Global rigidity of 2-dimensional direction-length frameworks

Katie Clinch* Bill Jackson' Peter Keevash?

9 May 2016

Abstract

A 2-dimensional direction-length framework is a collection of points in the plane which
are linked by pairwise constraints that fix the direction or length of the line segments joining
certain pairs of points. We represent it as a pair (G,p), where G = (V;D, L) is a ‘mixed’
graph and p : V — R? is a point configuration for V. It is globally rigid if every direction-
length framework (G, q) which satisfies the same constraints can be obtained from (G, p) by
a translation or a rotation by 180°. We show that the problem of characterising when a
generic (G, p) is globally rigid can be reduced to the case when G belongs to a special family
of ‘direction irreducible’ mixed graphs, and prove that every generic realisation of a direction
irreducible mixed graph G is globally rigid if and only if G is 2-connected, direction balanced
and redundantly rigid.

1 Introduction

A finite configuration of points in Euclidean space with local constraints may be informally de-
scribed as globally rigid if the constraints determine the point set up to congruence. It is a
fundamental open problem to give a nice characterisation of global rigidity in various settings.
Our setting here is that of a d-dimensional direction-length framework, which is a pair (G, p),
where G = (V;D, L) is a ‘mixed’ graph and p : V — R? is a point configuration for V. We
call the graph G mixed because it has two types of edges: we refer to edges in D as direction
edges and edges in L as length edges. Two direction-length frameworks (G,p) and (G,q) are
equivalent if p(u) — p(v) is a scalar multiple of g(u) — g(v) for all uwv € D with g(u) # ¢(v), and
lp(uw) —p(v)|| = |lg(u) —q(v)]| for all uv € L. Two point configurations p and g for V" are congruent
if either p(u) — p(v) = q(u) — q(v) for all u,v € V', or p(u) — p(v) = q(v) — q(u) for all u,v € V.
(Thus p and ¢ are congruent if p can be obtained from ¢ by a translation, possibly followed by a
rotation by 180°.) A direction-length framework (G, p) is globally rigid if p is congruent to ¢ for
every framework (G, q) which is equivalent to (G, p). It is rigid if there exists an £ > 0 such that
if a framework (G, q) is equivalent to (G, p) and satisfies ||p(v) — q(v)|| < € for all v € V' then p is
congruent to ¢ (equivalently every continuous motion of the vertices of (G, p) which satisfies the
direction and length constraints given by the edges results in a framework (G, ¢) with p congruent
to ¢). The framework (G, p) is redundantly rigid if (G — e, p) is rigid for all e € D U L.
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Figure 1: Two equivalent but non-congruent direction-length frameworks. We use solid or dashed
lines to indicate length or direction constraints, respectively. The frameworks are rigid but not
globally rigid.

We will only consider generic frameworks, meaning that the set containing the coordinates of
all of the vertices is algebraically independent over the rationals: this eliminates many pathologies.
It follows from [9, 11] that rigidity is a ‘generic property’ in the sense that if some generic realisation
of G in R? is rigid then all generic realisations of G' in R? are rigid. This implies that redundant
rigidity is also a generic property and allows us to describe a mixed graph G as being rigid
or redundantly rigid in R? if some (or equivalently if every) generic realisation of G has these
properties. It is not known whether global rigidity is a generic property (however this statement
would follow from Conjecture 8.1 below in the 2-dimensional case).

Both rigidity and global rigidity are known to be generic properties for pure frameworks,
i.e. frameworks which only contain length constraints or direction constraints. We will not give
formal definitions for such frameworks, but note that they are similar to those for direction-
length frameworks, except that the notion of congruence has to allow not only translations, but
also rotations in the case of length-pure frameworks, and dilations in the case of direction-pure
frameworks.

The problems of characterizing rigidity and global rigidity for 2-dimensional generic length
pure frameworks were solved by Laman [13] and Jackson and Jordan [6], respectively. In particu-
lar, [6] proved that a 2-dimensional generic length pure framework (G, p) is globally length-rigid
if and only if either G is a complete graph on at most 3 vertices, or G is 3-connected and redun-
dantly length-rigid. The problems of characterizing rigidity and global rigidity for d-dimensional
generic length pure frameworks are open for d > 3. In contrast, Whiteley [20] showed that rigidity
and global rigidity are equivalent generic properties for direction frameworks and characterised
the d-dimensional generic frameworks which have these properties for all d. Since direction-
length frameworks are more general than length pure frameworks, we will restrict our attention
to direction-length frameworks of dimension two.

The rigidity of generic 2-dimensional direction-length frameworks was characterised by Ser-
vatius and Whitely in [18]. In particular they showed that every minimally rigid mixed graph
has 2|V| — 2 edges, and that every generic realisation of a rigid mixed graph with exactly one
length edge is globally rigid. Further results on global rigidity were obtained by Jackson and
Jordéan in [8] who showed that two necessary conditions for a generic 2-dimensional direction-
length framework (G,p) to be globally rigid are that G is 2-connected and direction-balanced
i.e. whenever Hj, Hy are subgraphs of G with G = H; U Hy, V(H;) N V(H2) = {u,v} and
V(Hy)\V(Hy) # 0 # V(H) \ V(Hy), both Hy and Hs must contain a direction edge of G
distinct from uv. They also showed that these conditions are sufficient when G is redundantly



rigid and has 2|V| — 1 edges.

We will see in Section 2.1 that we may define a matroid M (G) on the edge set of a mixed
graph G in such a way that G is rigid if and only if M (G) has rank 2|V| — 2. The above sufficient
conditions for global rigidity, that G is redundantly rigid and has 2|V| — 1 edges, are equivalent
to the edge set of G being a rigid circuit of M(G). A mixed graph G is redundantly rigid if
and only if it is rigid and every edge of G is contained in a circuit of M(G). We say that G is
M-connected if it satisfies the stronger condition that every pair of edges of G is contained in a
circuit of M (G). (This is equivalent to M (G) being a connected matroid.) Clinch [2] has recently
shown that the above mentioned necessary conditions for generic global rigidity are also sufficient
when the underlying mixed graph is M-connected and rigid.

Theorem 1.1. Suppose (G,p) is a generic realisation of an M -connected rigid mized graph G.
Then (G, p) is globally rigid if and only if G is 2-connected and direction-balanced.

Unfortunately, Clinch’s result does not give a complete characterisation of generic global
rigidity because M-connectivity is not a necessary condition for the global rigidity of generic
rigid frameworks. This follows from the above mentioned fact that every generic realisation of
a (minimally) rigid mixed graph with exactly one length edge is globally rigid, or from the fact
that global rigidity is preserved if we join a new vertex to an existing globally rigid framework by
two direction constraints. (The underlying graphs in both constructions are not even redundantly
rigid.) We can generalise the second construction as follows.

Suppose (G, p) is a generic realisation of a mixed graph G which has a proper induced subgraph
H such that the graph obtained from G by contracting H to a single vertex (and deleting all edges
contained in H) has only direction edges and is the union of two edge-disjoint spanning trees.
We will see in Section 4 that G — e is not rigid for all direction edges e which do not belong to
H (hence G is not redundantly rigid), and that (G,p) is globally rigid if and only if (H,p|g) is
globally rigid.

These observations lead us to consider a more general reduction operation for a mixed graphs
G. We say that G admits a direction reduction to a subgraph H if either:

(a) H = G — e for some edge e € D which belongs to a direction-pure circuit in the rigidity
matroid of G, or

(b) H is a proper induced subgraph of G, and the graph obtained by contracting H to a single
vertex (and deleting all edges contained in H) is direction pure and is the union of two
edge-disjoint spanning trees.

If G has no direction reduction, then we say that G is direction irreducible. (We will describe an
efficient algorithm in Section 7 which either finds a direction reduction of a given mixed graph or
concludes that it is direction irreducible.) An example of a direction reduction is given in Figure
2.

Our first result reduces the problem of characterizing the globally rigidity of a generic frame-
work (G,p) to the case when G is direction irreducible.

Theorem 1.2. Suppose (G,p) is a generic direction-length framework and G admits a direction
reduction to a subgraph H. Then (G,p) is globally rigid if and only if (H,p|m) is globally rigid.

We will obtain structural information about the family of direction irreducible mixed graphs
which are not redundantly rigid and use it to prove our main result which characterises (direction
irreducible) mixed graphs for which every generic realisation is globally rigid.



Figure 2: The graph G on the left is direction reducible to the subgraph H on the right in
two steps. Since the direction edge wvsv; is contained in the direction-pure circuit induced by
{v4,v5,v6,v7} we can delete vsvr by (a). The graph we now obtain by contracting H to a single
vertex is direction pure and is the union of two edge-disjoint spanning trees so we can reduce G
to H by (b). Theorem 1.2 now tells us that a generic framework (G, p) is globally rigid if and
only if (H,p|m) is globally rigid. Since H is an M-circuit, (H, p|g) is globally rigid by [8] or [2].
Hence (G, p) is globally rigid.

Theorem 1.3. Suppose G is a direction irreducible mized graph with at least two length edges.
Then every generic realisation of G is globally rigid if and only if G is 2-connected, direction-
balanced and redundantly rigid.

The organisation of this paper by section is 1: Introduction, 2: Preliminaries, 3: Realising a
graph as a direction framework, 4: Direction reduction, 5: Direction irreducible graphs, 6: Proof
of Theorem 1.3, 7: Algorithmic considerations, 8: Closing Remarks.

2 Preliminaries

In this section we collect tools from diverse areas that we will use in our proofs.

2.1 Rigidity

Suppose (G,p) is a 2-dimensional direction-length framework. Its rigidity matriz is a (|D| +
|L|) x 2|V| matrix R(G,p), where each edge in D U L corresponds to a row and each vertex in
V' corresponds to a pair of consecutive columns. We choose an arbitrary reference orientation for
the edges, and use the notation e = uv to mean that e has been oriented from u to v. Fix an
edge e, a vertex x, and write p(u) — p(v) = (a,b). Then the two entries in the rigidity matrix
corresponding to e and x are as follows. If e € L we take (a,b) if © = u, (—a,—b) if x = v, (0,0)
otherwise. If e € D we take (b, —a) if v = u, (=b,a) if x = v, (0,0) otherwise.

We refer to vectors in the null space Z(G, p) of R(G,p) as infinitesimal motions. The labeling
of the columns of R(G,p) allows us to consider each infinitesimal motion z as a map from V
to R?, with the properties that z(u) — z(v) is perpendicular to p(u) — p(v) if e = wv € L, or



parallel to p(u) — p(v) if e = wv € D. For any a € R? the translation given by z(v) = a for
all v € V is an infinitesimal motion, so dim Z(G,p) > 2 and rank R(G,p) < 2|V| — 2. We can
‘factor out’ translations by restricting attention to realisations (G, p) that are in standard position,
i.e. satisfy p(vg) = (0,0) for some fixed vo € V. Write R(G,p),, for the matrix obtained from
R(G,p) by deleting the 2 columns corresponding to vy and let Z(G,p),, be its null space. Then
Z(G,p)y, is isomorphic to the subspace Z (G, p)y, of Z(G,p) consisting of all infinitesimal motions
which fix vg. Since all non-zero translations belong to Z (G, p)\ Z(G, p);, we have dim Z(G,p)y, =
dim Z (G, p)—2, sorank R(G,p)y, = 2|V|—2—dim Z(G,p)y, = 2|V|—dim Z(G, p) = rank R(G,p).
We say that the framework (G,p) is infinitesimally rigid if rank R(G,p) = 2|V| — 2, and is
independent if the rows of R(G,p) are linearly independent.

A property P of frameworks is generic if whenever some generic realisation of a graph G has
property P then all generic realisations of G have property P. If P is a generic property then we
say that a graph G has property P if some generic realisation of G has property P (or equivalently
all generic realisations of G have property P). Infinitesimal rigidity and independence are both
generic properties, as the rank of R(G,p) is the same for all generic realisations of G. Results
from [9, 11], which will be described in Section 2.5, imply that infinitesimal rigidity and rigidity
are equivalent properties for generic direction-length frameworks. Thus rigidity and redundant
rigidity are also generic properties.

The rigidity matrix of (G,p) defines the rigidity matroid of (G,p): the ground set D U L
corresponds to rows of the rigidity matrix, and a subset is independent when the corresponding
rows are linearly independent. Any two generic realisations of G have the same rigidity matroid,
which we call the (2-dimensional) rigidity matroid M (G) of G. (We refer the reader to [17] for an
introduction to the theory of matroids.)

Servatius and Whiteley [18] characterised independence in the rigidity matroid of a mixed
graph G = (V; D, L): a set of edges F C D U L is independent in M (G) if and only if for all
() # F' C F we have |F'| < 2|V(F')| — 2, with strict inequality if F’ is length or direction pure.
This implies that F' is a circuit of M (G) if and only if F' — e is independent for all e € F' and
either F' is mixed and |F| = 2|V(F')| — 1, or F is pure and |F| = 2|V (F)| — 2.

Servatius and Whiteley also gave the following recursive construction for independent rigid
mixed graphs, i.e. bases in the rigidity matroid of the ‘complete mixed graph’. A 0-eztension
of G is a mixed graph obtained from G by adding a new vertex v and two edges at v, either
of which may be a length edge or a direction edge, and which may go to the same vertex of G
if they consist of one length edge and one direction edge. A 1-extension of GG is a mixed graph
obtained from G by adding a new vertex v, deleting an edge e of G, and adding three edges at
v, such that the neighbours of v include both endpoints of e, and neither D nor L decrease in
size. They showed that 0-extensions and l-extensions preserve independence and rigidity, and
conversely, any independent rigid mixed graph can be constructed starting from a single vertex
by a sequence of 0-extensions and 1-extensions.

2.2 M-circuits and M-components

It is well known that a matroid can be expressed as the direct sum of its connected components,
which are the equivalence classes of the relation ~, where e ~ f if e = f or there is a circuit
containing e and f. We define the M-components of a mixed graph G = (V;D, L) to be the
subgraphs induced by the edges in the connected components of its rigidity matroid M (G). Sim-
ilarly, we define the M -circuits of G to be the subgraphs induced by the edges of the circuits of
M (G). We can use the direct sum decomposition of the rigidity matroid M(G) to calculate its



rank, which we will denote by r(G). Indeed, if G has M-components Hi,..., H,, then we have
r(G) = >, r(H;), where r(H;) is 2|V (H;)| — 3 when H; is pure and is 2|V (H;)| — 2 otherwise.
We can use this fact to show that M-connectivity is equivalent to redundant rigidity when G is
direction irreducible and satisfies the necessary conditions for generic global rigidity described in
Section 1.

Lemma 2.1. Suppose G is a direction irreducible, 2-connected, direction balanced mized graph.
Then G is M-connected if and only if G is redundantly rigid.

Proof. We have already seen that redundant rigidity is a necessary condition for M-connectedness.
To prove sufficiency we suppose that G is redundantly rigid but not M-connected. Let Hq, Ho, ..., H;
be the M-components of G. Let V; =V (H;), X; =V, — U#i Viand Y; = V; = X; forall 1 <17 <t.
Since G is redundantly rigid, every edge of G is contained in some M-circuit. Hence |V;| > 3 for
all 1 <i <t. Since G is 2-connected, |Y;| > 2 for all 1 <i <t, and since G is direction-balanced,
|Y;| > 3 when H; is length-pure. Since G is direction irreducible, no direction edge of G is con-
tained in a direction-pure M-circuit. This implies that each of the M-connected components is
either mixed or length-pure. Without loss of generality, we may assume that Hy, Hs,..., Hy are
length pure for some 0 < ¢ <t, and Hypy1, Hyyo,. .., H; are mixed. Then

¢ t
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t
> @21X| + i),
i=1
since |Y;| > 2 for all 1 < ¢ < ¢, with strict inequality when 1 <14 < ¢. Since the X; are all disjoint,
we have ! |X;| = |Uf:1 X;|. Also, since each element of Y; is contained in at least one other

Y; with j # i, we have Y ¢_, |Vi| > 2|Ui_, Yi|. Thus

t t
Uxi|+ |y ) =2|V|.
=1 =1

This contradicts the fact that r(G) < 2|V| — 2. O
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2.3 Boundedness and global rigidity

Now we recall some results from [11, 12]. A direction-length framework (G,p) is bounded if
there exists a real number K such that ||g(u) — ¢(v)|| < K for all u,v € V whenever (G,q) is
a framework equivalent to (G,p). It follows from [11] that boundedness is a generic property,
so it makes sense to speak of boundedness for a mixed graph G = (V; D, L). We say that G is
direction-independent if D is independent in the direction-length rigidity matroid of G, i.e. the rows
of R(G,p) corresponding to D are linearly independent for any generic p. The facts that direction
pure M-circuits are generically rigid (when considered as direction pure frameworks) and that
generic rigidity and global rigidity are equivalent for direction pure frameworks, allow us reduce
the problem of deciding if a mixed graph is bounded to the family of direction-independent mixed
graphs. The following characterisation of boundedness for direction-independent mixed graphs
follows from [11, Theorem 5.1 and Corollary 4.3].



Lemma 2.2. Suppose that G is direction-independent. Then G is bounded if and only if G/L
has two edge-disjoint spanning trees (where G /L is the graph obtained from G by contracting each
edge in L and keeping all multiple copies of direction edges created by this contraction).

We will also make use of the following property of unbounded mixed graphs. For any graph H,
the cycle matroid My (H) is defined by saying a set of edges is independent if and only if it is acyclic.
Let Ms(H) be the matroid union of two copies of M;(H), i.e. a set is independent in My(H) if it
is the union of two acyclic sets. Then Lemma 2.2 says that a direction-independent mixed graph
G is bounded if and only if Ms(G/L) achieves its maximum possible rank 2|V (G/L)| — 2.

A bounded component is a maximal bounded subgraph of G. It is shown in [11] that each edge
e € L lies in a bounded component and that the vertex sets of the bounded components partition
V. The following lemma is implicit in [11]; for completeness we include a short proof.

Lemma 2.3. [11] Suppose G is direction-independent and S is a set of bounded components of
G with |S| > 2. Then there are at most 2|S| — 3 edges of G joining distinct components in S.

Proof. Suppose on the contrary that |S| > 2 and there are at least 2|S| — 2 edges of G that
join two distinct components in S. Suppose also that S is minimal with this property. Let G’
be the subgraph of G spanned by UcesC. Let H be a graph with vertex set S with 2|S| — 2
edges, each of which correspond to an edge of GG joining two distinct component in S. Note that
H only has direction edges, as length edges cannot join two distinct bounded components. Also,
the minimality of S implies that Ms(H ) is independent and has rank 2|S|— 2, so H has two edge-
disjoint spanning trees. By Lemma 2.2, for each component C' € S, C'//L[C] has two edge-disjoint
spanning trees. Combining these with those in H we obtain two edge-disjoint spanning trees
in G'/L. But then G’ is bounded, so is contained in a bounded component of G, contradicting
|S] > 2. °

Now we can state the main result of [12] on global rigidity, which establishes that length-
redundancy is a necessary condition for generic global rigidity and takes a first step towards
understanding when direction-redundancy is necessary. A subgraph of a mixed graph is said to
be trivial if it has exactly one vertex, otherwise it is non-trivial.

Theorem 2.4. [12] Suppose that (G,p) is a globally rigid generic realisation of a mized graph
G = (V;D,L) and e is an edge of G.

(a) If e € L and |L| > 2 then G — e is rigid.

(b) If e € D and G — e has a non-trivial rigid subgraph then G — e is either rigid or unbounded.

2.4 Substitution

The following subgraph substitution operation is an important tool which we will use throughout
this paper. Suppose G = (V; D, L) is a mixed graph, U C V, H = G[U] is the subgraph of G
induced by U, and H’ is another mixed graph with vertex set U. Then the substitution G’ of H
by H' in G is obtained from G by deleting all edges of H and adding all edges of H'. We record
the following properties.

Lemma 2.5. If G, H and H' are rigid then G’ is rigid.

Proof. The ranks of G and G’ are both equal to the rank of the graph obtained from G by
joining all pairs of vertices of H by both a direction and a length edge. °



Lemma 2.6. Suppose p: V — R? is such that (G,p) and (H',p|y) are both globally rigid. Then
(G',p) is globally rigid.

Proof. Let (G',q) be an equivalent framework to (G’,p). Since (H',p|y) is globally rigid, ¢|y is
congruent to p|y. In particular, (H,¢|y) and (H,p|y) are equivalent. But G and G’ agree on all
edges not contained in U, so (G, q) and (G, p) are equivalent. Since (G, p) is globally rigid, ¢ and
p are congruent. Hence (G', p) is globally rigid. .

2.5 Differential geometry and the framework space

Here we recall some basic concepts of differential geometry; we refer the reader to [15] for an
introduction to this subject. Let X be a smooth manifold, f : X — R" be a smooth map, and k
be the maximum rank of its derivative df|, over all y € X. A point € X is a regular point of
f if rank df|, = k. The Inverse Function Theorem states that if U is open in R*, f : U — R” is
smooth, z € U, and the derivative df|, : R¥ — R¥ is non-singular, then f maps any sufficiently
small open neighbourhood of z diffeomorphically onto an open subset of R¥. The following lemma
is a simple consequence of this (see [12, Lemma 3.3]).

Lemma 2.7. Let U be an open subset of R™, f : U — R™ be a smooth map and x € U be a
reqular point of f. Suppose that the rank of df|, is n. Then there exists an open neighbourhood
W C U of x such that f(W) is an open neighbourhood of f(x) in R™.

The following function plays an important role in rigidity theory. For vi,ve € V' with p(v;) =
(z4,9i) let Iy (v1,v2) = (21 —22)?+ (y1—y2)?, and s,(v1,v2) = (y1—y2)/ (21 —x2) whenever x1 # z2.
Suppose e = vivg € DU L. We say that e is vertical in (G, p) if x1 = x9. The length of e in (G, p)
is [,(€) = lp(v1,v2), and the slope of e is sp(e) = sp(v1,v2), whenever e is not vertical in (G, p). Let
V ={v1,v9,...,u,} and DUL = {eq,ea,...,e,}. We view p as a point (p(v1),p(v2),...,p(v,)) in
R2". Let T be the set of all points p € R?" such that (G,p) has no vertical direction edges. Then
the rigidity map fo : T — R™ is given by fa(p) = (h(e1), h(ez2),...,h(en)), where h(e;) = l,(e;)
if e; € L and h(e;) = sp(e;) if e; € D.

One can verify (see [12]) that each row in the Jacobian matrix of the rigidity map is a non-zero
multiple of the corresponding row in the rigidity matrix, so these matrices have the same rank.
Thus the rigidity matrix achieves its maximum rank at a realisation (G,p) when p is a regular
point of the rigidity map. In particular, this is the case when (G, p) is generic.

The framework space Sq pv, € R2VI=2 consists of all ¢ in standard position with respect to vy
with (G, q) equivalent to (G, p). Here we recall that ‘standard position’ means that g(vg) = (0,0),
and we identify a realisation (G,q) with the vector in R2IVI=2 obtained by concatenating the
vectors q(v) for v € V \ {vg}. The proof of the following lemma is the same as that of [12,
Theorem 1.3], omitting the part that proves —pg ¢ C, as this is now an assumption.

Lemma 2.8. Suppose (G,p) is a generic direction-length framework, e is a direction edge of G,
G is rigid, and H = G — e 1is bounded and not rigid. Let vy be a vertex of G, let pg be obtained
from p by translating vy to the origin, and let C' be the connected component of the framework
space Sk pu, containing po. Then C is diffeomorphic to a circle. Furthermore, if —pg ¢ C' then
(G, p) is not globally rigid.



2.6 Field extensions and genericity

A mixed framework (G, p) is quasi-generic if it is a translation of a generic framework. We will
be mostly concerned with quasi-generic frameworks in standard position, i.e. with one vertex
positioned at the origin. Such frameworks are characterized by the following elementary lemma.

Lemma 2.9. [9] Let (G,p) be a framework with vertices {v1,va,...,vn}, p(v1) = (0,0) and

p(vi) = (p2i—1,p2i) for 2 < i < n. Then (G,p) is quasi-generic if and only if {p3, P4, ... ,Don} 1S
algebraically independent over Q.

Given a vector p € R%, Q(p) denotes the field extension of Q by the coordinates of p. We say
that p is generic in R? if the coordinates of p are algebraically independent over Q. Given fields
K, L with K C L the transcendence degree td|L : K| of L over K is the size of the largest subset
of L which is algebraically independent over K. (We refer the reader to [4] for an introduction
to field extensions and transcendence degree.) A reformulation of Lemma 2.9 is that if (G,p) is a
framework with n vertices, one of which is at the origin, then (G, p) is quasi-generic if and only
if td[Q(p) : Q] = 2n — 2.

Recall that G = (V; D, L) is independent if D U L is independent in the (generic) rigidity
matroid of G, and that fg denotes the rigidity map of G, which is defined at all realisations (G, p)
with no vertical direction edges. The next result relates the genericity of fg(p) to the genericity
of p when G is independent.

Lemma 2.10. /9] Suppose that G is an independent mized graph and (G,p) is a quasi-generic
realization of G. Then fa(p) is generic.

We use K to denote the algebraic closure of a field K. Note that td[K : K] = 0. We say that
G is minimally rigid if it is rigid but G — e is not rigid for any edge e; equivalently G is both rigid
and independent. The following lemma relates Q(p) and Q(fe(p)) when G is minimally rigid.

Lemma 2.11. [9] Let G be a minimally rigid mized graph and (G,p) be a realization of G with
no vertical direction edges and with p(v) = (0,0) for some vertex v of G. If fa(p) is generic then

Q(p) = Q(fa(p))-

Lemmas 2.10 and 2.11 imply the following result for rigid mixed graphs.

Corollary 2.12. Let G be a rigid mized graph and (G,p) be a quasi-generic realization of G with
p(v) = (0,0) for some vertex v of G. Then Q(p) = Q(fa(p))-

Proof. Let H be a minimally rigid spanning subgraph of G. By Lemma 2.10, fr(p) is generic.
Hence Lemma 2.11 gives Q(p) = Q(fr(p)). It is not difficult to see that Q(fr(p)) € Q(fa(p)) C
Q(p). Thus Q(p) = Q(fa(p))- .

We also need the following lemma, which implies that every realisation of a rigid mixed graph
which is equivalent to a generic realisation is quasi-generic.

Lemma 2.13. [9] Let (G,p) be a quasi-generic realisation of a rigid mized graph G. Suppose
that (G, q) is equivalent to (G,p) and that p(v) = (0,0) = q(v) for some vertex v of G. Then

Q(p) = Q(q), so (G,q) is quasi-generic.




3 Realisations of graphs with given direction constraints

Here we give a result concerning the realisation of a graph as a direction pure framework with
given directions for its edges. We need the following concepts, introduced by Whiteley in [19]. A
frame is a graph G = (V, E) together with a map ¢ : £ — R2. The incidence matriz of the frame
(G,q) is an |E| x 2|V| matrix I(G, q) defined as follows. We first choose an arbitrary reference
orientation for the edges of E. Each edge in F corresponds to a row of I(G,q) and each vertex
of V to two consecutive columns. The submatrix of I(G,q) with row labeled by e = uv € F and
columns labeled by x € V' is g(e) if x = u, is —¢(e) if x = v, and is the 2-dimensional zero vector
otherwise. It is known (see [19]) that when ¢ is generic, I(G, q) is a linear representation of My (G)
(the matroid union of two copies of the cycle matroid of G). Thus we may use the characterisation
of independence in Ms(G) given by Nash-Williams [16] to determine when I(G,q) has linearly
independent rows. For X C V, let i(X) denote the number of edges of G' between vertices in X.

Theorem 3.1. Suppose G = (V,E) is a graph and q : E — R? is generic. Then the rows of
I(G, q) are linearly independent if and only if ic(X) < 2|X| —2 for all) # X C V.

We can use this result to show that a graph G = (V, E) satistying i(X) < 2|X| — 3 for all
X CV with |X| > 2 can be realised as a direction pure framework with a specified algebraically
independent set of slopes for its edges, and that this realisation is unique up to translation and
dilation when |E| = 2|V| — 3. Note that given any realisation of G, we can always translate a
specified vertex zp to (0,0) and dilate to arrange any specified distance ¢ between a specified pair
of vertices x,y.

Theorem 3.2. Let G = (V, E) be a graph such that iq(X) < 2|X|—=3 for all X CV with | X| > 2.
Let s be an injection from E to R such that {s.}ecp is generic. Suppose xo,yo,20 €V andt # 0
is a real number. Then there exists an injection p : V. — R? such that ||p(zo) — p(yo)|| = t,
p(z0) = (0,0) and, for alle = uwv € E, p(u) — p(v) € ((1,s.)). Furthermore, if |E| = 2|V| — 3,
then p is unique up to dilation by —1 through (0,0).

Proof. We will construct p as a combination of vectors in the nullspaces of certain frames. First
consider a generic frame ¢ on G such that g(e) is a scalar multiple of (—s¢, 1) for every e € E.
Then for any p in the nullspace of I(G, q) and e = uv € E we have p(u) —p(v) € ((1, s¢)). However,
p need not be injective. To address this issue, we instead fix any pair of vertices z,y, and consider
the graph H obtained by adding the edge f = zy to G (it may be parallel to an existing edge).
Let (H,q) be a generic frame such that g(e) is a scalar multiple of (—s, 1) for every edge e of G.
For all X C V with |X| > 2, we have ig(X) < ig(X)+1 <2|X|—2 by hypothesis. Theorem 3.1
now implies that the incidence matrix I(H,q) of the frame has linearly independent rows. Thus
rank I(H,q) = rank I(G,q|g) + 1. Writing Zp for the null space of I(H,q) and Zg for the null
space of I(G,q|g), we have dim Zg = dim Zg + 1, so we can choose pr € Zg \ Zu. Now taking
a suitable linear combination of the vectors py, for all possible new edges f = zy, z,y € V, we
may construct a vector p in Zg with p(x) # p(y) for all z,y € V. Since pr(u) — pr(v) € ((1,se))
for each f we also have p(u) — p(v) € ((1,s.)). Furthermore, as noted before the proof, we can
translate and dilate to satisfy the other conditions, thus constructing the required map p.

We next show uniqueness when |E| = 2|V| — 3. We have dim Zg = 2|V| — rank I(G,q|g) =
2|[V| — |E| = 3. Define p1,pa : V. — R? by p1(v) = (1,0) and pa(v) = (0,1) for all v € V. Note
that p1,p2 € Zg. Also, p,p1,p2 are linearly independent, since p(zg) = (0,0), p1(z0) = (1,0) and
p2(20) = (0,1), so {p,p1,p2} is a basis for Zg. Now suppose that p’ : V — R? has the properties
described in the first part of the lemma. Then p’ € Zg so p’ = ap + bpy + ¢ps for some a,b, c € R.
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Since p'(20) = p(z0) = (0,0) we have b = ¢ = 0. Since ||p'(z0) — P’ (v0)|| =t = ||p(x0) — p(yo)| we
have p’ € {p, —p}. .

The uniqueness part of this lemma gives the following two results of Whiteley, and Servatius
and Whiteley.

Lemma 3.3. [20] Suppose that (G,p) is a generic direction-pure framework. Then (G,p) is
direction globally rigid if and only if it is direction-rigid.

Lemma 3.4. [18] Suppose that (G,p) is a generic realisation of a mized graph G = (V; D, L). If
G is rigid and |L| = 1 then (G,p) is globally rigid.

The following consequence of Theorem 3.2 will be needed in the next section.

Lemma 3.5. Let G = (V; D, L) be a rigid mized graph and H = (U; F, L) be a rigid proper induced
subgraph of G which contains L. Suppose G' = (V; D', L") is obtained from G by substituting H
by H = (U; F', L"), and that G' and H' are minimally rigid with exactly one length edge. Suppose
(G,p) is a quasi-generic realisation with p(u) = (0,0) for some vertex v € U and (H,q) is a
realisation of H which is equivalent to (H,p|y). Then there is a realisation (G',q) of G' which is
equivalent to (G',p) and satisfies qly = q.

Proof. Define f: D'UL" — R by f(e) = sz(e) fore € F', f(e) = lz(e) fore € L', and f(e) = sp(e)
for e € D'\ F'. Thus f is the evaluation of the rigidity map fg at the required realisation (G, q),
if it exists. To apply Theorem 3.2, we need to show that f|ps is generic. We will prove the
stronger result that f is generic by showing that td[Q(f) : Q] = |D’| + |L'| = 2|V| — 2. We have
td[Q(p) : Q] = 2|V| — 2, as p is quasi-generic, so it suffices to prove that Q(f) = Q(p). Since G
is rigid, Corollary 2.12 gives Q(fa(p)) = Q(p). Also, f is obtained from fg(p) by replacing the
values fr(p|y) by the values fg/(qG), so we need to show that these generate the same algebraic
closure over Q. Since (H, §) is equivalent to (H,p|y), Lemma 2.13 gives Q(§) = Q(p|y). Since p|y
is quasi-generic, it follows that ¢ is quasi-generic. Then, since H and H’ are rigid, two applications

of Corollary 2.12, give Q(fr(p|lr)) = Q(p|v) and Q(fr/(q)) = Q(g). Putting these three equalities

together gives
Q(fu (@) = Q@) = Qwlv) = Q(fu(plv)),

which is what we needed to prove Q(f) = M Therefore f is generic. Now we can apply
Theorem 3.2, with xgyo equal to the unique length edge of G’, to obtain a realisation (G’, q) with
far(q) = f. By construction (H',q|y) is equivalent to (H',q). But H’ is globally rigid by Lemma
3.4, so q|y is congruent to ¢. Hence we can apply a translation, and possibly a dilation by —1, to
obtain ¢|y = §. °

4 Direction reduction

In this section we prove Theorem 1.2. We also prove a lemma which determines when a rigid
direction-independent mixed graph is direction reducible. For the proof of Theorem 1.2 we deal
with the two reduction operations separately.

Lemma 4.1. Suppose (G,p) is a generic realisation of a mized graph G = (V; D, L) and that
e =uv € D belongs to a direction-pure M -circuit H = (U; F,0) of G. Then (G, p) is globally rigid
if and only if (G — e,p) is globally rigid.
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Proof. If (G — e,p) is globally rigid then (G,p) is clearly globally rigid. Conversely, suppose
that (G, p) is globally rigid and (G — e, q) is equivalent to (G — e, p). Since H is a direction-pure
circuit, both (H,p|y) and (H — e, p|y) are rigid direction-pure frameworks. Hence (H — e, p|y) is
a globally rigid direction-pure framework by Lemma 3.3. Thus g(u) — ¢(v) is a scalar multiple of
p(u) — p(v), and hence (G, q) is equivalent to (G, p). Since G is globally rigid, ¢ is congruent to
p. This shows that (G — e, p) is globally rigid. °

Lemma 4.2. Let (G,p) be a quasi-generic realisation of a rigid mized graph G = (V;D,L).
Suppose that G has a proper induced subgraph H such that the graph F obtained by contracting
H to a single vertex (and deleting all edges contained in H ) has only direction edges and is the
union of two edge-disjoint spanning trees. Then (G,p) is globally rigid if and only if (H,p|m) is
globally rigid.

Proof. First suppose that (H,p|g) is globally rigid. Let G’ be constructed from G by substituting
H by a rigid graph H' with exactly one length edge. Then G’ is rigid by Lemma 2.5. Since G’
is rigid and has exactly one length edge, (G',p) is globally rigid by Lemma 3.4. Thus (G, p) is
globally rigid by Lemma 2.6.

Conversely, suppose that (H,p|g) is not globally rigid. Then there exists an equivalent but
non-congruent realisation (H,q) of H. Without loss of generality we may suppose that p(u) =
(0,0) = G(u) for some u € V(H). Let E C D be the set of edges of F' and m be the number of
vertices of F'. Then |E| = 2m — 2, as F' is the union of two edge-disjoint spanning trees. Since G
is rigid we have

2lV|—=2=r(G) <|E|+r(H)<2m —2+2|V(H)| —2=2|V|-2.

Thus equality must hold throughout. In particular, r(H) = 2|V (H))| — 2, so H is rigid.

Let G’ = (V, D', L") obtained from G by replacing H by a minimally rigid mixed graph H' with
exactly one length edge. Then G’ is rigid by Lemma 2.5. Since G’ has |E|+2|V (H)|—-2 = 2|V|—2
edges, G’ is minimally rigid and has exactly one length edge. By Lemma 3.5, there is a realisation
(G',q) of G' which is equivalent to (G’,p) and satisfies ¢|y = ¢. Undoing the substitution, we
have a realisation (G, q) of G which is equivalent to (G, p) and satisfies ¢y = ¢. Furthermore, p
is not congruent to ¢, since p|y is not congruent to ¢. Thus (G, p) is not globally rigid. °

Theorem 1.2 follows immediately from Lemmas 4.1 and 4.2. For future reference we also
prove the following result, which determines when a rigid direction-independent mixed graph G
is direction reducible to a given subgraph H.

Lemma 4.3. Suppose G = (V;D, L) is a rigid direction-independent mized graph and H =
(V' D', L") is an induced proper subgraph of G. Then G is direction reducible to H if and only if
L'=Land |D\D'|=2|V\ V.

Proof. Since G is direction-independent, G is direction reducible to H if and only if L' = L and
the graph F' = (V"; D" ()) obtained by contracting H to a single vertex vy is the union of two
edge-disjoint spanning trees. Thus, if G is direction reducible to H, then we have L' = L and
[D\D'| = |D"| =2[V"| =2 =2[V\V|.

We next assume that L' = L and |D\ D’| = 2|V'\ V’| and show that F is the union of two edge-
disjoint spanning trees. Suppose not. Then by a theorem of Nash-Williams [16], there exists X C
V" with | X| > 2 and ip(X) > 2|X| — 1. If vy € X then the fact that G is direction-independent
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implies that ip(X) = ig(X) < 2|X| — 3. Thus vy € X. Since |D”| = |D\ D'| = 2|V"| — 2 there
are at most (2|V”] —2) — (2|X]| — 1) =2|V”\ X| — 1 edges in F which are not induced by X. It
follows that

r(@) < r(@VAVIANX)) +QIVIANX=1) < VA (VA X)) =2) + QIVI\X| - 1) =2[V] - 3.

This contradicts the hypothesis that G is rigid. Thus F' is the union of two edge-disjoint spanning
trees and G is direction reducible to H. °

5 Direction irreducible mixed graphs

Theorem 1.2 enables us to reduce the problem of characterising globally rigid generic direction-
length frameworks to the case when the underlying graph is direction irreducible. In this section
we prove a structural lemma for direction irreducible mixed graphs which have a globally rigid
generic realisation even though they are not redundantly rigid. (Our aim is to gather enough
structural information to enable us to show that such graphs do not exist.)

Lemma 5.1. Let G = (V; D, L) be a direction irreducible mized graph which has |L| > 2 and is
not redundantly rigid. Suppose that (G,p) is a globally rigid generic realisation of G. Then

(a) G — e is bounded for all e € D,

(b) r(G—e)=r(G)—1 for alle € D, and

(¢) every length edge of G belongs to a length-pure M -circuit of G.

Proof. (a) First note that G is direction-independent, since G is direction irreducible. Now
suppose for a contradiction that G — e is not bounded for some e € D. We will show that G
has a direction reduction. Let Hy, Ho,..., H,, be the bounded components of G — e. Then each
length edge of GG is contained in one of the subgraphs H;. Let D* C D be the set of all edges of G
joining distinct subgraphs H; and H be the graph obtained from G by contracting each H; to a
single vertex. Since G is rigid, GG is bounded. Since G is direction-independent, Lemma 2.2 now
implies that the graph G/L obtained from G by contacting each length edge has two edge-disjoint
spanning trees. Since H can be obtained from G/L by contracting a (possibly empty) set of
direction edges, H also has two edge-disjoint spanning trees. In particular, |D*| > 2m — 2. On
the other hand, Lemma 2.3 implies that |D* —e| < 2m — 3. Thus e € D*, |D*| =2m — 2, and H
is the union of two edge-disjoint spanning trees. Since G is rigid we have

2AV|—2=r(G) < D'+ r(H;) <2m—2+> (2IV(H;)|—2) =2|V]-2.
=1 i=1

Thus equality must hold throughout. In particular, r(H;) = 2|V (H;)| — 2 for each i, so each
subgraph H; is rigid.

Let G’ = (V, D', L") be obtained from G by substituting each non-trivial subgraph H; by a
minimally rigid graph H] with exactly one length edge. Each framework (H!,p|y:) is globally
rigid by Lemma 3.4. Thus repeated applications of Lemma 2.6 imply that (G', p) is gflobally rigid.
On the other hand, |D'| + |L'| = |D*| + Y. r(H;) =2m — 2+ > (2]V(H;)| — 2) = 2|V| — 2,
so G’ is minimally rigid. Theorem 2.4(a) now implies that G’ has exactly one length edge. Since
H! contains a length edge whenever H; is non-trivial, G — e has exactly one non-trivial bounded
component, Hy say. This implies that G is direction reducible to Hy, which contradicts the hy-
pothesis that G is direction irreducible.
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(b) Suppose that (G — e) = r(G) for some e € D. Then e is contained in an M-circuit H of
G. Since G is direction-independent, H must be a mixed M-circuit. Since G is not redundantly
rigid, G — f is not rigid for some f € DU L. Theorem 2.4(a) implies that f € D. Clearly f is not
an edge of H and hence H is a non-trivial rigid subgraph of G — e. Theorem 2.4(b) now implies
that G — f is unbounded, contradicting (a).

(c) Choose e € L. Then e belongs to an M-circuit H of G by Theorem 2.4(a). By (b), H cannot
be a mixed M-circuit. Hence H is length-pure. °

6 Proof of Theorem 1.3

Since every generic realisation of a direction irreducible, 2-connected, direction balanced, redun-
dantly rigid graph is globally rigid by Theorem 1.1 and Lemma 2.1, we only need to show necessity
in Theorem 1.3. Hence we may suppose that G is a direction irreducible mixed graph and that
every generic realisation of G is globally rigid. Then G is 2-connected and direction balanced by
[8]. We will complete the proof by applying Theorem 6.1 below to deduce that G must also be
redundantly rigid. The proof idea is to show that, if G is not redundantly rigid, then for any
given generic realisation (G,p), we can construct a sequence of generic realisations qo, q1, ..., q
such that ¢ < |D| and (G, ¢) is not globally rigid. We construct this sequence from (G,p) by
first reflecting (G, p) in the 2-axis to obtain (G, qo), and then recursively “correcting” the changed
direction constraints back to their original value in (G, p). Every time we “correct” a direction
constraint, we obtain a new realisation in our sequence.

Theorem 6.1. Let G = (V; D, L) be a direction irreducible mized graph with |L| > 2 such that
G is not redundantly rigid. Then some generic realisation of G is not globally rigid.

Proof. We shall proceed by contradiction. Assume that all generic realisations of GG are globally
rigid. By Lemma 5.1(b) and (c), every length edge of G is contained in a length-pure circuit
in the rigidity matroid of GG, and no direction edge of G is contained in any circuit. Let D =
{d1,da,...,d}, let G = (V1;0, L1) be a non-trivial M-connected component of G and let vy € V4.

Let (G, p) be a quasi-generic realisation of G with p(vg) = (0,0) and let (G, qp) be the quasi-
generic realisation obtained by reflecting (G, p) in the x-axis. Then (G — D, p) is equivalent to
(G — D,qp). In addition we have sy, (d;) = —sp(d;) for all d; € D, so (G,p) and (G, qp) are not
equivalent.

Claim 6.2. For all j € {0,1,...,k} there exists a quasi-generic framework (G,q;) with qj(vo) =
(0,0), with rigidity map fc(q;) = (he;(€))ecr given by

hg,(e) = Sp(€)  when e € {dji1,djya, ..., di}
N hy(e)  otherwise,

and with the property that that (G1,qj|v,) can be obtained from (G1,qolv,) by a rotation about the
origin.

Proof. We proceed by induction on j. If j = 0 then the claim holds trivially for (G, qy). Hence
suppose that the required framework (G,q;) exists for some 0 < j < k. The quasi-generic
framework (G —dj;, gj) is bounded but not rigid by Lemma 5.1(a) and (b) (since boundedness and
rigidity are generic properties). Since (G, g;) is globally rigid by assumption, Lemma 2.8 implies
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that we can continuously move (G; — d;, g;) to form (G; — d;, —q;) whilst keeping v fixed at the
origin and maintaining all edge constraints. During this motion, the direction of the missing edge
dj+1 = ujy1v;41 changes continuously from ¢;(vj41)—q;(uj+1) to —(gj(vj+1)—qj(uj+1)), arotation
by 180°. So at some point in this motion we must pass through a realisation (G — dj41,¢j+1)
at which the slope of this missing edge is sp(dj;+1)). We can now add the edge d; back to this
realisation to obtain the desired framework (G, ¢j4+1). Note that since G is a length rigid subgraph
of G —d; and the motion of (G —d;, g;) is continuous and keeps vy fixed at the origin, (G1, ¢j+1|v;)
can be obtained from (G, ¢;|v;) by a rotation about the origin.

It remains to show that (G,g¢j+1) is quasi-generic. Let H be a minimally rigid spanning
subgraph of G'. Since hy,, (e) = £hy(e) for all e € E(G) we have Q(fr(gj+1)) = Q(fu(p)). Since
fu(p) is generic by Lemma 2.10, Lemma 2.11 implies that

td[Q(gj+1), Q] = td[Q(fr(gj+1)), Q] = td[Q(fu(p)), Q] = 2|V] - 2.

We can now use Lemma 2.9 to deduce that (H,q;+1), and hence also (G, gj41), are quasi-generic.
O

Applying Claim 6.2 with j = k, we obtain a quasi-generic realisation g of G which is equivalent
to (G,p), has qr(vo) = (0,0), and is such that (G1,qx|y;) can be obtained from (Gi,qolv;,) by a
rotation about the origin. Since gy was obtained from p by reflecting V7 across the z-axis, we have

qr(v) = RZp(v) forallv e V;

where R and Z are the 2 x 2 matrices representing this rotation and reflection. Since (G1,ply;) is
a quasi-generic framework with at least four vertices and RZ acts on R? as a reflection in some
line through the origin, we have g (v) # £p(v) for some v € Vi. Hence gily; is not congruent to
plv,, and g is not congruent to p. This implies that (G, p) is not globally rigid and contradicts
our initial assumption that all generic realisations of G are globally rigid. U

7 Algorithmic considerations

In this section we describe a polynomial algorithm which decides if every generic realisation of
a given mixed graph G = (V; D, L) is globally rigid. If |L| < 1 then we need only determine
whether G is rigid and this can be accomplished using an orientation algorithm as in [1] or a
pebble game algorithm as in [14]. Hence we may suppose that |L| > 2.

We first consider the case when G is direction irreducible. In this case Theorem 1.3 tells us
we need only determine whether G is 2-connected, direction balanced and redundantly rigid. The
first two properties can be checked using the connectivity algorithm of [5], and the third by an
orientation or pebble game algorithm.

It remains to show how we can reduce G to the direction irreducible case when G is direction
reducible. We do this in two stages. In the first stage we reduce G to a direction independent
graph G' = (V; D', L) by choosing D’ to be a maximal subset of D which is independent in M (G).
This may again be accomplished using an orientation or pebble game algorithm.

Our final step is to find a direction reduction for a direction independent graph. We accomplish
this by using the following lemma combined with the algorithm for determining the bounded
components in a mixed graph given in [11].

Lemma 7.1. Suppose G = (V; D, L) is a rigid, direction independent mized graph. Then G
18 direction reducible if and only if G — e is unbounded and has exactly one nontrivial bounded
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component for some e € D. Furthermore, if G — e is unbounded and has exactly one nontrivial
bounded component H for some e € D, then G is direction reducible to H.

Proof. We first suppose that G is direction reducible to a subgraph G’ = (V’;D',L) . By
Lemma 4.3, |[D\ D’| = 2|V \ V'|. It follows that, for any e € D\ D’, the graph obtained from
G — e by contracting F(G’) has 2|V \ V/| — 1 edges and |V \ V| + 1 vertices, so does not have
two edge-disjoint spanning trees. This implies that (G — e)/L does not have two edge-disjoint
spanning trees so G — e is unbounded by Lemma 2.2. In addition, we have

2lV|—2=7r(G) <r(G)Y+|D\D'| <2V | -2+ 2V \V/|

and equality must hold throughout. In particular, r(G') = 2|V’| — 2, so G’ is rigid, and hence
bounded. Since L C E(G’), G' must be the unique nontrivial bounded component of G.

We next suppose that G — e is unbounded and has exactly one nontrivial bounded component
H = (V';D',L) for some e € D. Then |(D —e)\ D'| < 2(]V\V'| +1) — 3 by Lemma 2.3, so
|D\ D'| < 2|V \ V'|. Strict inequality cannot hold since G is rigid, and hence bounded. Thus
D\ D'| =2|V\ V'] and G is direction reducible to H by Lemma 4.3. o

8 Closing remarks

The question of deciding whether global rigidity is a generic property of direction-length frame-
works remains open. Theorem 1.1 shows that it is a generic property when the underlying graph
is M-connected, and the necessary conditions for global rigidity given in [8] show that it is also
a generic property if the underlying graph is not both 2-connected and direction balanced. The-
orem 1.2 and Lemma 2.1 reduce the question to the case when the underlying graph is direction
irreducible and is not redundantly rigid. Theorem 1.3 tells us that a direction irreducible mixed
graph G which is not redundantly rigid has a generic realisation which is not globally rigid, but it
is still conceivable that G may also have a generic realisation which is globally rigid. We believe
that this is not the case:

Conjecture 8.1. Suppose (G,p) is a generic realisation of a direction irreducible mized graph
G with at least two length edges. Then (G,p) is globally rigid if and only if G is 2-connected,
direction-balanced, and redundantly rigid.

We use Lemma 5.1 to obtain some evidence in support Conjecture 8.1 in the arXiv version of
this paper. In particular we show that the conjecture holds when the length edges of the mixed
graph induce a length rigid subgraph.

Theorem 8.2. [3] Let (G,p) be a generic realisation of a rigid graph G = (V; D, L). Suppose
that L induces a length-rigid subgraph of G with at least two edges and r(G —e) = r(G) — 1 for
all e € D. Then (G,p) is not globally rigid.

This result allows us to obtain the following simple characterisation of global rigidity for
generic realisations of mixed graphs with 2|V| — 1 edges.

Theorem 8.3. [3] Suppose (G,p) is a generic realisation of a mized graph G = (V; D, L) with
|D| + |L| < 2|V| —1. Then (G,p) is globally rigid if and only if G is rigid and either |L| = 1
or |D| + |L| = 2|V| — 1 and the subgraph of G induced by the unique circuit in M(G) is mized,
direction-balanced, and contains L.

16



References

1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. BERG AND T. JORDAN, Algorithms for graph rigidity and scene analysis, in: Proceedings
of the 11th Annual European Symposium on Algorithms 2003, Springer Lecture Notes in
Computer Science, vol. 2832, 2003, 78-89.

K. CLINCH, Globally rigid direction-length frameworks, submitted.

K. CriNCH, B. JACKSON AND P. KEEVASH, Global rigidity of 2-dimensional direction-length
frameworks, arXiv.

M. D. FRIED AND M. JARDEN, Field Arithmetic, Results in Mathematics and Related Areas
(3), 11. Springer-Verlag, Berlin, 1986.

J.E. HopcrOFT, R.E. TARJAN, Dividing a graph into triconnected components, SIAM J.
Comput. 2 (1973), 135-158.

B. JACKSON AND T. JORDAN, Connected rigidity matroids and unique realizations of graphs,
J. Combin. Theory Ser. B 94 (2005) 1-29.

B. JAacksoN AND T. JORDAN, Inductive constructions in the analysis of 2-dimensional
rigid structures, Proc. 6th Japanese-Hungarian Colloq. Disc. Math. and its Appl., Budapest,
Hungary (2009) 131-140, see also Tech. Report TR-2009-09 at www.cs.elte.hu/egres/

B. JACKSON AND T. JORDAN, Globally rigid circuits of the direction-length rigidity matroid,
J. Combin. Theory Ser. B 100 (2010) 1-22.

B. JACKSON AND T. JORDAN, Operations preserving global rigidity of generic direction-
length frameworks, International Journal of Computational Geometry and Applications 20

(2010) 685-708.

B. JACksSON, T. JORDAN AND S. SzABADKA, Globally linked pairs of vertices in rigid
frameworks, Discrete and Computational Geometry 35 (2006) 493-512.

B. JACKSON AND P. KEEVASH, Bounded direction-length frameworks, Discrete and Com-
putational Geometry 46 (2011) 46-71.

B. JacksoN AND P. KEEVASH, Necessary conditions for global rigidity of direction-length
frameworks, Discrete and Computational Geometry 46 (2011), 72-85.

G. LaMAN, On graphs and rigidity of plane skeletal structures, J. Engineering Math. 4
(1970), 331-340.

A. LEE AND I. STREINU, Pebble game algorithms and sparse graphs, Discrete Math. 308
(2008) 1425-1437.

J.W. MILNOR, Topology from the differentiable viewpoint, University Press of Virginia, Char-
llottesville (1965).

C.ST.J.A. NASH-WILLIAMS, Decomposition of finite graphs into forests, J. London Math.
Soc. 39 (1964), 12.

J. OXLEY, Matroid Theory, Oxford University Press, 1992.

17



[18] B. SERVATIUS AND W. WHITELEY, Constraining plane configurations in CAD: Combina-
torics of directions and lengths, SIAM J. Disc. Math. 12 (1999), 136-153.

[19] W. WHITELEY, The union of matroids and the rigidity of frameworks, SIAM J. Disc. Math.
1 (1988), 237-255.

[20] W. WHITELEY Some matroids from discrete applied geometry, in: Matroid Theory, AMS
Contemporary Mathematics, vol. 197, (1996), 171-313.

18



