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Abstract
We obtain new results on the Turán number of any bounded degree uniform hyper-
graph obtained as the expansion of a hypergraph of bounded uniformity. These are
asymptotically sharp over an essentially optimal regime for both the uniformity and
the number of edges and solve a number of open problems in Extremal Combinatorics.
Firstly, we give general conditions under which the crosscut parameter asymptotically
determines the Turán number, thus answering a question of Mubayi and Verstraëte.
Secondly, we refine our asymptotic results to obtain several exact results, including
proofs of the Huang–Loh–Sudakov conjecture on cross matchings and the Füredi–
Jiang–Seiver conjecture on path expansions. We have introduced two major new tools
for the proofs of these results. The first of these, Global Hypercontractivity, is used as
a ‘black box’ (we present it in a separate paper with several other applications). The
second tool, presented in this paper, is a far-reaching extension of the Junta Method,
which we develop from a powerful and general technique for finding matchings in
hypergraphs under certain pseudorandomness conditions.
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1 Introduction

A longstanding and challenging direction of research in Extremal Combinatorics,
initiated by Turán in the 1940s, is that of determining the maximum size of a k-graph
(k-uniform hypergraph)H ⊂ ([n]

k

)
on n vertices not containing some fixed k-graph F ;

this is the Turán number, denoted ex(n, F). Turán numbers of graphs (the case k = 2)
are quite well-understood (if F is not bipartite), but there are very few results even
for specific hypergraphs, let alone general results for families of hypergraphs (see the
survey [27]).

In this paper we prove a number of general results on Turán numbers for the family
of bounded degree expanded hypergraphs (see Sect. 1.2), thus solving several open
problems: a question of Mubayi and Verstraëte relating asymptotics of the Turán
number to the crosscut (see Theorem 1.4), the Huang–Loh–Sudakov conjecture on
cross matchings (see Theorem 1.2) and the Füredi–Jiang–Seiver conjecture on path
expansions (see Corollary 1.7).

A striking feature of our results is their applicability across an essentially optimal
range of uniformities and sizes, which previously seemed entirely out of reach. This is
achieved via twonewmethods. Thefirst is a new sharp threshold theorem (seeTheorem
3.4) derived from our theory of Global Hypercontractivity, which was presented in
the first version of this paper (https://arxiv.org/abs/1906.05568); that method is now
split off into a separate paper [29] with several other applications unrelated to the
questions of Extremal Combinatorics considered here. The second method is a far-
reaching extension of the JuntaMethod of Keller and Lifshitz [30] (which itself greatly
extended the applications of an approach initiated by Dinur and Friedgut [4]). A large
part of the technical work in this paper goes into developing a powerful and general
machinery for finding matchings in hypergraphs under certain pseudorandomness
conditions.

1.1 Cross Matchings

Before introducing the general setting of expanded hypergraphs, we first consider
an important case, which is in itself a source of many significant problems, namely
the problem of finding matchings. In both theory and application, a wide range of
significant questions can be recast as existence questions for matchings (see e.g. the
books [35, 39] and the survey [28]).

Perhaps the most well-known open question concerning matchings, due to Erdős
[11], asks how large a family F ⊂ ([n]

k

)
can be if it does not contain an s-matching,

i.e. sets {A1, . . . , As} with Ai ∩ A j = ∅ for all distinct i, j ∈ [s]. Two natural
families of such F are stars Sn,k,s−1 := {

A ∈ ([n]
k

) : A ∩ [s − 1] �= ∅}
and cliques

Ck,s−1 := ([ks−1]
k

)
. Erdős conjectured that one of these families is always extremal.

Conjecture 1.1 (Erdős matching conjecture) Let n ≥ ks and suppose that F ⊂ ([n]
k

)

does not contain an s-matching. Then |F | ≤ max
{|Sn,k,s−1|, |Ck,s−1|

}
.

This conjecture remains open, despite an extensive literature, of which we will
mention a few highlights. The case s = 2 is the classical Erdős–Ko–Rado theorem
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[12]. Erdős and Gallai [10] confirmed the conjecture for k = 2. The case k = 3 was
proven by Łuczak and Mieczkowska [37] for large s and by Frankl [17] for all s.
Bollobás et al. [1] proved the conjecture provided n = �(k3s), which was reduced
to n = �(k2s) by Huang et al. [24] and finally to n = �(ks) by Frankl [13] (in fact
to n � 2ks, improved by Frankl and Kupavskii [16] to n ≥ 5ks/3 for large s), which
is the optimal order of magnitude for the extremal family to be a star rather than a
clique—or even to just contain s disjoint k-sets.

Our first result in this context is a cross version of that of Frankl, which proves
(a strengthened form of) a conjecture of Huang et al. [24]. Here we say that families
F1, . . . ,Fs cross contains a hypergraph {A1, . . . , As} (e.g. an s-matching) if Ai ∈ Fi

for each i ∈ [s].

Theorem 1.2 There is a constant C > 0 so that if n, s, k1, . . . , ks ∈ N with ki ≤ n
Cs

and Fi ⊂ ([n]
ki

)
with |Fi | ≥ |Sn,ki ,s−1| for all i ∈ [s], either F1, . . . ,Fs cross contain

an s-matching, or there is J ⊂ [n] with |J | = s − 1 such that each Fi = Sn,ki ,J :=
{A ∈ ([n]

ki

) : A ∩ J �= ∅}.

Remark 1.3 Theorem 1.2 in the case that all ki = k was proved by Huang et al. [24]
for n = �(k2s) and recently by Frankl and Kupavskii [15] for n = �(ks log s); our
result applies to n = �(ks), which is the optimal order of magnitude. Subsequent
to our work, a very different proof of the Huang–Loh–Sudakov Conjecture has been
given by Lu et al. [36]. We also obtain a strong stability result (see Theorem 6.1
below) which gives structural information even if we only assume that the size of each
family is within a constant factor of that of a star: either there is a cross matching or
some family correlates strongly with a star. Besides having independent interest, this
stability result will play a key role in the proof of our general Turán results.

1.2 Expanded Hypergraphs

As mentioned above, there are very few general results on Turán numbers for a family
of hypergraphs. One family for which there has been substantial progress is that of
expanded graphs (see the survey [38]). Given an r -graphG and k ≥ r , the k-expansion
G+ = G+(k) is the k-uniform hypergraph obtained from G by adding k − r new
vertices to each edge, i.e. G+ has edge set {e ∪ Se : e ∈ E(G)} where |Se| = k − r ,
Se ∩ V (G) = ∅ and Se ∩ Se′ = ∅ for all distinct e, e′ ∈ E(G). In particular, a k-graph
s-matching is the k-expansion of a graph s-matching.

When G is a graph (the case r = 2), in the non-degenerate case when k is less than
the chromatic number χ(G) the Turán numbers ex(n,G+(k)) are well-understood
(see [38, Sect. 2]), so the main focus for ongoing research is the degenerate case
k ≥ χ(G). Here Frankl and Füredi [14] introduced the following important parameter
and corresponding construction that seems to often determine the asymptotics of the
Turán number. For any r -graph G, we call S ⊂ V (G+) a crosscut if |E ∩ S| = 1 for
all E ∈ G+. The crosscut σ(G) of G is the size of the minimal such set, i.e.

σ(G) := min
{|S| : S ⊂ V (G+) with |E ∩ S| = 1 for all E ∈ G+}

.
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It is easy to see that σ(G) exists for k ≥ r + 1 and that in this regime the parameter
does not depend on k. Clearly,

S(1)
n,k,σ (G)−1 :=

{
A ∈ ([n]

k

) : |A ∩ [σ(G) − 1]| = 1
}

is G+-free. Moreover, this simple construction determines the asymptotics of
ex(n,G+(k)) for n > n0(k,G) for several graphs G, including paths [22, 31], cycles
[21, 31] and trees [20, 32].Given this phenomenon, according toMubayi andVerstraëte
[38], one of the major open problems on expansions is to decide when the Turán num-
ber is asymptotically determined by the crosscut construction. Our next result resolves
this problem for all bounded degree r -graphs (so in particular for graphs) in a range
of parameters that is optimal up to constant factors. Moreover, we also obtain a strong
structural approximation for any family that is close to extremal (see Theorem 1.8
below).

Theorem 1.4 For any r ,� ≥ 2 and ε > 0 there is C > 0 so that the following holds
for any r-graph G with s edges, maximum degree �(G) ≤ � and σ(G) ≥ 2. For any
k, n ∈ N with C ≤ k ≤ n/Cs we have ex(n,G+(k)) = (1 ± ε)|S(1)

n,k,σ (G)−1|.
Remark 1.5 Some lower bound on k is necessary to obtain the conclusion in Theorem
1.4. Indeed, we have already mentioned that the non-degenerate case k < χ(G)

when G is a graph exhibits different behaviour (a complete partite k-graph shows that
ex(n,G+) = �(n/k)k), and moreover, examples in [38] show that some lower bound
on k may be necessary even if G is bipartite (e.g. if G = K9,9 then consider the
3-graph of triangles in a suitably dense random graph madeG-free by edge deletions).
The upper bound on k in our result is also necessary up to the constant factor by
space considerations, as even the complete k-graph

([n]
k

)
can only contain G+(k)

if n ≥ |V (G+)| = |V (G)| + (k − 2)s. With the exception of Frankl’s matching
theorem [13], Theorem 1.4 appears to be the only known Turán result in which both
the uniformity k and the size s can vary over such a wide range.

Next we consider conditions under which we can refine the asymptotic result of
Theorem 1.4 and determine the Turán number ex(n,G+) exactly. One complication
here is that crosscuts may be beaten by stars Sn,k,τ (G)−1, where

τ(G) := min
{|S| : |S ∩ e| ≥ 1 for all e ∈ E(G)

}

is the transversal number of G. Clearly τ(G) ≤ σ(G). For fixed s, crosscuts cannot
be beaten by smaller stars, but this may not hold when s grows with n, as then edges
with more than one vertex in the base of the star are significant. Another complication
is that lower order correction terms are necessary for certain G, e.g. for k-expanded
paths P+

� (k) of length � for n > n0(k, �) we have ex(n, P+
3 (k)) = (n−1

k−1

) = |Sn,k,1|,
as predicted by the crosscut/star construction, but ex(n, P+

4 (k)) = (n−1
k−1

) + (n−3
k−2

)
, as

we can add all sets containing some fixed pair of vertices. This is analogous to the
familiar situation in extremal graph theory where we only expect exact results for
graphs that are critical with respect to the key parameter of the extremal construction.
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Accordingly, we introduce the following analogous concept of criticality for expanded
hypergraphs with respect to crosscuts and stars: we say that G is critical if it has an
edge e such that

σ(G \ e) = τ(G \ e) < τ(G) = σ(G).

We obtain the following general exact result for Turán numbers.

Theorem 1.6 For any r ,� ≥ 2 there isC > 0 such that for any critical r-graphG with
s edges, maximum degree �(G) ≤ � and C ≤ k ≤ n/Cs we have ex(n,G+(k)) =
|Sn,k,σ (G)−1|.

This result applies to many graphs considered in the previous literature, such as
paths of odd length. Paths of even length are not critical, but satisfy a generalised
criticality property: deleting one edge does not reduce the transversal number, but
deleting two edges (whether disjoint or intersecting) does reduce the crosscut number.
Thus we have the following natural construction for excluding any expanded path P+

�

of length �. Let F∗
n,k,� = Sn,k,J with |J | = σ(P�)− 1 if � is odd, or if � is even obtain

F∗
n,k,� from Sn,k,J by adding {A ∈ ([n]

k

) : T ⊂ A} for some T ∈ ([n]\J
2

)
. ClearlyF∗

n,k,�

is P+
� -free. Füredi et al. [22] showed that ex(n, P+

� ) = |F∗
n,k,�| provided n � n0(k, �),

and conjectured that this holds provided n ≥ Ck�. We prove this conjecture.

Corollary 1.7 There is C > 0 so that if n, k, � ∈ N and C ≤ k ≤ n/C� then
ex(n, P+

� ) = |F∗
n,k,�|.

1.3 Junta Approximation

In recent years, the Analysis of Boolean functions has found significant application in
Extremal Combinatorics, via the connection provided by theMargulis–Russo formula
between the sharp threshold phenomenon and influences of Boolean functions. This
approach was initiated by Dinur and Friedgut [4], who applied a theorem of Friedgut
[19] on Boolean functions of small influence to prove that large uniform intersecting
families can be approximated by juntas, i.e. families that depend only on a few coor-
dinates. This connection has since played a key role in intersection theorems for a
variety of settings, including graphs [6], permutations [7] and sets [8, 9].

The approach of Dinur and Friedgut was substantially generalised by Keller and
Lifshitz [30] to apply to a variety of Turán problems on expanded hypergraphs. At a
very high level, their Junta Method is a version of the Stability Method in Extremal
Combinatorics, in that it consists of two steps: an approximate step that determines the
rough structure of families that are close to optimal, and an exact step that refines the
structure and determines the optimal construction. Their approximate step consisted
of showing that any G+-free family is approximately contained in a G+-free junta.

The crucial new difficulty that we need to address in this paper is allowing the
number of edges in G to grow as a function of n, whereas the previous works needed
it to be a fixed constant. Friedgut’s theorem can no longer be applied in this setting,
as we require a threshold result for Boolean functions f : {0, 1}n → {0, 1} according
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to the p-biased measure μp in the sparse regime where both p and μp( f ) may be
functions of n that approach zero.

Our new sharp threshold result (see Theorem 3.4) provides the necessary improve-
ment on the analytic side which, when combined with a number of additional
combinatorial ideas, allow us to obtain the following junta approximation theorem.
For the statement, we introduce the notation G(r , s,�) for the family of all r -graphs
G with s edges and maximum degree �(G) ≤ �. We also recall that S ⊂ V (G+) is
a crosscut if |E ∩ S| = 1 for all E ∈ G+, and that σ(G) denotes the minimum size of
a crosscut.

Theorem 1.8 Let G ∈ G(r , s,�) and C � r�ε−1. Then for any G+-free F ⊂ ([n]
k

)

with C ≤ k ≤ n/Cs, there is J ⊂ V (G) with |J | ≤ σ(G) − 1 and |F \ Sn,k,J | ≤
ε|Sn,k,σ (G)−1|.

We note that Theorem 1.4 is immediate from Theorem 1.8, as for k ≥ C � ε−1

we have

ex(n,G+) ≥ |S(1)
n,k,σ (G)−1| ≥ (1 − ε)|Sn,k,σ (G)−1|.

The set J in Theorem 1.8 will consist of all vertices of suitably large degree. Thus
F∅

J := F \ Sn,k,J does not have any vertices of large degree, which we will think of
a pseudorandomness property.

While Theorem 1.8 suffices for asymptotic results, for our exact results we will
require the following refined junta approximation result proved in Sect. 5, in which
we improve the bound on |F∅

J |.
Theorem 1.9 Let G ∈ G(r , s,�), 0 < C−1 � δ � ε � (r�)−1 and C ≤ k ≤
n/Cs. Then for any G+-free F ⊂ ([n]

k

)
with |F | > |Sn,k,σ (G)−1| − δ

(n−1
k−1

)
there is

J ∈ ( [n]
σ(G)−1

)
with |F \ Sn,k,J | ≤ ε

(n−1
k−1

)
.

1.4 Structure, Strategy and Techniques

To introduce our new techniques, we will first provide some context by indicating the
overall structure andwhere new ingredients are needed. In the proof of Theorem1.8we
will consider separately the two steps of showing |J | ≤ σ(G) − 1 and |F \ Sn,k,J | ≤
ε|Sn,k,σ (G)−1|. For both steps we consider a two step embedding strategy for G+,
where in the first step we embed1 G in the ‘fat shadow’ of F (meaning that the image
of every edge has many extensions to an edge of F) and in the second step we ‘lift’
edges from the fat shadow to the original family.

This proof strategy is implemented in the next section, assuming results that will be
proved in later sections. The analysis of fat shadows and the embedding steps will be
carried out in Sect. 4. The lifting step requires results on cross matchings presented in
Sect. 3, which will also be used for the proof of the Huang–Loh–Sudakov Conjecture
in Sect. 6.

1 For simplicity we are only describing the embedding strategy used to bound |F \ Sn,k,J |; the strategy
for bounding |J | is similar, but adapted so that J can play the role of a crosscut in G.
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These cross matching results in Sect. 3 and their further refinements in Sect. 5 are
where we need the new techniques, arising from the interplay of two combinatorial
pseudorandomness notions with sharp threshold results from global hypercontractiv-
ity. After developing these techniques, the final three sections of the paper apply them
in conjunction with some additional combinatorial ideas to prove our exact results on
the Turán numbers of expanded hypergraphs.

Pseudorandomness

An important theme throughout this paper will be the interplay between two pseu-
dorandomness notions: globalness and uncapturability. Informally, a hypergraph is
‘uncapturable’ if there is no small set that hits most of its edges and ‘global’ if one
cannot obtain a significant density increment by restricting to those edges that contain
some small fixed set. We will see that globalness implies uncapturability, and that
uncapturability can be ‘upgraded’ to globalness by taking appropriate restrictions.

Here we highlight an important new phenomenon for cross matchings with the
following result (a simplified form of Lemma 5.7). Whereas an extremal existence
result requires minimum density of order sk/n, we see that a pseudorandom existence
result only requires a density parameter of order (sk/n)d for any fixed constant d (see
the next section for the precise definition of uncapturability).

Lemma 1.10 Let Fi ⊂ ([n]
k

)
for i ∈ [s], where 2d ≤ k ≤ n/Cs with C � d ≥ 1. If

each Fi is (2ds, (2sk/n)d)-uncapturable then F1, . . . ,Fs cross contain a matching.

Sharp Thresholds

A classical theorem of Bollobás and Thomason [2] shows that any monotone property
(i.e. hypergraph)Fn ⊂ {0, 1}n has a threshold.Writing pFn (t) = inf{p : μp(D) ≥ t},
this means that for any ε > 0 there is C > 0 such that pFn (1− ε) ≤ CpFn (ε). Many
natural properties exhibit the ‘sharp threshold phenomenon’ that C = 1 + o(1) as
n → ∞. In particular, our results on Global Hypercontractivity give such a result for
global properties (see Theorem 3.4). Any hypergraph F has a global restriction F ′
obtained by taking those edges containing some small fixed set, so our sharp threshold
result enables us to find μp′(F ′) � μp(F) for some p′ close to p.

We can now give a rough indication (omitting many details) of how this sharp
threshold result can be used to prove a result in the direction ofLemma1.10 (weakening
(sk/n)d to sk/Cn as in Lemma 3.1). Given uncapturable families F1, . . . ,Fs , we
can upgrade to global families F ′

1, . . . ,F ′
s , where we find a small set R partitioned

into (R1, . . . , Rs) and each F ′
i = {A \ Ri : A ∈ Fi , A ∩ R = Ri }. Via the sharp

threshold result we can then find further restrictions to pass to families F ′′
1 , . . . ,F ′′

s
with μ2p(F ′′

i ) � μp(Fi ), where p = k/n. This increase in density is sufficient to
find a cross matching by a weak form of the extremal result (translated to the product
measure setting), which can then be extended to a cross matching in the original
families.
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2 Globalness and Uncapturability

This section introduces the two key pseudorandomness concepts that will be funda-
mental throughout this paper. After some basic definitions in the first subsection, we
will define and analyse these pseudorandomness notions in the second subsection. We
conclude in the third section by proving our junta approximation theorem, assuming
two embedding lemmas that will be proved in Sect. 4.

2.1 Definitions

Given m, n ∈ N with m ≤ n we let [n] = {1, 2, . . . , n} and [m, n] = {m,m +
1, . . . , n}. We write {0, 1}X for the power set (set of subsets) of a set X (identifying
sets with their characteristic 0/1 vectors) and

(X
k

) = X (k) = {
A ⊂ X : |A| = k

}
. We

call F ⊂ {0, 1}X a family or a hypergraph on the vertex set X , and the elements of F
are called edges. We say F is k-uniform if F ⊂ (X

k

)
; we also call F a k-graph on X .

Given a family F ⊂ {0, 1}X and B ⊂ J ⊂ X we write F B
J for the family

F B
J :=

{
A ∈ {0, 1}X\J : A ∪ B ∈ F

}
⊂ {0, 1}X\J .

ClearlyF B
J is (k−|B|)-uniform ifF is k-uniform. If either B or J has a single element

{ j} then we will often suppress the bracket, e.g. Fv
v = F {v}

{v} .
We refer to Fv

v as the exclusive link of v in F . The inclusive link of v in F is
F ∗ v := {E ∈ F : v ∈ E}. The degree of a vertex v in F is dF (v) = |Fv

v | =
|F ∗ v|. The minimum and maximum degrees of F are δ(F) = minv∈V (F) dF (v) and
�(F) = maxv∈V (F) dF (v).

Let H1, . . . ,Hs ⊂ {0, 1}V . We say that F1, . . . ,Fs ⊂ {0, 1}X cross contain
H1, . . . ,Hs if there is an injection φ : V → X such that φ(Hi ) ⊂ Fi for all i ∈ [s].
Here we write φ(Hi ) = {φ(e) : e ∈ Hi } with each φ(e) = {φ(x) : x ∈ e}.

We simply say that F1, . . . ,Fs cross containH if e(H) = s and F1, . . . ,Fs cross
contain an ordering of the edges ofH, i.e. ifH = {ei : i ∈ [s]} then there is a permu-
tation σ ∈ Ss such that the hypergraphsF1, . . . ,Fs cross contain {eσ(1)}, . . . , {eσ(s)}.
Thus a single hypergraphF containsH ifF1, . . . ,Fs cross containH, whereFi = F
for all i ∈ [s].

Given an r -graph G and k ≥ r , we recall that the k-expansion G+ = G+(k) is the
k-uniform hypergraph obtained from G by adding k − r new vertices to each edge,
i.e. G+ has edge set {e ∪ Se : e ∈ E(G)} where |Se| = k − r , Se ∩ V (G) = ∅ and
Se ∩ Se′ = ∅ for all distinct e, e′ ∈ E(G).

When embedding expanded hypergraphs in uniform families, we may allow the
uniformity of our families to vary, defining cross containment of G+ in the obvious
way: the edge of G+ embedded in the family Fi ⊂ ([n]

ki

)
is obtained from an edge of

G by adding ki − r new vertices.
A family F ⊂ {0, 1}X is said to be monotone if given F ∈ F and F ⊂ F ′ ⊂ X

we also have F ′ ∈ F . Given F ⊂ {0, 1}X the up closure of F is the monotone
family F↑ = {B ⊂ X : A ⊂ B for some A ∈ F} ⊂ {0, 1}X . The �-shadow of F is
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∂�(F) := {F ∈ (X
�

) : F ⊂ G for some G ∈ F}. We usually simply write ∂(F) for
∂1(F).

Given F ⊂ (X
k

)
we will write μ(F) = |F |/(|X |

k

)
. Some of our results are more

naturally stated with |F | and others with μ(F), so we will freely move between
these settings. Given p ∈ [0, 1] we will use μp to denote the p-biased measure on
{0, 1}n , where a set A ∼ μp is selected by including each i ∈ [n] independently
with probability p. We extend this notation to families F ⊂ {0, 1}n by μp (F) :=
PrA∼μp [A ∈ F].We often identify a familyF with its characteristic Boolean function
f : {0, 1}n → {0, 1} and apply the above terminology freely in either setting, e.g. we
call f monotone if F is monotone and write μp( f ) for the expectation of f under
μp.

To pass between these measures we note the following simple properties that will
be henceforth used without further comment. For any F ⊂ {0, 1}n and J ⊂ [n], we
have the union bound estimate

μp(F) ≤ μp

(
F∅

J

)
+ p

∑

j∈J

μp

(
F j

j

)
≤ μp

(
F∅

J

)
+ |J |p,

and in the opposite direction

μp(F) ≥ (1 − p)|J |μp

(
F∅

J

)
.

Similar estimates hold replacing μp by uniform measures μ for F ⊂ ([n]
k

)
with

k = pn, remembering to use the correct normalisations: we have μ(F) = |F |(nk
)−1

and μ(F j
j ) = |F j

j |
(n−1
k−1

)−1
. This gives

μ(F) ≤ μ(F∅
J ) + ( k

n

) ∑

j∈J

μ(F j
j ) ≤ μ(F∅

J ) + |J |k
n , and

μ(F) ≥ (n
k

)−1(n−|J |
k

)
μ(F∅

J ) ≥
(
1 − |J |

n−k

)k
μ(F∅

J ).

Throughout a � b or a−1 � b−1 will mean that the following statement holds
provided a is sufficiently small as a function of b.

Recall that G(r , s,�) denotes the family of all r -graphs G with s edges and max-
imum degree �(G) ≤ �. Throughout the remainder of the paper it will often be
convenient to assume that G belongs to the subset G′(r , s,�) of G(r , s,�) consisting
of its r -partite r -graphs. There is no loss of generality in this assumption, as G+(r�)

is r�-partite for anyG ∈ G(r , s,�). To see this, consider a greedy algorithm in which
we assign vertices of G sequentially to r� parts, ensuring for every edge that all of
its vertices are in distinct parts. Clearly this algorithm can be completed. Then the
expansion vertices can be assigned so that each edge of G+ has one vertex in each
part.
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2.2 Pseudorandomness

Here we define our two key notions of pseudorandomness for set systems, namely
uncapturability and globalness, and explore some of their basic properties.

Definition 2.1 Let F ⊂ {0, 1}n and μ be a measure on {0, 1}n .
We say F is (μ, a, ε)-uncapturable if μ(F∅

J ) ≥ ε whenever J ⊂ [n] with |J | ≤ a.
We say F is (μ, a, ε)-global if μ(F J

J ) ≤ ε whenever J ⊂ [n] with |J | ≤ a.
We say F is (μ, a, ε)-capturable if it is not (μ, a, ε)-uncapturable, or (μ, a, ε)-

local if it is not (μ, a, ε)-global. We omit μ from the notation if it is clear from the
context, i.e. ifF ⊂ ([n]

k

)
with uniform measure orF ⊂ {0, 1}n with p-biased measure

μp, where p is clear from the context.

We now establish some basic properties of these definitions. For each property we
state two lemmas that apply when μ is uniform or μ = μp. We only give proofs
in the uniform setting, as those in the p-biased setting are essentially the same. The
following pair of lemmas shows that globalness is preserved by restrictions.

Lemma 2.2 IfF ⊂ ([n]
k

)
is (a, ε)-global and I ⊂ J ⊂ [n]with |I | < a and |J | < n/2k

then F I
J is (a − |I |, 2ε)-global.

Lemma 2.3 If F ⊂ {0, 1}n under μp is (a, ε)-global and I ⊂ J ⊂ [n] with |I | < a
and |J | < 1/2p then F I

J is (a − |I |, 2ε)-global.
Proof of Lemma 2.2 Let K ⊂ [n] \ J with |K | ≤ a − |I |. Then we have μ((F I

J )
K
K ) =

μ((F I∪K
I∪K )∅J\I ) ≤ (

1− |J\I |
n−k

)−k
μ(F I∪K

I∪K ) ≤ 2μ(F I∪K
I∪K ) < 2ε, using that |I ∪ K | ≤ a

and that F is (a, ε)-global. ��
The next pair shows that globalness implies uncapturability.

Lemma 2.4 IfF ⊂ ([n]
k

)
is (1, ε)-global with ε = μ(F)n/2ak thenF is (a, μ(F)/2)-

uncapturable.

Lemma 2.5 If F ⊂ {0, 1}n under μp is (1, ε)-global with ε = μp(F)/2ap then F is
(a, μp(F)/2)-uncapturable.

Proof of Lemma 2.4 If |J | ≤ a then μ(F∅
J ) ≥ μ(F) − ( k

n

) ∑
j∈J μ(F j

j ) ≥ μ(F) −
( k
n

)|J |ε ≥ μ(F)/2. ��
Uncapturability does not imply globalness, but we do have a partial converse: by

taking restrictions we can upgrade uncapturable families to families that are global or
large.

Lemma 2.6 Suppose β ∈ (0, .1) andFi ⊂ ([n]
ki

)
with 2r < ki < βn/2rm are (rm, δi )-

uncapturable for i ∈ [m]. Then there are pairwise disjoint S1, . . . , Sm with each
|Si | ≤ r such that, setting Gi = (Fi )

Si
S where S = ⋃

i Si , whenever μ(Gi ) < β we
have Si = ∅ and Gi is (r , 2β)-global with μ(Gi ) > δi .
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Lemma 2.7 Suppose β ∈ (0, .1) and Fi ⊂ ([n]
ki

)
with ki < βn/2rm are (rm, δi )-

uncapturable for i ∈ [m]. Then there are pairwise disjoint S1, . . . , Sm with each
|Si | ≤ r such that, setting Gi = (F↑

i )
Si
S where S = ⋃

i Si and pi = ki/(n − |S|),
whenever μpi (Gi ) < β we have Si = ∅ and Gi is (r , 2β)-global with μpi (Gi ) > δi/4.

Proof of Lemma 2.6 Let I ⊂ [m] be maximal such that there exists a collection of
pairwise disjoint sets (Si : i ∈ I ) with |Si | ≤ r and μ((Fi )

Si
Si

) > 1.5β. Let S =
⋃

i∈I Si and Gi = (Fi )
Si
S for each i ∈ [m], where Si = ∅ for i ∈ [m] \ I . For any i ∈ I

we have μ(Gi ) > μ((Fi )
Si
Si

) − |S \ Si |ki/n > β. Now consider i with μ(Gi ) < β.
Then i /∈ I , so Si = ∅ and μ(Gi ) > δi by uncapturability. Furthermore, for any
R ⊂ [n] \ S with |R| ≤ r we have μ((Fi )

R
R) ≤ 1.5β, so (Gi )RR = ((Fi )

R
R)∅S has

μ((Gi )RR) ≤ (
1 − |S|

n−ki

)−ki μ((Fi )
R
R) < 2β. ��

We conclude this subsection with a lemma on decomposing any family according
to its vertex degrees, where to make an analogy with the regularity method we think
of high degree vertex links as ‘structured’ and the low degree remainder as ‘pseudo-
random’.

Lemma 2.8 Let F ⊂ ([n]
k

)
and J = {i : μ(F i

i ) > ε}. If |J | < n/2k then G = F∅
J is

(1, 2ε)-global, and so (a, μ(G)/2)-uncapturable with a = μ(G)n/4kε.

Proof If j ∈ [n] \ J then μ(F j
j ) ≤ ε by definition of J , so μ(G j

j ) = μ((F j
j )

∅
J ) ≤

(
1 − |J |

n−k

)−k
μ(F j

j ) < 2ε. The lemma follows by Definition 2.1 and Lemma 2.4. ��

2.3 Embeddings

Here we will prove Theorem 1.8 assuming two fundamental embedding results, which
will be proved in Sect. 4. The first of these shows that sufficiently large families contain
a cross copy of any expanded hypergraphG+. Our bound onμ(Fi ) is sharper for larger
ki : when ki = O(1) it is a constant, which is relatively weak (but still useful), whereas
when ki � log n it is O(ski/n) = O(σ (G)ki/n), which is tight up to the constant
factor.

Lemma 2.9 Let G ∈ G(r , s,�), C � r� and C ≤ ki ≤ n/Cs for all i ∈ [s]. Then
any Fi ⊂ ([n]

ki

)
with μ(Fi ) ≥ e−ki /C + Cski/n for all i ∈ [s] cross contain G+.

When the uniformities ki are small we cannot improve this cross containment result,
as below density e−�(ki ) the families Fi may have disjoint supports. However, when
finding G+ in a single family F we can get a much better bound on the density, and
moreover it suffices to assume that F is sufficiently uncapturable, as follows.

Lemma 2.10 Given G ∈ G(r , s,�), C � C1 � C2 � r� and C ≤ k ≤ n/Cs, any
(C1s, sk/C2n)-uncapturable F ⊂ ([n]

k

)
contains G+.

We conclude this section by deducing our junta approximation theorem from the
above lemmas.
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Proof of Theorem 1.8 Let G ∈ G(r , s,�) and C � C1 � C2 � r�ε−1. Consider
any G+-free F ⊂ ([n]

k

)
with C ≤ k ≤ n

Cs . Let J = {i ∈ [n] : μ(F i
i ) ≥ β}, where

β := e−k/C1 +C1sk/n. We need to show |J | ≤ σ(G)− 1 and |F∅
J | ≤ ε|Sn,k,σ (G)−1|.

The bound on |J | follows from Lemma 2.9. Indeed, supposing for a contradiction
|J | ≥ σ(G), we may fix a minimal crosscut S of G+ and distinct is ∈ J for each
s ∈ S. Let I = {is : s ∈ S} andFs := F is

I for s ∈ S. By definition of J , for each s ∈ S
we have μ(Fs) > β − |I |k/n > β/2, so by Lemma 2.9 the families (Fs : s ∈ S)

cross contain the exclusive links ((G+)ss : s ∈ S). However, this contradicts F being
G+-free.

As |J | < s ≤ n/Ck we can apply Lemma 2.8 to see that G = F∅
J is (a, μ(G)/2)-

uncapturable with a = μ(G)n/4kβ. However, by Lemma 2.10 G is (C1s, sk/C2n)-
capturable, so we must have μ(G)/2 < sk/C2n, or a < C1s, so again μ(G) <

4βC1sk/n < sk/C2n. As μ(Sn,k,σ (G)−1) > .9(σ (G) − 1)k/n and s ≤ �σ(G) we
deduce |F∅

J | = |G| < ε|Sn,k,σ (G)−1|. ��

3 Matchings

The main result of this section is the following lemma on cross containment of match-
ings in uncapturable families, whichwill be used for ‘lifting’ (as described in Sect. 1.4)
and also in the proof of the Huang–Loh–Sudakov Conjecture.

Lemma 3.1 Let C � C1 � C2 � 1 and Fi ⊂ ([n]
ki

)
with ki ≤ n/Cs for i ∈ [s].

Suppose Fi is (C1m,mki/C2n)-uncapturable for i ∈ [m] and μ(Fi ) > C1ski/n for
i > m. Then F1, . . . ,Fs cross contain a matching.

We start in the first subsection by recalling some basic probabilistic tools, and also
our new sharp threshold result from [29]. Next we present some extremal results on
cross matchings in the second subsection. We conclude by proving the uncapturability
result in the third subsection.

3.1 Probabilistic Tools and Sharp Thresholds

We start with the following lemma that will be used to pass between the uniform and
p-biased measures.

Lemma 3.2 Let n, k ∈ N with k = pn ≤ n. Then P
(
Bin(n, p) ≥ k

) ≥ 1/4. Thus if

A ⊂ ([n]
k

)
we have μp(A↑) ≥ μ(A)/4.

Proof The first statement appears in [23]. With α := μ(A), the second holds as∣
∣A↑ ∩ ([n]

j

)∣∣ ≥ α
(n
j

)
for j ≥ k by the LYM inequality, and so we have μp(A↑) ≥

∑n
j=k P

(
Bin(n, p) = j

)
μ

(
A↑ ∩ ([n]

j

)) ≥ P
(
Bin(n, p) ≥ k

)
α ≥ α/4. ��

We will also need the following well-known Chernoff bound (see [25, Theorem
2.8]), as applied to sums of Bernoulli random variables, i.e. random variables which
take values in {0, 1}; if these are identically distributed then we obtain a binomial
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variable. The inequality can also be applied to a hypergeometric random variable (see
[25, Remark 2.11]), i.e. |S∩T |with S ∈ (X

s

)
and uniformly random T ∈ (X

t

)
for some

X , s and t .

Lemma 3.3 Let X be a sum of independent Bernoulli random variables and 0 < a <

3/2. Then P
[|X − EX | ≥ aEX

] ≤ 2e− a2
3 EX .

Next we state our sharp threshold result for global functions which will play a
crucial role in this section, and so for all subsequent applications of Lemma 3.1.

Theorem 3.4 [29, Theorem 1.9] For any ζ > 0 there is C0 > 0 such that for any
ε, p, q ∈ (0, 1/2) with q ≥ (1 + ζ )p and C > C0, writing r = C log ε−1 and
δ = C−r , any monotone (μp, r , δ)-global F ⊂ {0, 1}n with μp(F) ≤ δ satisfies
μq(F) ≥ μp(F)/ε.

We will apply the following two consequences of this result.

Theorem 3.5 Suppose F ⊂ {0, 1}n is monotone with μp(F) = μ.

1. If μ � r−1 � ε then there is R ⊂ [n] with |R| ≤ r and μ2p(F R
R ) ≥ μ/ε.

2. If p � K−1 � η � 1 then there is R ⊂ [n] with |R| ≤ K logμ−1 and
μKp(F R

R ) ≥ μη.

Proof For (1) we apply Theorem 3.4 with ζ = 1 and the same ε. If F is not (r , δ)-
global then for some R with |R| ≥ r we have μ2p(F R

R ) ≥ μp(F R
R ) ≥ δ ≥ μ/ε. On

the other hand, if F is (r , δ)-global then we can take R = ∅, as Theorem 3.4 gives
μ2p(F) ≥ μ/ε.

For (2), we repeatedly apply Theorem 3.4 with ζ = 1 and ε = μη2 , so r =
C log ε−1 = Cη2 logμ−1 and δ = C−r = μη2C logC ≥ μη, as we may assume
η � C−1. We can assume thatF is (r , δ)-global, otherwise we immediately obtain R
as required, so μ2p(F) ≥ μ/ε = μ1−η2 . Repeating the argument, if we do not find R
then after t ≤ η−2 iterations we reach μ2t p(F) ≥ δ ≥ μη, so we can take R = ∅. ��

3.2 Extremal Results

In this subsection we adapt the method of [24, Lemma 3.1] to prove a variant form of
the following result of Huang et al. [24].

Lemma 3.6 Let k1, . . . , ks, n ∈ N with
∑

i∈[s] ki ≤ n. Suppose Fi ⊂ ([n]
ki

)
for all

i ∈ [s] and thatF1, . . . ,Fs do not cross contain amatching. Thenμ(Fi ) ≤ ki (s−1)/n
for some i ∈ [s].

We will prove the following variant that allows a few families to be significantly
smaller.

Lemma 3.7 Let 1 ≤ m ≤ s, k1, . . . , ks ≥ 0 and n ≥ ∑
i∈[s] ki . Suppose Fi ⊂ ([n]

ki

)

with μ(Fi ) > 2kim/n for i ∈ [m] and μ(Fi ) > 2ki s/n for i ∈ [m + 1, s]. Then
{Fi }i∈[s] cross contain a matching.
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We also require the following version for the p-biased measure, which we will
deduce from Lemma 3.7 by a limit argument similar to those in [5, 18].

Lemma 3.8 Let m ≤ s and p1, . . . , ps > 0 with
∑

i∈[s] pi ≤ 1/2. Suppose that
F1, . . .Fs ⊂ {0, 1}n are monotone families with μpi

(
Fi

) ≥ 3mpi for i ∈ [m] and
μpi

(
Fi

) ≥ 3spi for i ∈ [m + 1, s]. Then {Fi }i∈[s] cross contain a matching.

We introduce the following terminology. Given a = (a1, . . . , as) ∈ R
s and

n, k1, . . . , ks ≥ 0 we say a is forcing for (n, k1, . . . , ks) if any families F1, . . . ,Fs

with Fi ⊂ ([n]
ki

)
and μ(Fi ) >

ai ki
n for all i ∈ [s] cross contain an s-matching.

We say a = (a1, . . . , as) ∈ R
s is forcing if it is forcing for (n, k1, . . . , ks) when-

ever n ≥ ∑
i∈[s] ki and exactly forcing if it is forcing for (n, k1, . . . , ks) whenever

n = ∑
i∈[s] ki . Any forcing sequence is clearly exactly forcing; we establish the con-

verse.

Lemma 3.9 A sequence a ∈ R
s is forcing if and only if it is exactly forcing.

We require the following compression operators. Given distinct i, j ∈ [n] and
F ⊂ [n], we let

Ci, j (F) :=
{

(F \ { j}) ∪ {i} if j ∈ F, i /∈ F;
F otherwise.

Given F ⊂ {0, 1}n , we let Ci, j (F) = {Ci, j (F) : F ∈ F} ∪ {F ∈ F : Ci, j (F) ∈ F}.
We say F is Ci, j -compressed if Ci, j (F) = F .

Proof of Lemma 3.9 A forcing sequence is clearly exactly forcing, so it remains to
prove the converse. We argue by induction on s; the base case s = 1 is clear. Suppose
that a ∈ R

s is exactly forcing. We fix k1, . . . , ks ≥ 0 and show by induction on
n ≥ ∑

i∈[s] ki that a is forcing for (n, k1, . . . , ks), i.e. any families F1, . . . ,Fs with

Fi ⊂ ([n]
ki

)
and μ(Fi ) >

ai ki
n for all i ∈ [s] cross contain an s-matching. The base

case n = ∑
i∈[s] ki holds as a is exactly forcing.

First suppose ki = 0 for some i ∈ [s]; without loss of generality i = s. Then a′ =
(a1, . . . , as−1) is exactly forcing, and so forcing by induction on s. ThusF1, . . . ,Fs−1
cross contain an (s−1)-matching. Combined with ∅ ∈ Fs we find a cross s-matching
in F1, . . . ,Fs , as required.

We may now assume ki ≥ 1 for all i ∈ [s]. We suppose for contra-
diction that F1, . . . ,Fs do not cross contain an s-matching. Let G1, . . . ,Gs be
obtained from F1, . . . ,Fs by successively applying the compression operators
C1,n,C2,n, . . . ,Cn−1,n . As is well-known (e.g. see [24, Lemma 2.1 (iii)]), G1, . . . ,Gs
do not cross contain an s-matching and are C j,n-compressed for all j ∈ [n − 1]. For
each i ∈ [s] let

Gi (n) := {
A ⊂ [n − 1] : A ∪ {n} ∈ Gi

} ⊂ ([n−1]
ki−1

);
Gi (n) := {

A ⊂ [n − 1] : A ∈ Gi
} ⊂ ([n−1]

ki

)
.
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We now claim that if I ⊂ [s] then {Hi }i∈[s] are cross free of an s-matching, where
Hi = Gi (n) for i ∈ I and Hi = Gi (n) for i /∈ I . For contradiction, suppose {Ai }i∈[s]
is such a cross matching in {Hi }i∈[s]. Then Ai ∪ {n} ∈ Gi for all i ∈ I and Ai ∈ Gi
for i /∈ I . However, as Gi is C j,n-compressed for all j ∈ [n − 1] and n >

∑
i∈[s] ki ,

there are distinct ji ∈ [n] \ ( ∪i∈[s] Ai
)
for all i ∈ I such that Ai ∪ { ji } ∈ Gi . Then

{Ai ∪ { ji }}i∈I ∪ {Ai }i∈[s]\I is a cross s-matching in {Gi }i∈[s], a contradiction. Thus
the claim holds.

By induction on n, it now suffices to show that for each i ∈ [s] either μ(Gi (n)) >

ai (ki − 1)/(n − 1) or μ(Gi (n)) > ai ki/(n − 1); indeed, we then obtain the required
contradiction by setting I = {i ∈ [s] : μ(Gi (n)) > ai (ki − 1)/(n − 1)} in the above
claim. But this is clear, as otherwise

ai ki
n

< μ(Gi ) =
(
n − ki

n

)
μ(Gi (n)) +

(
ki
n

)
μ(Gi (n))

≤
(
n − ki

n

) (
ai ki
n − 1

)
+

(
ki
n

)(
ai (ki − 1)

n − 1

)
= ai ki

n
,

a contradiction. This completes the proof. ��
We conclude this subsection by deducing Lemmas 3.7 and 3.8.

Proof of Lemma 3.7 ByLemma 3.9 it suffices to prove the statement under the assump-
tion n = ∑

i∈[s] ki . Note first that if n = 0 then Fi = {∅} for all i ∈ [s] which clearly
cross contain an s-matching. Thus we may assume n > 0. For any i ∈ [m] we have
2kim/n < μ(Fi ) ≤ 1, so ki < n/2m, and similarly ki < n/2 s for i ∈ [m + 1, s].
But now n = ∑

i∈[s] ki < m · n/2m + (s − m) · n/2 s < n is a contradiction. ��
Proof of Lemma 3.8 Let N−1 � ε � mini∈[s] pi and Gi = Fi × {0, 1}[N ]\[n] ⊂
{0, 1}N for each i ∈ [s]. Then eachμpi (Gi ) = μpi (Fi ).Writing Ii = [

(1−ε)Npi , (1+
ε)Npi

]
, by Lemma 3.3 each μpi

( ∪k /∈Ii
([N ]

k

))
< ε, so there are ki ∈ Ii such that each

μ
(
Gi ∩ ([N ]

ki

))
> μpi (Fi ) − ε, which is at least 2mki/N for i ∈ [m] and 2ski/N for

i ∈ [m + 1, s]. The result now follows from Lemma 3.7. ��

3.3 Capturability

In this subsection we conclude this section by proving its main lemma on cross match-
ings in uncapturable families. The idea of the proof is to take suitable restrictions that
boost the measure of the families so that we can apply the extremal result from the
previous subsection. However, uncapturability is not preserved by restrictions, so we
first upgrade to globalness, which is preserved by restrictions. We also pass from the
setting of uniform families to that of biased measures, which allows us to apply our
sharp threshold result, and also has the technical advantage that we do not need to
assume any lower bound on the uniformity of our families.

Proof of Lemma 3.1 Let C � C1 � C2 � 1 and Fi ⊂ ([n]
ki

)
with ki ≤ n/Cs for i ∈

[s]. Suppose Fi is (C1m,mki/C2n)-uncapturable for i ∈ [m] and μ(Fi ) > C1ski/n
for i > m. We need to show that F1, . . . ,Fs cross contain a matching.

123



27 Page 16 of 36 Combinatorica (2025) 45 :27

Westart by upgrading uncapturability to globalness andmoving to biasedmeasures.
By Lemma 2.7 with r = C1 and β = C−2

1 there are pairwise disjoint S1, . . . , Sm
with each |Si | ≤ r such that, setting Gi = (F↑

i )
Si
S where S = ⋃

i Si and pi =
ki/(n − |S|), whenever μpi (Gi ) < C−2

1 we have Si = ∅ and Gi is (C1, 2C
−2
1 )-

global with μpi (Gi ) > mki/4C2n > mpi/5C2. We note by Lemma 2.5 that Gi is
(a,mpi/10C2)-uncapturable, where a = (mpi/5C2)/(4piC

−2
1 ) > C1m.

Next we will choose pairwise disjoint R1, . . . , Rm ⊂ [n] \ S with each |Ri | <

C1/8, write R< j = ⋃
i< j Ri , and define families G j

i by G j
i = (Gi )∅R< j

for i ≥ j or

G j
i = (Gi )RiR< j

for i < j .

We claim that we can choose each Ri to ensure μ2pi (Gi
i ) ≥ 7mpi . To see this,

first note that Gi−1
i = (Gi )∅R<i

has μpi (Gi−1
i ) ≥ mpi/10C2 by uncapturability. If

μpi (Gi−1
i ) ≥ 7mpi we let Ri = ∅ to obtain μ2pi (Gi

i ) = μ2pi (Gi−1
i ) ≥ μpi (Gi−1

i ) ≥
7mpi . Otherwise, as mpi < 2C−1 � C−1

1 � C−1
2 we can apply Theorem 3.5.1 with

ε−1 = 70C2 and r = C1/8 to choose Ri with |Ri | ≤ r so that Gi
i = (Gi−1

i )
Ri
Ri

has

μ2pi (Gi
i ) > μpi (Gi−1

i )/ε ≥ 7mpi . Either way the claim holds.
By Lemma 2.3 each Gi

i with i ∈ [m] is (C1/2, 4C
−2
1 )-global, so Gm

i = (Gi
i )

∅⋃
j>i R j

has μ2pi (Gm
i ) ≥ μ2pi (Gi

i ) − m(C1/8) · 4C−2
1 · 2pi ≥ 3m(2pi ). For i > m we have

μ(Fi ) > C1ski/n, so μpi (Gi
i ) > μpi (Fi )/4 − m(C1/8)pi > 3spi . By Lemma 3.8,

Gm
1 , . . . ,Gm

s cross contain a matching; hence so do F1, . . . ,Fs . ��

4 Shadows and Embeddings

In this section we will complete the proof of our junta approximation theorem by
implementing the strategy described above of finding embeddings in fat shadows.
We start in the first subsection by defining and analysing fat shadows. In the second
subsection we find shadow embeddings. We then conclude in the final subsection
with lifted embeddings (using the lifting result from the previous section) that prove
Lemmas 2.9 and 2.10, thus proving Theorem 1.8.

4.1 Fat Shadows

In this subsection we present various lower bounds on the density of fat shadows,
defined as follows.

Definition 4.1 The c-fat r -shadow of F ⊂ ([n]
k

)
is ∂rcF := {A ∈ ([n]

r

) : μ(F A
A ) ≥ c}.

The c-fat shadow of F is ∂cF := ⋃
r≤k ∂rcF .

The following simple ‘Markov’ bound is useful when F is nearly complete.

Lemma 4.2 If μ(F) ≥ 1 − cc′ then μ(∂r1−cF) ≥ 1 − c′.
Proof Consider uniformly random A ⊂ B ⊂ [n] with |A| = r and |B| = k. For any
A /∈ ∂r1−cF we have P(B /∈ F | A) ≥ c, so cc′ ≥ P(B /∈ F) ≥ c · P(A /∈ ∂r1−cF) =
c(1 − μ(∂r1−cF)). ��
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Another bound is given the following Fairness Proposition of Keller and Lifshitz
[30].

Proposition 4.3 (Fairness proposition) Let C � r/ε and F ⊂ ([n]
k

)
with k ≥ r and

μ (F) ≥ e−k/C . For c = (1 − ε)μ(F) we have μ(∂rcF) ≥ 1 − ε.

When the above bounds are not applicable we rely on the following lemma, whose
proof will occupy the remainder of this subsection.

Lemma 4.4 Let F ⊂ ([n]
k

)
, r < � ≤ k and H = {B ∈ ([n]

�

) : ∂r B ⊂ ∂rcF},
where c = μ(F)/2

(
�
r

)
. Then μ(H) ≥ μ(F)/2. Thus μ(∂rcF) ≥ (μ(F)/2)r/�.

Furthermore, if G ∈ G′(r , s,�), C � r� and ∂rcF is G-free then μ(∂rcF) ≥
(
(μ(F)/2 − (s/n)�/C )n/s�2

)r/(�−1)
.

We require several further lemmas for the proof of Lemma 4.4. We start by stating
a consequence of the Lovász form [34] of the Kruskal–Katona theorem [26, 33].

Lemma 4.5 If 1 ≤ � ≤ k ≤ n and A ⊂ ([n]
k

)
then μ(∂�(A)) ≥ μ(A)�/k .

Proof Define β ∈ [0, 1] by |A| = (
βn
k

)
, so that μ(A) = ∏k−1

i=0 (β − i/n). By the

Lovász form of Kruskal–Katona (Problem 13.31(b) in [34]), we have |∂�A| ≥ (
βn
�

)
,

so μ(∂�(A))k ≥ ∏�−1
i=0 (β − i/n)k ≥ μ(A)�. ��

Next we require an estimate on the Turán numbers of r -partite r -graphs, which
follows from [3, Theorem 2] due to Conlon, Fox and Sudakov. (Recall that G′(r , s,�)

is the family of r -partite r -graphs with s edges and maximum degree �.)

Theorem 4.6 Let F ∈ G′(r , s,�) and C � r�. Then any F-free H ⊂ ([n]
r

)
with

n > Cs has μ(H) < (s/n)1/C .

We note that the following lemma is immediate from Theorem 4.6 and Lemma 4.5.

Lemma 4.7 Let G ∈ G′(r , s,�), C � r�, C ≤ k ≤ n/Cs and F ⊂ ([n]
k

)
. If ∂rF is

G-free then μ(F) ≤ (s/n)k/C .

Our next lemma is an adaptation of one due to Kostochka, Mubayi and Verstraëte
[31].

Lemma 4.8 Suppose G ∈ G′(r , s,�), C � r� and F is a G+-free k-graph on [n].
Then μ(∂F) ≥ (μ(F) − (s/n)k/C )n/sk2.

Proof We define G ⊂ F by starting with G = F and then repeating the following
procedure: if there is any A ∈ ∂G with |GA

A | ≤ ks then remove from G all edges
containing A. This terminates with some G such that |GA

A | > ks for all A ∈ ∂G and
|G| ≥ |F | − ks|∂F |, so μ(∂F) ≥ (μ(F) − μ(G))n/sk2.

We will now show that ∂rG is G-free, which will complete the proof due to Lemma
4.7. To see this, we suppose that φ(G) is a copy of G in ∂rG and will obtain a
contradiction by finding a copy of G+ in G. To do so, we start by fixing for each edge
A ofG an edge eA ofG containingφ(A). Thenwe repeat the followingprocedure:while
some eA contains some φ(x)with x /∈ A, replace eA by some edge (eA \{φ(x)})∪{v}
with v /∈ Im φ. As |GA

A | > ks for all A ∈ ∂G we can always choose v as required. The
procedure terminates with a copy of G+, so the proof is complete. ��
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We conclude this subsection with the proof of its main lemma.

Proof of Lemma 4.4 Consider uniformly random (A, B,C) with C ⊂ B ⊂ A ⊂ [n]
and |C | = r , |B| = �, |A| = k. Write p = P(A ∈ F ,C /∈ ∂rcF) and q = P(A ∈
F , B /∈ H).

For any C /∈ ∂rcF we have P(A ∈ F | C) = μ(FC
C ) ≤ c, so p ≤ c. On the other

hand, p ≥ q
(
�
r

)−1
, as for any A ∈ F and B /∈ Hwe haveP(C /∈ ∂rcF | A, B) ≥ (

�
r

)−1
.

We deduce q ≤ (
�
r

)
c = μ(F)/2.

Thus μ(H) = P(B ∈ H) ≥ P(A ∈ F) − q ≥ μ(F)/2.
As ∂rH ⊂ ∂rcF , Lemma 4.5 gives μ(∂rcF) ≥ (μ(F)/2)r/�.
Now suppose G ∈ G′(r , s,�) and ∂rcF is G-free. Then H is G+-free, so Lemma

4.8 gives μ(∂H) ≥ (μ(H)− (s/n)�/C )n/s�2. As ∂r∂H ⊂ ∂rcF , Lemma 4.5 gives the
required bound. ��

4.2 Shadow Embeddings

The following lemma implements a simple greedy algorithm for cross embedding any
bounded degree r -graph in a collection of nearly complete r -graphs (more generally,
we also allow smaller edges).

Lemma 4.9 Let 0 < η � (r�)−1 and G = {e1, . . . , es} be a hypergraph of maximum
degree � with each |ei | = ri ≤ r . Suppose for each i ∈ [s] that Gi is an ri -graph on
[n], where n ≥ 2rs and μ(Gi ) > 1 − η. Then G1, . . . ,Gs cross contain G.

Proof Write V (G) = {v1, . . . , vm}. We may assume that G has no isolated vertices,
so m ≤ ∑

i dG(vi ) ≤ rs ≤ n/2. We will construct an injection φ : V (G) → [n] such
that each φ(e j ) ∈ G j . To do so, we define φ sequentially so that, for each 0 ≤ t ≤ m
the definition of φ on Vt := {vi : i ≤ t} is t-good, meaning that for each edge e j we
have

φ(e j ∩ Vt ) ∈ ∂c jtG j , where c jt = 1 − η(2�)|e j∩Vt |. (1)

Note that (1) holds whenever e j ∩ Vt = ∅, as μ(G j ) > 1 − η; in particular, (1) holds
when t = 0.

It remains to show for any 0 ≤ t < m that we can extend any t-good embedding
φ to a (t + 1)-good embedding. To see this, first note that we only need to check
(1) when e j is one of at most � edges containing vt+1. Fix any such edge e j , let
f = φ(e j ∩ Vt ), and let Bj be the set of x ∈ [n] such that choosing φ(vt+1) = x
would give φ(e j ∩ Vt+1) = f ∪ {x} /∈ ∂c j(t+1)G j . Then

|Bj |η(2�)| f |+1 ≤
∑

x∈B

(
1 − μ

(
(G j )

f ∪{x}
f ∪{x}

))
≤ n

(
1 − μ

(
(G j )

f
f

))
< nη(2�)| f |,

so |Bj | < n/2�. Summing over at most� choices of j forbids fewer than n/2 choices
of x . The requirement that φ be injective also forbids fewer than n/2 vertices, so we
can extend φ as required. ��
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4.3 Lifted Embeddings

We conclude this section by proving the two embedding lemmas assumed above, thus
completing the proof of Theorem 1.8.

Proof of Lemma 2.9 Suppose n, s, k1, . . . , ks ∈ N with C ≤ ki ≤ n
Cs for all i ∈ [s],

and Fi ⊂ ([n]
ki

)
with each μ(Fi ) ≥ e−ki /C + Cski/n. Let η be as in Lemma 4.9.

We can assume C is large enough so that Proposition 4.3 gives μ (Gi ) ≥ 1 − η

for each i ∈ [s], where Gi is the r -graph on [n] consisting of all e ∈ ([n]
r

)
with

μ((Fi )
e
e) ≥ Cski/2n. By Lemma 4.9 we can find R1, . . . , Rs forming a copy of G

with Ri ∈ Gi for all i ∈ [s]. Let R = R1 ∪ · · · ∪ Rs . By the union bound, each
μ

(
(Fi )

Ri
R

) ≥ μ
(
(Fi )

Ri
Ri

)−|R|ki/n ≥ Cski/4n forC ≥ 8, so Lemma 3.6 gives a cross

matching E1, . . . , Es in (F1)
R1
R , . . . , (Fs)

Rs
R . Now F1, . . . ,Fs cross contain a copy

of G+ with edges R1 ∪ E1, . . . , Rs ∪ Es . ��

Proof of Lemma 2.10 Let G ∈ G(r , s,�) and C � C1 � C2 � r�. Suppose for a
contradiction that F ⊂ ([n]

k

)
with C ≤ k ≤ n/Cs is (C1s, sk/C2n)-uncapturable but

G+-free.
Let B be a maximal collection of pairwise disjoint sets where each B ∈ B has

|B| ≤ r +1 and μ(F B
B ) > β := e−k/C1 +C1sk/n. We claim that |B| < s. To see this,

suppose for a contradiction that we have distinct B1, . . . , Bs in B. Let B = ⋃s
i=1 Bi

andFi = F Bi
B for i ∈ [s]. Then eachμ(Fi ) > β −|B|k/n > e−k/C1 +C1sk/2n. Now

Lemma 2.9 gives a cross copy of G+ in F1, . . . ,Fs , contradicting F being G+-free,
so |B| < s, as claimed.

Now let G = F∅
B with B = ⋃

B. Then G is (r + 1, 2β)-global by definition of B
and μ(G) > sk/C2n by uncapturability of F . Let H = {B ∈ ([n]

C2

) : ∂r B ⊂ ∂rcG},
where c = μ(G)/2

(C2
r

)
> sk/nC2r

2 . We have μ(H) ≥ μ(G)/2 by Lemma 4.4. We
will show that ∂rH is G-free. Then Lemma 4.7 with C2/2 � r� in place of C will
give the contradiction sk/C2n < μ(G) ≤ 2μ(H) ≤ (s/n)2.

It remains to show that ∂rH is G-free. Suppose for a contradiction that A1, . . . , As

is a copy of G in ∂rH. Let A = ⋃s
i=1 Ai and Gi = GAi

A for i ∈ [s]. Then each Gi
is (1, 4β)-global by Lemma 2.2 with μ(Gi ) > c − |A| · 2βk/n > c/2. Now each Gi
is (C1s, c/4)-uncapturable by Lemma 2.4, so G1, . . . ,Gs cross contain a matching by
Lemma 3.1 with m = s. However, this contradicts F being G+-free. ��

5 Refined Junta Approximation

In this final section of the part we will prove Theorem 1.9, our refined junta approxi-
mation result, which will play a key role in the proofs of our results in the next part.We
start in the first subsection by setting out the strategy of the proof and implementing
it assuming an embedding lemma, whose proof will then occupy the remainder of the
section.
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5.1 Strategy

Our embedding strategy considers a setup below that blends the two embedding strate-
gies used in the proof of Theorem 1.8: it has elements of Lemma 2.9 (mapping a
crosscut to a junta) and of Lemma 2.10 (embedding in the fat shadow and lifting via
uncapturability).

Setup 5.1 Let G ∈ G′(r , s,�). Let S be a crosscut in G+(r + 1) with |S| = σ :=
σ(G). Suppose S1 ⊂ S with |S1| = σ1 ≤ σ and {Gx

x : x ∈ S1} vertex disjoint.
Let H1, . . . , Hσ1 be the inclusive links G ∗ x = {e ∈ G : x ∈ e} for x ∈ S1 and
Hσ1+1, . . . , Hσ be the exclusive links Gx

x for x ∈ S \ S1. Let V1 = ⋃σ1
i=1 V (Hi ) and

suppose { j : V (Hj ) ∩ V1 �= ∅} = [σ2]. Let H ′
i = Hi for i ∈ [σ1] and H ′

i = {e ∩ V1 :
e ∈ Hi } for i ∈ [σ1 + 1, σ2].

We note that σ ≤ s ≤ �σ . To use Setup 5.1 for embedding G+ in F ⊂ ([n]
k

)

it suffices to find J = { jσ1+1, . . . , jσ } ⊂ [n] and a cross copy of H+
1 , . . . , H+

σ in

F1, . . . ,Fσ , where Fi = F∅
J for i ∈ [σ1] and Fi = F ji

J for i ∈ [σ1 + 1, σ ]. This will
be achieved by the following lemma.

Lemma 5.2 Let C � C1 � θ−1 � ε−1 � r� and C < k < n/Cs. Let
G, H1, . . . , Hσ be as in Setup 5.1 with σ1 ≤ θσ . Let Fi ⊂ ([n]

k

)
for i ∈ [σ1] and

Fi ⊂ ( [n]
k−1

)
for i ∈ [σ1 + 1, σ ]. Suppose Fi is (C1σ1, εσ1k/n)-uncapturable for

i ∈ [σ1], thatμ(Fi ) ≥ 1−θ for i ∈ [σ1+1, σ2], andμ(Fi ) ≥ β := e−k/C1 +C1sk/n
for i ∈ [σ2 + 1, σ ]. Then F1, . . . ,Fσ cross contain H+

1 , . . . , H+
σ .

Next we deduce Theorem 1.9 from Lemma 5.2.

Proof of Theorem 1.9 Let G ∈ G(r , s,�) with σ(G) = σ and C � C1 � θ−1 �
δ−1 � ε−1 � r�. Suppose F ⊂ ([n]

k

)
with C ≤ k ≤ n/Cs is G+-free with

|F | > |Sn,k,σ−1| − δ
(n−1
k−1

)
. We need to find J ∈ ( [n]

σ−1

)
with |F∅

J | ≤ ε
(n−1
k−1

)
.

As in the proof of Theorem 1.8 we let J = {i ∈ [n] : μ(F i
i ) ≥ β}, where

β := e−k/C1 + C1sk/n. We recall that |J | ≤ σ − 1 and F∅
J is (a, μ(F∅

J )/2)-
uncapturable with a = μ(F∅

J )n/4kβ. Replacing ‘ε’ in that proof by .1θ2 we obtain
|F∅

J | ≤ .1θ2|Sn,k,σ−1| ≤ .2θ2(σ − 1)
(n−1
k−1

)
. We may assume σ ≥ 2θ−1, otherwise

|F∅
J | ≤ θ

(n−1
k−1

)
. As |F∅

J | ≥ |F | − |Sn,k,J | ≥ (.9(σ − 1 − |J |) − δ)
(n−1
k−1

)
we deduce

|J | > (1 − .3θ2)(σ − 1), so 1 ≤ σ1 := σ − |J | ≤ 1 + .3θ2σ ≤ θσ .
Now we let S, S1, H1, . . . , Hσ be as in Setup 5.1, where we can greedily choose

S1 ⊂ S with |S1| = σ1 such that {Gx
x : x ∈ S1} are vertex disjoint, as any partial choice

of S1 forbids at most σ1(�r)2 < σ vertices of S. We write J = { jσ1+1, . . . , jσ }, let
Fi = F∅

J for i ∈ [σ1] and Fi = F ji
J for i ∈ [σ1 + 1, σ ], where we can assume

|Fσ1+1| ≥ · · · ≥ |Fσ |. We note that μ(Fσ2) > 1 − θ , as otherwise we would have
the contradiction |F | < |F∅

J | +
(
σ2 − σ1 + (σ − σ2)(1− θ)

)(n−1
k−1

)
<

(
(1+ .2θ2)σ −

σ1 − θ(σ − σ2)
)(n−1

k−1

)
< |Sn,k,σ−1| − δ

(n−1
k−1

)
.

Now we must have μ(F∅
J ) ≤ εσ1k/n; otherwise F∅

J is (C1σ1, εσ1k/2n)-
uncapturable, soF1, . . . ,Fσ cross contain H+

1 , . . . , H+
σ by Lemma 5.2, contradicting
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F being G+-free. As |F∅
J | ≥ |F | − |Sn,k,J | ≥ (.9(σ1 − 1) − δ)

(n−1
k−1

)
we deduce

.9(σ1 − 1) − δ ≤ εσ1, so σ1 = 1 and μ(F∅
J ) ≤ εk/n. ��

The remainder of the section will be devoted to the proof of Lemma 5.2. Similarly
to the proofs of our previous embedding results (Lemmas 2.9 and 2.10), the strategy
will be to find shadow embeddings and then lifting embeddings. However, there are
further technical challenges to overcome in the current setting, particularly when the
uniformity k of our families is small, when we need to ‘pause’ the shadow embedding
after embedding H ′

i = Hi for i ∈ [σ1], then lift this part of the embedding, then
complete the shadow embedding, and finally lift the remainder of the embedding. The
shadow embedding lemma will be presented in the next subsection. The third sub-
section contains further results on upgrading uncapturability to globalness, which we
call ‘enhanced upgrading’, as they obtain globalness parameters that are significantly
stronger than one might expect, and this will be a crucial technical ingredient of the
proof. In the fourth subsection we establish an improved lifting result that allows for a
much weaker uncapturability assumption than that in Lemma 3.1. We conclude with
the proof of Lemma 5.2 in the final subsection.

5.2 Shadow Embeddings

Herewe extend the argument used inLemma4.9 to prove the following lemma thatwill
be applied to show that the fat shadows of F1, . . . ,Fσ as in Lemma 5.2 cross contain
H1, . . . , Hσ . Whereas before we were embedding into nearly complete hypergraphs,
now many of our hypergraphs will be quite sparse, which makes the embedding more
challenging: the idea is to replace the naive greedy arguments by Theorem 4.6, here
making key use of our observation that we can assume G is r -partite.

Lemma 5.3 Let C � η−1 � K � r� and 0 < θ < η. Let G, H1, . . . , Hσ be
as in Setup 5.1 and G1, . . . ,Gσ ⊂ ([n]

r

)
with n > Cσ . Suppose μ(Gi ) ≥ 1 − η for

i ∈ [σ2+1, σ ],μ(Gi ) ≥ 1−θ for i ∈ [σ1+1, σ2]andμ(Gi ) ≥ θ1/2r+n−1/K+r�σ1/n
for i ∈ [σ1]. Let c = 1 − θ1/r . Then ∂cG1, . . . , ∂cGσ2 cross contain H ′

1, . . . , H
′
σ2

and
G1, . . . ,Gσ cross contain H1, . . . , Hσ .

Proof For each i ∈ [σ1 + 1, σ2] we define Gr
i , . . . ,G0

i recursively by Gr
i = Gi and

G j−1
i = ∂

j−1
1−θ1/r

G j
i for j ∈ [r ]. Clearly each G j

i ⊂ ∂c jGi where c j = 1− (r − j)θ1/r .

We claim that each μ(G j
i ) ≥ 1− θ j/r . To see this, we argue by induction on r − j .

For r − j = 0 we haveμ(Gr
i ) ≥ 1−θ by assumption. For the induction step, consider

any j ∈ [r ] and uniformly random A ⊂ B ⊂ [n]with |A| = j −1 and |B| = j . Given
any A /∈ G j−1

i we have P(B /∈ G j
i ) ≥ θ1/r , so 1 − μ(G j

i ) ≥ θ1/r (1 − μ(G j−1
i )). The

claim follows.
Next we will construct a cross embedding φ of H ′

1, . . . , H
′
σ2

in ∂cG1, . . . , ∂cGσ2 .
We recall that H ′

i = Hi for i ∈ [σ1] and all H ′
i are defined on V1, which is the

disjoint union of V (H1), . . . , V (Hσ1). We proceed in σ1 steps, defining φ on V (Ht )

at step t . When φ has been defined on Ut := ⋃
i≤t V (Hi ), we say φ is t-good if

φ(e ∩Ut ) ∈ G|e∩Ut |
i for each i ∈ [σ2] and e ∈ Gi with e ∩Ut �= ∅.

123



27 Page 22 of 36 Combinatorica (2025) 45 :27

We note that if φ is t-good then φ(Hi ) ⊂ Gr
i = Gi = ∂cGi for all i ∈ [t] and if φ

is σ1-good then φ(Hi ) ⊂ ∂cGi for all i ∈ [σ2]. As φ defined on U0 = ∅ is trivially
0-good, it remains to show for any t ∈ [σ1] that we can extend any (t − 1)-good φ to
a t-good embedding.

For clarity of exposition, we start by showing the case t = 1. Obtain H1 from G1
by removing any edge e such that f /∈ G| f |

i for some ∅ �= f ⊂ e and i ∈ [σ2] with
V (Hi ) ∩ V (H1) �= ∅. There are at most r�2 such i , so by a union bound and the
above claim we have μ(H1) ≥ μ(G1) − r�22rθ1/r > n−1/K . We can assume that
G is r -partite, so by Theorem 4.6 we can find an embedding φ′

1 of N1 := {e ∈ G :
e ∩ V (H1) �= ∅} inH1. Now φ = φ′ |V (H1) is 1-good.

Now we consider general t ∈ [σ1]. Obtain Ht from (Gt )∅φ(Ut−1)
by removing any

edge e such that f /∈ G| f |
i for some ∅ �= f \ φ(A′) ⊂ e where A ∈ Hi with

V (Hi ) ∩ V (Ht ) �= ∅ and A′ = A∩Ut−1. For any such non-empty A′, as φ is (t − 1)-

good we have φ(A′) ∈ G|A′|
i , soμ((G j

i )A
′

A′) ≥ 1− ( j −|A′|)θ1/r for any |A′| ≤ j ≤ r .
Thus a union bound gives μ(Ht ) ≥ μ(Gt )−|Ut−1|k/n−r�22r rθ1/r > n−1/K . Now
as in the case t = 1 we obtain a t-good extension by embedding Nt := {e ∈ G :
e ∩ V (Ht ) �= ∅} inHt and restricting to V (Ht ).

Thus we have constructed a cross embedding φ of H ′
1, . . . , H

′
σ2
in ∂cG1, . . . , ∂cGσ2 .

To complete the proof we extend φ to a cross embedding H1, . . . , Hσ in G1, . . . ,Gσ ,
which requires φ(e \ V1) ∈ (Gi )e∩V1e∩V1 for all e ∈ Hi , i ∈ [σ1 + 1, σ ]; this is possible
by Lemma 4.9. ��

5.3 Enhanced Upgrading

This subsection provides further results on upgrading uncapturability to globalness
with enhanced parameters that will be crucial in later proofs. We start by showing that
every family has a restriction that is global or large.

Lemma 5.4 Let b, r ∈ N, α > 1 and F ⊂ ([n]
k

)
with k ≥ br. Then there is B ⊂ [n]

with |B| ≤ br such that if μ(F B
B ) < αbμ(F) then F B

B is (r , αμ(F B
B ))-global with

μ(F B
B ) ≥ α1B �=∅μ(F).

Proof WeconsiderF0,F1, . . . , whereF0 = F , and if i < b andFi is not (r , αμ(Fi ))-
global then we let Fi+1 = (Fi )

Bi
Bi

so that |Bi | ≤ r and μ(Fi+1) > αμ(Fi ). When

this sequence terminates at some Ft we let B = ⋃
i≤t Bi . Clearly F B

B = Ft has the
required properties. ��

By iterating the previous result we obtain the following upgrading lemma.

Lemma 5.5 Suppose b, r ,m ∈ N and for each i ∈ [m] that αi > 1 andFi ⊂ ([n]
ki

)
with

rb ≤ ki ≤ n/2rmαi is (rbm, βi )-uncapturable with αb
i βi > 2rmki/n. Then there are

disjoint B1, . . . , Bm with each |Bi | ≤ rb such that, setting Gi = (Fi )
Bi
B where B =

⋃
i Bi , if μ(Gi ) < αb

i βi/2 then Gi is (r , 4αiμ(Gi ))-global with μ(Gi ) > α
1Bi �=∅
i βi/2.
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Proof We will choose B1, . . . , Bm sequentially and define F0
i , . . . ,Fm

i for i ∈ [m]
by F0

i = Fi , F i
j = (F i−1

j )∅Bi for j �= i and F i
i = (F i−1

i )
Bi
Bi
. At step i , we have

μ(F i−1
i ) ≥ βi byuncapturability ofFi , so byLemma5.4wecan choose Bi with |Bi | ≤

rb such that if μ(F i
i ) < αb

i μ(F i−1
i ) then F i

i is (r , αμ(F i
i ))-global with μ(F i

i ) ≥
α
1Bi �=∅
i βi . After step m, for any i ∈ [m] we have Gm

i = Gi = (Fi )
Bi
B . If μ(F i

i ) ≥
αb
i μ(F i−1

i ) then μ(Gi ) ≥ αb
i βi − rmki/n ≥ αb

i βi/2. Otherwise, F i
i is (r , αiμ(F i

i ))-

global with μ(F i
i ) ≥ α

1Bi �=∅
i μ(F), and (n/2kiαi , μ(F i

i )/2)-uncapturable by Lemma

2.4, so μ(Gi ) > μ(F i
i )/2 ≥ α

1Bi �=∅
i βi/2, and Gi is (r , 4αiμ(Gi ))-global by Lemma

2.2. ��
For our final upgrading lemma we apply the previous one twice: the idea is that the

globalness from the first application provides the second application with much better
uncapturability.

Lemma 5.6 Suppose b, r ,m ∈ N and for each i ∈ [m] that Fi ⊂ ([n]
ki

)
with rb ≤

ki ≤ n/2rmb2 is (2m, βi )-uncapturable with βi > 8rmki/bn. Then there are disjoint
B1, . . . , Bm with each |Bi | ≤ rb+2 such that, setting Gi = (Fi )

Bi
B where B = ⋃

i Bi ,
if μ(Gi ) < 2bβi/8 then Gi is (r , 8μ(Gi ))-global with μ(Gi ) > 21Bi �=∅βi/8.

Proof We start by applying Lemma 5.5 with (b, 1, 2) in place of (αi , r , b). This gives
disjoint S1, . . . , Sm with each |Si | ≤ 2 such that, setting Hi = (Fi )

Si
S where S =⋃

i Si , if μ(Hi ) < b2βi/2 then Hi is (1, 4bμ(Hi ))-global with μ(Hi ) > βi/2.
We claim that each Hi is (rbm, βi/4)-uncapturable. Indeed, this holds by a union

bound if μ(Hi ) ≥ b2βi/2, as then μ((Hi )
∅
B) ≥ μ(Hi ) − |J |ki/n ≥ βi/4 whenever

|J | ≤ rbm, as βi ≥ 8rmki/bn. On the other hand, if Hi is (1, 4bμ(Hi ))-global
with μ(Hi ) > βi/2 then Hi is (n/2bki , μ(Hi )/2)-uncapturable by Lemma 2.4, so
(rbm, βi/4)-uncapturable, as ki ≤ n/2rmb2.

Now we can apply Lemma 5.5 again to H1, . . . ,Hm with (2, r , b) in place of
(αi , r , b). This gives disjoint S′

1, . . . , S
′
m with each |S′

i | ≤ rb such that, setting Gi =
(Hi )

S′
i
S′ where S′ = ⋃

i S
′
i , if μ(Gi ) < 2bβi/8 then Gi is (r , 8μ(Gi ))-global with

μ(Gi ) > 2
1S′

i �=∅βi/8. Thus Bi = Si ∪ S′
i for i ∈ [m] are as required. ��

5.4 Refined Capturability for Matchings

Here we prove the following sharper version of Lemma 3.1, obtaining cross matchings
under a much weaker uncapturability condition.

Lemma 5.7 Let C � K � d ≥ 1 and Fi ⊂ ([n]
ki

)
with k ≤ ki ≤ Kk for i ∈ [s],

where 2d ≤ k ≤ n/Cs. Suppose Fi is (2dm, (2mki/n)d)-uncapturable for i ∈ [m]
and μ(Fi ) > 12(s + Km log n

mk )ki/n for i > m. Then F1, . . . ,Fs cross contain a
matching.

Proof We start by upgrading uncapturability to globalness. We apply Lemma 5.5 with
r = 1, b = 2d, αi = √

n/mki , βi = (mki/n)d noting that each rb ≤ ki ≤ n/2rmαi
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and αb
i βi = 2d > 2rmki/n, obtaining B = ⋃

i Bi with each |Bi | ≤ 2d such that each

Gi = (Fi )
Bi
B is (r , 4αiμ(Gi ))-global with μ(Gi ) > (2mki/n)d/2. We note by Lemma

2.4 thatGi is (n/8αi ki , (2mki/n)d/4)-uncapturable.Nowwepass to the biased setting:
we let pi = ki/n and note that Hi = G↑

i is (n/8αi ki , (2mki/n)d/16)-uncapturable
by Lemma 3.2.

Nowwe will apply Theorem 3.5.2 to choose S1, . . . , Sm with each |Si | < K log n
mk

and define H0
i , . . . ,Hm

i for i ∈ [s] by H0
i = Hi , Hi

j = (Hi−1
j )∅Si for j �= i and

Hi
i = (Hi−1

i )
Si
Si
. At step i , we have μ(Hi−1

i ) ≥ (2mki/n)d/16 by uncapturability of

Hi , as
∑

j<i |S j | < Km log n
mk and n/8αi ki ≥ 1

8

√
nm/Kk, using n/mk ≥ C � K .

Applying Theorem 3.5.2 with η < 1/2d and
√
K in place of K we obtain Si ⊂ [n]

with |Si | ≤ √
K logμ(Hi−1

i )−1 < K log n
mk and μKpi (Hi

i ) ≥ μη >
√
mpi , so

μKpi (Hm
i ) ≥ √

mpi − |S|Kpi > 3m(Kpi ). For i > m, by Lemma 3.2 and a union
bound we have μpi (Hm

i ) > μ(Fi )/4 − |S|pi > 3spi . Thus by Lemma 3.8 there is a
cross matching inHm

1 , . . . ,Hm
s , and so in F1, . . . ,Fs . ��

5.5 Lifted Embeddings

Weconclude this section byprovingLemma5.2which completes the proof ofTheorem
1.9. As mentioned earlier, the proof becomes more complicated as the uniformity k
of our family decreases. When it is quite large we can bound the fat shadow using
Fairness, but otherwise we must rely on the weaker estimates from Lemma 4.4, so
there are additional technical challenges, resolved by enhanced upgrading and in one
case pausing the shadow embedding for a preliminary lifting step.

Proof of Lemma 5.2 Let C � C1 � θ−1 � ε−1 � r� and C < k < n/Cs. Let
G, H1, . . . , Hσ be as in Setup 5.1 with σ1 ≤ θσ . Let Fi ⊂ ([n]

k

)
for i ∈ [σ1] and

Fi ⊂ ( [n]
k−1

)
for i ∈ [σ1 + 1, σ ]. Suppose Fi is (C1σ1, εσ1k/n)-uncapturable for

i ∈ [σ1], thatμ(Fi ) ≥ 1−θ for i ∈ [σ1+1, σ2], andμ(Fi ) ≥ β := e−k/C1 +C1sk/n
for i ∈ [σ2 + 1, σ ]. We need to show that F1, . . . ,Fσ cross contain H+

1 , . . . , H+
σ .

We consider cases according to the size of k.We start with the case k ≥ √
C1 log n

σ1
,

for which we will use enhanced upgrading. We apply Lemma 5.6 toF1, . . . ,Fσ1 with
m = σ1,b = C1+log2

s
m , eachβi = εmk/n and2r in place of r , noting that 2rb ≤ k ≤

n/2rmb2 andβi > 8rmk/bn. This gives disjoint B1, . . . , Bm with each |Bi | ≤ 2rb+2
such that, setting Gi = (Fi )

Bi
B where B = ⋃

i Bi , if μ(Gi ) < 2bεmk/8n then Gi is
(2r , 8μ(Gi ))-global with μ(Gi ) > εmk/8n > m/n ≥ e−k/

√
C1 . For i ∈ [σ1 + 1, σ ],

writing Gi = (Fi )
∅
B , we have μ(Gi ) ≥ μ(Fi ) − |B|k/n ≥ e−k/C1 + C1sk/2n.

By Fairness (Proposition 4.3), with
√
C1 in place ofC , writing ci = (1−ε)μ(Gi ) for

i ∈ [σ ]we haveμ(∂r
′

ci Gi ) ≥ 1−ε for r ′ ∈ {r−1, r}, so ∂c1G1, . . . , ∂cσ Gσ cross contain
a copy φ(H1), . . . , φ(Hσ ) of H1, . . . , Hσ by Lemma 4.9. We write V ′ = Im φ and
consider H1, . . . ,Hs corresponding to the edges A1, . . . , As of H1, . . . , Hσ , where

for each edge A j of Hi with i ∈ [σ ] we letH j = (Gi )
φ(A j )

V ′ . To complete the proof of
this case it suffices to show that H1, . . . ,Hs cross contain a matching.

To do so, we verify the conditions of Lemma 3.1. Consider any A j ∈ Hi . If i > σ1
or i ∈ [σ1] with μ(Gi ) ≥ 2bεmk/8n > C2

1sk/n then μ(H j ) ≥ ci − |V ′|k/n >
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C1sk/3n. Now consider i ∈ [σ1] such that Gi is (2r , 8μ(Gi ))-global with μ(Gi ) >

εmk/8n. Then H j and H′
j = (Gi )

φ(A j )

φ(A j )
are (r , 16μ(Gi ))-global by Lemma 2.2. As

μ(H′
j ) > ci = (1 − ε)μ(Gi ), by Lemma 2.4 H′

j is (n/40k, μ(H′
j )/2)-uncapturable,

so μ(H j ) ≥ μ(H′
j )/2 > εmk/20n, andH j is (n/80k, μ(H j )/2)-uncapturable again

by Lemma 2.4. Thus the required conditions hold.
Henceforthwe can assume k <

√
C1 log n

σ1
. In this casewe upgrade uncapturability

to globalness using Lemma 2.6 to obtain disjoint S1, . . . , Sσ1 with each |Si | ≤ 2r such
that, setting Gi = (Fi )

Si
S where S = ⋃

i Si , whenever μ(Gi ) < β we have Si = ∅ and
Gi is (2r , 2β)-globalwithμ(Gi ) > εσ1k/n. For i > σ1 we setGi = (Fi )

∅
S and note that

μ(Gi ) ≥ μ(Fi )−|S|k/n > β/2. As before, for any i /∈ [σ1+1, σ2]withμ(Gi ) > β/2
Fairness gives μ(∂r

′
ci Gi ) ≥ 1 − ε for r ′ ∈ {r − 1, r}, where ci = (1 − ε)μ(Gi ). For

i ∈ [σ1+1, σ2]we have the better boundμ(∂r
′

ci Gi ) ≥ 1−√
θ where ci = 1−√

θ from
Lemma 4.2. For i ∈ I := {i : μ(Gi ) < β/2} we note that Gi is G+-free, as Si = ∅,
so we can bound the fat shadow by Lemma 4.4: we take � = k, use (2ε)−1 � r� in
place of C , and write ci = μ(Gi )/2

(k
r

) ≥ μ(Gi )/2kr , to obtain

μ(∂rciGi ) ≥ (
(μ(Gi )/2 − (s/n)2kε)n/sk2

)r/(k−1) ≥ z := (σ1/sk
2)2r/k − (s/n)rε.

Nextwe consider the case that k ≥ 2C1 log s
σ1
. Then z ≥ 1−ε, so ∂c1G1, . . . , ∂cσ Gσ

cross contain a copy φ(H1), . . . , φ(Hσ ) of H1, . . . , Hσ by Lemma 4.9. With nota-
tion as in the previous case, it remains to show that H1, . . . ,Hs cross contain a
matching. To do so, we verify the conditions of Lemma 5.7, taking m = |I |,
d = 2 and K = ε−1. Consider any A j ∈ Hi . If i /∈ I then μ(H j ) ≥
β/3 − | Im φ|k/n > 12(s + ε−1|I | log n

k|I | )k/n, as |I |/n ≤ σ1/n < e−k/
√
C1 , so

|I |k/n · log n
k|I | < k2e−k/

√
C1 < β2. Now suppose i ∈ I , so that Gi is (2r , 2β)-global

with μ(Gi ) > εσ1k/n. Then H j and H′
j = (Gi )

φ(A j )

φ(A j )
are (r , 4β)-global by Lemma

2.2. As μ(H′
j ) > ci ≥ μ(Gi )/2kr , by Lemma 2.4 H′

j is (a, μ(H′
j )/2)-uncapturable,

where a = μ(Gi )n/8kβ > εσ1/8β > rs ≥ | Im φ| as σ1/s ≥ e−k/2C1 ≥ √
β,

since ks/n < k�σ1/n < �ke−k/
√
C1 . Hence μ(H j ) ≥ μ(H′

j )/2 > μ(Gi )/4kr >

2(2|I |k/n)2, andH j is (4|I |, μ(H j )/2)-uncapturable again by Lemma 2.4. Thus the
required conditions hold.

It remains to consider the case k < 2C1 log s
σ1
. We start by applying 5.3 to (∂rciGi :

i ∈ [σ2]) with θ0 = √
σ1/σ ≤ √

θ in place of θ , recalling for i ∈ [σ1 + 1, σ2] that
μ(∂rciGi ) ≥ 1 − √

θ ≥ 1 − θ0 and μ(∂rciGi ) ≥ 1 − ε for i ∈ [σ1] \ I , and noting for

i ∈ I that μ(∂rciGi ) ≥ θ
1/2r
0 + n−ε + r�σ1/n. This gives a cross embedding φ of

H ′
1, . . . , H

′
σ2

in (∂cciGi : i ∈ [σ2]), where c = 1 − θ
1/r
0 .

Next we extend (φ(H ′
i ) : i ∈ [σ1]) = (φ(Hi ) : i ∈ [σ1]) to a cross embedding

(φ(H+
i ) : i ∈ [σ1]) in (Gi : i ∈ [σ1]), by finding a cross matching in (H j : j ∈ [s1])

corresponding to the edges A1, . . . , As1 of H1, . . . , Hσ1 , where for each edge A j of

Hi with i ∈ [σ1] we let H j = (Gi )
φ(A j )

Im φ . This is possible by Lemma 5.7, which
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applies similarly to the previous case, where for uncapturability of H′
j we note that

now | Im φ| ≤ rs1 ≤ r�σ1.
Finally, we extend to a cross embedding (φ(H+

i ) : i ∈ [σ ]) in (Gi : i ∈ [σ ]) by
finding a cross copy of (A j \ V1 : s1 < j ≤ s) in (H j : s1 < j ≤ s), where for

each edge A j of Hi with σ1 < i ≤ σ we let H j = (Gi )
φ(A j∩V1)
Im φ . This is possible by

Lemma 2.9, as each μ(H j ) ≥ μ(Gi ) − �σ1k2/n > β/4, using k < 2C1 log s
σ1

and
σ1 ≤ θσ . ��

6 The Huang–Loh–Sudakov Conjecture

Here we prove Theorem 1.2, which establishes the Huang–Loh–Sudakov Conjecture.
In the first subsection we prove a strong stability version that has independent interest.
We then deduce the exact result in the second subsection.

6.1 A Strong Stability Result

Here we prove the following strong approximate version of the Huang–Loh–Sudakov
conjecture, which will be refined to obtain the exact result in the following subsection.

Theorem 6.1 Let 0 < C−1 � ε and Fi ⊂ ([n]
ki

)
with C ≤ ki ≤ n/Cs for all i ∈ [s]. If

F1, . . . ,Fs are cross free of a matching and each |Fi | ≥ |Sn,ki ,s−1| − (1 − ε)
(n−1
ki−1

)

then there is J ∈ ( [n]
s−1

)
so that |Fi \ Sn,ki ,J | ≤ ε

(n−1
ki−1

)
for all i ∈ [s].

The idea of the proof will be to consider A = {a1, . . . , a�} ⊂ [n] maximal such
that there are distinct b1, . . . , b� so that all (Fbi )

ai
ai are large. This motivates the setting

of the following lemma.

Lemma 6.2 Let 0 < C−1 � β � ε ≤ 1 and m, �, n, s, k1, . . . , ks ∈ N with � ≤ m ≤
s and each ki ≤ n/Cs. Suppose Fi ⊂ ([n]

ki

)
and Ji := {

j ∈ [n] : μ
(
(Fi )

j
j

) ≥ β
}
for

each i ∈ [s] are such that

(a) there are distinct a1, . . . , a� ∈ [n] with ai ∈ Ji for i ∈ [�];
(b) μ

(
(Fi )

∅
Ji
) ≥ ε(m−|Ji |)ki/n and Ji ⊂ A := {a1, . . . , a�} for each i ∈ [�+1,m];

(c) μ
(
Fi

) ≥ Cki s/n for all i ∈ [m + 1, s].
Then F1, . . . ,Fs cross contain a matching.

Proof It suffices to check the conditions of Lemma 3.1 for G1, . . . ,Gs defined by
Gi = (Fi )

ai
A for i ∈ [�] and Gi = (Fi )

∅
A otherwise. We do so with m − � in place

of m and (Gi : � < i ≤ m) in place of F1, . . . ,Fm . For i ∈ [s] \ [m] we have
μ(Gi ) ≥ μ(Fi ) − |A|ki/n ≥ Cki s/2n. Similarly, for i ∈ [�] we have μ(Gi ) ≥
μ((Fi )

ai
ai ) − |A|ki/n ≥ β/2 ≥ (β/2)(Cki s/n) ≥ C1/2ki s/2n. For i ∈ [� + 1,m]

we note by definition of Ji that Gi is (1, 2β)-global with μ(Gi ) ≥ μ((Fi )
∅
Ji
) − |A \

Ji |βki/n ≥ ε(m−�)ki/n, so (ε(m−�)/4β, ε(m−�)ki/2n)-uncapturable by Lemma
2.4. Thus the required conditions hold. ��
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We deduce our stability result as follows.

Proof of Theorem 6.1 Let 0 < C−1 � β � ε ≤ 1/2 and Fi ⊂ ([n]
ki

)
with ki ≤ n/Cs

for all i ∈ [s]. Let J1, . . . , Js be as in Lemma 6.2. Let A = {a1, . . . , a�} ⊂ [n] be
maximal such that there are distinct b1, . . . , b� with ai ∈ Jbi for all i ∈ [�]. Without
loss of generality we may assume bi = i for all i ∈ [�]. By maximality, we have
Ji ⊂ {a1, . . . , a�} for all i ∈ [� + 1, s].

We may assume � < s, and that μ
(
(Fh)

∅
Jh

)
< .1ε(s − |Jh |)kh/n for some h ∈

[� + 1, s], otherwise Lemma 6.2 provides the required cross matching. Noting that
|Sn,kh ,s−1| − (1 − ε)

( n−1
kh−1

) ≤ |Fh | ≤ |Sn,kh ,Jh | + .1ε(s − |Jh |)
( n−1
kh−1

)
, we see that

|Jh | = s − 1 = �, h = s and Jh = A. Now for each i ∈ [s − 1], as ai ∈ A = Jh we
can apply the same argument switching the roles ofFi andFh to deduce μ

(
(Fi )

∅
Ji

)
<

.1εkh/n and Ji = A. The theorem follows. ��

6.2 The Exact Result

To complete the proof of the Huang–Loh–Sudakov Conjecture we will upgrade the
approximate result of the previous subsection to an exact result via the following
bootstrapping lemma (stated in a more general form than needed here as we will also
use it for our other Turán results).

Lemma 6.3 Let C � β−1 � d ≥ 1 and Fi ⊂ ([n]
ki

)
for all i ∈ [s] with ∑s

i=1 ki ≤
n/C. Suppose F1, . . . ,Fs are cross free of some hypergraph G = {e1, . . . , es} with
|ei | = ki for each i ∈ [s] and es ∩ ⋃s−1

i=1 ei = ∅. If ∑s−1
i=1 (1 − μ(Fi )) ≤ α ∈ (0, β)

then μ(Fs) ≤ (αks/n)d .

Proof Let k = n−n/C andGs = F↑
s ∩([n]

k

)
. ThenF1, . . . ,Fs−1,Gs are cross free ofG ′

obtained fromG by enlarging es to e′
s of size k. Suppose for contradiction thatμ(Fs) >

(αks/n)d . Let t ∈ [ks] be minimal so that |Fs | = (αks/n)d
( n
ks

) ≥ ( n−t
ks−t

)
. Then

(αks/n)d < (ks/n)t−1, so if t > 2d then α < (ks/n)t/2d . By Kruskal-Katona |Gs | ≥(n−t
k−t

)
, soμ(Gs) ≥ (1−2/C)t >

√
α, as if t ≤ 2d then (1−2/C)t > (1−2/C)2d >

√
β

or otherwise α2d/t < ks/n ≤ C−1 < (1 − 2/C)4d . Now we let φ : V (G ′) → [n] be
a uniformly random injection. Let E be the event that φ(e′

s) /∈ Gs or φ(ei ) /∈ Fi for
some i ∈ [s−1]. Then 1 = P(E) ≤ 1−μ(Gs)+∑

i∈[s−1](1−μ(Fi )) < 1−√
α+α,

contradiction. ��
Theorem 1.2 will now follow by combining Theorem 6.1 and Lemma 6.3.

Proof of Theorem 1.2 Let 0 < 1/C � ε � 1 and Fi ⊂ ([n]
ki

)
with |Fi | ≥ |Sn,ki ,s−1|

and ki ≤ n
Cs for all i ∈ [s]. SupposeF1, . . . ,Fs have no cross matching. By Theorem

6.1 there is J ∈ ( [n]
s−1

)
such that μ

(
(Fi )

∅
J

) = εi ki/|V | with V = [n] \ J and εi ≤ ε

for all i ∈ [s]. We may assume that εs is maximal.
Next we claim that we can list the elements of J as j = ( j1, . . . , js−1) so that

Mj :=
∑

i∈[s−1]
μ

(
(Fi )

ji
J

) ≥ s − 1 − εs .

123



27 Page 28 of 36 Combinatorica (2025) 45 :27

To see this, we note that EjMj = Ei∈[s−1]
∑

j∈J μ
(
(Fi )

j
J

)
when j is uniformly ran-

dom. As each (Fi )
I
J ⊂ (Sn,ki ,s−1)

I
J whenever ∅ �= I ⊂ J and μ(Fi ) ≥ μ(Sn,ki ,s−1),

we have 0 ≤ μ(Fi ) − μ(Sn,ki ,s−1) ≤ μ((Fi )
∅
J ) − k|V |−1 ∑

j∈J (1 − μ((Fi )
j
J )), so∑

j∈J μ((Fi )
j
J )) ≥ s − 1 − εs . The claim follows.

Now let Hi = (Fi )
ji
J ⊂ ( V

k−1

)
for all i ∈ [s − 1], and Hs = (Fs)

∅
J ⊂ ( V

k−1

)
.

Then H1, . . . ,Hs have no cross matching,
∑

i∈[s−1](1 − μ(Hi )) ≤ εs and μ(Hs) =
εsks/|V |. Therefore εs = 0 by Lemma 6.3 with d = 1. By choice of εs we deduce
εi = 0 for all i ∈ [s]. Thus Fi = Sn,ki ,J for all i ∈ [s]. ��

7 Critical Graphs

In this section we prove Theorem 1.6, which gives exact Turán results for expanded
critical r -graphs of bounded degree. In fact, wewill prove the following strong stability
version.

Theorem 7.1 Let G ∈ G(r ,�, s) be critical and C � β−1 � dr�.
Suppose F ⊂ ([n]

k

)
with C ≤ k ≤ n/Cs is G+-free and |F | ≥ |Sn,k,σ−1| − ε

(n−1
k−1

)

with ε ∈ (0, β).
Then there is J ∈ ( [n]

σ−1

)
with |F \ Sn,k,J | ≤ εd

(n−1
k−1

)
.

Furthermore, if k ≤ √
n and |F | ≥ |Sn,k,J | − β

(n−r
k−r

)
then F ⊂ Sn,k,J .

In the first subsection we will describe the strategy of the proof and complete
the proof, assuming a certain bootstrapping lemma that will be proved in the second
subsection.

7.1 Strategy

Recall that an r -graph G is critical if it has an edge e such that σ(G \ e) = τ(G \ e) <

τ(G) = σ(G). Thus we can adopt the following set-up.

Setup 7.2 Let G ∈ G′(r , s,�) be critical. Fix a crosscut S in G+(r + 1) with |S| =
σ := σ(G) and {Gx

x : x ∈ S} = {Hi : i ∈ [σ ]} with |Hσ | = 1. Let I = {i ∈ [σ − 1] :
V (Hi ) ∩ V (Hσ ) �= ∅}.

The following bootstrapping lemma will be proved in the next subsection. It shows
that if we cannot find a cross embedding of H+

1 , . . . , H+
σ as in the above set up, if all

but one of the families are nearly complete then the last must be very small.

Lemma 7.3 Let G, H1, . . . , Hσ be as in Setup 7.2. Let C � β−1 � dr� and Fi ⊂([n]
ki

)
with ki ∈ [k/2, k] for i ∈ [σ ], where C ≤ k ≤ n/Cs. Suppose Fσ is G+-free,

∑σ−1
i=1 (1 − μ(Fi )) ≤ ε ≤ β, μ(Fσ ) ≥ εdk/n and 1 − μ(Fi ) ≤ ε0 := 2ε/σ for all

i ∈ I . Then F1, . . . ,Fσ cross contain H+
1 , . . . , H+

σ .

We conclude this subsection by deducing Theorem 7.1 from Lemma 7.3.
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Proof of Theorem 7.1 ByTheorem1.9 (refined junta approximation) there is J ∈ ( [n]
σ−1

)

such that |F \ Sn,k,J | = δ
(n−1
k−1

)
with δ−1 � dr�. We write J = { j1, . . . , jσ−1},

Fi = F ji
J for i ∈ [σ − 1] and Fσ = F∅

J . Note that Fσ is G+-free. We may assume
I = [|I |] and |F1| ≥ · · · ≥ |Fσ−1|. Now

μ(F) ≤ μ(F∅
J ) + μ(Sn,k,J ) − k−1

n−|J |
σ−1∑

i=1

(1 − μ(Fi ))

≤ δk/n + μ(F) + εk/n − k
2n

σ−1∑

i=1

(1 − μ(Fi )),

so
∑σ−1

i=1 (1 − μ(Fi )) ≤ 2(ε + δ). Now for each i ∈ I we have 1 − μ(Fi ) ≤
4r�(ε + δ)/σ as if σ ≤ 2|I | ≤ 2r� this follows from 1 − μ(Fi ) ≤ 2(ε + δ), or
otherwise from 1 − μ(Fi ) ≤ 2(ε+δ)

σ−|I | .
As F1, . . . ,Fσ are cross free of H+

1 , . . . , H+
σ as in Setup 7.2, Lemma 7.3 with

(2r�(ε + δ), 2d) in place of (ε, d) gives δk/n = μ(Fσ ) < (2r�(ε + δ))2dk/n.
As ε−1, δ−1 � dr� we have ((2r�)(ε + δ))2d = (2r�)2d

∑2d
i=0

(2d
i

)
εiδ2d−i <

(εd + δ)/2, so δ < εd , i.e. |F∅
J | = |Fσ | < εd

(n−1
k−1

)
.

Finally, let k ≤ √
n and suppose for contradiction that |F | ≥ |Sn,k,J | − β

(n−r
k−r

)

but there is some A ∈ F \ Sn,k,J . By the previous statement with d = 1 and ε =
β
(n−r
k−r

)(n−1
k−1

)−1
we have |F∅

J | ≤ β
(n−r
k−r

)
, so |Sn,k,J \ F | ≤ 2β

(n−r
k−r

)
. We fix any

R ∈ (A
r

)
and a bijection φ : As → R, where Hσ = {As} and define G1, . . . ,Gs−1

by G j = (Fi )
φ(A′

j )

A whenever A j is an edge of Hi with A′
j = A j ∩ As . For each

j ∈ [s − 1], writing r j = |A′
j | + 1 ∈ [r ], we have (n−k−r j

k−r j

) − |G j | ≤ |Sn,k,J \ F |, so
as

(n−k−r
k−r

) ≥ .1
( n
k−r

)
for k ≤ √

n we have 1 − μ(G j ) ≤ 20β < 1/2. However, now
G1, . . . ,Gs−1 cross contain A1 \ As, . . . , As−1 \ As by Lemma 2.9, so we have the
required contradiction. ��

7.2 Bootstrapping

Now we complete the proof of Theorem 7.1 by proving Lemma 7.3. The idea is to
reduce to the case that the critical edge is disjoint from all other edges, so that we can
apply Lemma 6.3.

Proof of Lemma 7.3 Let G, H1, . . . , Hσ be as in Setup 7.2. Let C � β−1 � dr�
and Fi ⊂ ([n]

ki

)
with ki ∈ [k/2, k] for i ∈ [σ ], where C ≤ k ≤ n/Cs. Suppose

∑s−1
i=1 (1 − μ(Fi )) ≤ ε ≤ β, μ(Fσ ) ≥ εdk/n and 1 − μ(Fi ) ≤ ε0 := 2ε/σ for all

i ∈ I .
We need to show that F1, . . . ,Fσ cross contain H+

1 , . . . , H+
σ . Write G =

{A1, . . . , As} where Hσ = {As} and A = As ∩ ⋃
i<s Ai . It suffices to find an

injection φ : A → [n] such that Lemma 6.3 provides a cross embedding of
e+
1 , . . . , e+

s in G1, . . . ,Gs , where for each edge A j ∈ Hi we define e j = A j \ As and
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G j = (Fi )
φ(A∩A j )

φ(A) . We note that if A∩ A j = ∅ then 1−μ(G j ) ≤ 2(1−μ(Fi )) for any
choice of φ. Also, for uniformly random φ we have P(μ(G j ) ≥ 1− √

ε0) > 1− √
ε0

whenever i ∈ I by Lemma 4.2.
Next suppose μ(Fσ ) ≥ e−kβ . Then Fairness (Proposition 4.3) gives P(μ(Gs) ≥

μ(Fσ )/2) > 1/2. By a union bound we can fix φ with
∑s−1

i=1 (1 − μ(Gi )) ≤ 2ε +
|I |√ε0 ≤ α := 2�

√
ε and μ(Gs) ≥ μ(Fσ )/2 ≥ (αk/n)3d . Then Lemma 6.3 applies

as required.
It remains to consider the case μ(Fσ ) < e−kβ . We will apply Lemma 4.4 to show

that we can fix φ with
∑s−1

i=1 (1 − μ(Gi )) ≤ 2ε + |I |√ε0 ≤ α := 2�
√

ε as above
and μ(Gs) ≥ c := μ(Fσ )/2kr ≥ ekβμ(Fσ ) · μ(Fσ )/2kr ≥ μ(Fσ )2 ≥ (αk/n)6d .
Again this will suffice by Lemma 6.3. Lemma 4.4 with � = k gives P(μ(Gs) ≥ c) ≥
(μ(Fσ )/2)r/k ≥ ε1/4n−2r/k , so we are done unless ε1/4n−2r/k < |I |√ε0, which
implies σ 2n−8r/k < (2�)4ε. As ε � �−1 this implies k < nβ , say. Furthermore, we
can assume Fσ is (2r , μ(Fσ )βn/sk)-global, otherwise we can apply the above argu-
ment with some (Fσ )RR in place of Fσ to get P(μ(Gs) ≥ c) ≥ (μ(Fσ )βn/2sk)r/k ≥
ε1/4s−2r/k > |I |√ε0.

Now we claim that ∂rcFσ is G-free. This will suffice to complete the proof, as
then Lemma 4.4 gives the improved estimate μ(∂rcFσ ) ≥ (εd/ks)2r/k − (s/n)β >

|I |√ε0, using s ≤ rσ < n8r/k . To see the claim, we suppose φ(G) ⊂ ∂rcFσ and
will obtain a contradiction by finding a cross matching in H1, . . . ,Hs , where for

each edge A j of G we let H j = (Fσ )
φ(A j )

Im φ . We verify the conditions of Lemma
5.7, with (s, s, d, 2) in place of (s,m, d, K ). As Fσ is (2r , μ(Fσ )βn/sk)-global,
each H j is (r , 2μ(Fσ )βn/sk)-global by Lemma 2.2. Also, Fσ is (β−1s, μ(Fσ )/2)-
uncapturable by Lemma 2.4, so each μ(H j ) ≥ μ(Fσ )/2 ≥ εdk/2n, and each H j

is (s/2β, εdk/4n)-uncapturable by Lemma 2.4. As σ 2n−8r/k < (2�)4ε and k < nβ

we have εdk/n > (3sk/n)d , and so the conditions of Lemma 5.7 hold. But this is a
contradiction, as thenH1, . . . ,Hs cross contain amatching. Therefore ∂rcFσ isG-free,
as claimed. ��

8 The Füredi–Jiang–Seiver Conjecture

In this section we prove the Füredi–Jiang–Seiver conjecture on the Turán numbers
of expanded paths. As previously mentioned, for paths of odd length the conjecture
follows fromour result on critical graphs (Theorem1.6), so it remains to consider paths
of even length. We will consider the more general setting of expansions of (normal)
graphs (r -graphs with r = 2) satisfying the following generalised criticality property.
Recall that we denote the crosscut and transversal numbers of an r -graph G by σ(G)

and τ(G), and that σ(G) ≥ τ(G). Consider any G with τ(G) = σ(G). We say G is
a1-degree-critical if (i) σ(G − x) < σ(G) for some x of degree |Gx

x | ≤ a1, and (ii)
τ(G − x) = τ(G) for any x with |Gx

x | < a1. We say G is a2-matching-critical if (i)
σ(G \ M) < σ(G) for some matching M with |M | ≤ a2, and (ii) τ(G \ M) = τ(G)

for any matching M with |M | < a2. We say G is (a1, a2)-critical if it is both a1-
degree-critical and a2-matching-critical.
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We note that even paths and cycles are (2, 2)-critical, and that any G is critical (in
the sense defined above) if and only if G is (a1, 1)-critical, where a1 is the minimum
possible degree of any vertex belonging to any minimum size crosscut of G+. The
significance of the generalised definition is that it enables to show that the following
natural construction is extremal for the Turán problem for G+. For any T ⊂ [n] we
write Gn,k(T ) = {A ∈ ([n]

k

) : T ⊂ A} for the family in
([n]
k

)
generated by T . For

T ⊂ {0, 1}n we write Gn,k(T ) = ⋃
T∈T Gn,k(T ). We let Fn,k,G = Gn,k(T ) where T

is the disjoint union of σ(G) − 1 singletons and a graph Fa1a2 with as many edges as
possible subject to having no vertex of degree ≥ a1 or matching of size ≥ a2. Then
Fn,k,G is G+-free by definition of (a, b)-criticality. We will show that it is extremal.
WhenG is a path of even length thiswill complete the proof of the Füredi–Jiang–Seiver
Conjecture.

Theorem 8.1 Let G ∈ G(2,�, s) be (a1, a2)-critical, C � a2� and C ≤ k ≤ n/Cs.
Then ex(n,G+(k)) = |Fn,k,G |.

Moreover, we will prove the following strong stability version.

Theorem 8.2 Let G ∈ G(2,�, s) be (a1, a2)-critical and C � β−1 � a2d�.
Suppose F ⊂ ([n]

k

)
with C ≤ k ≤ n/Cs is G+-free. If |F | ≥ |Sn,k,σ−1| then

|F \ Gn,k(T )| ≤ β−1
(n−3
k−3

)
for some T = {{x} : x ∈ J } ∪ F where J ∈ ( [n]

σ−1

)
and

F ⊂ ([n]\J
2

)
with |F | ≤ |Fa1a2 |.

Moreover, if |F | ≥ |Fn,k,G | − ε
(n−2
k−2

)
with ε ∈ (0, β) then μ(F \ G) ≤ (εk/n)d

for some copy G of Fn,k,G, where if k ≤ √
n then F ⊂ G.

Throughout this section we adopt the following set up.

Setup 8.3 Let G ∈ G′(2, s,�) be (a1, a2)-critical with σ(G) = σ . Let B = {Bi : i ∈
[a]} be a r-graph matching with r ∈ [2], and B′ = {B ′

i : i ∈ [a]} ⊂ G, where if r = 2
then a = a2 and each B ′

i = Bi or if r = 1 then a = a1 and each B ′
i = Bi ∪ {x} for

some vertex x of degree a. Let S = {s1, . . . , sσ−1} be a crosscut in (G \ B′)+ and let
Hi = Gsi

si for i ∈ [σ − 1]. Let I = {i ∈ [σ − 1] : V (Hi ) ∩ V (B) �= ∅}.
We prove a bootstrapping lemma in the next subsection and then deduce Theorem

8.2 in the following subsection.

8.1 Bootstrapping

In this subsection we prove the following bootstrapping lemma, which is analogous to
Lemma 7.3, except that rather than concluding that some family is small we conclude
that some family is capturable.

Lemma 8.4 With notation as in Setup 8.3, let C � β−1 � ad� and C ≤ k ≤
n/Cs. Let Fi ⊂ ([n]

ki

)
with ki ∈ [k/2, k] for i ∈ [σ − 1] and F ′

i ⊂ ([n]
k′
i

)
with

k′
i ∈ [k/2, k] for i ∈ [a] be such that F1, . . . ,Fσ−1,F ′

1, . . . ,F ′
a are cross free of

H+
1 , . . . , H+

σ−1, B
+
1 , . . . , B+

a . Suppose
∑s−1

i=1 (1−μ(Fi )) ≤ ε ≤ β and 1−μ(Fi ) ≤
ε0 := 2ε/σ for all i ∈ I . Then some F ′

i is (β−1, γi + (k/n)d)-capturable, where
γi < εd , and if F ′

i is G
+-free then γi < εdk/n.
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The proof requires the following lemma which is analogous to Lemma 6.3.

Lemma 8.5 Let C � C ′ � ad, Fi ⊂ ([n]
ki

)
for i ∈ [s] and F ′

i ⊂ ([n]
k′
i

)
for i ∈ [a]

with
∑s

i=1 ki + ∑a
i=1 k

′
i ≤ n/C. Suppose (F1, . . . ,Fs,F ′

1, . . . ,F ′
a) are cross free of

G = (e1, . . . , es, e′
1, . . . , e

′
a) with each |ei | = ki , |e′

i | = k′
i and e ∩ e′

i = ∅ for all
i ∈ [a] and e′

i �= e ∈ G. If
∑s

i=1(1 − μ(Fi )) < 1/2 then some F ′
i is (C ′, (k′

i/n)d)-
capturable.

Proof Let k = n/2a and for each i ∈ [a] let Gi = (F ′
i )

↑ ∩ ([n]
k

)
. Then

(F1, . . . ,Fs,G1, . . . ,Ga) are cross free of G ′ obtained from G by enlarging each e′
i to

e∗
i of size k. Suppose for contradiction that eachF ′

i is (C
′, (k′

i/n)d)-uncapturable. Then
an argument of Dinur and Friedgut, applying Russo’s Lemma and Friedgut’s junta the-
orem (see Lemma 2.7 in [4]), shows that eachμ(Gi ) > 1−1/2a. Consider a uniformly
random injection φ : V (G ′) → [n]. Let E be the event that some φ(ei ) /∈ Fi or some
φ(e∗

i ) /∈ Gi . Then 1 = P(E) ≤ ∑
i∈[s](1−μ(Fi ))+∑

i∈[a](1−μ(Gi )) < 1/2+1/2,
contradiction. ��
Proof of Lemma 8.4 With notation as in Setup 8.3, let C � β−1 � b � d � a� and
C ≤ k ≤ n/Cs. Let Fi ⊂ ([n]

ki

)
with ki ∈ [k/2, k] for i ∈ [σ − 1] and F ′

i ⊂ ([n]
k′
i

)

with k′
i ∈ [k/2, k] for i ∈ [a] be such thatF1, . . . ,Fσ−1,F ′

1, . . . ,F ′
a are cross free of

H+
1 , . . . , H+

σ−1, B
+
1 , . . . , B+

a . Suppose
∑s−1

i=1 (1−μ(Fi )) ≤ ε ≤ β and 1−μ(Fi ) ≤
ε0 := 2ε/σ for all i ∈ I . Suppose for contradiction that eachF ′

i is (β−1, γi +(k/n)d)-
uncapturable, where either γi ≥ εd or F ′

i is G
+-free and γi ≥ εdk/n.

We start by upgrading uncapturability to globalness. By Lemma 5.5 with (b, 4, a)

in place of (b, r ,m) and each αi = n/kb, βi = γi + (k/n)d , noting that 8b ≤ k ≤
n/8a(n/bk), 4ba < β−1 and (n/kb)b(k/n)d > n/k � 1, there is a set S′ partitioned
into S′

1, . . . , S
′
a with each |S′

i | ≤ 8b such that each G0
i := (F ′

i )
S′
i
S′ is (8, 4μ(G0

i )n/kb)-

global with μ(G0
i ) > α

1S′
i �=∅

i βi/2. We have 2μ(G0
i ) > εd + (k/n)d , unless F ′

i is
G+-free and S′

i = ∅, in which case G0
i is a restriction of F ′

i , so is also G+-free, with
2μ(G0

i ) > εdk/n + (k/n)d .

Next we define G′
i := (F ′

i )
Si
S with enhanced globalness, obtaining S partitioned into

S1, . . . , Sa by letting Si = S′
i if G0

i is (4, μ(G0
i )βn/sk)-global, or otherwise letting

Si = S′
i ∪ Ri where |Ri | ≤ 4 and G1

i := (G0
i )

Ri
Ri

has μ(G1
i ) > μ(G0

i )βn/sk. We also

define Gi = (Fi )
∅
S for i ∈ [σ − 1] and note that each 1 − μ(Gi ) ≤ 2(1 − μ(Fi )).

By Lemma 2.2, each G1
i or G′

i is (4, 2μ(G0
i )βn/sk)-global if Ri = ∅ or

(4, 8μ(G0
i )n/kb)-global otherwise. By Lemma 2.4, each G1

i is (b/8, μ(G1
i )/2)-

uncapturable, so μ(G′
i ) > μ(G1

i )/2 ≥ μ(G0
i )/2. Thus 2β

−1μ(G′
i ) ≥ γ ′

i + (k/n)d ,
and

(i) G′
i is (4, 8μ(G′

i )n/kb)-global with γ ′
i ≥ εd/s, or

(ii) G′
i is G

+-free and (4, 2μ(G′
i )βn/sk)-global with γ ′

i ≥ εdk/n.

Indeed, if option (i) does not hold then G0
i is G

+-free with 2μ(G0
i ) > εdk/n+ (k/n)d ,

and also is (4, μ(G0
i )βn/sk)-global, so Ri = ∅ and G′

i is a restriction of G0
i , so is also

G+-free.
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We will show that G1, . . . ,Gσ−1,G′
1, . . . ,G′

a cross contain H+
1 , . . . , H+

σ−1, B
+
1 ,

. . . , B+
a , thus obtaining the required contradiction. It suffices to find an injection

φ : B → [n], where B = ⋃a
i=1 Bi , such that Lemma 8.5 provides a cross embedding

of e+
1 , . . . , e+

s in G1, . . . ,Gs , where for each edge A j ∈ Hi we define e j = A j \ B and

H j = (Gi )
φ(B∩A j )

φ(B) , or if A j = Bi we define e j = A j \ B = ∅ and H j = (G′
i )

φ(Bi )
φ(B) .

We note that if B ∩ A j = ∅ then each 1 − μ(H j ) ≤ 2(1 − μ(Gi )) for any
φ. We consider φ obtained by choosing independent uniformly random injections
φi : Bi → [n] for each i ∈ [a]. Then P(φ is injective) ≥ 1 − 2a2/n and P(μ(H j ) ≥
1 − √

ε0) > 1 − 2
√

ε0 whenever A j ∈ ⋃
i∈I Hi by Lemma 4.2. We write Ei for the

event that φi (Bi ) ∈ ∂ciG′
i , where ci = b−.3μ(g′

i ). It suffices to show that conditional

on Ei each H′
i := (G′

i )
φi (Bi )
φ(B) is (

√
b, (k/n)2d)-uncapturable, and that P(Ei ) ≥ ε

1/3a
0 .

For uncapturability, we recall that G′
i is (4, 8μ(G′

i )n/kb)-global with 2β−1μ(G′
i ) ≥

(k/n)d . Thus H′
i and H′′

i := (G′
i )

φi (Bi )
φi (Bi )

are (2, 8μ(G′
i )n/kb)-global by Lemma 2.2.

Conditional on Ei we haveμ(H′′
i ) > ci , soH′′

i is (b.7/16, μ(H′′
i )/2)-uncapturable by

Lemma 2.4. Then μ(H′
i ) ≥ μ(H′′

i )/2 ≥ b−.3μ(G′
i )/4, so H′

i is (b.7/32, μ(H′
i )/2)-

uncapturable by Lemma 2.4, and so (
√
b, (k/n)2d)-uncapturable.

It remains to show P(Ei ) ≥ ε
1/3a
0 . We may assume μ(G′

i ) < e−kβ , otherwise
this holds easily by Fairness (Proposition 4.3). As 2β−1μ(G′

i ) ≥ (k/n)d this gives

k < nβ . By Lemma 4.4 with � = b.1 we are done unless ε
1/3a
0 > P(Ei ) = μ(∂ciG′

i ) ≥
(μ(G′

i )/2)
2/�, which implies γ ′

i + (k/n)d ≤ 2β−1μ(G′
i ) < (ε/s)b

.05
. As γ ′

i < εd/s

we have option (ii) above, so G′
i is G

+-free. As εdk/n ≤ γ ′
i < (ε/s)b

.05
we also have

s < εnb
−.05

.
Now we claim that ∂2ciG

′
i is G-free. This will suffice to complete the proof, as then

Lemma 4.4 gives the improved estimate μ(∂2ciG
′
i ) ≥ (εdk/sb + k/n − (s/n)2)b

−.02
>

(ε/s)b
−.01

. To see the claim, we suppose φ′(G) ⊂ ∂2ciG
′
i and will obtain a contradiction

by finding a cross matching in A1, . . . ,As , where for each edge A j of G we let

A j = (G′
i )

φ′(A j )

Im φ′ . We verify the conditions of Lemma 5.7, with (s, s, d, 2) in place
of (s,m, d, K ). As G′

i is (4, 2μ(G′
i )βn/sk)-global, each H j is (2, 4μ(G′

i )βn/sk)-
global by Lemma 2.2. Also, G′

i is (s/4β,μ(G′
i )/2)-uncapturable by Lemma 2.4, so

each μ(H j ) ≥ μ(G′
i )/2 ≥ βεdk/4n, and each H j is (s/8β, βεdk/8n)-uncapturable

by Lemma 2.4. As s < εnb
−.05

and k < nβ we have βεdk/8n > (3sk/n)d , so the
required conditions hold. ��

8.2 Strong Stability

We conclude with the proof of the main result of this section.

Proof of Theorem 8.2 Let G ∈ G(2,�, s) be (a1, a2)-critical and C � β−1 � b �
d � a2�. Suppose F ⊂ ([n]

k

)
with C ≤ k ≤ n/Cs is G+-free and |F | ≥ |Sn,k,σ−1|.

By Theorem 1.9 (refined junta approximation) there is J ∈ ( [n]
σ−1

)
such that |F \

Sn,k,J | = δ
(n−1
k−1

)
with δ−1 � bd�. We write J = { j1, . . . , jσ−1}, let Fi = F ji

J for
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i ∈ [σ − 1], say with |F1| ≥ · · · ≥ |Fσ−1|, and note that F∅
J is G+-free. As in the

proof of Theorem 7.1, we have
∑σ−1

i=1 (1−μ(Fi )) ≤ 2δ, so 1−μ(Fi ) ≤ 4r�δ/σ for
any i ≤ min{r�, σ − 1}.

As G is a2-matching-critical, we can define H2
1 , . . . , H2

σ−1, B2
1 , . . . , B

2
a2 and

I 2 as in Setup 8.3 with r = 2 and a = a2, where we identify I 2 with [|I 2|].
Letting F ′

i = F∅
J for i ∈ [a2], we have F1, . . . ,Fσ−1,F ′

1, . . . ,F ′
a2 cross free

of (H2
1 )+, . . . , (H2

σ−1)
+, (B2

1 )
+, . . . , (B2

a2)
+, so F∅

J is (b, (2δ)dk/n + (k/n)d)-

capturable by Lemma 8.4.We fix J ′ ∈ ([n\J ]
b

)
so thatμ(F∅

J∪J ′) < (2δ)dk/n+(k/n)d .
As G is a1-degree-critical, we can define H1

1 , . . . , H1
σ−1, B

1
1 , . . . , B

1
a and I 1 as

in Setup 8.3 with r = 1 and a = a1, where we identify I 1 with [|I 1|]. For each
x ∈ J ′, letting F ′

i = F x
J∪{x} for i ∈ [a1], we have F1, . . . ,Fσ−1,F ′

1, . . . ,F ′
a1

cross free of (H1
1 )+, . . . , (H1

σ−1)
+, (B1

1 )
+, . . . , (B1

a2)
+, so F x

J∪{x} is (b, (2δ)dk/n +
(k/n)d)-capturable by Lemma 8.4. We fix Jx ∈ ([n]\(J∪{x})

b

)
so that μ((F x

J∪{x})
∅
Jx

) <

(2δ)dk/n + (k/n)d .
Let F = {T ∈ ([n]\J

2

) : μ(FT
T∪J ) > bk/n}. Then F ⊂ F ′ := {xy : x ∈ J ′, y ∈ Jx }

and |F ′| ≤ b2. Writing T = {{x} : x ∈ J } ∪ F , we have |F \ Gn,k(T )| ≤ |F∅
J∪J ′ | +∑

x∈J ′ |F x
J∪{x}∪Jx

|+∑
T∈F ′ |FT

T∪J |, so μ(F \Gn,k(T )) ≤ ((2δ)dk/n+ (k/n)d)(1+
bk/n) + (bk/n)3. Writing G := Gn,k(T ), as |F \ G| ≥ |F \ Sn,k,J | − |Gn,k(F)| we
also have μ(F \ G) ≥ δk/n − (bk/n)2. We deduce δk/n ≤ (2δ)dk/n + 2(bk/n)2, so
δ ≤ 3bk/n, giving |F \ G| ≤ 2b3

(n−3
k−3

)
.

To complete the proof of the first statement of the theorem, it remains to show |F | ≤
|Fa1a2 |. To see this, note that otherwise F contains some F0 = (Ti : i ∈ [ar ]), where
r = 2 and F0 is a matching or r = 1 and F0 is a star. Writing F ′

i = FTi
J∪Ti , we have

F1, . . . ,Fσ−1,F ′
1, . . . ,F ′

a2 cross free of (Hr
1 )+, . . . , (Hr

σ−1)
+, (Br

1)
+, . . . , (Br

ar )
+,

so some F ′
i is (b/2, (k/n)d)-capturable by Lemma 8.4. However, μ(F ′

i ) > bk/n as
Ti ∈ F , so we have a contradiction.

Now suppose |F | ≥ |Fn,k,G | − ε
(n−2
k−2

)
with ε ∈ (0, β). We have

μ(F) ≤ μ(F \ G) + μ(G) − k
2n

σ−1∑

i=1

(1 − μ(Fi )) − k2

2n2

∑

T∈F
(1 − μ(FT

J∪T )),

where μ(F \ G) ≤ 2(bk/n)3 and μ(G) ≤ μ(Fn.k.G) − (|Fa1a2 | − |F |)k2/2n2 ≤
μ(F) + (|Fa1a2 | − |F | + 2ε)k2/2n2. Thus |F | = |Fa1a2 |, so G := Gn,k(T ) is a copy
of Fn,k,G , and

σ−1∑

i=1

(1 − μ(Fi )) +
∑

T∈F
(1 − μ(FT

J∪T )) ≤ 3ε.

Next we suppose for contradiction that μ(F \ G) > (εk/n)d . We fix some
T ∈ ([n]\J

2

) \ F with μ(FT
J∪T ) > (εk/n)d+2. By maximality of Fa1a2 we can

fix a matching T1, . . . , Ta2 in F with Ta2 = T . Writing F ′
i = FTi

J∪Ti , we have
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F1, . . . ,Fσ−1,F ′
1, . . . ,F ′

a2 cross free of (H2
1 )+, . . . , (H2

σ−1)
+, (B2

1 )
+, . . . , (B2

a2)
+.

Thus Lemma 6.3 gives the required contradiction, soμ(F \G) ≤ (εk/n)d , as required.
Finally, let k ≤ √

n and suppose for contradiction that there is some A ∈ F\G. From
the previous statementwe have |G\F | ≤ 2β

(n−2
k−2

)
.Wefix any T ∈ ([n]\J

2

)
with T ⊂ A,

a matching T1, . . . , Ta2 in F with Ta2 = T , and a bijection φ : B2
a2 → T . Writing

A′
j = A j ∩ As for each edge A j of G, where As = B2

a2 , we define G1, . . . ,Gs−1

by G j = (Fi )
φ(A′

j )

A if A j ∈ Hi with i ∈ [σ − 1] or G j = (F∅
J )

φ(A′
j )

A if A j = B2
i

with i ∈ [a2 − 1]. For each j ∈ [s − 1], writing r j = |A′
j | + 1 ∈ [2], we have

(n−k−r j
k−r j

)−|G j | ≤ |G \F |, so as (n−k−2
k−2

) ≥ .1
( n
k−2

)
for k ≤ √

n we have 1−μ(G j ) ≤
20β < 1/2. However, now G1, . . . ,Gs−1 cross contain A1 \ As, . . . , As−1 \ As by
Lemma 2.9, so we have the required contradiction. ��
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isoperimetry. Journal of the European Mathematical Society 21, 3857–3902 (2019)
9. Ellis, David, Narayanan, Bhargav: On symmetric 3-wise intersecting families. Proceedings of the

American Mathematical Society 145(7), 2843–2847 (2017)

123

http://creativecommons.org/licenses/by/4.0/


27 Page 36 of 36 Combinatorica (2025) 45 :27
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