
Global rigidity of direction-length frameworks

Katie Clinch∗ Bill Jackson† Peter Keevash‡

October 15, 2018

Abstract

A 2-dimensional direction-length framework is a collection of points in
the plane which are linked by pairwise constraints that fix the direction or
length of the line segments joining certain pairs of points. We represent it
as a pair (G, p), where G = (V ;D,L) is a ‘mixed’ graph and p : V → R2

is a point configuration for V . It is globally rigid if every direction-length
framework (G, q) which satisfies the same constraints can be obtained
from (G, p) by a translation or a rotation by 180◦. We characterise the
mixed graphs G with the property that every generic framework (G, p) is
globally rigid.

1 Introduction

A finite configuration of points in Euclidean space with local constraints may
be informally described as globally rigid if the constraints determine the point
set up to congruence. It is a fundamental open problem to give a nice char-
acterisation of global rigidity in various settings. Our setting here is that
of a d-dimensional direction-length framework, which is a pair (G, p), where
G = (V ;D,L) is a ‘mixed’ graph and p : V → Rd is a point configuration for V .
(We will be particularly concerned with the case when d = 2.) We call the graph
G mixed because it has two types of edges: we refer to edges in D as direction
edges and edges in L as length edges. The graph may contain parallel edges as
long as they are of different types. Two direction-length frameworks (G, p) and
(G, q) are equivalent if p(u)−p(v) is a scalar multiple of q(u)−q(v) for all uv ∈ D
with q(u) 6= q(v), and ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ for all uv ∈ L. Two point
configurations p and q for V are congruent if either p(u) − p(v) = q(u) − q(v)
for all u, v ∈ V , or p(u) − p(v) = q(v) − q(u) for all u, v ∈ V . (Thus p and q
are congruent if p can be obtained from q by a translation, possibly followed
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Figure 1: Two equivalent but non-congruent direction-length frameworks. We
use solid or dashed lines to indicate length or direction constraints, respectively.
The frameworks are rigid but not globally rigid. They are not redundantly rigid
since they cease to be rigid if we delete one of the direction constraints - this
will allow us to rotate the subgraph induced by the length edges and adjust the
position of the vertex v5 to preserve the remaining two direction constraints.

by a rotation by 180◦.) A direction-length framework (G, p) is globally rigid if
p is congruent to q for every framework (G, q) which is equivalent to (G, p). It
is rigid if there exists an ε > 0 such that, for every framework (G, q) which is
equivalent to (G, p) and satisfies ‖p(v) − q(v)‖ < ε for all v ∈ V , we have p is
congruent to q. (Equivalently every continuous motion of the vertices of (G, p)
which satisfies the direction and length constraints given by the edges results in
a framework (G, q) with p congruent to q.) The framework (G, p) is redundantly
rigid if (G − e, p) is rigid for all e ∈ D ∪ L. These concepts are illustrated in
Figure 1.

We will consider generic frameworks, meaning that the set containing the
coordinates of all of the vertices is algebraically independent over the rationals;
this eliminates many pathologies. It follows from [7, 8] that rigidity is a ‘generic
property’ in the sense that if some realisation of a mixed graph G as a generic
framework in Rd is rigid then all generic realisations of G in Rd are rigid. This
implies that redundant rigidity is also a generic property and allows us to de-
scribe a mixed graph G as being rigid or redundantly rigid in Rd if some (or
equivalently if every) generic realisation of G has these properties. It is not
known whether global rigidity is a generic property (however this statement
would follow from Conjecture 9.1 below in the 2-dimensional case).

Both rigidity and global rigidity are known to be generic properties for d-
dimensional pure frameworks, i.e. frameworks which contain only length con-
straints or only direction constraints. We will not give formal definitions for
rigidity and global rigidity of pure frameworks - they are similar to those for
direction-length frameworks except that the notion of congruence will allow
not only translations, but also arbitrary rotations and reflections in the case of
length-pure frameworks, and dilations in the case of direction-pure frameworks.

The problems of characterising rigidity and global rigidity for 2-dimensional
generic length-pure frameworks were solved by Laman [10] and Jackson and
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Jordán [5], respectively. In particular, [5] proved that a 2-dimensional generic
length-pure framework (G, p) is globally rigid if and only if either G is a com-
plete graph on at most 3 vertices, or G is 3-connected and redundantly rigid.
The problems of characterising rigidity and global rigidity for d-dimensional
generic length-pure frameworks are open for d ≥ 3. In contrast, Whiteley [16]
characterised d-dimensional generic direction-pure frameworks which are rigid
for all d. He also observed that the linearity of direction constraints implies

Lemma 1.1. [16] Suppose that (G, p) is a direction-pure framework. Then
(G, p) is globally rigid if and only if (G, p) is rigid.

Since the problem of characterising generic rigidity of direction-length frame-
works is at least as hard as that for length-pure frameworks, we will hence-
forth restrict our attention to 2-dimensional frameworks. Rigid generic (2-
dimensional) direction-length frameworks were characterised by Servatius and
Whiteley in [14]. They also pointed out that Lemma 1.1 gives the following
characterisation of global rigidity for generic direction-length frameworks with
exactly one length constraint.

Lemma 1.2. [14] Suppose that (G, p) is a generic realisation of a mixed graph
G = (V ;D,L) with |L| = 1. Then (G, p) is globally rigid if and only if G is
rigid.

Further results on global rigidity were obtained by Jackson and Jordán in [6]
who showed that two necessary conditions for a generic 2-dimensional direction-
length framework (G, p) to be globally rigid are that G is 2-connected and
direction-balanced i.e. whenever H1, H2 are subgraphs of G with G = H1 ∪H2,
V (H1) ∩ V (H2) = {u, v} and V (H1) \ V (H2) 6= ∅ 6= V (H2) \ V (H1), both H1

and H2 must contain a direction edge of G distinct from uv. They also showed
that these conditions are sufficient when G is redundantly rigid and has exactly
2|V | − 1 edges.

We will see in Section 2.1 that we may define a matroid M(G) on the edge
set of a mixed graph G in such a way that G is rigid if and only if M(G)
has rank 2|V | − 2. The above sufficient condition for global rigidity, that G
is redundantly rigid and has 2|V | − 1 edges, is equivalent to the edge set of G
being a rigid circuit of M(G). A mixed graph G is redundantly rigid if and
only if it is rigid and every edge of G is contained in a circuit of M(G). We say
that G is M -connected if it satisfies the stronger condition that every pair of
edges of G is contained in a circuit of M(G) i.e. M(G) is a connected matroid.
Clinch [2] has recently shown that the above mentioned necessary conditions
for generic global rigidity are also sufficient when the underlying mixed graph
is M -connected and rigid.

Theorem 1.3. Suppose (G, p) is a generic realisation of an M -connected rigid
mixed graph G. Then (G, p) is globally rigid if and only if G is direction-
balanced.

Unfortunately, Clinch’s result does not give a complete characterisation of
generic global rigidity because M -connectivity is not a necessary condition for
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the global rigidity of generic rigid frameworks. This follows from the above
mentioned fact that every generic realisation of a (minimally) rigid mixed graph
with exactly one length edge is globally rigid, or from the fact that global rigidity
is preserved if we join a new vertex to an existing globally rigid framework by
two direction constraints. (The underlying graphs in both constructions are not
even redundantly rigid.) We can generalise the second construction as follows.

Suppose (G, p) is a generic realisation of a mixed graph G which has a proper
induced subgraph H such that the graph G/H obtained from G by contracting
H to a single vertex (deleting all edges of H but keeping all other edges of
G, possibly as parallel edges) has only direction edges and is the union of two
edge-disjoint spanning trees. We will see in Section 4 that G − e is not rigid
for all direction edges e which do not belong to H (hence G is not redundantly
rigid), and that (G, p) is globally rigid if and only if (H, p|H) is globally rigid.

These observations lead us to consider a more general reduction operation
for a mixed graph G. We say that G admits a direction reduction to a subgraph
H if either:

(R1) H = G− e for some edge e ∈ D which belongs to a direction-pure circuit
in the rigidity matroid of G, or

(R2) H is a proper induced subgraph of G, and G/H is direction-pure and is
the union of two edge-disjoint spanning trees.

If G has no direction reduction, then we say that G is direction irreducible. (We
will describe an efficient algorithm in Section 8 which either finds a direction
reduction of a given mixed graph or concludes that it is direction irreducible.)
An example of a direction reduction is given in Figure 2.

Our first result reduces the problem of characterising the global rigidity of
a generic framework (G, p) to the case when G is direction irreducible.

Theorem 1.4. Suppose (G, p) is a generic direction-length framework and G
admits a direction reduction to a subgraph H. Then (G, p) is globally rigid if
and only if (H, p|H) is globally rigid.

We will obtain structural information about the family of direction irre-
ducible mixed graphs which are not redundantly rigid, and have at least two
length edges. We use this information to characterise when such graphs are
globally rigid for all generic realisations:

Theorem 1.5. Suppose G is a direction irreducible mixed graph with at least
two length edges. Then every generic realisation of G is globally rigid if and
only if G is 2-connected, direction-balanced and redundantly rigid.

This leads to our main result, a characterisation of the direction-length
graphs which are globally rigid for all generic realisations:

Theorem 1.6. Suppose G = (V ;D,L) is a mixed graph. Then all generic
realisations of G are globally rigid if and only if G is rigid, and either |L| = 1
or G has a direction-balanced, M -connected mixed subgraph which contains all
edges in L.
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Figure 2: The graph G on the left is direction reducible to the subgraph H on
the right in two steps. Since the direction edge v5v7 is contained in the direction-
pure circuit induced by {v4, v5, v6, v7} we can delete v5v7 by (R1). The graph
we now obtain by contracting H to a single vertex is direction-pure and is the
union of two edge-disjoint spanning trees so we can reduce G to H by (R2).
Theorem 1.4 now tells us that a generic framework (G, p) is globally rigid if and
only if (H, p|H) is globally rigid. Since H is M -connected and rigid, (H, p|H) is
globally rigid by Theorem 1.3. Hence (G, p) is globally rigid.

The organisation of this paper by section is 1: Introduction, 2: Prelimi-
naries, 3: Realisations of graphs with given direction constraints, 4: Direction
reductions and proof of Theorem 1.4, 5: Direction irreducible graphs, 6: Proof
of Theorem 1.5, 7: Proof of Theorem 1.6, 8: Algorithmic considerations, 9:
Closing remarks.

2 Preliminaries

In this section we collect tools from diverse areas that we will use in our proofs.

2.1 Rigidity

Suppose (G, p) is a 2-dimensional direction-length framework. Its rigidity matrix
is a (|D| + |L|) × 2|V | matrix R(G, p), where each edge in D ∪ L corresponds
to a row and each vertex in V corresponds to a pair of consecutive columns.
We choose an arbitrary reference orientation for the edges, and use the notation
e = uv to mean that e has been oriented from u to v. Fix an edge e = uv, a
vertex x, and write p(u) − p(v) = (a, b). Then the two entries in the rigidity
matrix corresponding to e and x are as follows. If e ∈ L we take (a, b) if x = u,
(−a,−b) if x = v, (0, 0) otherwise. If e ∈ D we take (b,−a) if x = u, (−b, a) if
x = v, (0, 0) otherwise.
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We refer to vectors in the null space Z(G, p) of R(G, p) as infinitesimal
motions of (G, p). The labeling of the columns of R(G, p) allows us to consider
each infinitesimal motion z as a map from V to R2, with the properties that
z(u)−z(v) is perpendicular to p(u)−p(v) if e = uv ∈ L, or parallel to p(u)−p(v)
if e = uv ∈ D. For any t ∈ R2 the translation given by z(v) = t for all v ∈ V
is an infinitesimal motion, so dimZ(G, p) ≥ 2 and rank R(G, p) ≤ 2|V | − 2. We
say that the framework (G, p) is infinitesimally rigid if rank R(G, p) = 2|V |−2,
and is independent if the rows of R(G, p) are linearly independent.

A property P of frameworks is generic if whenever some generic realisation
of a graph G has property P then all generic realisations of G have property P.
If P is a generic property then we say that G has property P if some generic
realisation of G has property P (or equivalently all generic realisations of G have
property P). Infinitesimal rigidity and independence are both generic properties,
as the rank of R(G, p) is the same for all generic realisations of G. Results from
[7, 8], which will be described in Section 2.5, imply that infinitesimal rigidity
and rigidity are equivalent properties for generic direction-length frameworks.
Thus rigidity and redundant rigidity are also generic properties.

The rigidity matrix of (G, p) defines the rigidity matroid of (G, p): the ground
set D∪L corresponds to rows of the rigidity matrix, and a subset is independent
when the corresponding rows are linearly independent. Any two generic reali-
sations of G have the same rigidity matroid, which we call the (2-dimensional)
rigidity matroid M(G) of G. (We refer the reader to [13] for an introduction to
the theory of matroids.)

Servatius and Whiteley [14] characterised independence in the rigidity ma-
troid of a mixed graph:

Theorem 2.1. Let G = (V ;D,L) be a mixed graph and F ⊆ D ∪ L. Then
F is independent in M(G) if and only if for all ∅ 6= F ′ ⊆ F we have |F ′| ≤
2|V (F ′)| − 2, with strict inequality if F ′ is pure.

They also gave the following recursive construction for independent rigid
mixed graphs, i.e. bases in the rigidity matroid of the ‘complete mixed graph’.
A 0-extension of G is a mixed graph obtained from G by adding a new vertex
v and two edges at v, either of which may be a length edge or a direction edge,
and which may go to the same vertex of G if they consist of one length edge
and one direction edge. A 1-extension of G is a mixed graph obtained from
G by adding a new vertex v, deleting an edge e of G, and adding three edges
at v, such that the neighbours of v include both endpoints of e, neither D nor
L decrease in size, and two new edges may go to the same vertex if they are
of different types. They showed that 0-extensions and 1-extensions preserve
independence and rigidity, and conversely, any independent rigid mixed graph
can be constructed starting from a single vertex by a sequence of 0-extensions
and 1-extensions.
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2.2 M-circuits and M-components

An M -circuit of a mixed graph G is a subgraph induced by the edges of a circuit
of the rigidity matroid M(G). Theorem 2.1 implies that F is a circuit of M(G)
if and only if F − e is independent for all e ∈ F and either F is mixed with
|F | = 2|V (F )|−1, or F is pure with |F | = 2|V (F )|−2. It also implies that mixed
M -circuits are redundantly rigid. The characterisations of generic rigidity for
pure frameworks similarly imply that length-pure M -circuits are redundantly
length-rigid and direction-pure M -circuits are redundantly direction-rigid.

It is well known that a matroid can be expressed as the direct sum of its
connected components, which are the equivalence classes of the relation∼, where
e ∼ f if e = f or there is a circuit containing e and f . We define the M -
components of a mixed graph G = (V ;D,L) to be the subgraphs induced by the
edges in the connected components of its rigidity matroid M(G). We can use
the direct sum decomposition of the rigidity matroid M(G) to calculate its rank,
which we will denote by r(G). Indeed, if G has M -components H1, . . . ,Hm then
we have r(G) =

∑m
i=1 r(Hi), where r(Hi) is 2|V (Hi)| − 3 when Hi is pure and

is 2|V (Hi)| − 2 otherwise. We can use this fact to show that M -connectivity
is equivalent to redundant rigidity when G is direction irreducible and satisfies
the necessary conditions for generic global rigidity described in Section 1.

Lemma 2.2. Suppose G is a direction irreducible, 2-connected, direction-balanced
rigid mixed graph. Then G is M -connected if and only if G is redundantly rigid.

Proof. We have already seen, in Section 1 that redundant rigidity is a necessary
condition for the M -connectivity of rigid mixed graphs. To prove sufficiency we
suppose that G is redundantly rigid but not M -connected. Let H1, H2, . . . ,Hm

be the M -components of G. Let Vi = V (Hi), Xi = Vi−
⋃
j 6=i Vj and Yi = Vi−Xi

for all 1 ≤ i ≤ m. Since G is redundantly rigid, every edge of G is contained
in some M -circuit. Hence |Vi| ≥ 3 for all 1 ≤ i ≤ m. Since G is 2-connected,
|Yi| ≥ 2 for all 1 ≤ i ≤ m, and since G is direction-balanced, |Yi| ≥ 3 when
Hi is length-pure. Since G is direction irreducible, no direction edge of G
is contained in a direction-pure M -circuit. This implies that each of the M -
connected components is either mixed or length-pure. Without loss of generality,
we may assume that H1, H2, . . . ,H` are length-pure for some 0 ≤ ` ≤ m, and
H`+1, H`+2, . . . ,Hm are mixed. Then

r(G) =
∑̀
i=1

(2|Vi| − 3) +

m∑
i=`+1

(2|Vi| − 2)

=
∑̀
i=1

(2|Xi|+ 2|Yi| − 3) +

m∑
i=`+1

(2|Xi|+ 2|Yi| − 2)

≥
m∑
i=1

(2|Xi|+ |Yi|),

since |Yi| ≥ 3 for all 1 ≤ i ≤ `, and |Yi| ≥ 2 for all `+ 1 ≤ i ≤ m. Since the Xi

are all disjoint, we have
∑m
i=1 |Xi| = |

⋃m
i=1Xi|. Also, since each element of Yi
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is contained in at least one other Yj with j 6= i, we have
∑m
i=1 |Yi| ≥ 2|

⋃m
i=1 Yi|.

Thus

r(G) ≥ 2

(∣∣∣∣∣
m⋃
i=1

Xi

∣∣∣∣∣+

∣∣∣∣∣
m⋃
i=1

Yi

∣∣∣∣∣
)

= 2|V |.

This contradicts the fact that r(G) ≤ 2|V | − 2.

2.3 Boundedness and global rigidity

Now we recall some results from [8, 9]. A direction-length framework (G, p)
is bounded if there exists a real number K such that ‖q(u) − q(v)‖ < K for
all u, v ∈ V whenever (G, q) is a framework equivalent to (G, p). It is known
that the boundedness of (G, p) is equivalent to the rigidity of an augmented
framework, (G+, p).

Lemma 2.3. [8, Theorem 5.1] Let (G, p) be a direction-length framework and
let G+ be obtained from G by adding a direction edge parallel to each length edge
of G. Then (G, p) is bounded if and only if (G+, p) is rigid.

Lemma 2.3 implies that boundedness is a generic property, and we say that
a mixed graph G is bounded if some, or equivalently every, generic realisation of
G is bounded. It also implies that every rigid mixed graph is bounded.

A mixed graph G = (V ;D,L) is direction-independent if D is independent in
the direction-length rigidity matroid of G, i.e. the rows of R(G, p) corresponding
to D are linearly independent for any generic p. Lemma 1.1 and the fact that
direction-pure M -circuits are redundantly direction-rigid allow us to reduce the
problem of deciding if a mixed graph is bounded to the family of direction-
independent mixed graphs. The following characterisation of boundedness for
direction-independent mixed graphs follows from [8, Theorem 5.1 and Corollary
4.3].

Lemma 2.4. Suppose that G = (V ;D,L) is a direction-independent mixed
graph. Then G is bounded if and only if G/L has two edge-disjoint spanning
trees (where G/L is the graph obtained from G by contracting each edge in L
and keeping all multiple copies of direction edges created by this contraction).

A bounded component of G is a maximal bounded subgraph of G. It is shown
in [8] that each edge e ∈ L lies in a bounded component and that the vertex
sets of the bounded components partition V . We will use the following result
of Nash-Williams [12] to show that there are relatively few edges between a set
of bounded components in a mixed graph.

Theorem 2.5. The edge set of a graph H can be covered by k forests if and
only if every non-empty set X of vertices of H induces at most k|X| − k edges
of H.

Lemma 2.6. Suppose G = (V ;D,L) is direction-independent and S is a set of
bounded components of G with |S| ≥ 2. Then there are at most 2|S| − 3 edges
of G joining distinct components in S.
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Proof. Suppose on the contrary that there are at least 2|S| − 2 edges of G that
join distinct components in S. Suppose also that S is minimal with respect to
this property (and the condition that |S| ≥ 2). Let H be a graph with vertex
set S and exactly 2|S| − 2 edges, each of which correspond to a distinct edge of
G joining two components in S. The minimality of S implies that every non-
empty set X of vertices of H induces at most 2|X| − 2 edges of H and hence,
by Theorem 2.5, H can be partitioned into two edge-disjoint spanning trees.
By Lemma 2.4, for each bounded component Ci = (Vi;Di, Li) ∈ S, Ci/Li has
two edge-disjoint spanning trees. We can combine the edge sets of these trees
with the edge sets of the two edge-disjoint spanning trees of H to obtain two
edge-disjoint spanning trees in G′/L′, where G′ = (V ′;D′, L′) is the subgraph
of G induced by

⋃
Ci∈S V (Ci). Lemma 2.4 now implies that G′ is bounded and

hence is contained in a single bounded component of G. This contradicts the
fact that |S| ≥ 2.

We next state a result of [9] on global rigidity, which establishes that length-
redundancy is a necessary condition for generic global rigidity when |L| ≥ 2, and
takes a first step towards understanding when direction-redundancy is necessary.
A subgraph of a mixed graph is said to be trivial if it has exactly one vertex,
otherwise it is non-trivial.

Theorem 2.7. [9] Suppose that (G, p) is a globally rigid generic realisation of
a mixed graph G = (V ;D,L) and e is an edge of G.
(a) If e ∈ L and |L| ≥ 2 then G− e is rigid.
(b) If e ∈ D and G−e has a non-trivial rigid subgraph then G−e is either rigid
or unbounded.

2.4 Substitution

The following subgraph substitution operation is an important tool which we
will use throughout this paper. Suppose G = (V ;D,L) is a mixed graph, U ⊆ V ,
H = G[U ] is the subgraph of G induced by U , and H ′ is another mixed graph
with vertex set U . Then the substitution G′ of H by H ′ in G is obtained from G
by deleting all edges of H and adding all edges of H ′. We record the following
properties.

Lemma 2.8. If G, H and H ′ are rigid then G′ is rigid.

Proof. The ranks of G and G′ are both equal to the rank of the graph obtained
from G by joining all pairs of vertices of H by both a direction and a length
edge.

Lemma 2.9. Suppose p : V → R2 is such that (G, p) and (H ′, p|U ) are both
globally rigid. Then (G′, p) is globally rigid.

Proof. Let (G′, q) be an equivalent framework to (G′, p). Since (H ′, p|U ) is
globally rigid, q|U is congruent to p|U . In particular, (H, q|U ) and (H, p|U ) are
equivalent. But G and G′ agree on all edges not contained in U , so (G, q) and

9



(G, p) are equivalent. Since (G, p) is globally rigid, q and p are congruent. Hence
(G′, p) is globally rigid.

2.5 The framework space

Given a framwork (G, p) and a vertex v0 of G, its framework space SG,p,v0
consists of all q ∈ R2|V | with q(v0) = (0, 0) and (G, q) equivalent to (G, p). The
following result on framework spaces is key to proving our main results. Its
proof is similar to that of [9, Theorem 1.3].

Lemma 2.10. Suppose (G, p) is a generic direction-length framework, e is a
direction edge of G, G is rigid, and H = G− e is bounded and not rigid. Let v0
be a vertex of G, let p0 be obtained from p by translating v0 to the origin, and
let C be the connected component of the framework space SH,p,v0 containing p0.
Then C is diffeomorphic to a circle. Furthermore, if −p0 /∈ C then (G, p) is not
globally rigid.

Proof. We may use [9, Lemma 1.2] and the hypotheses that (G, p) is generic,
G is rigid and H = G − e is not rigid, to deduce that SH,p,v0 is a smooth
1-dimensional manifold. The hypothesis that H is bounded implies that C is
bounded. The fact that C is closed now implies that C is diffeomorphic to a
circle.

Let x, y be the end-vertices of e. If q(x) = q(y) for some q ∈ C then (G, q)
would be equivalent to (G, p). This would contradict [7, Lemma 3.4], which
tells us that q should be injective when (G, q) is equivalent to a rigid generic
framework. Hence q(x) 6= q(y) for all q ∈ C. Let f : C → S1 be defined by
f(q) = (q(x) − q(y))/‖q(x) − q(y)‖. Then f is a smooth map and we can use
the fact that p is generic to deduce that p0 is a regular point of f (we refer the
reader to the proof of [9, Theorem 1.3] for more details).

To finish the proof we show that we can find q ∈ C, q 6= p0 with f(q) equal
to f(p0) or −f(p0). Suppose that −f(p0) /∈ f(C). Let s : S1 \ {−f(p0)} → R
be a diffeomorphism, e.g. stereographic projection. Then s ◦ f is a smooth map
from C to R and p0 is a regular point of s ◦ f . Thus we can find q1 and q2 in a
neighbourhood of p0 in C with (s◦f)(q1) < (s◦f)(p0) < (s◦f)(q2). Since there
are two paths in C joining q1 and q2, the intermediate value theorem implies
we can find another realisation q ∈ C, q 6= p0 with (s ◦ f)(q) = (s ◦ f)(p0), i.e.
f(q) = f(p0).

We have shown that there is q ∈ C, q 6= p0 with f(q) equal to f(p0) or
−f(p0). The hypothesis that −p0 6∈ C now implies that q 6= −p0 and hence
that (G, q) is equivalent to but not congruent to (G, p).

2.6 Field extensions and genericity

A mixed framework (G, p) is quasi-generic if it is a translation of a generic frame-
work. We will be mostly concerned with quasi-generic frameworks in standard
position, i.e. with one vertex positioned at the origin. Such frameworks are
characterised by the following elementary lemma.
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Lemma 2.11. [7] Let (G, p) be a framework with vertices {v1, v2, ..., vn}, p(v1) =
(0, 0) and p(vi) = (p2i−1, p2i) for 2 ≤ i ≤ n. Then (G, p) is quasi-generic if and
only if {p3, p4, . . . , p2n} is algebraically independent over Q.

Given a vector p ∈ Rd, Q(p) denotes the field extension of Q by the coordi-
nates of p. We say that p is generic in Rd if the coordinates of p are algebraically
independent over Q. Given fields K,L with K ⊆ L the transcendence degree
td[L : K] of L over K is the size of the largest subset of L which is algebraically
independent over K. A reformulation of Lemma 2.11 is that if (G, p) is a frame-
work with n vertices, one of which is at the origin, then (G, p) is quasi-generic
if and only if td[Q(p) : Q] = 2n− 2.

The following function plays an important role in rigidity theory. Let (G, p)
be a direction-length framework. For v1, v2 ∈ V with p(vi) = (xi, yi) let
lp(v1, v2) = (x1 − x2)2 + (y1 − y2)2, and sp(v1, v2) = (y1 − y2)/(x1 − x2)
whenever x1 6= x2. Suppose e = v1v2 ∈ D ∪ L. We say that e is verti-
cal in (G, p) if x1 = x2. The length of e in (G, p) is lp(e) = lp(v1, v2), and
the slope of e is sp(e) = sp(v1, v2), whenever e is not vertical in (G, p). Let
V = {v1, v2, . . . , vn} and D ∪ L = {e1, e2, . . . , em}. We view p as a point
(p(v1), p(v2), . . . , p(vn)) in R2n. Let T be the set of all points p ∈ R2n such that
(G, p) has no vertical direction edges. Then the rigidity map fG : T → Rm is
given by fG(p) = (h(e1), h(e2), . . . , h(em)), where h(ei) = lp(ei) if ei ∈ L and
h(ei) = sp(ei) if ei ∈ D.

One can verify that each row in the Jacobian matrix of the rigidity map is
a non-zero multiple of the corresponding row in the rigidity matrix, so these
matrices have the same rank. Thus the rigidity matrix achieves its maximum
rank at a framework (G, p) when p is a regular point of the rigidity map. Hence
p will be a regular point of f whenever (G, p) is generic.

Recall that G = (V ;D,L) is independent if D ∪ L is independent in the
(generic) rigidity matroid of G. The next result relates the genericity of fG(p)
to the genericity of p when G is independent.

Lemma 2.12. [7] Suppose that G is an independent mixed graph and (G, p) is
a quasi-generic realisation of G. Then fG(p) is generic.

We use K to denote the algebraic closure of a field K. Note that td[K :
K] = 0. We say that G is minimally rigid if it is rigid but G− e is not rigid for
any edge e; equivalently G is both rigid and independent. The following lemma
relates Q(p) and Q(fG(p)) when G is minimally rigid.

Lemma 2.13. [7] Let G be a minimally rigid mixed graph and (G, p) be a
realisation of G with no vertical direction edges and with p(v) = (0, 0) for some
vertex v of G. If fG(p) is generic then Q(p) = Q(fG(p)).

Lemmas 2.12 and 2.13 imply the following result for rigid mixed graphs.

Corollary 2.14. Let G be a rigid mixed graph and (G, p) be a quasi-generic re-
alisation of G with p(v) = (0, 0) for some vertex v of G. Then Q(p) = Q(fG(p)).
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Proof. Let H be a minimally rigid spanning subgraph of G. By Lemma 2.12,
fH(p) is generic. Hence Lemma 2.13 gives Q(p) = Q(fH(p)). It is not difficult
to see that Q(fH(p)) ⊆ Q(fG(p)) ⊆ Q(p). Thus Q(p) = Q(fG(p)).

We also need the following lemma, which implies that every realisation of a
rigid mixed graph which is equivalent to a generic realisation is quasi-generic.

Lemma 2.15. [7] Let (G, p) be a quasi-generic realisation of a rigid mixed graph
G. Suppose that (G, q) is equivalent to (G, p) and that p(v) = (0, 0) = q(v) for
some vertex v of G. Then Q(p) = Q(q), so (G, q) is quasi-generic.

3 Realisations of graphs with given direction con-
straints

Here we give a result concerning the realisation of a graph as a direction-pure
framework with given directions for its edges. We need the following concepts,
introduced by Whiteley in [15]. A frame is a graph G = (V,E) together with a
map q : E → R2. The incidence matrix of the frame (G, q) is an |E|×2|V |matrix
I(G, q) defined as follows. We first choose an arbitrary reference orientation for
the edges of E. Each edge in E corresponds to a row of I(G, q) and each vertex
of V to two consecutive columns. The submatrix of I(G, q) with row labeled by
e = uv ∈ E and pairs of columns labeled by x ∈ V is q(e) if x = u, is −q(e) if
x = v, and is the 2-dimensional zero vector otherwise. It is known (see [15]) that
when q is generic, I(G, q) is a linear representation of the matroid union of two
copies of the cycle matroid of G. We may now use Theorem 2.5 to determine
when I(G, q) has linearly independent rows. For X ⊆ V , let iG(X) denote the
number of edges of G between vertices in X.

Theorem 3.1. Suppose G = (V,E) is a graph and q : E → R2 is generic. Then
the rows of I(G, q) are linearly independent if and only if iG(X) ≤ 2|X| − 2 for
all ∅ 6= X ⊆ V .

We can use this result to show that a graph G = (V,E) satisfying iG(X) ≤
2|X|−3 for allX ⊆ V with |X| ≥ 2 can be realised as a direction-pure framework
with a specified algebraically independent set of slopes for its edges, and that
this realisation is unique up to translation and dilation when |E| = 2|V | − 3.
Note that given any realisation of G, we can always translate a specified vertex
z0 to (0, 0) and dilate to arrange any specified distance t between a specified
pair of distinct vertices x0, y0. Our proof technique is similar to that developed
in [15].

Theorem 3.2. Let G = (V,E) be a graph such that iG(X) ≤ 2|X| − 3 for all
X ⊆ V with |X| ≥ 2. Let s be an injection from E to R such that {se}e∈E is
generic. Suppose x0, y0, z0 ∈ V with x0 6= y0 and t 6= 0 is a real number. Then
there exists an injection p : V → R2 such that ‖p(x0)−p(y0)‖ = t, p(z0) = (0, 0)
and, for all e = uv ∈ E, p(u)− p(v) ∈ 〈(1, se)〉. Furthermore, if |E| = 2|V | − 3,
then p is unique up to dilation by −1 through (0, 0).
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Proof. We will construct p as a combination of vectors in the nullspaces of
certain frames. First consider a generic frame q on G such that q(e) is a scalar
multiple of (−se, 1) for every e ∈ E. Then for any p in the nullspace of I(G, q)
and e = uv ∈ E we have p(u) − p(v) ∈ 〈(1, se)〉. However, p need not be
injective. To address this issue, we instead choose a pair of vertices x, y ∈ V ,
and consider the graph H obtained by adding the edge f = xy to G (which may
be parallel to an existing edge). Now let (H, q′) be a generic frame such that
q′|E = q. For all X ⊆ V with |X| ≥ 2, we have iH(X) ≤ iG(X) + 1 ≤ 2|X| − 2
by hypothesis. Theorem 3.1 now implies that the incidence matrix I(H, q′) has
linearly independent rows. Thus rank I(H, q′) = rank I(G, q) + 1. Writing ZH
for the null space of I(H, q′) and ZG for the null space of I(G, q), we have
dimZG = dimZH + 1, so we can choose pf ∈ ZG \ ZH . Then we necessarily
have pf (x) 6= pf (y). Taking a suitable linear combination of the vectors pf , for
all possible new edges f = xy, x, y ∈ V , we may construct a vector p in ZG
with p(x) 6= p(y) for all x, y ∈ V . Since pf (u)− pf (v) ∈ 〈(1, se)〉 for each f we
also have p(u) − p(v) ∈ 〈(1, se)〉. Furthermore, as noted before the proof, we
can translate and dilate to satisfy the other conditions, thus constructing the
required map p.

We next show uniqueness when |E| = 2|V | − 3. We have dimZG = 2|V | −
rank I(G, q) = 2|V | − |E| = 3. Define p1, p2 : V → R2 by p1(v) = (1, 0)
and p2(v) = (0, 1) for all v ∈ V . Note that p1, p2 ∈ ZG. Also, p, p1, p2 are
linearly independent, since p(z0) = (0, 0), p1(z0) = (1, 0) and p2(z0) = (0, 1), so
{p, p1, p2} is a basis for ZG. Now suppose that p′ : V → R2 has the properties
described in the first part of the lemma. Then p′ ∈ ZG so p′ = ap + bp1 + cp2
for some a, b, c ∈ R. Since p′(z0) = p(z0) = (0, 0) we have b = c = 0. Since
‖p′(x0)− p′(y0)‖ = t = ‖p(x0)− p(y0)‖ we have p′ ∈ {p,−p}.

4 Direction reduction

In this section we will derive Theorem 1.4. We also prove a lemma which char-
acterises when a rigid direction-independent mixed graph is direction reducible.
We first consider the reduction operation R1.

Lemma 4.1. Suppose (G, p) is a generic realisation of a mixed graph G =
(V ;D,L) and that e = uv ∈ D belongs to a direction-pure M -circuit H =
(U ;F, ∅) of G. Then (G, p) is globally rigid if and only if (G − e, p) is globally
rigid.

Proof. If (G − e, p) is globally rigid then (G, p) is clearly globally rigid. Con-
versely, suppose that (G, p) is globally rigid and (G − e, q) is equivalent to
(G − e, p). Since H is a direction-pure circuit, (H − e, p|U ) is direction-rigid.
Hence (H− e, p|U ) is globally direction-rigid by Lemma 1.1. Thus q(u)− q(v) is
a scalar multiple of p(u)− p(v), and hence (G, q) is equivalent to (G, p). Since
G is globally rigid, q is congruent to p. This shows that (G − e, p) is globally
rigid.

We next consider the reduction operation R2.
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Lemma 4.2. Let (G, p) be a quasi-generic realisation of a rigid mixed graph
G = (V ;D,L). Suppose that G has a proper induced subgraph H = (U ;F,L)
such that the graph G/H obtained by contracting H to a single vertex (deleting
all edges contained in H and keeping all other edges, possibly as parallel edges)
has only direction edges and is the union of two edge-disjoint spanning trees.
Then (G, p) is globally rigid if and only if (H, p|H) is globally rigid.

Proof. First suppose that (H, p|H) is globally rigid. Let G′ be constructed from
G by substituting H by a minimally rigid graph H ′ = (U ;F ′, {l′}) with exactly
one length edge l′. Then G′ is rigid by Lemma 2.8. Since G′ is rigid and has
exactly one length edge, (G′, p) is globally rigid by Lemma 1.2. Thus (G, p) is
globally rigid by Lemma 2.9.

Conversely, suppose that (H, p|H) is not globally rigid. Then there exists an
equivalent but non-congruent framework (H, q̃). Without loss of generality we
may suppose that p(u) = (0, 0) = q̃(u) for some u ∈ V (H). We will construct a
framework (G, q) which is equivalent to (G, p) and has q|H = q̃. Let D∗ = D\F
be the set of edges of G/H and m be the number of vertices of G/H. Then
|D∗| = 2m− 2, as G/H is the union of two edge-disjoint spanning trees. Since
G is rigid we have

2|V | − 2 = r(G) ≤ |D∗|+ r(H) ≤ 2m− 2 + 2|V (H)| − 2 = 2|V | − 2.

Thus equality must hold throughout. In particular, r(H) = 2|V (H))| − 2, so H
is rigid.

We again consider the rigid mixed graph G′ = (V ;D′, {l′}) with exactly one
length edge defined in the first paragraph of the proof. Since G′ has |D∗| +
2|V (H)| − 2 = 2|V | − 2 edges, it is minimally rigid. t

Define s : D′ ∪ L′ → R by s(e) = sq̃(e) for e ∈ F ′, s(l′) = lq̃(l
′), and s(e) =

sp(e) for e ∈ D∗. We will use Theorem 3.2 to construct a framework (G′, q) such
that sq(e) = s(e) for all edges e of G′. To do this, we first need to show that
s|D′ is generic. We will prove the stronger result that s is generic by showing
that td[Q(s) : Q] = |D′| + |L′| = 2|V | − 2. We have td[Q(p) : Q] = 2|V | − 2,
as p is quasi-generic and p(u) = (0, 0), so it suffices to prove that Q(s) = Q(p).
Since G is rigid, Corollary 2.14 gives Q(fG(p)) = Q(p). Also, s is obtained from
fG(p) by replacing the values fH(p|U ) by the values fH′(q̃), so we need to show
that these generate the same algebraic closure over Q. Since (H, q̃) is equivalent
to (H, p|U ), Lemma 2.15 gives Q(q̃) = Q(p|U ). Since p|U is quasi-generic, it
follows that q̃ is quasi-generic. Then, since H and H ′ are rigid, two applications
of Corollary 2.14, give Q(fH(p|U )) = Q(p|U ) and Q(fH′(q̃)) = Q(q̃). Putting
these three equalities together gives

Q(fH′(q̃)) = Q(q̃) = Q(p|U ) = Q(fH(p|U )),

which is what we needed to prove Q(s) = Q(p). Therefore s is generic. Now
we can apply Theorem 3.2, with x0y0 equal to the unique length edge of G′,
to obtain a realisation (G′, q) with fG′(q) = s. By construction, (H ′, q|U ) is
equivalent to (H ′, q̃). But H ′ is globally rigid by Lemma 1.2, so q|U is congruent
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to q̃. Hence we can apply a translation, and possibly a dilation by −1, to obtain
q|U = q̃.

Since (H, q̃) is equivalent to (H, p|H) and sq(e) = s(e) = sp(e) for all e ∈
D∗, (G, q) is equivalent to (G, p) and satisfies q|U = q̃. Since (H, q̃) is not
congruent to (H, p|U ), (G, q) is not congruent to (G, p). Thus (G, p) is not
globally rigid.

Theorem 1.4 follows immediately from Lemmas 4.1 and 4.2. We close this
section with a result which characterises when a rigid, direction-independent
mixed graph G is direction reducible to a given subgraph H. This lemma will
be used in Section 7 to prove Theorem 1.6.

Lemma 4.3. Let G = (V ;D,L) be a rigid mixed graph and H = (V ′;D′, L′) be
an induced proper subgraph of G. Suppose that no edge of D \D′ is contained
in an M -circuit of G. Then G is direction reducible to H if and only if L′ = L
and |D \D′| = 2|V \ V ′|.

Proof. Since no edge of D \D′ is contained in an M -circuit of G, G is direction
reducible to H if and only if L′ = L and the graph F = (V ′′;D′′, ∅) obtained by
contracting H to a single vertex vH is the union of two edge-disjoint spanning
trees. Thus, if G is direction reducible to H, then we have L′ = L and |D\D′| =
|D′′| = 2|V ′′| − 2 = 2|V \ V ′|.

We next assume that L′ = L and |D \D′| = 2|V \ V ′| and show that F is
the union of two edge-disjoint spanning trees. Suppose not. Then by Theorem
2.5, there exists X ⊆ V ′′ with |X| ≥ 2 and iF (X) ≥ 2|X| − 1. If vH 6∈ X
then the fact that no edge of D \D′ is contained in an M -circuit of G implies
that iF (X) = iG(X) ≤ 2|X| − 3, a contradiction. Thus vH ∈ X. Since |D′′| =
|D \D′| = 2|V ′′| − 2 there are at most (2|V ′′| − 2)− (2|X| − 1) = 2|V ′′ \X| − 1
edges in F which are not induced by X. It follows that

r(G) ≤ r(G[V \(V ′′\X)])+(2|V ′′\X|−1) ≤ (2|V \(V ′′\X)|−2)+(2|V ′′\X|−1)

which gives
r(G) ≤ 2|V | − 3.

This contradicts the hypothesis that G is rigid. Thus F is the union of two
edge-disjoint spanning trees and G is direction reducible to H.

5 Direction irreducible mixed graphs

Theorem 1.4 enables us to reduce the problem of characterising globally rigid
generic direction-length frameworks to the case when the underlying graph is
direction irreducible. In this section we prove a structural lemma for direction
irreducible mixed graphs which have a globally rigid generic realisation even
though they are not redundantly rigid. This will be used in the next section
to construct two equivalent but non-congruent generic realisations of a mixed
graph which is direction irreducible but not redundantly rigid.
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Lemma 5.1. Let G = (V ;D,L) be a direction irreducible mixed graph which
has |L| ≥ 2 and is not redundantly rigid. Suppose that (G, p) is a globally rigid
generic realisation of G. Then

(a) G− e is bounded for all e ∈ D,

(b) r(G− e) = r(G)− 1 for all e ∈ D, and

(c) every length edge of G belongs to a length-pure M -circuit of G.

Proof. (a) First note that G is direction-independent, since G is direction irre-
ducible. Now suppose for a contradiction that G − e is not bounded for some
e ∈ D. We will show that G has a direction reduction. Let H1, H2, . . . ,Hm be
the bounded components of G− e. Then each length edge of G is contained in
one of the subgraphs Hi. Let D∗ ⊆ D be the set of all edges of G joining distinct
subgraphs Hi, and H be the graph obtained from G by contracting each Hi to a
single vertex. Since G is rigid, G is bounded. Since G is direction-independent,
Lemma 2.4 implies that the graph G/L obtained from G by contracting each
length edge has two edge-disjoint spanning trees. Since H can be obtained from
G/L by contracting a (possibly empty) set of direction edges, H also has two
edge-disjoint spanning trees. In particular, |D∗| ≥ 2m− 2. On the other hand,
Lemma 2.6 implies that |D∗ − e| ≤ 2m− 3. Thus e ∈ D∗, |D∗| = 2m− 2, and
H is the union of two edge-disjoint spanning trees. Since G is rigid we have

2|V | − 2 = r(G) ≤ |D∗|+
m∑
i=1

r(Hi) ≤ 2m− 2 +

m∑
i=1

(2|V (Hi)| − 2) = 2|V | − 2.

Thus equality must hold throughout. In particular, r(Hi) = 2|V (Hi)| − 2 for
each i, so each subgraph Hi is rigid.

Let G′ = (V ;D′, L′) be obtained from G by substituting each non-trivial
subgraph Hi by a minimally rigid graph H ′i with exactly one length edge. Each
framework (H ′i, p|H′

i
) is globally rigid by Lemma 1.2. Thus repeated applications

of Lemma 2.9 imply that (G′, p) is globally rigid. On the other hand, |D′|+|L′| =
|D∗| +

∑m
i=1 r(Hi) = 2|V | − 2, so G′ is minimally rigid. Theorem 2.7(a) now

implies that G′ has exactly one length edge. Since H ′i contains a length edge
wheneverHi is non-trivial, G−e has exactly one non-trivial bounded component,
H1 say. Since G/H1 = H and H is the union of two edge-disjoint spanning
trees, G is direction reducible to H1. This contradicts the hypothesis that G is
direction irreducible.

(b) Suppose that r(G − e) = r(G) for some e ∈ D. Then e is contained in an
M -circuit C of G. Since G is direction-independent, C must be a mixed M -
circuit. Since G is not redundantly rigid, G− f is not rigid for some f ∈ D∪L.
Theorem 2.7(a) implies that f ∈ D. Clearly f is not an edge of C and hence C
is a non-trivial rigid subgraph of G− e. Theorem 2.7(b) now implies that G− f
is unbounded, contradicting (a).

(c) Choose e ∈ L. Then e belongs to an M -circuit C ′ of G by Theorem 2.7(a).
By (b), C ′ cannot be a mixed M -circuit. Hence C ′ is length-pure.
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6 Proof of Theorem 1.5

Every generic realisation of a direction irreducible, 2-connected, direction-balanced,
redundantly rigid graph is globally rigid by Theorem 1.3 and Lemma 2.2. So
it only remains to show necessity in Theorem 1.5. Hence we may suppose that
G = (V ;D,L) is a direction irreducible, mixed graph with |L| ≥ 2, and that
every generic realisation of G is globally rigid. The fact that some generic re-
alisation of G is generically globally rigid implies that G is 2-connected and
direction-balanced, see [6]. We complete the proof by applying Theorem 6.1
below to deduce that G must also be redundantly rigid. The proof idea is to
show that if G is not redundantly rigid, then for any given generic realisation
(G, p), we can construct a sequence of generic realisations q0, q1, . . . , qt such that
t ≤ |D| and (G, qt) is not globally rigid. We construct this sequence from (G, p)
by first reflecting (G, p) in the x-axis to obtain (G, q0), and then recursively “cor-
recting” the changed direction constraints back to their original values in (G, p).
Every time we “correct” a direction constraint, we obtain a new realisation in
our sequence.

Theorem 6.1. Let G = (V ;D,L) be a direction irreducible mixed graph with
|L| ≥ 2 such that G is not redundantly rigid. Then some generic realisation of
G is not globally rigid.

Proof. We proceed by contradiction. Assume that all generic realisations of G
are globally rigid. By Lemma 5.1(b) and (c), every length edge of G is contained
in a length-pure M -circuit of G, and no direction edge of G is contained in any
M -circuit of G. Let D = {d0, d1, . . . , dk}, let G1 = (V1; ∅, L1) be a non-trivial
M -component of G and let v0 ∈ V1.

Let (G, p) be a quasi-generic realisation of G with p(v0) = (0, 0) and let
(G, q0) be the quasi-generic realisation obtained by reflecting (G, p) in the x-
axis. Then (G−D, p) is equivalent to (G−D, q0). In addition we have sq0(di) =
−sp(di) for all di ∈ D, so (G, p) and (G, q0) are not equivalent.

Claim 6.2. For all j ∈ {0, 1, . . . , k+ 1} there exists a quasi-generic framework
(G, qj) with qj(v0) = (0, 0), rigidity map fG(qj) = (hqj (e))e∈E given by

hqj (e) =

{
sq0(e) when e ∈ {dj , dj+1, . . . , dk}
hp(e) otherwise,

and with the property that that (G1, qj |V1) can be obtained from (G1, q0|V1) by a
rotation about the origin.

Proof. We proceed by induction on j. If j = 0 then the claim holds trivially
for (G, q0). Hence suppose that the required framework (G, qj) exists for some
0 ≤ j < k + 1. The quasi-generic framework (G − dj , qj) is bounded but
not rigid by Lemma 5.1(a) and (b) (since boundedness and rigidity are generic
properties). Since (G, qj) is globally rigid by assumption, Lemma 2.10 implies
that we can continuously move (G−dj , qj) to form (G−dj ,−qj) whilst keeping v0
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fixed at the origin and maintaining all edge constraints. During this motion, the
direction of the missing edge dj = ujvj changes continuously from qj(vj)−qj(uj)
to −(qj(vj) − qj(uj)), a rotation by 180◦. So at some point in this motion we
must pass through a realisation (G−dj , qj+1) at which the slope of this missing
edge is sp(dj). We can now add the edge dj back to this realisation to obtain
the desired framework (G, qj+1). Note that since G1 is M -connected, it is a
length-rigid subgraph of G− dj . Since the motion of (G− dj , qj) is continuous
and keeps v0 fixed at the origin, this implies that (G1, qj+1|V1

) can be obtained
from (G1, qj |V1

) by a rotation about the origin.
It remains to show that (G, qj+1) is quasi-generic. Let H be a minimally

rigid spanning subgraph of G. Since hqj+1
(e) = ±hp(e) for all e ∈ E(G) we have

Q(fH(qj+1)) = Q(fH(p)). Since fH(p) is generic by Lemma 2.12, Lemma 2.13
implies that

td[Q(qj+1) : Q] = td[Q(fH(qj+1)) : Q] = td[Q(fH(p)) : Q] = 2|V | − 2.

We can now use Lemma 2.11 to deduce that (H, qj+1), and hence also (G, qj+1),
are quasi-generic.

Applying Claim 6.2 with j = k + 1, we obtain a quasi-generic realisation
qk+1 of G which is equivalent to (G, p), has qk+1(v0) = (0, 0), and is such that
(G1, qk+1|V1

) can be obtained from (G1, q0|V1
) by a rotation about the origin.

Since q0 was obtained from p by reflecting G across the x-axis, we have

qk+1(v) = RZp(v) for all v ∈ V1

where R and Z are the 2× 2 matrices representing this rotation and reflection.
Since (G1, p|V1

) is a quasi-generic framework with at least four vertices and RZ
acts on R2 as a reflection in some line through the origin, we have qk+1(v) 6=
±p(v) for some v ∈ V1. Hence qk+1|V1

is not congruent to p|V1
, and qk+1 is not

congruent to p. This implies that (G, p) is not globally rigid and contradicts
our initial assumption that all generic realisations of G are globally rigid.

Theorem 6.1 and the preceding discussion immediately imply Theorem 1.5.

7 Proof of Theorem 1.6

Lemma 2.2 implies that we can replace redundant rigidity with M -connectivity
in the statement of Theorem 1.5. Since 2-connectivity is a property of M -
connected graphs (see [2]), we can then remove this condition. This gives us the
equivalent statement:

Theorem 7.1. Let G = (V ;D,L) be a direction irreducible mixed graph with
|L| ≥ 2. Then all generic realisations of G are globally rigid if and only if G is
direction-balanced and M -connected.
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With this statement, we can finally prove Theorem 1.6.

Proof of Theorem 1.6. We first prove necessity. Suppose all generic realisations
of G = (V ;D,L) are globally rigid. Then G is rigid. If |L| = 1, we are done.
So suppose |L| ≥ 2. Choose a minimal subgraph H of G such that H can be
obtained by a direction reduction of G (we allow the possibility that H = G.)
Then H is direction irreducible and and L is contained in H. Theorem 1.4
implies that all generic realisations of H are globally rigid. Theorem 7.1 now
tells us that H is the required direction-balanced, M -connected mixed subgraph
of G.

We next prove sufficiency. Suppose that G is rigid and let (G, p) be a generic
realisation of G. If |L| = 1, then (G, p) is globally rigid by Lemma 1.2. So
suppose that |L| ≥ 2, and that G has a direction-balanced, M -connected mixed
subgraph H containing all edges in L. We will show that (G, p) is globally rigid
by induction on |E(G)|. If G = H then (G, p) is globally rigid by Theorem
1.3. Hence we may assume that G 6= H. If G − e is rigid for some edge
e ∈ E(G)\E(H) then we may apply induction to G−e to deduce that (G−e, p)
is globally rigid. Hence we may assume that no edge of E(G) \ E(H) belongs
to an M -circuit of G. This, and the fact that G and H are both rigid, gives

|E(G)| − |E(H)| = r(G)− r(H) = 2|V (G)| − 2|V (H)|.

Lemma 4.3 now implies that G is direction reducible to H. By induction,
(H, p|H) is globally rigid. Theorem 1.4 now tells us that (G, p) is globally
rigid.

8 Algorithmic considerations

It is not difficult to see that a mixed graph G = (V ;D,L) has an M -connected,
direction balanced, mixed subgraph which contains L if and only if some M -
connected component of G is direction balanced, mixed and contains L. Theo-
rem 1.6 now reduces the problem of checking whether every generic realisation
of G is globally rigid to that of determining the M -connected components of G
and checking whether one of them contains L and is direction balanced.

There exist efficient algorithms to check whether a mixed graphG = (V ;D,L)
satisfies the sparsity condition of Theorem 2.1. For any F ⊆ E, the condition
F ′ ≤ 2|V (F ′)| − 2 for all ∅ 6= F ′ ⊆ F holds if and only if F can be covered by
two forests, which can be tested in O(n3/2 log n2/m) time [3], where n and m
denote the number of vertices and edges, respectively. For F ⊆ E or F ⊆ D, the
condition F ′ ≤ 2|V (F ′)| − 3 for all ∅ 6= F ′ ⊆ F is equivalent to independence in
the well-known bar-joint rigidity matroid and can be tested in O(n2) time, see
[1, 11]. By using these algorithms one can test independence in the direction-
length rigidity matroid. This allows us to check whether G is rigid and find its
M -connected components. We again refer to [1, 11] for more details.

Testing whether G is direction balanced can be done in linear time. This
follows by observing that G is direction balanced if and only if all 2-separations
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(H1, H2) of G, in which H2 is minimal, are direction balanced. It is straight-
forward to obtain these special 2-separations from the cleavage units (i.e. 3-
connected components) of G, which can be listed in O(n+m) time [4].

9 Closing remarks

The question of deciding whether direction-length global rigidity is a generic
property remains open. Theorem 1.3 shows that it is a generic property when
the underlying graph is M -connected, and the necessary conditions for global
rigidity given in [6] show that it is also a generic property if the underlying graph
is not 2-connected or is not direction-balanced. Theorem 1.4 and Lemma 2.2 re-
duce the question to the case when the underlying graph is direction irreducible
and is not redundantly rigid. Theorem 1.5 tells us that a direction irreducible
mixed graph G which is not redundantly rigid has a generic realisation which
is not globally rigid, but it is still conceivable that G may also have a generic
realisation which is globally rigid. We believe that this is not the case:

Conjecture 9.1. Suppose (G, p) is a generic realisation of a direction irre-
ducible mixed graph G with at least two length edges. Then (G, p) is globally
rigid if and only if G is 2-connected, direction-balanced, and redundantly rigid.

If true, Conjecture 9.1 would imply that a generic direction-length framework
is globally rigid if and only if it satisfies the conditions in Theorem 1.6:

Conjecture 9.2. A generic direction-length framework (G, p) is globally rigid
if and only if G = (V ;D,L) is rigid, and either |L| = 1 or G has a direction-
balanced, M -connected mixed subgraph which contains all edges in L.

In these final pages, we show that Conjecture 9.1, and hence also Conjecture
9.2, hold in the special case when the length edges of G induce a length-rigid
subgraph. As noted above, Theorem 1.3, Lemma 2.2 and [6] imply it only re-
mains to establish the necessity of the condition that G is redundantly rigid. We
will prove this in Theorem 9.4, but first we need the following rather technical
lemma.

Lemma 9.3. Let G = (V ;D,L) be a rigid mixed graph, H = (U ; ∅, L) be the
length-pure subgraph induced by L, and u ∈ U . Suppose that H is length rigid,
r(G− e) = r(G)− 1 for all e ∈ D, and G− e0 is bounded for some e0 ∈ D. Let
(G, p) be a quasi-generic framework with p(u) = (0, 0) and C be the connected
component of the configuration space SG−e0,p,u which contains p. Then −p ∈ C.

Proof. The idea is to rotate (H, p|U ) by θ radians about p(u) = (0, 0) and use
Theorem 3.2 to show that, for almost all values of θ, we can extend the resulting
framework (H, qθ) to a framework (G−e0, pθ) which is equivalent to (G−e0, p).
To apply Theorem 3.2, we construct G′ from G by substituting a minimally rigid
graph H ′ with exactly one length edge for H and then show that the required
set of edge slopes for (G′ − e0, pθ) is algebraically independent over Q.
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Let H ′ = (U ;D′, L′) be a minimally rigid graph on the same vertex set as H
with exactly one length edge and let G′ be obtained from G by replacing H by
H ′. We first show that G′− e0 is minimally rigid. Since G is rigid, H is length-
rigid and r(G− e) = r(G)− 1 for all e ∈ D, we have |D| = 2|V | − 2− (2|U | − 3)
and hence |D− e0| = 2|V |− 2|U |. Since H ′ has 2|U |− 2 edges, this implies that
G′ has 2|V | − 2 edges. It remains to show that G′ − e0 is rigid. Since G− e0 is
bounded, (G− e0)+ is rigid by Lemma 2.3. Since G′ − e0 can be obtained from
(G − e0)+ by substituting H+ with H ′, it is rigid by Lemma 2.8. Therefore
G′ − e0 is minimally rigid.

For each θ ∈ [0, 2π) let qθ : U → R2 be the configuration obtained by
an anticlockwise rotation of p|U through θ radians about (0, 0). Write B =
{qθ : θ ∈ [0, 2π)}, and let B∗ be the set of all configurations qθ ∈ B such that
the set of slopes {sp(e)}e∈D−e0 ∪ {sqθ (e)}e∈D′ is defined and is algebraically
independent over Q. We claim that B∗ is a dense subset of B. First we note
that q0 = p|U ∈ B∗, as G′−e0 is independent, so Lemma 2.12 implies that fG′(p)
is generic. To see the effect of a rotation by θ, consider an edge e = v1v2 in D′

and let (x1, y1) and (x2, y2) be the coordinates of v1 and v2 in p. coordinates

in qθ are obtained by applying the transformation Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, so

we have

sq0(e) = sp(e) =
y1 − y2
x1 − x2

and sqθ (e) =
(x1 − x2) sin θ + (y1 − y2) cos θ

(x1 − x2) cos θ − (y1 − y2) sin θ
, so

sqθ (e) = r(sp(e), tan θ), where r(s, t) =
t+ s

1− st
.

Consider any non-zero polynomial z with rational coefficients and |D−e0|+
|D′| variables, labeled as s = (se : e ∈ D − e0) and s′ = (s′e : e ∈ D′).
Substituting s = (sp(e) : e ∈ D − e0) and s′ = (sqθ (e) : e ∈ D′) into z gives a
rational function z∗ in (sp(e) : e ∈ (D − e0) ∪ D′) and tan θ. Note that z∗ is
not identically zero, as it is non-zero when θ = 0 by the hypothesis that p is
quasi-generic. Thus there are only a finite number of values of θ ∈ [0, 2π) for
which z∗ is zero. Furthermore, the number of such polynomials z is countable,
so there are only countably many θ for which {sp(e)}e∈D−e0 ∪ {sqθ (e)}e∈D′ is
algebraically dependent over Q. Thus B \ B∗ is countable, so in particular B∗

is a dense subset of B.
For each qθ ∈ B∗, we can apply Lemma 3.2 to obtain a configuration pθ :

V → R2 such that lpθ (e1) = lp(e1), where e1 is the unique length edge of G′,
pθ(u) = (0, 0), spθ (e) = sp(e) for e ∈ D − e0 and spθ (e) = sqθ (e) for e ∈ D′.
Since (H ′, qθ) is globally rigid we have pθ|U ∈ {qθ,−qθ}. Hence (G − e0, pθ) is
equivalent to (G − e0, p). Replacing pθ by −pθ if necessary, we may suppose
that pθ|U = qθ; this determines pθ uniquely by Lemma 3.2. Now note that
the defining conditions of pθ are polynomial equations with coefficients that
are continuous functions of θ, except at a finite set of exceptional values for
θ corresponding to vertical edges in pθ. Since B∗ is a dense subset of B, it
follows that {pθ : qθ ∈ B∗} all belong to the same component of the framework
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space SG−e0,p,u, which is C, since q0 = p|U ∈ B∗. Now note that qπ ∈ B∗,
as sqπ (e) = −sp(e) for e ∈ D′, so {sp(e)}e∈D−e0 ∪ {sqπ (e)}e∈D′ generates the
same extension of Q as {sp(e)}e∈D−e0 ∪ {sp(e)}e∈D′ . Therefore pπ ∈ C. Since
pπ = −p by the uniqueness property noted above, −p ∈ C.

Theorem 9.4. Let (G, p) be a globally rigid generic realisation of a direction
irreducible mixed graph G = (V ;D,L) with at least two length edges. Suppose
that L induces a length rigid subgraph of G. Then G is redundantly rigid.

Proof. We proceed by contradiction. Suppose G is not redundantly rigid. Since
G is direction irreducible, Lemma 5.1, implies that G− e is bounded and r(G−
e) = r(G)− 1 for all e ∈ D.

Let H = (U ; ∅, L) be the length-rigid subgraph of G induced by L. Choose
u ∈ U and e0 ∈ D. By translation we can replace the assumption that (G, p)
is generic by the assumption that (G, p) is quasi-generic and p(u) = (0, 0). Let
H ′ = (U ;D′, L′) be a minimally rigid graph on the same vertex set as H with
exactly one length edge, f , and let G′ be obtained from G by substituting H
by H ′. We can show that G′ is minimally rigid as in the proof of Lemma 9.3.

Let (H ′, q) be obtained from (H ′, p|U ) by reflection in the x-axis. Then
sq(e) = −sp(e) for all e ∈ D′. Since {sp(e)}e∈D−e0 ∪ {sp(e)}e∈D′ is generic,
{sp(e)}e∈D−e0 ∪{sq(e)}e∈D′ is generic. Thus we can apply Lemma 3.2 to obtain
p′ : V → R2 such that lp′(f) = lp(f), p′(v) = (0, 0), sp′(e) = sp(e) for e ∈ D−e0
and sp′(e) = sq(e) for e ∈ D′. We have Q(fG′−e0(p′)) = Q(fG′−e0(p)), so p′

is quasi-generic by Lemma 2.13. Now consider (G − e0, p′) and let C be the
connected component of the framework space SG−e0,p′,u which contains p′. By
Lemma 9.3, we have −p′ ∈ C.

Let e0 = u0v0. For any p′′ ∈ C let F (p′′) = (p′′(u0) − p′′(v0))/‖p′′(u0) −
p′′(v0)‖ be the unit vector in the direction of p′′(u0)−p′′(v0); this is well-defined
since we never have p′′(u0) = p′′(v0) by [7, Lemma 3.4]. Consider a path P in C
from p′ to −p′. Then F (p′′) changes continuously from F (p′) to −F (p′) along P .
By the intermediate value theorem there must be some p′′ ∈ P such that F (p′′)
is either F (p) or −F (p). Then (G, p′′) is equivalent to (G, p). On the other
hand p′′ is not congruent to p since p′′|U is obtained from p|U by a reflection
(as well as a translation and a rotation). It follows that (G, p) is not globally
rigid.

Theorem 9.4 shows that if a graph satisfies the hypotheses of Theorem 6.1,
and satisfies the additional hypothesis that its length edges induce a length-
rigid subgraph, then generic realisations of this graph are never globally rigid.
This supports Conjectures 9.1 and 9.2. We close by noting that Lemma 5.1
and Theorem 9.4 imply that the mixed graph shown in Figure 3 is the smallest
graph for which these conjectures are not known to be true.
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Figure 3: A direction irreducible mixed graph which is not redundantly rigid.
We know it has a generic realisation which is not globally rigid by Theorem 1.5,
but do not know whether all generic realisation have this property.
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