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Abstract A direction–length framework is a pair (G,p) where G = (V ;D,L) is a
‘mixed’ graph whose edges are labelled as ‘direction’ or ‘length’ edges and p is a
map from V to R

d for some d . The label of an edge uv represents a direction or
length constraint between p(u) and p(v). Let G+ be obtained from G by adding,
for each length edge e of G, a direction edge with the same end vertices as e. We
show that (G,p) is bounded if and only if (G+,p) is infinitesimally rigid. This gives
a characterization of when (G,p) is bounded in terms of the rank of the rigidity
matrix of (G+,p). We use this to characterize when a mixed graph is generically
bounded in R

d . As an application we deduce that if (G,p) is a globally rigid generic
framework with at least two length edges and e is a length edge of G then (G \ e,p)

is bounded.

Keywords Direction-length frameworks · Boundedness · Rigidity · Global rigidity

1 Introduction

Graphs with geometrical constraints provide natural models for a variety of appli-
cations, including Computer-Aided Design, sensor networks and flexibility in mole-
cules. Given a graph G and prescribed lengths for its edges, a basic problem is to
determine whether G has a straight line realisation in Euclidean d-dimensional space
with these given lengths. We refer to such a realisation as a framework. Given a
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framework, one may also ask whether it is unique, either globally or with respect
to local movement (rigidity). The rigidity question has a strong mathematical pedi-
gree, going back to a conjecture of Euler [4] that every 3-dimensional polyhedron
is rigid, when viewed as a ‘panel-and-hinge’ framework. (Connelly [2] gave a coun-
terexample to this conjecture in 1978.) Saxe [19] has shown that both the existence
and global uniqueness problems are NP-hard. However, this hardness relies on al-
gebraic relations between co-ordinates of vertices, and for practical purposes it is
natural to study generic realisations. Laman [12] (see also [14]) gave a combinatorial
characterization for when a graph is rigid in any generic 2-dimensional realisation.
Jackson and Jordan [7] gave a combinatorial characterization for when a graph is
globally rigid in two dimensions, i.e. when every generic realisation is a unique reali-
sation. No combinatorial characterizations are known in higher dimensions, although
it is possible to give conditions in terms of the ranks of certain matrices. Other natural
geometrical constraints include directions and angles, which arise in parallel drawing
and map making. Combinatorial characterizations of generic rigidity were given for
direction constraints in d-dimensions by Whiteley [22], and for mixed direction and
length constraints in 2-dimensions by Servatius and Whiteley [20]. No characteriza-
tion is known when angle constraints are involved, even in 2-dimensions.

Matroid theory is a valuable tool in many of these geometric problems. We refer
the reader to [22] for a comprehensive survey of this method. Generic rigidity can be
analysed in terms of a matroid defined on the edge set of a complete graph with n

vertices in which the spanning sets in the matroid correspond to the rigid graphs with
n vertices. Laman’s characterization of 2-dimensional generic rigidity is a description
of the bases of the corresponding matroid: for n vertices, a set E of edges is a basis if
and only if |E| = 2n − 3 and |E′| ≤ 2|V (E′)| − 3 for all non-empty subsets E′ of E.
An equivalent description, using a theorem of Nash-Williams [17], is that for every
e ∈ E, the graph obtained from G by adding a new edge with the same end-vertices as
e, is the edge-disjoint union of two spanning trees (see Sect. 3.3 in [22] for discussion
of this connection).

Servatius and Whiteley [20] gave an analogous counting characterization for rigid-
ity of generic 2-dimensional frameworks which have constraints involving lengths
and directions. In the corresponding matroid for n vertices, a set E = D ∪L of edges
is a basis if and only if (i) |E| = 2n − 2, (ii) |E′| ≤ 2|V (E′)| − 2 for all non-empty
subsets E′ of E, and (iii) |E′| ≤ 2|V (E′)|−3 for all pure non-empty subsets E′ of E,
where a set of edges is pure if it involves either only the length constraints L or only
the direction constraints D. Equivalently, using Nash-Williams’ theorem, E is the
disjoint union of two spanning trees, D ∪ {e} is the disjoint union of two forests for
every e ∈ D, and L ∪ {e} is the disjoint union of two forests for every e ∈ L.

In this paper, we consider when a framework has the property that there is an ab-
solute bound for the diameter of any framework that satisfies the same length and
direction constraints as the original framework. This is a question of independent
interest and it also gives insight on the question of global uniqueness. We charac-
terize boundedness as rigidity of an augmented framework, and show that this is
determined by the rank of its rigidity matrix. This enables us to obtain a combi-
natorial characterization for boundedness of d-dimensional generic direction–length
frameworks. There are several known O(n2) algorithms for testing generic rigidity of
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2-dimensional frameworks (see [1] for one algorithm and references to others). We
will indicate how these algorithms can be adapted to test for generic rigidity in
augmented direction–length frameworks. This implies that the boundedness of d-
dimensional generic direction–length frameworks can be decided in O(n2) time.

An outline of the paper is as follows. We give precise definitions of the terms
used in the above discussion of rigidity in the next section. In Sect. 3, we charac-
terize rigidity for a special class of direction–length frameworks, namely those in
which every length constraint is accompanied by a direction constraint with the same
end vertices. The following section introduces a new geometrical scenario involving
balls with directional constraints. We characterize boundedness and generic bound-
edness for such configurations. The boundedness characterization of ball–direction
frameworks is then used in Sect. 5 to characterize boundedness for direction–length
frameworks. We apply this result in Sect. 6 to give a combinatorial characterization
for bounded d-dimensional generic frameworks. In Sect. 7, we show how to find the
bounded components of a direction–length generic framework. Section 8 concerns
necessary conditions for global rigidity: we show that if (G,p) is a globally rigid
generic framework with at least two length edges and e is a length edge of G then
(G \ e,p) is bounded. The final section contains a summary of our results.

2 Definitions

Our graphs will not have loops but may have parallel edges. A mixed graph G =
(V ;D,L) consists of a graph G on a vertex set V in which the edge set E is parti-
tioned into two parts D and L. We refer to edges in D as direction edges and edges
in L as length edges.

A d-dimensional direction–length framework is a pair (G,p) where G =
(V ;D,L) is a mixed graph and p is a map from V to R

d such that p(u) �= p(v)

for all uv ∈ L. We say that (G,p) is a direction–length realisation of G in R
d .

Two direction–length frameworks (G,p) and (G,q) are equivalent if q(u)− q(v)

is a scalar multiple of p(u) − p(v) for all uv ∈ D with p(u) �= p(v) and ‖p(u) −
p(v)‖ = ‖q(u)−q(v)‖ for all uv ∈ L, where ‖ · ‖ denotes the Euclidean norm in R

d .
They are congruent if there exists a λ ∈ {1,−1} such that p(u) − p(v) = λ(q(u) −
q(v)) for all u,v ∈ V , i.e. (G,q) can be obtained from (G,p) by a translation and a
dilation by ±1.

The direction–length framework (G,p) is globally rigid if every framework which
is equivalent to (G,p) is congruent to (G,p).

We say (G,p) is rigid if there exists an ε > 0 such that if a framework (G,q)

is equivalent to (G,p) and satisfies ‖p(v) − q(v)‖ < ε for all v ∈ V then (G,q)

is congruent to (G,p). Equivalently, every continuous motion of the points p(v),
v ∈ V respecting the length and direction constraints results in a framework which is
congruent to (G,p).

The above definitions are illustrated in Fig. 1.
A direction–length framework (G,p) is bounded if there exists a real number

K such that ‖q(u) − q(v)‖ < K for all u,v ∈ V whenever (G,q) is a framework
equivalent to (G,p), see Fig. 2.

A direction–length framework (G,p) is generic if the set containing the coordi-
nates of all of the vertices is algebraically independent over the rationals.
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Fig. 1 Two equivalent but non-congruent 2-dimensional direction–length frameworks. We use thick or
thin lines to indicate edges representing length or direction constraints, respectively. The frameworks are
rigid but not globally rigid

Fig. 2 2-dimensional direction–length frameworks, (i) bounded, (ii) & (iii) unbounded

Fig. 3 A 2-dimensional direction–length framework and its rigidity matrix

We say that a property P of frameworks is generic if whenever some generic reali-
sation of a graph G has property P then all generic realisations of G have property P.
If P is a generic property then we say that a graph G has property P if some generic
realisation of G has property P (or equivalently, all generic realisations of G have
property P).

Given a realisation p of G and a direction edge e = uv we let Be be a (d − 1)×d-
matrix whose rows are a basis for the subspace of R

d orthogonal to 〈p(u) − p(v)〉 if
p(u) �= p(v), and Be = 0 otherwise. A rigidity matrix for (G,p) is a ((d − 1)|D| +
|L|) × d|V | matrix R(G,p) constructed as follows. We first choose an arbitrary ref-
erence orientation for the edges of D, and use the notation e = uv to mean that e

has been oriented from u to v. Each edge in D corresponds to d − 1 consecutive
rows of R(G,p), each edge in L to one row of R(G,p), and each vertex in V to d

consecutive columns of R(G,p). The submatrix of R(G,p) with rows labelled by
e = uv ∈ D and columns labelled by x ∈ V is Be if x = u, is −Be if x = v, and is the
(d − 1) × d zero matrix otherwise. The submatrix of B(G,p) with row labelled by
e = uv ∈ L and columns labelled by x ∈ V is p(u) − p(v) if x = u, is p(v) − p(u)

if x = v, and is zero otherwise, see Fig. 3.
Let Z(G,p) be the null space of R(G,p). We refer to vectors in Z(G,p) as

infinitesimal motions of (G,p). The labelling of the columns of R(G,p) allows us to
consider each infinitesimal motion z as a map from V to R

d with the properties that
Buv(z(u)− z(v)) = 0 for all e = uv ∈ D and (p(u)−p(v)) · (z(u)− z(v)) = 0 for all
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uv ∈ L. For e = uv ∈ D the condition Be(z(u)−z(v)) = 0 is equivalent to z(u)−z(v)

being parallel to p(u) − p(v). It follows that Z(G,p), and hence also rank R(G,p),
depend only on the framework (G,p): they are independent of the choice of the bases
Be , e ∈ D. Nevertheless, it will sometimes serve our purposes to refer to a particular
rigidity matrix which we call the standard rigidity matrix of R(G,p). This is defined
as follows: for each e = uv ∈ D and p(u) − p(v) = (a1, . . . , ad), we take the rows
of Be as the vectors b1, . . . , bd−1, where bi is equal to ad in co-ordinate i, to −ai in
co-ordinate d , and 0 in the other co-ordinates.

For any a ∈ R
d the translation given by z(v) = a for all v ∈ V is an infinites-

imal motion, so dimZ(G,p) ≥ d and rank R(G,p) ≤ d|V | − d . We say that the
framework (G,p) is infinitesimally rigid if rank R(G,p) = d|V | − d , and is inde-
pendent if the rows of R(G,p) are linearly independent. Infinitesimal rigidity and
independence are both generic properties of graphs, as the rank of R(G,p) is the
same for all generic realisations of G. To see this, note that it is determined by the
maximum size of a square submatrix of R(G,p) which has non-zero determinant.
If we take R(G,p) to be the standard rigidity matrix for (G,p), then its entries are
linear functions of the co-ordinates of the points p(v). Thus the relevant determi-
nants are non-zero polynomials in the co-ordinates, so are non-zero at all generic
realisation whenever they are not identically zero. We denote the rank of the rigidity
matrix of a generic realisation of G in R

d by rd(G). Then G is independent in R
d if

rd(G) = (d − 1)|D| + |L| and infinitesimally rigid if rd(G) = d|V | − d .
A matroid M = (E, I) consists of a ground set E and a collection I of subsets

of E called independent sets, such that (i) ∅ ∈ I , (ii) if A ∈ I and B ⊆ A then B ∈ I ,
and (iii) for any E′ ⊆ E there is a number r(E′), called the rank of E′, such that
any maximal independent subset of E′ has size r(E′). We refer the reader to [18]
for an introduction to the theory of matroids. Given a matrix R, one can define a
matroid M(R) in which the ground set E corresponds to rows of R and a subset
of E is independent in M(R) if and only if the corresponding rows of R are linearly
independent. This definition depends on the field, which will always be taken as the
real numbers in this paper. Conversely, given a matroid M , we say that R is a linear
representation of M if M(R) = M . Another matroid that will be used in this paper
is the cycle matroid M(G) of a graph G: this has ground set E = E(G) and a set
A ⊆ E is independent if it forms an acyclic subgraph of G. The standard rigidity
matrix of (G,p) defines the rigidity matroid of (G,p): the ground set (d − 1)D ∪ L

corresponds to rows of the rigidity matrix, and a subset is independent when the
corresponding rows are linearly independent. Any two generic realisations of G have
the same rigidity matroid, which we call the rigidity matroid of G.

3 A Special Class of Direction–Length Frameworks

Characterising when a direction–length framework is rigid seems to be a difficult
problem. The only known result is the above-mentioned characterization by Servatius
and Whiteley of rigid 2-dimensional generic direction–length frameworks. Infinites-
imal rigidity is a sufficient condition for rigidity, as shown by Lemma 5.1 in [10]
(the proof there is written for 2-dimensional frameworks but it can be easily modified
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Fig. 4 A mixed graph G and its
augmentation G+

for the general case). Rigidity and infinitesimal rigidity are not equivalent in general,
since a framework may have infinitesimal motions which are not induced by continu-
ous motions. (They are equivalent, however, for generic frameworks, see Lemma 8.1
below.)

In this section, we consider the following special class of framework. Given a
mixed graph G, we construct the augmented graph G+ by adding a direction edge
with the same end vertices as e, for each length edge e of G, see Fig. 4. The following
theorem shows that rigidity and infinitesimal rigidity are equivalent for any given
realisation (G+,p) of G+, using a relationship between the infinitesimal motions
and equivalent realisations of (G+,p).

Theorem 3.1 Let G = (V ;D,L) be a mixed graph and (G,p) be a realisation of G.

(a) Suppose that z is an infinitesimal motion of (G+,p). Then z(u) = z(v) for all
uv ∈ L. Also, if q = p + z then (G+, q) is equivalent to (G+,p).

(b) Suppose (G+, q) is equivalent to (G+,p) and for all v ∈ V we have ‖p(v) −
q(v)‖ < δ := minxy∈L ‖p(x) − p(y)‖. Then z = q − p is an infinitesimal motion
of (G+,p).

(c) (G+,p) is rigid if and only if (G+,p) is infinitesimally rigid.

Proof Write G+ = (V ;D+,L+), where D+ = D ∪ L and L+ = L.
(a) Suppose z ∈ Z(G+,p) and write q = p + z. Consider any edge e = xy ∈ D+

with p(x) �= p(y). By definition of the rigidity matrix, we have Be(z(x)− z(y)) = 0,
and so Be(q(x) − q(y)) = Be(p(x) − p(y)). By construction, the rows of Be form a
basis for the subspace of R

d orthogonal to 〈p(x)−p(y)〉, so q(x)−q(y) = λ(p(x)−
p(y)) for some λ ∈ R.

Next consider any edge uv ∈ L. By definition of the rigidity matrix, we have
(p(u) − p(v)) · (z(u) − z(v)) = 0. Hence

(
p(u) − p(v)

) · (p(u) − p(v)
) = (

p(u) − p(v)
) · (q(u) − q(v)

)
. (1)

The definition of G+ implies that we also have uv ∈ D+. As already shown, this
implies that q(u)−q(v) = λ(p(u)−p(v)) for some λ ∈ R. Substituting into (1) gives
‖p(u) − p(v)‖2 = λ‖p(u) − p(v)‖2. Thus λ = 1 and p(u) − p(v) = q(u) − q(v).
This gives z(u) = z(v) for all uv ∈ L. We also have q(x) − q(y) ∈ 〈p(x) − p(y)〉 for
all xy ∈ D+ with p(x) �= p(y), so (G+, q) is equivalent to (G+,p) by definition.

(b) Suppose (G+, q) is equivalent to (G+,p) and ‖p(v) − q(v)‖ < δ for all
v ∈ V . Write z = q − p. Consider any edge e = xy ∈ D+ with p(x) �= p(y). Then
q(x)−q(y) ∈ 〈p(x)−p(y)〉, so Be(q(x)−q(y)) = Be(p(x)−p(y)) = 0. Therefore,
Be(z(x) − z(y)) = 0.

Next consider any edge uv ∈ L. Then ‖p(u)−p(v)‖ = ‖q(u)−q(v)‖. The defin-
ition of G+ implies that we also have uv ∈ D+. Thus q(u) − q(v) = λ(p(u) − p(v))
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for some λ ∈ R. The last two equalities imply that p(u)−p(v) = ±(q(u)−q(v)). We
cannot have p(u)−p(v) = −(q(u)−q(v)), as then 2(p(u)−p(v)) = p(u)−q(u)+
q(v) − p(v), so the triangle inequality gives 2‖p(u) − p(v)‖ ≤ ‖p(u) − q(u)‖ +
‖p(v) − q(v)‖ < 2δ, contradicting the choice of δ. It follows that p(u) − p(v) =
q(u) − q(v) and hence z(u) − z(v) = 0. Recalling that Be(z(x) − z(y)) = 0 for all
e = xy ∈ D+ with p(x) �= p(y) we see that z ∈ Z(G+,p).

(c) We may use part (b) of the theorem to deduce that (G+,p) is not infinites-
imally rigid if it is not rigid. (This would also follow from the above mentioned
result that infinitesimal rigidity is a sufficient condition for rigidity in all direction–
length frameworks.) Now suppose that (G+,p) is not infinitesimally rigid. We need
to show that (G+,p) is not rigid. Choose ε > 0. Since dimZ(G+,p) > d we can
choose z ∈ Z(G+,p) that is not a translation by a fixed vector. Multiplying by a real
constant we can assume that ‖z‖ < ε. Let q = p + z. Then (G+, q) is equivalent to
(G+,p) by part (a) of the theorem. But ‖p(v) − q(v)‖ < ε for all v ∈ V , (G+, q) is
not congruent to (G+,p) and ε is arbitrary, so (G+,p) is not rigid. �

Note that part (a) of Theorem 3.1 implies that any infinitesimal motion of (G+,p)

is constant on the connected components of the graph F = (V ,L) obtained by taking
just the length edges of G. We can use this observation to characterize rigidity of
(G+,p) in terms of the rank of the following reduced rigidity matrix.

Let F1,F2, . . . ,Fm be the components of F = (V ,L). Let E ⊆ D be the set
of direction edges e = uv in G which join distinct components of F and satisfy
p(u) �= p(v). As before, for each e = uv ∈ E we choose a reference orientation for e

and let Be be a (d − 1) × d-matrix whose rows are a basis for the subspace of R
d or-

thogonal to 〈p(u)−p(v)〉. A reduced rigidity matrix for (G+,p) is a (d −1)|E|×dm

matrix R̃(G+,p) constructed as follows. Each edge in E corresponds to d − 1 con-
secutive rows and each component of F to d consecutive columns. The submatrix
of R̃(G+,p) with rows labelled by e = uv ∈ E and columns labelled by Fi is Be if
u ∈ V (Fi) and v /∈ V (Fi), −Be if v ∈ V (Fi) and u /∈ V (Fi), and is the (d − 1) × d

zero matrix otherwise. See Fig. 5.

Corollary 3.2 Let (G,p) be a mixed framework and suppose that F = (V ,L) has m

components. Then

(a) The null spaces of R̃(G+,p) and R(G+,p) are isomorphic;
(b) rank R̃(G+,p) ≤ dm − d ;
(c) (G+,p) is rigid if and only if rank R̃(G+,p) = dm − d .

Proof Let Z̃(G+,p) be the null space of R̃(G+,p). We may consider any z̃ ∈
Z̃(G+,p) as a map from {F1,F2, . . . ,Fm} to R

d . Then we can extend z̃ to a map z :

Fig. 5 A reduced rigidity matrix for the direction–length framework in Fig. 3, where H1 and H2 are the
length components induced by {u,x} and {v,w}, respectively
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Fig. 6 A graph G, a 2-dimensional ball-direction realisation (G, s,p) of the weighted graph (G, s), and a
ball-direction incidence matrix A(G, s) for (G, s). We have s : {e1, e2} → R

2 \ {0} and xi − yi = λis(ei )

for some λi ∈ R and all 1 ≤ i ≤ 2

V → R
d by setting z(v) = z̃(Fi) for each v ∈ V (Fi) and all 1 ≤ i ≤ m. It is straight-

forward to check that z̃ �→ z is an isomorphism between Z̃(G+,p) and Z(G+,p)

using Theorem 3.1(a). This proves (a) and implies that dm − rank R̃(G+,p) =
d|V |− rank R(G+,p). This gives (b) and implies that (G+,p) is infinitesimally rigid
if and only if rank R̃(G+,p) = dm−d . Part (c) now follows using Theorem 3.1(c). �

4 Ball–Direction Frameworks

In this section, we introduce a new type of framework and give a characterization for
when it is bounded in terms of the rank of an associated matrix. Suppose G = (V ,E)

is a graph and s : E → R
d − {0} assigns a non-zero vector s(e) in R

d to each edge
e of G. Our goal is to place unit balls in R

d corresponding to the vertices of G so
that for each edge e = uv there is a line in the direction s(e) that intersects the balls
corresponding to u and v. We say that p : V → R

d is a ball–direction realisation
of (G, s) if for each edge e = uv of G there exists x, y ∈ R

d and λ ∈ R such that
‖x − p(u)‖ ≤ 1, ‖y − p(v)‖ ≤ 1 and x − y = λs(e). We refer to the triple (G, s,p)

as a d-dimensional ball–direction framework. We say that the weighted graph (G, s)

is ball–direction bounded if there exists K ∈ R such that ‖p(u) − p(v)‖ < K for all
u,v ∈ V for all ball–direction realisations (G, s,p) of (G, s).

A ball–direction incidence matrix of (G, s) is a (d − 1)|E|× d|V | matrix A(G, s)

defined as follows. For each e ∈ E, let Ae be a (d − 1) × d-matrix whose rows are
a basis for the subspace of R

d orthogonal to s(e). We choose an arbitrary reference
orientation for the edges of E. Each edge in E corresponds to d − 1 consecutive
rows and vertex of V to d consecutive columns. The submatrix of A(G, s) with rows
labelled by e = uv ∈ D and columns labelled by x ∈ V is Ae if x = u, is −Ae if
x = v, and is the (d − 1) × d zero matrix otherwise.

Let Z(G, s) be the null space of A(G, s). The labelling on the columns of A(G, s)

allows us to consider each z ∈ Z(G, s) as a map from V to R
d . For any edge e =

uv and z ∈ Z(G, s) we have Ae(z(u) − z(v)) = 0. Hence, if z(u) �= z(v), the line
between z(u) and z(v) is in the direction s(e). The null space Z(G, s) contains the
d-dimensional space of translations, so dimZ(G, s) ≥ d and rank A(G, s) ≤ dn − d .

Theorem 4.1 Suppose G = (V ,E) is a graph on n vertices and s : E → R
d − {0}.

Then (G, s) is ball–direction bounded if and only if rank A(G, s) = dn − d .

Proof Let A = A(G, s). We may assume, without loss of generality, that the rows
of A are vectors of unit length. Choose v0 ∈ V .
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First, suppose that rank A < dn − d . Since dimZ(G, s) ≥ d + 1, we may choose
a non-zero z ∈ Z(G, s) such that z(v0) = (0, . . . ,0) ∈ R

d . Define p : V → R
d by

p(v) = λz(v) for each v ∈ V and some fixed λ ∈ R. Then (G, s,p) is a ball–direction
realisation of (G, s). Since z is non-zero and λ can be arbitrarily large, (G, s) is
unbounded.

Conversely, suppose that rank A = dn−d . Consider any ball–direction realisation
p of (G, s). By translation we may suppose that p(v0) = (0, . . . ,0) for some fixed
v0 ∈ V . Then by definition, for any edge e = uv there are points q(u) = p(u) + r(u)

and q(v) = p(v)+r(v) for which ‖r(u)‖,‖r(v)‖ ≤ 1 and q(u)−q(v) = λs(e). Then
Ae(q(u) − q(v)) = 0 and so Ae(p(u) − p(v)) = Ae(r(u) − r(v)). Since the rows
of Ae are vectors of unit length, the triangle inequality gives ‖Ae(p(u) − p(v))‖ ≤
(d − 1)‖r(u) − r(v)‖ ≤ 2(d − 1). Now Ap is a vector in R

(d−1)|E| obtained by con-
catenating the vectors Ae(p(u)−p(v)) for each edge e = uv, so ‖Ap‖ ≤ 2(d−1)|E|.

Choose a set S of rows of A which form a basis for the row space of A. Let Ã

be the (dn − d) × (dn − d)-submatrix of A induced by the rows in S and columns
indexed by V − v0, and p̃ the vector obtained from p by removing the d (zero) co-
ordinates corresponding to v0. For each congruence class modulo d , the sum of the
columns of A with index in this congruence class is zero, and so rank Ã = rank A =
dn − d . Hence Ã is invertible. Since ‖Ãp̃‖ ≤ ‖Ap‖ ≤ 2(d − 1)|E|, we have p̃ ∈
{Ã−1w : w ∈ R

dn−d and ‖w‖ ≤ 2(d −1)|E|}. Also p(v0) = (0, . . . ,0), so p belongs
to a bounded region of R

dn. Thus ‖p(v0) − p(v)‖ is bounded for all v ∈ V by a
constant depending only on G and s, and hence (G, s) is bounded. �

A graph G = (V ,E) is said to be ball–direction bounded in R
d if (G, s) is ball–

direction bounded for all generic s : E → R
d . We will use Theorem 4.1 to charac-

terize ball–direction bounded graphs. We need the following concept. A d-frame is
a graph G = (V ,E) together with a map f : E → R

d . The incidence matrix of the
d-frame (G,f ) is an |E| × d|V | matrix I (G,f ) defined as follows. We first choose
an arbitrary reference orientation for the edges of E. Each edge in E corresponds to
a row of I (G,f ) and each vertex of V to d consecutive columns. The submatrix of
I (G,p) with row labelled by e = uv ∈ D and columns labelled by x ∈ V is f (e) if
x = u, is −f (e) if x = v, and is the d-dimensional zero matrix otherwise. It is known
that when f is generic, I (G,f ) is a linear representation of the matroid union of d

copies of the cycle matroid of G, see [23]. In particular, we have the following result.
For F ⊆ E and X ⊆ V , let iF (X) denote the number of edges of F between vertices
in X.

Theorem 4.2 Suppose G = (V ,E) is a graph and f : E → R
d is generic. Then

(a) The rows of I (G,f ) are linearly independent if and only if iG(X) ≤ d|X| − d

for all ∅ �= X ⊆ V ;
(b) rank I (G,f ) = d|V | − d if and only if G has d edge-disjoint spanning trees.

We can use Theorems 4.1 and 4.2 to characterize ball–direction bounded graphs.
For k a positive integer, we use kG to denote the graph obtained from G by replacing
each edge by k parallel edges.
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Corollary 4.3 A graph G = (V ,E) is ball–direction bounded in R
d if and only if

(d − 1)G has d edge-disjoint spanning trees.

Proof We first suppose that (d − 1)G has d edge-disjoint spanning trees. Let
((d − 1)G,f ) be a generic d-frame. By Theorem 4.2, rank I ((d − 1)G,f ) =
d|V | − d . For each e ∈ E, let e1, e2, . . . , ed−1 be the edges of (d − 1)G corre-
sponding to e and let s(e) ∈ R

d be a non-zero vector which is orthogonal to f (ei)

for all 1 ≤ i ≤ d − 1. Consider the ball–direction framework (G, s). We may take
A(G, s) = I ((d − 1)G,f ) as a ball–direction incidence matrix for (G, s). Then
rank A(G, s) = rank I ((d − 1)G,f ) = d|V | − d . Since the rank of an incidence ma-
trix of a generic ball–direction realisation of G in R

d will be at least rank A(G, s),
Theorem 4.1 implies that G is ball–direction bounded in R

d .
We may proceed similarly when G = (V ,E) is ball–direction bounded in R

d . We
choose a generic realisation (G, s) of G as a ball–direction framework and use it
to construct a d-frame ((d − 1)G,f ) with rank I ((d − 1)G,f ) = rank A(G, s) =
d|V | − d . �

Remark Nash-Williams [16] and Tutte [21] independently characterized the graphs
described in Corollary 4.3. A graph H contains d edge-disjoint spanning trees if and
only if, for every partition {U1, . . . ,Ut } of V (H), there are at least d(t − 1) edges
of H with end vertices in two different sets. This property can be tested algorithmi-
cally in polynomial time.

5 Boundedness of Direction–Length Frameworks

In this section, we use the preceding result on boundedness of ball–direction frame-
works to characterize boundedness in direction–length frameworks. Suppose that
(G,p) is a d-dimensional direction–length framework and G = (V ;D,L). As in
Sect. 3, we write F1,F2, . . . ,Fm for the components of F = (V ,L) and let E ⊆ D

be the set of direction edges e = uv in G which join distinct components of F and
satisfy p(u) �= p(v). We also consider the graph G̃ = (U,E) obtained from (V ,E)

by contracting V (Fi) to a single vertex ui for all 1 ≤ i ≤ m. Now suppose that p is a
realisation of G in R

d . For each e = uv ∈ E, we let Be be a (d −1)×d-matrix whose
rows are a basis for the subspace of R

d orthogonal to 〈p(u) − p(v)〉, as in Sect. 2.
We also define s : E → R

d −{0} by s(e) = p(u)−p(v) for each e = uv ∈ E. The re-
duced rigidity matrix R̃(G+,p) of (G,p) can be taken as a ball–direction incidence
matrix A(G̃, s) for the weighted graph (G̃, s).

Theorem 5.1 The following are equivalent:

(a) (G,p) is direction–length bounded,
(b) (G̃, s) is ball–direction bounded,
(c) (G+,p) is rigid.

Proof We show that (a) ⇒ (c) ⇒ (b) ⇒ (a).
(a) ⇒ (c): Suppose that (G+,p) is not rigid. Then (G+,p) is not infinitesi-

mally rigid, so dimZ(G+,p) ≥ d + 1. Fix a vertex v0. We can choose a non-
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zero infinitesimal motion z of G+ such that z(v0) = 0. Theorem 3.1(a) implies that
z(u) = z(v) for all e = uv ∈ L. Let (G+, q) be the realisation of G+ obtained by
putting q(v) = p(v) + λz(v) for all v ∈ V , for some fixed λ ∈ R. Then (G+, q) is
equivalent to (G+,p) by Theorem 3.1(a). Now q(v0) = p(v0), z(v) �= 0 for some
v ∈ V and λ can be arbitrarily large, so (G+,p) is unbounded. Hence (G,p) is un-
bounded.

(c) ⇒ (b): Suppose that (G+,p) is rigid. By Corollary 3.2, we have
rank R̃(G+,p) = dm − d . Also, as remarked before the theorem, we may take
A(G̃, s) = R̃(G+,p), so (G̃, s) is ball–direction bounded by Theorem 4.1.

(b) ⇒ (a): Suppose that (G̃, s) is ball-direction bounded. Then rank R̃(G+,p) =
rank A(G̃, s) = dm − d so (G+,p) is rigid and hence L �= ∅. Consider any real-
isation (G,q) in R

d equivalent to (G,p). Choose vi ∈ V (Fi) for 1 ≤ i ≤ m, let
Δ = ∑

e=xy∈L ‖p(x) − p(y)‖, and define r : U → R
d by r(ui) = q(vi)/Δ. Then

r is a ball–direction realisation of (G̃, s), since any edge e = uiuj in E corresponds
to an edge u′

iu
′
j in D with u′

i ∈ V (Fi) and u′
j ∈ V (Fj ), and setting x = q(u′

i )/Δ,
y = q(u′

j )/Δ we have ‖x − r(ui)‖ ≤ 1, ‖y − r(uj )‖ ≤ 1 and x − y = λs(e). Since

(G̃, s) is ball–direction bounded there is some K ∈ R depending only on G and s such
that ‖r(ui) − r(uj )‖ < K for all 1 ≤ i < j ≤ m. Then ‖q(u) − q(v)‖ ≤ (K + 2)Δ

for all u,v ∈ V , so (G,p) is bounded. �

Remarks

(a) Theorems 4.1 and 5.1 imply that we can determine whether or not a direction–
length framework (G,p) is bounded by calculating the rank of the rigidity matrix
R(G+,p). Equivalently, we could use the reduced rigidity matrix R̃(G+,p).

(b) One can consider a relaxation of direction–length frameworks to direction–cable
frameworks, where we have some direction constraints as before, and some cable
constraints in which an edge places an upper bound on the distance between the
end vertices of the edge. The arguments above show that (G,p) is bounded as
a direction–length framework if and only if it is bounded as a direction–cable
framework in which the length constraints are replaced by cable constraints.

6 Generic Boundedness

In this section, we characterize when a d-dimensional generic realisation of a mixed
graph G = (V ;D,L) is bounded. It is not immediate that boundedness is a generic
property, but we can see this from Theorems 3.1(c) and 5.1: (G,p) is bounded if and
only if (G+,p) is infinitesimally rigid, and infinitesimal rigidity is a generic property.

Recall that, by Corollary 3.2, (G,p) is bounded if and only if rank R̃(G+,p) =
dm − d , where R̃(G+,p) is a reduced rigidity matrix for (G+,p), and m is the
number of connected components in the length subgraph (V ,L). When p is generic,
we will give a combinatorial method for finding the rank of R̃(G+,p). This will
enable us to characterize boundedness, and will also be used in the next section to
describe the ‘bounded components’ of a mixed graph.

We start by motivating the formula for the rank and illustrating it with a simple
example. Let E ⊆ D be the set of the direction edges of G which join distinct com-
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ponents of (V ,L), and let H = (V , (d − 1)E) be the graph obtained by taking d − 1
copies of each edge in E. Since R̃(G+,p) has d − 1 rows for each edge in E, we
may associate each edge of H with a row in R̃(G+,p) and define a matroid on the
edges of H in which independent sets correspond to linearly independent rows in
R̃(G+,p). We expect an independent set F ⊆ (d − 1)E to satisfy the following two
conditions.

1. F should be independent in the rigidity matroid for direction pure frameworks,
for which a result of Whiteley [22, Theorem 8.2.2] gives the condition iF (X) ≤
d|X| − d − 1 for all X ⊆ V with |X| ≥ 2.

2. F should be independent when considered in the incidence matrix of a generic
ball–direction framework (G̃, f ) obtained by contracting each length component
to a single point. Theorem 4.2 gives the condition iF (Y ) ≤ d|Y | − d for all ∅ �=
Y ⊆ V (G̃). Writing t (X) for the number of components of (V ,L) that X ⊆ V

intersects, we can write this condition as iF (X) ≤ dt (X) − d for all ∅ �= X ⊆ V .

Figure 2 shows three 2-dimensional direction–length frameworks illustrating the
role of these conditions. Each example has 4 (identical) length components and 6
direction edges (which is the minimum number of direction edges required to make
them bounded by Corollary 4.3 and Theorem 5.1). Framework (i) satisfies both of the
conditions above and is bounded. However, framework (ii) fails the first condition,
and framework (iii) fails the second condition, and these frameworks are not bounded.

Now we consider these conditions in the following more general context. Suppose
that d is a positive integer, H = (V ,E) is a graph and P = {U1,U2, . . . ,Um} is a
partition of V such that all edges in E join two distinct parts of P . (We will later take
P to be the components of (V ,L) and H = (V , (d − 1)E) as defined above.) For
X ⊆ V let tP (X) be the number of parts of P which intersect X, and define

fP (X) =
{

d|X| − d − 1 if |X| ≥ 2 and tP (X) = |X|,
dtP (X) − d otherwise.

We say that F ⊆ E is P -independent if iF (X) ≤ fP (X) for all non-empty X ⊆ V .
Note that the two conditions above separately define two distinct matroids on E, and
the P -independent sets are those subsets of E that are independent in both these
matroids. In general, the intersection of two matroids may not be a matroid, but we
will show in Theorem 6.2 that the P -independent subsets of E do define a matroid.
We achieve this by exhibiting a direct sum decomposition into ‘critical’ sets defined
as follows. Fix any P -independent F ⊆ E. We say that X ⊆ V is mixed P -critical if
iF (X) = dtP (X) − d , is pure P -critical if tP (X) = |X| and iF (X) = d|X| − d − 1,
and is P -critical if it is either mixed P -critical or pure P -critical. Note that any mixed
P -critical set X with |X| > 1 satisfies tP (X) < |X|, since F is P -independent. Note
also that any X with tP (X) = 1 is mixed P -critical, since all edges in E join two
distinct parts of P , so iF (X) = 0 = dtP (X) − d .

We write C for the set of maximal P -critical sets, CP ⊆ C for those sets in C that
are pure P -critical, and CM = C \ CP for those sets in C that are mixed P -critical. We
also write B for the set of maximal mixed P -critical sets, which consists of all sets
in CM together with all sets {v} such that v belongs to a pure P -critical set but not
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to any larger mixed P -critical set. Note that these definitions depend on F , but we
suppress this in the notation. It will follow from Theorem 6.2 below that any maximal
P -independent set F ⊆ E leads to the same sets C , CP , CM and B.

First, we need the following lemma describing the structure of maximal critical
sets.

Lemma 6.1

(a) If X,Y ∈ C with X �= Y then |X ∩ Y | ≤ 1, and if X,Y ∈ B then X and Y are
disjoint;

(b) B is a partition of V and P is a refinement of B.

Proof We start by noting two super/sub-modular inequalities holding for any
X,Y ⊆ V :

(i) iF (X) + iF (Y ) ≤ iF (X ∩ Y) + iF (X ∪ Y),
(ii) tP (X) + tP (Y ) ≥ tP (X ∩ Y) + tP (X ∪ Y).

We can verify (i) by considering the contribution of each edge of F to both sides of
the inequality: if an edge is counted by at least one of iF (X), iF (Y ) then it is counted
by iF (X ∪ Y), and if it is counted by both then it is also counted by iF (X ∩ Y). We
can verify (ii) similarly by considering the contribution of each set in P to both sides
of the inequality.

To prove statement (a) we consider cases as follows. Suppose first that X,Y ∈ B
but X ∩ Y �= ∅. Using inequalities (i) and (ii), and the fact that F is P -independent,
we have

dtP (X) − d + dtP (Y ) − d = iF (X) + iF (Y ) ≤ iF (X ∩ Y) + iF (X ∪ Y)

≤ dtP (X ∩ Y) − d + dtP (X ∪ Y) − d

≤ dtP (X) − d + dtP (Y ) − d.

Hence equality must hold throughout. In particular, iF (X∪Y) = dtP (X∪Y)−d , i.e.
X ∪Y is mixed P -critical. This contradicts the maximality of X and Y . Therefore, X

and Y are disjoint.
Next suppose that X,Y ∈ C but |X∩Y | ≥ 2. If X is pure P -critical and Y is mixed

P -critical then in the above calculation we reduce each of iF (X) and iF (X ∩Y) by 1.
Again equality holds throughout, so X ∪Y is mixed P -critical, which contradicts the
maximality of X and Y . On the other hand, if both X,Y are pure P -critical then there
are two subcases to consider. One possibility is that tP (X∪Y) = |X∪Y |, when in the
above calculation we reduce each of iF (X), iF (Y ), iF (X ∩ Y) and iF (X ∩ Y) by 1.
Then we deduce that iF (X ∪ Y) = d|X ∪ Y | − d − 1, so X ∪ Y is pure P -critical,
contradicting maximality. The other possibility is that tP (X ∪ Y) < |X ∪ Y |, but this
is impossible, as then in the above calculation we reduce the left-hand-side by 2 but
the right-hand-side by at least d +1 > 2. This covers all cases, so statement (a) holds.

Finally, we note that statement (b) follows from (a) and the fact that every set of P
is mixed P -critical. �
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Now we show that the P -independent subsets of E define a matroid. First, we need
some definitions and notation. Suppose X is a family of non-empty subsets of V . For
any E′ ⊆ E we write cE′(X ) for the number of edges in E′ that are ‘crossing’ with
respect to X , by which we mean that they are not contained within any set in X . If
cE′(X ) = 0, i.e. every edge in E′ is contained within some set of X , then we say that
X is a cover of E′.

Theorem 6.2 Let I be the family of all sets F ⊆ E such that (V ,F ) is P -
independent. Then

(a) I is the family of independent sets of a matroid M(H, P ) on E;
(b) For any E′ ⊆ E, the rank of E′ is

ρ(E′) = min
X

{ ∑

X∈X
fP (X) + cE′(X )

}
(2)

where the minimum is taken over all families X of non-empty subsets of V ;
(c) The minimum in (2) can be achieved by taking X equal to the maximal P -critical

sets with respect to some maximal P -independent subset of E′;
(d) Suppose every pair of adjacent vertices in V are joined by at least d − 1 edges

of E. Let F be a maximal P -independent subset of E and C the maximal P -
critical sets with respect to F . Then C is a cover of E, and so M(H, P ) has rank∑

X∈C fP (X). Furthermore, C is independent of the choice of F .

Proof Consider any E′ ⊆ E and let F ′ be a maximal subset of E′ such that F ′ ∈ I .
Then iF ′(X) ≤ fP (X) for all non-empty X ⊆ V , and so |F ′| ≤ ∑

X∈X fP (X) +
cE′(X ) for any family X of non-empty subsets of V . This establishes the upper bound
in (b), so (b) will follow from (c).

Let C′ be the maximal P -critical sets with respect to F ′. Then iF ′(X) = fP (X) for
all X ∈ C′. Furthermore, |X∩Y | ≤ 1 for all X,Y ∈ C′ by Lemma 6.1, so no edge in F ′
is induced by two different sets in C′. Thus |F ′| = ∑

X∈C′ fP (X) + cF ′(C′). Next we
claim that cF ′(C′) = cE′(C′). Consider any e = uv ∈ E′ \ F ′. The maximality of F ′
implies that F ′ ∪ {e} �∈ I . Since F ′ ∈ I , we deduce that there is a P -critical set X

containing {u,v}. Thus cF ′(C′) = cE′(C′), so |F ′| = ∑
X∈C′ fP (X) + cE′(C′).

This proves (c), and (b) follows. We have also shown that all maximal
P -independent subsets F of E′ have the same size, so (a) holds. It remains to
prove (d). Suppose for a contradiction that C is not a cover of E, and choose uv ∈ E

that is not covered by C . Since cF (C) = cE(C), all edges joining u and v belong to F .
Since F is independent there cannot be more than d − 1 such edges, so there must
be exactly d − 1 such edges, with u,v in different parts of P . But then {u,v} is pure
P -critical, so is contained in a set of C . This contradiction shows that C is a cover
of E, i.e. cE(C) = 0, and the rank formula follows.

Finally, we note that if X ∈ C then H [X] has rank iF (X) = fP (X). Thus we have
rank M(H, P ) = ∑

X∈C rank M(H [X], P ), i.e. a direct sum decomposition of the
matroid. Now if F ∗ is any maximal P -independent subset of E we have iF ∗(X) =
iF (X) = fP (X) for all X ∈ C , i.e. every maximal critical set with respect to F is
critical with respect to F ∗. We deduce that C does not depend on the choice of F . �
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We can now characterize when a generic direction–length framework (G,p) is
bounded. More generally, we can characterize the rank of the reduced rigidity matrix
in terms of the matroid described by the previous theorem. The following notation
will be used for the remainder of this section. Let G = (V ;D,L) be a mixed graph
and P be the partition of V given by the vertex sets of the connected components of
the length subgraph (V ,L). Let E be the set of direction edges of G joining distinct
sets in P , and let H = (V , (d − 1)E) be the graph obtained by taking d − 1 copies
of each edge in E. Then we let F be a maximal independent set in M(H, P ) and C
be the maximal P -critical sets with respect to F . Note that C is a cover of D ∪ L, as
each class of P is mixed P -critical, so is contained in a member of C , and C covers
E by Theorem 6.2(d). For X ⊆ V let

g(X) =
{

d|X| − d − 1 if |X| ≥ 2 and G[X] is direction pure,

d|X| − d otherwise.

The following theorem gives two closely related formulae for the ranks of the rigidity
matrix and reduced rigidity matrix of G+. Recall that these have isomorphic null
spaces by Corollary 3.2(a), so the ranks are related by rank R(G+,p) = d(|V | −
|P |) + rank R̃(G+,p).

Theorem 6.3

(a) rd(G+) := rank R(G+,p) = ∑
X∈C g(X) = minX {∑X∈X g(X)}, where the

minimum is taken over all covers X of D ∪ L. Moreover, rd(G+[X]) = g(X)

for all X ∈ C . In particular, G is bounded if and only if
∑

X∈X g(X) ≥ d|V | − d

for all covers X of D ∪ L.
(b) rank R̃(G+,p) = rank M(H, P ) = |F | = ∑

X∈C fP (X) = minX
∑

X∈X fP (X),
where the minimum is taken over all covers X of E. Moreover, iF (X) = fP (X)

for all X ∈ C . In particular, G is bounded if and only if
∑

X∈X fP (X) ≥ d|P |−d

for all covers X of E.

Proof We start by establishing the following identity which shows the equivalence
of the formulae given in (a) and (b):

∑

X∈C
g(X) = d

(|V | − |P |) +
∑

X∈C
fP (X). (3)

To see this, observe that for each X ∈ CP we have fP (X) = dtP (X) − d − 1 =
d|X| − d − 1 = g(X). Therefore,

∑

X∈C
g(X) − fP (X) =

∑

X∈CM

g(X) − fP (X) =
∑

X∈CM

d
(|X| − tP (X)

)

= d
∑

X∈B
|X| − tP (X),

since when X ∈ B \ CM we have |X| = 1, so |X| − tP (X) = 0. But B is a partition
of V and P is a refinement of B, so

∑
X∈B |X| − tP (X) = |V | − |P |, giving (3).
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In view of this equivalence, it suffices to prove the upper bound rd(G+) ≤∑
X∈C g(X) in formula (a) and the lower bound rank R̃(G+,p) ≥ ∑

X∈C fP (X) in
formula (b). The upper bound is straightforward: we note that rd(G+[X]) ≤ g(X)

for any X ⊆ V , so rd(G+) ≤ ∑
X∈X rd(G+[X]) ≤ ∑

X∈X g(X) for any cover
X of D ∪ L. Our main task in the proof will be to establish the lower bound
rank R̃(G+,p) ≥ |F |.

Let H ′ = (V ,F ), and let H ′′ = (P ,F ) be obtained from H ′ by contracting each
part of P to a single vertex. Since F is independent in M(H, P ) we have iF (X) ≤
dtP (X) − d for all ∅ �= X ⊆ V , and hence iH ′′(Y ) ≤ d|Y | − d for all ∅ �= Y ⊆ U . Let
(H ′′, q) be a generic d-frame for H ′′ and let I (H ′′, q) be its incidence matrix. Then
Theorem 4.2(a) implies that the rows of I (H ′′, q) are linearly independent.

Consider the generic d-frame (H ′, q) and let I (H ′, q) be its incidence matrix.
Since sets of d consecutive columns of I (H ′, q) are labelled by the vertices in V , we
may consider the vectors in the null space Z′ of I (H ′, q) as maps from V to R

d . We
need the following claim.

Claim 1 The null space Z′ of I (H ′, q) contains a vector z such that z(u) �= z(v) for
all u,v ∈ V .

Proof Choose u0, v0 ∈ V and let H ∗ be obtained by adding a new edge e0 = u0v0

to H ′. Let (H ∗, q̃) be a generic d-frame such that q̃(e) = q(e) for all e ∈ F and let
I (H ∗, q̃) be its incidence matrix. Note that I (H ′, q) is the submatrix of I (H ∗, q̃)

with rows indexed by F . Since F is independent in M(H, P ) we have iF (X) ≤
fP (X) ≤ d|X| − d − 1 for all X ⊆ V with |X| ≥ 2. Thus iF∪{e0}(X) ≤ d|X| − d .
Theorem 4.2(a) now implies that the rows of I (H ∗, q̃) are linearly independent. Thus
rank I (H ∗, q̃) = rank I (H ′, q)+1. Writing Z∗ for the null space of I (H ∗, q̃) we see
that dimZ∗ < dimZ′, so we can choose ze0 ∈ Z′ \ Z∗. By definition of I (H ∗, q̃), we
have ze0(u0) �= ze0(v0). We may now construct the required vector z in Z′ by taking
a suitable linear combination of the vectors ze0 , for all possible new edges e0 = u0v0,
u0, v0 ∈ V . �

Returning to the proof of the theorem, we consider the direction–length frame-
work (G, z), where z is given by the previous claim. Since z ∈ Z′ we have [z(u) −
z(v)] · q(e) = 0 for each e = uv ∈ F . We may use this to construct a reduced rigidity
matrix R̃(G+, z) for (G+, z) which contains I (H ′′, q) as a row induced submatrix as
follows. For each e = uv ∈ E, we associate the d − 1 consecutive rows of R̃(G+, z)

corresponding to e with the d − 1 copies e1, e2, . . . , ed−1 of e in the graph H . We
then choose a basis Be for [z(u) − z(v)]⊥ in such a way that q(ei) ∈ Be whenever
ei ∈ F . This is possible since q(ei) is orthogonal to z(u) − z(v) if ei ∈ F , and the
vectors {q(ei) : ei ∈ F } are linearly independent because q is generic. Then I (H ′′, q)

is the submatrix of R̃(G+, z) with rows indexed by F . But the rows of I (H ′′, q) are
linearly independent, so rank R̃(G+, z) ≥ rank I (H ′′, q) = |F |. Since p is generic,
we then have rank R̃(G+,p) ≥ rank R̃(G+, z) ≥ |F |. This completes the proof of the
lower bound, so we have established the formulae rank R(G+,p) = ∑

X∈C g(X) and
rank R̃(G+,p) = ∑

X∈C fP (X).
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Now note that

rd
(
G+) ≤

∑

X∈C
rd

(
G+[X]) ≤

∑

X∈C
g(X) = rd

(
G+)

.

Therefore, equality holds throughout, so rd(G+[X]) = g(X) for all X ∈ C . A similar
argument shows that iF (X) = fP (X) for all X ∈ C . Finally, the characterizations of
boundedness follow from the rank formulae and Corollary 3.2(c). �

Remarks

(a) Theorem 6.3 implies that, if a mixed graph is generically bounded in R
d , then it

is also generically bounded in R
d+1. This follows from the fact that the corre-

sponding functions gd and gd+1 satisfy dgd+1(X) ≥ (d + 1)gd(X) for all vertex
sets X.

(b) Theorem 6.3 can also be used to deduce a result of Whiteley on d-dimensional
direction-pure frameworks. Such a framework (G,p) is direction rigid if every
equivalent framework can be obtained from (G,p) by a translation or dilation
of R

d . It is not difficult to see that (G,p) is direction rigid if and only if its
rigidity matrix R(G,p) has rank d|V |−d −1. Whiteley [22] showed that a graph
G = (V ,D) is generically direction rigid in R

d if and only if
∑

X∈X (d|X| −
d − 1) ≥ d|V | − d − 1 for all covers X of D with |X| ≥ 2 for all X ∈ X . This
follows from Theorem 6.3(a) using the fact that G+ = G.

7 Bounded Components

In this section, we consider a local version of boundedness. Let G = (V ;D,L) be a
mixed graph and (G,p) be a realisation of G in R

d . We say that vertices u,v ∈ V are
weakly linked in (G,p) if there exists a K ∈ R such that ‖q(u) − q(v)‖ < K for all
realisations (G,q) of G in R

d which are equivalent to (G,p). This is an equivalence
relation: we call the equivalence classes bounded components of (G,p) and refer
to the partition of V into equivalence classes as the bounded component partition
of G. We will see that the property of being weakly linked is generic, so all generic
realisations of G have the same bounded components.

A rigid component of G in R
d is a maximal subgraph of G which is (generically)

rigid in R
d . It is easy to see that the rigid components of G are a family of induced

subgraphs of G whose vertex sets partition V . We refer to this partition as the rigid
component partition of G. We will show that the bounded component partition of G

is identical to the rigid component partition of G+.
As in the previous section, we suppose that G = (V ;D,L) is a mixed graph and P

is the partition of V given by the vertex sets of the connected components of (V ,L).
We write E for the set of direction edges of G joining distinct sets in P , and let
H = (V , (d − 1)E) be the graph obtained by taking d − 1 copies of each edge in E.
Then we let F be a maximal independent set in M(H, P ), write C for the maximal
P -critical sets, CP ⊆ C for those sets in C that are pure P -critical, CM = C \ CP

for those sets in C that are mixed P -critical, and B for the set of maximal mixed
P -critical sets. Recall that B is a partition of V and that P is a refinement of B.
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The following theorem shows that it is exactly the partition we need to describe the
bounded components of G.

Theorem 7.1 The bounded component partition of G and the rigid component par-
tition of G+ are both equal to B.

Proof First, we show that the bounded component partition of G is identical to the
rigid component partition of G+. Let (G,p) be a generic realisation of G in R

d .
Consider any rigid component G+[X] of G+, where X ⊆ V . Then (G[X],p|X) is
a generic realisation of G[X]. Since (G+[X],p|X) is rigid, (G[X],p|X) is bounded
by Theorem 5.1. Since all generic realisations have the same rigid components, we
deduce that G[X] is bounded.

Conversely, consider any u,v ∈ V belonging to distinct rigid components, and
let Guv be obtained from G by adding a new length edge e = uv. We claim that
rd(G+

uv) > rd(G+). Suppose on the contrary that rd(G+
uv) = rd(G+). By Theo-

rem 6.3, there exists a cover Z of D ∪ (L ∪ {e}) such that rd(G+
uv) = ∑

Z∈Z g(Z).
We now have

rd
(
G+) ≤

∑

Z∈Z
rd

(
G+[Z]) ≤

∑

Z∈Z
g(Z) = rd

(
G+

uv

) = rd
(
G+)

.

Equality must hold throughout. In particular, if Z is the set in Z which covers e, then
rd(G+[Z]) = d|Z|− d and hence G+[Z] is rigid. This contradicts the fact that u and
v belong to different rigid components of G+. Hence rd(G+

uv) = rd(G+) + 1.
Let R(G+

uv,p) be a rigidity matrix for a generic realisation (G+
uv,p) of G+

uv

in R
d and R(G+,p) the submatrix consisting of the rows indexed by D ∪ L. Then

rank R(G+
uv,p) = rank R(G+,p) + 1, so we can choose z ∈ Z(G+,p) \ Z(G+

uv,p),
i.e. an infinitesimal motion z of (G+,p) with z(u) �= z(v). By Theorem 3.1(a),
(G+,p + λz) is equivalent to (G+,p) for all λ ∈ R. Since z(u) �= z(v) this implies
that u and v do not belong to the same bounded component of (G+,p), let alone
(G,p).

This shows that the partitions are indeed identical. It remains to show that they are
equal to B. First, we show that if X ∈ B then G+[X] is rigid. This is clear if |X| = 1.
Otherwise we have X ∈ CM , so by Theorem 6.3 rd(G+[X]) = g(X) = d|X| − d , and
G+[X] is rigid. For the converse, we can suppose that |B| ≥ 2, otherwise B = {V }
and G+ is rigid. Consider any u,v ∈ V belonging to distinct sets of B. We claim that
u and v do not belong to the same bounded component of G. In view of the argument
above, it suffices to show that rd(G+

uv) > rd(G+), where Guv is obtained from G by
adding a new length edge e = uv.

Suppose on the contrary that rd(G+
uv) = rd(G+). Since u and v belong to distinct

critical sets in B, they belong to distinct parts U1,U2 ∈ P . Let P ′ be obtained from
P by replacing U1 and U2 by U1 ∪ U2 and H ′ be obtained from H by deleting all
edges which join U1 and U2. Let F ′ be a maximum independent set in M(H ′, P ′)
and C′ be the maximal P ′-critical sets with respect to F ′. By Theorem 6.3, we have
rd(G+) = d(|V |−|P |)+|F | and rd(G+

uv) = d(|V |−|P ′|)+|F ′|. Since |P | = |P ′|+
1, our assumption that rd(G+

uv) = rd(G+) gives |F | = |F ′| + d . We also have |F | =∑
X∈C fP (X) and |F ′| = ∑

X∈C′ fP ′(X) by Theorem 6.2(d). Since U1 ∪ U2 ∈ P ′,
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U1 ∪ U2 is mixed P ′-critical and so U1 ∪ U2 ⊆ X0 for some X0 ∈ C′. Note that
fP (X0) ≤ fP ′(X0) + d . Also, for all X ∈ C′ distinct from X0 we have |X ∩ X0| ≤ 1
by Lemma 6.1, so fP (X) = fP ′(X). Since C′ covers E and F is P -independent we
have |F | ≤ ∑

X∈C′ fP (X) ≤ d + ∑
X∈C′ fP ′(X) = d + |F ′|. Equality holds, so we

must have iF (X) = fP (X) for all X ∈ C′. In particular, this implies that X0 is mixed
critical. However, this contradicts the fact that u and v belong to distinct critical sets
in B, so we are done. �

Remark Theorems 6.2, 6.3 and 7.1 give rise to an O(|V |2) algorithm for testing if
the mixed graph G is bounded in R

d , and more generally finding its bounded com-
ponents. It suffices to construct a maximum independent set F in M(H, P ) and
find the maximal mixed critical subsets in (V ,F ). A maximum independent set in
a matroid can be constructed greedily starting with the empty set and adding or re-
jecting elements one by one, so we need only determine whether the addition of
an edge e ∈ (d − 1)E to an independent set J ⊆ (d − 1)E satisfies iJ∪{e}(X) ≤
fP (X) for all ∅ �= X ⊆ V . This can be done in two stages by checking whether
iJ+e(X) ≤ d|X| − d − 1 for all X ⊆ V with |X| ≥ 2, and whether, in the graph
(P , (d − 1)E) obtained from H by contracting the parts of P to single vertices, we
have iJ+e(Q) ≤ d|Q|−d for all Q ⊆ P with |Q| ≥ 1. Both checks can be performed
in O(|V |) time, using for example the ‘orientation algorithm’ given in [1], or the ‘peb-
ble game algorithm’ given in [13]. Each maximal mixed critical subset X in (V ,F )

induces a rigid component in G+ and hence a bounded component in G. We have
X = ⋃

Y∈Q Y where Q is a maximal subset of P for which iF (Q) = d|Q| − d in
(P ,F ). Such a subset is referred to as a d-brick of (P ,F ) in [9]. Contracting the
parts of P to single vertices transforms the bounded component partition of G into
the d-brick partition of (P ,F ) studied in [9]. This can be constructed in O(|V |2) time
as in [1].

8 Global Rigidity

In this section, we consider when a generic d-dimensional direction–length frame-
work is globally rigid. Hendrickson [6] gave two necessary conditions for a d-
dimensional generic length-pure framework (G,p) to be globally length-rigid, which
means that all equivalent realisations (G,q) are length-congruent to (G,p) (i.e. sat-
isfy ‖q(u) − q(v)‖ = ‖p(u) − p(v)‖ for all u,v ∈ V ). One is that the underlying
graph G must be either complete or d-connected. The other is that G must be redun-
dantly rigid in R

d , i.e. G \ e is rigid for any edge e of G. For general d these condi-
tions are not sufficient for global rigidity, as shown by Connelly [3]. They do suffice
for d = 2, as shown by Jackson and Jordan [7], who proved that a 2-dimensional
generic length-pure framework (G,p) is globally length-rigid if and only if either G

is a complete graph on at most 3 vertices, or G is 3-connected and redundantly rigid.
In higher dimensions, no combinatorial characterization is known, although there is
an algebraic condition that was shown to be sufficient by Connelly [3] and neces-
sary by Gortler, Healy and Thurston [5]. This algebraic condition implies that global
length-rigidity is a generic property.
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Suppose (G,p) is a d-dimensional generic direction–length framework. It is cer-
tainly necessary for G to be connected if (G,p) is to be rigid, let alone globally rigid.
Also, 2-connectivity is necessary for global rigidity, as if x is a cutvertex of G then
we can obtain a realisation (G,p′) that is equivalent but not congruent to (G,p) by
inverting one component of G \ x about the point p(x), without changing the rest
of the realisation. On the other hand, if G = (V ;D,L) is 2-connected and D = L

then (G,p) is globally rigid if and only if G is 2-connected, see [8, Theorem 7.2],
so 3-connectivity is no longer necessary for global rigidity in R

d . However, an ana-
logue of Hendrickson’s connectivity condition may be obtained by considering more
restricted cuts: if (G,p) is globally rigid then there can be no cutset X ⊆ V of size
at most d such that there is a component C of G \ X that contains only length edges,
as then we could obtain a realisation (G,p′) which is equivalent but not congruent
to (G,p) by reflecting C in a hyperplane containing the points p(x), x ∈ X. The
main result of [8] is that this connectivity condition is both necessary and sufficient
for the global rigidity of redundantly rigid 2-dimensional generic direction–length
frameworks when |D ∪ L| = 2|V | − 2, i.e. D ∪ L is a circuit in the corresponding
rigidity matroid.

We next consider an analogue of Hendrickson’s redundant rigidity condition. First,
we need some definitions. Suppose that G = (V ,D) is a graph with direction con-
straints on its edges, but no length constraints. Let (G,p) and (G,q) be realisations
of G in R

d . We say that (G,p) and (G,q) are direction equivalent if q(u)−q(v) is a
scalar multiple of p(u)−p(v) for all uv ∈ D with p(u) �= p(v) and direction congru-
ent if (G,q) can be obtained from (G,p) by a translation and/or a dilation. The defini-
tions of rigidity and global rigidity of direction frameworks are as for direction–length
frameworks but using direction equivalence and congruence. We say that (G,p) is
globally direction rigid if every framework which is direction equivalent to (G,p)

is direction congruent to (G,p). We say (G,p) is direction rigid if there exists an
ε > 0 such that if a framework (G,q) is direction equivalent to (G,p) and satisfies
‖p(v) − q(v)‖ < ε for all v ∈ V then (G,q) is direction congruent to (G,p).

The linearity of direction constraints makes the problem of characterizing (glob-
ally) rigid direction frameworks much easier than for length frameworks. Indeed,
Whiteley [22] showed that rigidity, global rigidity and infinitesimal rigidity are equiv-
alent for direction frameworks, and hence are determined by the rank of the rigidity
matrix. He used this to characterize graphs which are (globally) direction rigid in R

d .
It is possible to construct globally rigid generic realisations of a mixed graph

G = (V ;D,L) which are not redundantly rigid. We first choose a graph H = (V ,D)

which is (globally) direction rigid in R
d and let G be the mixed graph obtained by

adding a length edge e to H . Let (G,p) be a generic realisation of G in R
d and let

(G,q) be an equivalent realisation. Since (H,p) is globally direction rigid, (H,q)

can be obtained from (H,p) by a translation and/or a dilation. Thus (G,q) can be ob-
tained from (G,p) by a translation and/or a dilation. Since G contains a length edge,
the only dilations of (G,p) which produce an equivalent direction–length framework
are dilations by ±1. Hence (G,q) is congruent to (G,p). Thus (G,p) is globally
rigid. On the other hand, (G\e,p) = (H,p) is not rigid (as a direction–length frame-
work), since it is direction pure, and so admits arbitrary dilations.

One reason that Hendrickson’s redundant rigidity condition fails for a generic
direction–length framework (G,p) is that his proof relies on a compactness argu-
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ment which is not valid if (G \ e,p) is unbounded. We shall use our characterization
of bounded mixed graphs to show that the examples given in the preceding paragraph
are the only examples of globally rigid generic direction–length frameworks (G,p)

for which (G \ e,p) is not rigid.
Our arguments will require the equivalence of rigidity and infinitesimal rigidity

for generic direction–length frameworks. In two dimensions this follows from Lem-
mas 5.1 and 5.3 in [10]. The general case can be proved by very similar arguments.
For completeness we give the proof here, although we will be brief on those points
that are similar to the proofs given in [10].

We need to use a d-dimensional version of the rigidity map from [10]. For
x = (x1, x2, . . . , xd) ∈ R

d , let l(x) = ‖x‖2, and when xd �= 0 let t (x) = (x1/xd,

x2/xd, . . . , xd−1/xd). Let G = (V ;D,L) be a graph with D ∪ L = {e1, e2, . . . , em}.
Choose a reference orientation for the edges of D ∪ L. Given a realisation (G,p)

of G, we say that an edge e = uv ∈ D is vertical in (G,p) if the last co-ordinate
of p(u) − p(v) is zero. Let T be the set of all points p ∈ R

d|V | such that (G,p)

has no vertical direction edges. For each p ∈ T and ei = uv ∈ D ∪ L let fi(p) =
t (p(u) − p(v)) if ei ∈ D, and fi(p) = l(p(u) − p(v)) if ei ∈ L. The rigidity map
fG : T → R

(d−1)|D|+|L| is defined by putting fG(p) = (f1(p), f2(p), . . . , fm(p)).
For each p ∈ T , we may use the Jacobian dfG|p as a rigidity matrix for (G,p). To see
this, consider an edge ei = uv and write p(u) = (a1, . . . , ad), p(v) = (b1, . . . , bd). If
ei ∈ L then fi(p) = ∑d

j=1(aj − bj )
2, so for 1 ≤ j ≤ d we have ∂fi (p)

∂aj
= 2(aj − bj )

and ∂fi(p)
∂bj

= −2(aj − bj ). (Derivatives with respect to variables not appearing in
p(u) or p(v) are of course zero.) Thus the row in the Jacobian corresponding to
ei is obtained by multiplying that given in our earlier definition by 2, which does
not affect the rank. Next suppose that ei ∈ D. Then fi(p) ∈ R

d−1 has j th co-ordinate

fi(p)j = aj −bj

ad−bd
. We have

∂fi (p)j
∂aj

= 1
ad−bd

and
∂fi (p)j

∂ad
= − aj −bj

(ad−bd )2 . Multiplying these

rows through by (ad − bd)2, we obtain the same basis of the space orthogonal to
p(u) − p(v) that we described at the end of Sect. 2.

Next we recall some basic concepts and facts of differential topology. We refer
the reader to [15] for an introduction to this subject. Suppose U is an open subset
of R

m and f : U → R
n is a smooth map. Let k be the maximum rank of the Jacobian

df |x over all x ∈ U . A point x ∈ U is a regular point if rank df |x = k, otherwise x

is a critical point. A point y ∈ f (U) is a critical value if y = f (x) for some critical
point x, otherwise y is a regular value. If y is a regular value then f −1(y) is an
(m − k)-dimensional manifold (see [15, p. 11, Lemma 1]).

Lemma 8.1 Let (G,p) be a generic direction–length framework in R
d . Then (G,p)

is rigid if and only if (G,p) is infinitesimally rigid.

Proof We fix some vertex v0 ∈ V and restrict attention to realisations (G,q) in which
v0 is mapped to the origin in R

d . We identify (G,q) with the vector q̂ ∈ R
dn−d of

co-ordinates for the points q(v), v �= v0. We can change our co-ordinate system so
that p(v0) = 0 and p̂ is generic. Let T̂ = {q̂ : q ∈ T }, where T is as above, and define
f : T̂ → R

m by f (q̂) = fG(q). Since p̂ is generic, p̂ is a regular point of f . Let
k = rank df |p̂ . By continuity, there is an open neighbourhood W ⊆ T̂ of p̂ such that
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rank df |w = k for all w ∈ W . Let g = f |W . Then g(p̂) is a regular value of g, so
M = g−1(g(p̂)) is a (dn − d − k)-dimensional manifold. Now k is the rank of the
rigidity matrix at p, so k = dn − d if and only if (G,p) is infinitesimally rigid. Also,
M has non-zero dimension if and only if there is a sequence p̂i ∈ M \ {p̂} converging
to p. Such a sequence p̂i exists if and only if (G,p) is not rigid: (G,pi) is not a
translation of (G,p) as pi(v0) = p(v0) = 0 and pi �= −p for p̂i sufficiently close
to p̂. The result follows. �

Now we can apply our characterization of bounded mixed graphs to derive a nec-
essary condition for global rigidity.

Lemma 8.2 Suppose that (G,p) is a generic globally rigid direction–length frame-
work in R

d with at least two length edges and e is a length edge of G. Then G \ e is
bounded in R

d .

Proof Write e = uv. Suppose for a contradiction that H = G \ e is not bounded.
Then (H+,p) is not rigid by Theorem 5.1. Therefore (H+,p) is not infinitesimally
rigid, so there is an infinitesimal motion z of (H+,p) with z �= 0 and z(u) = 0. Also
(G,p) is rigid (since it is globally rigid) and so infinitesimally rigid (by Lemma 8.1,
since p is generic). Thus z cannot be an infinitesimal motion of (G,p). Since e

provides the only constraint in G that is not in H+ this constraint is violated by z,
i.e. z(v) · (p(u) − p(v)) �= 0. This implies that we can choose λ ∈ R \ {0} such that

∥∥p(u) − (
p(v) + λz(v)

)∥∥ = ∥∥p(u) − p(v)
∥∥.

Let q = p + λz. Then (H+, q) is equivalent to (H+,p) by Lemma 3.1(a). Now
p(u) = q(u) but p(v) �= q(v), so (G,q) is not a translation of (G,p). Since (G,p)

is globally rigid, (G,q) must be a dilation of (G,p) by −1 through the point p(u).
Then for every w ∈ V we have q(w) = 2p(u) − p(w), so λz(w) = 2(p(u) − p(w)).
Let f = xy be a length edge of H . By Lemma 3.1(a), we have z(x) = z(y), and so
p(x) = p(y). This contradicts the hypothesis that p is generic. �

We use Lemma 8.2 in [11] to show that Hendrickson’s redundant rigidity condition
holds for length edges in generic globally rigid direction–length frameworks.

Theorem 8.3 [11] Suppose (G,p) is a d-dimensional generic globally rigid
direction–length framework with at least two length edges and e is a length edge
of G. Then G \ e is rigid in R

d .

It is also natural to consider the result of deleting a direction edge, rather than
a length edge, from a d-dimensional generic globally rigid direction–length frame-
work. This can reduce the rank of the rigidity matrix by up to d − 1, so we expect
a more complicated behaviour for d ≥ 3. However, in the special case d = 2, we
believe that the following weakening of Hendrickson’s redundant rigidity condition
holds.
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Conjecture 8.4 Suppose (G,p) is a 2-dimensional generic globally rigid direction–
length framework with at least two length edges and e is a direction edge of G. Then
G \ e is either rigid or unbounded in R

2.

9 Concluding Remarks

We showed in Theorem 5.1 and Corollary 3.2(c) that a given direction–length frame-
work (G,p) is bounded if and only if its augmented framework (G+,p) is infinites-
imally rigid, and that this can be determined by calculating the rank of the (reduced)
rigidity matrix of (G+,p). This is in sharp contrast to the problem of determining
whether (G,p) is rigid which appears to be difficult. As an intermediate result, The-
orem 4.1, we characterized boundedness for a new type of framework consisting of
balls linked by direction constraints. We applied our results to obtain a combinatorial
characterization of boundedness for d-dimensional generic direction–length frame-
works, Theorem 6.3. This is again in contrast to the problem of determining generic
rigidity which is solved only when d = 2. We then showed in Theorem 7.1 that,
for any mixed graph G and fixed d ≥ 2, the vertex set of G is partitioned by the
d-dimensional bounded components of G, i.e. maximal subgraphs which are gener-
ically bounded in R

d , and, by the remark at the end of Sect. 7, that this partition
can be constructed in polynomial time. Finally, we applied our characterization of
generic boundedness to obtain necessary conditions for the global rigidity of generic
direction–length frameworks, Lemma 8.2 and Theorem 8.3. We believe that our char-
acterization of generic boundedness will prove to be a useful tool in the problem of
characterizing global rigidity for these frameworks.
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