
Journal of Combinatorial Theory, Series B 145 (2020) 145–168
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series B

www.elsevier.com/locate/jctb

Global rigidity of direction-length frameworks

Katie Clinch a, Bill Jackson a, Peter Keevash b

a School of Mathematical Sciences, Queen Mary, University of London, Mile End 
Road, London E1 4NS, UK
b Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, 
UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 October 2018
Available online xxxx

Keywords:
Direction-length frameworks
Global rigidity

A 2-dimensional direction-length framework is a collection of 
points in the plane which are linked by pairwise constraints 
that fix the direction or length of the line segments joining 
certain pairs of points. We represent it as a pair (G, p), where 
G = (V ; D, L) is a ‘mixed’ graph and p : V → R2 is a point 
configuration for V . It is globally rigid if every direction-length 
framework (G, q) which satisfies the same constraints can be 
obtained from (G, p) by a translation or a rotation by 180◦. 
We characterise the mixed graphs G with the property that 
every generic framework (G, p) is globally rigid.
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1. Introduction

A finite configuration of points in Euclidean space with local constraints may be 
informally described as globally rigid if the constraints determine the point set up to 
congruence. It is a fundamental open problem to give a nice characterisation of global 
rigidity in various settings. Our setting here is that of a d-dimensional direction-length 
framework, which is a pair (G, p), where G = (V ; D, L) is a ‘mixed’ graph and p : V → Rd
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Fig. 1. Two equivalent but non-congruent direction-length frameworks. We use solid or dashed lines to 
indicate length or direction constraints, respectively. The frameworks are rigid but not globally rigid. Neither 
framework is redundantly rigid - if we delete one of the direction constraints, then we can rotate the subgraph 
induced by the length edges and continuously adjust the position of the vertex v5 to preserve the remaining 
two direction constraints in both frameworks.

is a point configuration for V . We will be particularly concerned with the case when d = 2
which has direct applications to sensor networks and CAD, see [12,14] respectively.

We call the graph G = (V ; D, L) mixed because it has two types of edges, a set D
of direction edges and a set L of length edges. The graph may contain parallel edges 
as long as they are of different types. We will refer to graphs G in which one of the 
sets D or L is empty as pure and will reserve the term mixed for graphs which have 
both types of edges. Two direction-length frameworks (G, p) and (G, q) are equivalent
if p(u) − p(v) is a scalar multiple of q(u) − q(v) for all uv ∈ D with q(u) �= q(v), and 
‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ for all uv ∈ L. Two point configurations p and q for V are 
congruent if either p(u) −p(v) = q(u) − q(v) for all u, v ∈ V , or p(u) −p(v) = q(v) − q(u)
for all u, v ∈ V . It is rigid if there exists an ε > 0 such that, for every framework (G, q)
which is equivalent to (G, p) and satisfies ‖p(v) − q(v)‖ < ε for all v ∈ V , we have p
is congruent to q. (Equivalently every continuous motion of the vertices of (G, p) which 
satisfies the direction and length constraints given by the edges results in a framework 
(G, q) with p congruent to q.) The framework (G, p) is redundantly rigid if (G − e, p) is 
rigid for all e ∈ D ∪ L. These concepts are illustrated in Fig. 1.

We will consider generic frameworks, meaning that the set containing the coordinates 
of all of the vertices is algebraically independent over the rationals; this eliminates many 
pathologies. It follows from [7, Theorem 2.1] that rigidity is a ‘generic property’ in the 
sense that if some realisation of a mixed graph G as a generic framework in Rd is rigid 
then all generic realisations of G in Rd are rigid. This implies that redundant rigidity 
is also a generic property and allows us to describe a mixed graph G as being rigid or 
redundantly rigid in Rd if some (or equivalently if every) generic realisation of G has 
these properties. It is not known whether global rigidity is a generic property (however 
this statement would follow from Conjecture 8.1 below in the 2-dimensional case).

Both rigidity and global rigidity are known to be generic properties for d-dimensional 
pure frameworks, i.e. frameworks which contain only length constraints or only direction 
constraints. We will not give formal definitions for rigidity and global rigidity of pure 
frameworks - they are similar to those for direction-length frameworks except that the 
notion of congruence will allow not only translations, but also arbitrary rotations and 
reflections in the case of length-pure frameworks, and dilations in the case of direction-
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pure frameworks. We will occasionally refer to these pure versions of rigidity and global 
rigidity but it will be clear from the context when we do this.

The problems of characterising rigidity and global rigidity for 2-dimensional generic 
length-pure frameworks were solved by Laman [10] and Jackson and Jordán [5], respec-
tively. In particular, [5] proved that a 2-dimensional generic length-pure framework (G, p)
is globally rigid (in the length-pure sense) if and only if either G is a complete graph on 
at most 3 vertices, or G is 3-connected and redundantly rigid. The problems of charac-
terising rigidity and global rigidity for d-dimensional generic length-pure frameworks are 
open for d ≥ 3. In contrast, Whiteley [18] characterised d-dimensional generic direction-
pure frameworks which are rigid (in the direction-pure sense) for all d. He also observed 
that the linearity of direction constraints gives the following equivalence:

Lemma 1.1. [18] Suppose that (G, p) is a direction-pure framework. Then (G, p) is globally 
rigid if and only if (G, p) is rigid.

Since the problem of characterising generic rigidity of direction-length frameworks 
is at least as hard as that for length-pure frameworks, we will henceforth restrict our 
attention to 2-dimensional frameworks. Rigid generic (2-dimensional) direction-length 
frameworks were characterised by Servatius and Whiteley in [16]. They also pointed 
out that Lemma 1.1 gives the following characterisation of global rigidity for generic 
direction-length frameworks with exactly one length constraint.

Lemma 1.2. [16] Suppose that (G, p) is a generic realisation of a mixed graph G =
(V ; D, L) with |L| = 1. Then (G, p) is globally rigid if and only if G is rigid.

Further results on global rigidity of direction-length frameworks were obtained by 
Jackson and Jordán in [6, Lemma 1.6]. They defined a 2-connected mixed graph G to 
be direction-balanced if whenever G can be expressed as G = H1 ∪ H2 with |V (H1) ∩
V (H2)| = {u, v} and V (H1) \ V (H2) �= ∅ �= V (H2) \ V (H1), then both H1 and H2
must contain a direction edge of G distinct from uv. They then obtained the following 
necessary conditions for generic global rigidity:

Lemma 1.3. Suppose that (G, p) is a generic, globally rigid, direction-length framework. 
Then G is rigid, 2-connected and direction-balanced.

We will see in Section 2.1 that we may define a matroid M(G) on the edge set of a 
mixed graph G in such a way that G is rigid if and only if M(G) has rank 2|V | − 2. 
We will refer to graphs whose edge-set is a circuit in this matroid as M -circuits. The 
main result of [6] is to show that, if G is a direction-balanced, rigid M -circuit, then 
every generic realisation of G is globally rigid. This result has recently been extended 
to M -connected graphs, i.e. graphs in which every pair of edges belong to a common 
M -circuit, by Clinch [2].
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Theorem 1.4. Suppose (G, p) is a generic realisation of an M -connected, mixed graph G. 
Then (G, p) is globally rigid if and only if G is direction-balanced.

Theorem 1.4 does not give a complete characterisation of generic global rigidity 
because M -connectivity is not a necessary condition for the global rigidity of generic 
frameworks. This follows from the above mentioned fact that every generic realisation of 
a (minimally) rigid mixed graph with exactly one length edge is globally rigid, or from the 
fact that global rigidity is preserved if we join a new vertex to an existing globally rigid 
framework by two direction constraints. (The underlying graphs in both constructions 
are not even redundantly rigid.) We can generalise the second construction as follows.

Suppose (G, p) is a generic realisation of a rigid mixed graph G = (V ; D, L) which 
has a proper induced subgraph H = (V ′; D′, L) which contains all length edges of G
and satisfies |D \D′| = 2|V \ V ′|. We will see in Section 5 that G − e is not rigid for all 
e ∈ D \ D′ (hence G is not redundantly rigid), and that (G, p) is globally rigid if and 
only if (H, p|H) is globally rigid.

These observations lead us to consider a more general reduction operation for a rigid 
mixed graph G. We say that G = (V ; D, L) admits a direction reduction to a subgraph 
H = (V ′; D′, L) if either:

(R1) H = G − e for some edge e ∈ D which belongs to a direction-pure circuit in the 
rigidity matroid of G, or

(R2) H is a proper induced subgraph of G which contains all length edges of G and 
satisfies |D \D′| = 2|V \ V ′|.

If G has no direction reduction, then we say that G is direction irreducible. (We will 
describe an efficient algorithm in Section 7 which either finds a direction reduction of a 
given mixed graph or concludes that it is direction irreducible.) Examples of direction 
reductions are given in Fig. 2.

Our first result reduces the problem of characterising the global rigidity of a generic 
framework (G, p) to the case when G is direction irreducible.

Theorem 1.5. Suppose (G, p) is a generic, rigid, direction-length framework and G admits 
a direction reduction to a subgraph H. Then (G, p) is globally rigid if and only if (H, p|H)
is globally rigid.

We will obtain structural information about the family of direction irreducible, rigid 
mixed graphs which are not redundantly rigid, and have at least two length edges. We 
use this information to characterise when such graphs are globally rigid for all generic 
realisations:

Theorem 1.6. Suppose G is a direction irreducible, mixed graph with at least two length 
edges. Then every generic realisation of G is globally rigid if and only if G is 2-connected, 
direction-balanced and redundantly rigid.
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Fig. 2. The rigid graph G = (V ; D, L) on the left is direction reducible to the subgraph H = (V ′; D′, L) on 
the right in two steps. Since the direction edge e = v5v7 is contained in the direction-pure circuit induced 
by {v4, v5, v6, v7} we can delete e by (R1). The graph G − e has exactly 2|V \ V ′| = 8 direction edges 
outside of H so we can reduce G − e to H by (R2). Theorem 1.5 now tells us that a generic framework 
(G, p) is globally rigid if and only if (H, p|H) is globally rigid. Since H is M-connected and mixed, (H, p|H)
is globally rigid by Theorem 1.4. Hence (G, p) is globally rigid.

This leads to our main result, a characterisation of the direction-length graphs which 
are globally rigid for all generic realisations:

Theorem 1.7. Suppose G = (V ; D, L) is a mixed graph. Then all generic realisations of 
G are globally rigid if and only if G is rigid, and either |L| = 1 or G has a direction-
balanced, M -connected, mixed subgraph which contains all edges in L.

Some consequences of our results are illustrated in the Venn diagrams shown in Fig. 3. 
In the diagram on the left, we consider all generic frameworks (G, p) in which G is rigid, 
2-connected and direction-balanced i.e. (G, p) satisfies the necessary conditions for global 
rigidity given in Lemma 1.3. The fact that ‘M -connected’ is contained in the intersection 
of ‘redundantly rigid’ and ‘globally rigid’ follows from the assumption that G is rigid 
and Theorem 1.4. The fact that this containment is proper can be seen by choosing a 
generic framework which is globally rigid but not redundantly rigid, such as a generic 
realisation of the graph on the left hand side of Fig. 2, and replacing each non-redundant 
direction edge uv by a direction-pure K4 which has only the vertices u, v in common with 
the rest of the graph. The resulting framework will be globally rigid and redundantly 
rigid but not M -connected. Similarly, by replacing each direction edge in Fig. 4 with 
a direction-pure K4, we obtain a generic framework which is redundantly rigid but not 
globally rigid, thus showing that ‘redundantly rigid’ is not contained within ‘globally 
rigid’.

In the diagram on the right, we make the additional assumption that G is direction 
irreducible. The fact that redundant rigidity and M -connectivity are equivalent for this 
family follows from Lemma 2.2 below. The fact that ‘redundantly rigid’ is contained 
in ‘globally rigid’ follows from Theorem 1.6. The assertion that this containment is an 
equality is Conjecture 8.1 below.
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Fig. 3. Families of generic, 2-connected, direction-balanced, rigid frameworks. The frameworks in the diagram 
on the right have the additional property that they are direction irreducible. The shaded region in the left 
diagram is non-empty. We conjecture that the shaded region in the right diagram is empty.

The organisation of this paper by section is 1: Introduction, 2: Preliminaries, 3: Proof 
of Theorem 1.6, 4: Direction realisability, 5: Proof of Theorem 1.5, 6: Proof of Theo-
rem 1.7, 7: Algorithmic considerations, 8: Closing remarks.

2. Preliminaries

In this section we collect tools from diverse areas that we will use in our proofs.

2.1. Rigidity

Suppose (G, p) is a 2-dimensional direction-length framework. Its rigidity matrix is a 
(|D| + |L|) × 2|V | matrix R(G, p), where each edge in D ∪ L corresponds to a row and 
each vertex in V corresponds to a pair of consecutive columns. We choose an arbitrary 
reference orientation for the edges, and use the notation e = uv to mean that e has been 
oriented from u to v. Fix an edge e = uv, a vertex x, and write p(u) − p(v) = (a, b). 
Then the two entries in the rigidity matrix corresponding to e and x are as follows. If 
e ∈ L we take (a, b) if x = u, (−a, −b) if x = v, (0, 0) otherwise. If e ∈ D we take (b, −a)
if x = u, (−b, a) if x = v, (0, 0) otherwise.

We refer to vectors in the null space Z(G, p) of R(G, p) as infinitesimal motions of 
(G, p). The labelling of the columns of R(G, p) allows us to consider each infinitesimal 
motion z as a map from V to R2, with the properties that z(u) − z(v) is perpendicular 
to p(u) − p(v) if e = uv ∈ L, or parallel to p(u) − p(v) if e = uv ∈ D. For any 
t ∈ R2 the translation given by z(v) = t for all v ∈ V is an infinitesimal motion, so 
dimZ(G, p) ≥ 2 and rank R(G, p) ≤ 2|V | − 2. We say that the framework (G, p) is 
infinitesimally rigid if rank R(G, p) = 2|V | −2, and is independent if the rows of R(G, p)
are linearly independent.

A property P of frameworks is generic if whenever some generic realisation of a graph 
G has property P then all generic realisations of G have property P. If P is a generic 
property then we say that G has property P if some generic realisation of G has property 
P (or equivalently all generic realisations of G have property P). Infinitesimal rigidity 
and independence are both generic properties, as the rank of R(G, p) is the same for 
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all generic realisations of G. Results from [7,8] imply that infinitesimal rigidity and 
rigidity are equivalent properties for generic direction-length frameworks. Thus rigidity 
and redundant rigidity are also generic properties.

The rigidity matrix of (G, p) defines the rigidity matroid of (G, p): the ground set 
D ∪L corresponds to rows of the rigidity matrix, and a subset is independent when the 
corresponding rows are linearly independent. Any two generic realisations of G have the 
same rigidity matroid, which we call the (2-dimensional generic) rigidity matroid M(G)
of G. (We refer the reader to [15] for an introduction to the theory of matroids.)

Servatius and Whiteley [16] characterised independence in the rigidity matroid of a 
mixed graph:

Theorem 2.1. Let G = (V ; D, L) be a mixed graph and F ⊆ D∪L. Then F is independent 
in M(G) if and only if for all ∅ �= F ′ ⊆ F we have |F ′| ≤ 2|V (F ′)| − 2, with strict 
inequality if F ′ is pure.

They also gave the following recursive construction for independent, rigid mixed 
graphs, i.e. bases in the rigidity matroid of the ‘complete mixed graph’. A 0-extension
of G is a mixed graph obtained from G by adding a new vertex v and two edges at 
v, either of which may be a length edge or a direction edge, and which may go to the 
same vertex of G if they consist of one length edge and one direction edge. A 1-extension
of G is a mixed graph obtained from G by adding a new vertex v, deleting an edge 
e of G, and adding three edges at v, such that the neighbours of v include both end-
points of e, neither D nor L decrease in size, and two new edges may go to the same 
vertex if they are of different types. They showed that 0-extensions and 1-extensions 
preserve independence and rigidity, and conversely, any independent, rigid mixed graph 
can be constructed starting from a single vertex by a sequence of 0-extensions and 1-
extensions.

2.2. M -circuits, M -connectedness and M -components

An M -circuit of a mixed graph G is a subgraph induced by the edges of a circuit 
of the rigidity matroid M(G). Theorem 2.1 implies that F is a circuit of M(G) if and 
only if F − e is independent for all e ∈ F and either F is mixed with |F | = 2|V (F )| −
1, or F is pure with |F | = 2|V (F )| − 2. It also implies that mixed M -circuits are 
redundantly rigid. The characterisations of generic rigidity for pure frameworks similarly 
imply that pure M -circuits are redundantly rigid (as pure frameworks). We say that 
G = (V ; D, L) is direction-independent if D is independent in the direction-length rigidity 
matroid of G, i.e. the rows of R(G, p) corresponding to D are linearly independent for 
any generic p.

Note that, by (R1), all direction irreducible graphs are direction-independent. The 
converse is not true. The graph G − e in Fig. 2 is an example of a direction-independent 
graph in which we can perform an (R2) reduction.
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Recall that a mixed graph G is M -connected if any two edges of G are contained in 
a common M -circuit. The fact that mixed M -circuits are redundantly rigid implies that 
mixed M -connected graphs are also redundantly rigid.

It is well known that a matroid can be expressed as the direct sum of its con-
nected components, which are the equivalence classes of the relation ∼, where e ∼ f

if e = f or there is a circuit containing e and f . We define the M -components of a 
mixed graph G = (V ; D, L) to be the subgraphs induced by the edges in the connected 
components of its rigidity matroid M(G). Thus G is M -connected if it has exactly one 
M -component.

We can use the direct sum decomposition of the rigidity matroid M(G) into its con-
nected components to calculate its rank, which we will denote by r(G). Indeed, if G has 
M -components H1, . . . , Hm then we have r(G) =

∑m
i=1 r(Hi), where r(Hi) is 2|V (Hi)| −3

when Hi is pure and is 2|V (Hi)| −2 when Hi is mixed. We can use this fact to show that 
M -connectivity is equivalent to redundant rigidity when G is direction independent and 
satisfies the necessary conditions for generic global rigidity described in Lemma 1.3.

Lemma 2.2. Suppose G is a direction-independent, 2-connected, direction-balanced, mixed 
graph. Then G is M -connected if and only if G is redundantly rigid.

Proof. We have already noted that M -connected mixed graphs are redundantly rigid. 
To prove sufficiency we suppose that G is redundantly rigid but not M -connected. Let 
H1, H2, . . . , Hm be the M -components of G. Let Vi = V (Hi), Xi = Vi −

⋃
j �=i Vj and 

Yi = Vi−Xi for all 1 ≤ i ≤ m. Since G is redundantly rigid, every edge of G is contained 
in some M -circuit. Hence |Vi| ≥ 3 for all 1 ≤ i ≤ m. Since G is 2-connected, |Yi| ≥ 2
for all 1 ≤ i ≤ m, and since G is direction-balanced, |Yi| ≥ 3 when Hi is length-pure. 
Since G is direction-independent, no direction edge of G is contained in a direction-pure 
M -circuit. This implies that each of the M -connected components is either mixed or 
length-pure. Without loss of generality, we may assume that H1, H2, . . . , H� are length-
pure for some 0 ≤ � ≤ m, and H�+1, H�+2, . . . , Hm are mixed. Then

r(G) =
�∑

i=1
(2|Vi| − 3) +

m∑
i=�+1

(2|Vi| − 2)

=
�∑

i=1
(2|Xi| + 2|Yi| − 3) +

m∑
i=�+1

(2|Xi| + 2|Yi| − 2)

≥
m∑
i=1

(2|Xi| + |Yi|),

since |Yi| ≥ 3 for all 1 ≤ i ≤ �, and |Yi| ≥ 2 for all � + 1 ≤ i ≤ m. Since the Xi

are pairwise disjoint, we have 
∑m

i=1 |Xi| = |
⋃m

i=1 Xi|. Also, since each element of Yi is 
contained in at least one other Yj with j �= i, we have 

∑m
i=1 |Yi| ≥ 2| 

⋃m
i=1 Yi|. Thus
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r(G) ≥ 2
(∣∣∣∣∣

m⋃
i=1

Xi

∣∣∣∣∣ +

∣∣∣∣∣
m⋃
i=1

Yi

∣∣∣∣∣
)

= 2|V |.

This contradicts the fact that r(G) ≤ 2|V | − 2. �
The ‘sufficiency direction’ of Theorem 1.6 follows immediately from Lemma 2.2 and 

Theorem 1.4. This follows since, if G is 2-connected, direction-balanced, redundantly 
rigid and direction irreducible, then G is direction-independent by condition (R1) in the 
definition of direction irreducibility, and hence G is M -connected by Lemma 2.2. We can 
now deduce that every generic realisation of G is globally rigid by Theorem 1.4.

2.3. Boundedness and global rigidity

Now we recall some results from [8,9]. A direction-length framework (G, p) is bounded
if there exists a real number K such that ‖q(u) − q(v)‖ < K for all u, v ∈ V whenever 
(G, q) is a framework equivalent to (G, p). It is known that the boundedness of (G, p) is 
equivalent to the rigidity of an augmented framework, (G+, p).

Lemma 2.3. [8, Theorem 5.1] Let (G, p) be a direction-length framework and let G+ be 
obtained from G by adding a direction edge parallel to each length edge of G. Then (G, p)
is bounded if and only if (G+, p) is rigid.

Lemma 2.3 implies that boundedness is a generic property, and we say that a mixed 
graph G is bounded if some, or equivalently every, generic realisation of G is bounded. 
It also implies that every rigid mixed graph is bounded.

Recall that a mixed graph G = (V ; D, L) is direction-independent if D is independent 
in the direction-length rigidity matroid of G. Lemma 1.1 and the fact that direction-
pure M -circuits are redundantly rigid (when considered as direction-pure frameworks) 
allow us to reduce the problem of deciding if a mixed graph is bounded to the family of 
direction-independent mixed graphs. The following characterisation of boundedness for 
direction-independent mixed graphs follows from [8, Theorem 5.1 and Corollary 4.3].

Lemma 2.4. Suppose that G = (V ; D, L) is a direction-independent, mixed graph. Then 
G is bounded if and only if G/L has two edge-disjoint spanning trees (where G/L is the 
graph obtained from G by contracting each edge in L and keeping all multiple copies of 
direction edges created by this contraction).

A bounded component of G is a maximal bounded subgraph of G. It is shown in 
[8] that each edge e ∈ L lies in a bounded component and that the vertex sets of the 
bounded components partition V . We will use the following result of Nash-Williams [13]
to show that there are relatively few edges between a set of bounded components in a 
mixed graph.
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Theorem 2.5. The edge set of a graph H can be covered by k forests if and only if every 
non-empty set X of vertices of H induces at most k|X| − k edges of H.

Lemma 2.6. Suppose G = (V ; D, L) is direction-independent and S is a set of bounded 
components of G with |S| ≥ 2. Then there are at most 2|S| −3 edges of G joining distinct 
components in S.

Proof. Suppose on the contrary that there are at least 2|S| − 2 edges of G that join 
distinct components in S. Suppose also that S is minimal with respect to this property 
(and the condition that |S| ≥ 2). Let H be a graph with vertex set S and exactly 2|S| −2
edges, each of which correspond to a distinct edge of G joining two components in S. 
The minimality of S implies that every non-empty set X of vertices of H induces at 
most 2|X| − 2 edges of H and hence, by Theorem 2.5, H can be partitioned into two 
edge-disjoint spanning trees.

By Lemma 2.4, for each bounded component Ci = (Vi; Di, Li) ∈ S, Ci/Li has two 
edge-disjoint spanning trees. We can combine the edge sets of these trees with the edge 
sets of the two edge-disjoint spanning trees of H to obtain two edge-disjoint spanning 
trees in G′/L′, where G′ = (V ′; D′, L′) is the subgraph of G induced by 

⋃
Ci∈S V (Ci). 

Lemma 2.4 now implies that G′ is bounded and hence is contained in a single bounded 
component of G. This contradicts the fact that |S| ≥ 2. �

We next state a result of [9] on global rigidity, which establishes that length-
redundancy is a necessary condition for generic global rigidity when |L| ≥ 2, and takes a 
first step towards understanding when direction-redundancy is necessary. A subgraph of 
a mixed graph is said to be trivial if it has exactly one vertex, otherwise it is non-trivial.

Theorem 2.7. [9] Suppose that (G, p) is a globally rigid, generic realisation of a mixed 
graph G = (V ; D, L) and e is an edge of G.
(a) If e ∈ L and |L| ≥ 2 then G − e is rigid.
(b) If e ∈ D and G − e has a non-trivial, rigid subgraph then G − e is either rigid or 
unbounded.

2.4. Substitution

The following subgraph substitution operation is an important tool which we will use 
throughout this paper. Suppose G = (V ; D, L) is a mixed graph, U ⊆ V , H = G[U ]
is the subgraph of G induced by U , and H ′ is another mixed graph with vertex set U . 
Then the substitution G′ of H by H ′ in G is obtained from G by deleting all edges of H
and adding all edges of H ′. We record the following properties.

Lemma 2.8. If G, H and H ′ are rigid, then G′ is rigid.
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Proof. The ranks of G and G′ are both equal to the rank of the graph obtained from G
by joining all pairs of vertices of H by both a direction and a length edge. �
Lemma 2.9. Suppose p : V → R2 is such that (G, p) and (H ′, p|U ) are both globally rigid. 
Then (G′, p) is globally rigid.

Proof. Let (G′, q) be an equivalent framework to (G′, p). Since (H ′, p|U ) is globally rigid, 
q|U is congruent to p|U . In particular, (H, q|U ) and (H, p|U ) are equivalent. But G and 
G′ agree on all edges not contained in U , so (G, q) and (G, p) are equivalent. Since (G, p)
is globally rigid, q and p are congruent. Hence (G′, p) is globally rigid. �
2.5. Field extensions and genericity

A direction-length framework (G, p) is quasi-generic if it is a translation of a generic 
framework. We will be mostly concerned with quasi-generic frameworks in standard 
position, i.e. with one vertex positioned at the origin. Such frameworks are characterised 
by the following elementary lemma.

Lemma 2.10. [7, Lemma 3.1] Suppose (G, p) is a framework, {v1, v2, ..., vn} is the set 
of vertices of G, p(v1) = (0, 0) and p(vi) = (p2i−1, p2i) for 2 ≤ i ≤ n. Then (G, p) is 
quasi-generic if and only if {p3, p4, . . . , p2n} is algebraically independent over Q.

Given a vector p ∈ Rd, Q(p) denotes the field extension of Q by the coordinates of p. 
We say that p is generic in Rd if the coordinates of p are algebraically independent over 
Q. Given fields K, L with K ⊆ L the transcendence degree td[L : K] of L over K is the 
size of the largest subset of L which is algebraically independent over K. A reformulation 
of Lemma 2.10 is that if (G, p) is a framework with n vertices, one of which is at the 
origin, then (G, p) is quasi-generic if and only if td[Q(p) : Q] = 2n − 2.

The following function plays an important role in rigidity theory. Let (G, p) be a 
direction-length framework. For v1, v2 ∈ V with p(vi) = (xi, yi) let lp(v1, v2) = (x1 −
x2)2 + (y1 − y2)2, and sp(v1, v2) = (y1 − y2)/(x1 − x2) whenever x1 �= x2. Suppose 
e = v1v2 ∈ D ∪ L. We say that e is vertical in (G, p) if x1 = x2. The length of e in 
(G, p) is lp(e) = lp(v1, v2), and the slope of e is sp(e) = sp(v1, v2), whenever e is not 
vertical in (G, p). Let V = {v1, v2, . . . , vn} and D ∪ L = {e1, e2, . . . , em}. We view p as 
a point (p(v1), p(v2), . . . , p(vn)) in R2n. Let T be the set of all points p ∈ R2n such that 
(G, p) has no vertical direction edges. Then the rigidity map fG : T → Rm is given by 
fG(p) = (h(e1), h(e2), . . . , h(em)), where h(ei) = lp(ei) if ei ∈ L and h(ei) = sp(ei) if 
ei ∈ D.

One can verify that each row in the Jacobian matrix of the rigidity map is a non-zero 
multiple of the corresponding row in the rigidity matrix, so these matrices have the same 
rank. Thus the rigidity matrix achieves its maximum rank at a framework (G, p) when 
p is a regular point of the rigidity map. Hence p will be a regular point of f whenever 
(G, p) is generic.
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Recall that G = (V ; D, L) is independent if D ∪ L is independent in the (generic) 
rigidity matroid of G. The next result relates the genericity of fG(p) to the genericity of 
p when G is independent.

Lemma 2.11. [7, Lemma 3.2] Suppose that G is an independent, mixed graph and (G, p)
is a quasi-generic realisation of G. Then fG(p) is generic.

We use K to denote the algebraic closure of a field K. Note that td[K : K] = 0. 
We say that G is minimally rigid if it is rigid but G − e is not rigid for any edge e; 
equivalently G is both rigid and independent. The following lemma relates Q(p) and 
Q(fG(p)) when G is minimally rigid.

Lemma 2.12. [7, Lemma 3.3] Let G be a minimally rigid, mixed graph and (G, p) be a 
realisation of G with no vertical direction edges and with p(v) = (0, 0) for some vertex v
of G. If fG(p) is generic then Q(p) = Q(fG(p)).

Lemmas 2.11 and 2.12 imply the following result for rigid, mixed graphs.

Corollary 2.13. Let G be a rigid, mixed graph and (G, p) be a quasi-generic realisation of 
G with p(v) = (0, 0) for some vertex v of G. Then Q(p) = Q(fG(p)).

Proof. Let H be a minimally rigid spanning subgraph of G. By Lemma 2.11, fH(p)
is generic. Hence Lemma 2.12 gives Q(p) = Q(fH(p)). It is not difficult to see that 
Q(fH(p)) ⊆ Q(fG(p)) ⊆ Q(p). Thus Q(p) = Q(fG(p)). �

Suppose (G, p) is a quasi-generic realisation of a mixed graph G = (V ; D, L) and (G, q)
is an equivalent realisation. Then p(u) �= p(v) for all u, v ∈ V and hence q(u) �= q(v)
for all uv ∈ L. The same assertion may not hold when uv ∈ D since the constraint that 
p(u) − p(v) is a scalar multiple of q(u) − q(v) only applies when q(u) �= q(v). Indeed, if 
(G, p) is not rigid, then a continuous motion of (G, p) may pass through several equivalent 
realisations (G, q) with q(u) = q(v) for some uv ∈ D. Our next result implies that no 
such equivalent realisations can exist when (G, p) is rigid.

Lemma 2.14. [7, Lemma 3.4] Suppose that (G, p) and (G, q) are equivalent realisations 
of a minimally rigid, mixed graph G and that (G, p) is quasi-generic. Then q(u) �= q(v)
for all direction edges uv of G.

We also need the following generalisation, which tells us that every realisation of a 
rigid, mixed graph which is equivalent to a generic realisation is quasi-generic.

Lemma 2.15. [7, Theorem 3.5] Let (G, p) be a quasi-generic realisation of a rigid, mixed 
graph G. Suppose that (G, q) is equivalent to (G, p) and that p(v) = (0, 0) = q(v) for 
some vertex v of G. Then Q(p) = Q(q), so (G, q) is quasi-generic.
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2.6. The framework space

Given a framework (G, p) and a vertex v0 of G, its framework space SG,p,v0 consists 
of all q ∈ R2|V | with q(v0) = (0, 0) and (G, q) equivalent to (G, p). The following result 
on framework spaces is key to proving our main results. Its proof is similar to that of [9, 
Theorem 1.3].

Lemma 2.16. Suppose (G, p) is a generic direction-length framework, e is a direction 
edge of G, G is rigid, and H = G − e is bounded and not rigid. Let v0 be a vertex of 
G, let p0 be obtained from p by translating v0 to the origin, and let C be the connected 
component of the framework space SH,p,v0 containing p0. Then C is diffeomorphic to a 
circle. Furthermore, if −p0 /∈ C then (G, p) is not globally rigid.

Proof. We may use [9, Lemma 1.2] and the hypotheses that (G, p) is generic, G is rigid 
and H = G − e is not rigid, to deduce that SH,p,v0 is a smooth 1-dimensional manifold. 
The hypothesis that H is bounded implies that C is bounded. The fact that C is closed 
now implies that C is diffeomorphic to a circle.

Let x, y be the end-vertices of e. If q(x) = q(y) for some q ∈ C then (G, q) would be 
equivalent to (G, p), since (G − e, q) is equivalent to (G − e, p) and the constraint for 
the direction edge e only applies when q(x) �= q(y). This would contradict Lemma 2.14
and hence q(x) �= q(y) for all q ∈ C. Let f : C → S1 be defined by f(q) = (q(x) −
q(y))/‖q(x) − q(y)‖. Then f is a smooth map and we can use the fact that p is generic 
to deduce that p0 is a regular point of f (we refer the reader to the proof of [9, Theorem 
1.3] for more details).

To finish the proof we show that we can find q ∈ C, q �= p0 with f(q) equal to f(p0) or 
−f(p0). Suppose that −f(p0) /∈ f(C). Let s : S1 \ {−f(p0)} → R be a diffeomorphism, 
e.g. stereographic projection. Then s ◦ f is a smooth map from C to R and p0 is a 
regular point of s ◦ f . Thus we can find q1 and q2 in a neighbourhood of p0 in C with 
(s ◦ f)(q1) < (s ◦ f)(p0) < (s ◦ f)(q2). Since there are two paths in C joining q1 and q2, 
the intermediate value theorem implies we can find another realisation q ∈ C, q �= p0
with (s ◦ f)(q) = (s ◦ f)(p0), i.e. f(q) = f(p0).

We have shown that there is q ∈ C, q �= p0 with f(q) equal to f(p0) or −f(p0). The 
hypothesis that −p0 /∈ C now implies that q �= −p0 and hence that (G, q) is equivalent, 
but not congruent, to (G, p). �
3. Proof of Theorem 1.6

We first prove a structural lemma for direction irreducible, mixed graphs which have 
a globally rigid generic realisation even though they are not redundantly rigid. We then 
use this to complete the proof of Theorem 1.6 by constructing two equivalent but non-
congruent generic realisations of a mixed graph which is direction irreducible but not 
redundantly rigid.
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Lemma 3.1. Let G = (V ; D, L) be a direction irreducible, mixed graph which has |L| ≥ 2
and is not redundantly rigid. Suppose that (G, p) is a globally rigid generic realisation of 
G. Then

(a) G − e is bounded for all e ∈ D,
(b) r(G − e) = r(G) − 1 for all e ∈ D, and
(c) every length edge of G belongs to a length-pure M -circuit of G.

Proof. (a) First note that G is direction-independent, since G is direction irreducible. 
Now suppose for a contradiction that G −e is not bounded for some e ∈ D. We will show 
that G has a direction reduction. Let H1, H2, . . . , Hm be the bounded components of 
G − e. Then each length edge of G is contained in one of the subgraphs Hi. Let D∗ ⊆ D

be the set of all edges of G joining distinct subgraphs Hi, and H be the graph obtained 
from G by contracting each Hi to a single vertex. Since G is rigid, G is bounded. Since 
G is direction-independent, Lemma 2.4 implies that the graph G/L obtained from G
by contracting each length edge has two edge-disjoint spanning trees. Since H can be 
obtained from G/L by contracting a (possibly empty) set of direction edges, H also 
has two edge-disjoint spanning trees. In particular, |D∗| ≥ 2m − 2. On the other hand, 
Lemma 2.6 implies that |D∗ − e| ≤ 2m − 3. Thus e ∈ D∗ and |D∗| = 2m − 2. Since G is 
rigid we have

2|V | − 2 = r(G) ≤ |D∗| +
m∑
i=1

r(Hi) ≤ 2m− 2 +
m∑
i=1

(2|V (Hi)| − 2) = 2|V | − 2.

Thus equality must hold throughout. In particular, r(Hi) = 2|V (Hi)| − 2 for each i, so 
each subgraph Hi is rigid.

Let G′ = (V ; D′, L′) be obtained from G by substituting each non-trivial subgraph Hi

by a minimally rigid graph H ′
i with exactly one length edge. Each framework (H ′

i, p|H′
i
)

is globally rigid by Lemma 1.2. Thus repeated applications of Lemma 2.9 imply that 
(G′, p) is globally rigid. On the other hand, |D′| + |L′| = |D∗| +

∑m
i=1 r(Hi) = 2|V | − 2, 

so G′ is minimally rigid. Theorem 2.7(a) now implies that G′ has exactly one length 
edge. Since H ′

i contains a length edge whenever Hi is non-trivial, G − e has exactly one 
non-trivial bounded component, H1 say. Since |D∗| = 2m − 2 = 2|V (G) \ V (H1)|, G is 
direction reducible to H1. This contradicts the hypothesis that G is direction irreducible.

(b) Suppose that r(G − e) = r(G) for some e ∈ D. Then e is contained in an M -circuit 
C of G. Since G is direction-independent, C must be a mixed M -circuit. Since G is not 
redundantly rigid, G − f is not rigid for some f ∈ D ∪ L. Theorem 2.7(a) implies that 
f ∈ D. Clearly f is not an edge of C and hence C − e is a non-trivial rigid subgraph of 
G − e. Theorem 2.7(b) now implies that G − f is unbounded, contradicting (a).

(c) Choose e ∈ L. Then e belongs to an M -circuit C ′ of G by Theorem 2.7(a). By (b), 
C ′ cannot be a mixed M -circuit. Hence C ′ is length-pure. �
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We saw at the end of Section 2.2 that the sufficiency direction of Theorem 1.6 follows 
from Theorem 1.4 and Lemma 2.2. To prove necessity, we suppose that G = (V ; D, L) is 
a direction irreducible, mixed graph with |L| ≥ 2, and that every generic realisation of 
G is globally rigid. The fact that some generic realisation of G is globally rigid implies 
that G is 2-connected and direction-balanced, see Lemma 1.3. We complete the proof 
by applying Theorem 3.2 below to deduce that G must also be redundantly rigid. The 
proof idea is to show that if G is not redundantly rigid, then for any given generic 
realisation (G, p), we can construct a sequence of generic realisations q0, q1, . . . , qt such 
that t ≤ |D| and (G, qt) is not globally rigid. We construct this sequence from (G, p)
by first reflecting (G, p) in the x-axis to obtain (G, q0), and then recursively ‘correcting’ 
the changed direction constraints back to their original values in (G, p). Every time we 
‘correct’ a direction constraint, we obtain a new realisation in our sequence.

Theorem 3.2. Let G = (V ; D, L) be a direction irreducible, mixed graph with |L| ≥ 2
such that G is not redundantly rigid. Then some generic realisation of G is not globally 
rigid.

Proof. We proceed by contradiction. Assume that all generic realisations of G are glob-
ally rigid. By Lemma 3.1(b) and (c), every length edge of G is contained in a length-pure 
M -circuit of G, and no direction edge of G is contained in any M -circuit of G. Let 
D = {d0, d1, . . . , dk}, let G1 = (V1; ∅, L1) be a non-trivial M -component of G and let 
v0 ∈ V1.

Let (G, p) be a quasi-generic realisation of G with p(v0) = (0, 0) and let (G, q0) be 
the quasi-generic realisation obtained by reflecting (G, p) in the x-axis. Then (G −D, p)
is equivalent to (G − D, q0). In addition, we have sq0(di) = −sp(di) for all di ∈ D, so 
(G, p) and (G, q0) are not equivalent.

Claim 3.3. For all j ∈ {0, 1, . . . , k + 1} there exists a quasi-generic framework (G, qj)
with qj(v0) = (0, 0), rigidity map fG(qj) = (hqj (e))e∈E given by

hqj (e) =
{
sq0(e) when e ∈ {dj , dj+1, . . . , dk}
hp(e) otherwise,

and with the property that (G1, qj |V1) can be obtained from (G1, q0|V1) by a rotation about 
the origin.

Proof. We proceed by induction on j. If j = 0 then the claim holds trivially for (G, q0). 
Hence suppose that the required framework (G, qj) exists for some 0 ≤ j < k + 1. The 
quasi-generic framework (G − dj , qj) is bounded but not rigid by Lemma 3.1(a) and (b) 
(since boundedness and rigidity are generic properties). Since (G, qj) is globally rigid by 
assumption, Lemma 2.16 implies that we can continuously move (G − dj , qj) to form 
(G − dj , −qj) whilst keeping v0 fixed at the origin and maintaining all edge constraints. 
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During this motion, the direction of the missing edge dj = ujvj changes continuously 
from qj(vj) − qj(uj) to −(qj(vj) − qj(uj)), a rotation by 180◦. So at some point in this 
motion we must pass through a realisation (G − dj , qj+1) at which the slope of this 
missing edge is sp(dj). We can now add the edge dj back to this realisation to obtain 
the desired framework (G, qj+1). Note that since G1 is M -connected, it is a rigid (in the 
length-pure sense) subgraph of G − dj . Since the motion of (G − dj , qj) is continuous 
and keeps v0 fixed at the origin, this implies that (G1, qj+1|V1) can be obtained from 
(G1, qj |V1) by a rotation about the origin.

It remains to show that (G, qj+1) is quasi-generic. Let H be a minimally rigid spanning 
subgraph of G. Since hqj+1(e) = ±hp(e) for all e ∈ E(G) we have Q(fH(qj+1)) =
Q(fH(p)). Since fH(p) is generic by Lemma 2.11, Lemma 2.12 implies that

td[Q(qj+1) : Q] = td[Q(fH(qj+1)) : Q] = td[Q(fH(p)) : Q] = 2|V | − 2.

We can now use Lemma 2.10 to deduce that (H, qj+1), and hence also (G, qj+1), are 
quasi-generic. �

Applying Claim 3.3 with j = k + 1, we obtain a quasi-generic realisation qk+1 of G
which is equivalent to (G, p), has qk+1(v0) = (0, 0), and is such that (G1, qk+1|V1) can 
be obtained from (G1, q0|V1) by a rotation about the origin. Since q0 was obtained from 
p by reflecting G across the x-axis, we have

qk+1(v) = RZp(v) for all v ∈ V1

where R and Z are the 2 × 2 matrices representing this rotation and reflection. Since 
(G1, p|V1) is a quasi-generic framework with at least four vertices and RZ acts on R2 as 
a reflection in some line through the origin, we have qk+1(v) �= ±p(v) for some v ∈ V1. 
Hence qk+1|V1 is not congruent to p|V1 , and qk+1 is not congruent to p. This implies 
that (G, p) is not globally rigid and contradicts our initial assumption that all generic 
realisations of G are globally rigid. �
Theorem 3.2 and the preceding discussion immediately give Theorem 1.6.

Lemma 2.2 implies that we can replace redundant rigidity with M -connectivity in the 
statement of Theorem 1.6. Since 2-connectivity is a common property of M -connected, 
mixed graphs and generic, globally rigid frameworks we can then remove this connectivity 
condition. This gives us the following equivalent statement.

Theorem 3.4. Let G = (V ; D, L) be a direction irreducible, mixed graph with |L| ≥ 2. 
Then all generic realisations of G are globally rigid if and only if G is direction-balanced 
and M -connected.
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4. Direction realisability

We obtain a sufficient condition for a graph to be realisable as a direction-pure 
framework with a given set of directions for its edges. We need the following concepts, 
introduced by Whiteley in [17]. A frame is a graph G = (V, E) together with a map 
q : E → R2. The incidence matrix of the frame (G, q) is an |E| × 2|V | matrix I(G, q)
defined as follows. We first choose an arbitrary reference orientation for the edges of E. 
Each edge in E corresponds to a row of I(G, q) and each vertex of V to two consecu-
tive columns. The submatrix of I(G, q) with row labelled by e = uv ∈ E and pairs of 
columns labelled by x ∈ V is q(e) if x = u, is −q(e) if x = v, and is the 2-dimensional 
zero vector otherwise. It is known (see [17]) that when q is generic, I(G, q) is a linear 
representation of the matroid union of two copies of the cycle matroid of G. We may now 
use Theorem 2.5 to determine when I(G, q) has linearly independent rows. For X ⊆ V , 
let iG(X) denote the number of edges of G between vertices in X.

Theorem 4.1. Suppose G = (V, E) is a graph and q : E → R2 is generic. Then the rows 
of I(G, q) are linearly independent if and only if iG(X) ≤ 2|X| − 2 for all ∅ �= X ⊆ V .

We can use this result to show that a graph G = (V, E) satisfying iG(X) ≤ 2|X| − 3
for all X ⊆ V with |X| ≥ 2 can be realised as a direction-pure framework with a specified 
algebraically independent set of slopes for its edges, and that this realisation is unique 
up to translation and dilation when |E| = 2|V | −3. Note that given any realisation of G, 
we can always translate a specified vertex z0 to (0, 0) and dilate to arrange any specified 
distance t between a specified pair of distinct vertices x0, y0. Our proof technique is 
similar to that developed in [17].

Theorem 4.2. Let G = (V, E) be a graph such that iG(X) ≤ 2|X| − 3 for all X ⊆ V

with |X| ≥ 2. Let s be an injection from E to R such that {se}e∈E is generic. Suppose 
x0, y0, z0 ∈ V with x0 �= y0 and t �= 0 is a real number. Then there exists an injection 
p : V → R2 such that ‖p(x0) − p(y0)‖ = t, p(z0) = (0, 0) and, for all e = uv ∈ E, 
p(u) − p(v) ∈ 〈(1, se)〉. Furthermore, if |E| = 2|V | − 3, then p is unique up to dilation by 
−1 through (0, 0).

Proof. We will construct p as a combination of vectors in the nullspaces of certain 
frames. First consider a generic frame q on G such that q(e) is a scalar multiple of 
(−se, 1) for every e ∈ E. Then for any p in the nullspace of I(G, q) and e = uv ∈ E

we have p(u) − p(v) ∈ 〈(1, se)〉. However, p need not be injective. To address this issue, 
we instead choose a pair of vertices x, y ∈ V , and consider the graph H obtained by 
adding the edge f = xy to G (which may be parallel to an existing edge). Now let 
(H, q′) be a generic frame such that q′|E = q. For all X ⊆ V with |X| ≥ 2, we have 
iH(X) ≤ iG(X) +1 ≤ 2|X| −2 by hypothesis. Theorem 4.1 now implies that the incidence 
matrix I(H, q′) has linearly independent rows. Thus rank I(H, q′) = rank I(G, q) + 1. 
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Writing ZH for the null space of I(H, q′) and ZG for the null space of I(G, q), we have 
dimZG = dimZH + 1, so we can choose pf ∈ ZG \ ZH . Then we necessarily have 
pf (x) �= pf (y). Taking a suitable linear combination of the vectors pf , for all possible 
new edges f = xy, x, y ∈ V , we may construct a vector p in ZG with p(x) �= p(y) for all 
x, y ∈ V . Since pf (u) − pf (v) ∈ 〈(1, se)〉 for each f we also have p(u) − p(v) ∈ 〈(1, se)〉. 
Furthermore, as noted before the proof, we can translate and dilate to satisfy the other 
conditions, thus constructing the required map p.

We next show uniqueness when |E| = 2|V | − 3. We have dimZG = 2|V | −
rank I(G, q) = 2|V | −|E| = 3. Define p1, p2 : V → R2 by p1(v) = (1, 0) and p2(v) = (0, 1)
for all v ∈ V . Note that p1, p2 ∈ ZG. Also, p, p1, p2 are linearly independent, since 
p(z0) = (0, 0), p1(z0) = (1, 0) and p2(z0) = (0, 1), so {p, p1, p2} is a basis for ZG. Now 
suppose that p′ : V → R2 has the properties described in the first part of the lemma. 
Then p′ ∈ ZG so p′ = ap + bp1 + cp2 for some a, b, c ∈ R. Since p′(z0) = p(z0) = (0, 0) we 
have b = c = 0. Since ‖p′(x0) − p′(y0)‖ = t = ‖p(x0) − p(y0)‖ we have p′ ∈ {p, −p}. �
5. Proof of Theorem 1.5

We first consider the reduction operation (R1).

Lemma 5.1. Suppose (G, p) is a generic realisation of a mixed graph G = (V ; D, L) and 
that e = uv ∈ D belongs to a direction-pure M -circuit H = (U ; F, ∅) of G. Then (G, p)
is globally rigid if and only if (G − e, p) is globally rigid.

Proof. If (G − e, p) is globally rigid then (G, p) is clearly globally rigid. Conversely, 
suppose that (G, p) is globally rigid and (G − e, q) is equivalent to (G − e, p). Since H
is a direction-pure circuit, (H − e, p|U ) is rigid (as a direction-pure framework). Hence 
(H − e, p|U ) is globally rigid (again, in the direction-pure sense) by Lemma 1.1. Thus 
q(u) − q(v) is a scalar multiple of p(u) − p(v), and hence (G, q) is equivalent to (G, p). 
Since G is globally rigid, q is congruent to p. This shows that (G − e, p) is globally 
rigid. �

We next consider the reduction operation (R2).

Lemma 5.2. Let (G, p) be a quasi-generic realisation of a rigid, mixed graph G =
(V ; D, L). Suppose that G has a proper induced subgraph H = (U ; F, L) which contains 
all length edges of G and satisfies |D \F | = 2|V \U |. Then (G, p) is globally rigid if and 
only if (H, p|H) is globally rigid.

Proof. First suppose that (H, p|H) is globally rigid. Let G′ be constructed from G by 
substituting H by a minimally rigid graph H ′ = (U ; F ′, {l′}) with exactly one length 
edge l′. Then G′ is rigid by Lemma 2.8. Since G′ is rigid and has exactly one length 
edge, (G′, p) is globally rigid by Lemma 1.2. Thus (G, p) is globally rigid by Lemma 2.9.
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Conversely, suppose that (H, p|H) is not globally rigid. Then there exists an equivalent 
but non-congruent framework (H, q̃). Without loss of generality we may suppose that 
p(u) = (0, 0) = q̃(u) for some u ∈ V (H). We will construct a framework (G, q) which is 
equivalent to (G, p) and has q|H = q̃. Since G is rigid we have

2|V | − 2 = r(G) ≤ |D \ F | + r(H) ≤ 2|V \ U | + 2|U | − 2 = 2|V | − 2.

Thus equality must hold throughout. In particular, r(H) = 2|U | − 2, so H is rigid.
We again consider the rigid mixed graph G′ with exactly one length edge defined in 

the first paragraph of the proof. We have G′ = (V ; D′, {l′}) where D′ = (D \ F ) ∪ F ′. 
Since H ′ is minimally rigid, G′ has |D \ F | + 2|U | − 2 = 2|V | − 2 edges, and hence G′ is 
minimally rigid.

Define s : D′ ∪ {�′} → R by s(e) = sq̃(e) for e ∈ F ′, s(l′) = lq̃(l′), and s(e) = sp(e)
for e ∈ D \ F . We will use Theorem 4.2 to construct a framework (G′, q) with rigidity 
map given by fG′(q) = (s(e))e∈E(G′). To do this, we first need to show that s|D′ is 
generic. We will prove the stronger result that s is generic by showing that td[Q(s) :
Q] = |D′| + |{l′}| = 2|V | − 2. By Lemma 2.10, we have td[Q(p) : Q] = 2|V | − 2, as p
is quasi-generic and p(u) = (0, 0), so it suffices to prove that Q(s) = Q(p). Since G is 
rigid, Corollary 2.13 gives Q(fG(p)) = Q(p). Also, s is obtained from fG(p) by replacing 
the values fH(p|U ) by the values fH′(q̃), so we need to show that these generate the 
same algebraic closure over Q. Since (H, q̃) is equivalent to (H, p|U ), Lemma 2.15 gives 
Q(q̃) = Q(p|U ). Since p|U is quasi-generic, it follows that q̃ is quasi-generic. Then, since 
H and H ′ are rigid, two applications of Corollary 2.13, give Q(fH(p|U )) = Q(p|U ) and 
Q(fH′(q̃)) = Q(q̃). Putting these three equalities together gives

Q(fH′(q̃)) = Q(q̃) = Q(p|U ) = Q(fH(p|U )),

which is what we needed to prove Q(s) = Q(p). Therefore s is generic. Now we can apply 
Theorem 4.2, with x0y0 equal to the unique length edge �′ of G′, to obtain a realisation 
(G′, q) with fG′(q) = s. By construction, (H ′, q|U ) is equivalent to (H ′, q̃). But H ′ is 
globally rigid by Lemma 1.2, so q|U is congruent to q̃. Hence we can apply a translation, 
and possibly a dilation by −1, to obtain q|U = q̃.

Since (H, q̃) is equivalent to (H, p|H) and sq(e) = s(e) = sp(e) for all e ∈ D−F , (G, q)
is equivalent to (G, p) and satisfies q|U = q̃. Since (H, q̃) is not congruent to (H, p|U ), 
(G, q) is not congruent to (G, p). Thus (G, p) is not globally rigid. �

Theorem 1.5 follows immediately from Lemmas 5.1 and 5.2.

6. Proof of Theorem 1.7

We first prove necessity. Suppose all generic realisations of G = (V ; D, L) are globally 
rigid. Then G is rigid. If |L| = 1, we are done. So suppose |L| ≥ 2. Choose a minimal 
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subgraph H of G such that H can be obtained by a sequence of direction reductions 
of G (we allow the possibility that H = G). Then H is direction irreducible and L is 
contained in H. Theorem 1.5 implies that all generic realisations of H are globally rigid. 
Theorem 3.4 now tells us that H is the required direction-balanced, M -connected, mixed 
subgraph of G.

We next prove sufficiency. Suppose that G is rigid and let (G, p) be a generic realisation 
of G. If |L| = 1, then (G, p) is globally rigid by Lemma 1.2. So suppose that |L| ≥ 2, and 
that G has a direction-balanced, M -connected, mixed subgraph H containing all edges 
in L. We will show that (G, p) is globally rigid by induction on |E(G)|. If G = H then 
(G, p) is globally rigid by Theorem 1.4. Hence we may assume that G �= H. If G − e is 
rigid for some edge e ∈ E(G) \ E(H) then we may apply induction to G − e to deduce 
that (G − e, p) is globally rigid. Hence we may assume that no edge of E(G) \ E(H)
belongs to an M -circuit of G. This, and the fact that G and H are both rigid, gives

|E(G)| − |E(H)| = r(G) − r(H) = 2|V (G)| − 2|V (H)|

so G is direction reducible to H. Since (H, p|H) is globally rigid by Theorem 1.4, Theo-
rem 1.5 now implies that (G, p) is globally rigid. �
7. Algorithmic considerations

It is not difficult to see that a mixed graph G = (V ; D, L) has an M -connected, 
direction-balanced, mixed subgraph which contains L if and only if some M -connected 
component of G is direction-balanced, mixed and contains L. Theorem 1.7 now reduces 
the problem of checking whether every generic realisation of G is globally rigid to that 
of determining the M -connected components of G and checking whether one of them 
contains L and is direction-balanced.

There exist efficient algorithms to check whether a mixed graph G = (V ; D, L) satisfies 
the sparsity condition of Theorem 2.1. For any F ⊆ E, the condition F ′ ≤ 2|V (F ′)| −2 for 
all ∅ �= F ′ ⊆ F holds if and only if F can be covered by two forests, which can be tested 
in O(m3/2 log (n2/m)) time [3], where n and m denote the number of vertices and edges, 
respectively. For F ⊆ L or F ⊆ D, the condition F ′ ≤ 2|V (F ′)| − 3 for all ∅ �= F ′ ⊆ F

is equivalent to independence in the well-known bar-joint rigidity matroid and can be 
tested in O(n2) time, see [1,11]. By using these algorithms one can test independence in 
the direction-length rigidity matroid. This allows us to check whether G is rigid and find 
its M -connected components. We again refer to [1,11] for more details.

Testing whether G is direction-balanced can be done in linear time. This follows by 
observing that G is direction-balanced if and only if all 2-separations (H1, H2) of G, in 
which H2 is minimal, are direction-balanced. It is straightforward to obtain these special 
2-separations from the cleavage units (i.e. 3-connected components) of G, which can be 
listed in O(n + m) time [4].
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8. Closing remarks

The question of deciding whether direction-length global rigidity is a generic property 
remains open. Theorem 1.4 shows that it is a generic property when the underlying graph 
is M -connected, and the necessary conditions for global rigidity given in Lemma 1.3 show 
that it is also a generic property if the underlying graph is not rigid, 2-connected and 
direction-balanced. Theorem 1.5 and Lemma 2.2 reduce the question to the case when 
the underlying graph is direction irreducible and is not redundantly rigid. Theorem 1.6
tells us that a rigid, 2-connected, direction-balanced, direction irreducible, mixed graph 
G which is not redundantly rigid has a generic realisation which is not globally rigid, 
but it is conceivable that G may also have a generic realisation which is globally rigid. 
We believe that this is not the case:

Conjecture 8.1. Suppose (G, p) is a generic realisation of a direction irreducible mixed 
graph G with at least two length edges. Then (G, p) is globally rigid if and only if G is 
2-connected, direction-balanced and redundantly rigid.

If true, Conjecture 8.1 would imply that a generic direction-length framework is globally 
rigid if and only if it satisfies the conditions in Theorem 1.7:

Conjecture 8.2. A generic direction-length framework (G, p) is globally rigid if and only 
if G = (V ; D, L) is rigid, and either |L| = 1 or G has a direction-balanced, M -connected, 
mixed subgraph which contains all edges in L.

As noted above, Conjecture 8.1, and hence also Conjecture 8.2, would hold if we could 
show that every generic globally rigid realisation of a direction irreducible, mixed graph 
is redundantly rigid. Theorem 8.4 below verifies this statement in the special case when 
the length edges of G induce a subgraph which is rigid (in the length-pure sense). We 
first need to establish the following rather technical lemma.

Lemma 8.3. Let G = (V ; D, L) be a rigid, mixed graph, H = (U ; ∅, L) be the length-pure 
subgraph induced by L, and u ∈ U . Suppose that H is rigid as a length-pure framework, 
r(G − e) = r(G) − 1 for all e ∈ D, and G − e0 is bounded for some e0 ∈ D. Let (G, p) be 
a quasi-generic framework with p(u) = (0, 0) and C be the connected component of the 
configuration space SG−e0,p,u which contains p. Then −p ∈ C.

Proof. The idea is to rotate (H, p|U ) by θ radians about p(u) = (0, 0) and use Theo-
rem 4.2 to show that, for almost all values of θ, we can extend the resulting framework 
(H, qθ) to a framework (G − e0, pθ) which is equivalent to (G − e0, p). To apply Theo-
rem 4.2, we construct G′ from G by substituting a minimally rigid graph H ′ with exactly 
one length edge for H and then show that the required set of edge slopes for (G′−e0, pθ)
is algebraically independent over Q.
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Let H ′ = (U ; D′, L′) be a minimally rigid graph on the same vertex set as H with 
exactly one length edge, and let G′ be obtained from G by replacing H by H ′. We 
first show that G′ − e0 is minimally rigid. Since G is rigid, H is rigid as a length-pure 
framework, and r(G − e) = r(G) − 1 for all e ∈ D, we have |D| = 2|V | − 2 − (2|U | − 3)
and hence |D− e0| = 2|V | − 2|U |. Since H ′ has 2|U | − 2 edges, this implies that G′ − e0

has 2|V | − 2 edges. It remains to show that G′ − e0 is rigid. Since G − e0 is bounded, 
(G − e0)+ is rigid by Lemma 2.3. Since G′ − e0 can be obtained from (G − e0)+ by 
substituting H+ with H ′, it is rigid by Lemma 2.8. Therefore G′ − e0 is minimally 
rigid.

For each θ ∈ [0, 2π) let qθ : U → R2 be the configuration obtained by an anticlockwise 
rotation of p|U through θ radians about (0, 0). Write B = {qθ : θ ∈ [0, 2π)}, and let 
B∗ be the set of all configurations qθ ∈ B such that the set of slopes {sp(e)}e∈D−e0 ∪
{sqθ (e)}e∈D′ is defined and is algebraically independent over Q. We claim that B∗ is 
a dense subset of B. First we note that q0 = p|U ∈ B∗, as G′ − e0 is independent, so 
Lemma 2.11 implies that fG′−e0(p) is generic. To see the effect of a rotation by θ, consider 
an edge e = v1v2 in D′ and let (x1, y1) and (x2, y2) be the coordinates of v1 and v2 in p. 

Coordinates in qθ are obtained by applying the transformation Rθ =
(

cos θ − sin θ

sin θ cos θ

)
, 

so we have

sq0(e) = sp(e) = y1 − y2

x1 − x2
and sqθ (e) = (x1 − x2) sin θ + (y1 − y2) cos θ

(x1 − x2) cos θ − (y1 − y2) sin θ
, so

sqθ (e) = r(sp(e), tan θ), where r(s, t) = t + s

1 − st
.

Consider any non-zero polynomial z with rational coefficients and |D − e0| + |D′|
variables, labelled as s = (se : e ∈ D − e0) and s′ = (s′e : e ∈ D′). Substituting 
s = (sp(e) : e ∈ D − e0) and s′ = (sqθ (e) : e ∈ D′) into z gives a rational function z∗ in 
(sp(e) : e ∈ (D−e0) ∪D′) and tan θ. Note that z∗ is not identically zero, as it is non-zero 
when θ = 0 by the hypothesis that p is quasi-generic. Thus there are only a finite number 
of values of θ ∈ [0, 2π) for which z∗ is zero. Furthermore, the number of such polynomials 
z is countable, so there are only countably many θ for which {sp(e)}e∈D−e0∪{sqθ (e)}e∈D′

is algebraically dependent over Q. Thus B \ B∗ is countable, so in particular B∗ is a 
dense subset of B.

For each qθ ∈ B∗, we can apply Lemma 4.2 to obtain a configuration pθ : V → R2

such that lpθ
(e1) = lp(e1), where e1 is the unique length edge of G′, pθ(u) = (0, 0), 

spθ
(e) = sp(e) for e ∈ D − e0 and spθ

(e) = sqθ (e) for e ∈ D′. Since (H ′, qθ) is globally 
rigid we have pθ|U ∈ {qθ, −qθ}. Hence (G − e0, pθ) is equivalent to (G − e0, p). Replacing 
pθ by −pθ if necessary, we may suppose that pθ|U = qθ; this determines pθ uniquely 
by Lemma 4.2. Now note that the defining conditions of pθ are polynomial equations 
with coefficients that are continuous functions of θ, except at a finite set of exceptional 
values for θ corresponding to vertical edges in pθ. Since B∗ is a dense subset of B, it 
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follows that {pθ : qθ ∈ B∗} all belong to the same component of the framework space 
SG−e0,p,u, which is C, since q0 = p|U ∈ B∗. Now note that qπ ∈ B∗, as sqπ (e) =
−sp(e) for e ∈ D′, so {sp(e)}e∈D−e0 ∪ {sqπ (e)}e∈D′ generates the same extension of Q
as {sp(e)}e∈D−e0 ∪ {sp(e)}e∈D′ . Therefore pπ ∈ C. Since pπ = −p by the uniqueness 
property noted above, −p ∈ C. �
Theorem 8.4. Let (G, p) be a globally rigid generic realisation of a direction irreducible, 
mixed graph G = (V ; D, L) with at least two length edges. Suppose the subgraph of G
induced by L is rigid as a length-pure framework. Then G is redundantly rigid.

Proof. We proceed by contradiction. Suppose G is not redundantly rigid. Since G is 
direction irreducible, Lemma 3.1, implies that G − e is bounded and r(G − e) = r(G) −1
for all e ∈ D.

Let H = (U ; ∅, L) be the subgraph of G induced by L. Choose u ∈ U and e0 ∈ D. By 
translation we can replace the assumption that (G, p) is generic by the assumption that 
(G, p) is quasi-generic and p(u) = (0, 0). Let H ′ = (U ; D′, L′) be a minimally rigid graph 
on the same vertex set as H with exactly one length edge, f , and let G′ be obtained 
from G by substituting H by H ′. We can show that G′ is minimally rigid as in the proof 
of Lemma 8.3.

Let (H ′, q) be obtained from (H ′, p|U ) by reflection in the x-axis. Then sq(e) = −sp(e)
for all e ∈ D′. Since {sp(e)}e∈D−e0 ∪{sp(e)}e∈D′ is generic, {sp(e)}e∈D−e0 ∪{sq(e)}e∈D′

is generic. Thus we can apply Lemma 4.2 to obtain p′ : V → R2 such that lp′(f) = lp(f), 
p′(u) = (0, 0), sp′(e) = sp(e) for e ∈ D − e0 and sp′(e) = −sp(e) for e ∈ D′. We 
have Q(fG′−e0(p′)) = Q(fG′−e0(p)), so p′ is quasi-generic by Lemma 2.12. Now consider 
(G − e0, p′) and let C be the connected component of the framework space SG−e0,p′,u

which contains p′. By Lemma 8.3, we have −p′ ∈ C.
Let e0 = u0v0. For any p′′ ∈ C let F (p′′) = (p′′(u0) −p′′(v0))/‖p′′(u0) −p′′(v0)‖ be the 

unit vector in the direction of p′′(u0) − p′′(v0); this is well-defined since p′′(u0) �= p′′(v0)
by Lemma 2.14. Consider a path P in C from p′ to −p′. Then F (p′′) changes continuously 
from F (p′) to −F (p′) along P . By the intermediate value theorem there must be some 
p′′ ∈ P such that F (p′′) is either F (p) or −F (p). Then (G, p′′) is equivalent to (G, p). 
On the other hand, p′′ is not congruent to p since p′′|U is obtained from p|U by a 
reflection (as well as a translation and a rotation). It follows that (G, p) is not globally 
rigid. �

Theorem 8.4 shows that if a graph satisfies the hypotheses of Theorem 3.2, and satis-
fies the additional hypothesis that its length edges induce a subgraph which is rigid (in 
the length-pure sense), then generic realisations of this graph are never globally rigid. 
This supports Conjectures 8.1 and 8.2. We close by noting that Lemma 3.1 and The-
orem 8.4 imply that the mixed graph shown in Fig. 4 is the smallest graph for which 
these conjectures are not known to be true.
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Fig. 4. A direction irreducible, mixed graph which is not redundantly rigid (since the deletion of any direction 
edge destroys rigidity). We know it has a generic realisation which is not globally rigid by Theorem 1.6, 
but do not know whether all generic realisations have this property.
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