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1. Introduction

At meals in the Oberwolfach Mathematical Institute, the participants are seated at 
circular tables. At an Oberwolfach meeting in 1967, Ringel (see [17]) asked whether there 
must exist a sequence of seating plans so that every pair of participants sit next to each 
other exactly once. We assume, of course, that there are an odd number of participants, 
as each participant sits next to two others in each meal. The tables may have various 
sizes, which we assume are the same at each meal.

Oberwolfach problem (Ringel). Let F be any two-factor (i.e. 2-regular graph) on n
vertices, where n is odd. Can the complete graph Kn be decomposed into copies of F?

We obtain a new solution of this problem for large n, with a theorem that is more 
general in three respects: (a) we can decompose any dense quasirandom graph that is 
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regular of even degree (not just Kn for n odd), (b) we can decompose into any prescribed 
collection of two-factors (not just copies of some fixed two-factor F ), (c) our theorem 
applies to directed graphs (digraphs).

We start by stating our result for undirected graphs. We require the following quasir-
andomness definition. We say that a graph G on n vertices is (ε, t)-typical if every set S
of at most t vertices has ((1 ±ε)d(G))|S|n common neighbours, where d(G) = e(G)

(
n
2
)−1

is the density of G.

Theorem 1.1. For all α > 0 there exist t, ε, n0 such that any (ε, t)-typical graph on n ≥ n0
vertices that is 2r-regular for some integer r > αn can be decomposed into any family of 
r two-factors.

Theorem 1.1 implies some variant forms of the Oberwolfach problem that have ap-
peared in the literature, such as the Hamilton–Waterloo Problem (two types of two-
factors), or that if n is even then Kn can be decomposed into a perfect matching and 
any specified collection of n/2 − 1 two-factors. More generally, with parameters as in 
Theorem 1.1, it is easy to deduce that any (ε, t)-typical graph on n ≥ n0 vertices that 
is (2r + 1)-regular for some integer r > αn can be decomposed into a perfect matching 
and any family of r two-factors.

We will deduce Theorem 1.1 from the directed version below. First we extend our 
definitions to digraphs. We say that a digraph G on n vertices is (ε, t)-typical if for every 
set S = S− ∪ S+ of at most t vertices there are ((1 ± ε)d(G))|S|n vertices which are 
both common inneighbours of S− and outneighbours of S+, where d(G) = e(G)

(
n
2
)−1 is 

the density of G. We say that G is r-regular if d+
G(v) = d−G(v) = r for all v ∈ V (G). A 

one-factor is a 1-regular digraph; equivalently, it is a union of vertex-disjoint oriented 
cycles.

Theorem 1.2. For all α > 0 there exist t, ε, n0 such that any (ε, t)-typical digraph on 
n ≥ n0 vertices that is r-regular for some integer r > αn can be decomposed into any 
family of r one-factors.

Theorem 1.1 follows from Theorem 1.2 and the observation that for any typical graph 
that is regular of even degree there exists an orientation which is a regular typical digraph. 
To see this, one can orient edges independently at random and make a few modifications 
to obtain the required orientation. (See Lemma 9.1 below for a similar argument.)

While we were preparing this paper, the Oberwolfach problem (for large n) was solved 
by Glock, Joos, Kim, Kühn and Osthus [9]. They also obtained a more general result 
that covers the other undirected applications just mentioned, but our result is more 
general than theirs in the three respects mentioned above: (a) we can decompose any 
dense typical regular graph (whereas their result only applies to almost complete graphs), 
(b) we can decompose into any collection of two-factors (whereas they can allow for a 
collection of two-factors provided that some fixed F occurs Ω(n) times), (c) our result 
also applies to digraphs (whereas theirs is for undirected graphs).
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There is a large literature on the Oberwolfach Problem, of which we mention just 
a few highlights (a more detailed history is given in [9]). The problem was solved for 
infinitely many n by Bryant and Scharaschkin [6], in the case when F consists of two 
cycles by Traetta [20], and for cycles of equal length by Alspach, Schellenberg, Stinson 
and Wagner [3]. A related conjecture of Alspach that Kn can be decomposed into any 
collection of cycles each of length ≤ n and total size 

(
n
2
)

was solved by Bryant, Horsley 
and Pettersson [5].

There are several recent general results on approximate decompositions that imply 
an approximate solution to the generalised Oberwolfach Problem, i.e. that any given 
collection of two-factors can be embedded in a quasirandom graph provided that a small 
fraction of the edges can be left uncovered: we refer to the papers of Allen, Böttcher, 
Hladký and Piguet [1], Ferber, Lee and Mousset [8] and Kim, Kühn, Osthus and Tyomkyn 
[15].

Notation.
Given a graph G = (V, E), when the underlying vertex set V is clear, we will also 

write G for the set of edges. So |G| is the number of edges of G. Usually |V | = n. 
The edge density d(G) of G is |G|/

(
n
2
)
. We write NG(x) for the neighbourhood of a 

vertex x in G. The degree of x in G is dG(x) = |NG(x)|. For A ⊆ V (G), we write 
NG(A) :=

⋂
x∈A NG(x); note that this is the common neighbourhood of all vertices in 

A, not the neighbourhood of A.
In a directed graph J with x ∈ V (J), we write N+

J (x) for the set of out-neighbours 
of x in G and N−

G (x) for the set of in-neighbours. We let d±G(A) := |N±
G (A)|. We define 

common out/in-neighbourhoods N±
J (A) =

⋂
x∈A N±

J (A).
We say G is (ε, t)-typical if dG(S) = ((1 ± ε)d(G))|S|n for all S ⊆ V (G) with |S| ≤ t.
We say that an event E holds with high probability (whp) if P (E) > 1 − exp(−nc)

for some c > 0 and n > n0(c). We note that by a union bound for any fixed collection E
of such events with |E| of polynomial growth whp all E ∈ E hold simultaneously.

We omit floor and ceiling signs for clarity of exposition.
We write a � b to mean ∀ b > 0 ∃ a0 > 0 ∀ 0 < a < a0.
We write a ± b for an unspecified number in [a − b, a + b].
Throughout the vertex set V will come with a cyclic order, which we usually identify 

with the natural cyclic order on [n] = {1, . . . , n}. For any x ∈ V we write x+ for the 
successor of x, so if x ∈ [n] then x+ is x + 1 if x 
= n or 1 if x = n. We define the 
predecessor x− similarly. Given x, y in [n] we write d(x, y) for their cyclic distance, i.e. 
d(x, y) = min{|x − y|, n − |x − y|}.

2. Overview of the proof

We will illustrate the ideas of our proof by starting with a special case and becoming 
gradually more general. Suppose first that we wish to decompose a typical dense (undi-
rected) 2r-regular graph G on n vertices into r triangle-factors (i.e. two-factors in which 
each cycle is a triangle – we require 3 | n for this question to make sense). The existence 
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of such a decomposition (also known as a resolvable triangle-decomposition of G) follows 
from a recent result of the first author [12] generalising the existence of designs (see [11]) 
to many other ‘design-like’ problems. The proof in [12] goes via the following auxiliary 
decomposition problem, which also plays an important role in this paper.

Let J be an auxiliary graph with V (J) partitioned as V ∪W , where V = V (G) and 
|W | = r. Let J [V ] = G, J [V, W ] = V × W and J [W ] = ∅. Note that a decomposition 
of G into triangle-factors is equivalent to a decomposition of J into copies of K4 each 
having 3 vertices in V and 1 vertex in W . Indeed, given such a decomposition of J , 
for each w ∈ W we define a triangle-factor of G by removing w from all copies of K4
containing w in the decomposition; clearly every edge of G appears in exactly one of 
these triangle-factors. Conversely, any decomposition of G into triangle-factors can be 
converted into a suitable K4-decomposition of J by adding each w ∈ W to one of the 
triangle-factors (according to an arbitrary matching).

The auxiliary construction described above is quite flexible, so a similar argument 
covers many other cases of our problem. For example, decomposing G into C�-factors 
(two-factors in which each cycle has length �) is equivalent to decomposing J into ‘wheels’ 
W� with ‘rim’ in V and ‘hub’ in W . (We obtain W� from C�, which is called the rim, by 
adding a new vertex, called the hub, joined to every other vertex, by edges that we call 
spokes.) Such a decomposition exists by [12].

We can encode our generalised Oberwolfach Problem in full generality by introducing 
colours on the edges. For each possible cycle length � we introduce a colour, which we 
also call �. For each w ∈ W , we denote its corresponding factor by Fw, and suppose that 
it has nw

� cycles of length � (where 
∑

� �n
w
� = n). We colour J so that each w ∈ W is 

incident to exactly nw
� edges of colour �, and all other edges are uncoloured. We colour 

each W� so that exactly one spoke has colour � and all other edges are uncoloured. Then 
a decomposition of G into {Fw : w ∈ W} is equivalent to a decomposition of J into 
wheels with this colouring with rim in V and hub in W . Note that this equivalence does 
not depend on which edges of J we colour, but to apply [12] we will require the colouring 
to be suitably quasirandom. Another important constraint in applying [12] is that the 
number of colours and the size of the wheels should be bounded by an absolute constant. 
Thus our generalised Oberwolfach Problem can only be solved by direct reduction to [12]
in the case that all factors have all cycle lengths bounded by some absolute constant.

This now brings us to the crucial issue for this paper: how can we encode two-factors 
with cycles of arbitrary length by an auxiliary construction to which [12] applies? Before 
describing this, we pass to an auxiliary problem of decomposing a subgraph G′ of G into 
graphs (Gw : w ∈ W ), where each Gw is a vertex-disjoint union of paths with prescribed 
endpoints, lengths and vertex set. More precisely, for each w ∈ W we are given specified 
lengths (�wi : i ∈ Iw), vertex-pairs ((xw

i , y
w
i ) : i ∈ Iw), a forbidden set Zw, and we want 

each Gw to be a union of vertex-disjoint xw
i y

w
i -paths of length �wi for each i ∈ Iw with 

V (Gw) = V (G) \ Zw. We will arrive at this problem having embedded some subgraphs 
F ′
w ⊆ Fw of each w ∈ W , so the prescribed endpoints will be endpoints of paths in F ′

w

that need to be connected up to form cycles, and Zw will consist of all vertices of degree 
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2 in F ′
w. We assume that all lengths �wi are divisible by 8 (which is easy to ensure for 

long cycles).
We will translate the above path factor problem into an equivalent problem of de-

composing a certain auxiliary two-coloured directed graph J , with V (J) = V ∪W as in 
the previous construction. We call the two colours ‘0’ (which means ‘uncoloured’) and 
‘K’ (which means ‘special’). Again, J [W ] = ∅. For now we defer discussion of J [V, W ]
and describe the arcs of J [V ], which are in bijection with the edges of G. For colour 0
this bijection simply corresponds to a choice of orientation for edges, but for colour K
we employ the following ‘twisting’ construction. We fix throughout a cyclic order of V , 
and require that each arc −→xy of colour K in J comes from an edge xy+ of G, where y+

denotes the successor of y in the cyclic order.
Consider any directed 8-cycle C in J with vertex sequence x1 . . . x8, such that all arcs 

have colour 0 except that −−→x7x8 has colour K. The edges in G corresponding to C form 
a path with vertex sequence x8x1 . . . x7x

+
8 . Now suppose we have a family of such cycles 

C = (Ci : i ∈ I) where each Ci has vertex sequence xi
1 . . . x

i
8. Call C compatible if (i) 

its cycles are mutually vertex-disjoint, and (ii) if any (xi
8)+ is used by a cycle in C then 

it is some xj
8. Suppose C is compatible and let ([xj , yj ] : j ∈ J) denote the family of 

maximal cyclic intervals contained in {xi
8 : i ∈ I}. Then the edges of G corresponding to 

the cycles of C form a family of vertex-disjoint paths (Pj : j ∈ J), where each Pj is an 
xjy

+
j -path whose vertex sequence is the concatenation of vertex sequences of the 8-paths 

as described above for each cycle of C using a vertex of [xj , yj ].

The above construction allows us to pass from the path factor problem to finding 
certain edge-disjoint compatible cycle families in J . In order for our path factor problem 
to obey the constraints of this encoding we require the prescribed vertex-pairs for each 
w to define disjoint cyclic intervals ([xw

i , (ywi )−] : i ∈ Iw) of lengths �wi /8 (and also 
that no successor ywi is contained in any of the other intervals for w, where a successor 
of an interval is the successor of its largest member). We are thus introducing extra 
constraints into the path factor problem that may affect up to n/8 vertices for each w, 
but the flexibility on the remaining vertices will be sufficient.

Now we can complete the description of the auxiliary graph J and the decomposition 
problem that encodes the compatible cycle family problem. We define J [V ] as above, 
and J [V, W ] so that all arcs are directed towards W , each in-neighbourhood N−

J (w) is 
obtained from V (G) \ Zw by deleting the interval successors {ywi : i ∈ Iw}, all arcs 
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−→xw with x in an interval [xw
i , (ywi )−] are coloured K, and all other arcs of J [V, W ] are 

coloured 0. Finally, the compatible cycle family problem is equivalent to decomposing 
J into coloured directed wheels −→WK

8 , obtained from W8 by directing the rim cyclically, 
directing all spokes towards the hub w, giving colour K to one rim edge −→xy and one 
spoke −→yw, and colouring the other edges by 0. The deduction from [12] of the existence 
of wheel decompositions is given in section 3.

We now describe the strategy for the proof of Theorem 1.2. The goal is to embed some 
parts of our two-factors so that the remaining problem is of one of two special types that 
has an encoding suitable for applying [12], either a path factor problem encoded as −→WK

8 -
decomposition or a C�-factor problem encoded as −→W�-decomposition (obtained from the 
coloured wheel W� discussed above for C�-factors by introducing directions as in 

−→
WK

8 , 
which are not necessary but convenient for giving a unified analysis). We call a factor 
‘long’ if it has at least n/2 vertices in cycles of length at least K (as well as denoting the 
special colour, K is also used as a large constant length threshold, above which we treat 
cycles using the special twisting encoding as above). We call the other factors ‘short’.

We start by reducing to the case that all factors are long or all factors are short. To 
do so, suppose first that there are Ω(n) long factors and Ω(n) short factors. Then we 
can randomly partition G into typical graphs GL and GS , each of which is regular of 
the correct degree (twice the number of long factors for GL and twice the number of 
short factors for GS). If there are o(n) factors of either type then these can be embedded 
one-by-one (by the blow-up lemma [16]), and then the remaining problem still satisfies 
the conditions of Theorem 1.2 (with slightly weaker typicality). The short factor problem 
can be further reduced to the case that there is some length �∗ such that each factor has 
Ω(n) cycles of length �∗. Indeed, we can divide the factors into a constant number of 
groups according to some choice of cycle length that appears Ω(n) times in each factor of 
the group. Any group of o(n) factors can be embedded greedily, so after taking a suitable 
random partition, it suffices to show that the remaining groups can each be embedded 
in a graph that is typical and regular of the correct degree.

Thus we can assume that we are in one of the following cases. Case K: all factors are 
long, our goal is to reduce to 

−→
WK

8 -decomposition. Case �∗: all factors have Ω(n) cycles 
of length �∗, our goal is to reduce to 

−→
W�∗ -decomposition. In any case, the reduction is 

achieved by applying an approximate decomposition result in a suitable random sub-
graph, in which we embed a subgraph of each of our factors. At this step, in Case �∗ we 
embed all cycles of length 
= �∗, and in Case K we embed all short cycles and some parts 
of the long cycles as needed to reduce to a suitable path factor problem.

This approximate decomposition result is superficially similar to the maximum degree 
2 case of the blow-up lemma for approximate decompositions due to Kim, Kühn, Osthus 
and Tyomkyn [15]. However, it does not suffice to use their result, as we require a 
decomposition that is compatible with the conditions of our final decomposition problem 
(into 

−→
WK

8 or −→W�∗), so the sets of vertices of the partial factors embedded in this step 
must be suitably quasirandom and avoid the intervals needed for Case K. Furthermore, 
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we obtain the required approximate decomposition by similar arguments to those for the 
exact decomposition, which does not add much extra work.

The technical heart of the paper is a randomised algorithm (presented in section 4), 
which gives a unified treatment of the cases described above. It simultaneously (a) par-
titions almost all of G into two graphs G1 and G2, and (b) sets up auxiliary digraphs 
J1 and J2 such that (i) an approximate wheel decomposition of J2 gives an approximate 
decomposition of G2 into the partial factors described above, and (ii) the graph G′

1 of 
edges that are unused by the approximate decomposition has an auxiliary digraph that 
is a sufficiently small perturbation of J1 that it can still be used for the exact decom-
position step. The analysis of the algorithm falls naturally into two parts: the choice of 
intervals (section 5), then regularity properties of an auxiliary hypergraph defined by 
wheels (section 6). The results of this analysis are applied to show the existence of the 
various partial factor decompositions discussed above: the approximate step is in sec-
tion 7 and the exact step in section 8. Section 9 combines all the ingredients prepared in 
the previous sections to produce the proof of our main theorem (illustrated in Fig. 1). 
The final section contains some concluding remarks.

3. Wheel decompositions

In this section we describe the results we need on wheel decompositions and how they 
follow from [12]. We start by recalling the coloured wheels described in section 2.

For any c ≥ 3, the uncoloured c-wheel consists of a directed c-cycle (called the rim), 
another vertex (called the hub), and an arc from each rim vertex to the hub. We obtain 
the coloured c-wheel −→Wc by giving all arcs colour 0 except that one of the spokes has 
colour c. We obtain the special c-wheel −→WK

c by giving all arcs colour 0 except that one 
rim edge −→xy and one spoke −→yw have colour K. As discussed in section 2, we will only 
use 

−→
WK

c with c = 8, but here we will consider the general configuration so that the 
decomposition problems are quite similar. We start by stating the result for −→Wc.

Theorem 3.1. Let n−1 � δ � ω � c−1 and h = 250c3 . Let J = J0 ∪Jc be a digraph with 
arcs coloured 0 or c, with V (J) partitioned as (V, W ) where ωn ≤ |V |, |W | ≤ n. Then J
has a 

−→
Wc-decomposition such that every hub lies in W if the following hold:

Divisibility: all arcs in J [V ] have colour 0, all arcs in J [V, W ] point towards W , 
d−J (v, V ) = d+

J (v, V ) = d+
J (v, W ) for all v ∈ V , and d−J (w) = cd−Jc(w) for all w ∈ W .
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Fig. 1. An overview of the proof.

Regularity: each copy of −→Wc in J has a weight in [ωn1−c, ω−1n1−c] such that for any 
arc −→e there is total weight 1 ± δ on wheels containing −→e .

Extendability: for all disjoint A, B ⊆ V and C ⊆ W each of size ≤ h we have 
|N+

0(A) ∩N+
Jc(B) ∩W | ≥ ωn and |N+

0(A) ∩N−
0(B) ∩N−

c′ (C)| ≥ ωn for both c′ ∈ {0, c}.
J J J J
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Before stating our result on 
−→
WK

8 -decompositions, we recall that V has a cyclic order, 
which we can identify with the natural cyclic order on [n], and define the following 
separation properties.

Definition 3.2. For 1 ≤ x < y ≤ n the cyclic distance is d(x, y) = min{y − x, n + x − y}. 
We say that S ⊆ [n] is d-separated if d(a, a′) ≥ d for all distinct a, a′ in S. For disjoint 
S, S′ ⊆ [n] we say (S, S′) is d-separated if d(a, a′) ≥ d for all a ∈ S, a′ ∈ S′. For a 
(di)graph H whose vertex set is a subset of [n] we say H is d-separated if V (H) is 
d-separated.

Now we state our result on 
−→
WK

8 -decompositions. We note that it only concerns di-
graphs J such that d(x, y) ≥ d for all −→xy ∈ J [V ], as this is implied by the regularity 
assumption. Our proof of Theorem 1.2 will require us to only consider such J , so that 
we can satisfy the extendability assumption.

Theorem 3.3. Let n−1 � δ � ω � c−1. Let h = 250c3 and d � n. Let J = J0 ∪ JK

be a digraph with arcs coloured 0 or K, with V (J) partitioned as (V, W ) where ωn ≤
|V |, |W | ≤ n, such that all arcs in J [V, W ] point towards W and J [W ] = ∅. Then J has 
a 
−→
WK

c -decomposition such that every hub lies in W if the following hold:
Divisibility: d−J (w) = cd−

JK (w) for all w ∈ W , and for all v ∈ V we have d−J (v, V ) =
d+
J (v, V ) = d+

J (v, W ) and d−
JK (v, V ) = d+

JK (v, W ).
Regularity: each 3d-separated copy of −→WK

c in J has a weight in [ωn1−c, ω−1n1−c] such 
that for any arc −→e there is total weight 1 ± δ on wheels containing −→e .

Extendability: for all disjoint A, B ⊆ V and L ⊆ W each of size ≤ h, for any 
a, b, � ∈ {0, K} we have |N+

Ja(A) ∩N−
Jb(B) ∩N−

J�(L)| ≥ ωn, and furthermore, if (A, B)
is 3d-separated then |N+

J0(A) ∩N+
JK (B) ∩W | ≥ ωn.

For the remainder of this section we will explain how Theorem 3.3 follows from [12]
(we omit the similar and simpler details for Theorem 3.1). We follow the exposition in 
[13], which deduces from [12] a general result on coloured directed designs that we will 
apply here.

3.1. The functional encoding

We encode any digraph J (or H) by a set of functions J (or H), where for each arc −→
ab ∈ J we include in J the function (1 �→ a, 2 �→ b), i.e. the function f : [2] → V (J) with 
f(1) = a and f(2) = b (and similarly for H, H). We will identify J with its characteristic 
vector, i.e. Jf = 1f∈J; if we want to emphasise the vector interpretation we write J. If 
J has coloured arcs, and � is a colour, we write J� for the digraph in colour �, which is 
encoded by J�.

We will consider decompositions by a coloured digraph H defined as follows. We start 
with 

−→
WK

c on the vertex set [c + 1], where we label the rim cycle by [c] cyclically (so 
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c + 1 is the hub) so that, writing c− = c − 1 and c+ = c + 1, −→c−c and −→cc+ have colour 
K and all other arcs have colour 0. We let P be the partition ([c], {c+}) of [c + 1]. We 
introduce new colours 0′ and K ′, and change the colours of −→cc+ to K ′ and of the other 
spokes to 0′. We do this so that H is ‘(P, id)-canonical’ in the sense of [13, Definition 
7.1]; specialised to our setting, the relevant properties are that H is an oriented graph 
(with no multiple edges or 2-cycles) and that for each colour all of its arcs have one fixed 
pattern with respect to P (specifically, for colours 0 and K all arcs are contained in [c], 
and for colours 0′ and K ′ all arcs are directed from [c] to {c+}).

Now we translate the H-decomposition problem for a digraph J into its functional 
encoding. We will have a partition Q = (V, W ) of V (J), and wish to decompose J by 
copies φ(H) of H such that φ([c]) ⊆ V and φ(c+) ∈ W (i.e. wheels with hub in W ), and 
φ([c]) is 3d-separated (in which case we will say that the graph φ(H) is 3d-separated). We 
think of the functional encoding J as living inside a ‘labelled complex’ Φ of all possible 
partial embeddings of H: we define Φ = (ΦB : B ⊆ [c + 1]), where each ΦB consists of 
all injections φ : B → V (J) such that φ(B ∩ [c]) ⊆ V , φ(B ∩ {c+}) ⊆ W and Im(φ) is 
3d-separated. The set of functional encodings of possible embeddings of H (if present in 
J) is then

H(Φ) := {φH : φ ∈ Φ[c+1]}, where φH := {φ ◦ θ : θ ∈ H}.

The H-decomposition problem for J is equivalent to finding H ⊆ H(Φ) with 
∑

{H′ :
H′ ∈ H} = J, or equivalently 

⋃
H = J (where if J has multiple edges we consider a 

multiset union). We call such H an H-decomposition in Φ.

3.2. Regularity

Now we will describe the hypotheses of the theorem that will give us an H-
decomposition in Φ. We start with regularity, which is simply the functional encoding of 
the regularity assumption in Theorem 3.3. Specifically, we say J is (H, δ, ω)-regular in 
Φ if there are weights yφ ∈ [ωn1−c, ω−1n1−c] for each φ ∈ Φ[c+1] with φH ⊆ J such that ∑

φ yφφH = (1 ± δ)J.

3.3. Extendability

Next we consider extendability, which we discuss in a simplified setting that suffices 
for our purposes, following [13, Definition 7.3]. The idea is that for any vertex x of H
there should be many ways to extend certain sets of partial embeddings of H − x to 
embeddings of H. Specifically, we say (Φ, J) is (ω, h, H)-vertex-extendable if for any 
x ∈ [c + 1] and disjoint Ai ⊆ V ∪ W for i ∈ [c + 1] \ {x} each of size ≤ h such that 
(i �→ vi : i ∈ [c + 1] \ {x}) ∈ Φ whenever each vi ∈ Ai, there are at least ωn vertices v
such that

i. (i �→ vi : i ∈ [c + 1]) ∈ Φ whenever vx = v and vi ∈ Ai for each i 
= x, and
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ii. each J� with � ∈ {0, K, 0′, K ′} contains all (1 �→ v1, 2 �→ v2) where for some θ ∈ H�

we have (v1 = v & v2 ∈ Aθ(2)) or (v2 = v & v1 ∈ Aθ(1)).
Note that by definition of Φ this only concerns maps φ such that Im(φ) is 3d-separated. 
To interpret (ii) we consider 4 cases according to the position of x in the wheel.

x = c + 1. For any pairwise 3d-separated Ai ⊆ V , i ∈ [c] of sizes ≤ h there are at least 
ωn vertices v such that −→vcv ∈ JK′ for all vc ∈ Ac and −→viv ∈ J0′ for all vi ∈ Ai, i 
= c. 
Equivalently, for any disjoint A, B ⊆ V with |A| ≤ h and |B| ≤ (c − 1)h such that 
(A, B) is 3d-separated we have |N+

JK′ (A) ∩N+
J0′ (B)| ≥ ωn.

x = c. For any pairwise 3d-separated Ai ⊆ V , i ∈ [c − 1] and Ac+1 ⊆ W of sizes 
≤ h there are at least ωn vertices v such that −−−→vvc+1 ∈ JK′ for all vc+1 ∈ Ac+1, 
−−−→vc−1v ∈ JK for all vc−1 ∈ Ac−1, and −→vv1 ∈ J0 for all v1 ∈ A1. Equivalently, for any 
disjoint A, B ⊆ V and C ⊆ W of sizes ≤ h such that (A, B) is 3d-separated we have 
|N+

JK (A) ∩N−
J0(B) ∩N−

JK′ (C)| ≥ ωn.
x = c− 1. For any pairwise 3d-separated Ai ⊆ V , i ∈ [c] \ {c − 1} and Ac+1 ⊆ W of 

sizes ≤ h there are at least ωn vertices v such that −−−→vvc+1 ∈ J0′ for all vc+1 ∈ Ac+1, 
−→vvc ∈ JK for all vc ∈ Ac, and −−−→vc−2v ∈ J0 for all vc−2 ∈ Ac−2. Equivalently, for any 
disjoint A, B ⊆ V and C ⊆ W of sizes ≤ h such that (A, B) is 3d-separated we have 
|N−

JK (A) ∩N+
J0(B) ∩N−

J0′ (C)| ≥ ωn.
x ∈ [c− 2]. For any pairwise 3d-separated Ai ⊆ V , i ∈ [c] \ {x} and Ac+1 ⊆ W of 

sizes ≤ h there are at least ωn vertices v such that −−−→vvc+1 ∈ J0′ for all vc+1 ∈ Ac+1, 
−−−→vvx+1 ∈ J0 for all vx+1 ∈ Ax+1, and −−−→vx−1v ∈ J0 for all vx−1 ∈ Ax−1, where A0 := Ac. 
Equivalently, for any disjoint A, B ⊆ V and C ⊆ W of sizes ≤ h such that (A, B) is 
3d-separated we have |N−

J0(A) ∩N+
J0(B) ∩N−

J0′ (C)| ≥ ωn.

All of these conditions follow from the extendability assumption in Theorem 3.3 (after 
renaming colours 0 and K in J [V, W ] as 0′ and K ′, and replacing h with (c − 1)h).

3.4. Divisibility

It remains to consider divisibility; we follow [13, Definition 7.2]. For integers s ≤ t we 
write Ist for the set of injections from [s] to [t]. We identify V ∪W with [n′] for some n′. 
For 0 ≤ i ≤ 2, ψ ∈ Iin′ , θ ∈ Iic+1, we define index vectors in N2 describing types with 
respect to the partitions P or Q: we write iP(θ) = (|Im(θ) ∩ [c]|, |Im(θ) ∩ {c+}|) and 
iQ(ψ) = (|Im(ψ) ∩ V |, |Im(ψ) ∩W |). For example, for θ = (1 �→ c−, 2 �→ c) ∈ H we have 
iP(θ) = (2, 0). We define degree vectors H(θ)∗ and J(ψ)∗ in NC×Ii

2 by

H(θ)∗�π = |H�(θπ−1)| and J(ψ)∗�π = |J�(ψπ−1)|,

where e.g. H�(θπ−1) denotes the set of θ′ ∈ H� having θπ−1 as a restriction. Letting 〈·〉
denote the integer span of a set of vectors, we say J is H-divisible in Φ if

J(ψ)∗ ∈ 〈H(θ)∗ : iP(θ) = iQ(ψ)〉 for all ψ ∈ Φ.
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We refer to the divisibility conditions for index vectors (i1, i2) with i1 + i2 = j as j-
divisibility conditions, where we assume 0 ≤ j ≤ 2, as otherwise they are vacuous. We 
describe these conditions concretely as follows.

2-divisibility. These conditions simply say that the arcs of J have the same types with 
respect to Q as those of H do with respect to P, i.e. all arcs of J [V ] have colour 0 or 
K, all arcs of J [V, W ] have colour 0′ or K ′, and J [W ] = ∅. To see this, consider any 
degree vector H(θ)∗ with θ ∈ I2

c+1. We write id = (1 �→ 1, 2 �→ 2) and (12) = (1 �→
2, 2 �→ 1). For any � ∈ C, π ∈ {id, (12)} we have H(θ)∗�π equal to 1 if (�, π) is the pair 
such that θ ◦ π−1 ∈ H� (there is at most one such pair) or equal to 0 otherwise. For 
example, if θ = (1 �→ c, 2 �→ c−) then H(θ)∗�π is 1 if (�, π) = (K, (12)), otherwise 0. 
Thus H〈(i1, i2)〉 := 〈H(θ)∗ : iP(θ) = (i1, i2)〉 consists of all integer vectors supported in 
coordinates with colours in {0, K} if (i1, i2) = (2, 0) or {0′, K ′} if (i1, i2) = (1, 1), whereas 
H〈(0, 2)〉 only contains the all-0 vector. Therefore, the 2-divisibility conditions say that 
J(ψ)∗ can be non-zero only at coordinates with colours in {0, K} if iQ(ψ) = (2, 0) or 
{0′, K ′} if iQ(ψ) = (1, 1), and J(ψ)∗ = 0 if iQ(ψ) = (0, 2), i.e. J has the same arc types 
with respect to Q as H with respect to P.

0-divisibility. Writing ∅ for the function with empty domain, all H(∅)∗�∅ = |H�| =
|H�|, and similarly for J , so the 0-divisibility condition is that for some integer m all 
|J�| = m|H�|. For our specific H, this is equivalent to |J [V ]| = |J [V, W ]| = c|Jc[V ]| =
c|Jc[V, W ]|.

1-divisibility. Given θ = (1 �→ a) ∈ I1
c+1 and � ∈ C = {0, K, 0′, K ′}, the two coor-

dinates of H(θ)∗ corresponding to colour � are the in/outdegrees of a in H�: we have 
H(θ)∗�id = |H(1 �→ a)| = d+

H�(a) and H(θ)∗�(12) = |H(2 �→ a)| = d−
H�(a). Similarly, for 

ψ = (1 �→ v) ∈ I1
n′ the coordinates of J(ψ)∗ corresponding to colour � are d±

J�(v). We 
compute:

H(1 �→ a)∗ d+
H0(a) d−H0(a) d+

HK (a) d−
HK (a) d+

H0′ (a) d−
H0′ (a) d+

HK′ (a) d−
HK′ (a)

a = c+ 0 0 0 0 0 c− 1 0 1
a = c 1 0 0 1 0 0 1 0
a = c− 0 1 1 0 1 0 0 0
a ∈ [c− 2] 1 1 0 0 1 0 0 0

so 〈H(1 �→ c+)∗〉 = {v ∈ Z8 : v1 = v2 = v3 = v4 = v5 = v7 = 0, v6 = (c− 1)v8}, and

〈H(1 �→ a)∗ : a ∈ [c]〉 = {v ∈ Z8 : v2 = v5, v4 = v7, v1 + v3 = v2 + v4, v6 = v8 = 0}.

For w ∈ W the 1-divisibility condition is J(1 �→ w)∗ ∈ 〈H(1 �→ c+)∗〉, i.e. d−
J0′ (w) =

(c − 1)d−
JK′ (w), or equivalently d−J (w) = cd−

JK′ (w). For v ∈ V the 1-divisibility condition 
is J(1 �→ v)∗ ∈ 〈H(1 �→ a)∗ : a ∈ [c]〉, which is equivalent to d−

JK (v) = d+
JK′ (v) and 

d+
J (v, V ) = d−J (v, V ) = d+

J (v, W ).
All of these divisibility conditions follow from the divisibility assumption in The-

orem 3.3 (after renaming colours 0 and K in J [V, W ] as 0′ and K ′). By the above 
discussion, Theorem 3.3 follows from the following special case of [13, Theorem 7.4].
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Theorem 3.4. Let n−1 � δ � ω � c−1. Let h = 250c3 and d � n. Let J be a digraph 
with V (J) partitioned as (V, W ) where ωn ≤ |V |, |W | ≤ n, such that J [W ] = ∅, all 
arcs in J [V, W ] point towards W , all arcs in J [V ] are coloured 0 or K and all arcs 
in J [V, W ] are coloured 0′ or K ′. Let Φ = (ΦB : B ⊆ [c + 1]), where ΦB consists of 
all injections φ : B → V (J) such that φ(B ∩ [c]) ⊆ V , φ(B ∩ {c+}) ⊆ W and Im(φ)
is 3d-separated. Suppose J is H-divisible in Φ and (H, δ, ω)-regular in Φ and (Φ, J) is 
(ω, h, H)-vertex-extendable. Then J has an H-decomposition in Φ.

4. The algorithm

Suppose we are in the setting of Theorem 1.2: we are given a (ε, t)-typical αn-regular 
digraph G on n vertices, where n−1 � ε � t−1 � α, and we need to decompose G into 
some given family F of αn oriented one-factors on n vertices. In this section we present 
an algorithm that partitions almost all of G into two digraphs G1 and G2, and each factor 
Fw into subfactors F 1

w and F 2
w, and also sets up auxiliary digraphs J1 and J2, such that 

(i) an approximate wheel decomposition of J2 gives an approximate decomposition of G2

into partial factors that are roughly {F 2
w}, (ii) given the approximate decomposition of 

G2, we can set up (via a small additional greedy embedding) the remaining problem to 
be finding an exact decomposition of a small perturbation G′

1 of G1 into partial factors 
that are roughly {F 1

w}, corresponding to a wheel decomposition of a small perturbation 
J ′

1 of J1. For most of the section we will describe and motivate the algorithm; we then 
conclude with the formal statement.

We fix additional parameters with hierarchy

n−1 � ε � t−1 � K−1 � d−1 � η � s−1 � L−1 � α. (1)

For convenient reference later, we also make some comments here regarding the roles of 
these additional parameters: η will be used to bound the number of vertices embedded 
greedily, we consider a cycle ‘long’ if it has length at least K, and the cyclic intervals 
used to define the special colour K will have sizes di = d/(2s)i−1 with i ∈ [2s +1]. By the 
reductions in section 9.1, we will be able to assume that we are in one of the following 
cases:

Case K: each F ∈ F has at least n/2 vertices in cycles of length at least K,
Case �∗ with �∗ ∈ [3, L]: each F ∈ F has ≥ L−3n cycles of length �∗.
We write F = (Fw : w ∈ W ), so |W | = αn. We partition each Fw as F 1

w ∪ F 2
w

as follows. In Case �∗ we let F 1
w consist of exactly L−3n cycles of length �∗ (and then 

F 2
w = Fw \ F 1

w). In Case K we choose F 1
w with |F 1

w| − n/2 ∈ [0, 2K] to consist of some 
cycles of length at least K and at most one path of length at least K. To see that this 
is possible, consider any induced subgraph F ′

w of Fw with |F ′
w| = n/2 + K obtained by 

greedily adding cycles of length at least K until the size is at least n/2 + K, and then 
deleting a (possibly empty) path from one cycle. Let P1 and P2 denote the two paths of 
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the (possibly) split cycle, where P1 ∈ F ′
w. If |P1|, |P2| ≥ K we let F 1

w = F ′
w. If |P1| < K

we let F 1
w = F ′

w \ P1. If |P2| < K we let F 1
w = F ′

w ∪ P2. In all cases, F 1
w is as required.

The algorithm is randomised, so we start by defining probability parameters. The 
graphs G1 and G2 are binomial random subdigraphs of G of sizes that are slightly 
less than one would expect (we leave space for a greedy embedding that will occur 
between the approximate decomposition step and the exact decomposition step). For 
each w ∈ W we let pgw = (1 − η)n−1|F g

w| +n−.2 (so 1 − η ≤ p1
w + p2

w ≤ 1 −L−3η). We let 
pg = |W |−1 ∑

w∈W pgw (so 1 −η ≤ p1 +p2 ≤ 1 −L−3η). For each arc e of G independently 
we will let P (e ∈ Gg) = pg for g ∈ [2].

We introduce further probabilities corresponding to the cycle distributions of each 
F g
w. For c < K we write qgw,cn for the number of cycles of length c in F g

w and let 
pgw,c = (1 −η)qgw,c. We define pgw,K so that F g

w has about 8pgw,Kn vertices not contained in 
cycles of length < K (for technical reasons, we also ensure that each pgw,K ≥ n−.2, which 
explains the term n−.2 in the definition of pgw). Averaging over W gives the corresponding 
probabilities that describe the uses of arcs in each Gg: we let pgc = |W |−1 ∑

w∈W pgw,c

so that for each c < K, the number of edges in Gg allocated to cycles of length c will 
be roughly 

∑
w∈W cpgw,cn = |W |cpgcn = αcpgcn

2 = cpgc |G| + O(n), and similarly, roughly 
8pgK |G| + O(n) arcs in Gg will be allocated to long cycles.

The remainder of the algorithm is concerned with the auxiliary digraphs Jg. For any 
colour c, we let Jc

g denote the arcs of colour c in Jg. We also write J∗
g = ∪c �=KJc

g . First 
we consider arcs within Jg[V ]. Throughout the paper, we fix a cyclic order on V , which 
we choose uniformly at random. For v ∈ V , let v+ denote the successor of v and v−

denote the predecessor of V . Arcs of the special colour K should correspond to 1/8 of 
the factor arcs that are not in short cycles, so should form a graph of density about 
pgK . For each arc −→xy ∈ Gg not of the form −→zz+ (to avoid loops, we don’t mind double 
edges) independently we assign −→xy to colour K with probability pgK/pg or colour 0 with 
probability pg∗/pg (where pgK + pg∗ is slightly less than pg). If −→xy has colour K we add 
−→xy− to JK

g .
Now we consider Jg[V, W ]. These arcs are all directed from V to W . For each w ∈ W

and cycle length c < K, there should be about cpgw,cn vertices available for the c-cycles 
in F g

w. The colouring of −→Wc requires 1/c-fraction of these to be joined to w in colour 
c, so we should have N−

Jc
g
(w) ≈ pgw,cn. Similarly, there should be about 8pgw,Kn vertices 

available for vertices of F g
w not in short cycles, and the colouring of −→WK

8 requires 1/8 of 
these to be joined to w in colour c, so we should have N−

JK
g

(w) ≈ pgw,Kn. These arcs are 
chosen randomly, not independently, but according to a random collection of intervals, 
of sizes di = d/(2s)i−1 with i ∈ [2s + 1], where d is small enough that the resulting 
graph is roughly typical, but large enough to give a good upper bound on the number 
of vertices in long cycles that become unused when they are chopped up into paths, and 
so need to be embedded greedily.

These intervals must be chosen quite carefully, because of the following somewhat 
subtle constraint. Recall that in Case K we will reduce to a path factor problem in 
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some subdigraph H of G. This can only have a solution if each vertex x has degree 
d±H(x) = d2(x) − d±(x), where d2(x) is the number of path factors that will use x and 
d−(x) (respectively d+(x)) is the number of these in which x is the start (respectively 
end). The path factors will be obtained from a set of arc-disjoint −→WK

8 ’s, where for each 
w ∈ W , its colour K neighbourhood is given by a set of intervals ([xw

i , (ywi )−] : i ∈ Iw), 
so its −→WK

8 ’s will define paths from xw
i to ywi . Thus in the auxiliary digraph J , the 

degree of x into W must be d+
J (x, W ) = d2(x) − d′1(x), where d′1(x) is the number 

of path factors in which x is some successor (ywi )+. To relate these two formulae, we 
note that a wheel decomposition of J requires d+

J (x, W ) = d+
J (x, V ) = d−J (x, V ) and 

d+
JK (x, W ) = d−

JK (x, V ), and that in the twisting construction, d−
JK (x−, V ) arcs of H

at x are not counted by d−J (x, V ), whereas d−
JK (x, V ) arcs of H not at x are counted 

by d−J (x, V ). Writing Δ(x) = d−
JK (x−, V ) − d−

JK (x, V ) = d+
JK (x−, W ) − d+

JK (x, W ), we 
deduce d+

H(x) = d+
J (x, V ) and d−H(x) = d−J (x, V ) +Δ(x), so we need Δ(x) = d′1(x) −d+(x)

and d′1(x) = d−(x). So Δ(x) = d−(x) −d+(x). We will ensure that both sides are always 
0 (taking H equal to the digraph G′

1 in which we need to solve the path factor problem), 
i.e.

i. every vertex is used equally often as a startpoint or as a successor of an interval, 
and

ii. all vertices appear in some interval for the same number of factors.
(The successor of an interval is the successor of its largest member.) To achieve this, we 

identify V with [n] under the natural cyclic order, and select our intervals from canonical 
sets Ii

j , i ∈ [2s + 1], j ∈ [di], where each Ii
j is a partition of [n] into n/di ± 1 intervals of 

length at most di, we have Ii
j ∩ Ii

j′ = ∅ for j 
= j′, and for each i, every v ∈ [n] occurs 
exactly once as a startpoint of some interval in Ii = ∪jIi

j , and also exactly once as a 
successor of some interval in Ii. The two conditions discussed in the previous paragraph 
will then be satisfied if there are numbers ti, i ∈ [2s + 1] such that every interval in 
Ii is used by exactly ti factors. Each w will select intervals from some Ii(w)

j(w), and these 
intervals must be non-consecutive, so that the paths do not join up into longer paths. 
This explains why we use several different interval sizes: if we only used one size d then 
a pair of vertices in V at cyclic distance d could never be both used for the same factor, 
and so we would be unable to satisfy the conditions of the wheel decomposition results 
in section 3.

Now we describe how factors choose intervals. For each w ∈ W , we start by indepen-
dently choosing i = i(w) ∈ [2s +1] and j = j(w) ∈ [di] uniformly at random. Given i and 
j, we activate each interval in Ii

j independently with probability 1/2, and select any in-
terval I such that I is activated, and its two neighbouring intervals I± are not activated. 
We thus obtain a random set of non-consecutive intervals where each interval appears 
with probability 1/8 (not independently). We form random sets of intervals X g

w where 
each interval selected for w is included in X g

w independently with probability 8pgw,K (and 
is included in at most one of X 1

w or X 2
w). Thus, given w ∈ Wi := {w′ : i(w′) = i}, any 

interval I ∈ Ii appears in X g
w with probability pgw,K/di. The events {I ∈ X g

w} for w ∈ Wi

are independent, so whp about 
∑

w∈W pgw,K/di factors use I.

i



296 P. Keevash, K. Staden / Journal of Combinatorial Theory, Series B 152 (2022) 281–318
Our final sets of intervals Yg
w are obtained from X g

w by removing a small number 
of intervals so that every interval in Ii is used exactly tgi times, where tgi is about ∑

w∈Wi
pgw,K/di. (We only need this property when g = 1, but for uniformity of the 

presentation we do the same thing for g = 2.) These intervals determine JK
g [V, W ]: 

we let N−
JK
g

(w) = Y g
w :=

⋃
Yg
w, i.e. the subset of V which is the union of the inter-

vals in Yg
w. As each x is the startpoint of exactly one interval in Ii it occurs as the 

startpoint of an interval for exactly tg :=
∑

i t
g
i factors; the same statement holds for 

successors of intervals. As each x ∈ V appears in exactly one interval in each Ii
j we 

deduce d+
JK
g

(x, W ) =
∑2s+1

i=1
∑di

j=1 t
g
i ≈

∑
w∈W pgw,K = |W |pgK .

The other arcs of J incident to w will come from Y w := V \
(
Y 1
w∪Y 2

w∪(Y 1
w)+∪(Y 2

w)+
)
, 

where (Y g
w)+ is the set of successors of intervals in Yg

w (these vertices are endpoints of 
paths so should be avoided by the short cycles, and also by the 7/8 of the paths not 
specified by the intervals). We define J [V, W ] by N−

J
(w) = Y w. For any x ∈ V we will 

have P (x ∈ Y g
w) ≈ P (x ∈ Xg

w) = pgw,K and P (x ∈ Y g
w | w ∈ Wi) ≈ P (x ∈ Xg

w | w ∈
Wi) = pgw,K/di, so |Y w| ≈ pwn, where pw = 1 − di+1

di
(p1

w,K + p2
w,K).

In J∗
g = Jg \ JK

g we require about pgw,∗n such arcs, where pgw,∗ := pgw − pgw,K , and 
of these, for each cycle length c < K we require about pgw,cn arcs of colour c. For each 
x ∈ Y w independently we include the arc xw in at most one of the J∗

g with probability 
pgw,∗/pw, which is a valid probability as p1

w,∗ + p2
w,∗ = 1 − L−3η − p1

w,K − p2
w,K < pw. 

Then we give each xw ∈ J∗
g [V, W ] colour c with probability pgw,c/p

g
w,∗. In particular, xw

in J∗
g is coloured 0 with probability pgw,0/p

g
w,∗, where pgw,0 := pgw,∗ −

∑K−1
c=3 pgw,c.

4.1. Formal statement of the algorithm

The input to the algorithm consists of an αn-regular digraph G on V , a family (Fw :
w ∈ W ) of αn oriented one-factors, each partitioned as Fw = F 1

w ∪ F 2
w, and parameters 

satisfying n−1 � ε � t−1 � K−1 � d−1 � η � s−1 � L−1 � α. We identify V with 
[n] according to a uniformly random bijection and adopt the natural cyclic order on [n]: 
each x ∈ [n] has successor x+ = x +1 (where n +1 means 1) and predecessor x− = x −1
(where 0 means n). Let di = d/(2s)i−1 for i ∈ [2s + 1]. We write n = ridi + si with 
ri ∈ N and 0 ≤ si < di, and let

P i
j =

{
{kdi + j : 0 ≤ k ≤ ri} if j ∈ [si],
{kdi + j : 0 ≤ k ≤ ri − 1} if j ∈ [di] \ [si].

For each i ∈ [s +1] and j ∈ [di] we define a partition of [n] into a family of cyclic intervals 
Ii
j defined as all [a, b−] where a ∈ P i

j and b is the next element of P i
j in the cyclic order. 

(So |Ii
j | = n/di ± 1, each I ∈ Ii

j has |I| ≤ di, and Ii
j ∩ Ii

j′ = ∅ for j 
= j′.) We let 
Ii = ∪j∈[di]Ii

j . (So for every v ∈ [n], exactly one [a, b−] ∈ Ii has a = v, and exactly one 
[a, b−] ∈ Ii has b = v.) Each w ∈ W will be assigned i(w) ∈ [2s + 1]. For c < K write 
qgw,cn for the number of cycles of length c in F g

w. Let
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pgw = (1 − η)n−1|F g
w| + n−.2, pgw,c = (1 − η)qgw,c for 3 ≤ c < K,

pgw,K = 1
8
(
pgw − ΣK−1

c=3 cpgw,c

)
,

pgw,∗ = pgw − pgw,K , pgw,0 = pgw,∗ − ΣK−1
c=3 pgw,c, pw,K = p1

w,K + p2
w,K ,

pw = 1 − di(w)+1
di(w)

pw,K , pg = |W |−1Σw∈W pgw,

pgc = |W |−1Σw∈W pgw,c for c ∈ [0,K] ∪ {∗}.

We complete the algorithm by applying the following subroutines INTERVALS and 
DIGRAPH.

INTERVALS

i. For each w ∈ W independently choose i(w) ∈ [2s + 1] and j(w) ∈ [di(w)] uniformly 
at random. Let Wi = {w : i(w) = i}.

ii. For each w ∈ W , let Aw include each interval of Ii(w)
j(w) independently with probability 

1/2.
Let Sw consist of all I ∈ Aw such that both neighbouring intervals I± of I are not 
in Aw.

iii. Let X g
w, g ∈ [2] be disjoint and chosen with P (I ∈ X g

w) = 8pgw,K independently for 
each I ∈ Sw.

iv. Let tgi = min{|X g(I)| : I ∈ Ii}, where X g(I) := {w ∈ Wi : I ∈ X g
w}, and obtain 

Yg
w ⊆ X g

w by deleting each I ∈ Ii, i ∈ [2s + 1] from |X g(I)| − tgi sets X g
w with 

w ∈ X g(I), independently uniformly at random. Write Yg(I) := {w ∈ Wi : I ∈ Yg
w}

(so |Yg(I)| = tgi for I ∈ Ii).

DIGRAPH

i. Let G1 and G2 be arc-disjoint with P (−→e ∈ Gg) = pg independently for each arc −→e
of G.

ii. For each g ∈ [2] and −→xy ∈ Gg independently, if −→xy is −→zz− or −→zz+ for some z add −→xy to 
J0
g , otherwise choose exactly one of P (−→xy ∈ J0

g ) = pg∗/pg or P (−→xy− ∈ JK
g ) = pgK/pg.

iii. For each w ∈ W , add −→xw to JK
g for each x ∈ Y g

w :=
⋃
Yg
w, and add −→xw to J for 

each x ∈ Y w := V \ (Y 1
w ∪ Y 2

w ∪ (Y 1
w)+ ∪ (Y 2

w)+).
iv. For each arc −→xw of J [V, W ] independently, add −→xw to J∗

g [V, W ] with probabil-
ity pgw,∗/pw, and give it exactly one colour c 
= K (including 0) with probability 
pgw,c/p

g
w,∗.

We conclude this section by recording some estimates on the algorithm parameters 
used throughout the paper.

In Case K, all |F g
w| = n/2 ± 2K, p1

w, p
2
w > .49, p1

w,K = p1
w/8 > 1/17,

p1
w,c = 0 for c ∈ [3,K − 1], p1

w,∗ = p1
w,0 = 7p1

w/8 > 1/3



298 P. Keevash, K. Staden / Journal of Combinatorial Theory, Series B 152 (2022) 281–318
and p2
w,∗ ≥ p2

w,0 ≥ 2p2
w/3 > 1/4.

In Case �∗, all |F 1
w| = �∗L−3n, |F 2

w| = n− �∗L−3n, p1
w > (1 − η)�∗L−3 > 2L−3,

p2
w > 1 − 2L−2 > .9, p1

w,�∗ = p1
w/�

∗ > .9L−3, p1
w,K = n−.2/8,

p1
w,c = 0 for c ∈ [3,K − 1] \ {�∗},

p1
w,∗ > 2L−3, p1

w,0 ≥ 2p1
w,∗/3 > L−3 and p2

w,∗ ≥ p2
w,0 ≥ 2p2

w/3 > .6.

In both cases, p2
w,K ≥ n−.2/8.

5. Analysis I: intervals

In this section we analyse the families of intervals chosen by the INTERVALS subrou-
tine in section 4; our goal is to establish various regularity and extendability properties of 
JK
g [V, W ] and Jg[V, W ] (which are defined in step (iii) of DIGRAPH but are completely 

determined by INTERVALS). We also deduce some corresponding properties that follow 
from these under the random choices in DIGRAPH. Before starting the analysis, we 
state some standard results on concentration of probability that will be used throughout 
the remainder of the paper. We use the following classical inequality of Bernstein (see 
e.g. [4, (2.10)]) on sums of bounded independent random variables. (In the special case 
of a sum of independent indicator variables we will simply refer to the ‘Chernoff bound’.)

Lemma 5.1. Let X =
∑n

i=1 Xi be a sum of independent random variables with each 
|Xi| < b.

Let v =
∑n

i=1 E(X2
i ). Then P (|X − EX| > t) < 2e−t2/2(v+bt/3).

We also use McDiarmid’s bounded differences inequality, which follows from Azuma’s 
martingale inequality (see [4, Theorem 6.2]).

Definition 5.2. Suppose f : S → R where S =
∏n

i=1 Si and b = (b1, . . . , bn) ∈ Rn. We 
say that f is b-Lipschitz if for any s, s′ ∈ S that differ only in the ith coordinate we have 
|f(s) − f(s′)| ≤ bi. We also say that f is v-varying where v =

∑n
i=1 b

2
i /4.

Lemma 5.3. Suppose Z = (Z1, . . . , Zn) is a sequence of independent random variables, 
and X = f(Z), where f is v-varying. Then P (|X − EX| > t) ≤ 2e−t2/2v.

The next lemma records various regularity and extendability properties of JK
g [V, W ]

and Jg[V, W ]. We recall that each N−
JK
g

(w) = Y g
w and N−

Jg
(w) = Y w, and also our 

notation for common neighbourhoods, e.g. N−
JK
g

(R) =
⋂

w∈R N−
JK
g

(w) in statement (iv). 
Statements (iv) and (v) will be applied to nO(1) choices of set U or function h, so their 
conclusions apply whp simultaneously to all these choices (recalling our convention that 
‘whp’ refers to events with exponentially small failure probability). For x ∈ V we write 
t−g (x) or t+g (x) for the number of w such that x is the startpoint or successor of an 
interval in Yg

w. We also use the separation property from Definition 3.2.
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Lemma 5.4. Let g ∈ [2], U ⊆ V and h : W → R with each |h(w)| < n.01. Then whp:
i. |Yg(I)| = tgi = |W |pg

K

(2s+1)di
± n.51 for all I ∈ Ii, i ∈ [2s + 1].

ii. d+
JK
g

(x, W ) = |W |pgK ± n.52 and t±g (x) = tg :=
∑

i t
g
i for each x ∈ V .

iii. d−
JK
g

(w) = |Y g
w | = pgw,Kn ± n3/4 and d−

J
(w) = |Y w| = pwn ± n3/4 for all w ∈ W .

iv. For any disjoint R, R′ ⊆ W of sizes ≤ s we have∣∣∣U ∩N−
JK
g

(R) ∩N−
J

(R′)
∣∣∣ = |U |

∏
w∈R

pgw,K

∏
w∈R′

pw ± 3sn3/4.

v. Consider H :=
∑{

h(w) : w ∈ N+
JK
g

(S) ∩N+
J

(S′)
}

for disjoint S, S′ ⊆ V of sizes 
≤ s.

If S ∪ S′ is 3d-separated then H =
∑
w∈W

(pgw,K)|S|p|S
′|

w h(w) ± 5sn3/4.

If (S, S′) is 3d-separated then H ≥ 2−2s
∑
w∈W

(pgw,K)|S|h(w).

Write Xg
w =

⋃
X g

w and Xw = V \ (X1
w ∪ X2

w ∪ (X1
w)+ ∪ (X2

w)+). In the proof we 
repeatedly use the observation that if S∪S′ ⊆ V is 3d-separated and w ∈ W , given i(w)
and j(w), the events {{x ∈ Xg

w} : x ∈ S} ∪ {{x ∈ Xw} : x ∈ S′} are independent, as 
they are determined by disjoint sets of random decisions in INTERVALS. The weaker 
assumption that (S, S′) is 3d-separated only implies independence of {S ⊆ Xg

w} and 
{S′ ⊆ Xw}. We also note that for any S, S′ the events {S ⊆ Xg

w} ∩ {S′ ⊆ Xw} are 
independent over w ∈ W .

Proof. For (i), consider any I ∈ Ii
j with i ∈ [2s + 1], j ∈ [di]. For each w ∈ Wi

independently we have P (j(w) = j) = 1/di, P (I ∈ Sw | j(w) = j) = 1/8, P (I ∈ X g
w |

I ∈ Sw) = 8pgw,K , so P (I ∈ X g
w) = pgw,K/di. As P (w ∈ Wi) = 1/(2s + 1) for each w ∈ W

and 
∑

w∈W pgw,K = |W |pgK , by a Chernoff bound, whp |X g(I)| = |W |pg
K

(2s+1)di
± n.51. This 

estimate holds for all such I, and so for tgi = min{|X g(I)| : I ∈ Ii}; thus (i) holds.
For (ii), note that each x ∈ V appears in exactly one interval in each Ii

j , so

d+
JK
g

(x,W ) =
2s+1∑
i=1

di∑
j=1

( |W |pg
K

(2s+1)di
± n.51) = |W |pgK ± n.52.

Next we recall that INTERVALS chooses uniformly at random Yg(I) ⊆ X g(I) of size 
tgi . The statements on t±g (x) hold as for each i there is exactly one [a, b] ∈ Ii with 
a = x and exactly one [a, b] ∈ Ii with b+ = x. For future reference, we note that each 
|X g(I) \ Yg(I)| < 2n.51.

For (iii), consider any w ∈ W . We start INTERVALS by choosing i = i(w) ∈ [2s + 1]
and j = j(w) ∈ [di] uniformly at random. Given these choices, any I ∈ Ii

j appears in Sw
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if I ∈ Aw and I± /∈ Aw; this occurs with probability 1/8, so E|Sw| = |Ii
j |/8 = n/8di±1. 

As |Sw| is a 3-Lipschitz function of the events {I ∈ Aw}, I ∈ Ii
j , by Lemma 5.3 whp 

|Sw| = n/8di±n.51. Each I ∈ Sw is included in X g
w independently with probability 8pgw,K , 

so by a Chernoff bound whp |X g
w| = pgw,Kn/di ± 2n.51. For each I ∈ X g

w independently 
we have I ∈ Yg

w with probability tgi /|X g(I)| = 1 ± n−.27, as pgK ≥ n−.2. Thus diE|Yg
w| =

pgw,Kn ±n.73, so by a Chernoff bound whp d−
JK
g

(w) = |Y g
w | = di|Yg

w| ±di = pgw,Kn ±2n.73. 
We deduce d−

J
(w) = n − di+1

di
(|Y 1

w | + |Y 2
w |) = pwn ±n3/4, so (ii) holds. We note that each 

|Y g
w | = |Xg

w| ± n3/4 and |Y w| = |Xw| ± n3/4.
For (iv), we first estimate the number N of u ∈ U such that u ∈ Xg

w for all w ∈ R

and u ∈ Xw for all w ∈ R′. The actual quantity we need to estimate is obtained by 
replacing ‘X’ with ‘Y’, and so differs in size by at most 2sn3/4. For each u ∈ U , we have 
independently P (u ∈ Xg

w) = pgw,K for all w ∈ R and P (u ∈ Xw) = pw for all w ∈ R′, 
so EN = |U | 

∏
w∈R pgw,K

∏
w∈R′ pw. Indeed, given choices of i = i(w) and j = j(w), 

letting I be the unique interval in Ii
j whose successor is u, we have P (u ∈ Xw) =

1 −
∑2

g=1(P (u ∈ Xg
w) + P (I ∈ X g

w)) = pw. Now (iv) follows from Lemma 5.3, as N is a 
3d-Lipschitz function of ≤ 2n independent random decisions in INTERVALS.

For (v), we will estimate H ′ =
∑

{h(w) : S ⊆ Xg
w, S

′ ⊆ Xw}. The actual quantity H
we need to estimate is obtained from H ′ by replacing ‘X’ with ‘Y’. We have |H −H ′| <
4sn3/4, as for each i, j there are ≤ 2s intervals I ∈ Ii

j with I ∩ (S ∪ S′) 
= ∅ each with 
< 2n.51 choices of w ∈ X g(I) \ Yg(I) each with |h(w)| < n.01. If S ∪ S′ is 3d-separated 
then independently for all w ∈ W we have P (x ∈ Xg

w) = pgw,K for all x ∈ S and 
P (x ∈ Xw) = pw for all x ∈ S′; the required estimates on H ′ and so H follow whp from 
Lemma 5.1.

Finally, we consider (v) when (S, S′) is 3d-separated. We fix w ∈ W , condition on 
i(w) = i and j(w) = j, and recall P (S ⊆ Xg

w, S
′ ⊆ Xw) = P (S ⊆ Xg

w)P (S′ ⊆ Xw). We 
have the bound P (S′ ⊆ Xw) ≥ 2−s from the event I /∈ Aw for all I ∈ Ii

j with I ∩S′ 
= ∅. 
We claim that P (S ⊆ Xg

w) > (5s)−1(pgw,K)|S|, which by Lemma 5.1 suffices to complete 
the proof.

To prove the claim, we first note that if for some Ii
j no two vertices of S lie in 

consecutive intervals then P (S ⊆ Xg
w | i(w) = i, j(w) = j) ≥ (pgw,K)|S|: indeed, the 

events {I ∈ X g
w} for I ∈ Ii

j with I ∩ S 
= ∅ are positively correlated. For i ∈ [2s + 1] let 
J i
s be the set of j ∈ [di] for which some pair x, x′ of S lie in consecutive intervals of Ii

j: 
we say j is i-bad for x, x′. We note that if j is i-bad for some pair in S then it is i-bad 
for some consecutive pair x, x′ in S (i.e. {x, x′} ∩ S = ∅). It suffices to show that some 
|J i

s| < di/2. For this, we note that as |S| ≤ s we can fix i ∈ [2s + 1] so that the cyclic 
distance between any pair of vertices in S is either < di+1 or ≥ di−1. There are no i-bad 
j for any pair x, x′ with d(x, x′) ≥ di−1 = 2sdi. Also, if d(x, x′) < di+1 then j is i-bad 
for x, x′ only if Ii

j contains an interval with an endpoint in the cyclic interval [x, x′], so 
there are at most di+1 such j. We deduce |J i

s| < sdi+1 = di/2, which completes the proof 
of the claim, and so of the lemma. �
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The next lemma contains similar statements to those in the previous one concerning 
the colours and directions introduced in DIGRAPH. In (iii) we define JK′

g by JK′
g [V, W ] =

JK
g [V, W ] and −→uv ∈ JK′

g [V ] ⇔ −→uv− ∈ JK
g [V ], thus removing the twist: if for some arc −→uv

of Gg we add −→uv− to JK
g then we add −→uv to JK′

g .

Lemma 5.5. Let g ∈ [2]. Write qg0 = pg∗, qgK′ = pgK and qgc = 0 otherwise. Then whp:
i. For every v ∈ V and c ∈ [3, K] ∪ {0} we have d±Jg

(v, V ) = pg(1 ± ε)αn ± n.6, 
d±Jc

g
(v, V ) = pgc(1 ± ε)αn ± n.6, d+

Jc
g
(v, W ) = pgcαn ± 2n3/4.

ii. For every w ∈ W and c ∈ [3, K] ∪ {0} we have d−Jc
g
(w, V ) = pgw,cn ± 2n3/4.

iii. For any mutually disjoint sets Rc ⊆ W and S+
c , S−

c ⊆ V for c ∈ [3, K−1] ∪{0, K ′}
with 

∑
c |Rc| ≤ s and 

∑
c |S±

c | ≤ s we have∣∣∣⋂
c

(
N−

Jc
g
(Rc) ∩N+

Jc
g
(S+

c ) ∩N−
Jc
g
(S−

c )
)∣∣∣

= |N+
G (∪cS

+
c ) ∩N−

G (∪cS
−
c )|

∏
c

(
(qgc )|S

+
c |+|S−

c |
∏

w∈Rc

pgw,c

)
± 4sn3/4.

iv. Consider H ′ :=
∣∣W ∩N+

JK
g

(S) ∩
⋂

c N
+
Jc
g
(Sc)

∣∣ for disjoint S, S′ ⊆ V of sizes ≤ s with 

S′ partitioned as (Sc : c ∈ [3, K − 1] ∪ {0}).

If S ∪ S′ is 3d-separated then H ′ =
∑
w∈W

(pgw,K)|S|
∏
c

(pgw,c)|Sc| ± 6sn3/4.

If (S, S′) is 3d-separated then H ′ + n.6 ≥ 2−2s
∑
w∈W

(pgw,K)|S|
∏
c

(pgw,c)|Sc|.

Proof. All quantities considered are 1-Lipschitz functions of the random choices in DI-
GRAPH, so by Lemma 5.3 it suffices to estimate the expectations. For (i), we recall that 
G has vertex in- and outdegrees (1 ±ε)αn, and for each −→xy in G we have P (−→xy ∈ Jg) = pg, 
so Ed+

Jg
(v, V ) = pg(1 ± ε)αn. The other expectations are similar, with slightly mod-

ified calculations due to the twisting in colour K and avoiding loops; for example, 
Ed−

JK
g

(v, V ) = pgK(d−G(v+) ±1) = pgK(1 ±ε)αn ±1. For (ii), we recall d−
J

(w) = pwn ±n3/4

from Lemma 5.4.iii, so for c 
= K we have Ed−
JK
c

(w) = pgw,cp
−1
w d−

J
(w) = pgw,cn ± n3/4. 

(The estimate for c = K was already given in Lemma 5.4.iii.) For (iii), we first apply 
Lemma 5.4.iv with U = N+

G (∪cS
+
c ) ∩N−

G (∪cS
−
c ), R = RK and R′ = ∪c �=KRc to obtain∣∣∣N+

G (∪cS
+
c ) ∩N−

G (∪cS
−
c ) ∩N−

JK
g

(RK) ∩N−
J

(∪c �=KRc)
∣∣∣

= |N+
G (∪cS

+
c ) ∩N−

G (∪cS
−
c )|

∏
w∈RK

pgw,K

∏
w∈∪c�=KRc

pw ± 3sn3/4.

For each vertex v counted here independently we have P (−→vw ∈ Jc
g | −→vw ∈ J) = pgw,c/pw

for all w ∈ Rc, P (−→vx ∈ Jc
g | −→vx ∈ G) = qgc for all x ∈ S−

c and P (−→xv ∈ Jc
g | −→xv ∈
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G) = qgc for all x ∈ S+
c , so whp the stated bound for (iii) holds. For (iv) we first 

consider H := |N+
JK
g

(S) ∩ N+
J

(S′)|. By Lemma 5.4.v with h(w) = 1, if S ∪ S′ is 3d-

separated then H =
∑

w∈W (pgw,K)|S|p
|S′|
w ±5sn3/4, and if (S, S′) is 3d-separated then H ≥

2−2s ∑
w∈W (pgw,K)|S|. For each vertex w counted here independently we have P (−→vw ∈

Jc
g | −→vw ∈ J) = pgw,c/pw for all v ∈ Sc, so whp the stated bound for (iv) holds. �

6. Analysis II: wheel regularity

In this section we show how to assign weights to wheels in each Jg so that for any arc 
−→e there is total weight about 1 on wheels containing −→e , and furthermore all weights on 
wheels with c + 1 vertices are of order n1−c. This regularity property is an assumption 
in the wheel decomposition results of section 3, and is also sufficient in its own right for 
approximate decompositions by a result of Kahn [10]. The estimate for the total weight 
of wheels on an arc will hold even if we add any new arc to Jg, which is useful as we will 
need to consider small perturbations of J1 due to arcs of G not allocated to G1 or G2 or 
not covered in the approximate decomposition of G2.

We start by considering wheels −→Wc with c < K. Let

W g
w,c = ncpgw,c(p

g
w,0)c−1(αpg∗)c.

The motivation for this formula is that it is about the expected number of −→Wc’s in Jg
using w. For any arc −→e let W g

c (−→e ) be the set of copies of −→Wc in Jg with hub in W using 
−→e . Let

Ŵ g
c (−→e ) =

∑
{pgw,cn(W g

w,c)−1 : W ∈ W g
c (−→e ), w ∈ V (W)}.

(If pgw,c = 0 there are no such W, so (W g
w,c)−1 is always defined when used.) In the 

following lemma we calculate the total weights on arcs due to copies of −→Wc, although we 
note that we do not have a good estimate for −→xy ∈ J0

g [V ] if d(x, y) < 3d. In J2 we can 
ignore such arcs, as we only need an approximate decomposition, whereas in J1 we will 
cover these by wheels greedily before finding the exact decomposition – this forms part 
of the perturbation referred to above.

Lemma 6.1. Let c′ ∈ {0, c}, Nc = 1 and N0 = c − 1. Then whp:
i. If pgw,c′ 
= 0 and we add −→xw to Jc′

g [V, W ] then Ŵ g
c (−→xw) = (1 ±4ε)Nc′p

g
w,c/p

g
w,c′±n−.2.

ii. If d(x, y) ≥ 3d and we add −→xy to J0
g [V ] then Ŵ g

c (−→xy) = (1 ± 4ε)cpgc/p
g
∗ ± n−.2.

Proof. As a preliminary step for counting copies of −→Wc we count c-prewheels, which we 
define to consist of a wheel with oriented rim cycle in G and all spokes in J . For any arc 
−→e we let Pc(−→e ) be the set of c-prewheels using −→e ; we will estimate |Pc(−→e )| using the 
analysis of INTERVALS in Lemma 5.4.
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For (i), we estimate |Pc(−→xw)| as follows. We let x = xc and choose the other rim 
vertices x1, . . . , xc−1 sequentially in cyclic order. At c −2 steps we choose xi+1 ∈ N+

G (xi) ∩
N−

J
(w): each has αnpw ± 3sn3/4 options by Lemma 5.4.iv with U = N+

G (xi), R = ∅, 
R′ = {w}, using |N+

G (xi)| = αn (G is αn-regular). At the last step we choose xc−1 ∈
N+

G (xc−2) ∩ N−
G (xc) ∩ N−

J
(w), so similarly there are |N+

G (xc−2) ∩ N−
G (xc)|pw ± 3sn3/4

options, where |N+
G (xc−2) ∩N−

G (xc)| = ((1 ± ε)α)2n by typicality of G. Thus |Pc(−→xw)| =
(1 ± 3ε)αc(pwn)c−1.

Now consider the case c′ = c, i.e. −→xw is added to Jc[V, W ]. For any c-prewheel 
containing −→xw, independently we include the cycle arcs in J0

g with probability pg∗
and give each −−→xiw with i 
= c colour 0 with probability pgw,0/pw, so E|W g

c (−→xw)| =
(1 ± 3ε)(αpg∗)c(pgw,0n)c−1 = (1 ± 3ε)W g

w,c/p
g
w,cn. Of these random decisions, ≤ 2n

concern an arc containing one of x, w, which affect |W g
c (−→xw)| by O(nc−2), and the oth-

ers have effect O(nc−3). Thus |W g
c (−→xw)| is O(n2c−3)-varying, so by Lemma 5.3 whp 

|W g
c (−→xw)| = (1 ± 4ε)W g

w,c/p
g
w,cn, i.e. Ŵ g

c (−→xw) = 1 ± 4ε. When c′ = 0 we argue similarly. 
Now x can be any xi with i 
= c, for which we have c − 1 choices. The probability factors 
are the same as in the previous calculation, except that for −−→xcw we replace pgw,0/pw by 
pgw,c/pw. Again, the stated estimate holds whp by Lemma 5.3, so (i) holds.

For (ii), we write Ŵ g
c (−→xy) =

∑
w∈W Ŵ g

c (xyw), where Ŵ g
c (xyw) is the sum of (W g

w,c)−1

over the set W g
c (xyw) of copies of −→Wc in Jg using −→xy, −→xw and −→yw. Fix w ∈ N+

J
(x) ∩N+

J
(y)

and consider the number |Pc(xyw)| of c-prewheels using {−→xy, −→xw, −→yw}. Choosing rim ver-
tices sequentially as in (i), now there are c −3 steps with αnpw±3sn3/4 options and again 
((1 ± ε)α)2pwn ± 3sn3/4 options at the last step, so |Pc(xyw)| = (1 ± 3ε)αc−1(pwn)c−2.

Now we consider which of these c-prewheels extend to wheels in W g
c (xyw): there 

are c choices for the position of −→xy on the rim, then some probabilities determined by 
independent random decisions: the c − 1 rim edges are each correct with probability pg∗, 
the spoke of colour c with probability pgw,c/pw, and the other c − 1 spokes each with 
probability pgw,0/pw. Therefore

EŴ g
c (xyw) = (1 ± 3ε)c(αpg∗)c−1pgw,c(p

g
w,0)c−1p−2

w nc−2pgw,cn(W g
w,c)−1

= (1 ± 3ε)c(αpg∗)−1pgw,cn(pwn)−2.

By Lemma 5.3 whp Ŵ g
c (−→xy) = (1 ± 3.1ε)c(αpg∗n)−1H, with H =

∑
{pgw,cp

−2
w : w ∈

N+
J

(x) ∩N+
J

(y)}.
We estimate H by Lemma 5.4.v with S = ∅, S′ = {x, y} and h(w) = pgw,cp

−2
w (each 

7/8 ≤ pw ≤ 1). As S ∪ S′ is 3d-separated, whp H = |W |pgc ± 5sn3/4, giving Ŵ g
c (−→xy) =

(1 ± 4ε)cpgc/p
g
∗ ± n−.2. �

Now we apply a similar analysis for −→WK
8 . Let

W g
w,K = n8αpgKpgw,K(αpg∗p

g
w,0)7.
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For any arc −→e let W g
K(−→e ) be the set of copies of −→WK

8 in Jg using −→e . We define Ŵ g
K(−→e )

by setting c = K in Ŵ g
c (−→e ). Now we calculate the total weights on arcs due to copies of −→

WK
8 . Note that we cannot give a good estimate for −→xy ∈ JK

g [V ] if d(x, y) < 3d. We can 
ignore such arcs in J2 (as mentioned above), but in J1 we will replace such arcs by arcs 
of colour 0 (modified by twisting) – this also forms part of the perturbation.

Lemma 6.2. Let c′ ∈ {0, K}, NK = 1, N0 = 7, qgK = pgK , qg0 = pg∗. Then whp:
i. If we add −→xw to Jc′

g [V, W ] then Ŵ g
K(−→xw) = (1 ± 4ε)Nc′p

g
w,K/pgw,c′ .

ii. Suppose we add −→xy to Jc′
g [V ]. If d(x, y) ≥ 3d then Ŵ g

c (−→xy) = (1 ± 4ε)Nc′q
g
K/qgc′ .

If c′ = 0 then Ŵ g
K(−→xy) > 2−2s−1pgK/pg∗.

Proof. For (i), we start by counting (K, g)-prewheels, which we define to consist of a hub 
w ∈ W and an oriented 8-path in G between z and z+ for some z such that −→zw ∈ JK

g

and 
−→
z′w ∈ J for all internal vertices z′ of the path. For any arc −→e we let P g

K(−→e ) be the 
set of (K, g)-prewheels using −→e .

To estimate |P g
K(−→xw)|, suppose first that c′ = K. We require z = x. We choose 

the vertices of the path one by one. At 6 steps there are αnpw ± 3sn3/4 options, and 
at the last step ((1 ± ε)α)2pwn ± 3sn3/4 options of a common outneighbour of some 
vertex and z+, so |P g

K(−→xw)| = (1 ± 3ε)α8(pwn)7. On the other hand, if c′ = 0 then 
there are 7 choices for the position of x as an internal vertex, dividing the path into 
two segments. We construct one segment by choosing its vertices one by one, and then 
do the same for the other segment, starting with one of length ≤ 4 so that {z, z+} is 
not the last choice. At the step where we choose {z, z+}, there is some vertex v on the 
path for which we need the arc −→vz or −→vz+. We also require z ∈ N−

JK
g

(w). The number of 
options is αnpgw,K ± 3sn3/4 by Lemma 5.4.iv, with R = {w}, R = ∅ and U = N+

G (v) or 
U = N+

G (v)− = {z : −→vz+ ∈ G}. There are also 5 steps with αnpw ± 3sn3/4 options, and 
at the last step ((1 ± ε)α)2pwn ± 3sn3/4 options, so |P g

K(−→xw)| = (1 ± 3ε)7α8pgw,K(pw)6n7

(as pgw,K ≥ n−.2/8).
To estimate |W g

K(−→xw)|, we first consider c′ = K. For any (K, g)-prewheel containing 
−→xw, independently we include the last path arc (to z+) in JK

g with probability pgK , the 
other 7 path arcs in J0

g with probability pg∗, and give ←−wz′ for each internal vertex z′

colour 0 with probability pgw,0/pw, so

E|W g
K(−→xw)| = (1 ± 3ε)αpgK(αpg∗p

g
w,0n)7 = (1 ± 3ε)W g

w,K/pgw,Kn.

As |W g
K(−→xw)| is O(n13)-varying, by Lemma 5.3 whp |W g

K(−→xw)| = (1 ±3.1ε)W g
w,K/pgw,Kn ±

n6.51, so Ŵ g
K(−→xw) = 1 ± 4ε (using pgK > n−.2).

For c′ = 0 we have a similar calculation. Indeed, the path arcs are again correct with 
probability (pg∗)7pgK , and the arcs ←−wz′ (now excluding z′ = x) are correct with probability 
(pgw,0/pw)6, so

E|W g
K(−→xw)| = (1 ± 3ε)7αpgKpgw,K(pgw,0)6(αpg∗n)7 = (1 ± 3ε)7W g

w,K/pgw,0n.
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By Lemma 5.3 whp |W g
K(−→xw)| = (1 ± 4ε)7W g

w,K/pgw,0n ± n6.51, so Ŵ g
K(−→xw) = (1 ±

4ε)7pgw,K/pgw,0.
For (ii), we write Ŵ g

K(−→xy) =
∑

w∈W |Ŵ g
K(xyw)|, where Ŵ g

K(xyw) is the sum of 
(W g

w,K)−1 over the set W g
K(xyw) of copies of −→WK

8 in Jg using −→xy, −→xw and −→yw. For 
each w we consider the set P g

K(xyw) of (K, g)-prewheels using {−→xy, −→xw, −→yw}
Suppose first that −→xy has colour c′ = K. We assume d(x, y) ≥ 3d (or there is nothing to 

prove). We must have y = z and in our prewheels the oriented 8-paths from z to z+ must 
end with the arc −→xz+, corresponding to −→xy ∈ JK under twisting. We need w ∈ N+

J
(x) ∩

N+
JK
g

(y) so that −→yw has colour K and −→xw can receive colour 0. Choosing rim vertices 
sequentially, now {z, z′} is already fixed, there are 5 steps with αnpw ± 3sn3/4 options, 
and at the last step ((1 ± ε)α)2pwn ± 3sn3/4 options, so |P g

K(−→xw)| = (1 ± 3ε)α7(pw)6n6.
Now consider which of these prewheels extend to wheels in W g

K(xyw), according to the 
following independent random decisions: the other 7 arcs of the oriented 8-path excluding 
−→xy are each correct with probability pg∗, we already have −→yw ∈ JK

g , and for each of the 

7 internal vertices z′ we have 
−→
z′w correct with probability pgw,0/pw. Therefore

EŴ g
K(xyw) = (1 ± 3ε)(αpg∗)7(p

g
w,0)7p−1

w n6pgw,Kn(W g
w,K)−1 = (1 ± 3ε)(αpgKpwn)−1.

By Lemma 5.3 whp Ŵ g
K(−→xy) = (1 ± 3.1ε)(αpgKn)−1H ± n−.2, with H =

∑
{p−1

w : w ∈
N+

J
(x) ∩ N+

JK
g

(y)}. We estimate H by Lemma 5.4.v with S = {y} and S′ = {x}. As 
d(x, y) ≥ 3d, whp H = |W |pgK ± 5sn3/4, giving Ŵ g

K(−→xy) = 1 ± 4ε.
Now suppose that −→xy has colour c′ = 0. For the hub w we require −→yw ∈ J0 and −→xw in 

JK or J0. We first consider the contribution from −→xw ∈ JK , when the first vertex of the 
oriented 8-path must be z = x. The estimate of |P g

K(−→xw)| is the same as when c′ = K, 
and the probability factors are the same except that the factor for the last path edge (to 
z+) is now pgK instead of pg∗. If d(x, y) ≥ 3d then the same calculation with Lemma 5.3
and Lemma 5.4.v shows that the contribution to Ŵ g

K(−→xy) from w ∈ N+
J

(x) ∩ N+
JK
g

(y)}
is (1 ± 4ε)(pg∗n)−1.

Now we consider the contribution from −→xw ∈ J0. There are 6 positions for −→xy
on the path avoiding {z, z′}. The estimate of |P g

K(−→xw)| is the same as before except 
that one factor of pw is replaced by pgw,K (at the choice of {z, z′}). The probability 

factors are the same as in the previous calculation for −→xw ∈ JK , so EŴ g
K(xyw) =

(1 ± 3ε)pgw,K(αpg∗p2
wn)−1. By Lemma 5.3 whp the contribution to Ŵ g

K(−→xy) from such w
is (1 ±3.1ε)6(αpg∗n)−1H, with H =

∑
{h(w) : w ∈ N+

J
(x) ∩N+

J
(y)}, h(w) = pgw,K(pw)−2.

We estimate H by Lemma 5.4.v with S = ∅, S′ = {x, y}. As (S, S′) is 3d-separated 
(vacuously) whp H ≥ 2−2s ∑

w∈W h(w) = 2−2s|W |pgK , so Ŵ g
K(−→xy) > 2−2s−1pgK/pg∗. 

Now suppose d(x, y) ≥ 3d. Then S ∪ S′ is 3d-separated, so whp H = |W |pgK ± 5sn3/4. 
The contribution here to Ŵ g

K(−→xy) is (1 ± 4ε)6pgK/pg∗, so altogether Ŵ g
K(−→xy) = (1 ±

4ε)7pgK/pg∗. �



306 P. Keevash, K. Staden / Journal of Combinatorial Theory, Series B 152 (2022) 281–318
We combine the above estimates to deduce the main lemma of this section, establishing 
wheel regularity. Let

Ŵ g(−→e ) =
∑

{Ŵ g
c (−→e ) : c ∈ [3,K]}.

Lemma 6.3. Suppose we add −→e to J in any colour, such that if −→e ∈ J [V ] then −→e = −→xy
with d(x, y) ≥ 3d, and if −→e has a vertex in W then it is an endvertex. Then Ŵ g(−→e ) =
1 ± 5ε.

Proof. By Lemmas 6.1 and 6.2 we can analyse the various cases as follows.

• If −→e ∈ Jc
g [V, W ] with c 
= 0 then Ŵ g(−→e ) = Ŵ g

c (−→e ) = 1 ± 5ε.
• If −→xy ∈ JK

g [V ] with d(x, y) ≥ 3d then Ŵ g(−→e ) = Ŵ g
K(−→e ) = 1 ± 5ε.

• If −→e ∈ J0
g [V, W ] then

Ŵ g(−→e ) = (1 ± 4ε)7pgw,K/pgw,0 +
∑K−1

c=3
(
(1 ± 4ε)(c− 1)pgw,c/p

g
w,0 ± n−.2) = 1 ± 5ε,

as pgw,0 = 7pgw,K +
∑K−1

c=3 (c − 1)pgw,c.
• If −→xy ∈ J0

g [V ] with d(x, y) ≥ 3d then

Ŵ g(−→e ) = (1 ± 4ε)7pgK/pg∗ +
∑K−1

c=3
(
(1 ± 4ε)cpgc/p

g
∗ ± n−.2) = 1 ± 5ε,

as pg∗ = pg − pgK = 7pgK +
∑K−1

c=3 cpgc . �
7. Approximate decomposition

Here we describe the approximate decomposition of G2. Recall that at the start of 
section 4 we partitioned each factor Fw into subfactors F 1

w and F 2
w, that each F g

w has 
qgw,cn cycles of length c ∈ [3, K − 1], and pgw,c = (1 − η)qgw,c. We will embed almost all of 
each F 2

w in G2. We say F ′
w ⊆ F 2

w is valid if F 2
w \ F ′

w does not have any independent arcs 
(i.e. arcs −→xy such that both x and y have total degree 1 in F 2

w \ F ′
w) and if F 2

w contains 
a path then F 2

w \ F ′
w contains the arcs incident to each of its ends.

Lemma 7.1. There are arc-disjoint digraphs G2
w ⊆ G2 for w ∈ W , where each G2

w is a 
copy of some valid F ′

w ⊆ F 2
w with V (G2

w) ⊆ N−
J2

(w), such that
i. G−

2 = G2 \
⋃

w∈W G2
w has maximum degree at most 5d−1/3n,

ii. the digraph J−
2 obtained from J2[V, W ] by deleting all −→xw with x ∈ V (G2

w) has 
maximum degree at most 5d−1/3n, and

iii. any x ∈ V has degree 1 in F ′
w for at most n/

√
d choices of w.

Proof. Say that an arc −→vw with v ∈ V and w ∈ W is bad there is some c ∈ [3, K − 1]
such that −→vw ∈ Jc and p2

w,c < n−.1, or −→vw ∈ JK and p2
w,K < d−1/3. The expected bad 

degree of v ∈ V is at most (Kn−.1 + d−1/3)n so by Chernoff bounds we can assume that 
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every v ∈ V has bad degree at most 2d−1/3n. Let J ′
2 be obtained from J2 by deleting all 

bad arcs and all −→xy ∈ JK
2 [V ] with d(x, y) < 3d. We consider the auxiliary hypergraph H

whose vertices are all arcs of J ′
2 and whose edges correspond to all copies of the coloured 

wheels −→WK
8 or −→Wc with c ∈ [3, K − 1]. We recall that W g

w,c = ncpgw,c(p
g
w,0)c−1(αpg∗)c and 

W g
w,K = n8αpgKpgw,K(αpg∗pgw,0)7. We assign weights (1 − 5ε)pgw,cn/(W g

w,c)−1 to each copy 

of any 
−→
Wc (and to 

−→
WK

8 for c = K). By Lemma 6.3, the total weight of wheels in J2 on 
any arc −→e satisfies 1 − 10ε < Ŵ g(−→e ) < 1. Thus the total weight of wheels in J ′

2 on any 
arc −→e satisfies 1 − d−1/4 < Ŵ g(−→e ) < 1, as we deleted at most 2d−1/3n7 (say) copies of −→
WK

8 on −→e using a deleted arc. Note also that for any two arcs the total weight of wheels 
containing both is at most n−.7 (as pgK ≥ n−1/4).

Thus H satisfies the hypotheses of a result of Kahn [10] on almost perfect matchings in 
weighted hypergraphs that are approximately vertex regular and have small codegrees. A 
special case of this result (slightly modified) implies that for any collection F of at most 
n100 (say) subsets of V (H) = J each of size at least 

√
n (say) we can find a matching M

in H such that |F \
⋃

M | < d−1/5|F | for all F ∈ F . (This is immediate from [10] if F has 
constant size, and a slight modification using better concentration inequalities implies 
the stated version. Alternatively, one can reduce to the problem to an unweighted version 
via a suitable random selection of edges and then apply a result of Alon and Yuster [2].) 
This is also implied by a recent result of Ehard, Glock and Joos [7].

We choose such a matching M for the family F where for each v ∈ V ∪ W we 
include sets Fv = {−→e ∈ J2[V, W ] : v ∈ −→e }, FK

v = {−→e ∈ JK
2 [V, W ] : v ∈ −→e }, and 

F ′
v = {−→e ∈ J2[V ] : v ∈ −→e } (the last just for v ∈ V ). This F is valid as all |F | > √

n by 
Lemma 5.5. By construction for all c ∈ [3, K− 1] every copy of −→Wc in M with hub w has 
p2
w,c ≥ n−.1 and every copy of −→WK

8 in M with hub w has p2
w,K ≥ nd−1/3.

For each w we define G2
w to be the subgraph of G corresponding to the wheels in M

containing w, where we take account of the twisting in colour K. Thus G2
w contains the 

rim c-cycle of any c-wheel in M containing w, and for any copy of −→WK
8 in M containing 

−→xw ∈ JK [V, W ] we obtain an oriented path of length 8 from x to x+. The maximum 
degree bounds in (i) and (ii) clearly hold.

Recalling that N−
J2

(w) is disjoint from the set of interval successors (Y 2
w)+, we see 

that these cycles and paths are vertex-disjoint, except that some paths may connect up 
to form longer paths, which can be described as follows. Let Y ′

w be the set of maximal 
cyclic intervals I such that for every x ∈ I there is a copy of −→WK

8 in M containing 
−→xw ∈ JK [V, W ]. Then for each [a, b] ∈ Y ′

w we have a component of G2
w that is a path of 

length 8d(a, b) from a to b+. All these paths have length at most 8d, as each such I is 
contained within an interval of Y2

w. Furthermore, if x ∈ V is an endpoint of some path 
in G2

w then either x is a startpoint or successor of some interval in Y2
w, for which there 

are at most 2t2 choices of w by Lemma 5.4, or x+w ∈ FK
x+ \

⋃
M , or x−w ∈ FK

x− \
⋃

M , 
giving at most 2n/K more choices of w, for a total of at most n/

√
d (say).

It remains to show that each G2
w is isomorphic to some valid F ′

w ⊆ Fw. First we 
show for any c ∈ [3, K − 1] that whp each G2

w has at most q2
w,cn cycles of length c. 

The number of c-cycles is in G2
w is at most |N−

Jc(w)|, which by Chernoff bounds is whp 

2
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< p2
w,cn +n.6 = (1 −η)q2

w,cn +n.6 < q2
w,cn, recalling that p2

w,c ≥ n−.1. Next we bound the 
total length Lw of paths in G2

w. By Lemma 5.4 we have Lw ≤ 8|Y 2
w | < 8p2

w,Kn + 8n3/4. 
Writing L′

w for the total length of long (length ≥ K) cycles and paths in F 2
w, we recall 

that 8p2
w,Kn = p2

wn −
∑K−1

c=3 cp2
w,cn = (1 − η)(L′

w + n.8). So since p2
w,K ≥ d−1/3n, we 

have L′
w > 8d−1/3n and Lw < (1 − η/2)L′

w.
We embed the paths of G2

w into the long cycles and paths in F 2
w according to a greedy 

algorithm, where in each step that we embed some path P of G2
w we delete a path of 

length |P | + 4 from F 2
w, which we allocate to a copy of P surrounded on both sides by 

paths of length 2 that we will not include in F ′
w (so that F ′

w will be valid). We choose 
such a path (if it exists) within a remaining cycle or path of G2

w, using an endpoint if it is 
a path (so that we preserve the number of components). Recalling that there are at most 
n/

√
d endpoints of paths in G2

w, we thus allocate a total of at most 2n/
√
d edges to the 

surrounding paths of length 2. Suppose for a contradiction that the algorithm gets stuck, 
trying to embed some path P in some remainder R. Then all components of R have size 
≤ |P | + 5 ≤ 8d + 5. All components of G2

w have size ≥ K, so |R| ≤ (8d + 5)|L′
w|/K. 

However, we also have |R| ≥ |L′
w| − |Lw| − 2n/

√
d ≥ η|L′

w|/2 − 2n/
√
d, which is a 

contradiction, as K−1 � d−1 � η and L′
w > 8d−1/3n. Thus the algorithm succeeds in 

constructing a valid copy F ′
w of G2

w in F 2
w. �

8. Exact decomposition

This section contains the two exact decomposition results that will conclude the proof 
in both Case K and Case �∗. We start by giving a common setting for both cases. We 
say that G′

1 is a γ-perturbation of G1 if |N±
G1

(x) � N±
G′

1
(x)| < γn for any x ∈ V . We 

say that J ′
1 is a γ-perturbation of J1 if J ′

1 is obtained from J1 by adding, deleting or 
recolouring at most γn arcs at each vertex. We will only consider perturbations which 
are compatible in the sense that arcs added between V and W will point towards W , 
and existing colours will be used.

Setting 8.1. Let G′
1 be an η.9-perturbation of G1. Suppose for each w ∈ W that Zw ⊆ V

with |Zw � (V \N−
J1(w))| < 5ηn. For x ∈ V we write Z(x) = {w ∈ W : x ∈ Zw}.

We start with the exact result for Case �∗, where we recall that F 1
w consists of exactly 

L−3n cycles of length �∗, so p1
w = (1 −η)�∗L−3+n−.2, p1

w,�∗ = (1 −η)L−3, p1
w,K = n−.2/8

and p1
w,c = 0 for c ∈ [3, K − 1].

Lemma 8.2. Suppose in Setting 8.1 and Case �∗ that d±G′
1
(x) = |W | − |Z(x)| for all 

x ∈ V and �∗ divides n − |Zw| for all w ∈ W . Then G′
1 can be partitioned into graphs 

(G1
w : w ∈ W ), where each G1

w is an oriented C�∗-factor with V (G1
w) = V \ Zw.

Proof. We will show that there is a perturbation J ′
1 of J1 such that J ′

1[V ] = G′
1, each 

N−
′ (w) = V \Zw, and Theorem 3.1 applies to give a 

−→
W�∗ -decomposition of J ′

1. This will 
J1
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suffice, by taking each G1
w to consist of the rim �∗-cycles of the copies of −→W�∗ containing 

w.
We construct J ′

1 by starting with J ′
1 = J1 and applying a series of modifications as 

follows. First we delete all arcs of J ′
1[V ] corresponding to arcs of G1 \ G′

1 and add arcs 
of colour 0 corresponding to arcs of G′

1 \G1. Similarly, we delete all arcs −→vw ∈ J ′
1[V, W ]

with v ∈ N−
J1

(w) ∩Zw and add arcs −→vw of colour 0 for each v ∈ (V \Zw) \N−
J1

(w). We also 
recolour any −→vw ∈ J ′

1[V, W ] of colour K to have colour 0 and replace any −→xy of colour K in 
J ′

1[V ] by −→xy+ of colour 0. As each p1
w,K = n−.2/8 in this case, whp this affects at most n.8

arcs at any vertex. Now J ′
1[V ] = G′

1, each N−
J ′
1
(w) = V \Zw and J ′

1 is a η.8-perturbation 

of J1. We note for each x ∈ V that d±J ′
1
(x, V ) = d±G′

1
(x) = |W | − |Z(x)| = d+

J ′
1
(x, W ), so 

the divisibility conditions for x ∈ V are satisfied.
Finally, to satisfy the divisibility conditions for all w ∈ W we recolour so that 

d−(J ′
1)�

∗ (w) = d−J ′
1
(w)/�∗, which is an integer, as �∗ divides d−J ′

1
(w) = n − |Zw|. By 

Lemma 5.5 each d−J1
(w) = p1

wn ± 2n3/4 and d−
J�∗
1

(w) = p1
w,�∗n ± 2n3/4, where p1

w =
�∗p1

w,�∗ + n−.2 in this case. As J ′
1 is an η.8-perturbation of J1, we only need to recolour 

at most 2η.8n arcs at any vertex, so our final digraph J ′
1 is a 3η.8-perturbation of J1.

Next we consider the regularity condition of Theorem 3.3. To each copy of −→W�∗ in 
J ′

1 with hub w we assign weight p1
w,�∗n/W

g
w,�∗ = p1

w,0n(αp1
w,0p

1
∗n)−�∗ , which lies in 

[n1−�∗ , LLn1−�∗ ]. We claim that for any arc −→e of P ′ there is total weight 1 ±η.6 on wheels 
containing −→e . To see this, we compare the weight to Ŵ 1

�∗(
−→e ) as defined in section 6, 

which is 1 ± 4ε by Lemma 6.1 (as p1
w,0 = (�∗ − 1)p1

w,�∗ and p1
∗ = (�∗ − 1)p1

�∗). The 
actual weight on −→e differs from this estimate only due to wheels containing −→e that have 
another arc in J ′

1 � J1. There are at most 40η.7n�∗−1 such wheels, each affecting the 
weight by at most LLn�∗−1, so the claim holds. Thus regularity holds with δ = η.6 and 
ω = L−L.

It remains to show that J ′
1 satisfies the extendability condition of Theorem 3.1. Con-

sider any disjoint A, B ⊆ V and C ⊆ W each of size ≤ h, where h = 250(�∗)3 . By 
Lemma 5.5.iii, for c ∈ {0, �∗} we have

|N+
J0
1
(A) ∩N−

J0
1
(B) ∩N−

Jc
1
(C)| = |N+

G (A) ∩N−
G (B)|(p1

∗)|A|(p1
∗)|B|

∏
w∈C

p1
w,c ± 4sn3/4

> (L−5α)2hn,

by typicality of G. Also, by Lemma 5.5.iv (with S = ∅ and S′ = A ∪ B) we have 
|N+

J0
1
(A) ∩ N+

J�∗
1

(B) ∩ W | ≥ 2−2sL−7h|W |, say. The perturbation from J1 to J ′
1 affects 

these estimates by at most 6hη.7n < η.6n, so J ′
1 satisfies extendability with ω = L−L

as above. Now Theorem 3.1 applies to give a 
−→
W�∗-decomposition of J ′

1, which completes 
the proof. �

Our second exact decomposition result concerns the path factors with prescribed ends 
required for Case K. We recall that each F 1

w consists of cycles of length ≥ K and at most 



310 P. Keevash, K. Staden / Journal of Combinatorial Theory, Series B 152 (2022) 281–318
one path of of length ≥ K with |F 1
w| −n/2 ∈ [0, 2K], and that (Y 1

w)− and (Y 1
w)+ are the 

sets of startpoints and successors of intervals in Y1
w. We also recall from Lemma 5.4 that 

for each x ∈ V , letting t±1 (x) = |{w : x ∈ (Y 1
w)±}|, we have t+1 (x) = t−1 (x) = t1. After 

embedding F 2
w, and a greedy embedding connecting the paths to (Y 1

w)− and (Y 1
w)+, we 

will need path factors G1
w as follows.

Lemma 8.3. Suppose in Setting 8.1 and Case K that Zw is disjoint from Y 1
w ∪ (Y 1

w)+
and 8|Y 1

w | = n − |Zw| − |(Y 1
w)+| for all w ∈ W , and d±G′

1
(x) = |W | − t1 − |Z(x)| for all 

x ∈ V . Then G′
1 can be partitioned into graphs (G1

w : w ∈ W ), such that each G1
w is a 

vertex-disjoint union of oriented paths with V (G1
w) = V \Zw, where for each [a, b] ∈ Y1

w

there is an ab+-path of length 8d(a, b).

Proof. We will show that there is a perturbation P of J1 such that each N−
P (w) = V \Zw

and P [V ] corresponds to G′
1 under twisting, and a set E of arc-disjoint copies of −→WK

8
in P , such that Theorem 3.3 applies to give a 

−→
WK

8 -decomposition of P ′ := P \
⋃

E. 
This will suffice, by taking each G1

w to consist of the union of the oriented 8-paths that 
correspond under twisting to the rim 8-cycles of the copies of −→WK

8 containing w.
We construct P by starting with P = J1 and applying a series of modifications as 

follows. First we delete all arcs of P [V ] corresponding to arcs of G1 \G′
1 and add arcs of 

colour 0 corresponding to arcs of G′
1\G1. Similarly, we delete all arcs −→vw ∈ P [V, W ] with 

v ∈ N−
J1

(w) ∩ Zw and add arcs −→vw of colour 0 for each v ∈ V \ (Zw ∪ (Y 1
w)+ ∪N−

J1
(w)). 

We also replace any −→xy of colour K with d(x, y) < 3d by an arc −→xy+ of colour 0; this 
affects at most 6d arcs at each vertex. Now P [V ] corresponds to G′

1 under twisting, each 
N−

P (w) = V \ (Zw ∪ (Y 1
w)+) and P is a 2η.9-perturbation of J1.

We note that P now satisfies the divisibility condition d−P (w) = 8|Y 1
w | = 8d−

PK (w), and 
for each v ∈ V that d+

P (v, W ) = |W | − t1 − |Z(x)| = dP (v, V )/2, so |P [V, W ]| = |P [V ]|. 
We continue to modify P to obtain |P 0[V, W ]| = |P 0[V ]| and |PK [V, W ]| = |PK [V ]|. To 
do so, we will recolour arcs of P [V ] according to a greedy algorithm, where if |P 0[V ]| >
|P 0[V, W ]| we replace some −→xy ∈ P 0[V ] by −→xy− ∈ PK [V ], or if |P 0[V ]| < |P 0[V, W ]| we 
replace some −→xy ∈ PK [V ] by −→xy+ ∈ P 0[V ]. This preserves P [V ] corresponding to G′

1
under twisting and |P [V ]| = |P [V, W ]|, so if we ensure |P 0[V, W ]| = |P 0[V ]|, we will 
also have |PK [V, W ]| = |PK [V ]|. During the greedy algorithm, we choose the arc to 
recolour arbitrarily, subject to avoiding the set S of vertices at which we have recoloured 
more than η.8n/2 arcs. The total number of recoloured arcs is at most ||P [V, W ]| −
|P [V ]|| ≤ ||J1[V, W ]| − |J1[V ]|| + 2η.9n2 < 3η.9n2 (by Lemma 5.5), so |S| < 12η.1n. 
Thus the algorithm can be completed, giving P that is an η.8-perturbation of J1 with 
|P 0[V, W ]| = |P 0[V ]| and |PK [V, W ]| = |PK [V ]|.

We will continue modifying P [V ] until it satisfies the remaining degree divisibility 
conditions for each v ∈ V , i.e. d+

P (v, V ) = d−P (v, V ) = d+
P (v, W ) and d−

PK (v, V ) =
d+
PK (v, W ). To do so, we will reduce to 0 the imbalance Δ′ =

∑
v∈V Δ′(v) with each 

Δ′(v) = |d+
PK (v, V ) −d+

PK (v, W )| +|d−
PK (v, V ) −d+

PK (v, W )|. We do not attempt to control 
any d±0(v, V ), but nevertheless the divisibility conditions will be satisfied when Δ′ = 0. 
P
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To see this, note that if Δ′ = 0 then clearly all d+
PK (v, V ) = d−

PK (v, V ) = d+
PK (v, W ), so 

it remains to show that d−P (v, V ) = d+
P (v, V ) = d+

P (v, W ). Here we recall the discussion 
in section 4 relating the choice of intervals to degree divisibility, where (setting H = G′

1
and J = P ) we noted that d+

G′
1
(v) = d+

P (v, V ) and d−G′
1
(v) = d−P (v, V ) + Δ(v), with 

Δ(v) = d−
PK (v−, V ) − d−

PK (v, V ) = d+
PK (v−, W ) − d+

PK (v, W ). By our choice of intervals 
all d+

PK (v, W ) are equal to t1, so Δ(v) = 0 and d±P (v, V ) = d±G′
1
(v) = |W | − t1 − |Z(x)| =

d+
P (v, W ), as required.

We have two types of reduction according to the two types of term in the definition 
of Δ′(v):

i. If 
∑

v |d−PK (v, V ) − d+
PK (v, W )| > 0 then we can choose x, y in V with d−

PK (x, V ) >
d+
PK (x, W ) and d−

PK (y, V ) < d+
PK (y, W ). We will find z ∈ V such that −→zx ∈ PK , 

−→zy+ ∈ P 0 and replace these arcs by −→zx+ ∈ P 0, −→zy ∈ PK .
ii. If 

∑
v |d+

PK (v, V ) − d+
PK (v, W )| > 0 then we can choose x, y in V with d+

PK (x, V ) >
d+
PK (x, W ) and d+

PK (y, V ) < d+
PK (y, W ). We will find z ∈ V such that −→xz ∈ PK , 

−→yz+ ∈ P 0 and replace these arcs by −→yz ∈ PK , −→xz+ ∈ P 0.

Each of these operations preserves P [V ] corresponding to G′
1 under twisting and 

reduces Δ′.
To reduce Δ′ to 0 we apply a greedy algorithm where in each step we apply one of 

the above operations. We do not allow z with d(x, z) < 3d + 2 or d(y, z) < 3d + 2 (to 
avoid creating close arcs in colour K) or z in the set S′ of vertices that have played 
the role of z at η.7n/2 previous steps. The total number of steps is at most 2η.8n2, so 
|S′| < 4η.1n. To estimate the number of choices for z at each step, we apply Lemma 5.5.iii 
to |N−

JK′
1

(x+) ∩ N−
J0
1
(y+)| for operation (i), |N+

JK′
1

(x) ∩ N+
J0
1
(y)| to find z+ for (ii). By 

typicality of G this gives at least α2n/9 choices, of which at most 5η.1n are forbidden by 
lying in S or too close to x or y, or due to requiring an arc of J1\P , so some choice always 
exists. Thus the algorithm can be completed, giving P that is an η.7-perturbation of J1, 
satisfies the divisibility conditions, and has P [V ] corresponding to G′

1 under twisting.
Next we construct E as a set of arc-disjoint copies of −→WK

8 that cover all −→xy ∈ P [V ]
with d(x, y) < 3d. Note that all such −→xy have colour 0. We apply a greedy algorithm, 
where in each step that we consider some −→xy we choose a copy of −→WK

8 that is arc-disjoint 
from all previous choices and does not use any vertex in the set S of vertices that have 
been used .1d2 times. Then |S|.1d2 < 27dn, so this forbids at most 270n7/d choices 
of −→WK

8 . By Lemma 6.2 we have Ŵ 1
K(−→xy) > 2−2s−1p1

K/p1
∗ > 2−3s, so the number of 

choices is at least 2−3s minw∈W W 2
w,K/p2

w,Kn > 2−4sn7, say. Thus there is always some 
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choice that is not forbidden, so the algorithm can be completed. We note that 
⋃
E has 

maximum degree at most d2 by definition of S, so P ′ := P \
⋃

E is a 2η.7-perturbation 
of J1. Furthermore, P ′ satisfies the divisibility conditions, as P does and so does each −→
WK

8 in E.
Next we consider the regularity condition of Theorem 3.3. To each 3d-separated copy of −→

WK
8 in P ′ with hub w we assign weight p1

w,Kn/W 1
w,K = (αp1

K(αp1
∗p

1
w,0n)7)−1, which lies 

in [n−7, Ln−7]. We claim that for any arc −→e of P ′ there is total weight 1 ± η.6 on wheels 
containing −→e . To see this, we compare the weight to Ŵ 1

K(−→e ) as defined in section 6, 
which is 1 ± 4ε by Lemma 6.2 (as −→e is 3d-separated, p1

w,0 = 7p1
w,K and p1

∗ = 7p1
K). The 

actual weight on −→e differs from this estimate only due to wheels containing −→e that have 
another arc in P ′�J1. There are at most 40η.7n7 such wheels, each affecting the weight 
by at most Ln−7, so the claim holds. Thus regularity holds with δ = η.6 and ω = L−1.

It remains to show that P ′ satisfies the extendability condition of Theorem 3.3. Con-
sider any disjoint A, B ⊆ V and L ⊆ W each of size ≤ h and a, b, � ∈ {0, K}. By 
Lemma 5.5.iii we have |N+

Ja
1
(A) ∩N−

Jb
1
(B) ∩N−

J�
1
(L)| = |N+

G (A) ∩N−
G (B)|(pa1)|A|(pb1)|B| ×∏

w∈L p1
w,� ± 4sn3/4 > (10−3α)2hn, say. Also, if (A, B) is 3d-separated then by 

Lemma 5.5.iv we have |N+
J0
1
(A) ∩ N+

JK
1

(B) ∩ W | ≥ 2−2s+10h|W |, say. The perturbation 

from J1 to P ′ affects these estimates by at most 6hη.7n < η.6n, so P ′ satisfies extend-
ability with ω = L−1 as above. Now Theorem 3.3 applies to give a 

−→
WK

8 -decomposition 
of P ′, which completes the proof. �
9. The proof

This section contains the proof of our main theorem. We give the reduction to cases 
in the first subsection and then the proof for both cases in the second subsection.

9.1. Reduction to cases

In this subsection we formalise the reduction to cases discussed in section 2. For 
Theorem 1.2, we are given an (ε, t)-typical αn-regular digraph G on n vertices, where 
n−1 � ε � t−1 � α, and we need to decompose G into some given family F of αn
oriented one-factors on n vertices. We prove Theorem 1.2 assuming that it holds in the 
following cases with t−1 � K−1 � α:

Case K: each F ∈ F has at least n/2 vertices in cycles of length at least K,
Case � for all � ∈ [3, K − 1]: each F ∈ F has ≥ K−3n cycles of length �.
We will divide into subproblems via the following partitioning lemma.

Lemma 9.1. Let n−1 � ε � t−1 � α0. Suppose G is an (ε, t)-typical αn-regular digraph 
on n vertices and α =

∑
i∈I αi with each αi > α0. Then G can be decomposed into 

digraphs (Gi : i ∈ I) on V (G) such that each Gi is (2ε, t)-typical and αin-regular.
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Proof. We start by considering a random partition of G into graphs (G′
i : i ∈ I) where 

for each arc −→e independently we have P (−→e ∈ G′
i) = αi/α. We claim that whp each G′

i is 
(1.1ε, t)-typical. Indeed, this holds by Chernoff bounds, as Ed(G′

i) = αid(G)/α for each 
i, so whp d(G′

i) = αi ± n−.4 (say), and for any set S = S− ∪ S+ of at most t vertices, 
by typicality of G we have E|N−

G′
i
(S−) ∩ N+

G′
i
(S+)| = (αi/α)|S||N−

G (S−) ∩ N+
G (S+)| =

((1 ± ε)d(G)αi/α)|S|n, so whp |N−
G′

i
(S−) ∩N+

G′
i
(S+)| = ((1 ± 1.1ε)d(G′

i))|S|n,
Now we modify the partition to obtain (Gi : i ∈ I), by a greedy algorithm starting 

from all Gi = G′
i. First we ensure that all |Gi| = αin

2. At any step, if this does not hold 
then some |Gi| > αin

2 and |Gj | < αjn
2. We move an arc from Gi to Gj , arbitrarily 

subject to not moving more than n.7 arcs at any vertex. We move at most n1.6 arcs, so 
at most 2n.9 vertices become forbidden during this algorithm. Hence the algorithm can 
be completed to ensure that all |Gi| = αin

2. Each |N−
G′

i
(S−) ∩N+

G′
i
(S+)| changes by at 

most tn.7, so each Gi is now (1.2ε, t)-typical.
Let G̃i be the undirected graph of Gi (which could have parallel edges). We will 

continue to modify the partition until each G̃i is 2αin-regular, maintaining all |Gi| =
αin

2. At each step we reduce the imbalance 
∑

i,x |dG̃i
(x) − 2αin|. If some G̃i is not 

2αin-regular we have some d
G̃i

(x) > 2αin and d
G̃i

(y) < 2αin. Considering the total 
degree of x, there is some j with d

G̃j
(x) < 2αjn. We will choose some z with xz ∈ G̃i

and yz ∈ G̃j , then move xz to G̃j and yz to G̃i, thus reducing the imbalance by at 
least 2. We will not choose z in the set L of vertices that have played the role of z at 
n.8 previous steps. We had all d

G̃i
(x) = 2(αin ± n.7) after the first algorithm, so this 

algorithm will have at most 2n1.7 steps, giving |L| < n.9. By typicality, there are at least 
3αiαjn choices of z, of which at most 2n.9 are forbidden by L or requiring an edge that 
has been moved, so the algorithm to make each G̃i be 2αin-regular can be completed. 
Each |N−

Gi
(S−) ∩N+

Gi
(S+)| changes by at most tn.8, so each Gi is now (1.1ε, t)-typical.

We will continue to modify the partition until each Gi is αin-regular, maintaining 
all d

G̃i
(x) = 2αin. At each step we reduce the imbalance 

∑
i,x |d+

Gi
(x) − αin| (if it is 0

then since total degrees d
G̃i

(x) are correct, Gi is regular). If it is not 0 we have some 
d+
Gi

(x) > αin and d+
Gi

(y) < αin. Again there is some j with d+
Gj

(x) < αjn and we choose 
some z with −→xz ∈ Gi and −→yz ∈ Gj , then move −→xz to Gj and −→yz to Gi, avoiding vertices 
z which have played this role at n.9 previous steps. By typicality we can find such z at 
every step and complete the algorithm. Each |N−

Gi
(S−) ∩N+

Gi
(S+)| changes by at most 

tn.9, so each Gi is now (2ε, t)-typical. �
Factors of a type that is too rare will be embedded greedily via the following lemma.

Lemma 9.2. Let n−1 � ε � t−1 � α. Suppose G is an (ε, t)-typical αn-regular digraph 
on n vertices and F is a family of at most εn oriented one-factors. Then we can remove 
from G a copy of each F ∈ F to leave a (

√
ε, t)-typical (αn − |F|)-regular graph.

Proof. We embed the one-factors one by one. At each step, the remaining graph G′ is 
obtained from G by deleting a graph that is regular of degree at most 2εn, so is (

√
ε, t)-
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typical. It is a standard argument (which we omit) using the blow-up lemma of Komlós, 
Sárközy and Szemerédi [16] to show that any one-factor can be embedded in G′, so the 
process can be completed. �

Now we prove Theorem 1.2 assuming that it holds in the above cases. We introduce 
new parameters α1, α2, M ′

1, M1, M2, M3 with ε � t−1 � M−1
3 � α2 � M−1

2 � α1 �
(M ′

1)−1 � M−1
1 � α. For � ∈ [3, M2] let F� consist of all factors F ∈ F such that F has 

≥ M−3
2 n cycles of length � but < M−3

2 n cycles of each smaller length. Let F2 consist of 
all remaining factors in F . Note that each F ∈ F2 has fewer than n/M2 vertices in cycles 
of length less than M2, so at least (M2 − 1)n/M2 in cycles of length at least M2. Let B
be the set of � ∈ [3, M2] such that |F�| < α2n. Then for � ∈ I ′ := [3, M2] \ B we have 
β� := n−1|F�| ≥ α2. Also, writing FB =

⋃
�∈B F�, we have βB := n−1|FB | < M2α2 <√

α2.
Let F1 be the set of F in F with at least n/2 vertices in cycles of length > M1. We 

first consider the case η := n−1|F1| ≥ α/2. Let B1 = B ∩ [3, M1], FB1 =
⋃

�∈B1 F�, and 
βB1 := n−1|FB1 | < βB <

√
α2. We apply Lemma 9.1 with I = (I ′∩ [3, M1]) ∪{1}, letting 

α� = β� for all � ∈ I ′ ∩ [3, M1] and α1 = η+βB1 , thus decomposing G into (2ε, t)-typical 
αin-regular digraphs Gi on V (G). For each � ∈ I ′ ∩ [3, M1] we decompose G� into F� by 
Case � of Theorem 1.2, where in place of the parameters n−1 � ε � t−1 � K−1 � α

we use n−1 � 2ε � t−1 � M−1
3 � α2. For G1, we first embed FB1 via Lemma 9.2, 

leaving an ηn-regular digraph G′
1 that is (ε′, t)-typical with α2 � ε′ � t−1 � M−1

2 . 
We then conclude the proof of this case by decomposing G′

1 into F1 by Case K of 
Theorem 1.2, where in place of the parameters n−1 � ε � t−1 � K−1 � α we use 
n−1 � ε′ � t−1 � M−1

1 � η.
It remains to consider the case η < α/2. Here there are at least αn/2 factors F ∈ F

with at least n/2 vertices in cycles of length ≤ M1, so we can fix �∗ ∈ [M1] ∩ I ′ with 
β�∗ > α/2M1. We consider two subcases according to β2 := n−1|F2|.

Suppose first that β2 < α1n. We apply Lemma 9.1 with I = I ′, letting α� = β�

for all � ∈ I \ {�∗} and α�∗ = β�∗ + βB1 + β2. For each � ∈ I \ {�∗} we decompose 
G� into F� by Case � of Theorem 1.2, where (as before) in place of the parameters 
n−1 � ε � t−1 � K−1 � α we use n−1 � 2ε � t−1 � M−1

3 � α2. For G�∗

we first embed FB ∪ F2 by Lemma 9.2, leaving a β�∗n-regular digraph G′
�∗ that is 

(ε′, t)-typical with α1 � ε′ � t−1 � M−1
1 . We then complete the decomposition by 

decomposing G′
�∗ into F�∗ by Case �∗ of Theorem 1.2, where in place of the parameters 

n−1 � ε � t−1 � K−1 � α we use n−1 � ε′ � t−1 � (M ′
1)−1 � β�∗ .

It remains to consider the subcase β2 ≥ α1n. We apply Lemma 9.1 with I = I ′ ∪ {2}, 
letting α� = β� for all � ∈ I \ {�∗} and α�∗ = β�∗ + βB1 . The same argument as in the 
first subcase applies to decompose G� into F� for all � ∈ I ′ \ {�∗}, and also to embed 
FB in G�∗ by Lemma 9.2 and decompose the leave G′

�∗ into F�∗ . We complete the proof 
of this case, and so of the entire reduction, by decomposing G2 into F2 by Case K of 
Theorem 1.2, where in place of the parameters n−1 � ε � t−1 � K−1 � α we use 
n−1 � 2ε � t−1 � M−1

2 � β2.
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9.2. Proof of Theorem 1.2

We are now ready to prove our main theorem. We are given an (ε, t)-typical αn-
regular digraph G on n vertices, where n−1 � ε � t−1 � α, and we need to decompose 
G into some given family F of αn oriented one-factors on n vertices. By the reductions in 
section 9.1, we can assume that we are in one of the following cases with t−1 � M−1 � α:

Case K: each F ∈ F has at least n/2 vertices in cycles of length at least M ,
Case �∗ with �∗ ∈ [3, M − 1]: each F ∈ F has ≥ M−3n cycles of length �∗.
Here the parameters of section 9.1 are renamed: � is now �∗ so that ‘�’ is free to denote 

generic cycle lengths; K is now M , as we want K to take different values in each case: 
we introduce M ′ with t−1 � M ′−1 � M−1 and define

K =
{

M in Case K,

M ′ in Case �∗.

We define a parameter L by L = M in Case �∗ (so K−1 � L−1 � (�∗)−1), or as a 
new parameter with K−1 � L−1 � α in Case K. We use these parameters to apply 
the algorithm of section 4 as in (1), so we can apply the conclusions of the lemmas in 
sections 5 to 8.

We recall that each factor Fw is partitioned as F 1
w ∪ F 2

w, where F 1
w either consists of 

exactly L−3n cycles of length �∗ in Case �∗, or in Case K we have |F 1
w| − n/2 ∈ [0, 2K]

and F 1
w consists of cycles of length ≥ K and at most one path of length ≥ K (and then 

F 2
w = Fw \ F 1

w).
By Lemma 7.1, there are arc-disjoint digraphs G2

w ⊆ G2 for w ∈ W , where each G2
w

is a copy of some valid F ′
w ⊆ F 2

w with V (G2
w) ⊆ N−

J2
(w), such that

i. G−
2 = G2 \

⋃
w∈W G2

w has maximum degree at most 5d−1/3n,
ii. the digraph J−

2 obtained from J2[V, W ] by deleting all −→xw with x ∈ V (G2
w) has 

maximum degree at most 5d−1/3n,
iii. any x ∈ V has degree 1 in F ′

w for at most n/
√
d choices of w.

(Recall that ‘valid’ means that F 2
w \ F ′

w does not have any independent arcs, and if F 2
w

contains a path then F 2
w \ F ′

w contains the arcs incident to each of its ends.)
Note that (ii) implies for each w ∈ W that |F ′

w| ≥ |N−
J2

(w)| −5d−1/3n > p2
wn −6d−1/3n

(by Lemma 5.5), so as p2
wn = (1 − η)|F 2

w| + n.8 we have |F 2
w \ F ′

w| < ηn.
Next we will embed oriented graphs Rw = (F 2

w \F ′
w) ∪Lw for w ∈ W , where Lw ⊆ F 1

w

is defined as follows. In Case �∗ we let each Lw consist of 2ηL−3n cycles of length �∗. 
In Case K we partition each F 1

w as Pw ∪ Lw, where Pw is a valid vertex-disjoint union 
of paths, such that for each [a, b] ∈ Y1

w we have an oriented path P ab
w in Pw of length 

8d(a, b) (which we will embed as an ab+-path). To see that such a partition exists, we 
apply the same argument as at the end of the proof of Lemma 7.1. We consider a greedy 
algorithm, where at each step that we consider some path P ab

w we delete a path of length 
8d(a, b) +4 from F 1

w, which we allocate as P ab
w surrounded on both sides of paths of length 

2 that we add to Lw. As |Y1
w| < n/2d2s+1 = (2s)2sn/2d we thus allocate < (2s)2sn/d
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edges to Lw. Suppose for contradiction that the algorithm gets stuck, trying to embed 
some path P in some remainder Qw. Then all components of Qw have size ≤ 8d + 5. All 
components of F 1

w have size ≥ K, so |Qw| ≤ (8d +5)|F 1
w|/K < 5dn/K. However, we also 

have |Qw| ≥ |F 1
w| − |Y 1

w | − |Lw| ≥ ηn/3, as |F 1
w| ≥ n/2 and |Y 1

w | = (1 − η)n/2 ± 2n3/4

by Lemma 5.4. This is a contradiction, so the algorithm finds a partition F 1
w = Pw ∪Lw

with Pw valid. We note that each |Rw| < 2ηn.
Now we apply a greedy algorithm to construct arc-disjoint embeddings (φw(Rw) : w ∈

W ) in G1. At each step we choose some φw(x) ∈ N−
J1(w) (which is disjoint from G2

w ⊆
N−

J2
(w)). We require φw(x) to be an outneighbour of some previously embedded φw(x1)

or both an outneighbour of φw(x1) and an inneighbour of φw(x2) for some previously 
embedded images; the latter occurs when we finish a cycle or a path (the image under 
φw of the ends of the paths in Rw have already been prescribed: they are either images of 
endpoints of paths in F ′

w or startpoints / successors of intervals in Y1
w). We also require 

φw(x) to be distinct from all previously embedded φw(x1) and not to lie in the set S
of vertices that are already in the image of φw′ for at least η.9n/2 choices of w′. As 
η.9n|S|/2 ≤

∑
w∈W |Rw| < 2ηn2 we have |S| < 4η.1n. To see that it is possible to choose 

φw(x), first note for any v, v′ in V and w ∈ W that |N+
G1

(v) ∩N−
G1

(v′) ∩N−
J1(w)| > α2n/3, 

by Lemma 5.5.iii and typicality of G. At most |Rw| + |S| < 5η.1n choices of φw(x) are 
forbidden due to using S or some previously embedded φw(x1). Also, by definition of S, 
we have used at most η.9n arcs at each of v and v′ for other embeddings φw′ , so this 
forbids at most 2η.9n choices of φw(x). Thus the algorithm never gets stuck, so we can 
construct (φw(Rw) : w ∈ W ) as required.

Let G′
1 = G \

⋃
w∈W (G2

w∪Rw). For each w ∈ W let Zw be the set of vertices of in- and 
outdegree 1 in G2

w ∪Rw. We claim that G′
1 and Zw satisfy Setting 8.1. To see this, first 

note that by definition of S above each |N±
G1

(x) \N±
G′

1
(x)| < η.9n/2. As d±

G−
2
(x) < 5d−1/3n

by (i) above and (by Lemma 5.5) d±G(x) − d±G1
(x) − d±G2

(x) < (1 − p1 − p2)d±G(x) +n.6 <

2ηn we have |N±
G1

(x) � N±
G′

1
(x)| < η.9n, so G′

1 is an η.9-perturbation of G1. Also, as 
|N−

J2
(w) \ F ′

w| ≤ 5d−1/3n, |Rw| < 2ηn and |V \N−
J (w)| < 2ηn (the last by Lemma 5.5) 

we have |Zw � (V \N−
J1(w))| < 5ηn, as claimed.

In Case �∗, every vertex has equal in- and outdegrees 0 or 1 in G2
w∪Rw (it is a vertex-

disjoint union of cycles) so d±G′
1
(x) = |W | − |Z(x)| for all x ∈ V and �∗ divides n − |Zw|

for all w ∈ W . Thus Lemma 8.2 applies to partition G′
1 into graphs (G1

w : w ∈ W ), 
where each G1

w is a C�∗-factor with V (G1
w) = V \ Zw, thus completing the proof of this 

case.
In Case K, a vertex x has indegree (respectively outdegree) 1 in G2

w∪Rw exactly when 
x ∈ (Y 1

w)− (respectively (Y 1
w)+), for which there are each t1 choices of w, so d±G′

1
(x) =

|W | − t1 − |Z(x)| for all x ∈ V . By construction, Zw is disjoint from (Y 1
w)− ∪ (Y 1

w)+, 
and the total length of paths required in the remaining path factor problem satisfies 
8|Y 1

w | = n − |Zw| − |(Y 1
w)+| for all w ∈ W . Thus Lemma 8.3 applies to partition G′

1 into 
graphs (G1

w : w ∈ W ), such that each G1
w is a vertex-disjoint union of oriented paths 
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with V (G1
w) = V \Zw, where for each [a, b] ∈ Y1

w there is an ab+-path of length 8d(a, b). 
This completes the proof of this case, and so of Theorem 1.2.

10. Concluding remarks

As mentioned in the introduction, our solution to the generalised Oberwolfach Prob-
lem is more general than the result of [9] in three respects: it applies to any typical graph 
(theirs is for almost complete graphs) and to any collection of two-factors (they need 
some fixed F to occur Ω(n) times), and it applies also to directed graphs. Although there 
are some common elements in both of our approaches (using [12] for the exact step and 
some form of twisting), the more general nature of our result reflects a greater flexibility 
in our approach that has further applications. One such application is our recent proof 
[14] that every quasirandom graph with n vertices and rn edges can be decomposed into 
n copies of any fixed tree with r edges. The case of the complete graph solves Ringel’s 
tree-packing conjecture [19] (solved independently via different methods by Montgomery, 
Pokrovskiy and Sudakov [18]).

A natural open problem raised in [9] is whether the generalised Oberwolfach problem 
can be further generalised to decompositions of Kn into any family of regular graphs of 
bounded degree (where the total of the degrees is n − 1).

We are grateful to the referee for their helpful comments on our paper.
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