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Abstract

For a hypergrapli and a sef, thetrace of 4 on Sis the set of all intersections of edgesf
with S. We will consider forbidden trace problems, in which we want to find the largest hypergraph
‘H that does not contain some list of forbidden configurations as traces, possibly with some restriction
on the number of vertices or the size of the edgeX inin this paper we will focus on combinations
of three forbidden configurations: thesingleton[x] V), thek-co-singletonx]%*—1 and thek-chain
Cr=1{%, (1}, 1, 2], ..., [1, k—1]}, where we writdk]‘©) for the set of alt-subsets ofk]={1, . .., k}.
Our main topic is hypergraphs with rkesingleton ork-co-singleton trace. We obtain an exact result
in the casé = 3, both for uniform and non-uniform hypergraphs, and classify the extremal examples.
In the general case, we show that the number of edges in the largegbrm hypergraph with no
k-singleton ork-co-singleton trace is of ordef—2. By contrast, Frankl and Pach showed that the
number of edges in the largestiniform hypergraph with né-singleton trace is of orde®—1. We
also give a very short proof of the recent result of Balogh and Bollobas that there is a finite bound on the
number of sets in any hypergraph witholtsingletonk-co-singleton ok-chain trace, independently
of the number of vertices or the size of the edges.
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1. Introduction

Many problems in combinatorics ask for the largest structure satisfying some local con-
dition. Frequently, the local condition is that we have some list of forbidden configurations
{Fi; : i € I} and the problem is to find the largest set system that does not contain any
forbidden configuration. Perhaps the most famous is the Turan problem, which, in full gen-
erality, asks for the largestuniform hypergrapl# onnvertices that does not contain some
fixed r-uniform hypergrapl# as a subhypergraph.

A natural variation on these problems arises when we modify the notion of containment
to allow restrictions, in the following sense. For a hypergraphnd a subset of its vertex
setS C V(H), thetraceof ‘H on Sis the hypergrapft{|s = {E NS : E € E(H)}. Given
a fixed hypergraplf, we say that{ hasF as a trace if there is a sStc V() so that
‘H|s has a subhypergraph isomorphickoThus we arise at the forbidden trace problem of
finding the largest hypergraph which does not havé& as a trace. For a survey of these
problems and their applications Jé.

There is a variety of notation used for these problems, so we offer the following attempt
at standardisation. Given a list of forbidden traggs, . .., F,,} we write Tr(F1, ..., Fum)
for the maximum number of edges in a hypergrgphvhich does not have an¥; as a
trace. For some forbidden traces this will be infinite, and in those cases we impose other
restrictions on?, such as fixing the vertex set or the sizes of the edges. Our notation
reflects this by including the number of vertices in the brackets and the uniformity as a
superscript. For the restriction that(#)| = n we use the notatiofr (n, F1, ..., F,), for
the restriction that{ is r-uniform we useTr") (F4, ..., F,,) and for both restrictions we
useTr(n, Fi, ..., Fu).

One of the earliest results on forbidden traces concerns the casefvhei*! consists
of all subsets of the sék] = {1,...,k}. A result of Sauer [9], Perles and Shelah [10],
Vapnik and Chervonenkis [12] (frequently referred to as the Sauer—Shelah theorem) states
thatTr(n, 2Ky = =7 (). Equality can be achieved, for example, whgr= [n](<k—
consists of all subsets ¢t] of size at mosk — 1.

A uniform version of this question was considered by Frankl and Pach [5], who showed

in particular that(Zj) <Tr® (n, 2Ky (kf1>. They conjectured that the lower bound
was tight (which would give a generalisation of the &dKo—Rado theorem) but a coun-
terexample was constructed by Ahlswede and Khachatrian [1]. The main topic of [5] was
the notion of disjointly representable sets, which were introduced by Frankl and Pach as a
strengthening of the classical Hall condition. Here one says that thelset§Aq, ..., A}
have a system of distinct representatifes . . ., x; } if all the x;'s are differentand; € A;
for eachi. If we can also arrange that ¢ A if i # j then we call the setdisjointly
representableThis can be rephrased as saying that no set is contained in the union of the
others. In terms of traces we say théthas ak-singleton trace, where lasingleton is
(k1D = {1}, {2}, ..., (k}}.

More generally, one can consider forbidding @ky® as a trace, where theh level
[k]1© consists all subsets ¢f] of size¢. (We exclude the trivial casés= 0 andk.) Here
Furedi and Quinn [7] gave an example to show that no improvement on the Sauer—Shelah
bound is possible, i.8r (n, [k]©) = Y"¥25 (") for anyfixed¢. Moreover, we will give an

i
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example in the next section of a hypergraghvhereE () = Q(n*~1) has the same order
of magnitude ye#{ does not havanynon-trivial level[k]® as a trace.

In the uniform setting Frankl and Pach considered the fundiéi([k]V), which they
showed has order of magnitud&—1. More precisely, they obtained an upper bound of

(’ﬁf) and a lower bound equal to the maximum number of edgegin-al)-uniform
hypergraph om + k — 1 vertices not containing a copy of the compléte- 1)-uniform
hypergraph ok vertices (a hypergraph Turdn number). In this paper we consider the general
problem of forbidding a number of levels as traces.

The first obvious point is that one must forbidk&ingleton trace to get a finite bound,
as one can take any number of mutually disjoint sets without having any trace of the form
[k1© with ¢ > 1. With thek-singleton forbidden, we show that the order of magnitude
depends only on whether ttkeco-singletor{x]*~? is forbidden. The following theorem
shows that if thek-singleton andk-co-singleton are forbidden traces then the number of
edges is at most of ordef—2, and this is the correct order of magnitude. On the other hand,
if we permit ak-co-singleton trace, then forbidding any other levels as traces does not give
any improvement in the order of magnitude from the Frankl-Pach bound.

Theorem 1.1. (i) Tr) ((k]V, [k]*~D) < kr¥=2,i.e. an r-uniform hypergraph with at least
kr¥=2 edges has a k-singleton or k-co-singleton trace
(i) TrOKD, k1@, ..., k% D)y > (’}:Sz), i.e. there is an r-uniform hypergraph

containing no non-trivial level as a tracwith at Ieast(’ﬁgz) edges

(i) TrO(KD, k1@, ..., [k1*=2)>Q(*1), i.e. there is an r-uniform hypergraph
with at leastQ(r*~1) edges containing no levgt]® with 1<i <k — 2 as a trace

Define the hypergraph of complemeiits$H) to have edgegV (H)\A : A € H}. Note
that has &-co-singleton trace if and only @ (H) has a-singleton trace. It follows that
‘H has thek-singleton andk-co-singleton forbidden as traces exactly when it is impossible
to disjointly represent any set kedges or their complements; hence the title of this paper.

Next, we consider the problem of excluding singletons and co-singletons in more detail.
The smallest non-trivial caseks= 3. Here we are able to obtain exact results and classify
the extremal examples. We will use the notatjeny] for the set of integers such that
x<i<y. Define

A ={1,r],[2,r+1],...,[r+1,2r]},
Ca={{1,2}.{2,3}, {3, 4}, {1. 4}},

D1 =1{{1,2,5},{2, 3,5}, {3, 4,5}, {1, 4, 5}},
Dy = {{1,3,4},{1,5, 6}, {2, 3,4}, {2, 5, 6}}.

r+1lr#2
4 r=2"

pergraph without &3-singleton or3-co-singleton trace is TP ([3]Y, [3]®) = f(r). Up

to isomorphismthe only extremal examples are as followds is extremal for any r except

Theorem 1.2. Define f(r) = { Then the size of the largest r-uniform hy-
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r = 2,whenCy is extremaland.A; is the only example witB edges D; and D> are also
extremal forr = 3. Furthermore if we include the restriction that the ground set has n ver-
tices then we have TP (n, [3]V, [3]®) = min{f(r), f(n — r)}. The extremal examples
are obtained from those aboyeossibly adding some vertices to all sets

We use this theorem to deduce its non-uniform version, for which we obtain an exact
result and find the extremal example. I8t be the hypergraph consisting of all intervals
I C [n] which contain at least one ¢f/2| and|n/2] + 1, and also the empty set.

Theorem 1.3. The size of the largest hypergraph on n vertices witho@tsingleton or
3-co-singleton trace is T, [3]Y, [3]®) = |n?/4] + n + 1. Equality is achieved only by
a hypergraph isomorphic t8,,.

We remark that the first part of this theorem also follows from a result that was proved
independently by Alof2] and Frankl [4]. They showed that# is a set system amvertices
with |#| > [n?%/4] +n + 1, then there is a set systefon 3 vertices with at least 7 edges
for which H hasF as a trace. Such ah clearly contains a 3-singleton or 3-co-singleton.
The significance of our theorem is that we are able to characterise the extremal structures
(which does not follow from the work of Alon and Frankl). This is rather unusual for a trace
problem. Exact results and characterization of the extremal constructions have always been
of interest in extremal combinatorics, and there have been many recent results in which
characterization of extremal or approximately extremal structures has played an important
role.

We also consider some variations on the above problems. First, we consider the asym-
metric generalisatior® ([k]D, [¢]“~D). We focus on the casds= 3 or¢ = 3, for
which we can obtain the following bounds.

Theorem 1.4. (i) For ¢>4, the size of the largest r-uniform hypergraph withouBa
singleton or¢-co-singleton trace satisfies

re  ¢? ré 3 1
— — — 4+ 2e<TIOERY, [y < (2 1.
7 2+ ([31+, [£] ) 4+4+£+3 r+

(i) For k >4, the size of the largest r-uniform hypergraph withous-ao-singleton or
k-singleton trace satisfies

2
w <TO®, [31) <

k(k + Lyr
YR

Note that both parts of the above theorem are asymptotically tightaso ork — oo,
with » > ¢ orr > k. Next, we give a very short proof of the following recent result of
Balogh and Bollobag3]. They define th&k-chainasCy = {4, {1},[1,2],...,[1, k — 1]}
and show that there is a finite bound on the number of sets in any hypergraph without a
k-singleton k-co-singleton ok-chain trace, independently of the number of vertices or the
size of the edges. They give a recursion which provides a doubly exponential bound. We
obtain a similar bound with the following theorem.
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Theorem 1.5. A set system of size at le2X" has at least one of a k-singletok-co-
singleton or k-chain as a traceée. Tr((k]Y, [k]%—D, ¢) <22,

One can ask a number of other natural forbidden trace questions involving chains. The
most interesting seems to be that of determining the maximum size-ohdorm hyper-
graph with nok-singleton ork-chain trace. Concerning this, we have the following results.

Theorem 1.6. (i) The size of the largest r-uniform hypergraph without a k-singleton or
3-chain trace is TF” ([k]V, C3) = max{k — 1, r + 1}, for k> 3.

(ii) The size of the largest r-uniform hypergraph without a k-singleton or k-chain trace
(wherer > k — 2) satisfies

}’+k—2 r) 1 (k—l)r
< R )gTr P co< (VL")

The rest of this paper is organised as follows. Section 2 contains the proofs of our first
three theorems on singleton and co-singleton traces. In Section 3 we study the forementioned
variations, starting with the asymmetric singleton and co-singleton problem, where we prove
Theoreml.4. Then we introduce chains and prove Theorems 1.5 and 1.6. The final section
is devoted to some concluding remarks and open problems.

Notation. For the convenience of the reader we collect here some notation that we use in
this paper. We writdx, y] for the set of integergs such thatv <i <y, wherex, y can be

any reals, but will usually be integers. Note thavik x then[x, y] = @. We also write

[7] = [1, n]. For any seKX thei'” level of X is the set of all subsets f of sizei, which

we denotex V). We also write Z for the set of all subsets ofand X (<9 = [ J;_o X).

Given two setsA and B we write A\ B for the set of points irA that are not inB, and

AAB for the symmetric differenceA\ B) U (B\ A). For a hypergrap the hypergraph of
complement® (H) has edge$V (H)\A : A € H}. For a graphG we let Ng (x) denote the
neighbourhood of a vertexi.e. the set of vertices adjacenttdNe writedg (x) = |[Ng(x)|

for the degree ok.

2. Singleton and co-singleton traces

We start with an observation from [5]. Suppose that= {A1, ..., A,} is r-uniform
and has nd-singleton trace. Sincg is r-uniform A;\A; # ¢ for everyi # j. For each
i, let B; be a minimal subset o(U;f’zl Aj) \A; for which B; N A; # ¢ for all j # i.
Note thatB; # B; fori # j. For eachx € B; there is some; for which A; N B; = {x},

by minimality. Thus the trace dff on B; contains all of its singletons, and we must have
|Bil<k —1.

Proof of Theorem 1.1. (i) SupposeH = {Aj, ..., Ay} is anr-uniform hypergraph with
no k-singleton trace aneh > kr*—2. We will show that there is &-co-singleton trace. For
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eachi, let B; be a minimal subset cﬁ‘U?’Zl Aj) \A; forwhich B; N A; # ¢ forall j #i.
Then|B;| <k — 1 for alli, as noted above. Now; N A1 # ¥ for everyi > 1, so there is
somex; € Aj so that at Ieasﬁ@} = krk—3 of the B; containx,. We can iterate this
process as follows. At the” stage we have points, . .., x; and a set of indice of size
atleastr*—2' sothat{xy, ..., x;} C B; foralli € I,. Now we pick somé € I, and note
that A; intersects allB; with i # j € I; yet is disjoint fromB;. Letx;1 be a point inA;
belonging to as mang; with j € I; as possible, and léf;1 = {j € I; : x;41 € B;}. Then
|l 11] = krk=31 Alsox; 11 & {x1,...,x:}, @s{x1,...,x;} C B;, andx, 1 belongs toA;
which is disjoint froma;.

After stagek — 3 we have point$x1, ..., xx—2} and an index sel,_» of size at leask
such that the setB; for j € I;_» have the formB; = {x1, ..., xx—2, y;}. (No B; can be
equal tofx, ..., xx—2} by minimality.) LetY = {y; : j € Ir_2}. Now 4; is disjoint from
B; and intersect®; for eachk € I;_5\j, S0A;NY = Y\y;. Thus we have k-co-singleton
trace, as required.

(ii) Let # = {UiZglir,ir +a; — 11 : @;>0,Y 5% a; = r}, i.e. each edge oH is a
union of (k — 1) intervals whose leftmost points are multiplesrpand whose total length
isr. Then|H| = (’ZSZ). Consider any s&k C [0, (k — 1)r — 1] of sizek. Then there is
some G<i <k — 2 for whichK has at least two points iiir, (i + 1) — 1]. Suppose they are
aandb, witha < b. Then any set o that contain$ must also contaia. Any non-trivial
level of K separates all pairs of points, so cannot appear as a tréd¢e of

(i) Let X be a set of size + k — 1 and letX = X1 U --- U X;_1 be a partition
into parts that are as equal in size as possible|Xg.= L%J. DefineH to be the
r-uniform hypergraph whose edges are the complements of transversals of the partition,
ie.H = {X\(x1,....,x1) : 5 € X; Vi}. Then|H| = [[/of[Hh=2H | = Q(*Y).
Consider any sek C X of sizek. There is somefor whichK contains at least two points
of X;, say they ar@ andb. Then any set o contains at least one afandb. However,
any levelK @ with 1<i <k — 2 contains a set not meetirig, b}, SO cannot appear as a
trace ofH. [

We remark that a very similar construction to that in part (ii) of the above proof gives an
example of a non-uniform hypergraph pri with Q(n*~1) edges and no non-trivial layer
as a trace. We takll = {{J‘Z2[in/(k — 1),in/(k — 1) + a;] : 0<a; < n/(k — 1)}. Then
#H has(n/(k — 1))~ edges and no non-trivial layer as a trace (as explained above).
Next we need the following lemma.

Lemma 2.1. LetH be an r-uniform hypergraph with no k-singleton trace. Choose edges
Ay, ..., Ap_1 to maximise the size Qﬂf;ll A;.ThenA C Uf.‘:_ll A; for every edge A

Proof. Suppose there is a poiate A\ Uf.‘;ll A;.Forevery Ki <k—1we canfind a point
x; € A\, Aj that does not belong t&. Otherwise we would have)i_] 4; U {x} C
U#i A; U A, which contradicts the maximum property 4f, ..., Ax_1. However, this
gives ak-singleton trace orxy, ..., x;,—1, x}, which is a contradiction. It follows that
U'ZS A; contains all edges ¢f. [
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Now we give the proof of Theorerh.2, which classifies the extremauniform hy-
pergraphs with no 3-singleton or 3-co-singleton as a trace. The general example is the
interval systemA, = {[1,r],[2,r + 1],...,[r + 1, 2r]}. ToO see that this contains no
3-singleton or 3-co-singleton as a trace consider any three pgints c} c [1, 2r].

One of the interval$l, r] and[r + 1, 2r] contains at least two of these points. Without
loss of generality supposge b € [1,r] anda < b. Then any set of4, that containsa

must also contaity, and we are done. Additional examples &étefor r = 2, andD1 =
{{1,2,5}, {2,3,5}, {3,4,5}, {1, 4,5}}andD, = {{1, 3, 4}, {1, 5, 6}, {2, 3, 4}, {2, 5, 6}} for

r = 3. The reader can easily check that these do not have a 3-singleton or 3-co-singleton
as atrace.

Proof of Theorem 1.2. Let H be anr-uniform hypergraph with no 3-singleton or 3-co-
singleton as a trace. We argue by inductiorr ofhe case = 1is trivial. In the case = 2,

‘H is a triangle-free graph of maximum degree 2. Furthermor#, dontains two disjoint
edgesab, cd then any other edge must meet both of them. It follows that the extremal
example is achieved wheéit = C4, and has 4 edges. Note also that the only example with
3 edges is a path of length 3, which is isomorphicito

Now we consider the general case. Suppose first that there is)samieh belongs to
every set in{. ThenH = {X\x : X € H} is an(r — 1)-uniform hypergraph with no
3-singleton or 3-co-singleton as a trace. Now we haye= |#'|<Tr"=D (31D, [3]@)
by induction. This is strictly less than+ 1 except whemr = 3. Therefore, ffH|>r + 1
thenr = 3,|H| =4, H' =~CsandH = D;.

Now we can suppose that the setg-bflo not have a common point. ChoaseB € H
to maximisg A U B|. Then anyC € H is contained i U B by Lemma 2.1. We claim that
A andB are disjoint. For supposee A N B. Then there is an edde of  not containing
X. SinceC Cc AU B and|A| = |B| = |C| =r, there aret € C N A\B andb € C N B\A.
Then{A, B, C} has a 3-co-singleton trace ¢, b, x}, which is a contradiction.

Let Ho = H\{A}. Suppose that the sets #fy do not have a common point. Then we
can repeat the above analysis: if we piCkD € Hg to maximisg/C U D|thenC andD are
disjoint. Now we claim that{ = {A, B, C, D}. For suppose th&{ contains another s&
Note thatA U B andC U D are both partitions of the ground set. Now we see Ehiatust
intersect bothA N C and B N D or intersect botm N D and B N C; otherwise it would
be contained in one A, B, C, D, which is impossible a%! is r-uniform. Without loss of
generalityE intersects the sets N C andB N D and does not contaiB N C. (If it contains
bothB N C andA N D then it cannot contaid N C or B N D, SO we can rename the sets
to arrive at the same situation.) Takee ENANC,y e ENBNDandz € (BNC)\E.
Then{C, B, E} has a 3-co-singleton trace @n, y, z}, which is a contradiction. We deduce
thatH = {A, B, C, D}. If H is extremal we must have= 2 orr = 3. Whenr = 2 we
see that{ =~ C4 and when- = 3 itis easy to check th&{ ~ D.

Now we are reduced to the situation when there is smitiat belongs to every set in
Ho. ThenH; = {X\x : X € Ho} is an(r — 1)-uniform hypergraph with no 3-singleton
or 3-co-singleton as a trace. Therefdi¢| = |Hpl + 1<Tr V(31D [3]?P) + 1 by
induction.

Consider the case>5. If |H|>r + 1 then|#H| >r, and then by induction we must
have? > A,_1. Then# is isomorphic to a system obtained by addintp all sets of
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A,_1. We can choose notation so tHdy = {[1,r],[2,r + 1], ..., [r, 2r — 1]}. Sincer
belongs to every set iKg we haver ¢ A. There cannotbg j € A with 1<i<r — 1 and
r+1<j<2r — 1, otherwis€A, [1, r], [, 2r — 1]} would have a 3-co-singleton trace on
{i, r, j}, which is a contradiction. By symmetry we can suppose that[r — 1] = @. It
follows that there is some € A\[1, 2r — 1]. Note that there cannot e+ 1<i <2r — 1
withi ¢ A, otherwise{[1, r], [r, 2r — 1], A} would have a 3-singleton trace ¢h, i, y},
which is a contradiction. Therefore = {r + 1,...,2r — 1, y}. Renamingy as 2 we see
thatH =~ A,, as required.

Next consider the case = 4. If |H|>5 then|H| >4, and then by induction it is
isomorphic to one ofds, D1 or D. If ;= A3 then the same argument as in the previous
paragraph shows that >~ A4, and we are done. ;= D, then we can choose notation
so thatHo = {{1, 2,5, 6}, {2, 3,5, 6}, {3,4,5, 6}, {1, 4,5, 6}}. Without loss of generality
B = {1,2,5,6}. SinceA andB are disjoint and their union is equal to the ground set
we can writeA = {3, 4,7, 8}. Now {{1, 4,5, 6}, {2, 3,5, 6}, {3, 4, 7, 8}} has a 3-singleton
trace on{1, 2, 7}, which is a contradiction. It{;,= D, then we can choose notation so that
Ho = {{1,3,4,7},{1,5,6,7},{2,3,4,7},{2,5,6, 7}}. Without loss of generalityp =
{1, 3,4, 7}. SinceA andB are disjoint and their union is equal to the ground set we can
write A = {2,5, 6, 8}. Now {{1, 5, 6, 7}, {2, 3, 4, 7}, {2, 5, 6, 8}} has a 3-singleton trace on
{1, 3, 8}, which is a contradiction.

Finally we consider the cagse= 3. If |H| >4 then|7-[6| >3 507-[6 is eitherAs or Cy4, as
noted at the beginning of the proof.#f, =~ A, then previous analysis shows tHat= .As3.

If Hy=C4 then we can také{o = {{1,2,5}, {2, 3,5}, (3,4,5}, {1, 4, 5}}. Without loss

of generalityB = {1, 2, 5}. SinceA andB are disjoint and their union is equal to the
ground set we can writé = {3, 4, 6}. Now {{1, 4, 5}, {2, 3, 5}, {3, 4, 6}} has a 3-singleton
trace on{1, 2, 6}, which is a contradiction. This completes the proof of the first part of the
theorem.

Now suppose that we fix the number of verticedVhenn > 2r we see from the first
part of the theorem that there is no change;Tit&) (n, [3]?, [3]@) = Tr) (31D, [3]@).
Now suppose thak is anr-uniform hypergraph om vertices with no 3-singleton or 3-
co-singleton trace, and that < 2r. Now it is no longer possible to have two disjoint
sets, so it follows from the first part of the proof that the set$(diave a common point
X. ThenH' = {A\x : A € H} is an(r — 1)-uniform hypergraph orin — 1) vertices
with no 3-singleton or 3-co-singleton trace. We can repeat this process until the number
of vertices is at least twice the size of the edges. This occurs when we have removed
2r — n vertices, reaching atn — r)-uniform hypergrapi{* on 2(n — r) vertices. Now
we have|H*|<n —r + 1, unless: — r = 2 when we can havgH*| = 4. We deduce
thatTr” (n, 31V, [3]9) = min{f(r), f(n — r)}. The extremal examples are as before,
possibly adding some vertices to all sets]]

Now we can give the proof of Theorefh3, which states thafr(n, [3]V, [3]®) =
|n?/4] +n+1, and the only extremal exampleBis = {[a, b] : a < |n/2] +1,b>|n/2]}.
The argument that this contains no 3-singleton or 3-co-singleton trace is the same as for
A,. Indeed, if{a, b, ¢} C [rn] one of[1, |n/2]] and[|n/2] + 1, n] contains at least two
points. We can suppose b € [1, [n/2]] with a < b. Then any set o5, that containa
also contain®, and we are done.
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Proof of Theorem 1.3. Note that the casesdn < 3 are trivial. Suppos®! is a hypergraph
on n>4 vertices with no 3-singleton or 3-co-singleton trace. L#t be the
edges ofH{ of sizer. Then by Theorem 1.2 we hay®"| < min{f(r), f(n — r)}, where
fr) = { d Z ! : f g . It is convenient to consider the hypergraph whose edges are the
complements of the edgesHf, which we denot& (H) = {[n]\X : X € H}. This also has
no 3-singleton or 3-co-singleton trace. Observe thd@{)” = C(H"™").

Next we see thafHl| + |H2| <5, with equality only wher{2~ 4, and H1~A;.
Otherwise we would havig{| >1 and|#?| = 4. Then we must havil? > Cy4, sayH? =
{{1, 2}, {2, 3}, {3, 4}, {1, 4}}. Consider{i} € H . If i € [1, 4] we can suppose= 1, and
then{{2, 3}, {3, 4}, {1}} has a 3-singleton trace dg, 4, 1}. If i ¢ [1, 4] we can suppose
i =5, and ther{{1, 2}, {3, 4}, {5}} has a 3-singleton trace ¢, 3, 5}. Either way we get a
contradiction, sdH1| + |#2| <5. Applying the same argument &H) gives|C (HY)| +
|C(H?)| <5,i.e./H" 1|+ H"~?| <5.We conclude tha#{| < 3 "_omin{r+1, n—r41} =
|n?/4] + n + 1. (This last equality is easy to see by considering the casesw#n anch
odd separately.)

Suppose now thati| = |[n2/4] + n + 1. Then|H’| = min{r + 1,n — r + 1} for
all r. We claim thatH" ~ A, for r<|n/2| andH" =~C(A,_,) for r>|n/2] + 1. This
follows from Theorem 1.2 except when= 3 orn —r = 3. Forr = 3 we need
to show that we cannot havi®~ D; or H3~ D,. First suppose that{3 = D; =
{{1,2,5},{2, 3,5}, {3,4,5}, {1, 4, 5}}. Since|H}| = 2 we have{i} € H! with i # 5.
The same argument as given 16} in the previous paragraph now gives a contradiction
here. Similarly if#3 = D, = {{1, 3,4}, {1,5, 6}, {2, 3, 4}, {2, 5, 6}}, then any singleton
gives a 3-singleton trace, which is a contradiction. This deals with thercas®, and the
casen — r = 3 follows by taking complements.

To complete the proof we need to show that these interval hypergraphs only fit together
by forming a copy o#53,,. We need the following claim.

Claim. (i) Supposed = {[1,r],[2,r + 1],...,[r + 1,2r]}, B is an ( — 1)-uniform
hypergraph and4d U B has na3-singleton or3-co-singleton trace. Thei c {[2, r], [3,r +
1, ..., [r+1,2r —1]}.

(i) Supposed = {[1,r], [2,r+1], ..., [r, 2r — 1]}, Bis an(r — 1)-uniform hypergraph
and.AU B has na3-singleton or3-co-singleton trace. The8 c {[1,r—1],[2,r],..., [r +
1,2r —1)}.

Proof. (i) ConsiderB € B. Suppose there is some pointe B\[1, 2r]. Then, since
|[Bl =r —1,we canfindy € [1,r]\B andz € [r + 1, 2r]\B. Now{B, [1, r], [r + 1, 2r]}
has a 3-singleton trace dn, y, z}, which is a contradiction. It follows tha® c [1, 2r].
We cannot have E B. Otherwise we can takee [2,r] — Bandj € [r + 2,2r] — B,
and then(B, [2, r + 1], [r + 1, 2r]) has a 3-singleton trace @f, i, j). Similarly 2r ¢ B.
Now suppose thdB is not an interval. By symmetry we may assume that there arej
suchthat e BN[lr—1]andj € [1,r1\B. Then{B,[j,j +r —1],[r + 1,2r]} has a
3-singleton trace ofy, j, 2r}. This contradiction shows th&tis an interval.

(i) ConsiderB € B. There cannot be a point € B\[1, 2r — 1], or we can take €
[1,» —1\B andz € [r + 1, 2r — 1]\ B, and then B, [1, r], [r, 2r — 1]} has a 3-singleton
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trace on{x, y, z}, which is a contradiction. Therefo® C [1, 2r — 1]. Let A’ consist of
the intervals of lengtr — 1 in the ordered seftl, ..., r — 1,r +1,...,2r — 1}. Then
A={AU{r}: A e A} If r € B then by part (i) of the claim we see that{r} is an
interval of lengthr —2in{1,...,r—1,r+1, ..., 2r —1} notcontaining 1 or2— 1, soBis
an interval of lengthr — 1 in [2r — 1] not containing 1 or 2— 1. On the other hand, if ¢ B
thenB cannot contain points j withi < r andj > r. Otherwise{B, [1, r], [r, 2r — 1]}
would have a 3-co-singleton trace @i j, r}. Thus in the case ¢ B, B must be either
[, —1]or[r+1,2r — 1], so we are done. ]

Now we can complete the proof of the theorem. For simplicity we just consider the

case whem = 2m is even, the odd case being similar. We can renumber sdHtiat
{[1,m], [2,m + 1], ..., [m + 1, 2m]}. Repeatedly applying part (i) of the claim shows
thatH" ={lm —r+1ml,m—r+2,m+1],...,[m+ 1, m+ r]} for everyr < m.
Note C(H)™ = C(H™) is isomorphic taH™: it consists of all intervals of lengtimin the
orderedsetm +1,m+2,...,2m,1,2,...,m}. Applying the same argument®(H) we
seethaC(H) ={{2m —r +1,....2m},{2m —r +2,...,2m,1}, ..., 2m,1, ..., r —
1}, {1, ..., r}} for r < m. ThereforeH?"" = C(C(H)") = {[L, 2m —r],[2,2m — r +
1],...,[r + 1, 2m]}, as required. [J

3. Related problems

In this section we describe some variations on our main problem. A natural extension
is the asymmetric version, defined by forbiddikgingleton and¢-co-singleton traces,
for any k and ¢. We will focus on the cases whén= 3 or ¢ = 3, for which we can
obtain asymptotically tight bounds. Next we describe the effect of introducing a chain
Cr =1{0,{1},[1,2],...,[1, kK — 1]} as a forbidden trace. This system is in some sense the
opposite of a levelk]?), as instead of having all sets the same size it has one set of each
possible size.

3.1. The asymmetric version

In this subsection we prove Theorefin4, which gives bounds for the functions
TrO (31D, [1“~ ) andTr (k] @, [3]9).

Proof of Theorem 1.4. (i) Forr < £—1we note thatr® ([3]D, [¢]¢—D) = Tr®)([31D),
which is greater than the desired lower bound. For largiae lower bound is given by
the following construction. Choose a positive integeso thatr’ = (¢ — 2) satisfies
r—({—3)<r'<r.We define a hypergraphh on[1,r({ — 1) +r —r'] = [1,r +¢] as
follows. For every Ki < ¢ — 1 we let the complement ¢fi — 1)7 + 1, it] be an edge. Also,
forevery 1I<i< (¢ — 1)/2 < j<¢ — 1 and for every Ks <t — 1 we let the complement
of[( —Dtr+1,G—Dr+s]UL(—Dr+1,(j — 1t +t — s] be an edge. TheH is an
r-uniform hypergraph and sinde> 4 we have ,

M= -1 —1%/4 +—1> (’;5423 _1) (e :12e> i1

=rl)/4—(%/2+90/4—1>rt/4— %/2+ 2L.
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We claim that{ does not have a 3-singleton&ro-singleton trace. To see this, note first
that we can ignore the points(¢ — 1) + 1, 1(¢£ — 1) +r — r'], as they belong to all edges.
Also, if i —Dr+1<x < y<it forsome then any edge that contairsust also contaig.

It follows that any set on which we have a singleton trace or co-singleton trace can contain
at most one point from each intenfé — 1)7 + 1, it]. This immediately shows that there is

no ¢-co-singleton trace. Also, if there is a 3-singleton trace on some set then its points must
belong to 3 different intervals. Say the sefis, x2, x3} with x; € [(a; — 1)t + 1, a;¢] and

ai, az, az pairwise distinct. By symmetry we can suppose thaanda, are both at most

(¢ — 1)/2. Now by definition there is no edge that misses bathndx,. This shows that
there is no 3-singleton trace.

For the upper bound we argue by inductionrothe case = 1 being trivial. Suppose
H ={A1, ..., A,}isanr-uniform hypergraph with no 3-singleton éico-singleton trace.

For eachi, let B; be a minimal subset c(U’]’?:l Aj) \A; for which B; N A; # ¢ for all
J # i.Asnoted at the beginning of Section 2, eare distinct andB; | < 2 for alli. In fact,
we can assume thaB;| = 2 for alli. For if B; = {x} for somei then every edge except
contains{x}, and applying the induction hypothesis hypergraphitc= {A;\{x} : j # i}
gives

3 1

— )¢
I’Hl<|7—L/|+1<%+(Z+m>(r—l)+l+l

<r£+ 3+ 1 i1
Sy T\ ers) T

Let G be the graph with edge séBi, ..., B,,}. We claim thatG is triangle-free. For
suppose we havB; = {x, y}, B = {y, z} andB; = {z, x}. SinceA; is disjoint from B;
and meetsB; and B, we haveA; N {x, y, z} = {z}. Similarly A; N {x, y, z} = {x} and
A N{x,y, z} = {y}, so we have a 3-singleton trace n y, z}, which is a contradiction.

Next, we note that we cannot have two edge&dséticking out’ of the same point of
some edge of4, i.e. for anyA; andx € A; there is at most one edge Gfincident tox
with the other endpoint notiA;. For suppos®; = {x, y} andB; = {x, z} with y, z ¢ A;.
Then, sinced; N B; = A, N B = §, we see tha#;, A;, A, have a 3-singleton trace on
{x, y, z}, which is impossible.

This implies the following observation concerning any pair of intersecting edges. If we
haveB; = {x, y} andB; = {x, z} then every edge df meets{y, z}. Indeed, supposéy is
disjoint from{y, z}. We may assumék # i, and then sincd; meetsB; we have must have
x € Ag. However this situation contradicts the previous paragraph. Nasy & {x, y}
thenA; N Ng(x) = Ng(x)\{y}, so there is a co-singleton trace on the neighbourhood of
x. It follows thatdg (x) < ¢ — 1 for everyx. Moreover, for any edg®; = {x, y} we have
dg(x) + dg(y) <t + 1. For suppose thails (x) + dg(y)>¢ + 2. Let X = Ng(x) and
Y = Ng(y). SinceG is triangle-free we hav& NY = @. ThereforeZ = X U Y\{x, y}
contains at least points. By the above observation, any dgican miss at most one point
from each ofX andY. Consider anyB; = {x, z} with z # y. ThenA; does not contain
z, so containsX\{z}. Therefore{x, y} is an edge ofG sticking out of4; aty. As noted
before it must be the only such edge,9(x} C A;. This shows that; N Z = Z\{z}.
Arguing similarly for edges o6 incident withy, we see that for every € Z there is some
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edgeA; with A; N Z = Z\{z}. Since|Z| > ¢ we have arf-co-singleton trace, which is a
contradiction. Thereforég (x) + dg (y) <€ + 1.

Now we bound the number of edges@#ts follows. There is one edd® disjoint from
A1, and at most edges that meet; in exactly one point (at most one sticking out of each
of ther points of A;). The remaining edges form a graghon A1. Write e for the number
of edges inG’ and for eachx € Aq let I, be an indicator function that is 1 if there is an
edge sticking out ofi; atx, and O otherwise. Them = e(G) = e+ 1+ 4 I«

Letd’'(x) = dg(x)— I, denote the degree gfn G'. Recalling that/; (x) +dg (y) <e+1
whenxyis an edge, and applying the Cauchy—Schwartz inequality we have

C+De> Y ([de@)+de()= Y (@ +d ) +1+1)

{x,y}eG’ {x,y}eG’
=Y dwW+ ) dwI,
x€Aq X€AL
2
1
- dDdw | + ) dmL=4P/r+ Y d ).
xeAq xeAq X€A]L
Writing § = erAld’(x)I we have 42 — r(¢ + 1)e + rS<O0, SOeS% (r(ﬂ +1)
+/r2(t +1)2 — 16rS) Using the inequality/a — b < v/a — 5= givese < neth s
Therefore
r(¢+1) d'(x)
m=ec+1+ Y I< 1+ YL (1—£+1 .
X€A7 xeA1

Sinced’(x) < £ + 1 for all x we havel, (1 1) <1- ”if:l), )

< r(z;rl)JrH 5 <l_d(x)>:r(e+1)+l+r_ 2¢

t+1 4 {+1
xeA1
r(¢+1) 2m—r—1)
< 1+r— —
= 4 T {+1
PR (£4+3)m z(é+5) 43 £ +60+13, | (+3 _ r(t+3)
This gives 773 < +z+1+z+1’50 m< e rtas="1 Tzl

(i) The constructlon for the lower bound is essentially the complement of that in part (i).
We define a hypergrapht on[(k — 1)r] as follows. For every £ i <k —1 we let the interval
[G —Dr+1,ir] be an edge. Also, for every< (k — 1)/2 < j and forevery Ks<r — 1
welet[( —Lr+21, (i —Dr+s]U[(j —Dr+1,(j —r+r —s]beanedge. TheH is
anr-uniform hypergraph an| = (r — 1) (k — 1)%/4] +k —1 > ("ZLX("D. Note that
it is the complement of the construction in part (i) with edges of gize 2)r. Since that
construction had nk-co-singleton or 3-singleton trace, this construction hassiogleton
or 3-co-singleton trace.

For the upper bound, supposeis anr-uniform hypergraph with no 3-co-singleton or
k-singleton trace. Chooge— 1 edges oH so that their union has maximum possible size.
By Lemma2.1 all edges of{ are contained in this union, which has size at nfbst 1)r.
Consider the hypergraph of complemefit${), which has edgeld/ (H)\A : A € H}.Then
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C(H) is ans-uniform hypergraph with < (k — 2)r and has no 3-singleton kfco-singleton
. . k(k—2)r

trace. By the first part of this theorem we hagl = |C(})| < “4527 4 (731 + ﬁ) (k —

r+1< W. This completes the proof of the theorent.]

Similar arguments can be applied for the general asymmetric fundigh([x],
[£1¢=D); we will just summarise the results and leave the details to the reader. Fdr
we have

(1—04(2)) (lz : i) <r _;f; 2> <Tr('ﬂ)([k](1), [g](l—l)) < k(k — 2)6—2’,2—2’

soTr) ([k1D, [£]“—D)y is of orderk’~1r¢~2, and the uncertainty in the constant is approx-
imately (¢ — 1)!(¢ — 2)! for largek. Fork < ¢ we have

(=0 (i - i) <r i 2) <T@, 1Y) <ot 2,

soTr) ([k1D, [€1“~D) is of orderér*—2, and the uncertainty in the constant is approxi-
mately(k — 1)!(k — 2)! for large®.

3.2. Chains

Define thek-chainasC, = {0, {1}, [1, 2], ..., [1, kK — 1]}. We start this subsection with
a very short proof of Theorem5, which states thatr ((k]V, [k1%—D, ¢) <22

First, we recall that the Ramsey numli(k, ¢) is the smallest integedrfor which any
graph ont vertices must contain a clique of sik@r an independent set of siZzeWe use

the well-known boundR (k, k) < (2,("_‘12) (see, e.g., [8]).

Proof of Theorem 1.5. Letr = R(k, k). SupposéH is a hypergraph with n&-singleton
trace and at leagt — 1)’ edges. We will show that there ikao-singleton or &-chain trace.
This suffices, as the above bound easily gi¢es 1)’ < 22 We will find sequences of sets
A1, ..., Ay inH and pointsxy, . .., x; so that, setting{; = {A € H : {x1,...,x;} C A},
we havel#H;| > (k — 1)'~, A; € H;_1 andx; ¢ A; for all 1<i <r. Note thatHo = H.

To do this, suppose we have already fouhd. .., A; andxy, ..., x;, for some G<i <
t — 1. Letl be the intersection of all of the sets#y and letB be a minimal set disjoint
from | that meets every set 6{; (exceptl if I € H;). Since there is n&-singleton trace,
the observation at the beginning of Section 2 giMes<k — 1. Choose a point;+1 € B
that belongs to as many sets#f as possible. Thef¥; 11| > [(|H:| — 1)/(k — 1)1 > (k —
1)’~(+D_ Now B is disjoint froml, sox;1 does not belong to every set&f, and we can
chooseA; 1 € H; sothaty; 1 ¢ A; 1.

Thuswe havely, ..., A; andxy, ..., x; sothaty; ¢ A; andx; € A; forall 1<i < j <.
Define a graph offd, ..., r} by joiningitoj if i > j andx; € A;. Sincer = R(k, k) this
graph contains either a clique or an independent set oksités easy to verify that iSis
a clique of sizek then the trace ofA; : s € S} on{x; : s € S} is ak-co-singleton, and if
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Sis an independent set of sikéhen the trace ofA; : s € S} on{x; : s € S} is ak-chain.
This proves the theorem.(J

One can ask a number of other forbidden trace questions involving chains and levels.
These questions are easy for non-uniform hypergraphs. 8ince2!*—1! it follows imme-
diately from the Sauer-Shelah theorem thitiz, Cx) = Y"5_& (). Note that[n](<+=2
contains ndk-chain ork-co-singleton, and its hypergraph of complements contains no
ch?ig ork-singleton. Therefore we see also thatn, Cy, [k]V) = Tr(n, Gk, [k]*D) =
S,

izoor an)iform hypergraphs the situation is much less clear. Here the interesting question is
to determine the maximum size of asuniform hypergraph with n&-singleton ork-chain
trace. (The problem of excluding julstco-singleton and-chain traces seems less natural,
as in this case we need to bound the ground set, or we can take as many disjoint edges as we
please.) For this problem, we will prove Theorérs, which shows thakr ) ([k]?, C3) =
max(k — 1, r 4+ 1} and thatTr® ([(k]V, C;) is of orderr*—1. First we need the following
lemma on hypergraphs without a 3-chain trace.

Lemma 3.1. Let H be an r-uniform hypergraph without &-chain trace. Choose edges
A, B € H so that their union is as large as possible. Say that another edge C is df tf/pe
CN(AUB)=AnBandoftypeif AAB C C C AU B. Then any other edge is either
of typel or of type2, and furthermore all other edges have the same.type

Proof. Choose edged, B € H so that their union is as large as possible. First consider
any edgeC that is disjoint fromAAB. Since|A U C| = 2r — |A N C|, by maximality of
|AU B|we musthaveAN B C C,i.e.CN(AUB) = AN B, soCis of type 1. Now
any other edge€ intersectsAAB. By symmetry we can assume it intersedtsB. Take

x € CNA\B. There cannot be € A\(B U C), otherwise{B, C, A} would have a 3-chain
trace on{x, y}, which is impossible. Thereforé\B C C. By maximality of|A U B| we
now haveC C AU B. SinceC # A we see tha€ intersectsB\ A. Then repeating the above
argument give®\A C C. ThereforeAAB ¢ C c AU B, i.e.Cis of type 2. Furthermore,
there cannot be an ed@eof type 1 and an edde of type 2. Then we could pick € A\B,

y € B\A, and{C, A, D} has a 3-chain trace dm, y}, which is a contradiction. [

Define asunflowerof sizesto be a system of set4y, ..., A, for which there is some
setBsothatd; N A; = B foralli # j. We callB thecentreof the sunflower.

Lemma 3.2. Let# be an r-uniform hypergraph withoutZchain trace and not containing
any3edges that form a sunflower. Thgig| < r + 1, with equality only whef{ > [r 4+ 1],

Proof. We argue by induction on the case = 1 being trivial. Choose edges, B € H
so that their union is as large as possible. There cannot be arCadlijle C N (AU B) =
AN B, asthern(A, B, C} forms a sunflower of size 3 with centden B, which is contrary
to assumption.

From Lemma3.1 it follows that for any other edgé we haveAAB ¢ C c AU B. If
|A U B| = r + 1 then we immediately havig{| <r + 1, with equality only wherH{ =
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(A U B)"). Otherwise| AAB| > 4. Applying the induction hypothesis to the hypergraph
H' = {C\(AAB) : C € H\{A, B}}, which is s-uniform for somes <r — 4, we get
|HI<|H'| +2<((r —4) + 1) + 2 < r + 1. This completes the proof.(]

Finally, we need the following result of Frankl and P48hwhich is a uniform version
of the Sauer—Shelah theorem.

Lemma 3.3. For anyk <r <n we have Tt (n, 2IK1) < (kﬁ1>.

Proof of Theorem 1.6. (i) For the lower bound we either takke— 1 disjointr-tuples or
[r+1]17, whichever is larger. Itis clear that neither construction Hasiagleton or 3-chain

trace. For the upper bound we argue by induction,¢ime case = 1 being trivial. Consider
anr-uniform hypergrapli with nok-singleton or 3-chain trace. Choose eddes8 € H

so that their union is as large as possible. By Lemma 3.1 the other edges are either all of
type 1 or all of type 2.

In the type 1 casé{ forms a sunflower with centrd N B. Since? does not have a
k-singleton trace we immediately haj#| <k — 1. In the type 2 case we claim that there
is no sunflower of size 3. For suppose tfatD, E form a sunflower. We cannot haxeor
B in the sunflower, as the other sets differ only inside B. The centre is some sEtwith
AAB C F.Pickx € C\F andy € D\F. By definitionx, y ¢ E, and alsox, y € AN B.
Then{E, C, A} has a 3-chain trace dn, y}, which is a contradiction. Therefore there is
no sunflower of size 3. Now then Lemma 3.2 shows tRat<r + 1, which completes the
proof of the first part of the theorem.

(i) The lower bound is given bjy + k — 2]7). Everyk-set is met by any edge in at least
2 points so there is nk-singleton trace, and for eve(¥ — 1)-set there is no edge that is
disjoint from it, so there is n&-chain trace. For the upper bound, consider-amiform
hypergrapt#{ with no k-singleton ork-chain trace. Lemma 2.1 shows that the ground set
of H contains at mostk — 1)r points. Since; c 2~ there is no 1! trace and by

Lemma 3.3 we haviH| < ((’j;lz)’). This completes the proof of the theorent

Our proof shows that in the first part of the above theorem equality can only occur for a
sunflower of size& — 1 or for[r + 1]@).

4. Concluding remarks

e From Theoreni.1we knowthalr® ([k]D, [k]*~D)is of order-*—2, but the uncertainty
in the constant is of ordgk — 1)!. It would be interesting to determine the asymptotics of
this constant for largk. The construction that we use for the lower bound is also a lower
bound forTr™) (k1D (k1@ ..., [k]*~D), so it may be that there is a better construction
that works just foifr ) (k1D [k]*—D),

e We remarked after the proof of Theoreini thatTr(n, [k]7V, [k1@, ..., [k]1*~D) is of
ordern*~1. Our construction for the lower bound gives a constaiit +- 1)*~1, whereas
the upper bound from the Sauer-Shelah theorem gives a constafikoef 1)!. Firedi
and Quinn showed that for excluding just one layer as a trace the Sauer—Shelah bound is
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tight, i.e.Tr(n, [k]©) = Y525 (%) for any fixed¢. It would be interesting to determine
whether the constant changes when we forbid more layers.

e Theoreml.4 is asymptotically tight for >> ¢ and¢ — oo but it would be interesting
to obtain an asymptotically tight result for fixédandr — oco. Note that in the case
¢ = r + 2 the condition that there is nbco-singleton trace places no restriction on an
r-uniform hypergraph, so we hade” ([3]D, [r 4+ 210Dy = Tr®) ([3]D), Frankl and
Pach showed that this is equallte + 2)2/4], which we can write aér/4 + [r/2] + 1.
On the basis of this one might think tHEt™ ([3]D, [¢1¢D) = ¢r/4+ r/2 + o(r) for
fixed ¢ andr — oo.

e The same proof as in Theore® gives the boundr ([k], [£1¢—D, C,) < (k — 1) REm)
when we forbid singleton, co-singleton and chain traces of various sizes. We obtained a
doubly exponential upper bound far([k]D, [k]*~D, C), but can only find an expo-
nential lower bound. (This is achieved by a naive random construction, and one can also
give explicit examples, such §8k — 4]*~2 ) It would be interesting to determine the
true behaviour of this function.

e The best known lower bound fdr ™ ([k]?), due to Frankl and Pach, is obtained by
the complement hypergraph of/a— 1)-uniform hypergraph on + k — 1 vertices with
as many edges as possible subject to not containing a copy of the cortiplets)-
uniform hypergraph ok vertices. This does not haveCa trace for¢ > k, so it may
be thatTr") ([(k]1V, Cp) = Tr" ([k]D) for ¢ > k. For £<k we can use the proof of

Theorem1.6 to see thalr® ((kx]V, C;) is bounded above b(“[_?’) and below by

(rﬁ‘22>. This shows thatr ) ([k]V, C,) is of order-¢—2, although the uncertainty in the

constant is about — 1)“~2 . It would be interesting to determine the asymptotics of the
constant. In the cage= k it seems that the lower bour(d}:f;z) may be asymptotically
tight.
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