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Let PG2(2) be the Fano plane, i.e., the unique hypergraph with 7 triples on 7 vertices in
which every pair of vertices is contained in a unique triple. In this paper we prove that
for sufficiently large n, the maximum number of edges in a 3-uniform hypergraph on n
vertices not containing a Fano plane is

ex
(
n, PG2(2)

)
=

(
n

3

)
−
(
�n/2�
3

)
−
(
�n/2�
3

)
.

Moreover, the only extremal configuration can be obtained by partitioning an n-element
set into two almost equal parts, and taking all the triples that intersect both of them. This
extends an earlier result of de Caen and Füredi, and proves an old conjecture of V. Sós. In
addition, we also prove a stability result for the Fano plane, which says that a 3-uniform
hypergraph with density close to 3/4 and no Fano plane is approximately 2-colorable.

1. Introduction

Given an r-uniform hypergraph F , the Turán number of F is the maximum
number of edges in an r-uniform hypergraph on n vertices that does not
contain a copy of F . We denote this number by ex(n,F). Determining these
numbers is one of the central problems in Extremal Combinatorics, and it is
well understood for ordinary graphs (the case r=2). It is completely solved
for many instances, including all complete graphs. Moreover, asymptotic
results are known for all non-bipartite graphs. In contrast, for nearly any
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Figure 1. The Fano Plane

r-uniform hypergraph F with r > 2, the problem of finding the numbers
ex(n,F) is notoriously difficult. Exact results on hypergraph Turán numbers
are very rare (see, e.g., the excellent survey of Füredi [4]). In this paper we
obtain such a result which determines the Turán number of the Fano plane.

The Fano plane (see figure 1) is the projective plane over the field with 2
elements. It has 7 vertices, which can be identified with the non-zero vectors
of length 3. It has 7 edges, corresponding to the lines of the plane. A triple
xyz is an edge if x+ y = z. A hypergraph is 2-colorable if its vertices can
be labeled as red or blue so that no edge is monochromatic. It is easy to
check that the Fano plane is not 2-colorable, and therefore any 2-colorable
hypergraph cannot contain the Fano plane. Partition an n-element set into
two almost equal parts, and take all the triples that intersect both of them.
This is clearly the largest 2-colorable 3-uniform hypergraph on n vertices.
In 1976 V. Sós [10] conjectured that this construction gives the exact value
of ex

(
n,PG2(2)

)
. We will prove the following theorem, which confirms this

conjecture.

Theorem 1.1. Let H be a 3-uniform hypergraph on n vertices that does
not contain a copy of the Fano plane and let n be sufficiently large. Then
the number of edges in H is at most

e(H) ≤
(
n

3

)
−
(
�n/2�
3

)
−
(
�n/2�
3

)
,

with equality only when H is obtained by partitioning an n-element set into
two almost equal parts, and taking all the triples that intersect both of them.

The asymptotics of hypergraph Turán numbers are poorly understood.
It is not hard to show that the limit π(F )= limn→∞ ex(n,F )/

(n
r

)
exists. It
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is usually called the Turán density. Until very recently, even the question
of finding the Turán density of the Fano plane was open. Thus it was a
significant breakthrough, when de Caen and Füredi [2] determined that the
Turán density of the Fano plane is 3/4.

Our methods build on those of de Caen and Füredi in a manner that we
hope may provide a general framework for proving exact results for Turán
numbers, once the density result is known. The idea is to use the density
result to prove an approximate structure theorem for hypergraphs with den-
sity close to the maximum possible, and then to find the exact structure that
has maximum size among the approximate structures.

To be more concrete, we will describe an analogous situation for ordinary
graphs. Let Tr(n) be the complete r-partite graph on n vertices with parts
as equal as possible. It is usually called the Turán graph and we write tr(n)
for the number of edges in Tr(n). Turán’s theorem states that any Kr+1-
free graph on n vertices can contain at most tr(n) edges, and equality only
occurs for Tr(n). Furthermore, we know the structure of Kr+1-free graphs
with nearly tr(n) edges. This so-called stability theorem was proved by Si-
monovits [9]. It states that for all ε > 0 there is δ > 0 such that if G is a
Kr+1-free graph with at least (1−δ)tr(n) edges then there is a partition of
the vertices of G as V1∪·· ·∪Vr with

∑
i e(Vi)<εn2.

The key to our proof of Theorem 1.1 is the following stability result for
the Fano plane, which roughly speaking says that a 3-uniform hypergraph
with density close to 3/4 and no Fano plane is approximately 2-colorable.

Theorem 1.2. For all ε > 0 there is δ > 0 such that such that if H is a
3-uniform hypergraph with (1−δ)3

4

(n
3

)
edges and no Fano plane then we can

partition V (H)=A∪B so that e(A)+e(B)<εn3.

An analogous stability result for D3 = {123,124,345}, was recently ob-
tained by Keevash and Mubayi [7]. The Turán number of D3 had been
previously determined by Frankl and Füredi [5].

The rest of this paper is organized as follows. The next section contains
some definitions and preliminary lemmas. In Section 3 we prove the stability
theorem and in Section 4 we use it to deduce Theorem 1.1. The last section
is devoted to some concluding remarks.

We will normally use the letter G to denote an ordinary graph and H to
denote a 3-uniform hypergraph. The vertex and edge sets are respectively
V (G),E(G) for G, and similarly V (H),E(H) for H. If X,Y are sets of ver-
tices then e(X) is the number of edges contained within the set X, and
e(X,Y ) is the number of edges incident to both X and Y . This notation
applies to both graphs and 3-uniform hypergraphs, but when there is a pos-
sibility of confusion we will introduce the graph/hypergraph as a subscript,
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e.g. eG(X). We will let H2(n) denote the maximum 2-colorable 3-uniform
hypergraph on n vertices, which is obtained by partitioning an n-element
set into two almost equal parts, and taking all the triples that intersect both
of them. It is easy to see that it contains h2(n)=

(n
3

)
−
(�n/2�

3

)
−
(�n/2�

3

)
edges.

2. Preliminaries

Let H be a 3-uniform hypergraph. The link of a vertex x∈V (H) is L(x)=
{(a,b) : abx ∈ E(H)}. We can think of the link as a graph on V (H).
The number of edges in the link graph L(x) is the degree dH(x) of x, i.e.,
the number of hyperedges containing x. We will often consider several links
simultaneously, regarding them as a multigraph. This is a loopless graph in
which each edge has some non-negative integral multiplicity. If S⊂V (H) is
a set of vertices of H then the link multigraph of S is the multigraph sum
of the links of each vertex in S.

We will need the following two simple ways of recognizing a copy of a
Fano plane in a 3-uniform hypergraph.

Observation 2.1. Let H be a 3-uniform hypergraph.
(i) Let x1x2x3 be an edge of H and let Li be the link graph of xi. Suppose
L1∪L2∪L3 contains four vertices abcd spanning a K4, such that the edges of
this K4 can be partitioned into three matchings M1,M2,M3 with Mi ⊂Li.
Then H contains a Fano plane.
(ii) Let x be a vertex of H with link graph L(x). Suppose L(x) contains
three disjoint edges e1,e2,e3 such that all the triples x1x2x3 with xi∈ei are
edges of H. Then H contains a Fano plane.

Proof. (i) Without loss of generality ab, cd are in L1, ac, bd are in L2 and
ad, bc are in L3. Then by assigning x1=(1,0,0), x2 =(0,1,0), x3=(1,1,0),
a=(0,0,1), b=(1,0,1), c=(0,1,1) and d=(1,1,1) we obtain a copy of the
Fano plane.

(ii) Let ei=aibi. Then by assigning x=(1,0,0), a1=(0,1,0), b1=(1,1,0),
a2 = (0,0,1), b2 = (1,0,1), a3 = (0,1,1) and b3 = (1,1,1) we again obtain a
copy of the Fano plane.

The result of de Caen and Füredi, that gives the Turán density of the
Fano plane, is based on the following three lemmas which we will also use
in our proofs.

Lemma 2.2. Let H be a 3-uniform hypergraph on n vertices with at least(3
4 − ε

)(n
3

)
edges. If ε is sufficiently small, then H contains a copy of K

(3)
4 ,

i.e., a complete 3-uniform hypergraph on four vertices.
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Lemma 2.3. A multigraph of order n in which every 4 vertices span at
most 20 edges has at most 3

(n
2

)
+O(n) edges.

Lemma 2.4. Let H be a 3-uniform hypergraph and let S be a K
(3)
4 sub-

hypergraph of H with link multigraph G. If G−S has a set of 4 vertices
spanning 21 edges then H contains a Fano plane.

The first lemma holds for any ε < 1/12 by an old bound of de Caen [1]
on the Turán density of K(3)

4 . This is not the strongest bound known but it
is sufficient for our purposes. The second lemma is a special case of a result
of Füredi and Kündgen [6] (see also [2] for a short proof). The third result
is also from [2] and can be easily obtained from part (i) of Observation 2.1.

Our next lemma describes a few additional forbidden configurations in
the link multigraph of a 3-uniform hypergraph which contains no Fano plane.

Lemma 2.5. Let H be a 3-uniform hypergraph and let S ⊂ V (H) span a

copy of K
(3)
4 . Let G be its link multigraph restricted to V −S and let G′⊂G

be the edges of G with multiplicity ≥3.
(i) If G′ contains a copy of K4 then H contains a Fano plane, unless all
edges of this K4 have multiplicity exactly 3.
(ii) Suppose G contains a copy of K4 with vertex set y1y2y3y4 such that
y1y2, y1y3 have multiplicity 4, y2y3 has multiplicity 3, and the other edges
have multiplicities 4,3,2 in some order. Then H contains a Fano plane.
(iii) If G′ contains a copy of K5 then H contains a Fano plane.

Proof. Let x1x2x3x4 be the vertex set of S and let Li be the link of xi.
(i) Suppose y1y2y3y4 are the vertices of a K4 in G′. Partition the edges of
this K4 into 3 disjoint matchings Mi for 1 ≤ i ≤ 3 and let Ii ⊂ {1,2,3,4}
index all the link graphs which contain both edges ofMi. Each edge belongs
to at least 3 link graphs, so |Ii| ≥ 3+ 3− 4 = 2 for each i. By part (i) of
Observation 2.1, a system of distinct representatives for the sets Ii gives a
Fano plane. So by Hall’s theorem, if there is no Fano plane we must have
I1 = I2 = I3 equal to a set of size 2. It is easy to check that in this case all
edges of the K4 have multiplicity exactly 3.

(ii) Next suppose that y1y2y3y4 are the vertices of a K4 which satisfies
all the conditions of part (ii) of the lemma. Define Mi and Ii as in the proof
of part (i). It is possible that one of the Ii has only one element. This can
only occur when the edge y1y4 has multiplicity 2. In this case, the remaining
two Ij each have size at least 3, and there is a Fano plane by part (i) of
Observation 2.1 and Hall’s theorem. Otherwise, the edge with multiplicity 2
is opposite an edge of multiplicity 4, so all the Ii have size at least 2. Also,
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it is easy to see that in this case there is always an edge with multiplicity
≥3 opposite an edge of multiplicity 4. Thus one of the Ii has size at least 3,
and so Hall’s condition always holds. This implies that H contains a Fano
plane.

(iii) Suppose there is no Fano plane in H and G′ contains a copy of K5

with vertex set y1y2y3y4y5. By part (i) all edges in this copy have multiplicity
exactly 3. Also, by the proof of (i), for every K4 subgraph ofK5 there are two
link graphs that contain all the edges of K4, and the other two link graphs
partition the edge set such that neither contains two opposite edges, i.e. one
is a star and the other is a triangle. Therefore, without loss of generality,
we can assume that L1,L2 contain all six edges on y1y2y3y4, L3 contains
y1y2,y1y3,y1y4 and L4 contains all the edges of triangle y2y3y4. Note that
the set y1y3y4 is complete in the link graphs L1 and L2, spans the edges
y1y3,y1y4 in L3 and the edge y3y4 in L4. Consider the set of vertices y1y3y4y5.
This set cannot be complete in L3 or L4. Thus it must be complete in L1

and L2, span the star y1y3,y1y4,y1y5 in L3 and the triangle y3y4y5 in L4.
Similarly, considering the vertices y1y2y4y5 we see that they span a complete
subgraph in L1 and L2, a star in L3 and a triangle y2y4y5 in L4. This implies
that the vertices y2y3y4y5 span a complete subgraph in L1, L2 and L4. Then
by part (i) of Observation 2.1, H contains a Fano plane. This contradiction
completes the proof of (iii) and the proof of the lemma.

Let K(r)(t1, . . . , tr) be a complete r-partite r-uniform hypergraph with
parts of size t1, . . . , tr, whose edges are all possible r-tuples that contain
one vertex from each part. The following well-known lemma first appears
implicitly in Erdős [3] (see also, e.g., [4]).

Lemma 2.6. Let H be a r-uniform hypergraph on n vertices with m edges.
For every set of positive integers t1≤·· ·≤ tr, there exists a constant c such
that if m�nr−1/(t1···tr−1) then H contains at least

c
mt1···tr

nrt1···tr−t1−···−tr

copies of K(r)(t1, . . . , tr). In particular, for r = 3 and t1 = t2 = t3 = 2 there
exists a constant c′ such that any 3-uniform hypergraph on n vertices with
αn3 edges contains at least c′α8n6 copies of K(3)(2,2,2).

3. A stability result

In this section we prove that every 3-uniform hypergraph with edge density
3/4+o(1) which does not contain the Fano plane is essentially 2-colorable.
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Proof of Theorem 1.2. Let H be a 3-uniform hypergraph of order n
with at least (1− δ)3

4

(n
3

)
edges and no Fano plane. Throughout the proof

we assume that n is sufficiently large and δ is sufficiently small. We let
δ1,δ2, . . . denote positive functions of δ that tend to zero as δ tends to zero
and n tends to infinity. These functions could be explicitly computed, but
we prefer not to do so for the sake of clarity of presentation. We will show
that we can delete a set of vertices U of size at most δin and partition the
rest as A∪B such that eH(A) + eH(B) < δjn

3, for some j. Then, clearly
eH(A∪U)+eH(B)<

(
δj + δi

)
n3= δkn

3 and by choosing δ sufficiently small
we can ensure that δk<ε.

First, suppose thatH contains a vertex of degree less than (1−δ1)3
4

(n
2

)
, for

some δ1 which we will define shortly. Then delete this vertex and continue.
If in this process we deleted δ2n vertices, then we arrive at a hypergraph on
(1−δ2)n vertices with at least

(
1−δ−3δ2(1−δ1)

)3
4

(n
3

)
−O(n2) edges. Choosing

δ1=δ1/4 and δ2=δ1/2 we see that this is larger than (1+δ)3
4

((1−δ2)n
3

)
. For n

sufficiently large this contradicts the de Caen–Füredi result that the Turán
density of the Fano plane is 3/4. Therefore we deleted at most δ2n vertices,
which we can put in the set U and ignore. Thus we may and will assume in
the rest of the proof that all degrees in H are at least (1−δ1)3

4

(n
2

)
.

Since the density of H is at least 3/4− δ1, by Lemma 2.2 it contains a
copy S=abcd of K(3)

4 . Let L(a), L(b), L(c) and L(d) be the link graphs of
the vertices in S. Then, by the degree condition, the link multigraph G of
S has at least |L(a)|+ |L(b)|+ |L(c)|+ |L(d)|≥ (1−δ1 )3

(n
2

)
edges. The main

part of our proof is to obtain a structural result for the multigraph G.

Claim. There exists a partition of the vertices as A∪B such that all but
at most δ9n

2 edges of G satisfy the following conditions:
(i) Every edge within A belongs to L(a) and L(b) but not L(c) or L(d).
(ii) Every edge within B belongs to L(c) and L(d) but not L(a) or L(b).
(iii) Every cross edge from A to B belongs to all of L(a), L(b), L(c) and L(d).

Proof of Claim. First, suppose that G contains a vertex of degree less than
(1−δ3)3n, for some δ3 which we will define shortly. Then delete this vertex
and continue. If in this process we deleted δ4n vertices, then we arrive at a
multigraph on (1−δ4)n vertices with at least

(
1−δ1−2δ4(1−δ3)

)
3
(n
2

)
−O(n)

edges. Choosing δ3 = δ
1/4
1 and δ4 = δ

1/2
1 we see that this this is larger than

(1+δ1)3
((1−δ4)n

2

)
. Then by Lemma 2.3 we find 4 vertices spanning 21 edges,

and by Lemma 2.4 this is a contradiction. Thus we deleted at most δ4n
vertices, which can be incident with at most 4δ4n2 edges of G, so we can
ignore them. Therefore we may and will assume in the rest of the proof that
all degrees in G are at least (1−δ3)3n.
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Following the method of proof of Lemma 2.3, we distinguish two cases
according to whether G contains a set of 3 vertices spanning ≥11 edges.

Case 1. We suppose first that every 3 vertices of G span at most 10 edges.
Note that there must be some edge of multiplicity 4, since otherwise G con-
tains at least (1−3δ1)

(n
2

)
edges of multiplicity 3. Then by Turán’s theorem,

for sufficiently small δ1 (<1/12) these edges contain a K5, which contradicts
Lemma 2.5. Let edge pq have multiplicity 4. By our assumption for this case,
any vertex r in V −{p,q} has degree at most 6 in {p,q}. By the degree con-
dition, there are at least (1−δ3)6n edges from {p,q} to V −{p,q}. Then only
at most δ5n vertices can have degree less than 6 in {p,q}. These vertices are
incident to at most 4δ5n2 edges, so we can delete and ignore them. Therefore
we can assume that V −{p,q} can be partitioned as A∪B ∪C, where for
each x in A edge xp has multiplicity 4 and xq has multiplicity 2, for each x
in B edge xp has multiplicity 2 and xq has multiplicity 4, and for each x in
C edges xp and xq both have multiplicity 3.

All edges within A and B have multiplicity at most 2, or with either p
or q they will form 3 vertices spanning 11 edges. So the maximum possible
number of edges in A∪B is achieved when all edges within A and B have
multiplicity 2 and all cross edges from A to B have multiplicity 4, the total
being at most

2

(
|A|
2

)
+ 2

(
|B|
2

)
+ 4|A||B| ≤ 3

(
|A|+ |B|

2

)
+O(n) = 3

(
|A ∪B|

2

)
+O(n).

Also, the edges from A∪B to C have weight at most 3. Indeed, if edge xy
has multiplicity 4 with say, x in A and y in C, then pxy has 11 edges, a
contradiction. Therefore

e(C) = e(G)− e(A ∪B)− e(A ∪B,C)

> (1− δ1)3

(
n

2

)
− 3

(
|A ∪B|

2

)
−O(n)− 3|A ∪B||C|

= 3

(
|C|
2

)
− 3δ1

(
n

2

)
−O(n).

Let δ6=2δ1/2
1 . If |C|≥δ6n then

(|C|
2

)
≥2δ1n2−O(n)�3δ1

(n
2

)
. This gives

e(C) > 3

(
|C|
2

)
− 3δ1

(
n

2

)
−O(n) � 2

(
|C|
2

)
,

and therefore there is an edge xy within C of multiplicity ≥ 3. But then
pqxy form a K4 which contradicts Lemma 2.5. Thus there are at most δ6n
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vertices in C which can be incident only to at most 4δ6n2 edges, so we delete
and ignore these vertices.

We will now show that A∪B is the required partition. Denote by E′ the
set of edges with multiplicity less than the maximum allowed by the above,
i.e. pairs within A or B with multiplicity at most 1 and pairs with one vertex
in each of A and B with multiplicity at most 3. Note that

(1− δ1)3

(
n

2

)
≤ e(G) ≤ 2

(
|A|
2

)
+ 2

(
|B|
2

)
+ 4|A||B| − |E′|

≤ 3

(
|A|+ |B|

2

)
−
(
|A| − |B|

)2
2

+O(n)− |E′|

≤ 3

(
n

2

)
+O(n)− |E′|

and therefore |E′|< 2δ1n2 and also
∣∣|A|−n/2

∣∣ and ∣∣|B|−n/2
∣∣ are at most

δ7n.
For x in A, let B(x) be the set of vertices in B joined to x by an edge of

multiplicity 4. Since |A| and |B| are at most (1
2 +δ7)n we have

(1−δ3)3n < d(x) < 2|A|+4|B|−(|B|−|B(x)|) < (1+2δ7)3n−(|B|−|B(x)|),

so |B−B(x)|<δ8n. Now let xy be an edge of multiplicity 2 inside A. Without
loss of generality assume that it belongs to LA(a)∩LA(b), where set subscripts
indicate restriction of the link to that set. Since |B|−|B(x)∩B(y)|<2δ8n we
can delete all the vertices in B−B(x)∩B(y) and assume B=B(x)∩B(y).
Now no edge wz of B can be in LB(a), as then partitioning the edges of
wxyz as Ma = {xy,wz}, Mb = {wx,yz}, Mc = {wy,xz} gives a Fano plane
by part (i) of Observation 2.1. Similarly no edge in B can be in LB(b). Now
let uv be an edge of multiplicity 2 in B. Then, as we just proved, it belongs
to LB(c)∩LB(d). So arguing as above, we can assume that all vertices in
A are adjacent to both u and v by edges of multiplicity 4, and therefore no
edge in A can be in L(c) or L(d). Now distribute all the vertices we deleted
arbitrarily between A and B. Then for all but at most δ9n2 edges of G,
those in A belong to L(a)∩L(b), those in B belong to L(c)∩L(d) and those
between A and B have multiplicity 4. This shows that A∪B is the required
partition, and completes the analysis of this case.

Case 2. Now suppose that there are 3 vertices p,q,r in G that span at least
11 edges. Without loss of generality we can assume that pq and pr have
multiplicity 4 and qr has multiplicity ≥ 3. By Lemma 2.4 each vertex s in
V (G)−{p,q,r} has degree at most 9 in {p,q,r}. By the degree condition,
there are at least dG(p)+ dG(q)+ dG(r)− 12 ≥ (1− δ3)9n− 12 edges from
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{p,q,r} to V −{p,q,r}. Therefore at most δ7n vertices of G can have degree
less than 9 in {p,q,r}. These vertices are incident to at most 4δ7n2 edges,
so we can delete and ignore them. Note that by Lemma 2.5 no vertex of
V (G)−{p,q,r} can be adjacent to vertices in {p,q,r} by edges with mul-
tiplicities 3,3,3 or 4,3,2. Therefore the degree pattern in {p,q,r} of all the
vertices from V −{p,q,r} is (4,4,1) in some order. Now suppose there is
some edge st in V −{p,q,r} of multiplicity 4. Since the degree pattern of s
and t in {p,q,r} is (4,4,1), there is some vertex x in {p,q,r} to which both s
and t are connected by an edge of multiplicity 4. If there are 2 such vertices
in {p,q,r} then together with s and t we find 4 vertices spanning at least 23
edges, a contradiction to Lemma 2.4. Thus there is exactly one such x. Now
x certainly belongs to one of the edges pq or pr. Say x is in pq. Then all edges
but one of pqst have multiplicity 4, and the other has multiplicity at least 1,
which again is a contradiction to Lemma 2.4. The same argument holds if x
is in pr, so there are no edges in V −{p,q,r} of multiplicity 4. On the other
hand, by the degree condition V−{p,q,r} contains at least (1−δ3)3n2/2−O(n)
edges. Therefore at least (1−δ8)

(n
2

)
edges in V −{p,q,r} have multiplicity 3.

Since δ8 is sufficiently small (<1/4), by Turán’s theorem these edges contain
a K5, which contradicts Lemma 2.5. Therefore Case 2 always leads to a con-
tradiction, and thus never happens. This completes the proof of the Claim.

Now we can complete the proof of the theorem. Let c′δ810=2δ9, where c′

is defined in Lemma 2.6, and note that δ10 tends to zero with δ9. Suppose
that A contains at least δ10n3 edges of H. Then by the above mentioned
Lemma 2.6, A contains at least 2δ9n6 copies of K(3)(2,2,2). If we find 3 dis-
joint edges e1,e2,e3 in L(a) such that they form three classes of the partition
of some copy of K(3)(2,2,2), then by part (ii) of Observation 2.1 we see that
H contains a Fano plane, a contradiction. On the other hand, only at most
δ9n

2 pairs of vertices in A are not edges of L(a). Therefore these pairs can be
contained in the vertex sets of most δ9n6 copies of K(3)(2,2,2). In particular,
if A contains at least δ10n3 edges of H then there is a copy of K(3)(2,2,2) in
A such that all three pairs in the partition of its vertex set belong to L(a),
and this is a contradiction. Hence A can contain at most δ10n3 edges, and a
similar bound holds for B. Then e(A)+e(B)<2δ10n3=δ11n3 and by choosing
a sufficiently small δ we can make δ11 tend to zero with δ, as required.

4. The Turán number of the Fano plane

In this section we show how to use the stability theorem to prove an exact
Turán result for the Fano plane. Throughout the proof we will assume that
n is sufficiently large.
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Proof of Theorem 1.1. Let H be a 3-uniform hypergraph on n vertices,
which has at least e(H)≥ h2(n) =

(n
3

)
−
(�n/2�

3

)
−
(�n/2�

3

)
edges and contains

no Fano plane. Let d(n) = 3n2/8− 2n and note that h2(n)− h2(n− 1) >
d(n)+1. First we claim that we can assume that H has minimum degree
greater than d(n). If not, we remove a vertex of minimum degree to get Hn−1

which has e(Hn−1)≥h2(n)−d(n)≥ h2(n−1)+1. Repeating this process if
possible we obtain a sequence of hypergraphs Hm on m vertices with at
least h2(m)+n−m edges, where Hm is obtained from Hm+1 by deleting a
vertex of degree at most d(m+1). Clearly we cannot continue this process
to reach a hypergraph on n0=n1/3 vertices, as then e(Hn0)>n−n0>

(n0
3

)
,

which is impossible. Therefore, we must obtain a hypergraph Hn′ , where
n≥ n′ >n0, with minimal degree at least d(n′), and e(Hn′)≥ h2(n′) (with
strict inequality if n>n′). This shows that it suffices to prove the theorem
under the assumption that H has minimum degree greater than d(n).

By Theorem 1.2 there is a partition of the vertices of H into two disjoint
sets A∪B so that e(A)+e(B)<10−9n3. Choose this partition to minimize
e(A) + e(B). For every vertex x ∈ V (H) denote by LA(x) and LB(x) the
subgraphs of the link graph of x induced by the sets A and B. Then for
every x∈A we have |LA(x)|≤|LB(x)|, since otherwise moving x to the other
side of the partition will decrease e(A)+e(B). Similarly, |LB(x)| ≤ |LA(x)|
holds for every x∈B. Also note that the partition is nearly balanced, more
precisely ∣∣∣∣|A| − n

2

∣∣∣∣ < 10−4n,

∣∣∣∣|B| − n

2

∣∣∣∣ < 10−4n.

Indeed, if this is not the case, then the number of edges that intersect both
A and B is at most

|A|
(
|B|
2

)
+ |B|

(
|A|
2

)
= |A||B| |A| + |B| − 2

2

≤
(
1
2
− 10−4

)(
1
2
+ 10−4

)
n2n− 2

2

<

(
1
4
− 10−8

)
n3

2
.

Then, the total number of edges in H is at most

e(H) <
(
1
4
− 10−8

)
n3/2 + 10−9n3 < h2(n),

which is a contradiction.
Next, suppose that there is a vertex x∈A with |LA(x)|>n2/100. Then,

by the above discussion, also |LB(x)| > n2/100. Note that any graph G
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of order n with at least n2/100 edges contains a matching of size at least
n/300. To show this, observe that if M is a maximum matching in G, then
V (G)−M is an independent set. Hence, if M has less than n/300 edges
then it spans at most n/150 vertices, and therefore G contains at most(n/150

2

)
+n(n/150)<n2/100 edges.

Let MA and MB be matchings each having n/300 edges in LA(x) and
LB(x) respectively. Since H contains no Fano plane, by part (ii) of Obser-
vation 2.1 we have that for every triple of edges e in MA and f1,f2 in MB ,
there is some triple of vertices of H with one point in each of e,f1,f2 that
is not a hyperedge of H. Also, note that for different triples of edges we
get different triples of vertices that are not hyperedges. This implies that at
least n

300

(n/300
2

)
triples of vertices of H with one point in A and two points

in B are not hyperedges. Then

e(H) = e(A) + e(B) + e(A,B)

< 10−9n3 + |A|
(
|B|
2

)
+ |B|

(
|A|
2

)
− n

300

(
n/300
2

)

< 10−9n3 + n3/8− 10−8n3 < h2(n),

again a contradiction.
The same argument works for all x ∈ B. Thus we can assume that for

every vertex x∈V (H) the link graph L(x) has at most n2/100 edges within
the same class of the partition as x. Now suppose there is an edge xyz in
A, the case when there is an edge in B can be treated similarly. By the
minimum degree assumption on the vertices of H

|LB(x)| > dH(x)− |A||B| − n2/100
> 3n2/8− 2n− n2/4− n2/100 = n2/8− 2n− n2/100.

The same inequality holds for LB(y) and LB(z). Since |B|<
(
1/2+10−4)n

we have
(|B|

2

)
<(1/8+10−4)n2, and so

|LB(x) ∩ LB(y) ∩ LB(z)| ≥ |LB(x)| + |LB(y)|+ |LB(z)| − 2

(
|B|
2

)

> 3n2/8− 6n− 3n2/100 − 2

(
|B|
2

)
>

2
3

(
|B|
2

)
.

Then by Turán’s theorem LB(x) ∩LB(y) ∩LB(z) contains a copy of K4,
and therefore by part (i) of Observation 2.1, H contains the Fano plane.
This contradiction shows that there are no edges within A or B and that H
is 2-colorable. Since H2(n) is the largest 2-colorable 3-uniform hypergraph
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we have e(H)≤ e(H2) = h2(n). Therefore e(H) = h2(n) and H =H2(n) as
required.

5. Concluding remarks

The proof of Theorem 1.1 can be used to show that there is some small δ>0
so that any 3-uniform hypergraph on n vertices with minimum degree at
least

(
3
8 −δ

)
n2 that does not contain a copy of the Fano plane is 2-colorable.

Another observation is that the Fano plane is a 3-color-critical hyper-
graph, in that it is not 2-colorable, but becomes so on deletion of any edge.
For color-critical graphs the Turán numbers are given by a result of Si-
monovits [9], which says that if G is a (r+1)-color-critical graph then for n
sufficiently large, any G-free graph on n vertices can contain at most tr(n)
edges, and equality only occurs for Tr(n). So it is natural to check wheather
at least some partial generalization of this result to hypergraphs might be
true. One might think that if F is a 3-color-critical 3-uniform hypergraph,
then for n sufficiently large, any F-free 3-uniform hypergraph on n vertices
should contain at most h2(n) edges with equality only for H2(n). Unfortu-
nately this is not the case, as shown by a construction of Sidorenko (see,
e.g., [8]). He proved that K(3)

5 , which is 3-color-critical, does not have Turán
number h2(n).

Acknowledgement. We thank the anonymous referees for helpful com-
ments.

Note added in proof. After this paper was written we learned that
Z. Füredi and M. Simonovits also proved the conjecture of Sós, indepen-
dently and simultaneously with our work.
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Combinatorica 3 (1983), 341–349.



574 P. KEEVASH, B. SUDAKOV: THE TURÁN NUMBER OF THE FANO PLANE
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