the second subsection. We
conclude in the third section by proving our junta approximation theorem, assuming
two embedding lemmas that will be proved in Sect. 4.

2.1 Definitions

Given m,n € N withm < n welet [n] = {1,2,...,n} and [m,n] = {m,m +

1,...,n}. We write {0, 1}X for the power set (set of subsets) of a set X (identifying

sets with their characteristic 0/1 vectors) and (f) =X® ={ACX:|Al=k}. We

call F c {0, 1}¥ a family or a hypergraph on the vertex set X, and the elements of F

are called edges. We say F is k-uniform if F C ({), we also call F a k-graph on X.
Given a family F C {0, 1}¥ and B C J C X we write F f for the family

FB .= {A c{0.1)¥V . AUB ¢ ]—"} c {0, )XV,

Clearly & f is (k — | B|)-uniform if F is k-uniform. If either B or J has a single element

{/} then we will often suppress the bracket, e.g. 7, = F, {{5}} .

We refer to F, as the exclusive link of v in F. The inclusive link of v in F is
Fxv:={E € F :v e E}. The degree of a vertex v in F is dr(v) = |F}| =
| F * v|. The minimum and maximum degrees of F are 6 (F) = min,cy (F) dF(v) and
A(F) = maxyey (F) dF(v).

Let Hy, ..., Hy C {0,1}V. We say that Fi,..., F;, C {0, 1}X cross contain
‘Hi, ..., Hs if there is an injection ¢ : V — X such that ¢ (H;) C F; foralli € [s].
Here we write ¢ (H;) = {¢(e) : e € H;} witheach ¢p(e) = {p(x) : x € e}.

We simply say that Fi, ..., F cross contain ‘H if e(H) = s and Fq, ..., Fs cross
contain an ordering of the edges of H, i.e. if H = {e; : i € [s]} then there is a permu-
tation o € S, such that the hypergraphs 7, ..., F; cross contain {es (1)}, . . . , {€o(s)}-
Thus a single hypergraph F contains H if Fq, ..., Fs cross contain H, where F; = F
foralli € [s].

Given an r-graph G and k > r, we recall that the k-expansion G = G (k) is the
k-uniform hypergraph obtained from G by adding k — r new vertices to each edge,
i.e. GT hasedge set {e U S, : e € E(G)} where |S,| =k —r, S. N V(G) = ¥ and
S, NS, = @ for all distinct e, ¢’ € E(G).

When embedding expanded hypergraphs in uniform families, we may allow the
uniformity of our families to vary, defining cross containment of G in the obvious
way: the edge of G embedded in the family F; C ([IZ ]) is obtained from an edge of
G by adding k; — r new vertices.

A family F C {0, 1}¥ is said to be monotone if given F € Fand F C F' C X
we also have F’ € F. Given F C {0, 1}X the up closure of F is the monotone
family FT = {B € X : A C B forsome A € F} C {0, 1}X. The ¢-shadow of F is

@ Springer



Combinatorica (2025) 45:27 Page9of36 27

aY(F) :=(F € (f) : F C G for some G € F}. We usually simply write d(F) for
L (F).

Given F C (f) we will write u(F) = |F|/ (‘f ‘). Some of our results are more
naturally stated with || and others with w(F), so we will freely move between
these settings. Given p € [0, 1] we will use ), to denote the p-biased measure on
{0, 1}", where a set A ~ , is selected by including each i € [n] independently
with probability p. We extend this notation to families 7 C {0, 1}"" by u, (F) =
Pra~y » [A € F]. We often identify a family J with its characteristic Boolean function
f {0, 1}" — {0, 1} and apply the above terminology freely in either setting, e.g. we
call f monotone if F is monotone and write w,(f) for the expectation of f under
Wp-

pTo pass between these measures we note the following simple properties that will
be henceforth used without further comment. For any F C {0, 1}" and J C [n], we
have the union bound estimate

o) =y (F9) + 2 Yy (F) =1 () +171p,
jeJ

and in the opposite direction
wp = (= )y (7).

Similar estimates hold replacing 1, by uniform measures pu for F C ([Z]) with
k = pn, remembering to use the correct normalisations: we have u(F) = |F]| (’,:)_1

and p(F)) = |FJ(221) " This gives

w(F) < w@F)+ ()3 w@F)) < wr)) + - and
jeJ

k
w = Q7 OV ED = (1= ) wE).

Throughout ¢ < b or a~! > b~! will mean that the following statement holds
provided a is sufficiently small as a function of b.

Recall that G(r, s, A) denotes the family of all r-graphs G with s edges and max-
imum degree A(G) < A. Throughout the remainder of the paper it will often be
convenient to assume that G belongs to the subset G'(r, s, A) of G(r, s, A) consisting
of its r-partite r-graphs. There is no loss of generality in this assumption, as G1(rA)
is r A-partite forany G € G(r, s, A). To see this, consider a greedy algorithm in which
we assign vertices of G sequentially to r A parts, ensuring for every edge that all of
its vertices are in distinct parts. Clearly this algorithm can be completed. Then the
expansion vertices can be assigned so that each edge of G has one vertex in each
part.
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2.2 Pseudorandomness

Here we define our two key notions of pseudorandomness for set systems, namely
uncapturability and globalness, and explore some of their basic properties.

Definition 2.1 Let F C {0, 1}" and u be a measure on {0, 1}".

We say F is (i, a, €)-uncapturable if M(]—'g’) > ¢ whenever J C [n] with |J| < a.

We say Fis (u, a, €)-global if u(}'f) < ¢ whenever J C [n] with |J| < a.

We say F is (u, a, €)-capturable if it is not (i, a, €)-uncapturable, or (u, a, €)-
local if it is not (u, a, €)-global. We omit u from the notation if it is clear from the
context, i.e.if F C ([Z]) with uniform measure or 7 C {0, 1}" with p-biased measure
W p, Where p is clear from the context.

We now establish some basic properties of these definitions. For each property we
state two lemmas that apply when p is uniform or u = . We only give proofs
in the uniform setting, as those in the p-biased setting are essentially the same. The
following pair of lemmas shows that globalness is preserved by restrictions.

Lemma2.2 IfF C ([Z]) is(a, e)-globalandl C J C [nlwith|I| < aand|J| < n/2k
then }"} is (a — |1, 2¢)-global.

Lemma23 If F C {0, 1}" under ), is (a, g)-global and I C J C [n] with |I| < a
and |J| < 1/2p then ]—'} is (a — |1|,2¢)-global.

Proofof Lemma2.2 Let K C [n] \ J with |K| < a —|I|. Then we have u((F})&) =
W(FLE ) < (1= L) FIUK) < 2 (FJUE) < 26, using that [T UK| < a
and that F is (a, €)-global. O

The next pair shows that globalness implies uncapturability.

Lemma24 IfF C ([Z]) is (1, £)-global with ¢ = u(F)n/2ak then F is (a, L (F)/2)-
uncapturable.

Lemma25 If F C {0, 1}" under u, is (1, )-global with ¢ = . ,(F)/2ap then F is
(a, wp(F)/2)-uncapturable.

Proofof Lemma 2.4 1f |J| < a then u(FY) > u(F) — ( )Zje, /L(]: ) > w(F) —
(5T le = w(F) /2. mi

Uncapturability does not imply globalness, but we do have a partial converse: by
taking restrictions we can upgrade uncapturable families to families that are global or
large.

Lemma 2.6 Suppose B € (0, .1)and F; C ([,Z]) with2r < k; < Bn/2rmare (rm, 8;)-
uncapturable for i € [m]. Then there are pairwise disjoint Sy, ..., Sy with each
|Si| < r such that, setting G; = (.7-,')? where S = J; Si, whenever 1(G;) < B we
have S; = ¥ and G; is (r, 28)-global with u(G;) > §;.
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Lemma 2.7 Suppose B € (0,.1) and F; C ([IZ]) with ki < Bn/2rm are (rm, §8;)-
uncapturable for i € [m]. Then there are pairwise disjoint Sy, ..., S, with each
|Si| < r such that, setting G; = (.7-';)? where S = Ui S; and p; = ki/(n —|S]),
whenever 1y, (G;) < B we have S; = and G; is (r, 2B)-global with ., (G;) > 6; /4.

Proofof Lemma 2.6 Let I C [m] be maximal such that there exists a collection of
pairwise disjoint sets (S; : i € I) with |S;| < r and M((]—})gﬁ) > 1.58. Let § =
Uie, S;and G; = (.7-})? foreachi € [m], where S; = @ fori € [m]\I.Foranyi € I
we have u(G;) > /L((]:,')g;) — |8\ Silki/n > B. Now consider i with u(G;) < B.
Theni ¢ I,s0S; = @ and n(G;) > §; by uncapturability. Furthermore, for any
R C [n]\ S with |[R| < r we have u((F)X) < 158, s0 (G)E = (F)X)% has

w((@G)%) < (1= By ™ (@) < 2. o

We conclude this subsection with a lemma on decomposing any family according
to its vertex degrees, where to make an analogy with the regularity method we think
of high degree vertex links as ‘structured’ and the low degree remainder as ‘pseudo-
random’.

Lemma2.8 Let F C ([Z]) and J = {i : /,L(}—ii) > g} If|J| < n/2k then G = }"? is
(1, 2¢e)-global, and so (a, u(G)/2)-uncapturable with a = 1 (G)n/4ke.

Proof If j € [n]\ J then M(f}) < ¢ by definition of J, so M(gj) = M((f;')g’) <
(1 — l%‘k)_k,u(}"jj) < 2¢. The lemma follows by Definition 2.1 and Lemma 2.4. O

n

2.3 Embeddings

Here we will prove Theorem 1.8 assuming two fundamental embedding results, which
will be proved in Sect. 4. The first of these shows that sufficiently large families contain
across copy of any expanded hypergraph GT. Our bound on 1 (F;) is sharper for larger
ki: when k; = O(1) itis a constant, which is relatively weak (but still useful), whereas
when k; > logn itis O(sk;/n) = O (o (G)k;/n), which is tight up to the constant
factor.

Lemma29 Let G € G(r,s,A), C > rAand C <k; <n/Cs foralli € [s]. Then
any F; C ([]:']) with u(F;) > e ki/C 4 Csk; /n foralli € [s] cross contain GT.

When the uniformities k; are small we cannot improve this cross containment result,
as below density e~ the families ; may have disjoint supports. However, when
finding G in a single family F we can get a much better bound on the density, and
moreover it suffices to assume that F is sufficiently uncapturable, as follows.

Lemma2.10 Given G € G(r,s,A), C > C; > Cay > rAand C <k <n/Cs, any
(Cys, sk/Can)-uncapturable F C ([Z]) contains G .

We conclude this section by deducing our junta approximation theorem from the
above lemmas.
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Proof of Theorem 1.8 Let G € G(r,s, A) and C > C; > C> > rAe~!. Consider
any G*t-free 7 C () with C < k < L. LetJ = {i € [n] : u(F}) = B}, where
B = e */C1 4 Cysk/n. We need to show |J| < o(G) — 1 and |F)| < ]Sy k.0(G)—11-

The bound on |J| follows from Lemma 2.9. Indeed, supposing for a contradiction
|J| > o(G), we may fix a minimal crosscut S of G* and distinct iy € J for each
seS.Letl ={i;:s € S}and F; := .7-"}“’ fors € S. By definition of J, foreach s € S
we have u(Fy) > B — |Ilk/n > B/2, so by Lemma 2.9 the families (F; : s € §)
cross contain the exclusive links ((G+)§ : 5 € §). However, this contradicts F being
G -free.

As |J| < s < n/Ck we can apply Lemma 2.8 to see that G = J—'? is (a, u(9)/2)-
uncapturable with a = u(G)n/4kB. However, by Lemma 2.10 G is (Cys, sk/Can)-
capturable, so we must have u(G)/2 < sk/Con, or a < Cys, so again u(G) <
4BC1sk/n < sk/Con. As w(Spk.0G)—1) > 9(0(G) — Dk/n and s < Ao (G) we
deduce || = 1G] < &|S k.0(G)-1l- 8]

3 Matchings

The main result of this section is the following lemma on cross containment of match-
ings in uncapturable families, which will be used for ‘lifting’ (as described in Sect. 1.4)
and also in the proof of the Huang-Loh—Sudakov Conjecture.

Lemma3.1 Let C 3> C1 > Cy > Land F; () with ki < n/Cs fori € [s].
Suppose F; is (Cym, mk;/Can)-uncapturable fori € [m] and u(F;) > Cysk;/n for
i > m. Then F1, ..., Fs cross contain a matching.

We start in the first subsection by recalling some basic probabilistic tools, and also
our new sharp threshold result from [29]. Next we present some extremal results on
cross matchings in the second subsection. We conclude by proving the uncapturability
result in the third subsection.

3.1 Probabilistic Tools and Sharp Thresholds

We start with the following lemma that will be used to pass between the uniform and
p-biased measures.

Lemma3.2 Letn,k € Nwithk = pn < n. Then P(Bin(n, p) > k) > 1/4. Thus if

A (W) we have pp(AY) = pu(A)/4.

Proof The first statement appears in [23]. With « := u(A), the second holds as

|4t N ([;’])| > a(;) for j > k by the LYM inequality, and so we have ., (A") >

Y P(Bin(n, p) = j (AT 0 (")) = P(Bin(r, p) = k)a = a/4. O
We will also need the following well-known Chernoff bound (see [25, Theorem

2.8]), as applied to sums of Bernoulli random variables, i.e. random variables which
take values in {0, 1}; if these are identically distributed then we obtain a binomial

@ Springer



Combinatorica (2025) 45:27 Page 130f36 27

variable. The inequality can also be apphed to a hypergeometric random variable (see
[25,Remark 2.11]),i.e. |[SNT| with S € ( ) and uniformly random 7' € (t) for some
X,sandt.

Lemma 3.3 Let X be a sum of independent Bernoulli random variables and 0 < a <
a2
3/2. Then P[|X — EX| > aEX] < 2¢™ 575X,

Next we state our sharp threshold result for global functions which will play a
crucial role in this section, and so for all subsequent applications of Lemma 3.1.

Theorem 3.4 [29, Theorem 1.9] For any { > O there is Cy > 0 such that for any
e, p.q € (0,1/2) withq > (1 4+ ¢)p and C > Co, writing r = Cloge™! and
8§ = C™', any monotone (j1p,1,8)-global F C {0, 1}" with j,(F) < & satisfies
wq(F) = up(F)/e.

We will apply the following two consequences of this result.

Theorem 3.5 Suppose F C {0, 1}"* is monotone with 1, (F) =

1. If u < r~' « & then there is R C [n] with |R| < r and M2p(-7:1§) > u/e.
2.If p « K7' <« n « 1 then there is R C [n] with |R| < Klogu™" and
wkp(FR) = pl.

Proof For (1) we apply Theorem 3.4 with ¢ = 1 and the same ¢. If F is not (r, §)-
global then for some R with |R| > r we have ,uzp(]:]]g) > up(]-'g) >§ > u/e.On
the other hand, if F is (r, §)-global then we can take R = (4, as Theorem 3.4 gives
u2ap(F) = p/e.

For (2), we repeatedly apply Theorem 3.4 with ¢ = 1 and ¢ = /ﬂz, sor =
Cloge™' = Cn?logp="' and § = C7 = anmogc > u'l, as we may assume
n<KC —1. We can assume that F is (r, 8)-global, otherwise we immediately obtain R
as required, so w2, (F) > pu/e = Ml_”z. Repeating the argument, if we do not find R
then after r < n’z iterations we reach o p(}' )>8>pu",sowecantake R =¢. O

3.2 Extremal Results

In this subsection we adapt the method of [24, Lemma 3.1] to prove a variant form of
the following result of Huang et al. [24].

Lemma3.6 Let ky,...,ks,n € N with Z siki = n. Suppose Fi C (["]) for all
i € [slandthat F,, ..., Fs donotcross contamamatchmg Then w(F;) <ki(s—1)/n
for some i € [s].

We will prove the following variant that allows a few families to be significantly
smaller.

Lemma3.7 Let 1 <m <, ki,....ks > 0andn > Y, ki. Suppose Fi C ( )
with w(F;) > 2kim/n fori € [m] and u(F;) > 2kis/n fori € [m + 1, s]. Then
{Filiels) cross contain a matching.
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We also require the following version for the p-biased measure, which we will
deduce from Lemma 3.7 by a limit argument similar to those in [5, 18].

Fi,...Fs C {0, 1} are monotone families with (i p, (}"l) > 3mp; fori € [m] and
Hp; (.7-'1) > 3sp; fori € [m 4 1, s]. Then {F;}ic[s) cross contain a matching.

Lemma3.8 Let m < s and p1,..., ps > 0 with Zie[s] pi < 1/2. Suppose that

We introduce the following terminology. Given a = (ap,...,as) € R’ and
n, ki, ..., ks > 0 we say a is forcing for (n, ki, ..., ky) if any families F, ..., F;
with F; C ([,:’l_]) and u(F;) > “’ni for all i e [s] cross contain an s-matching.
We say a = (ay, ...,as) € R’ is forcing if it is forcing for (n, ki, ..., ky;) when-
ever n > Ziem k; and exactly forcing if it is forcing for (n, ki, ..., ky) whenever
n=>y, c[s] ki- Any forcing sequence is clearly exactly forcing; we establish the con-
verse.

Lemma 3.9 A sequence a € R’ is forcing if and only if it is exactly forcing.

We require the following compression operators. Given distinct i, j € [n] and
F C [n], we let

F\{jhuli} ifjeF,i¢F;
Gk | FAUD UL e P
F otherwise.
Given F C {0, 1}", welet C; ;(F) ={C; j(F) : F e FYU{F € F : C; ;(F) € F}.
We say F is C; j-compressed if C; ;(F) = F.

Proof of Lemma 3.9 A forcing sequence is clearly exactly forcing, so it remains to
prove the converse. We argue by induction on s; the base case s = 1 is clear. Suppose
that a € R® is exactly forcing. We fix ki, ..., ks > 0 and show by induction on
n > Zie[s] k; that a is forcing for (n, k1, ..., k), i.e. any families Fi, ..., F; with
Fi C ([IZ_]) and u(F;) > “’Tk’ for all i € [s] cross contain an s-matching. The base
casen = c[s1 ki holds as a is exactly forcing.

First suppose k; = 0 for some i € [s]; without loss of generality i = s. Then a’ =
(ay, ..., as—1)isexactly forcing, and so forcing by induction on s. Thus Fi, ..., Fy—1
cross contain an (s — 1)-matching. Combined with # € F; we find a cross s-matching
in Fi, ..., Fy, as required.

We may now assume k; > 1 for all i € [s]. We suppose for contra-
diction that Fp, ..., F; do not cross contain an s-matching. Let Gi,...,G; be
obtained from Fi,...,F; by successively applying the compression operators
Cin,Con, ..., Cyu_1.. Asis well-known (e.g. see [24, Lemma 2.1 (iii)]), G1, . . ., Gs
do not cross contain an s-matching and are C; ,-compressed for all j € [n — 1]. For
eachi € [s] let

Gin):={Acln—11: AU} e G} c ({2V):
Gy ={achn—11:4eg}c (M)
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We now claim that if / C [s] then {H;};¢[s] are cross free of an s-matching, where
Hi = Gi(n) fori € I and H; = G;(n) for i ¢ I. For contradiction, suppose {A;};[s]
is such a cross matching in {H;}ic[s)- Then A; U {n} € G; foralli € I and A; € G;
fori ¢ I. However, as G; is C;, n-compressed forall j e [n —1]and n > Zle[s]
there are distinct j; € [n]\ (Ujefs A;i) forall i € I such that A; U {j;} € G;. Then
{A; U {ji}}ier U {Ai}ies\1 18 a cross s-matching in {G; };¢[s), a contradiction. Thus
the claim holds.

By induction on 7, it now suffices to show that for each i € [s] either u(G;(n)) >
ai(ki —1)/(n — 1) or u(G;(n)) > ajk;/(n — 1); indeed, we then obtain the required
contradiction by setting I = {i € [s] : u(Gi(n)) > a;(k; — 1)/(n — 1)} in the above
claim. But this is clear, as otherwise

lkl k k
“— <u(@G) = ( )u(g,m)) +( )M(Q,(n))

(n_ki><aiki> <i><ai(ki_ )) a;ik;
< L) () () =
- n n—1 n n—1 n

a contradiction. This completes the proof. O

We conclude this subsection by deducing Lemmas 3.7 and 3.8.

Proof of Lemma 3.7 By Lemma 3.9 it suffices to prove the statement under the assump-
tionn = Zie[s] k;. Note first that if » = 0 then F; = {@} for all i € [s] which clearly
cross contain an s-matching. Thus we may assume n > 0. For any i € [m] we have
2kim/n < u(F;) < 1,s0k; < n/2m, and similarly k; < n/2s fori € [m + 1, s].

Butnown =3, ki <m-n/2m+ (s —m)-n/2s < nis a contradiction. o

ProofofLlemma3.8 Let N~! « & « min;cs pi and G; = F; x {0, I}V
{0, 1}V foreachi € [s]. Theneach u p, (Gi) = up, (F;). Writing I; = [(l—s)Np,', 1+
¢)Np;], by Lemma 3.3 each s, (Ukgy, (UZJ)) < &, so there are k; € I; such that each
/L(g,' N ([kN,])) > Wp, (Fi) — €, which is at least 2mk; /N fori € [m] and 2sk; /N for
i € [m+ 1, s]. The result now follows from Lemma 3.7. O

3.3 Capturability

In this subsection we conclude this section by proving its main lemma on cross match-
ings in uncapturable families. The idea of the proof is to take suitable restrictions that
boost the measure of the families so that we can apply the extremal result from the
previous subsection. However, uncapturability is not preserved by restrictions, so we
first upgrade to globalness, which is preserved by restrictions. We also pass from the
setting of uniform families to that of biased measures, which allows us to apply our
sharp threshold result, and also has the technical advantage that we do not need to
assume any lower bound on the uniformity of our families.

ProofofLemma3.1 Let C > C; > Co >» land F; C ( ) with k; < n/Cs fori €
[s]. Suppose F; is (Cym, mk; /Con)-uncapturable for i € [m] and w(F;) > Ciski/n
for i > m. We need to show that 77, ..., Fs cross contain a matching.
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We start by upgrading uncapturability to globalness and moving to biased measures.
By Lemma 2.7 with » = C; and 8 = Cf2 there are pairwise disjoint Sy, ..., Sy
with each |S;| < r such that, setting G; = (]—"f) Si where S = |J; S; and p; =
ki/(n — |S]), whenever 1, (G;) < C;* we have S; = @ and G; is (Cy,2C;?)-
global with ), (G;) > mk;/4Can > mp;/5C>. We note by Lemma 2.5 that G; is
(a, mp; /10C,)-uncapturable, where a = (mpi/SCz)/(4pin2) > Cym.

Next we will choose pairwise disjoint Ry, ..., R, C [n]\ S with each |R;| <
C1/8, write R.j = Ui<j R;, and define families gif by g{ = (g,-)?eq fori > jor
g/ = @y, fori < j.

We claim.that we can choose each R; to ensure i, (g;' ) > Tmp;. To see this,
first note that gf—l = (g,-)‘j’ki has 1, (g;'—l) > mp;/10C; by uncapturability. If
[y (GITY) > Tmp; we let R; = to obtain pap, (G1) = pap, (G171 = pp (G7Y =
Tmp;. Otherwise, as mp; < 2C~1 « Cl_1 < Cz_1 we can apply Theorem 3.5.1 with
e~ = 70C, and r = C/8 to choose R; with |R;| < r so that Qlf' = (gi"—l)ﬁj has
H2p; (g;.') > Up; (gii_l)/s > Tmp; . Either way the claim holds.

By Lemma 2.3 each G! withi € [m]is (C1/2, 4C;?)-global, so " = (g;f)EJM %,

has 2, (G") > uap, (g;') —m(C1/8) ~4C1_2 -2pi > 3m2p;). Fori > m we have
w(Fi) > Ciski/n, so jup, (G} > wp, (Fi)/4 —m(Cy/8)p; > 3sp;. By Lemma 3.8,

T, ..., G cross contain a matching; hence so do 7, ..., F. O

4 Shadows and Embeddings

In this section we will complete the proof of our junta approximation theorem by
implementing the strategy described above of finding embeddings in fat shadows.
We start in the first subsection by defining and analysing fat shadows. In the second
subsection we find shadow embeddings. We then conclude in the final subsection
with lifted embeddings (using the lifting result from the previous section) that prove
Lemmas 2.9 and 2.10, thus proving Theorem 1.8.

4.1 Fat Shadows

In this subsection we present various lower bounds on the density of fat shadows,
defined as follows.

Definition 4.1 The c-fat r-shadow of F (1) is 8/ F := {A € (")) : w(F}) = ¢}.
The c-fat shadow of F is . F := |, ; 9. F.

The following simple ‘Markov’ bound is useful when F is nearly complete.
Lemma4.2 If u(F) = 1 —cc then n(3]_ . F) = 1 —¢.

Proof Consider uniformly random A C B C [n] with |A| = r and | B| = k. For any
A¢od_ FwehaveP(B ¢ F|A) >c,s0cc’ >P(B¢F)>c-P(A¢gd_.F)=
c(1 — p(d]_.F)). -
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Another bound is given the following Fairness Proposition of Keller and Lifshitz
[30].
Proposition 4.3 (Fairness proposition) Let C > r/¢ and F C ([Z]) with k > r and
W (F) > ek Forc=(1—e)u(F) we have u(d7.F) > 1 —e.

When the above bounds are not applicable we rely on the following lemma, whose
proof will occupy the remainder of this subsection.

Lemmad4 Let F ¢ (W), r < ¢ < kand H = (B € (%)) : 9B c 8/ F),
where ¢ = u(f)/z(f). Then w(H) > w(F)/2. Thus w3 F) > (u(F)/2)"*¢.
Furthermore, if G € G'(r,s,A), C > rA and d.F is G-free then w(d.F) >
((u(F)/2 = (s/mCon/se2) 1D,

We require several further lemmas for the proof of Lemma 4.4. We start by stating
a consequence of the Lovasz form [34] of the Kruskal-Katona theorem [26, 33].

Lemma4.5 If1 < ¢ <k <nand A C (F) then p(3*(A) = p(AY*.

Proof Define g € [0, 1] by [A| = (%), so that u(A) = []\Z (B — i/n). By the
Lovisz form of Kruskal-Katona (Problem 13.31(b) in [34]), we have |3 A| > (ﬁe"),
s0 (@ (A = [TiZo(B —i/mk = p(A)". o

Next we require an estimate on the Turdn numbers of r-partite r-graphs, which

follows from [3, Theorem 2] due to Conlon, Fox and Sudakov. (Recall that G'(r, s, A)
is the family of r-partite r-graphs with s edges and maximum degree A.)

Theorem 4.6 Let F € G'(r,s, A) and C > rA. Then any F-free H C ([';]) with
n> Cs has u(H) < (s/n)l/c.

We note that the following lemma is immediate from Theorem 4.6 and Lemma 4.5.

Lemma4.7 Let G € G'(r,5,A), C > rA, C <k <n/Csand F C (). If 8" F is
G-free then u(F) < (s/n)¥/C.

Our next lemma is an adaptation of one due to Kostochka, Mubayi and Verstraéte
[31].

Lemma 4.8 Suppose G € G'(r,s, A), C > rA and F is a G -free k-graph on [n].
Then n(3F) = (u(F) — (s/m)*/n/sk>.

Proof We define G C F by starting with G = F and then repeating the following
procedure: if there is any A € 9G with |QQ| < ks then remove from G all edges
containing A. This terminates with some G such that |gj§| > ks for all A € 3G and
|G| = |F| — ks|9F|, s0 w(dF) = (u(F) — n(G))n/sk>.

We will now show that 3" G is G-free, which will complete the proof due to Lemma
4.7. To see this, we suppose that ¢(G) is a copy of G in 9"G and will obtain a
contradiction by finding a copy of GT in G. To do so, we start by fixing for each edge
A of G anedge e 4 of G containing ¢ (A). Then we repeat the following procedure: while
some e 4 contains some ¢ (x) withx ¢ A, replace e4 by some edge (e4 \ {¢ (x)}) U{v}
withv ¢ Im ¢. As |gg‘| > ks for all A € 3G we can always choose v as required. The
procedure terminates with a copy of G, so the proof is complete. O
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We conclude this subsection with the proof of its main lemma.

Proof of Lemma 4.4 Consider uniformly random (A, B, C) with C C B C A C [n]
and |C| =r, |B| = £, |[Al = k. Write p =P(A e F,C ¢ 9/F) andg = P(A €
F,B ¢ H).

Forany C ¢ 9/ F wehave P(A € 7 | C) = /L(]-'CC) < ¢, 50 p < c. On the other
hand, p > q(f)_l,asforanyA € Fand B ¢ Hwehave P(C ¢ 9" F | A, B) > (f)_l
We deduce g < (£)c = w(F)/2.

Thus u(H) =P(BeH) >P(A e F)—q > u(F)/2.

As 3"H C 3" F, Lemma 4.5 gives (37 F) > (u(F)/2)"/¢.

Now suppose G € G'(r, s, A) and 9_ F is G-free. Then H is G™t-free, so Lemma
4.8 gives w(dH) = (u(H) — (s/n)")n/st?. As 9" 9H C 9/ F,Lemma 4.5 gives the
required bound. O

4.2 Shadow Embeddings

The following lemma implements a simple greedy algorithm for cross embedding any
bounded degree r-graph in a collection of nearly complete r-graphs (more generally,
we also allow smaller edges).

Lemma4.9 Let0 < n < (rA) ' and G = {ey, . .., es} be a hypergraph of maximum

degree A with each |e;| = r; < r. Suppose for each i € [s] that G; is an r;-graph on
[n], where n > 2rs and (G;) > 1 —n. Then Gy, ..., Gy cross contain G.
Proof Write V(G) = {vy, ..., v,}. We may assume that G has no isolated vertices,

som < Zi dg(vi) <rs <n/2. We will construct an injection ¢ : V(G) — [n] such
that each ¢ (e;) € G;. To do so, we define ¢ sequentially so that, foreach 0 <t <m
the definition of ¢ on V; := {v; : i <t} is t-good, meaning that for each edge e; we
have

¢(e; N Vi) € 8,,,Gj, where cjp = 1 — @A)V, 1)

ij
Note that (1) holds whenever e; N V; =0, as u(G;) > 1 — n; in particular, (1) holds
when r = 0.

It remains to show for any 0 < r < m that we can extend any #-good embedding
¢ to a (t + 1)-good embedding. To see this, first note that we only need to check
(1) when e; is one of at most A edges containing v,+1. Fix any such edge ¢}, let
f = ¢(ej NV,), and let B; be the set of x € [n] such that choosing ¢ (v;41) = x
would give ¢(e; N V1) = fU{x} ¢ d¢;,,,,9;- Then

B nem) <3 (1= 1 (@pf0)) = n (1= 1 (@9])) < mea)”,
xeB

so|Bj| < n/2A.Summing over at most A choices of j forbids fewer than n/2 choices
of x. The requirement that ¢ be injective also forbids fewer than n/2 vertices, so we
can extend ¢ as required. O
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4.3 Lifted Embeddings

We conclude this section by proving the two embedding lemmas assumed above, thus
completing the proof of Theorem 1.8.

Proof of Lemma 2.9 Suppose n, s, ki, ..., ks € Nwith C < k; < % forall i € [s],

and F; C ([,Z_]) with each (F;) > e %/C 4 Csk;/n. Let n be as in Lemma 4.9.
We can assume C is large enough so that Proposition 4.3 gives n(G;) > 1 —n
for each i € [s], where G; is the r-graph on [n] consisting of all e € ([’:]) with
w((F)e) = Csk;/2n. By Lemma 4.9 we can find Ry, ..., R, forming a copy of G
with R; € G; foralli € [s]. Let R = Ry U--- U R;. By the union bound, each

/L((]:,‘)gi) > M((]—',-)gi) —|R|k; /n > Csk;/4n for C > 8, so Lemma 3.6 gives a cross

matching Eq, ..., Eg in (.7-'1)1;‘, R (]-"S)gs. Now Fi, ..., Fy cross contain a copy
of Gt withedges R UEy,..., Ry UE;. O

Proof of Lemma 2.10 Let G € G(r,s, A) and C > C; > C3 > rA. Suppose for a
contradiction that 7 C ([Z]) with C < k <n/Cs is (Cys, sk/Con)-uncapturable but
GT-free.

Let B be a maximal collection of pairwise disjoint sets where each B € B has
|B| < r+1and u(FE) > B := e */C1 + Cysk/n. We claim that | B| < s. To see this,
suppose for a contradiction that we have distinct By, ..., By in B. Let B = Uls: 1 Bi
and F; = F} fori € [s]. Theneach w(F;) > f—|Blk/n > e X/C1 4 Cysk/2n. Now
Lemma 2.9 gives a cross copy of GtinF, ..., F, contradicting F being G -free,
so |B| < s, as claimed.

Now let G = }'g with B = JB. Then G is (r + 1, 28)-global by definition of B
and ju(G) > sk/Can by uncapturability of . Let H = {B € () : 9"B < G},
where ¢ = M(g)/z(cf) > sk/nC%’. We have n(H) > n(G)/2 by Lemma 4.4. We
will show that 9"H is G-free. Then Lemma 4.7 with C»/2 > r A in place of C will
give the contradiction sk/Can < u(G) < 2u(H) < (s/n)>.

It remains to show that 0" H is G-free. Suppose for a contradiction that Ay, ..., Aj
isacopy of GindH.Let A =J/_; A and G; = ggf for i € [s]. Then each G;
is (1, 48)-global by Lemma 2.2 with u(G;) > ¢ — |A| - 28k/n > ¢/2. Now each G;
is (C1s, c/4)-uncapturable by Lemma 2.4, so Gy, . . ., G, cross contain a matching by
Lemma 3.1 with m = s. However, this contradicts F being G *_free. |

5 Refined Junta Approximation

In this final section of the part we will prove Theorem 1.9, our refined junta approxi-
mation result, which will play a key role in the proofs of our results in the next part. We
start in the first subsection by setting out the strategy of the proof and implementing
it assuming an embedding lemma, whose proof will then occupy the remainder of the
section.
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5.1 Strategy

Our embedding strategy considers a setup below that blends the two embedding strate-
gies used in the proof of Theorem 1.8: it has elements of Lemma 2.9 (mapping a
crosscut to a junta) and of Lemma 2.10 (embedding in the fat shadow and lifting via
uncapturability).

Setup 5.1 Let G € G'(r,s, A). Let S be a crosscut in GV (r + 1) with |S| = 0 =
0 (G). Suppose S1 C S with |S1] = o1 < o and {G} : x € S1} vertex disjoint.
Let Hy, ..., Hy, be the inclusive links G xx = {e € G : x € e} for x € S| and
Hy 41, ..., Hy be the exclusive links G, for x € S\ Sy. Let V| = U;’;l V(H;) and
suppose {j : V(H;) NV # @} = [02]. Let H) = H; fori € [o1] and H = {e N V] :
e € Hi} fori € [o1 + 1, 02].

We note that 0 < s < Aoc. To use Setup 5.1 for embedding G in F C ([Z])
it suffices to find J = {jo;+1,..., jo} C [n] and a cross copy of HT, ..., H; in

Fi,..., Fs, where F; = ]—'? fori € [o1] and F; = ]:'in fori € [o1 + 1, o]. This will
be achieved by the following lemma.

Lemma52 Let C > C; > 607! > ¢ ' > rA and C < k < n/Cs. Let
G, H, ..., Hy be as in Setup 5.1 with 01 < 6. Let F; < (M) for i € [o1] and
Fi C (k[fll) fori € [o1 + 1,0]. Suppose F; is (Cio1, eo1k/n)-uncapturable for
i €[o1], that W(Fi) = 1 =0 fori € [o1+1, 02], and n(F;) = B := e ¥/ 4 Cysk/n
fori €lox+ 1,0l Then F, ..., Fy cross contain H', ..., H.

Next we deduce Theorem 1.9 from Lemma 5.2.

Proof of Theorem 1.9 Let G € G(r, s, A) with 6(G) = o and C > C; > 6~ >
81> ¢! > rA. Suppose F C ([Z]) with C < k < n/Cs is GT-free with
|F| > [Snko—1] —8(;"}). Weneed to find J € (")) with | 7| < e({7)).

As in the proof of Theorem 1.8 we let J = {i € [n] : ,lL(]:l-i) > B}, where
B = e ¥/ + Cysk/n. We recall that [J| < o — 1 and F7 is (a, u(F9)/2)-
uncapturable with a = ,u(]-"?)n /4kB. Replacing ‘s’ in that proof by .10 we obtain
|.7-"?| < .192|Sn,k’g_1| < 20%(0 — 1)(2:%). We may assume o > 260~ otherwise
IFN < 0(7)) As |FY) = |F| = |Suk,g] = (9 — 1 — |J]) — 8)(}~|) we deduce
[J|>(1—=.30%) (0 —1),s01 <oy :=0 —|J| <1+ .30% < bo.

Now we let S, S, Hy, ..., H; be as in Setup 5.1, where we can greedily choose
S1 C Swith|Si| = oy suchthat {G} : x € S;} are vertex disjoint, as any partial choice
of S; forbids at most o (Ar)2 < o vertices of S. We write J = {jgs;+1,..., jo}. let
Fi = .7-"? fori € [o7] and F; = ]-"fi fori € [o1 + 1, 0], where we can assume
|Foi411 = -+ = |F5|. We note that u(Fs,) > 1 — 6, as otherwise we would have
the contradiction | F| < |.7-"?| + (02 —o1+ (o0 —o02)(1 — 9))(2:}) < ((l + .260%)0 —
o1 —0(0 —02)({Z1) < 1Suko—11—8())-

Now we must have ,u(}'?) < e&o1k/n; otherwise }"? is (Cio1, co1k/2n)-
uncapturable, so Fi, ..., F, cross contain Hﬁ e, Hj by Lemma 5.2, contradicting
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F being Gt-free. As |.7-'5’| > |F| = |Spkal = (901 — 1) — 8)(2’:11) we deduce
9(o) — 1) =8 < e01, 50 01 = 1 and u(FY) < ek/n. O

The remainder of the section will be devoted to the proof of Lemma 5.2. Similarly
to the proofs of our previous embedding results (Lemmas 2.9 and 2.10), the strategy
will be to find shadow embeddings and then lifting embeddings. However, there are
further technical challenges to overcome in the current setting, particularly when the
uniformity k of our families is small, when we need to ‘pause’ the shadow embedding
after embedding Hi/ = H; for i € [o1], then lift this part of the embedding, then
complete the shadow embedding, and finally lift the remainder of the embedding. The
shadow embedding lemma will be presented in the next subsection. The third sub-
section contains further results on upgrading uncapturability to globalness, which we
call ‘enhanced upgrading’, as they obtain globalness parameters that are significantly
stronger than one might expect, and this will be a crucial technical ingredient of the
proof. In the fourth subsection we establish an improved lifting result that allows for a
much weaker uncapturability assumption than that in Lemma 3.1. We conclude with
the proof of Lemma 5.2 in the final subsection.

5.2 Shadow Embeddings

Here we extend the argument used in Lemma 4.9 to prove the following lemma that will
be applied to show that the fat shadows of 71, ..., F, asin Lemma 5.2 cross contain
Hi, ..., Hy. Whereas before we were embedding into nearly complete hypergraphs,
now many of our hypergraphs will be quite sparse, which makes the embedding more
challenging: the idea is to replace the naive greedy arguments by Theorem 4.6, here
making key use of our observation that we can assume G is r-partite.

Lemma5.3 Let C > 77_1 > K > rAand 0 < 6 < n. Let G, Hy, ..., Hy be
as in Setup 5.1 and Gy, ...,Gs C ([':]) withn > Co. Suppose 1(G;) > 1 — n for
i €loa+1,0], 1w(G) = 1-0fori € [o1+1, 02l and n(Gi) > 0¥ +n=V K 4r Aoy /n

fori €loi]. Letc=1—0Y" Then 8.Gi, ..., 9:Go, cross contain H{, ..., Hr;z and
G, ...,Gs cross contain Hy, ..., Hy.

Proof For each i € [o1 + 1, 03] we define G/, ..., g? recursively by G = G; and
G/~' =9/"),,G! for j € [r]. Clearly each G/ C 8.,Gi where c; = 1—(r — j)0'/".

We claim that each u(g{) > 1 —64/". To see this, we argue by induction on r — j.
For r — j = 0 we have u(g; ) > 1 — 0 by assumption. For the induction step, consider
any j € [r]and uniformly random A C B C [n] with|A| = j—1and |B| = j. Given
any A ¢ G/~ wehave P(B ¢ G/) = 0"/, 50 1 — u(G)) = 0'/7(1 — u(G/™")). The
claim follows.

Next we will construct a cross embedding ¢ of H{, ..., H[,z in 9:G1, ..., 0:Go,.
We recall that H/ = H; for i € [o1] and all H/ are defined on Vj, which is the
disjoint union of V(Hy), ..., V(Hy ). We proceed in oy steps, defining ¢ on V (H;)
at step 7. When ¢ has been defined on U, = |J;., V(H,;), we say ¢ is t-good if

PpenUp) e G foreachi € [o2] and e € G; with e N U; # 0.
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We note that if ¢ is 1-good then ¢ (H;) C G/ = G; = 9.G; foralli € [f] and if ¢
is o1-good then ¢ (H;) C 0.G; for all i € [02]. As ¢ defined on Uy = @ is trivially
0-good, it remains to show for any ¢ € [o] that we can extend any (¢t — 1)-good ¢ to
a t-good embedding.

For clarity of exposition, we start by showing the case r = 1. Obtain H; from G,
by removing any edge e such that f ¢ g)f ' for some @ # [ Ceandi € [02] with
V(H;) N V(Hy) # @. There are at most rA? such i, so by a union bound and the
above claim we have w(H;) > wn(G1) — rA?2760Y7 > n=1/K We can assume that
G is r-partite, so by Theorem 4.6 we can find an embedding ¢] of Ny := {e € G :
eNV(H)) # ¢} inH;. Now ¢ = ¢ |y, is 1-good.

Now we consider general ¢ € [o1]. Obtain H, from (gf)g(U,,l) by removing any
edge e such that f ¢ g}f‘ for some @ # f\ ¢(A’) C e where A € H; with
V(H;)NV(H;) # @and A’ = AN U;_;. For any such non-empty A’, as ¢ is (t — 1)-
good we have ¢ (A') € G, 50 u((G/)4) = 1= (j —|A')V/" forany |A'| < j <r.
Thus a union bound gives w(H;) > pu(G;) — |Us—11k/n — rA227roVr > p=1/K Now

as in the case + = 1 we obtain a t-good extension by embedding N; := {e € G :
e N V(H;) # @} in 'H; and restricting to V (H;).

Thus we have constructed a cross embedding ¢ of Hi, .. ., H(;Z ind.Gi, ..., 9:Gs,.
To complete the proof we extend ¢ to a cross embedding Hy, ..., Hy, in Gy, ..., Gy,
which requires ¢ (e \ V1) € (Qi)iggi forall e € H;, i € [o1 + 1, o]; this is possible
by Lemma 4.9. O

5.3 Enhanced Upgrading

This subsection provides further results on upgrading uncapturability to globalness
with enhanced parameters that will be crucial in later proofs. We start by showing that
every family has a restriction that is global or large.

Lemma5.4 Letb,r e N a > 1l and F C ([Z]) with k > br. Then there is B C [n]
with |B| < br such that if W(F5) < o u(F) then FE is (r, aju(FB))-global with
W(FE) > als#0p(F).

Proof We consider Fy, F1, ...,where Fo = F,andifi < band F;isnot (r, au(F;))-
global then we let F;| = (}})g; so that |B;| < r and u(Fi4+1) > au(F;). When
this sequence terminates at some F; we let B = Uist B;. Clearly F B — F, has the
required properties. O

By iterating the previous result we obtain the following upgrading lemma.

Lemma 5.5 Supposeb,r,m € Nandforeachi € [m]thato; > 1 and F; C ([]:’[_]) with
rb < ki < n/2rma; is (rbm, B;)-uncapturable with af’ﬁ,- > 2rmk; /n. Then there are
disjoint By, ..., By with each |B;| < rb such that, setting G; = (.7-',-)? where B =

Us Bir if 11(Gr) < ol Bi/2 then i is (r, 4eti1(Gy))-global with j1(Gy) > o "7 B /2.
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Proof We will choose By, ..., By, sequentially and define _7-'10 oo, Ftfori e [m]
by ]—'lo = F, }“j. = (]—';_1)%[ for j # i and ! = (_7:1?_1)22. At step i, we have
u(]—'l.’_l) > B; by uncapturability of F;, soby Lemma 5.4 we can choose B; with | B;| <
rb such that if ,u(}"ii) < al.bu(fii_l) then F! is (r, au(]-"ii))-global with u(}"f) >

1
ailB’#”,B,-. After step m, for any i € [m] we have G" = G; = (,7—})1;". If ,u(]-'f) =
af’u(]-"ii_l) then u(G;) > af’ﬂ,- —rmki/n > af’ﬂi/Z. Otherwise, }'l." is (r, a,-u(ff))-
B0 w(F), and (n/2k;o;, M(}_f )/2)-uncapturable by Lemma

. 1
global with w(F;) > a;
24,50 w(G) > W(F)/2 = o """ /2, and G is (r, 41 j1(G))-global by Lemma

2.2. O

For our final upgrading lemma we apply the previous one twice: the idea is that the
globalness from the first application provides the second application with much better
uncapturability.

[n

Lemma 5.6 Suppose b,r,m € N and for each i € [m] that F; C (ki) with rb <
ki < 11/2rmb2 is 2m, B;)-uncapturable with B; > 8rmk;/bn. Then there are disjoint
By, ..., By witheach |B;| < rb+2 such that, setting G; = (]-",-)gi where B = J; B;,
if 1(Gi) < 2°B; /8 then G; is (r, 811(Gy))-global with j1(G;) > 2'5i#" B, /8.

Proof We start by applying Lemma 5.5 with (b, 1, 2) in place of (¢;, r, b). This gives
disjoint Sy, ..., S, with each |S;| < 2 such that, setting H; = (.7-',-)? where § =
U; Sisif w(Hy) < b%B;/2 then H, is (1, 4bu(H;))-global with ju(H;) > Bi/2.

We claim that each H; is (rbm, B; /4)-uncapturable. Indeed, this holds by a union
bound if u(H;) > b>B;/2, as then ,u((H,-)%) > nw(H;) — |J|ki/n > Bi/4 whenever
|J| < rbm, as B; > 8rmk;/bn. On the other hand, if H; is (1, 4bu(H;))-global
with w(H;) > Bi/2 then H; is (n/2bk;, ;(H;)/2)-uncapturable by Lemma 2.4, so
(rbm, B; /4)-uncapturable, as k; < n/2rmb>.

Now we can apply Lemma 5.5 again to Hy, ..., H,, with (2,r,b) in place of
(a;, r, b). This gives disjoint S|, ..., S), with each |S/| < rb such that, setting G; =

(H,‘)?, where S = J; S/, if u(G) < 20 ;/8 then G; is (r, 814(G;))-global with
w(G) > ZIS#V],B,-/& Thus B; = S; U S! fori € [m] are as required. ]

5.4 Refined Capturability for Matchings
Here we prove the following sharper version of Lemma 3.1, obtaining cross matchings

under a much weaker uncapturability condition.

Lemma5.7 Let C 3> K > d > Land F; C (V) with k < ki < Kk fori € [s],

where 2d < k < n/Cs. Suppose F; is (2dm, (2mk,-/n)d)-uncapturablefori € [m]
and p(F;) > 12(s + Kmlog ﬁ)k,’/n fori > m. Then F1, ..., Fs cross contain a
matching.

Proof We start by upgrading uncapturability to globalness. We apply Lemma 5.5 with
r=1,b=2d,a; = /n/mk;, i = (mki/n)d noting that each rb < k; < n/2rmu;
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and af’ﬂi =24 > 2rmk; /n, obtaining B = Ui B; with each | B;| < 2d such that each
G = (.7-',-)? is (r, 4 ;1 (G;))-global with (G;) > (2mk; /n)? /2. We note by Lemma
2.4that G; is (n/8a;k;, (2mk; /n)d/4)—uncapturable. Now we pass to the biased setting:
we let p; = k;/n and note that H; = Q’l.T is (n/8aik;, 2mk; /n)d /16)-uncapturable
by Lemma 3.2.

Now we will apply Theorem 3.5.2 to choose Sy, ..., S;, witheach [S;| < K log -
and define H?, ..., H" fori € [s] by ’H? = H;, H; = (Hi»_l)gi for j # i and
Hf = (Hﬁ_l)si. At step i, we have M(H;:_l) > (2mk;/n)?/16 by uncapturability of
Hivas Y 1Sj| < Kmlog 2% and n/8a;k; > g/nm/Kk, usingn/mk = C > K.

Applying Theorem 3.5.2 with n < 1/2d and VK in place of K we obtain S; C [n]
with [S;] < vKlogu(Hi™h)™! < Klog % and pukp (M) = u' > /mp;, so
wip (H*) > /mp; —|S|Kp; > 3m(Kp;). Fori > m, by Lemma 3.2 and a union
bound we have wp, (H!") > n(F;)/4 — |S|p; > 3sp;. Thus by Lemma 3.8 there is a
cross matching in HY', ..., H}', and so in Fq, ..., Fy. O

5.5 Lifted Embeddings

We conclude this section by proving Lemma 5.2 which completes the proof of Theorem
1.9. As mentioned earlier, the proof becomes more complicated as the uniformity k
of our family decreases. When it is quite large we can bound the fat shadow using
Fairness, but otherwise we must rely on the weaker estimates from Lemma 4.4, so
there are additional technical challenges, resolved by enhanced upgrading and in one
case pausing the shadow embedding for a preliminary lifting step.

ProofofLemma5.2 Let C > C; > 07! > ¢! » rAand C < k < n/Cs. Let
G, Hi, ..., H, be as in Setup 5.1 with oy < fo. Let F; C ([Z]) for i € [07] and
Fi C (k[fjl) for i € [o1 + 1, 0]. Suppose F; is (Cio1, €01k/n)-uncapturable for
i €[o1],that w(F;) = 1—06fori € [o1+1, 03], and u(F;) = B := e ¥/ +Csk/n
fori € [op + 1, o]. We need to show that Fq, ..., F, cross contain H1+, e, H;.

We consider cases according to the size of k. We start with the case k > JCy log (’r—’l,
for which we will use enhanced upgrading. We apply Lemma 5.6 to 77, ..., F5, with
m = o1,b = C1+log, %,each Bi = emk/nand2rinplace of r,notingthat2rb < k <
n/2rmb2 and B; > 8rmk/bn. This gives disjoint By, ..., By, witheach | B;| < 2rb+2
such that, setting G; = (.ﬁ)gi where B = |J; B;, if n(Gi) < 2Pemk /8n then G; is
(2r, 8u(G;))-global with u(G;) > emk/8n > m/n > e kINC Fori e [o1 +1,0],
writing G; = (%)%, we have w(G;) > ju(F;) — |Blk/n > e K/t 4 Cysk/2n.

By Fairness (Proposition 4.3), with o/C in place of C, writing ¢; = (1—&)u(G;) for
i € [o] wehave u(agi’gi) > 1—eforr’ € {r—1,r},s09.,Gi, ..., d, Go cross contain
acopy ¢(Hy),...,¢(Hy) of Hy, ..., H; by Lemma 4.9. We write V' = Im ¢ and
consider Hy, ..., H corresponding to the edges Ay, ..., Ay of Hy, ..., Hy, where
for each edge A; of H; withi € [o] welet H; = (Q,)?;EAJ ). To complete the proof of
this case it suffices to show that M, ..., H; cross contain a matching.

To do so, we verify the conditions of Lemma 3.1. Consider any A; € H;.If i > o
ori € [o1] with u(G;) > 2h8mk/8n > Clzsk/n then u(H;) > ¢; — |V'|k/n >
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Cisk/3n. Now consider i € [o7] such that G; is (2r, 8u(G;))-global with w1 (G;) >

emk/8n. Then H; and H;. = (gi)iiﬁﬁi are (r, 16(G;))-global by Lemma 2.2. As
M(H}) > ¢; = (1 — &)u(G;), by Lemma 2.4 H} is (n/40k, M(H’j.)/2)-uncapturable,
souw(H;) > M(H’j)/Z > emk/20n, and 'H; is (n/80k, ju(H ;)/2)-uncapturable again
by Lemma 2.4. Thus the required conditions hold.

Henceforth we can assume k < +/C log (f—l In this case we upgrade uncapturability
to globalness using Lemma 2.6 to obtain disjoint Sy, . . ., S¢; witheach |S;| < 2r such
that, setting G; = (.7-",-)“;1 where S = |J; Si, whenever u(G;) < B we have S; = ¥ and
Giis (2r, 2B)-global with u(G;) > eo1k/n.Fori > oy wesetG; = (,7-'1-)2 and note that
w(Gi) = w(Fi)—|Slk/n > B/2. Asbefore, forany i ¢ [o1+1, 02] with u(G;) > B/2
Fairness gives M(agi’gi) >1—¢gforr e€{r—1,r}, where ¢; = (1 — &)u(G;). For
i € [o1+1, 0p] we have the better bound M(a;’g,-) > 1—+/0 where ¢; = 1 —+/0 from
Lemma4.2. Fori € I :={i : u(G;) < B/2} we note that G; is GT-free, as S; = 0,
so we can bound the fat shadow by Lemma 4.4: we take £ = k, use &)~ !> rAin
place of C, and write ¢; = ,u(g,-)/2(l;) > 11(G;)/2k", to obtain

w@LGH = ((w(G)/2 — (s/m P /sk?) "D = 2= (01 /sk K — (s/n)™.

Next we consider the case thatk > 2C log %.Thenz > 1-¢,%000,01, ..., 0,00
cross contain a copy ¢ (Hy), ..., ¢(Hy) of Hy, ..., H, by Lemma 4.9. With nota-
tion as in the previous case, it remains to show that Hj, ..., Hs cross contain a
matching. To do so, we verify the conditions of Lemma 5.7, taking m = ||,
d = 2 and K = &~ '. Consider any Aj € H;. Ifi ¢ I then u(H;) >
B/3 — [Imglk/n > 12(s + e~ |I|log gfp)k/n, as |I|/n < o1/n < e *IVC 50

|11k /n -log ﬁ < kZe HVCI < B%. Now suppose i € I, so that G; is (2r, 28)-global

with 11(G;) > eork/n. Then H; and H); = (G;)fy’) are (r, 4p)-global by Lemma

2.2. As ,u(H;-) > ¢; > u(G;)/2k", by Lemma 2.4 H;- is (a, M(H})/2)-uncapturable,
where a = u(G)n/8kB > eo1/88 > rs > |Im¢| as o1/s > e X200 > /B,
since ks/n < kAoy/n < Ake %Y1 Hence u(H,) > w(H)/2 > (G /4K >
2(2|11k/n)?, and ‘H;is (4|1|, u(H;)/2)-uncapturable again by Lemma 2.4. Thus the
required conditions hold.

It remains to consider the case k < 2C log % We start by applying 5.3 to (3;,G; :
i € [0n]) with 6y = /o1/o < /0 in place of 6, recalling for i € [o] + 1, 02] that
u(agigi) >1—460>1-6)and M(agigi) > 1—¢fori € [o1]\ I, and noting for
i € I that n(9;,G:) > 98/2r + n~% 4+ rAoy/n. This gives a cross embedding ¢ of
H{,...,H. in (3Gi 1 i €[02]), where c = 1 — 6,/".

Next we extend (d:(Hl.’) 10 € lo1]) = (¢(H;) : i € [o1]) to a cross embedding
(¢>(Hl.+) vi efo1])in (G; 1 i € [o1]), by finding a cross matching in (H; : j € [s1])
corresponding to the edges Ay, ..., Ay, of Hy, ..., Hy,, where for each edge A; of

H; withi € [01] we let H; = (g,-)}”nﬂ*;”. This is possible by Lemma 5.7, which
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applies similarly to the previous case, where for uncapturability of H’j we note that
now | Im¢| < rs; <rAoy.

Finally, we extend to a cross embedding (¢(Hi+) i €lo])in(G; ;i € [0]) by
finding a cross copy of (A; \ Vi : 51 < j < s)in (H; : 51 < j < s), where for

eachedge A; of H; witho) <i <o welet’H; = (gi)ﬁff(‘;w‘). This is possible by

Lemma 2.9, as each u(H;) > n(G;) — Aor1k?*/n > B/4, using k < 2C; log o and
o] <fbo. 0

6 The Huang-Loh-Sudakov Conjecture

Here we prove Theorem 1.2, which establishes the Huang—Loh—Sudakov Conjecture.
In the first subsection we prove a strong stability version that has independent interest.
We then deduce the exact result in the second subsection.

6.1 A Strong Stability Result

Here we prove the following strong approximate version of the Huang—Loh—Sudakov
conjecture, which will be refined to obtain the exact result in the following subsection.
Theorem 6.1 Let 0 < C~!' < e and F; C () with C < ki <n/Cs foralli € [s]. If
Fi, ..., Fs are cross free of a matching and each |F;| > |Sy i, s—11 — (1 — 8)(:’:]1)
then there is J € ([ﬁjl) so that |F; \ Spx;. 7] < 8(;11[:11)f0r alli e [s].

N

The idea of the proof will be to consider A = {ay, ..., a;} C [n] maximal such
that there are distinct by, . . ., bg so that all (F, )Zj are large. This motivates the setting
of the following lemma.

Lemma6.2 Let0 < C1 « B<KLe<landm,l n,s, ky,..., ks € Nwi;hé <m<
s and each ki < n/Cs. Suppose F; C ([,’:i]) and J; = {j e [n] : u((]-';)j) > ﬂ}for
eachi € [s] are such that

(a) there are distinct ay, ..., ay € [n] witha; € J; fori € [£];
(b) M((]—"i)y}l_) >em—|JiDki/nand J; C A :={ay,...,a¢} foreachi € [£+1,m];
(©) ,u(]—',) > Ckis/n foralli € [m + 1, s].

Then Fi, ..., Fs cross contain a matching.

Proof 1t suffices to check the conditions of Lemma 3.1 for Gy, ..., G; defined by
g = (_7-',-)2" fori € [{] and G; = (]—'i)(f\ otherwise. We do so with m — £ in place
of mand (G; : £ < i < m) in place of Fq,...,Fy. Fori € [s]\ [m] we have
w(Gi) = w(F;) — |Alki/n = Ckis/2n. Similarly, for i € [¢] we have u(G;) >
w(Fa) — |Alki/n = B/2 = (B/2)(Ckis/n) > C'?k;s/2n. Fori € [+ 1, m]
we note by definition of J; that G; is (1, 28)-global with u(G;) > M((]—'i)?[_) — A\
JilBki/n = e(m —£)k; /n,so (e(m— L) /4B, e(m — £)k; /2n)-uncapturable by Lemma
2.4. Thus the required conditions hold. O
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We deduce our stability result as follows.

Proof of Theorem 6.1 Let 0 < C~! « < & < 1/2and F; C () with k; < n/Cs

forall i € [s]. Let J, ..., Js; be asin Lemma 6.2. Let A = {a;,...,a¢} C [n] be
maximal such that there are distinct by, ..., by with a; € Jp, for all i € [¢]. Without
loss of generality we may assume b; = i for all i € [{]. By maximality, we have

Ji Cclay,...,ag}foralli e [£+ 1, s].

We may assume £ < s, and that M((fh)gh) < de(s — |Jnkp/n for some h €
[€ + 1, 5], otherwise Lemma 6.2 provides the required cross matchmg Noting that
|Sn,kh,s71| - ‘9)(]( _1) < |Ful = ISn kn, Jhl + .de(s — |Jh|)(k/_1) we see that
|yl =s—1=4¢,h= vand]h = A.Now foreachi € [s — 1],as q; € A = J, we
can apply the same argument switching the roles of F; and F, to deduce ,u((]-",')%i) <
.leky/n and J; = A. The theorem follows. O

6.2 The Exact Result

To complete the proof of the Huang—Loh—Sudakov Conjecture we will upgrade the
approximate result of the previous subsection to an exact result via the following
bootstrapping lemma (stated in a more general form than needed here as we will also
use it for our other Turan results).

Lemma6.3 Let C > B! > d > Land Fi < () forall i € [s] with 35_ ki <
n/C. Suppose Fi, ..., Fs are crossfree of some hypergraph G = {ey, ..., es} with
lei| = ki for eachi € [s] and eg N Ul e =49. Ifo;ll(l —u(F)) <a e (0,8)
then p(Fy) < (aks/n)?.

Proof Letk =n—n/CandG; = ]—'fﬂ([’;]).Then}], ..., Fs_1, G, arecross free of G’
obtained from G by enlarging ¢; to ¢} of size k. Suppose for contradiction that j (Fs) >
(aks/m)?. Let t € [ks] be minimal so that |Fy| = (aks/m)*(;) = (). Then
(aks/n)? < (ks/n)' 1, soif t > 2d then a < (kg /n)"/*?. By Kruskal-Katona |G| >
(1D).son(Gy) = (1-2/C)" > Ja,asift < 2d then(1-2/C)" > (1-2/C)** > /B
or otherwise a®¥/! < ky/n < C~! < (1 —2/C)*. Now we let ¢ : V(G') — [n] be
a uniformly random injection. Let E be the event that ¢ (e},) ¢ Gs or ¢(e;) ¢ F; for
somei € [s—1]. Then I = P(E) < 1 —u(G)+ ) i1 —n(F)) < 1=a+a,
contradiction. O

Theorem 1.2 will now follow by combining Theorem 6.1 and Lemma 6.3.

Proof of Theorem 1.2 Let 0 < 1/C < ¢ < l and F; C ( )w1th |Fil > |Snkis—1l
and k; < Cx foralli € [s]. Suppose Fi, ..., Fy have no cross matching. By Theorem
6.1 there is J € (") such that 1((F)%) = eiki/|V| with V = [n] \ J and &; < ¢
for all i € [s]. We may assume that & is maximal.

Next we claim that we can list the elements of J as j = (ji, ..., js—1) so that

My= Y u((F)¥)=s—1-¢,.

iels—1]
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To see this, we note that E;M; = E;c[s—1) Zjej /L((E)]J.) when j is uniformly ran-
dom. As each (}',')5 C (Sn,ki,s—l)g whenever ¥ # I C J and w(F;) = u(Spk; 5—1)»
we have 0 < () — 1(Snks—1) < w(FD)) = KIVITV 05 (1 = ((F))), s0
Y ey 1((Fi)))) = s — 1 — . The claim follows.

Now let H; = (F) < (V) foralli € [s — 1], and Hy = (F)) < (V).
Then Hjy, ..., Hy have no cross matching, Zie[s_l](l — uw(H;)) < &g and u(Hy) =
&sks/|V|. Therefore e, = 0 by Lemma 6.3 with d = 1. By choice of ¢; we deduce
gi =0foralli € [s]. Thus F; = Sy, foralli e [s]. O

7 Critical Graphs

In this section we prove Theorem 1.6, which gives exact Turdn results for expanded
critical r-graphs of bounded degree. In fact, we will prove the following strong stability
version.

Theorem 7.1 Let G € G(r, A, s) be critical and C > ,3_1 > drA.

Suppose F C ([Z]) with C <k <n/Cs is Gt -free and | F| > |Syk.o—1] — S(Z:{)
with ¢ € (0, B).

Then there is J € (0[':]1) with | F\ Spx.7l < sd(Z:}).

Furthermore, ifk < \/n and | F| > |Sy k.71 — B(;_) then F C Sp.J-

In the first subsection we will describe the strategy of the proof and complete
the proof, assuming a certain bootstrapping lemma that will be proved in the second
subsection.

7.1 Strategy

Recall that an r-graph G is critical if it has an edge e such that 0 (G \ e) = (G \ e) <
7(G) = 0 (G). Thus we can adopt the following set-up.

Setup 7.2 Let G € G'(r, s, A) be critical. Fix a crosscut S in GV (r 4+ 1) with |S| =
o0 =0(G)and{G} :x € S} ={H; :i €|ol}with|Hs| =1. Let ] ={i € [0 — 1] :
V(H;) NV (Hs) # 0}

The following bootstrapping lemma will be proved in the next subsection. It shows
that if we cannot find a cross embedding of H o, Hj‘ as in the above set up, if all
but one of the families are nearly complete then the last must be very small.

Lemma?7.3 Let G, Hy, ..., Hy be as in Setup 7.2. Let C > ,3_1 > drA and F; C
(")) with k; € [k/2,k] for i € [o], where C < k < n/Cs. Suppose F, is G*-free,

YA = w(F)) < e < B u(Fs) = elk/nand | — w(F) < e := 2e/o for all
i€l Then F,...,F, cross contain Hit, ..., H.

We conclude this subsection by deducing Theorem 7.1 from Lemma 7.3.
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Proof of Theorem 7.1 By Theorem 1.9 (refined junta approximation) thereis J € ("))

o—1
such that |F \ Syr.g| = 8(2:{) with 871 > drA. We write J = {ji, ey jo—1}»
Fi = FJ fori € [o — 1]and F, = F. Note that F,, is GT-free. We may assume
I =[I]and |Fi| > --- > |Fs-1]. Now

o—1
W(F) < WFD + 1(Snis) = 7 Y (1= n(F))
i=1

o—1

< 8k/n+ w(F) + ek/n — £ (1 = w(F)).
i=1

o) Zfz_ll(l — uw(F)) < 2(e + 8). Now for each i € I we have 1 — u(F;) <
4rA(e + 8)/o asif o < 2|I| < 2rA this follows from 1 — u(F;) < 2(e + §), or

otherwise from 1 — u(F;) < %‘fa_—m)
As Fi, ..., F, are cross free of H1+, e, H(;Ir as in Setup 7.2, Lemma 7.3 with

(2r A(e 4 8),2d) in place of (¢,d) gives Sk/n = u(F,) < QrA(e + 8))*k/n.
As e71,871 > drA we have ((2rA)(e + 8)% = (2ra) Y2 (()els2dl <
(e? +8)/2,508 < e ie. |FI| = |Fs| < ed(}7)).
Finally, let k < /n and suppose for contradiction that |F| > [S,x.s| — B(; )
but there is some A € F \ S,,s. By the previous statement with d = 1 and ¢ =
_ RN | _ _
,B(Z_:)(Z_}) we have |F| < B(}7)), s0 |Suks \ FI < 2B(}_"). We fix any

R € (f) and a bijection ¢ : Ay — R, where H, = {A;} and define Gy, ..., G5
A,

by Gj = (7:,')3( 7 whenever Aj is an edge of H; with A, = A N Ay. For each

J €ls — 1], writing r; = |A;| + 1 € [r], we have (”"“’f') —1G;1 < 1Suk,s \ Fl, s0

k—}’j
as (";f:r) > .1(,",) for k < \/n we have 1 — 1(G;) <208 < 1/2. However, now
G1,...,Gs_1 cross contain Ay \ Ay, ..., As—1 \ A; by Lemma 2.9, so we have the
required contradiction. O

7.2 Bootstrapping

Now we complete the proof of Theorem 7.1 by proving Lemma 7.3. The idea is to
reduce to the case that the critical edge is disjoint from all other edges, so that we can
apply Lemma 6.3.

Proofof Lemma 7.3 Let G, Hy, ..., H, be as in Setup 7.2. Let C > ,3_1 > drA
and F; C () with k; € [k/2,k] for i € [o], where C < k < n/Cs. Suppose
Y= u(F) < & < B, w(Fy) = ek/nand | — u(F;) < &g = 2¢/o for all
iel.

We need to show that Fi,...,F, cross contain H1+, R H;‘. Write G =
{Ay,...,As} where H, = {A;}and A = A N Uiq A;. It suffices to find an
injection ¢ : A — [n] such that Lemma 6.3 provides a cross embedding of

efr,...,ej inGy, ..., Gy, where for each edge A; € H; we definee; = A; \ Ay and
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Gj = (Fi)ya ™ Wenote that if ANA; = fthen 1 —u(G;) < 2(1 — u(F;)) for any

choice of ¢. Also, for uniformly random ¢ we have P((G;) > 1 — /e9) > 1 — /eo
whenever i € I by Lemma 4.2.

Next suppose u(Fy) > e *B_Then Fairness (Proposition 4.3) gives P(u(Gs) >
w(Fs)/2) > 1/2. By a union bound we can fix ¢ with Zf;ll(l — w(G)) < 2e+
[11/€0 < o :=2A/e and u(Gy) > u(Fo)/2 > (ak/n)3¢. Then Lemma 6.3 applies
as required.

It remains to consider the case u(F,) < e *#. We will apply Lemma 4.4 to show
that we can fix ¢ with Z‘i:ll(l —w(G)) <2e+|I\/eg < o = 2A./¢ as above
and 11(Gy) = ¢ 1= w(Fo) /2K = M u(Fy) - w(Fo) /2K = w(Fy)* = (ak/m)™.
Again this will suffice by Lemma 6.3. Lemma 4.4 with £ = k gives P(u(Gs) > ¢) >
(W(Fy)/2)"* = el/4n=2r/k 5o we are done unless ¢'/4n=2/k < |1],/€0, which
implies o2n =% /k < (2A)*s. As e « A™! this implies k < n®, say. Furthermore, we
can assume F; is (2r, u(Fy)Bn/sk)-global, otherwise we can apply the above argu-
ment with some (fa)llg in place of F, to get P(u(Gs) > ¢) > (W(Fy)Bn)2sk)/* >
81/4s—2r/k - |I|\/%

Now we claim that 9] F, is G-free. This will suffice to complete the proof, as
then Lemma 4.4 gives the improved estimate p (9, F,) > (4 /ks)? 1k — (s/n)f >
|1]/20, using s < ro < n¥/k. To see the claim, we suppose ¢(G) C 3.F, and
will obtain a contradiction by finding a cross matching in Hy, ..., Hg, where for
each edge A; of G we let H; = (]:q)?n(]';j ' We verify the conditions of Lemma
5.7, with (s, s,d,2) in place of (s, m,d, K). As F, is 2r, u(Fy)Bn/sk)-global,
each H; is (r, 2u(Fs)Bn/sk)-global by Lemma 2.2. Also, F is (B~ s, W(Fy)/2)-
uncapturable by Lemma 2.4, so each w(H;) > u(Fs)/2 > e?k/2n, and each H i
is (s/28, €%k /4n)-uncapturable by Lemma 2.4. As o2n~% /% < (2A)*¢ and k < nP
we have ek /n > (3sk/n)?, and so the conditions of Lemma 5.7 hold. But this is a
contradiction, as then Hy, . . ., H, cross contain a matching. Therefore 9. F is G-free,
as claimed. O

8 The Fiiredi-Jiang-Seiver Conjecture

In this section we prove the Fiiredi—Jiang—Seiver conjecture on the Turdn numbers
of expanded paths. As previously mentioned, for paths of odd length the conjecture
follows from our result on critical graphs (Theorem 1.6), so it remains to consider paths
of even length. We will consider the more general setting of expansions of (normal)
graphs (r-graphs with r = 2) satisfying the following generalised criticality property.
Recall that we denote the crosscut and transversal numbers of an r-graph G by o (G)
and 7(G), and that 0 (G) > 7(G). Consider any G with t1(G) = o(G). We say G is
ay-degree-critical if (i) 0 (G — x) < o(G) for some x of degree |G| < aj, and (ii)
7(G — x) = 1(G) for any x with |G}| < a;. We say G is ap-matching-critical if (i)
o (G \ M) < o(G) for some matching M with |M| < ap, and (ii) (G \ M) = 7(G)
for any matching M with |M| < a>. We say G is (ai, ap)-critical if it is both a;-
degree-critical and a;-matching-critical.
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We note that even paths and cycles are (2, 2)-critical, and that any G is critical (in
the sense defined above) if and only if G is (aj, 1)-critical, where a; is the minimum
possible degree of any vertex belonging to any minimum size crosscut of GT. The
significance of the generalised definition is that it enables to show that the following
natural construction is extremal for the Turdn problem for GT. For any T C [n] we
write G 1 (T) = {A € ( ”]) T C A} for the family in ( ) generated by 7. For
T {0, 1}" we write Gy, (T) = Uzpeq Gk (T). We let ]-',,,k,c = Gnx(T) where T
is the disjoint union of o (G) — 1 singletons and a graph F,,,, with as many edges as
possible subject to having no vertex of degree > a; or matching of size > a,. Then
Fux.G is GT-free by definition of (a, b)-criticality. We will show that it is extremal.
When G is a path of even length this will complete the proof of the Fiiredi-Jiang—Seiver
Conjecture.

Theorem 8.1 Let G € G(2, A, s) be (ay, ap)-critical, C > ayA and C <k <n/Cs.
Then ex(n, Gt (k)) = |Fux.Gl-

Moreover, we will prove the following strong stability version.
Theorem 8.2 Let G € G(2, A, 5) be (ay, ap)-critical and C > ﬂ_l > ardA.

Suppose F C ([Z]) with C < k < n/Cs is Gt -free. If | F| > |Spx.o—1| then
|FN\ Gui(T)] < ,3_1( )for someT = {{x}:x € J}UF where J € ( ”])and
F c (") with |F| < |Faa,).

Moreover, if |F| > |Fnk.cl — 5(2:5) with ¢ € (0, B) then u(F\ G) < (ek/n)d
for some copy G of F k.G, where ifk < \/n then F C G.

Throughout this section we adopt the following set up.

Setup 8.3 Let G € G'(2,s, A) be (ay, ar)-critical witho (G) = o. Let B={B; :i €
[al} be a r-graph matching with r € [2], and B’ = {Bi’ 1i €lal} C G, whereifr =2
then a = ay and each B = B; or if r = 1 then a = a1 and each B] = B; U {x} for
some vertex x of degree a. Let S = {s1, ..., Sq—1) be a crosscut in (G \ B') and let
H; = Gy fori € [0 —1]. Let I ={i € [0 — 1]: V(H;) N V(B) # #}.

We prove a bootstrapping lemma in the next subsection and then deduce Theorem
8.2 in the following subsection.

8.1 Bootstrapping

In this subsection we prove the following bootstrapping lemma, which is analogous to
Lemma 7.3, except that rather than concluding that some family is small we conclude
that some family is capturable.

Lemma 8.4 With notation as in Setup 8.3, let C > B~' > adA and C < k <
n/Cs. Let F; C ([kn,) with ki € [k/2,k] fori € [0 — 1] and F| C (",) with

€ [k/2,k] for i € [a] be such that Fy, ..., Fe—1, F},..., F, are cross free of
Hl v HY B, B Suppose Y21 (1 — w(F)) < e < Band 1 — u(Fp) <

gy = 28/0’ foralli € I. Then some F] is B, vi + (k/n))-capturable, where
vi <&, and if F| is Gt -free then y; < e%k/n.
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The proof requires the following lemma which is analogous to Lemma 6.3.

Lemma8.5 Let C 3> C' > ad, F; C () fori € [s1and F| C (}})) fori € [a]
with )i ki + Y i_ k. < n/C. Suppose (Fi, ..., Fs, F|, ..., F,) are cross free of
G = (e1,....e5, €], ...,e,) with each |e;| = ki, |e| = k] and e N e, = @ for all
i€lalande. #ec G If Y ;_ (1 — u(F)) < 1/2 then some F! is (C', (klf/n)d)-
capturable.

Proof Let k = n/2a and for each i € [a] let G; = (F)' N ([Z]). Then
(F1. ..., F5, G1, ..., Gy) are cross free of G’ obtained from G by enlarging each e/ to
el of size k. Suppose for contradiction thateach 7 is (C’, (k! / n)4)-uncapturable. Then
an argument of Dinur and Friedgut, applying Russo’s Lemma and Friedgut’s junta the-
orem (see Lemma 2.7 in [4]), shows that each 1 (G;) > 1—1/2a. Consider a uniformly
random injection ¢ : V(G’) — [n]. Let E be the event that some ¢ (e;) ¢ F; or some
¢(ef) ¢ Gi.Then 1 = P(E) < 3¢y (1= 1(FD)) + Yicpay (1= 1£(G1)) < 1/2+1/2,
contradiction. O
Proof of Lemma 8.4 With notation as in Setup 8.3,1et C > 7' > b > d > aA and
C <k =n/Cs.Let 7 C (1)) with k; € [k/2. k] fori € [0 — 1] and F} C (i)
with k! € [k/2, k] fori € [a]be suchthat Fi, ..., Fo_1, F|, ..., F, arecross free of
H,...,H' | B, ...,B}. Suppose Y iI_| (1 —u(F)) <e<pBandl—pu(F) <
g 1= 28/0’ foralli € I.Suppose for contradiction that each F is B~ yi + (k/n)?)-
uncapturable, where either y; > ¢ or F!is GT-free and y; > elk/n.

We start by upgrading uncapturability to globalness. By Lemma 5.5 with (b, 4, a)
in place of (b, r, m) and each «; = n/kb, Bi = v; + (k/n)?, noting that 8b < k <
n/8a(n/bk), 4ba < B~ and (n/kb)?(k/n)? > n/k > 1, there isa set S’ partitioned
into S}, ..., S, with each |S!] < 8b such that each G := (]—"’) o is (8, 4(G))n /kb)-

global with 1(GY) > a, S#M,B, /2. We have 24(G%) > &¢ + (k/n)?, unless F is

Gt-free and S,’ =, in Wthh case Q,O is a restriction of ]-',’, so is also Gt -free, w1th
2u(G?) > elk/n + (k/n)d.

Next we define G/ := (F)§ with enhanced globalness, obtaining S partitioned into
Si,..., S, by letting S; = S/ if G is (4, 1(G?)Bn/sk)-global, or otherwise letting
S; = S/ U R; where |R;| < 4and G} := (G?) &, has w(G!) > (G Bn/sk. We also
define G; = (.7-})(;j fori € [o0 — 1] and note that each 1 — u(G;) < 2(1 — u(F;)).

By Lemma 2.2, each gl.‘ or g; is (4, ZM(Q?),Bn/sk)-global if Rk = ¥ or
(4, 8u(GY)n/kb)-global otherwise. By Lemma 2.4, each G! is (b/8, u(G})/2)-
uncapturable, so u(G!) > u(G)/2 > n(G?)/2. Thus 2871 (G)) > v/ + (k/n)4,
and

(i) G/ is (4, 814(G))n/kb)-global with y/ > e4/s, or

(i) G/ is GT-free and (4, 2u(G!)Bn/sk)-global with y/ > ek/n.
Indeed, if option (i) does not hold then G? is G *-free with 2,(G?) > ek /n+ (k/n)¢,
and also is (4, M(g?)ﬁn/sk)—global, so R; = ¥ and G/ is a restriction of Q,Q, so is also
G™T-free.

@ Springer



Combinatorica (2025) 45:27 Page330of36 27

We will show that Gy, ...,Go_1, G}, ..., G, cross contain HY, .. H; 1 Bfr,
.., B;f, thus obtaining the required contradiction. It suffices to ﬁnd an injection

¢:B— [n] where B = [ J{_, B;, such that Lemma 8.5 provides a cross embedding

ofe1 s € 1ngl,...,gs,whereforeachedgeAj € H; wedefinee; = A;\ B and
H; = (g,)¢E§M ) ,orif Aj = B; wedefinee; = A; \ B=@and H; = (g,f)j’;ﬁgg).

We note that if BN A; = § then each 1 — u(H;) < 2(1 — u(G;)) for any
¢. We consider ¢ obtained by choosing independent uniformly random injections
¢; : Bi — [n] foreachi € [a]. Then P(¢ is injective) > 1 — 2a2/n and P(u(H;) >
1 — /o) > 1 —2,/eg whenever A; € | J;.; H; by Lemma 4.2. We write E; for the
event that ¢; (B;) € 9,G/, where ¢; = b"3u(g’ ). It suffices to show that conditional

on E; each H; = (Gl )i’((BB)) is (vb, (k/n)*)- uncapturable, and that P(E;) > 81/3a

For uncapturability, we recall that Q’i’ is (4, 8 (gi)n /kb)-global with 28~ u(gi) >
(k/n)?. Thus H; and H := <g;)g;g§;; are (2, 814(G/)n/kb)-global by Lemma 2.2.
Conditional on E; we have j.(H}) > ¢;,s0 M is (b /16, n(H!)/2)-uncapturable by
Lemma 2.4. Then p(H}) > n(H))/2 > b=3u(G)/4, so H, is (b7 /32, w(H.)/2)-
uncapturable by Lemma 2.4, and so (+/b, (k/n)*?)-uncapturable.

It remains to show P(E;) > eé/ 3 We may assume ©(G;) < e kP otherwise
this holds easily by Fairness (Proposition 4.3). As 2,3_1 M(gg) > (k/n)d this gives
k < nP. By Lemma 4.4 with ¢ = b! we are done unless 8(1)/3a > P(E;) = n(8,G) =
(w(G))/2)%/¢, which implies v/ + (k/n)? < 2871 (G) < (/)P As v/ < &9/s
we have option (ii) above, so g; is GT-free. As adk/n < yl.’ < (s/s)b'o5 we also have
s <ent™®

Now we claim that 85_ G! is G-free. This will suffice to complete the proof, as then
Lemma 4.4 gives the improved estimate 11(32G)) > (e%k/sb +k/n — (s/m)®)P "

(e/ )b “ To see the claim, we suppose ¢'(G) C 802,- g; and will obtain a contradiction
by finding a cross matching in Ay, ..., A, where for each edge A; of G we let
A = (gi’ )?m(z;’ ). We verify the conditions of Lemma 5.7, with (s, s, d, 2) in place
of (s,m,d, K). As G/ is (4,2u(G))Bn/sk)-global, each H; is (2, 4u(G))Bn/sk)-
global by Lemma 2.2. Also, G/ is (s/48, 1(G;)/2)-uncapturable by Lemma 2.4, so
each (H;) > n(G)/2 > ,BSdk/4n and each H; is (s/88, Be?k/8n)-uncapturable
by Lemma 2.4. As s < en” " and k < n we have Belk/8n > (3sk/n)?, so the
required conditions hold. O

8.2 Strong Stability

We conclude with the proof of the main result of this section.

Proof of Theorem8.2 Let G € G(2, A, s) be (a1, az)-critical and C > B~ > b >
d > ayA. Suppose F C (1) with C < k < n/Cs is G*-free and | F| = S, k.0—1].

By Theorem 1.9 (refined junta approximation) there is J € (U["] ) such that |F \
Suksl = 8(171) with 8~ > bdA. We write J = {ji, ..., jo—1), let F; = FJi for
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i € [0 — 1], say with [Fi| > --- > |Fs_1], and note that .7-'? is GT-free. As in the
proof of Theorem 7.1, we have Zj:ll(l —w(F)) <28,s01 — pu(F;) <4rAs/o for
any i < min{rA,o — 1}.

As G is ap-matching-critical, we can define H?, ~~ng71’ Bl2, ...,332 and
I? as in Setup 8.3 with » = 2 and @ = a,, where we identify 7> with [|I?]].
Letting 7/ = ]-"? for i € [az], we have ]-'1,...,.7-'(,,1,.7-"{,...,.7-"[’12 cross free

of (HD*, ..., (HZ_)* . (BD*...., (B2, so FV is (b, 28)%k/n + (k/n)?)-
capturable by Lemma 8.4. We fix J' € (["Z”) SO thatu(}'?w,) < (28)%k/n+ (k/n)?.

As G is aj-degree-critical, we can define HL ..., H;_l, Bll, R BJ and 1! as
in Setup 8.3 with r = 1 and @ = a;, where we identify 7' with [|I'|]. For each

x € J/, letting F] = f;U{x} for i € [ai], we have Fi,..., Fo1, F|, ..., Fp,
cross free of (H)T, ..., (H!_DT, (BDHT, ..., (BL)*.s0 Fiom 1s O, (28)k/n +
(k/n)?)-capturable by Lemma 8.4. We fix J, € (["]\(ﬁ){xn) so that u((}"}‘u{x})%) <
28)k/n + (k/n)?.

LetF = (T ¢ (["]2\1) :w(Fr,;) > bk/n}.ThenF C F':={xy:xe€J',y € J}
and |F'| < b?. Writing 7 = {{x} : x € J} U F, we have | F \ Guik(T)] < |]-"?U],| +
e 1 Fiumun |+ Xrer 1 FFusls 30 W(F\ Gu (1)) < (28)7k/n+ (k/m)®) (1 +
bk/n) + (bk/n)>. Writing G := G, x(T), as |F\ G| > |F\ Sui.s| — |Gu i (F)| we
also have u(F \ G) > 8k/n — (bk/n)*. We deduce 8k/n < (28)%k/n + 2(bk/n)?, so
8 < 3bk/n, giving |F \ G| < 2b3(2:§).

To complete the proof of the first statement of the theorem, it remains to show | F| <
| Fa,a, 1. To see this, note that otherwise F contains some Fo = (7; : i € [a,]), where
r =2 and Fy is a matching or » = 1 and Fj is a star. Writing 7 = ]—'JTL,TI, we have
Fioeooos Foo1, Fis ..., Fy, cross free of (HDT, .. (H DY, BDT, .., (B;r)+,
SO some .7-"1.’ is (b/2, (k/n)d)-capturable by Lemma 8.4. However, u(F)) > bk/n as
T; € F, so we have a contradiction.

Now suppose |F| > |Fnr.cl — 8(2:5) with ¢ € (0, B). We have

o—1
WF) < wWFNG + 1@ — £ 50— w@F) — 253" — u(F ).,
i=1 TeF

where w(F \ G) < 2(bk/n)* and 1(G) < u(Fnkc) — (Fayay| — |FNK? /207 <
1(F) + (|Fayar| = |F| +26)k?/2n%. Thus |F| = |Fyya, 1, 50 G := G 4 (T) is a copy
of Fu k.G, and

o—1

YU —pnFE)+ Y (0= puFlup) < 3e.

i=1 TeF
Next we suppose for contradiction that u(F \ G) > (ek/n)?. We fix some
T e ("M)\ F with w(F5,;) > (ek/n)*2. By maximality of F,,, we can

fix a matching T1,...,T,, in F with T,, = T. Writing F| = fJT’QTI,, we have
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Fioooos Fotn Fio ... F), cross free of (HHT, ..., (HZ_ )T, (BD*T,....(BL)T.
Thus Lemma 6.3 gives the required contradiction, so t(F\G) < (gk/n)?, as required.

Finally, letk < \/n and suppose for contradiction that there issome A € F\G. From
the previous statement we have |G\ F| < 28 (Z:g).We fixany T € ([”]2\1) withT C A,
a matching 71, ..., Ty, in F with T,, = T, and a bijection ¢ : Baz2 — T. Writing
A’j = A; N Ay for each edge A; of G, where A; = 352, we define Gy, ..., Gs_1

A . (A") .

by G, = (F)2 it A; € Hy withi e [o —1orG; = (F)A ™ it A; = B2
with i € [a; — 1]. For each j € [s — 1], writing r; = |A/j| + 1 € [2], we have
("kirjr-’) —1Gjl <G\ Fl,so0as (”kfzz) > .1(,:2) fork < /nwehave 1 —u(G;) <
208 < 1/2. However, now Gy, ..., Gg_1 cross contain A \ Ag, ..., Ag_1 \ As by
Lemma 2.9, so we have the required contradiction. O
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