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Let C**) be the 2k-uniform hypergraph obtained by letting Pi,..., P. be pairwise disjoint
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this paper we also show that when r =241, any C7<«4)—free hypergraph of density :%ffo(l)
looks approximately like Sidorenko’s construction. On the other hand, when r is not of
this form, we show that corresponding constructions do not exist and improve the upper
bound on the Turan density of C{* to =2 _¢(r), where ¢(r) is a constant depending only
on r.
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1. Introduction

Given an r-uniform hypergraph F, the Turdn number ex(n,F) of F is the
maximum number of edges in an r-uniform hypergraph on n vertices that
does not contain a copy of F. Determining these numbers is one of the main
challenges in Extremal Combinatorics. For ordinary graphs (the case r=2)
a rich theory has been developed, initiated by Turan in 1941, who solved
the problem for complete graphs. He also posed the question of finding
em(n,lﬁ(f)) for complete hypergraphs with s > r > 2, but to this day not
one single instance of this problem has been solved. It seems hard even
to determine the Turdn density, which for general F is defined as 7(F) =
lim, .o ex(n,F)/(). The problem of finding the numbers ex(n,F) when
r > 2 is notoriously difficult, and exact results on hypergraph Turdn numbers
are very rare (see [3,9] for surveys). In this paper we obtain such a result
for a sequence of hypergraphs introduced by Frankl.

Let Cﬁ%) be the 2k-uniform hypergraph obtained by letting P;,..., P, be
pairwise disjoint sets of size k and taking as edges all sets P;UP; with i# j.
This can be thought of as the ‘k-expansion’ of the complete graph K,.: each

vertex has been replaced with a set of size k. The Turan problem for Cé%)

was first considered by Frankl [2], who determined the density 7T<C§2k)) =1/2.

Frankl obtained a large C:g%) -free hypergraph on n vertices by partition-

ing an n-element set V into 2 parts Vi,V5 and taking those edges which

intersect each part V; in an odd number of elements. When the parts have

sizes § £t we denote this hypergraph by Bk (n,t). To see that it is C?()Qk)—

free, consider any Py, P», P3 that are pairwise disjoint sets of k vertices. Then

|[ViNP;| and [ViNP;| have the same parity for some pair ij, so P;UP; is not

an edge. Let t* be chosen to maximise the number of edges in B+ (n,t),
(2k)

and denote any hypergraph obtained in this manner by By, ’. Write box(n)
for the number of edges in ng). Frankl [2] conjectured that the maximum

number of edges in a C§2k) -free hypergraph is always achieved by some B,(fk).

Our first theorem proves this conjecture for n sufficiently large.

Theorem 1.1. Let H be a 2k-uniform hypergraph on n vertices that does
not contain a copy ofCéQk) and let n be sufficiently large. Then the number

of edges in H is at most by, (n), with equality only when H is a hypergraph
of the form ng) .

The proof of this theorem falls naturally into two parts. The first stage is
to prove a ‘stability’ version, which is that any hypergraph with close to the
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maximum number of edges looks approximately like some B(2k) (n,t). Armed
with this, we can analyse any imperfections in the structure and show that
they must lead to a suboptimal configuration, so that the optimum is indeed
achieved by the construction. This strategy was also used recently in [4] to
prove the conjecture of S6s on the Turdn number of the Fano plane, so this
seems to be a useful tool for developing the Turan theory of hypergraphs.

For general r, Sidorenko [8] showed that the Turdn density of Cﬁ%) is at
most :%% This is a consequence of Turan’s theorem applied to an auxiliary
graph G constructed from a 2k-uniform hypergraph H; the vertices of G
are the k-tuples of vertices of H, and two k-tuples P;,P» are adjacent if
PiUP; is an edge of H. He also gave a construction for a matching lower
bound when r is of the form 2P + 1, which we now describe. Let W be a
vector space of dimension p over the field GF(2), i.e. the finite field with
2 elements {0,1}. Partition a set of vertices V' as (J, ey V. Given ¢t and a
t-tuple of vertices X =x1---2; with z; €V}, let Y X = Ztl w;. Define a 2k-
uniform hypergraph H, where a 2k-tuple X is an edge iff X X #0. Observe
that this doesn’t contain a copy of Cq(n%) . Indeed, if P,..., P, are disjoint k-
tuples then there is some i # j with X' P;=X'P; (by the pigeonhole principle).
Then X (P;UP;)=XP;+XP;=0, so P;UP; is not an edge. To see that this
construction can achieve the stated Turan density, choose the partition so
that |Vi,|=|V|/(r —1). Then a random (average) 2k-tuple is an edge with
probability %—1—0(1), as can be seen by conditioning on the positions of all
but one element.

This construction depends essentially on an algebraic structure, which
only exists for certain values of r. We will show that this is an intrinsic
feature of the problem, by proving a stronger upper bound on the Turdan

density of C7(,4) when 7 is not of the form 2P+ 1.

Theorem 1.2. Suppose r > 3, and let H be a 4-uniform hypergraph on
n vertices with at least (:==2 —107337=70)(") edges. If H is C£4)-free, then

r=2P+1 for some integer p.

In contrast to Theorem 1.1 this is a result showing that certain con-
structions do not exist, so it is perhaps surprising that its proof also uses a

stability argument. We study the properties of a C£4)—free hypergraph with

density close to :%% and show that it gives rise to an edge colouring of the
complete graph K,._; with special properties. Next we prove that for such
an edge-colouring there is a natural GF'(2) vector space structure on the
colours. Of course, such a space has cardinality 2P, for some p, so we get a

contradiction unless r=2P +1.
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A complication arising in Theorem 1.1 is that the optimum construction
is not achieved by a partition into two equal parts. Finding ¢ to maximise
the number of edges in B®*)(n,t) is an interesting problem in enumera-
tive combinatorics, equivalent to finding the minima of binary Krawtchouk
polynomials. This is a family of polynomials orthogonal with respect to the
uniform measure on a n-dimensional cube that play an important role in
the analysis of binary Hamming association schemes (see, e.g., [5]). Despite
some uncertainty in the location of their minima, the known bounds are
sufficient for us to show that some B*)(n,t) must be optimal.

In the case k = 2 one can compute the size of B(Z¥) (n) precisely, and
there are considerable simplifications of the argument, so in the next section
for illustrative purposes we start by giving a separate proof for this case.

Section 3 contains a stability theorem for Cé%) and the general case of The-

orem 1.1. Then in Section 4 we prove a stability result for C7(o4) for all r, and
use it to establish Theorem 1.2. The final section of the paper contains some
concluding remarks.

We will assume throughout this paper that n is sufficiently large.

2. The Turan number of C§4)

We start by proving Frankl’s conjecture for 4-uniform hypergraphs. This will
serve to illustrate our method, as it has fewer complications than the general
case. In addition, in this case it is easy to compute the Turdn numbers of

C§4) precisely.

We recall that C§4) is the 4-uniform hypergraph with three edges

{abcd,abef,cdef}. We can obtain a large C§4)-free graph on n vertices by
partitioning an n-element set into 2 parts and taking those edges which
have 1 point in either class and 3 points in the other. To see this, think of
an edge as being the union of 2 different types of pairs of vertices: one type
consisting of pairs with both vertices in one class, the other consisting of
pairs that have one point of each class. Given any 3 pairs there are 2 of the
same type, and these do not form an edge in the construction.

To maximise the number of edges in this bipartite construction, it is not
the case that the two parts have sizes as equal as possible, but we will see
that the difference in the sizes should be at most of order \/n. Let B(n,t)
denote the 4-uniform hypergraph obtained by partitioning an n-element set
into 2 parts with sizes 5+t and 5 —t, and taking those edges which have
1 point in either class and 3 points in the other. Let b(n,t) be the number
of edges in B(n,t) and let d(n,t) be the degree of any vertex belonging to
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the side with size %—i—t. Then the vertices on the side with size %—t have

degree d(n,—t). We will start with some estimates on these parameters. By

definition,
b(n,t) = <g+t) <%;t> + (g —1) <%;t>
_ nt—6n3 4 8n? — 1611 — 32t2 4 24t’n
B 48
1) = (7= 3nra) — (122 —3n10)").

Thus to maximise b(n,t) we should pick a value of ¢ that minimises 4t*>—3n-4,

subject to the restriction that when n is even ¢ has to be an integer, and when

n is odd t—|—% has to be an integer. Let B, denote a hypergraph B(n,t*),

where t* is such a value of t. By symmetry we can take t* > 0. There is

usually a unique best choice of t*, but for some n there are 2 equal choices

of t*. Note that for any best choice we certainly have |t* —/3n/4—1|<1/2.
Let b(n) be the number of edges in 5,,. Then

148b(n) — (n? — 3n +4)%| = [4(t*)% — 3n + 4|* < 50n.

It will be useful later to consider the following estimate which follows im-
mediately from the last inequality for sufficiently large n

) b(n) — b(n—1) > 11—2n3 - %nQ.

Next we give an explicit formula for the degrees in B(n,t)

d(n,t) = (g _t) (n/zzt— 1) . (n/zg_ t)

n3 — 6n2 + 8n + 12t2  6tn — 8t3 — 16t
(3) = + :
12 12

We finish these calculations with an upper bound on the maximum degree

of B,

1 1
A(n) = 1_2(n3 — 6n° + 8n + 12(t*)%) + 75/6°n = 8(1*)° — 16t"|

1 1
(4) < En?’ — §n2 +n3/2.
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The first step in the proof is to show that any C§4)—free 4-uniform hyper-
graph H with density close to 1/2 has the correct approximate structure.
To do so we need a few definitions. If we have a partition of the vertex set
of H as V(H) =V, UV, we call a 4-tuple of vertices good if it has either 1
point in V; and 3 points in V5 or 1 point in V5 and 3 points in V7; otherwise
we call it bad. With respect to H, we call a 4-tuple correct if it is either a
good edge or a bad non-edge; otherwise we call it incorrect. We obtain the
following stability result.

Theorem 2.1. For every € >0 there is n >0 so that if H is a C§4)-free 4-
uniform hypergraph with e(H) >b(n) —nn* then there is a partition of the
vertex set as V(H)=V;UV; such that all but en* 4-tuples are correct.

In the proof of this result we need a special case of the Simonovits stability
theorem [10] for graphs, which we recall. It states that for every € >0 there
is ' > 0 such that if G is a triangle free graph on N vertices with at least
(1-1)(5) /2 edges then there is a partition of the vertex set as V (G)=UUlU;
with €G(U1) + €G(U2) <€ N2,

Proof of Theorem 2.1. Define an auxiliary graph G whose vertices are
all pairs of vertices of H, and where the pairs ab and cd are adjacent exactly
when abed is an edge of H. Since H is C§4)—free we see that G is triangle-free.
Also, each edge of H creates exactly 3 edges in G (corresponding to the 3

ways of breaking a 4-tuple into pairs) so

e(G) > 3(b(n) —nn*) > (1 — 50n)%<(g)> :

Choose 7 so that Simonovits stability applies with 7'=>50n, N=(}) and
¢ =¢2/500. We can also require that 1 < e?/500. We get a partition of the
pairs of vertices of H as Uy UUs, where all but ¢ N2 <¢2n*/2000 edges of H
are formed by taking a pair from Uy and a pair from Us.

We will call the pairs in U7 red, and the pairs in Us blue. A 4-tuple abed
will be called properly coloured if either
(i) abed is an edge of H and each of the 3 sets {ab,cd},{ac,bd},{ad,bc} has
one red pair and one blue pair, or
(ii) abed is not an edge and each of the 3 sets {ab,cd},{ac,bd},{ad,bc} con-
sists of two pairs with the same colour.

An improperly coloured 4-tuple is either an edge that is the union of two
pairs of the same colour or a non-edge which is the union of two pairs with
different colours. There are at most €2n*/2000 of the former 4-tuples, and



ON A HYPERGRAPH TURAN PROBLEM OF FRANKL 679

the number of latter is at most

2
U1 ||Us| — (e(G) — €N?) < 507”% +€éN? < (5%7 + e’/4) nt < €n*/140.
Therefore all but (e2/140 + €2/2000)n? < €?n?/130 4-tuples are properly
coloured.

A simple counting argument shows that there is a pair ab so that for all
but (;) (e2n*/130) /(%) < €2n?/10 other pairs cd the 4-tuple abed is properly
coloured. Without loss of generality ab is red. Partition the vertices of V —ab
into 4 sets according to the colour of the edges they send to {a,b}. We label
these sets RR,BB,RB,BR, where R means ‘red’, B means ‘blue’ and a
vertex ¢ belongs to the set that labels the colours of the edges ca,cb in this
order. Note that if cisin RR and d is in RB then ca and db are coloured red
and blue, whereas cb and da are are both red, so abed is improperly coloured.
We deduce that one of RR and RB has size at most en/3, since otherwise
we would have at least €2n?/9 improperly coloured 4-tuples containing ab.
The same argument applies when take one point from each of BB and RB,
or RR and BR, or BB and BR. Therefore, either RB and BR each have
size at most en/3, or RR and BB each have size at most en/3.

In the case when RB and BR each have size at most en/3 we look at
the pairs in RRUBB. If ¢ and d are both in RR then both of the opposite
pairs {ac,bd} and {ad,bc} are coloured red. If ¢d is coloured blue then abed
is improperly coloured, so all but at most €2n?/10 pairs in RR are coloured
red. Similarly all but at most ¢2n?/10 pairs in BB are coloured red, and
all but at most €2n?/10 pairs with one vertex in RR and one in BB are
coloured blue. Define a partition V = V3 U V5, where Vi contains RR, V5
contains BB and the remaining vertices are distributed arbitrarily. Note
that all the incorrect 4-tuples with respect to this partition belong to the
one of the following three groups.

(i) Improperly coloured 4-tuples. There are at most €2n*/130 of those.

(ii) Properly coloured 4-tuples which use at least one vertex in RBUBR.
There are at most (2en/3) () such 4-tuples.

(iii) Properly coloured 4-tuples which contain either a red pair of vertices
with one vertex in RR and one in BB, or contain a blue pair of vertices from
RR or from BB. There at most (3¢n?/10) (;) such 4-tuples.

2.4 2,2

Therefore all but at most <3425 (5)+35%
with respect to this partition.

The case when RR and BB each have size at most en/3 can be treated

similarly. Here the conclusion is that all but at most €2n?/5 pairs within RB

or BR are coloured blue, and all but at most €2n?/10 pairs with one vertex

(g) < en®* 4-tuples are correct
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in RB and one in BR are coloured red. Then, similarly as above one can
show that with respect to a partition where V; contains RB, V5 contains
BR and the remaining vertices are distributed arbitrarily, all but at most
en? 4-tuples are correct. 1

Using the stability theorem we can now prove the following exact Turdn
result.

Theorem 2.2. Let H be a 4-uniform hypergraph on n vertices that does
not contain a copy of C§4) and let n be sufficiently large. Then the number
of edges in H is at most b(n), with equality only when H is one of at most

2 hypergraphs B,.

Proof. Let H be a 4-uniform hypergraph on n vertices, which has e(H) >
b(n) and contains no C§4). First we claim that we can assume that H has
minimum degree at least b(n)—b(n—1). Indeed, suppose that we have proved
the result under this assumption for all n > ng. Construct a sequence of
hypergraphs H=H,,H,_1,... where H,, 1 is obtained from H,, by deleting
a vertex of degree less than b(m)—b(m—1). By setting f(m)=e(H,,)—b(m) we
have f(n)>0and f(m)> f(m+1)+1. If we can continue this process to obtain
a hypergraph H,,, then n—ng< an_:lno (f(m)—=f(m+1)) < f(no) < ("}), which
is a contradiction for n sufficiently large. Otherwise we obtain a hypergraph
H,» with n >n' > ny having minimal degree at least b(n’) —b(n’ — 1) and
without a C§4). Then by the above assumption e(H, ) <b(n’) and again we
obtain a contradiction, since

e(H) =e(Hy,) <b(n')+ > (b(m)—bm—1)—1) <b(n).

n'<m<n
Substituting from equation (2) we can assume H has minimum degree

(5) S(H) >b(n)—bn—1)> in?’ - an.
12 2

Given a partition of V(H) = V3 U Vs, we call an edge abed of H good
if abed is a good 4-tuple (as defined before) with respect to this partition;
otherwise we call it bad. By Theorem 2.1 there is a partition with all but at
most 1072°n* edges of H being good. Let V(H)=V; UV, be the partition
which minimises the number of bad edges. With respect to this partition,
every vertex belongs to at least as many good edges as bad edges, or we
can move it to the other class of the partition. Also, by definition, there
are at most b(n) good 4-tuples with respect to any partition. We must have
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[Vi|—n/2|<1075n and ||Va] —n/2| <107 %n. Otherwise by equation (1) we
get

1
e(H) < 48<(n —3n+4)" = (4:107202 = 3n 4+ 4)%) + 107 Fn’ < b(n),

which is a contradiction.

Note that there is no pair of vertices ab for which there are both 1071912
pairs cd such that abed is a good edge and 107'9%2 pairs ef such that
abef is an bad edge. Indeed, each such cd and ef which are disjoint give
a 4-tuple cdef which is good, but cannot be an edge as it would create a

C§4) . Moreover, every 4-tuple can be obtained at most 3 times in this way,

and every cd is disjoint from all but at most 2n pairs ef. Thus at least

1071%92(107 %02 — 2n) /3 > 10~2!n? good 4-tuples are not edges of H, and

therefore e(H) <b(n)—1072'n* +10725n* <b(n), which is a contradiction.
The next step of the proof is the following claim.

Claim 2.3. Any vertex of H is contained in at most 107°n3 bad edges.

Proof. Suppose some vertex a belongs to 107°n3 bad edges. Call another
vertex b good if there are at most 1071912 pairs cd such that abed is a bad
edge, otherwise call b bad. By the above discussion, for every bad vertex
b there are at most 1071922 pairs ef such that abef is a good edge. Note
that there are at least 10~°n bad vertices, otherwise we would only have at
most 10™°n- (5) +(1—107°)n-10"1%% <10~°n? bad edges through a, which
is contrary to our assumption. By choice of partition there are at least as
many good edges containing a as bad. We know that a has degree at least
112n3 — 1 n?, at least half of which is good, so there are at least n/24 good
Vertlces

Suppose that the number of good vertices is an, and so there are (1—a)n—
1 bad vertices. We can count the edges containing a as follows. By definition
there are at most 107123 such good edges containing a bad vertex, and at
most 1071913 such bad edges containing a good vertex. Now we bound the
number of remaining good edges. Note that these edges only contain good
vertices. Looking at the vertices of such an edge in some order, we can select
the first 2 vertices in an(an—1) ways. Since the edge is good, the choice of 2
vertices together with a restricts the fourth vertex to lie in some particular
class V;, so it can be chosen in at most (%—i—lO_G)n ways. Note that we have
counted each edge 6 times, so we get at most an(an — 1)(1 + 10~ )n/6 <
(a®*+3:107°)% (%) edges. Similarly there are at most ((1—a)? —|—% 107°)5(3)
remaining bad edges through a. Since 1/24 < o < 1—1077, in total the
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number of edges containing a is bounded by

1 1(n 1 1(n
2 _.15>_ (1_ 2 1 5)_ .10-10,,3
(a +3 0 5\g )t ( a)+2 10 51 3 +2-107"n

Los_ 1o
<t T g <(H).

This contradiction proves the claim. |

Now write |Vi| =n/2+t, |Va| =n/2 -t with —1075n <t < 1075n. By
possibly renaming the classes (i.e. replacing ¢ with —t) we can assume that
d(n,t) < d(n,—t). Then any vertex of Vj belongs to d(n,t) good 4-tuples.
Now d(n,t) is the minimum degree of B(n,t), which is certainly at most the
maximum degree of B,,. Comparing with equation (4) we see that any vertex
of V1 belongs to at most %nS — %n2+n3/2 good 4-tuples. From now on this
will be the only property of Vi we use that might possibly not be a property
of V5. We will eventually end up showing the same bound on the number
of good 4-tuples containing a vertex of V5. Then the whole argument will
apply verbatim switching V; for V5.

We will use this property in the following manner. Suppose «a is a vertex
of V; for which K of the good 4-tuples containing a are not edges of H.
Then there are at most %n‘% — %n2+n3/2 — K good edges containing a, so
by (5) there must be at least

1 1
0(H) — (En3—§n2+n3/Q—K>
> (ing’ — 1n2) — (ing’ — 1nQ—i—n?’/z —K) =K —n??
12 2 12 2

bad edges containing a. Similarly, if @’ is a vertex in V5 then it belongs to
at most

1 3 2 2 1 3 1 3 1 2 —6,. 3
d(n,—t) = 12(n 6n”+8n+12t )+12]6tn 8t°—16t| < 5" +107°n
good edges. Thus, if it belongs to L good 4-tuples which are not edges of H
then it must belong to at least L —10~%n3 bad edges.

Suppose for the sake of contradiction that there is some bad edge incident
with V;. Denote the set of bad edges containing some vertex v by Z(v).
Let a be a vertex in V; belonging to the maximum number of bad edges
and let Z=|Z(a)|. Note that Z>0. For every bad edge abcd containing a,
consider a partition of its vertices into pairs, say ac and bd. Recall that there
are 2 types of pairs, one type consisting of pairs with both vertices in one
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class, the other consisting of pairs that have one point of each class. By
definition of a bad edge, ac and bd are pairs of the same type. If ef is any
pair of the other type which is disjoint from both of them, then acef and
bdef are good 4-tuples. One of them is not an edge of H, or we get a C§4).
The number of such pairs ef is clearly at least

min{(|V1| —4)(|Va| —4), <|V1’2_ 4> + <|V2|2_ 4)}
> G — 1012> n? —0(n) >n?/5.

Let Z1(a) be those bad edges for which there is some partition into pairs ac
and bd, so that for at least n?/10 of the pairs ef defined above, the good
4-tuple acef is not an edge. Let Z5(a)=Z(a)— 21 (a), and write Z; =|Z;(a)|
for i=1,2. Then one of 7,7, is at least Z/2.

Case 1. Suppose Z; > Z/2. Let C be the (non-empty) set of vertices ¢
such that there is some edge abed in Z1(a), and acef is a good non-edge
for at least n?/10 pairs ef. Then we have at least |C|n?/30 good non-edges
containing a, as we count each acef at most 3 times. This implies that there
are at least |C|n?/30—n%2>|C|n?/31 bad edges containing a and therefore
n?/31 < Z/|C|. Since every edge in Z1(a) contains at most 3 vertices of C
there exists c€ C which is contained in at least |Z1(a)|/(3|C|)=Z1/(3|C|) >
Z/(6|C|)>n?/200 bad edges. Fix one such c.

Note that a graph with n vertices and m edges contains a matching of
size at least m/2n, since otherwise there is a set of fewer than m/n vertices
that cover all the edges of the graph, which is impossible by direct counting.
Consider the set of pairs bd such that abed is a bad edge. Then there exists
a matching M of size at least n/400 so that for each bd in M we have that
abed is a bad edge of H. Partition such an edge into pairs ab and cd. Then,
as we explained above, there are at least n?/5 pairs ef such that one of
the 4-tuples abef and cdef is a good non-edge. Since M is a matching we
count each such 4-tuple at most 3 times, so one of a or ¢ belongs to at least
1 : 1 : ”—2 100 = n3/12000 good non-edges. Therefore it belongs to at least

3/12000 107513 >107°n? bad edges, which contradicts Claim 2.3.
Case 2. Now suppose Zy > Z/2. Note that every bad edge containing a
contains at least one other point of V7, so there is some b€ V; belonging to
at least Zy/n edges of Z5(a). Fix one such b. Suppose cd is a pair such that
abed is in Z5(a), and consider any partition of abed into pairs py, pe with a
in p; and b in py. Then, by definition of Z5(a), there are at least n?/10 pairs
ef such that poUef is a good non-edge. Let C be the set of vertices ¢ for
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which there exists a vertex d such that abed is an edge of Z5(a). Then there
are at least |C|n?/30 good non-edges containing b, as we count each beef at
most 3 times. Thus, there are at least |C|n?/30—n%2>|C|n?/50 bad edges
containing b. By maximality of Z we have |C|n?/50<|Z(b)| < Z. Note that
each edge in Z(a) that contains b is obtained by picking a pair of vertices
in C,s0 Z/(2n)< Zy/n< (‘g') < 125022 /n*. Therefore Z >n3/2500, which
again contradicts Claim 2.3.

We conclude that there are no bad edges incident to the vertices of Vi,
i.e. all bad edges have all 4 vertices in V5. We can use this information to
give more precise bounds on the sizes of V7 and V5. We recall that |Vi| =
n/2+t, |[Vo|=n/2—t and d(n,t) <d(n,—t). Suppose that |t| > /n, so that
6]t|n—8t|> —16|t| < —2n3/% and by (3)

1 1
d(n,t) = 1—2(n3 — 6n% + 8n + 12t%) + E(G]t!n — 8|t[> — 16]t])

1 5 1, n¥?
—n’ —-—n“"— — < 4(H).
Sl g T g <o)
This is a contradiction, since the vertices of V; only belong to good edges,
of which there are at most d(n,t) < d(H). Therefore |t| < \/n. Now we can
bound the number of good 4-tuples containing a vertex of V. By (3), this
number is at most

1
d(n,—t) = —(n® — 6n% + 8n + 12t%) +

8[t|> — 6|t 16|t
D (8[| |t|n + 16]t])

1
12
1 1
< Eng — §n2 —l—n3/2.
Now the same argument as we used to show that no bad edges are incident
with the vertices of V; shows that none are incident with V45 either. We con-
clude that all edges are good. Then by definition of b(n) we have e(H) <b(n),
with equality only when H is a B,, so the theorem is proved. |

3. Proof of Frankl’s conjecture

In this section we will prove the general case of the Frankl conjecture. We
recall that C?()Qk) is the 2k-uniform hypergraph with three edges { PyUP,, P,U

P53, P3sUP; }, where Py, Py, P3 are pairwise disjoint sets of k vertices. We can
(

obtain a large C32k)-free graph on n vertices by partitioning an n-element
set V into 2 parts Vi,Vs and taking those edges which intersect each part
V; in an odd number of elements. To see this, consider any Pj, P, P3 that
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are pairwise disjoint sets of k vertices. Then V1 N P;| and |V; N P;| have the
same parity for some pair ij, so P;UP; is not an edge.

Note that this construction is the same as the one we described for C§4)
when k=2. In the 4-uniform case we were able to calculate the sizes of the
parts that maximise the number of edges. For general k this is an inter-
esting problem in enumerative combinatorics, that is equivalent to finding
the minima of binary Krawtchouk polynomials. These polynomials play an
important role in the analysis of binary Hamming association schemes and
so many of their properties are well-known in this context (see, e.g., [5]). In
particular, the location of their roots is an important problem, but we will
need here only a crude estimate that follows easily from known results. In
the first subsection of this section we will state this estimate and apply it
to various parameters of our construction. The rest of the proof follows the
same broad outline as that of the 4-uniform case, in that it falls naturally
into two parts. We will prove the stability part in the second subsection,
and the full result we defer to the final subsection.

3.1. Binary Krawtchouk polynomials

Let B(%)(n,t) denote the 2k-uniform hypergraph obtained by partitioning
an n-element set into two parts with sizes 5+t and 5 —¢, and taking as
edges all 2k-tuples with odd intersection with each part. Let box(n,t) be the
number of edges in B*)(n,t) and let do(n,t) be the degree of any vertex
belonging to the side with size 5 +¢. Then the vertices on the side with size
5 —t have degree day(n, —t).

The binary Krawtchouk polynomials K] (x) can be defined by the gener-
ating function

Z K] (z)z"=(1-2)"(1+2)""".
m=0

From here we get the explicit expression K% (z)=Y"7"(—1)"(5) (~"). Recall
that bog(n,t) was the number of 2k-tuples with odd intersection with both
parts in the above partition of an n-element set and so (21) —bog(n,t) is the
number of 2k-tuples with even intersection with these parts. This implies
that ((2) — bar(n,1)) — bar(n,8) = X2 (— 1)1 (/2 (Y20) = K (n/2+ 1),
which gives

() ban(n,1) = é((;;) - Kgyln/2+1)).
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so maximising boy(n,t) is equivalent to finding the minimum of K7 (x). Sim-
ilarly, we can also express the degrees of B(*)(n,t) in terms of Krawtchouk
polynomials. Indeed, by definition, ds(n,t) is the number of (2k—1)-tuples
with even intersection with the first part in the partition of an (n—1)-element
set in two parts with sizes n/24+t—1 and n/2—t, and therefore (g, 1) —dar(n,t)
is the number of (2k —1)-tuples with odd intersection with this part. Then,

d”“g?’t)—((% L) = dai(n, ) = S (=1 (PN () = Kg T (nf2+
t—1), i.e.

(7) dog(n, ) = ((27;__11) FRE (/24 0= 1)),

Note that K () is a polynomial of degree m. It is known that it has m
simple roots, symmetric with respect to n/2. The smallest root is given by
the following formula obtained by Levenshtein [6]:

m—2

r =mn/2 — max ( i:ZO zizip1y/ (i +1)(n — Z)>’

where the maximum is taken over x; with Z;i_ol 22 =1. From the Cauchy-
Schwartz inequality we see that n/2—r </mn. Note that K3, (0) =K, (n)=
(5+) >0, so the minimum of K%, () occurs in the range n/2=++v/2kn.

Let t* be chosen to maximise the number of edges in B®*)(n,t), and

denote any hypergraph obtained in this manner by ng). Note that t* may
not be unique, but must satisfy [t*| < v2kn. Also, by symmetry we can

assume that t*>0. Write bog(n) for the number of edges in B,

Lemma 3.1. (i) K]} (n/2+t)= Zm/z z+m(”/ t)(m t).

(ii)) If c¢>1 and 0<s<c¢y/n then ‘dzk n,is)_%(zk 1)’ (10¢2 )knk’—l/Q‘
(i) [bar(n) — (30| < (Q0n)¥,  [dog(n, 1) — L (5 71)] < (20k)Fm1/2,
(iv) If C>20F then dgk(n C’f

()~ 20k
(v) ‘bgk n,en) — (1 26” )’ (10€)kn2k—1, ‘ko(n,en)— (%(”_1) —
%(225£:11))‘<(106)kn2k 2.

2k—1
Proof. (i) Rewrite the generating function as >, _o K} (n/2+1)2z" =(1—
22)"/2-t(1 — 2)?* and expand.

/\ l\')l»—l
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(ii) Using part (i) with t=s—1/2, and applying (7), we get

n—1

1 1, .
doi(n, s) (% ) 1)\ = SIK5 /245 - 1)

:1’“*1(_ . n/2—s 25— 1
2| = 2% —1—2i

k(QC\/ﬁ)Qk 1 (10C k 1/2

The corresponding inequality for dax(n,—s) can be obtained similarly.

(iii) The second statement follows from part (i) with ¢ = v2k > t*/\/n.
To prove the first statement, we use (6), part (i) and again the fact that
0<t* <+/2kn. Altogether they imply

k
bo(n) — %(;;)‘ = %|K§Lk(”/2 <D (7152) (;ﬂ)

=0

< (k+1)(2v2kn)** < (20kn)¥.

(iv) By (7) we have

2\2k -1

=l it —cyn\ (20yn—1
:_g(_ +< i ><2k—1—2i>
1(2C/n — 2C/n —1
_§< 2k — 1 ) 2( D(n /2)< 2k — 3 )

(2C/n)%* =1 (k—1)n (2C/n)%*3
= (1+o0(1)) (— 202k — 1)1 + 4 (2k — 3)! >

N R ) <X RRNCR)

N —

c? k—=1\ 20)*72 | 1) ko k—1/2
<_<(2k—1)2_ > )(2k—3)!" < 20

(v) Using the formula for K7, (n/2+t) from part (i) together with (6) w
obtain that
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o (30422

The proof of the inequality for do(n,en) can be obtained similarly and we
omit it here. 1

We remark that these simple estimates are sufficient for our purposes, but
the location of the roots and asymptotic values for Krawtchouk polynomials
in the oscillatory region are known with more precision (see, e.g., [5]). With
this information one could find better estimates for boy(n), and possibly how
many different choices of ¢ give the maximum number of edges.

We conclude this section with an estimate on the difference of successive
values of bog(n).

Lemma 3.2. bog(n)—bor(n—1)> %(27}?_11)-

Proof. Suppose that H = B®*)(n — 1) has bog(n — 1) edges and has parts
V(H) = AUB. Let H; be obtained from H by adding a vertex vy to A,
together with all the 2k-tuples containing v; and having odd intersections
with AUv; and B. Let Hs be similarly obtained by adding a vertex vs to B,
together with corresponding edges. By definition each H; has at most box(n)
edges, so the degree of each v; is a lower bound for bog(n) — box(n—1). On
the other hand, for each (2k — 1)-tuple X of vertices in H there is exactly
one 7 such that X Uwv; is an edge of H;, so one of the v; has degree at least

3 () i

3.2. A stability result for C?EQk)

In this subsection we prove a stability result for Cézk). We start by re-
calling a version of the Kruskal-Katona theorem due to Lovész. Write
[m] = {1,...,m}, let [m]®*®) denote the subsets of [m] of size k, and sup-
pose A C [m]*). The shadow of A is d.AC [m]*~1) consisting of all sets of
size k—1 that are contained in some element of A. For any real x write
(;) =z(x—1)---(z — k+1)/k!. The following result appears in [7] (Exer-
cise 13.31).
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Proposition 3.3. If AC [m]®) and |A|= () then |0A]>(,",). ]

Suppose we have a 2k-uniform hypergraph H and a partition of the vertex
set V(H) =V, UV,. Our terminology for 2k-tuples matches that of the 4-
uniform case. We call a 2k-tuple of vertices good if it intersects each V; in an
odd number of elements; otherwise we call it bad. We call a 2k-tuple correct
if it is either a good edge or a bad non-edge; otherwise we call it incorrect.

Theorem 3.4. For every € > 0 there is n > 0 so that if H is a C?()Qk)-free

2k-uniform hypergraph with e(H) > %(an;) —nn?* then there is a partition of
the vertex set as V (H)=V,UV, such that all but en®* 2k-tuples are correct.

Proof. Define an auxiliary graph G whose vertices are all k-tuples of vertices
of H, and where the k-tuples P, and P, are adjacent exactly when P, U P,

is an edge of H. Since H is Cé%)—free we see that G is triangle-free. Also,
each edge of H creates exactly %(215 ) edges in G (corresponding to the ways

of breaking a 2k-tuple into two k-tuples) so

e(G) > %(2:) (% (27;) - nn2k> > (1- (k!)222’“17)%<(§)>.

Choose 7 so that the Simonovits stability theorem (see Section 2) applies
with o' = (k!)22%"n, N = (}) and € = 107%%* ¢k We can also require that
n< 106"k We get a partition of the k-tuples of vertices of H as UyUUq,
where all but ¢ N?=¢ (2)2 <1076% ekn2* edges of H are formed by taking a
k-tuple from Uy and a k-tuple from Uj.

We will think of the sets U; as determining a 2-colouring of all k-tuples,
and say that the k-tuples in U; have colour i. A 2k-tuple I will be called
properly coloured if, either it is an edge of H and however we partition [
into k-tuples P; and P, they have different colours, or it is not an edge of
H and for any partition of I into two k-tuples they have the same colour.

An improperly coloured 2k-tuple is either an edge that is the union of
two k-tuples of the same colour or a non-edge which is the union of two
k-tuples with different colours. There are at most 1076+ ek 2k of the former
2k-tuples, and the number of the latter is at most

k!)222kn N2 (k!)222k77 6/
_ _ /N2 << - /N2< 2k
Ul[Uh] = (e(G) = €N7) < = o TS o)

_5E2_
< 1075k 1k p2k

Therefore all but (10_6k26k + 10_5k2_1)6kn2k < 105K ek 2k 2k-tuples are
properly coloured.
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A simple counting argument shows that there is a k-tuple P so that for
all but (215) 105 efn?*/ (1) < 104 ek pk other k-tuples Q the 2k-tuple PUQ
is properly coloured. Without loss of generality P has colour 0. We will call
a k-tuple @ proper if PUQ is properly coloured; otherwise it is improper.
Then by definition there are at most 10—4k2 kpk improper k-tuples. Call
a (k—1)-tuple X C V — P abnormal if there are at least 273¥en vertices
x €V —(PUX) for which X Uz is improper; otherwise call it normal. It is
casy to see that there are at most k-10~4Fnk /(273ken) < 10738 b~ 1ph—1
abnormal (k—1)-tuples.

We partition the vertices of V — P according to the colour of the k-tuples
that they form when they replace an element of P. To be precise, we fix
an order pi,...,pr of P and partition into 2¥ parts V — P = Vs, where
s=(s1,...,5;)€{0,1}* and a vertex x belongs to V; iff (P—p;)Uz has colour
s; for every 1<i<k.

Consider a (k—1)-tuple X =z ---x;_1 and suppose a is a vertex such
that X Ua is proper. Fix 1 <4<k and consider the partitions PUX Ua =
(P)U(X Ua)=((P—pi)Ua) U(X Up;). Let V5 be the class containing a, so
that (P—p;)Ua has colour s;. We recall that P has colour 0, so if also s;=0
then to be properly coloured X Ua must have the same colour as X Up;. On
the other hand, if s;=1 then X Ua and X Up; must have different colours.
If we write cx (v) for the colour of X Uv for any vertex v, then this can be
summarised as

(8) If a€V, and X Ua is proper, then cx(a)+s; = cx(p;) (mod 2).

Suppose there are 2 classes Vs and Vi both of size at least 272¥en. Since
(2;:_)“16”) > 1073k ~1pk~1 some (k—1)-tuple X C V; is normal. This means
that there are at most 273%en vertices x € V — (PUX) for which X Uz is
improper, so there is a € V5 and b€ Vy such that XUa and X Ub are proper.
For any pair of indices 4,j we have cx(a)+s;=cx(p;), cx(a)+s;=cx(p;),
cx (b) +s; = cx(pi) and cx(b) + s = cx(p;). Adding these equations gives
si+sj+s;+s;=0.1f s and s’ differ in some co-ordinate i then this equation
shows that they must also differ in any other co-ordinate j. In other words,
if s’ #s we must have s’ =5, where S denotes the sequence whose ith entry
is 1—s;.

Let Vs be the largest class, and write m = |Vs|. Clearly m >27%(n — k).
Then all other classes, except possibly Vg, have size at most 27 %Fen. Let
A; be the set of proper k-tuples contained in Vg that have colour i. Then
|Aol+ A1 > () — 10~4F* bk > (11073 ¢) (7). Write |Aj]=a; ("), so that
ag+ap >1— 103K Suppose both «; are at least 10-2%¢. Observe that
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/k

1
|A;| = (% . ™ +0(m*~1), so by Proposition 3.3 we have

1/k
o;"m k—9 (k—1)/k [ T k—2
]8A1|_<k_1>+0(m )=« (k_1>+0(m )
Note that if z<2"% we have that z—1/¥ >2 and therefore
Z(k’—l)/k + (1 _ 10—3k26 _ Z) (k_l)/k Z Z(k’—l)/k’ + (1 _ 10_3k2€ _ Z)

> 92 41-103% -2 =14 2—10"3%¢

Since z(k=D/k ig concave, ag> 10-2*"¢ and 10~2%* ¢ <27* we have
a(()kq)/k . agkq)/k N a(()kq)/k 41— 10-3K%¢ _ ao)(kz—l)/k

> (10_2k26> (kfl)/k + (1 _ 10_3k2€ _ 10_2k26) (kil)/k
>14+107 2% —1073%¢ > 14+ 1073,

We deduce that |0.A4gNIAL| >0, i.e. there is a (k—1)-tuple X and points
ap,ay such that X Ua; is proper, with cx(a;)=i. But equation (8) gives
i+s1 = cx(a;)+ s =cx(pr), for i = 0,1, which is a contradiction. We
conclude that there is t € {0,1} for which a;_; < 10_2k2e, and so all but at
most 10*2’“26(’;‘) + 1074 ekpk < 1072K% en® k-tuples inside Vz have the same
colour t.

For 0 <i <k let D; be all k-tuples with ¢ points in Vg and k —1 points
in V; and let §; = 102+ (2k22%)’c. We claim that for each i all but at
most 0;n* k-tuples of D; have colour ¢+i (mod 2). Otherwise, choose the
smallest 7 for which this is not true. By the above discussion i>0, and
there are at least 0;n" k-tuples in D; with colour 1— (t+i)=t-+i—1 (mod
2). Since i was the smallest such index all but at most 6; _1n* k-tuples of
D;_1 have colour t+i—1 (mod 2). Let E;_; be the (k— 1)-tuples Y with
i—1 points in Vs and k—1i points in Vi for which there are at least 2-%Fn
points y € V5 such that YUy does not have colour ¢t +i—1 (mod 2). Then
|Ei—1| < kO;—1n*/(27%n) = L0;n*~1, so at most $0;n* k-tuples contain an
element of F;_1. Recall that there are at most 10—4k2 ki improper k-tuples
and at most 1073k eh—1ph=1.p = 103K ck—1pk k-tuples that contain some
abnormal (k — 1)-tuple. Since 104" ¢k 4 1073% F—1 < 102K ~1c < 9, /2 we
can find a proper k-tuple K € D; such that K has colour t+i—1 (mod 2)
and for any (k—1)-tuple Y C K we have Y normal and Y ¢ E;_;.

Since ¢ >0, there is x € KNV5. Let Y = K—z. Since Y is normal there are at
most 27 %Fen vertices y such that YUy is improper, and by definition of E;_;
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there are at most 27 2#n points y € V5 such that Y Uy does not have colour
t+i—1 (mod 2). Since 273 en+272kn < 27%(n—k) there is y € V5 such that YUy
is proper and has colour t+i—1 (mod 2). Then cy () =cy (y) =t+i—1 (mod 2).
But x € Vg and y € Vg, so ¢y () +1—s1 =cy(p1) and ¢y (y)+ s1 =cy (p1),
both mod 2. This is a contradiction, so we conclude that all but at most
9,n* k-tuples of D; have colour t+i.

Now partition V into 2 classes Vi, V5 so that Vg C Vq, V5 C V,, and the
other vertices are distributed arbitarily. Incorrect 2k-tuples with respect to
this partition belong to the one of the following three groups.

(i) Improperly coloured 2k-tuples. There are at most 105K k2t of
those.

(ii) Properly coloured 2k-tuples which use at least one vertex not in
VsUVs. There are at most 2k2_2ken(2k”_1) <27 ken?F such 2k-tuples.

(iii) Properly coloured 2k-tuples which contain a k-tuple of D; with
colour ¢ +4—1 (mod 2). There are at most Y& 0n*(}) < fn?* =
10— 2+ (2k22k)ken2k <10~*en?* such 2k-tuples.

Therefore all but at most (10_5k26k—|—2_k6—|— 10_k26)n2k < en? 2k-tuples

are correct with respect to this partition. This completes the proof of the
theorem. |

3.3. The Turan number of C?(,%)

In this subsection we complete the proof of Frankl’s conjecture.

Proof of Theorem 1.1. Let H be a 2k-uniform hypergraph on n vertices,
which has e(H) > byi(n) and contains no Cézk). By the same argument given
in the proof in the case k=2 we can assume that H has minimum degree at

least boy(n) —box(n—1). Applying Lemma 3.2 gives

1/fn—-1
. =270

For convenience of notation we set n= (100k)_10k. By Theorem 3.4 there is a

partition with all but at most (1/20k)**n2* edges of H being good, i.e., they
have odd intersection with both parts. Let V(H)=V;UVa be the partition
which minimises the number of bad edges. Then every vertex belongs to at
least as many good edges as bad edges, or we can move it to the other class of
the partition. Recall that, by definition, the number of good 2k-tuples with
respect to this partition is at most box(n). We must have ||Vi|—n/2| < s5nn
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and |[Va|—n/2| < {5mn. Otherwise by Lemma 3.1, part (v)

1(n 1 2~%77n 2%k—1 2k 2k
- — - 1
e(H) < 2<2k> 2( 0 (0 o ) n25=1 4 (n/20k) 2 n?* < boy(n),

which is a contradiction.

Note that there is no k-tuple of vertices P for which there are both
(10k)"FnnF Ek-tuples Q such that PUQ is a good edge and (10k)~*nnF k-
tuples R such that PUR is a bad edge. Indeed, each such @ and R which
are disjoint give a 2k-tuple Q U R which is good, but cannot be an edge
as it would create a Cé%
most %(2]5 ) times in this way, and every Q is disjoint from all but at most
k(,",) k-tuples R. Thus at least (10k)~*nn®((10k)~*nn*—k(," ))/(%(Qkk)) >
2(n/20k)**n? good 2k-tuples are not edges of H, and therefore e(H) <
bor(n) — 2(n/20k)2 02k + (1/20k)?*n?F < byy.(n), which is a contradiction.

), Moreover, every 2k-tuple can be obtained at

Claim 3.5. Any vertex of H is contained in at most nn?*~! bad edges.

Proof. Suppose some vertex a belongs to nm?*~! bad edges. Call a (k—1)-
tuple X good if there are at most (10k)*nn* k-tuples @ such that aUXUQ
is a bad edge, otherwise call X bad. By the above discussion, for every bad
(k—1)-tuple X there are at most (10k)"*nn* k-tuples R such that aUXUR
is a good edge. There are at least nn*~! bad (k—1)-tuples or we would only
have nn*=1- (1) + ((721) —nn*1) - (10k) "Fnn* < nn?*~1 bad edges through a.

Note that there are at most (,",)- (10k)*nn* good edges that contain
a and a bad (k—1)-tuple. To see this, we bound the number of such good
edges by picking the bad (k—1)-tuple X in at most (kﬁl) ways and then a
k-tuple R such that aUX UR is a good edge in at most (10k) *nn* ways
(as remarked above). By choice of partition there are at least as many good

edges containing a as bad, so by (9) we see that a is in at least 1(27"]:, 11)

good edges. It follows that there are at least & (% 1) (10k)~Fnn?*~1 good
edges that contam only good (k—1)-tuples. In particular there are at least
(1 (% 1) (10k)=F 2k*l)/(”_l) >nk=1/(2k)! good (k—1)-tuples.

Suppose there are a( ) good (k—1)-tuples, where by the above we see
that (2k) "' <a<1—(k—1)!n. We can bound the number of good edges
that contain a and do not contain a bad (k—1)-tuple as follows. Given any
such edge W containing a we consider ordered triples (X,Y,b), where X and
Y are good (k—1)-tuples, b is a vertex and XUY UbUa=W. Each edge gives

rise to k(Qkk__ll) such triples. On the other hand we can choose X and Y in at

most (a(kﬁl))2 ways; then to make E good b is constrained to lie in some
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particular class V; of the partition, so can be chosen in at most (% + 11—077)71
ways. This shows that the number of such edges W is at most

(o)) Gogpon) /() = e b ()

A similar argument shows that the number of bad edges that contain a and
do not contain a good (k—1)-tuple is at most ((1—a)?+3-&n)i(5).
We showed above that there are at most (kﬁl) -(10k)~*nn* good edges that
contain a and a bad (k — 1)-tuple. Also, by definition there are at most
(,")(10k)~*nn* bad edges that contain a and a good (k—1)-tuple. Therefore
the total number of edges containing a is at most

(a2 +(1-a)®+6- " )1 (27;__11> +2. (kﬁ1> - (10k) " *ynk

From the bounds (2k)™*~! <a <1— (k— 1)y we see that this is at most
(3 —n/2)(;~"). This contradicts equation (9), so the claim is proved. |

Now write [Vi| = n/2+¢, [Va| = n/2—t with —&nn <t < &nn. By
possibly renaming the classes (i.e. replacing ¢ with —t) we can assume that
d(n,t) <d(n,—t). Now any vertex of V; belongs to d(n,t) good 2k-tuples,
and d(n,t) is the minimum degree of B*)(n,t), which is certainly at most

(2k

the maximum degree of By, ). From Lemma 3.1, part (iii) we have a bound
d(n,t) < $(5"") + (20k)kn*=/2 but we will only use the weaker bound

d(n,t) < (21 )+10%°n*~1/2, Later we will show that this weaker bound also
holds for d(n,—t), and then the subsequent argument will apply switching
V1 and VQ.

Claim 3.6. 1. If a is a vertex of Vi for which K of the good 2k-tuples
containing a are not edges then there are at least K —10%*pk=1/2 paq edges
containing a.

2. If b is a vertex of Vo for which L of the good 2k-tuples containing b are
not edges then there are at least L — (nn/5)?*~1 bad edges containing b.

Proof. 1. By the preceding remarks a belongs to at most 1(% 1) +

10%*n*=1/2 go0d 2k-tuples and therefore it belongs to at most % 5 (o5 11) +

— K good edges. Then by equation (9) a belongs to at least
K —10%*nk=1/2 paq edges.

1
2. From Lemma 3.1, part (v) b belongs to at most % (5~ 11) + (Q'QJTJI) good

2k-tuples, and the stated bound follows as in (1). |

10%k% pk—1/2
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Before proving the next claim we make a remark that will be used on
several occasions without further comment. Suppose W is a bad edge, so
that [WNV;| is even for i=1,2. If we partition W =PUQ with |P|=|Q|=k
then |[PNV;|=|QNV;| (mod 2) for i=1,2. Then for any k-tuple R disjoint
from P and @ with |[RNV;|=|PNV;|+1 (mod 2) both 2k-tuples PUR and
QUR are good. We can obtain such a k-tuple RCV —(PUQ) by picking any
(k—1)-tuple, and then another vertex which, because of parity, is constrained
to lie in some particular V;. This counts each k-tuple k times, so the number
of choices for R is at least

kL (’;:21’“) ((% - %r])n —3k) >n"/(3- k).

Claim 3.7. Supposet<k and T is a t-tuple of vertices belonging to n
bad edges, for some > (20k)*n. Then any S CT with |S|=t—1 belongs to
at least (10k)~*0n?*~*+1 good non-edges.

2k—t

Proof. Write T'=SUv. Consider a bad edge W containing T" and a partition
W=TUXUY, where | X|=k—1 and |Y|=k+1—t. By the above remark,
there are at least n*/(3-k!) k-tuples R for which vUXUR and SUY UR

are both good 2k-tuples. Note that they can’t both be edges, or we would

have a copy of Cé%). Suppose that for at least %ank*t such W there is a

partition W =TUXUY for which there are at least n*/2(3-k!) k-tuples R
for which vU X UR is a good non-edge. This clearly gives at least %an_l
choices for X. Each such non-edge can be partitioned in at most (Qk,; 1) ways

in the form vUX UR, so there are at least

-1
2k — 1 1, 4.4 n* —kp, 2k—1
— 1
( i ) 20n 2(3~k!)>(0k) on

good non-edges containing v. Now Claim 3.6 shows that there are at least
(10k)~*0n =1 — (nn/5)2F=1 > (20k) “Fon?F—1 > pp2h-1

bad edges containing v, which contradicts Claim 3.5. It follows that for at
least %Hn%_t such W and any partition of W =TUXUY we have a good non-
edge SUYUR for at least n¥/2(3-k!) k-tuples R. This gives at least 20nk+1-1
choices for Y. Each such non-edge has at most (2]"’_;“)
SUY UR, so there are at least

—1
<2k —t+ 1) égnkﬂ,t nk > (10k)7k9n2k7t+1

representations as

k 2(3 - k)
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good non-edges containing S. ]

Suppose for the sake of contradiction that there is some bad edge incident
with V3. Denote the set of bad edges containing some vertex v by Z(v). Let
a be a vertex in V] belonging to the maximum number of bad edges and let
Z=|Z(a)|. Note that Z>0.

Claim 3.8. Suppose t <k, (20k)*n< ¢ < (100k)~* and F is a set of at least
¢Zn~2k=1) ¢_tuples containing a such that each F € F is contained in at
least ¢n® =t bad edges. Then there are at least ¢°Zn~ k=41 (t—1)-tuples
containing a each of which is contained in at least $°n**~**1 bad edges.

Proof. Let G be the set of (t— 1)-tuples containing a that are contained
in a member of F. By Claim 3.7 each G € G is contained in at least
(10k)"*pn? —t+1 good non-edges. Each such good non edge is counted by at

most (% 1) different G’s, so there are at least (% 1) G|(10k) "k pn2k—t+1 >

(40k)~*|G|pn* —t+1 good non-edges containing a. Since a € Vi Claim 3.6
gives at least

(40k)—k|g|¢n2k’—t+1 - 104k2nk—1/2 > (50k)—k|g|¢n2k—t+1

bad edges containing a, so by definition of Z we get |G| < (50k)*¢~1Z -
n~—(2k—t+1) et G1 C G consist of those G that belong to at least ¢3n members
of F. Then

pZn~ k) < | F| < |Gi|n + |G|¢3n < |Gi|n + (50k)F¢? Zn~ (k=)

so |G1| > ¢5Zn*(2k*t*1) with room to spare. For each G € G; there are at
least ¢>n sets of F each contributing ¢n?*~* bad edges containing G. Each
such bad edge is counted by at most 2k —t+1 different F'€ F, so G belongs
to at least (2k—t+1)"1¢?n-pn?~t> ¢pPn2*~t*1 bad edges. 1

Let Z1(a) be those bad edges W containing a for which there is some
partition into two k-tuples W =PUQ with a € P so that there are at least
n¥/2(3-k!) k-tuples R for which PUR is a good non-edge. Let Z3(a) =
Z(a) — Z1(a), and write Z; = |Z;(a)| for i = 1,2. Then one of 71,75 is at
least Z/2.

Case 1. Suppose Z; > Z/2. Let P be the (non-empty) set of k-tuples
P containing a such that there is some edge PUQ in Zi(a), and PUR
is a good mnon-edge for at least n*/2(3k!) k-tuples R. Each such good
non- edge is counted by at most (Qk 1) different P’s, so there are at least

(Qk 1) |PIn*/2(3 - k) > (10k)*|P|n* good non-edges containing a. Now
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Claim 3.6 gives at least (10k)~F|P|n* — 10%*nk=1/2 > (20k)~*|P|n* bad
edges containing a, so by definition of Z, |P| < (20k)*Zn=*. On the other
hand, let P; CP consist of those P that belong to at least —(20k:) Fn* bad
edges. Then

1
Z)2 < Zy < |Py|n* + 173|E(20k;)*kn’“ < |[Pyn* + Z/10

s0 |P1|>0.4 Zn~*. Now apply Claim 3.8 k—1 times, starting with ¢="Fk and

$=(100k)~*. We deduce that a belongs to at least ¢5k71n2k_1 > k=1 bad
edges, which contradicts Claim 3.5.

Case 2. Now suppose Zs > Z/2. Note that every bad edge containing a
contains at least one other point of V7, so there is some b€ V; belonging to
at least Z5/n edges of Z;(a). Fix one such b. Let X' be the set of (k—1)-tuples
X for which there exists a (k—1)-tuple Y such that W =aUbUXUY is an edge
of Z5(a). By definition of Z5(a) for any such partition of W, there are at
least nk/2(3 E!) k-tuples R such that bUXUR is a good non-edge. This gives

at least 3k, |X| > (10k)~%|X|n* good non-edges containing b, and since

be Vi Claim 3.6 gives at least (10k)~%|X|n* — 10%°nk=1/2 > (20k)~F| X |n*
bad edges containing b. Thus, by definition of Z, |X| < (20k)*Zn=F. Note
that each edge in Z5(a) that contains b is obtained by picking a pair of
(k—1)-tuples in X, so Z/(2n) < Zy/n < (%') < 1(20k)?* Z2n=2F. Therefore
Z > (20k) =% n2k=1 > pn2k=1 which contradicts Claim 3.5.

We conclude that there are no bad edges incident to the vertices of Vi,
i.e. all bad edges are entirely contained in V5. As in the case k = 2 this
gives a more precise bound on ¢, defined by |V| —n/2—|—t ]V2| =n/2—t. If
|t|>20*\/n then Lemma 3.1, part (iv) gives doy(n,t) <& (gr ) —20FnF—1/2,
This is a contradiction, since the vertices of V; only belong to good edges,
of which there are at most doy(n,t) < §(H). Therefore [t| < 20%\/n. Now
Lemma 3.1, part (ii) gives

Lin-1 ky2)k k—1/2 Lin-1 ak? k—1/2
dor. (1, t)<2<2k_1>—|—(10(20)) <5lop 1 + 10" n :

As we remarked earlier, this bound allows us to repeat the above argument
interchanging V7 and V5, so we deduce that there are no bad edges incident
with V3 either, i.e. all edges are good. Then by definition of box(n) we have
e(H) < bog(n), with equality only when H is a ng), so the theorem is
proved. |
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4. Hypergraphs without C7§4)
We recall that C7(~2k) is the 2k-uniform hypergraph obtained by letting
Py,..., P, be pairwise disjoint sets of size k& and taking as edges all sets
P;U P; with i#j. In this section we will be concerned with the case k=2
and general 7.

Sidorenko [8] showed that the Turdn density of ¢ is at most =2,
This is a consequence of Turan’s theorem applied to an auxiliary graph G
constructed from a 2k-uniform hypergraph H of order n. The vertices of G
are the k-tuples of vertices of H, and two k-tuples P;,P; are adjacent if PJUP,
is an edge of H. It is easy to see that the graph G has (7, vertices, %(215 Je(H)
edges and contains no K,.. Thus the upper bound on the number of edges
of H follows immediately from Turan’s theorem. The following construction
from [8] gives a matching lower bound when r is of the form 27 +1.

Let W be a vector space of dimension p over the field GF(2), i.e. the
finite field with 2 elements {0,1}. Partition a set of vertices V' as U,ecw Vi
|Viw|=|V|/(r—1). Given t and a t-tuple of vertices X =z ---z; with z; €V,
we define XX = Y} w;. Define a 2k-uniform hypergraph H, where a 2k-
tuple X is an edge iff ¥’ X # 0. Observe that this doesn’t contain a copy
of C7(~2k). Indeed, if Py,..., P, are disjoint k-tuples then there is some ¢ # j with
Y P;=XPj (by the pigeonhole principle). Then X (P;UP;)=XP;+ X P;=0,
so P;UP; is not an edge.

This construction depends essentially on an algebraic structure, which
only exists for certain values of r. Perhaps surprisingly, we will show that

this is an intrinsic feature of the problem, by proving Theorem 1.2, which
gives a stronger upper bound on the Turan density of ng4)’ when r is not of
the form 2P+1. We make no attempt to optimize the constant in this bound.

In addition, our proof of this theorem implies that, for r =2+ 1, any
c\Y_free 4-uniform hypergraph with density :%% —o0(1) looks approximately
like Sidorenko’s construction.

Corollary 4.1. Let r=2P+1 be an integer and let W be a p-dimensional
vector space over the field GF(2). For every ¢ >0 there is >0 so that if H
isa Cq(~4) -free 4-uniform hypergraph with e(H ) > :%% (}) —nn? then there is a
partition of the vertex set as ey Vi such that all but en edges X of H
satisfy X X #0.

The rest of this section is organized as follows. In the first subsection
we will prove a lemma showing that certain edge-colourings of the complete
graph K exist only if s is a power of 2. In the following subsection we will
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recall a proof of the Simonovits stability theorem so that we can calculate
some explicit constants. The final subsection contains the proof of Theo-
rem 1.2.

4.1. A lemma on edge-colourings of a complete graph

Lemma 4.2. Suppose that we have a colouring of the edges of the complete
graph K, in s—1 colours, so that every colour is a matching and each subset
of 4 vertices spans edges of either 3 or 6 different colours. Then s = 2P for
some integer p.

Proof. Since the number of colours is s —1, every colour is a matching and
the total number of edges in K is s(s—1)/2 it is easy to see that every
colour is a perfect matching. Also, if wz and yz are disjoint edges of the
same colour, then by hypothesis only 3 different colours appear on wzxyz,
so wy and xz have the same colour, as do zy and wz. Denote the set of
colours by C'={cy,...,cs_1}. We define a binary operation + on C' using
the following rule. Pick a vertex x. Given ¢; and ¢; let e; =zy; and e; =zy;
be the edges incident with x with these colours. These edges exist, as each
colour is a perfect matching. Define ¢; 4-¢; to be the colour of y;y;.

To see that this is well-defined, let 2’ be another vertex and suppose
e; =a'y; has colour ¢; and € = 'y} has colour ¢;. If y; =y then opposite
edges of zy;y;x’ have the same colours, so z'y; has colour ¢;, i.e. y;=y;
and there is nothing to prove. Therefore we can assume that all yi,yj,yg,y;
are distinct. Consider the 4-tuple xzz'y;y.. Since xy; and zy, have the same
colour we deduce that za’ and y;y, have the same colour. Similarly zz’ and
y;y; have the same colour, from which we see that y;y; and yjy); have the
same colour. Now looking at y;y;y;y; we see that y;y; and y;y; have the
same colour, so ¢; +c¢; is well-defined.

Let D be a set obtained by adjoining another element called 0 to C.
Extend + to an operation on D by defining 0+d=d+0=d and d+d=0
for all de D. We claim that (D,+) is an abelian group. Note that + is
commutative by definition, 0 is an identity and inverses exist. It remains to
show associativity, i.e. for any dy,ds,ds we have (dy+ds)+ds=d;+(da+d3).
This is immediate if any of the d; are 0 or if they are all equal. If dy =ds #d3
then dj+ds =0 and there is a triangle with colours dy,ds,dy+ds, so di+(da+
d3)=ds as required. The same argument applies when do =d3#d;. If dy =d3
then dy +do=ds+d3 by commutativity, and so (di+ds)+ds=dy + (da+d3)
also by commutativity. So we can assume that the d; are pairwise distinct
and non-zero. Pick a vertex x, let xy; be the edge of colour d; and zys the
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edge of colour dy. Let y22 have colour ds. We can suppose z#y1, otherwise
dy+do=ds and dy+d3=d; and (dy +dz)+ds=d; + (da+d3)=0. Now y192
has colour dy +ds and zz has colour ds + ds. Consider the edge y;z. From
the triangle it forms with = we see that it has colour d; +(d2+d3) and from
the triangle with yo we see that it has colour (dj + dg2) + ds. This proves
associativity, so D is an abelian group.

Finally, note that every non-zero element has order 2, so D is in fact
a vector space over the field with 2 elements. If p is its dimension then
s=|D|=2P. 1

4.2. The Simonovits stability theorem

In this subsection we will recall a proof of the Simonovits stability theorem
[10] so that we can calculate some explicit constants. Let T5(N) be the s-
partite Turdn graph on N vertices, i.e. a complete s-partite graph with part
sizes as equal as possible. Write t4(N) for the number of edges in Tg(N).
Then Turan’s theorem states that any K,ii-free graph on N vertices has
at most ts(N) edges, with equality only for T5(N). It is easy to show that
IN2/2—s<t, (N)<=IN2)2.

Proposition 4.3. Suppose G is a K¢ y1-free graph on N vertices with min-
imum degree 6(G)>(1—1—a)N and a<1/s*. Then there is a partition of
the vertex set of G as V(G)=UU---UU, with 3 e(U;) <saN2.

Proof. By Turan’s theorem G contains a copy of Kj; let A={aq,...,as} be
its vertex set. Note that any vertex z not in A has at most s—1 neighbours
in A, or we get a Ks1. Let B be those vertices with exactly s—1 neighbours
in A, and C=V(G)—A—B. Partition AUB as UyU---UU, where U; consists
of those vertices adjacent to A —a;. Then there are no edges inside any Uj,
as if zy is such an edge then xy+A—a; forms a K . 1. Distribute the vertices
of C' arbitrarily among the U;. Counting edges between A and V — A gives

S(5(G) —51) < e(A,V— A4) < (s— )|B|+(s—D|C] = (s~ 1)(N—5)~[C]
s0 |C|<(s—1)N —s6(G) <saN. Therefore 3 e(U;) < saN2. |

Theorem 4.4. Suppose G is a K41-free graph on N vertices with at least
(522 —¢)N? edges and ¢ < 1/(4s*). Then there is a partition of the vertex
set of G as V(G)=UU---UU; with 3 e(U;) < (2s+1)y/c N2.

Proof. Construct a sequence of graphs G=Gxn,GN_1,... where if G,, has
a vertex of degree at most (1—1—2\/c)m then we delete it to get Gp,_1.
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Suppose we can delete \/c N vertices by this process and reach a graph
Ga—yen- Then G_ N is Ksyi-free and has at least

—1
2s

(1 Ve)*N?

(S L —c—ﬁ(l—l—Z\/E)>N2> i
2s s

edges. This contradicts Turdn’s theorem, so the sequence terminates at some
Gy with m > (1—/¢)N and minimum degree at least (1—1—2,/c)m. By
Proposition 4.3 there is a partition V(G,,) = Uy U---UUg with > e(U;) <
2s\/c N%. Now distribute the \/cN deleted vertices arbitrarily among the
Ui. Then Y e(U;) < (25+1)y/c N2. |

4.3. Proof of Theorem 1.2

Let V be the vertex set of H. Define a graph G whose vertices are all pairs
in V, where the pairs ab and cd are adjacent exactly when abcd is an edge
of H. Since H is Cq(fl)—free we see that G is K,-free. Also, each edge of H
creates exactly 3 edges in G (corresponding to the 3 ways of breaking a
4-tuple into pairs) so

r—2 n r—2
G 3 _ 10—33 —70 - 10—33 —70 N2
e(&) > (r—l ™) 4 >(2(r—1) PN,

where N = (3).

Applying Theorem 4.4 with s =r — 1 gives a partition of the pairs of
vertices in V as Uqfl P; with 27{71 e(P;) <10~ 167=34 N2 If there is some P,
with |P;| < (25 —1073r~")N then

e(G)< (TEQ) <7“—2+10—3T—7)2

N2 (r—22\r—-1
1 -2
+ ( — 103r7) (r— 4 103r7> 4+ 107 16,734
r—1 r—1
r—2
< = _ 10—6 —14 2 10—16 —34 )
2(r—1) T2 "

This is a contradiction so |P;| > (=25 —1073r~")N for all i. Also if some
|P;| > (=2 +1073r~%) N, then there is j such that |P;|< (-2 —107%r"")N.
Therefore for all ¢

1
(10) ‘ypiy - —1N’ < 107377 %2,
r —
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Note that all but at most 10716r=34n* edges of H are formed by taking a
pair from P; and a pair from P; with i# j. We think of the P; as a colouring
of pairs. A 4-tuple abed will be called properly coloured if either
(i) abed is an edge and each of the 3 sets {ab,cd},{ac,bd},{ad,bc} contains
two pairs with different colours, or
(ii) abcd is not an edge and each of the 3 sets {ab,cd},{ac,bd},{ad,bc} con-
sists of two pairs with the same colour.

An improperly coloured 4-tuple is either an edge that is the union of two
pairs of the same colour or a non-edge which is the union of two pairs with
different colours. There are at most 10~ 167734 N2 of the former 4-tuples, and
the number of latter is at most

r—2 N2 — (e(G) — 107167;34]\,2) < (1071610734 + 107337;70)”4
2(r—1)
Therefore all but 107'°r=34n? 4-tuples are properly coloured. Call a
pair ab bad if there are at least 107'2r—32n2 pairs cd such that abcd
is improperly coloured; otherwise call it good. Then there are at most
(5) (107157 =34n1) /(107127 =32n2) <1072~ 2n? bad pairs.

Consider a graph on V' whose edges are the pairs in P;. As noted in (10)
it has at least =N —10737"5n? edges. For vertices a and b in V, let d(a)
denote the degree of a and d(a,b) the codegree of a and b (i.e. the size of
their common neighbourhood). Then

S dia,b) =% (d(;)) N n(z d(;)/n) _ n(2|P;/n> 5%”

a,beV ceV

Suppose there are at most m pairs (a,b) for which d(a,b) > 15 Then
= 2nN <> d(a, b) <mn+ N gz, so o —L_N <m, i.e. there are at least 10 5z (5)
pairs (a,b) for which d(a, b) . At least one such pair is good, as the
number of bad pairs is at most 10 i r—2n? < 5o n?. Let (a,b) be such a pair
and suppose it belongs to F;.

Let B be the set of pairs cd for which abed is improperly coloured. Since
ab is good we have |B| <10 '27732n% Therefore there are at most |B|(}) <
107 129732n% 4-tuples of vertices that contain any pair of B. We will call
a 4-tuple normal if it is properly coloured and does not contain a pair
from B; otherwise we call it abnormal. Then all but at most 10~ 29 —32p% 4
1071934t <1071 =32n? 4-tuples are normal.

Partition the vertices of V —ab into (r —1)? sets Uy, Where c is in Uj;
iff ac € P; and bc € Pj. Then by the above discussion |Uyq| > 10 2. Now we
claim that for i # j we have |U;;| < 1073r~'n. For suppose that |U;;| >
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10737~ n. Let P, be the colour that appears most frequently among pairs
joining vertices of Uy to U;j. Then there are at least |U11|]UU] pairs of
colour P, with one endpoint in Uj; and the other in Uw Consider the 4-
tuples of the form cicodida, with ¢1,c2 €Uy, di,d2 €U;j and c1dy,cads € Py,
There are at least

(—’UUHU@]’) (—]U11HU”| 2n> /4> 7“*2(10*17“*211~10*3r*11n)2/4
> 107y 321

such 4-tuples, so some cjcadids is normal. By definition of normality each
of its pairs forms a properly coloured 4-tuple with ab. Since acy and bcy are
in P, and ab is in P; we deduce that cicy is in P, as well. Also ad; € P,
bdy € P; and i # j, so dids cannot be in ;. But ¢1d; and cadz both belong
to Py so cicadidsy is improperly coloured. This contradicts the definition of
normality, so we do have |U;;| <1073r~ 1

For convenience write U; =Uj;. Then all but at most (r—1)21073r~1n <
1073797 vertices belong to one of the U;. Suppose cd is a pair such that
abed is properly coloured. Since ab is a good pair, this is the case for all but
at most 1071 =32n2 pairs cd. If ¢ and d both belong to some U; then ac
and bd both have colour 4. Since ab has colour ¢ we see that cd has colour t.
Similarly, if ceU; and deU; with i# j we see that cd cannot have colour ¢.

Let E; denote the pairs with both endpoints in U;, so that |E;| = (‘U |)
By the above discussion, all but at most 10712r=32n2 pairs in U; E; belong
to P;. Suppose |U;| < (ril — 1074 73)n for some 4, so that

2

1 2n
SE > (——107073)
”’><r—1 o ) 2

1-1/(r—1)+ 10173 — 1037«9)2 n?

+<r—2>< — &~ o)

1 9 6) n?
><r—1+10 r 5 O(n).

By (10), this gives the following contradiction.

(2> + 1077002 > [P > Y |Ei| — 107202
i

J ! n2+10_27“_6 5
—_ n-.
r—12 3

1
r—1
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Therefore |U;|> (=15 —1071773)n for each i.

Let E;; denote the edges with one endpoint in U; and the other in Uj.
We claim that one colour is dominant among these edges, i.e. there is some
g such that all but 1072r~4n? edges of E;; belong to F,. Indeed, suppose
that there are colours ¢; and g2 for which E;; contains at least 1027 4n?
edges of colour ¢; and at least 10~2r~%n? edges of colour g». Then there
are at least (10727 *n2)(1072r*n2 —2n) > 10719 =32n* 4-tuples cicadids
with ci,co in U, dy,dz in Uj, cidy of colour ¢ and cady of colour go. At
least one such 4-tuple ¢jcadids is normal, since there at most 10~ 1r=32p4
abnormal 4-tuples. But then cicy and didy both have colour ¢, so cicadyds
is improperly coloured, which is a contradiction.

Consider the complete graph K, 1 on the vertex set {1,...,7 —1} and
colour edge ij with the dominant colour of £;;. We show that this colouring
satisfies the hypotheses of Lemma 4.2. First of all we show that colour ¢
doesn’t occur in this edge-colouring of K,_1, i.e. there are only r—2 colours.
Suppose ij has colour t. Then

1 n
173 —6_2
r—1<2>+ 0

> P =) |Ei| — 1072002 4 |U;||U;| — 107 %r*n?
1

> (r—1) ((ﬁ - 13—1r—3)n> + ((5 = 10*1r*3)n)2— 1071402

. 1 n2+ n? r+2. 1 n2+n2
“r—12 (r—12 r-1 r—12  r?’

is a contradiction.

Now suppose that some colour ¢ is not a matching, i.e. there are edges
ij and ik in K,_; both of colour £. Then all but at most 2-10727r~4n? pairs
of E;j UE;, have colour ¢. Consider the 4-tuples of the form cjcade, with
c1,c2 € U;, d € Uj and e € Uy, such that ci1d,cad,cie,coe all have colour /.
There are at least

U;
( '>U|Uk|—2 1024 (Z)

4
r—

such 4-tuples, so there is one such cqcade which is normal. But then ¢qcy has
colour t and de cannot have colour ¢, since by normality abde is properly




ON A HYPERGRAPH TURAN PROBLEM OF FRANKL 705

coloured. Therefore cycode is improperly coloured. This is a contradiction,
so each colour forms a matching.

It remains to show that if some 4 vertices x1zox3x4 in K,_1 do not span
6 different colours then they span only 3 colours. Suppose that xzixo and
x3r4 have colour a, x1xs3 has colour 8 and zox4 has colour 7. Recall that
all but at most 10727 ~4n? pairs in Eq,x; have the corresponding colour of
x;xj. Consider the 4-tuples in H of the form cjcac3es with ¢; € Uy, such that
c;cj has the same colour as z;z;. There are at least

: 4
I | U 1
Uz,| —4- 10727 ~*n? (Z) ~ < 1 10_17"_3> nt—2.107 % 1nt
7"' —_
1

> 107 Hp32p4

such 4-tuples. Since the the number of abnormal 4-tuples is at most
107797324, some such cjcacscy should be normal. Then 3=+, or cicaczcy
would be improperly coloured. We see that opposite edges of z1zox324 have
the same colour. Therefore we can apply Lemma 4.2 with s=r—1 to deduce
that r—1 is of the form 2P. I

Finally it is not difficult to check that, when r=2P 41, the above argu-
ments together with the proof of Lemma 4.2 imply Corollary 4.1.

5. Concluding remarks

Among the various techniques that we used in this paper, the stability ap-
proach stands out as one that should be widely applicable in extremal com-
binatorics. The process of separating the argument into a stability stage and
a refinement stage focuses attention on the particular difficulties of each, and
often leads to progress where the raw problem has appeared intractable. For
recent examples we refer to our proofs of the conjecture of Sés on the Turan
number of the Fano plane [4], and a conjecture of Erdés and Rothschild on
edge colourings with no monochromatic cliques [1].

Our methods probably apply to Cﬁ%) for general k when r is of the form
2P +1, although the reader who has grappled with the thornier aspects of
this paper will note the formidable technical difficulties that would arise. It
would be far more interesting to say more about the behaviour of the Turdn
density of C7(~2k) for general r. Even Cf) presents an enigma for which there
is no obvious plausible conjecture. We find it remarkable that the seemingly
similar hypergraphs C§4) and Cé4) are actually distinguished from Cf) by a
hidden algebraic feature, so are loathe even to speculate on the nature of
the best construction for this case.
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