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ABSTRACT. An important theme of recent research in Ramsey theory has been
establishing pseudorandomness properties of Ramsey graphs. An N-vertex
graph is called C-Ramsey if it has no homogeneous set of size Clog N. A
theorem of Bukh and Sudakov, solving a conjecture of Erdds, Faudree, and
S6s, shows that any C-Ramsey N-vertex graph contains an induced subgraph
with Q¢ (N1/2) distinct degrees. We improve this to Q¢ (N?2/3), which is tight
up to the constant factor.

We also show that any N-vertex graph with N > (k—1)(n — 1) and n >
no(k) = Q(k%) either contains a homogeneous set of order n or an induced
subgraph with k£ distinct degrees. The lower bound on N here is sharp, as
shown by an appropriate Turdn graph, and confirms a conjecture of Narayanan
and Tomon.

1. INTRODUCTION

A major open problem in Ramsey theory is the construction of explicit graphs
that are approximately tight for Ramsey’s theorem; all known constructions in-
volve some randomness, which motivates a substantial literature establishing that
Ramsey graphs have certain pseudorandomness properties. Given a graph G, we
call U C V(G) homogeneous if the induced subgraph G[U] is complete or empty.
Ramsey’s theorem states that hom(G) — oo as N := |[V(G)| — oo. In a more
quantitative form, we have %logQ N < hom(G) < 2log, N, where the lower bound
is due to Erdds and Szekeres [§] and the upper bound to Erdés [6] (the birth of the
probabilistic method in combinatorics). It is remarkable that in the 70+ years since
these results there have only been improvements to the lower order terms (see the
survey [3]). Furthermore, there is no known explicit construction of an N-vertex
graph G with hom(G) = O(log N), despite intense interest in this question and the
related notions of randomness extraction/dispersion in computer science; the best
known explicit construction due to Li [I3] gives hom(G) = (log N)C(logloglog N),

Motivated by both the difficulty in providing explicit constructions and the chal-
lenge in improving the bounds for the Ramsey problem, an important theme of re-
cent research in Ramsey theory has been establishing properties of Ramsey graphs
supporting the intuition that they should be “random-like”. This indirect study
has been very fruitful, and it is now known that N-vertex Ramsey graphs display
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similar behaviour to the Erdds-Renyi random graph Gy /o in many respects: the
edge density by Erdds and Szemerédi [9]; universality of small induced subgraphs by
Promel and R6dl [16]; the number of non-isomorphic induced subgraphs by Shelah
[T7]; the sizes and orders of induced subgraphs by Kwan and Sudakov [T0,11], and
Narayanan, Sahasrabudhe, and Tomon [15].

Here we consider a problem of Erdds, Faudree, and Sés [5] concerning induced
subgraphs with many distinct degrees. Given a graph G, we let

f(G) := max {k; € N: G has an induced subgraph with & distinct degrees}.

Bukh and Sudakov [2] showed that any N-vertex graph G with hom(G) < C'log N
has f(G) = Qc(N'/?), thus confirming a conjecture in [5] motivated by the obser-
vation that f(GN’1/2> = Q(N'/2) with high probability (whp); they noted how-
ever the lack of a corresponding upper bound, and showed that whp f (G N1 /2) =
O(N?/3). An unpublished result of Conlon, Morris, Samotij, and Saxton [4] shows
that whp f(GNJ/Q) = Q(N2/3), so this in fact gives the correct order. Our first
theorem establishes the same lower bound for Ramsey graphs, which is therefore
tight up to the constant factor.

Theorem 1.1. Let G be an N-vertex C-Ramsey graph. Then f(G) = Q¢ (N2/3).

Moreover, we establish this lower bound on f(G) using only the combinatorially
simpler “diversity” property (see [2LI7]) that many vertices have dissimilar neigh-
bourhoods: we say U C V(Q) is d-diverse if |[Ng(u)ANg(u')| > §|[V(G)]| for any
distinct u, v’ in U.

Theorem 1.2. Given § > 0 there is ¢ > 0 such that any N-vertex graph G with
a d-diverse set of size N?/3 has an induced subgraph with at least cN?/3 distinct
degrees.

Theorem implies Theorem [[.T] as the hypotheses of the former follow from
those of the latter by results of Kwan and Sudakov [I1] (see subsection 23)).

It is also natural to investigate the relationship between hom(G) and f(G) in
more generality. Narayanan and Tomon [I4] showed for any k£ € N, ¢ > 0 and
N > Ny(k,e) that any N-vertex graph G has f(G) > k or hom(G) > N/(k—1+¢).
They conjectured that the optimal relationship between hom(G) and f(G) when
[V(G)| > f(G) should be given by the (k — 1)-partite Turdn graph on N = (k —
1)(n — 1) vertices, which has f(G) = k — 1 and hom(G) = n—1 = N/(k — 1).
We confirm this conjecture, thus obtaining an exact result, and, moreover, we only
require a lower bound on n that is polynomial in & (in [I4] an exponential lower
bound is assumed).

Theorem 1.3. Suppose G is an N-vertex graph with N > (n — 1)(k — 1), where
n = Q(k%). Then f(G) >k or hom(G) > n.

We prove Theorems [[1] and in the next section and Theorem [[3] in the
following section. The final section contains some concluding remarks.

2. DISTINCT DEGREES IN RAMSEY GRAPHS

Our proof that any sufficiently diverse graph contains an induced subgraph with
many distinct degrees naturally splits into two pieces.

In the first subsection we give a new perspective: we reduce the problem to
a continuous relaxation (in a similar spirit to [I2, Section 3]). We show that it is
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sufficient to define a probability distribution on the vertex set, with respect to which
a random induced subgraph has a large set of vertices whose expected degrees are
well-separated.

While this change of perspective creates a larger and more flexible solution space,
the existence of the required distribution is still quite subtle. In the second sub-
section we show its existence via an additional randomisation, in which the proba-
bilities themselves are randomly generated according a distribution that takes into
account the neighbourhood structure of our graph.

In the final subsection of this section we combine the two above ingredients to
prove our result on diverse graphs (Theorem [[12]) and deduce (via results of Kwan
and Sudakov) our result on Ramsey graphs (Theorem [LT]).

2.1. A continuous relaxation. Let G be a graph with vertex partition V(G) =
UUV. Given p = (py)vev € [0,1], let G(p) = G[U U W] denote the random
induced subgraph where W contains each v € V independently with probability p,,.
The main result of this subsection is the following lemma, showing that separation
of expected degrees in G(p) guarantees an induced subgraph with distinct degrees.

Lemma 2.1. Given 6 > 0 there is ¢ > 0 so that the following holds. Let G be
a graph with vertex partition V(G) = U UV where |V| = N. Suppose also that
U' cU and p € [0.1,0.9]V such that any distinct u,u’ in U’ satisfy

|E(da(p)(u) — E(dg@) ()| > 6 and |(Na(u)ANg(u')) NV] > 6N.
Then there is W C V so that G[U U W] has at least c|U’| distinct degrees.

The idea of the proof is that in G(p) a vertex typically has degree within O(v/N)
of its expectation, and if we restrict to the set B of such “balanced” vertices, then
a pair of vertices u,u’ € U’ can only have equal degrees when their expected de-
grees differ by O(v/N). The separation of expected degrees implies that B has
only Os(|U’'|v/N) such pairs. Each has equal degrees with probability Os(1/v/N),
by diversity and an anti-concentration estimate, so we can ensure that B has only
Os5(|U’|) pairs with equal degree in U’; then Turdn’s theorem will provide the
required conclusion. The required anti-concentration estimate is the following gen-
eralisation of the well-known Erdés-Littlewood-Offord inequality [7]; this is not a
new result, but for completeness and the convenience of the reader we will give a
simple deduction from [7], namely the case that all p; = 1/2.

Lemma 2.2. Fiz non-zero aj,...,a, € R and p1,...,p, € [0.1,0.9]. Suppose also
that X1, ..., X, are independent Bernoulli random variables with X; ~ Be(p;), i.e.,
P(X;=1)=p; and P(X; =0) =1—p;. Then

maXIP’( Z a; X; = x) =0(n~1?).

z€R ;
1€[n]

Proof. For each i we fix w;,z; € [0,1] with p; = w;/2 + (1 — w;)z; and write
X; =W,Y;+ (1 — W;)Z;, where Y; ~ Be(1/2), W; ~ Be(w;), and Z; ~ Be(z;) are
independent. We make this choice so that each w; > 0.2; e.g., if p; <1/2let z;, =0
and w; = 2p;, or if p; > 1/2 let z; = 1 and w; = 2(1 — p;). We condition on any
choice C of the W;’s and Z;’s, which determines I := {i : W; = 1}. By Chebyshev’s
inequality, P(|I| < n/10) < O(n~"), so it suffices to bound P(3 ¢, @i Xi =z | C)
for any C such that |I| > n/10; the required bound O(n~'/2) holds by [7] applied
to (V; 14 €1). O
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We also use the following version of Turdn’s theorem (see, e.g., Chapter 6 in [I]).

Theorem 2.3. Any n-vertex graph G with average degree d contains an indepen-
dent set of size at least n/(d + 1).

Proof of Lemma 21l Note that we can assume N is large, by taking ¢ > 0 small
enough. Let H be a random induced subgraph according to G(p) and

B={uecU :|dg(u) - E(dg@p)(u))| < VN},
P={{uu'} CU : |[E(dgp)(u)) — E(dg@ (w))| < 2V/N}, and
J={{u,u'} € P:dg(u) =dg(u)}.
We claim that with positive probability we have both |B| > |U’|/2 and |J| =
Os(|U’|). This claim implies the lemma, as by Turén’s theorem J[B] contains an
independent set of size Q5(]U’|), which must consist of vertices with distinct degrees,
as if u,u’ are in B and dy(u) = dy(u'), then {u,u'} € P, so {u,u'} € J.
To prove the claim, we first estimate |B|. Notice that for any v € U’ we have
Var(dg(p)( )) < D vey Po(l = py) < N/4 and so Chebyshev’s inequality gives

P(u ¢ B) < \]/Vﬁ 1/4. Thus E(JU"\ B|) < |U’|/4, so by Markov’s inequality
P(U'\ B| > [U'|/2) < 1/2,ie., P(|B| > |U'|/2) > 1/2.
To estimate |J|, we first note that by the degree separation property we have
|P| <20~ U'|N'Y/2. Bach {u,u'} € P belongs to J with probability
P(dg(u) — de(v') = 0) = O((6N)~/?)

by Lemma 2.2] which can be applied by the diversity property and the assumption
that all p, € [0.1,0.9]. Thus E[J| = Os(|U’|), so P(]J] = O5(|U'[)) > 1/2 by
Markov’s inequality. This proves the claim and so the lemma. O

2.2. Solving the relaxation in diverse graphs. The following lemma shows
how to find the distribution p required to apply Lemma 2.1

Lemma 2.4. Given § > 0 there is ¢ > 0 such that the following holds. Let G be
a graph with vertex partition V(G) = U UV where U is 6-diverse, |U| < N?/3,
and |V| = N. Then there are p € [0.1,0.9]V and U’ C U with |U’| > ¢|U| so that
IE(dg(p)(w) — E(dgp)(w))]| > 1 for all distinct u,u’ € U'.

The key idea is that our construction of the probability vector p is itself random,
with a distribution depending on the neighbourhood structure of G. We start by
sketching a simplified proof of the lemma under the stronger assumption |U| =
O(N%/3/10g'/3 N). For each u € U we define a “signed neighbourhood vector”
ue{-1,1}V by u, =1 ifuv € E(G) or u, = —1 otherwise. Let 1 € [0,1]" denote
the “all-1” vector. We randomly select integers m,, € [ — |U|, |U|] uniformly and
independently for all w € U. Then we let

(2.1) pi= %1 +3 (%)u

uelU

The variance of each coordinate p,, of p is at most |U|?>/N? = O(log N)~! and so,
by a standard concentration argument, with high probability p € [0.1,0.9]" (for an
appropriate choice of the implicit constant in the stronger assumption on |U]). On
the other hand, our definition of p in terms of the neighbourhood structure relates
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expected degree differences to our diversity assumption, as follows. For any distinct
u, v’ in U, as E(dgp)(u)) = dg)(u) + (1 4 u) - p/2, we have

(2.2) E(dgp) (1)) — E(dgp)(v')) = dew)(u) — dgu(u') + (u —u’) - p/2.

Let &, denote the event that |E(dgp)(u)) — E(dgp)(u/))| < 1. Conditional on
any choice of m = (Mmy,) sy, we see from (2.1 and ([Z2)) that there is some interval
I of length 4 (depending on m) such that £, . holds if and only if (u—u’)- Zx#u € I.
As (u—u') - u=2|(Ng(u)ANg(u')) N V| > 26N, this corresponds to a choice of
m,, in an interval of length O(6~1), which occurs with probability O(6~1|U|~!). By
Markov’s inequality, we can therefore choose p € [0.1,0.9]" so that only O(6-|U])
such &, . hold. Then by Turdn’s theorem there is U’ C U of size Q(4|U]) within
which no such event &, .+ holds, as required.

The actual proof is similar to the above sketch, except that we cannot rely
on concentration of measure to ensure p € [0.1,0.9]"; instead, we “truncate the
outliers”.

Proof of Lemma [Z4l By taking ¢ small enough we may assume that N > Ny(4).
Secondly, replacing U with a subset if necessary, we can also assume that |U| <
SN2/3/5. Let (my)ueu and p be as in ). For u € U we write q* = p — 2,
and note that q* is independent of m,,. We call u good if there are at most dN/2
coordinates v € V with ¢¥ ¢ [0.2,0.8], and bad otherwise. We also write U? for the
set of good vertices in U.

We claim that P(|UY| > |U|/2) > 1/2. To see this, we note for any u and v that
gy —1/2 = N3, tmy (where the =+ sign is determined by (1), in (1)
is a random variable with mean 0 and variance at most N —2|U|®> < 0.014, so by
Chebyshev’s inequality P(|¢% — 1/2] > 0.3) < 0.016/0.3% = /9. Thus the expected
number of v with ¢ ¢ [0.2,0.8] is at most dN/9, so by Markov’s inequality w is
bad with probability less than 1/4. Now the expected number of bad w is less than
|U|/4, so by Markov’s inequality more than half of U is bad with probability less
than 1/2. The claim follows.

Now we define p’ € [0.1,0.9]" by truncating p: for each v € V, if p, < 0.1 let
pl, = 0.1, if p,, > 0.9 let p), = 0.9, or let p), = p, otherwise. We let &, ., denote the
event that |E(dgp(u)) — E(dgepH(@'))| < 1.

We claim for any distinct u, v’ in U that P(E, . | u € U9) < 4671 |U|7!. To see
this, we condition on any choice of m = (my,)w=y such that u is good. We let Vj be
the set of v € V such that ¢¥ ¢ [0.2,0.8], so that |Vo| < dN/2. For each v € V\ 1}
we have p, = ¢ + N 'myu, = ¢ £ N~1|U| € [0.1,0.9], so p), = p, for any
choice of m,,. Given m, we can consider f(my) := E(dgp)(u)) — E(dgpH(v)) =
de)(u) —de)(v') + (u—u')-p’/2 as a function of the random variable m,,. As in
the sketch above &, , can only occur if, conditioned on m, f(m,,) lies in an interval
I of length 2 (again, depending on m). To control this probability, note that for
any 7 € [—|U|,|U| — 1] we can write

f(Z + 1) - f(l) = Z(uv - U;)Niluvgiﬂ)/Qa

veV
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where g¢;, € [0,1] and g;, = 1 for all v € V' \ Vp; the interpretation of g; , is the
proportion of the total change in p, that is contained in [0.1,0.9]. In particular,

fli+1) = f() = Z (o = ug )N "y /2

veV\Vy
> N7!(Na(u)ANg(u') N (V\ Vo)l
> N~ (|Ne(w) ANg(W)| - [Vo| — [U]) > §/4.

As &, only occurs if f(m,,) lies in the interval I of length 2, we see that &, .
only occurs if m,, lies in an interval of length at most 86~ '; the claim follows.

The conclusion is similar to that in the above sketch. Indeed, letting J be the
graph on UY where uu’ is an edge if &, holds, we have E[e(J)] < 85 1U|/2,
so P(e(J) > 85 |U|) < 1/2. Thus with positive probability both |U9| > |U|/2
and e(J) < 8 '|U|. By Turdn’s theorem, J has an independent set U’ with
|U’| > 6|U|/32, as required. O

2.3. Proof of Theorems 1.1l and We start with Theorem [[.2] which follows
from Lemmas 2.1] and 24l To see this, again note that by taking ¢ sufficiently
small we may assume N > No(d). Fix a é-diverse set U of size N 2/3 and set
V = V(G)\ U. Applying Lemma 24 we obtain p € [0.1,0.9]" and U’ C U with
[U'| > c|U| such that |E(dgp)(u)) — E(dgp)(w))| = 1 for all distinct u,u’ € U’.
Then Lemma 2] gives W C V so that G[U UW] has at least ¢|U’| distinct degrees,
as required.

To deduce Theorem [I.T] it suffices to show that if G is an N-vertex C-Ramsey
graph, then G satisfies the hypotheses of Theorem [[.2] i.e., has a d-diverse set U of
size N?/3 with 6 = Q¢ (1). We can deduce this from results of Kwan and Sudakov
[11] as follows. Combining their Lemma 3 part 1 and Lemma 4, setting their ¢ equal
to 1/4, we obtain W C V(G) with |W| = Q¢ (N) such that for any u € W there
are at most |W|[Y/* vertices v’ € W with |Ngpw(u) ANy (v')| < Oc([W]). By
Turan’s theorem, W contains an Q¢ (1)-diverse set U with |U| = Q¢ (N3/4) > N?/3,
as required.

3. OPTIMAL HOMOGENEOUS SETS

In this section we will prove Theorem [[L3] which gives an optimal bound on
hom(G) when |V(G)| > f(G). In the first subsection we analyse the approximate
structure of graphs G with f(G) bounded. The second subsection introduces control
graphs which are graphs with a special structure that facilitates finding induced
subgraphs with many distinct degrees. The theorem itself is proved in the final
subsection.

3.1. Approximate structure. Our first lemma, which is similar to [2, Lemma
2.3], shows that if a graph does not have an induced subgraph with many distinct
degrees, then we can partition its vertices into a few parts so that vertices within
any part have similar neighbourhoods. Below we will sometimes write (X7, X3) to
represent a partition of a set X, i.e., X = X; U X5 and X1 N X5 = (). Similarly
write (Xi,..., Xk) for a partition of X = (J;¢x; Xi into K pieces.

Lemma 3.1. Suppose that G is an N-vertex graph with f(G) < k. Then there is
a partition (Vi,..., VL) of V(G) with L < 4k so that for all i € [L] and u,u’ € V;
we have |Ng(u)ANg(u')| < 2M k2.
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Proof. Take a maximal set S = {v1,...,vr} C V(G) such that |Ng(v;) ANg(v;)| >
210k2 for all distinct 4,j. We claim that L < 4k. This will suffice to prove the
lemma; indeed, for any u € V(G) we can assign u to some part V; such that
|Ng(u)ANg(v;)| < 2192, which exists by maximality of S.

To prove the claim, suppose for contradiction we have S C S with |S’| = 4k.
We select W C V(G) uniformly at random and consider the random graph J on
S’ consisting of all pairs {v;,v;} C S’ W with the same degree in G[W]. Fix any
{vi,v;} € S’, write D = |Ng(v;) \ N¢(v;)| and D' = |Ng(v;) \ Na(v;)|, say with
D > D'. Conditional on any intersection of W with N¢(v;)\ Ng(v;), we can bound
P({v;,v;} € J) by

max P(Bin(D,1/2) = j) < D™Y? < 2|Ng(v;) ANg(v;)| 7Y% < (16k) 7L
J

Thus Ee(J) < (%) (16k) ™! < k/2, so P(e(J) < k) > 1/2. As P(|W N S'| > 2k) >
1/2, we can fix W with [W N S’| > 2k and e(J) < k. Turdn’s theorem then gives
I Cc WnS’' of size k that is independent in J, i.e., its vertices have distinct degrees
in G[W]. This contradiction proves the claim, and so the lemma. O

Our next lemma shows that neighbourhood similarity as in Lemma [3.I] implies
an essentially homogeneous graph structure between parts and within parts (for
the latter we will apply it with Vi = 15).

Lemma 3.2. Let G be a graph with subsets Vi and Vo of V(G) such that |Vi| > 2D
and |[Ng(v)ANg(")| < D if {v,v'} C Vi or{v,v'} C Va. Then one of the following
hold:

(1) each vertex in Vi has at most 5D neighbours in Va, or

(2) each vertex in Vi has at least |Va| — 5D neighbours in Va.

Proof. Pick v € V; and set A = N(v) NVy and B = V5 \ N(v). Tt suffices to show
that |A| < 4D or |B| < 4D. Indeed as |[Ng(v)ANg(v')| < D for every v’ € V4, this
gives either (1) or (2).

For each v’ € V1, neighbourhood similarity again gives |[Ng(v')NA| > |A]—D and
|Ng(v') N B] < D. Suppose for contradiction that |Al,|B| > 4D. Then e(V;, A) >
[Vil(JA|—D) > |Vi]-3|A|/4, so there is a € A with |[Ng(a)NVy| > 3|V1|/4. Similarly,
e(Vi,B) < |[V1|D < |W1| - |B|/4, so there is b € B with |[Ng(b) N V1| < |Vi|/4.
However, this gives the contradiction |Ng(a)ANg(b)| > |V1|/2 > D. O

In combination, Lemmas Bl and show that if f(G) is bounded, then G has
the approximate structure of a blowup, in the sense of the next definition. The
accompanying lemma applies a merging process to also guarantee that this blowup
is non-degenerate, in that it is not also a blowup with fewer parts.

Definition 3.3. Let H be a graph and let P be a partition of V(H). Given parts
X,Y of P, we let HX,Y] be the graph on X UY with edges {ay € E(H) : x €
X,yeY}.

We call H a P-blowup if each such H[X,Y] (allowing X = Y) is empty or
complete.

We call a P-blowup H non-degenerate if it is not also a P’-blowup for some
partition P’ of V(H) with fewer parts than P.

We call a graph G on V(H) a A-perturbation of H if for any parts X and Y of
P and v,v" in X we have |Ng(v, Y)ANg(V',Y)| < A.
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Lemma 3.4. Suppose that G is an N-vertex graph with a partition (V1,...,Vr)
of V(G) such that |Ng(u)ANg(w')| < Dy for all i € [L] and u,v’ in V;. Let
L, T,A € N with T > 5A > 300L?D;. Then there are partitions (W, R) of V(G)
and P of W such that |R| < LT, each part of P has size at least T, and G[W] is a

A-perturbation of a non-degenerate P-blowup.

Proof. We let R be the union of all V; with |V;| < T (so clearly |R| < LT) and let
W =V(G) \ R. Next we define a partition P of W by starting with that defined
by restricting (V, ..., Vr) and repeatedly merging any two parts X and Y if there
are some x € X and y € Y with [Ngw(2) ANgmw)(y)| < D2 := 10LD; (note that
we measure the neighbourhood differences here according to G[W] rather than G).
This process terminates with some partition P whose parts have size at least T (by
definition of R), so that for any distinct parts X, Y and z € X, y € Y we have
We claim that for any part X of P we have

INgiw (@) ANgw)(2')] < L(Dy + D2) < A/5

for any x,2’ in X. To see this, we show by induction on ¢ > 1 that if X is a
merger of t of the Vi’s, then |Ngw(z)ANgpy(2')] < tD1 + (t — 1)D; for any
z,2/ in X. When ¢t = 1 this holds by our assumptions. Now suppose ¢t > 1
and X was obtained by merging X; and X with |[Ngw(w1)ANgm(w2)| < Do
for some w; € X;. If each X; is a merger of ¢; of the V;’s, where t = t; + to,
then by induction hypothesis |Ngwy(z:) ANgw)(2})| < t;D1 + (t; — 1) Dy for any
zg, 2 in X;. Then for any x,2" in X we can bound |Ngw)(z)ANgw(z')| by
(tlDl + (tl - 1)D2) + (tQDl + (tz - 1)D2) + D2 = tDl + (t - 1)D2 This proves
the claim.

It follows from Lemma that G[W] is a A-perturbation of some P-blowup
H. To show that H is non-degenerate, we need to show that for any distinct parts
X and Y of P there is some part Z (possibly equal to X or Y) such that one of
H[X,Z] and HIY, Z] is complete and the other is empty.

To see this, we fix any x € X and y € Y, and note by the merging rule that
|Naiw1 () AN (y)| > D2 = 10LDy, so there is some part V; of the original
partition with |(Ngpw)(2)ANgwi(y)) N Vil > 10D;. We must have V; C W, so
|Vi| > T by definition of R. By Lemmal3.2, for any u € W we have | Ng ) (u)NV;| <
5Dy or |Nepw)(w)NVi| > |Vi|=5D1 > T—5D;. We deduce that one of | Ng iy (z)NVj
and |[Ngpw)(y) N Vil is < 5D; and the other is > [V;| - 5Dy, so they differ by at least
T—10D; > 2A. Let Z be the part of P containing V;. As G[W] is a A-perturbation
of H, we cannot have H[X, Z] and H[Y, Z] both complete or both empty. Thus H
is non-degenerate, as required. O

3.2. Control graphs. Our strategy for proving Theorem [[3]in the next subsection
will be to find an induced subgraph as in the next definition; the following lemma
shows that this will indeed have an induced subgraph with many distinct degrees.

Definition 3.5. We call a graph F a k-control graph if there are partitions (4, B, C)
of V(F) and (C4,...,C;) of C, where A = {ay,...,a;} and each |C;| > k? — 1,
such that
(i) given (4,j) € [k] x [t] the bipartite graph F'[a;, C;] is either empty or com-
plete, and
(ii) if Np(a;) NC = Np(a;) N C and i # j, then dppaup)(ai) # drjaus)(a;j).
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Lemma 3.6. If F is a k-control graph, then f(F) > k.

Proof. With notation as in Definition B3], we randomly select integers m; € [0, |C;]]
uniformly and independently for each i € [t], fix C] C C; with each |C!| = m;, and
consider the induced subgraph F’ = F[AU B U C'] with C" = {J;; €. We will
show that with positive probability, the vertices in A have distinct degrees in F”,
and so f(F) > f(F') > k.

Consider any distinct a,a’ in A. If Nrp(a)NC = Ng(a’)NC, then by property (ii)
we have dp/(a) # dp/(a’) regardless of the choice of C],...,C]. On the other hand,
if Np(a)NC # Np(a')NC, then there is some C; such that (say) C; C Np(a) and
CiNNp(a’) = 0. Conditional on any choices of {C}};;, there is at most one choice
of m; that gives dgs(a) = dp(a’), which occurs with probability (|C;|+1)~! < k=2,
We deduce P(f(F') < k) < (g)k_Q < 1/2, so the lemma follows. O

In the proof of Theorem [[.3] we will obtain control graphs in each set of the
partition from Lemma B4 using the following lemma, and combine these to form a
k-control graph.

Lemma 3.7. Let A k,n, N € N with n > 4kA and N > (k—1)(n —1).

Suppose G is an N-vertex graph with independence number o(G) < n and a
partition (U, W) of V(G) with |U| < n/2 and |[Ng(v) NW| < A for allv € V(G).

Then G contains a k-control graph with vertezx partition (A = {aa,...,ax}, B,C),
where G[A], G[A,C] are empty and |C| > |W| — kA, and B has a partition
(Bi,...,By) with each |B;| =i —1 so that each G[{a;}, B;] is complete if i = j or
empty if i # j.
Proof. If k = 1, then the result is clear, taking a; to be any vertex from V(G),
By =0, and C = W\ Ng(ay). For k > 1 we argue by induction. By Turén’s
theorem, G contains a vertex a € V(G) with degree at least k — 1. Let ar = a
and By C Ng(a) with |Bx| = k — 1. Let G’ be obtained from G by deleting
U, a and Ng(Bi U {a}). We delete at most [U] +1+ (A + (k—1)(A—1)) <
kEA+n/2 <n—1vertices, so [V(G')| > N—(n—1) > (k—2)(n—1). By induction
G’ contains (A" = {ay,...,ar_1}, B, C), where G[A'], G[A’,C] are empty and
|IC| > (|W] = kA) — (k—1)2A > |W| - k%A, and B’ has a partition (B, ..., Br_1)
with each |B;| = i—1 so that each G[{a;}, B;| is complete if i = j or empty if i # j.
We obtain A, B from A’, B’ by adding ax, Bg; then (A, B,C) is as required, as
there are no edges between By, U {ax} and V(G’). O

Remark 3.8. The following simplified consequence of Lemma [3.7 will often be con-
venient to apply. Let G be an N-vertex graph G with hom(G) < n that is a
A-perturbation of a one-part blowup (i.e., a complete or empty graph). Suppose
k= ¢(N):= [-2] < n/4A and N > k?A + K with K > k2. Then G has a

n—1

k-control graph with partition (A4, B, C') where |C| = K.

3.3. Proof of Theorem [I.3l To begin, we fix parameters, for reference during
the proof. Set
Dy =2ME2 A =2%kY Ay =25Ak; T =28Ak% ng=2°Ak* =280,

Let G be an N-vertex graph where N = (k —1)(n — 1) + 1 and n > ng. We
suppose for a contradiction that hom(G) < n and f(G) < k. Lemma B gives a
partition V(G) = V1 U--- UV, with L < 4k such that |Ng(u)ANg(u')| < D; for
all u,u’ €Vj.
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Lemma [B.4] then gives partitions (W, R) of V(G) and P = (Wy,...,Wy) of W
such that |R| < LT, each part of P has size at least T', and G[W] is a A-perturbation
of a non-degenerate P-blowup H.

Our aim is to find a k-control graph, which by Lemma will give the required
contradiction that f(G) > k. This control graph will have partition (A4, B,C)
obtained by combining k;-control graphs on vertex set E; C W, with partitions
(A;, B;, C;) for each i € [M], where ), k; = k and each G[E;, Ey] with i # i’ is
complete or empty according to H. We may also need an additional ky-control
graph with partition (ag,?, Co) where kg = 1 and ag € R. We will ensure that all
parts C’f of each C; have size at least k? — 1, and the non-degeneracy of H will
guarantee that vertices in distinct A;’s have distinct neighbourhoods in C, so this
construction will indeed give a control graph on (A, B, C).

Next we will describe an algorithm that finds a k-control graph in some cases;
we will later show how it can be modified to cover the remaining cases.
Algorithm. We proceed in M rounds numbered by i € [M]. At the start of round
i we have sets W; C W, for each j € [M], where each le = W; and we will obtain
each W;“ from W; by deleting at most 2k*A vertices. As G[W] is a A-perturbation
of H, and |W}| > |W;| —2MKE2A > 2k2A, we can apply Remark B.8 to G[W}] with
K = k2, thus obtaining a k;-control graph on a set E; with partition (A;, B;, C;)
where |C;| = k? and k; = ¢(|W}]) = (%W < n/4A. As GIW] is a A-perturbation
of H, for each j > i we can remove |E;|A < 2k?A wvertices from W]z to obtain
W;'H such that G|E;, W;'H] is complete or empty according to H[W;, W;|. After
all rounds are complete we obtain a k'-control graph with parts (A, B,C) where

A=A, B=UB;, C=UC; and k' = X k;.

Now we consider what conditions guarantee k' = k in the algorithm. To analyse
this, we associate vertices of R with parts W; according to any neighbourhood
similarity. Specifically, we fix vertices w; € W; for each i € [M] and let

Ui :={v € R:|Ng(v, W)ANg(w;, W)| < A }.
We start by considering the case that Uie[M] U;=R.
As ¢ is superadditive, we have }_, ¢, ¢(IWi U Ui|) = ¢(N) = k. If we have

o(|W; UU;|) = ¢ (|W;] — AM A K?)

for all 4, then we deduce

|A] = Z o(|Wi]) > Z O(|Wil —4AMAK?) = Z (W UUL[) > k.
i1€[M] 1€[M] 1€[M]

Thus we can assume (possibly by relabelling) that
(W1 UUL|) > o(IW1| — AMALE?).

If |W1| < n/2 we estimate

Al =1+ > ¢(IWi| —4MAK?) > 14+¢(N = |R|—~|Wi]) > 1+¢(N—(n—1)) = k.

i€[2,M]

Thus we can assume |Wi| > n/2.
To complete the analysis of this case, we modify round 1 of the algorithm by
setting Wi equal to W; U U; rather than W;. By definition of U; we can apply
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Lemma [3.7 to either G[W{] or G[W{], now with W = Wy, U = Uy, and 24, in
place of A, which is valid as |U;| < |R| < 4kT < n/2, and |W| — (2A1)k* >
n/2 — (2A1)k* > k? as n > 5A1k%. Thus in round 1 we find a kj-control graph
with k1 = ¢(|W1 U UL]) > ¢(|W1| — 4MA114;2). The remainder of the algorithm is
the same. Now we estimate

[Al= D7 o(IWi) 214 Y o(IWil ~4MAK®) = 14+6(N —|R|—4M>AK?) > k.
ie[M] i€[M]
It remains to consider the case Uie[M] U; # R. Here before applying the al-

gorithm we first fix ap € R\ (Uie[M] Ui) and choose an extra 1l-control graph
(ao,®,Co) as follows. For each i € [M], by definition of U; we have

|Ng(ag, W)ANG(wi, W)| > Ay = 324k > 4M(k* + A).

Thus we can greedily choose disjoint sets C1 g, ..., Ch,0 so that each C; o has size
k?, is contained in some Wj(;, and is contained in Ng(ao, W) \ Ng(w;, W) or
Ny (w;, W) \ Ng(ap, W) (recall that G[W] is a A-perturbation of H). We let
Co = Uie[ M Ci0. Then we apply the algorithm as before, except that we now let
W; 1 be the set of w € W; \ Cy with Ng(w, Cy) = Nu(w, Cp), noting that |W; 1| >
(Wil — (A +1)|Co| > |[W;| — 2AME?, as G[W] is a A-perturbation of H. We still
obtain a control graph, as the neighbourhood of aq differs from the neighbourhoods
of all vertices in E; on Cjp. Furthermore, [A| = [{ao}| + > ;c(ap |4i| = k. This
completes the proof. O

4. CONCLUDING REMARKS

This paper was concerned with the minimum possible value of f(G) in two
regimes for hom(G). For Ramsey graphs, i.e., hom(G) = O(log N), in Theorem [IT]
we showed f(G) = Q(N?/3), which gives the correct order of magnitude (as shown
by a random graph); it would be interesting (but no doubt very difficult) to obtain
an asymptotic result.

At the other extreme, when hom(G) is large we have obtained an exact result,
thus proving a conjecture of Narayanan and Tomon [I4]. This also makes progress
on another of their conjectures that hom(G) > N'/2 guarantees f(G) = Q(WN(G)),

indeed, Theorem [I23] proves this in a strong form provided hom(G) > Q(N9/19).
The exponent here can be reduced by taking more care with the exceptional set R
in the proof, but it seems that new ideas are needed to reduce the exponent to 1/2.

Finally, it would be particularly interesting to determine the minimum order of
magnitude of f(G) in the intermediate range of hom(G).
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