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ABSTRACT

We prove a uniform bound on the topological Turán number of an arbitrary

two-dimensional simplicial complex S: any two-dimensional complex on n

vertices with at least CSn
3−1/5 facets contains a homeomorph of S, where

CS > 0 is a constant depending on S alone. This result, a two-dimensional

analogue of a classical one-dimensonal result of Mader, sheds some light

on an old problem of Linial from 2006.
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1. Introduction

An r-uniform hypergraph G over a finite set V (the vertices of G) consists

of a collection of r-element subsets of V (the edges of G), and any such r-

uniform hypergraph G may be identified with an (r− 1)-dimensional simplicial

complex SG whose (r− 1)-skeleton is the edge set of G and whose 0-skeleton is

the vertex set ofG. A number of natural geometric problems arise when we view

r-uniform hypergraphs (or r-graphs, for short) as (r−1)-dimensional simplicial

complexes (or (r − 1)-complexes, for short). For example, questions of this

nature arise in the high-dimensional combinatorics programme of Linial [12, 10],

and have also been raised by Gowers [5]; for a sample of some recent results in

this programme, see [4, 14, 13, 11].

In this paper, we study the Turán problem for 2-complexes, or equivalently,

the topological Turán problem for 3-graphs. In the Turán theory of 3-graphs

(see [17, 7]), one is concerned with finding an isomorphic copy of a fixed 3-

graph inside a larger 3-graph, whereas in the context of 2-complexes (which is

our focus here), one is concerned with finding a homeomorphic copy of a fixed

2-complex inside a larger 2-complex.

Since we shall adhere to the language of 3-graphs in what follows, let us

explain what it means for a pair of 3-graphs to be homeomorphic. We say that

two 3-graphs G and H are homeomorphic if the associated 2-complexes SG

and SH (as described above) are homeomorphic as topological spaces, and

we say that G contains a homeomorph of H if there is a subgraph of G

homeomorphic to H . The following example may help clarify this point of view:

a 3-graph H is a homeomorph of the complete 3-graph K3
4 on four vertices (i.e.,

the tetrahedron, or equivalently, the two-dimensional sphere S2) if we can place

the vertices of H on the sphere and then triangulate the sphere using those

vertices in such a way that the resulting triangles are precisely the edges of H .

With this language in place, our main contribution is the following theorem.

Theorem 1.1: For each 3-graph H , there exists CH > 0 such that any 3-

graph G on n vertices with at least CHn3−1/5 edges contains a homeomorph

of H .

Here, it is worth mentioning that the topological Turán problem for 2-graphs

(i.e., graphs) is understood reasonably well: indeed, the homeomorphs of a

graph H are essentially just the subdivisions of H , and a classical result of
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Mader [15] asserts that for any graph H , there exists CH > 0 such that every

n-vertex graph with at least CHn edges contains a subdivision of H (and this

is tight in general up to the multiplicative constant). Linial [8, 9] has raised the

question of an analogous result for 3-graphs, and while answers are available for

a few specific 3-graphs, no general results for 3-graphs in the spirit of Mader’s

theorem appear to have been previously known; our main result, Theorem 1.1,

fills in this gap.

We shall in fact prove Theorem 1.1 with CH = 2000v(H)6 for all sufficiently

large n ∈ N. However, we make no attempt to optimise this constant since

we do not believe the exponent of 3 − 1/5 in our result to be tight; instead,

we expect the right exponent to be 3 − 1/2 = 5/2, and make the following

conjecture.

Conjecture 1.2: For each 3-graph H , there exists CH > 0 such that any

3-graph G on n vertices with at least CHn5/2 edges contains a homeomorph

of H .

This conjectural exponent of 5/2 requires explanation, and this brings us to

the starting point of the line of investigation we pursue in this paper. In the

specific case of the tetrahedronK3
4 (or equivalently, the sphere), a classical result

of Brown, Erdős and Sós [1] says that 5/2 is indeed the correct exponent: the

minimum number of edges guaranteeing a homeomorph of the sphere in an n-

vertex 3-graph is Θ(n5/2). Conjecture 1.2 is then motivated by the following line

of reasoning: it turns out that we may find homeomorphs in 2-graphs roughly

once we are able to find cycles, i.e., homeomorphs of S1, and our investigations

suggest that we ought to be able to find homeomorphs in 3-graphs roughly once

we are able to find spheres, i.e., homeomorphs of S2. While Theorem 1.1

presents some progress towards Conjecture 1.2, we emphasise that even the

specialisation of this conjecture to specific 3-graphs leads to interesting open

problems; indeed, the special case of H being (a triangulation of) the torus

remains open, and has been reiterated by Linial [8, 9] on multiple occasions as

a natural starting point.

While the arguments of Brown, Erdős and Sós [1] are rather specific to

the sphere and, slightly more generally, to ‘double-pyramidal’ complexes, their

arguments may nonetheless be generalised to show that for any 3-graph H ,

there is an εH > 0 such that any n-vertex 3-graph with at least n3−εH edges

contains a homeomorph of H . An alternative (and somewhat easier) way of
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seeing this is as follows: for any 3-graph H , it is not difficult to construct a 3-

partite 3-graph H̃ that is homeomorphic to H (as shown in Figure 1), and since

finding a copy of H̃ as a subgraph is a degenerate Turán problem, it follows from

a classical result of Erdős [3] that there is an εH > 0 such that any n-vertex 3-

graph with at least n3−εH edges contains a copy of H̃ as a subgraph, and hence

a homeomorphic copy of H . In contrast, Theorem 1.1 says that this H-specific

exponent εH may actually be replaced by the universal exponent 1/5.

H H̃

• •

•

• •

•

• •

•

• •

•

•

Figure 1. Each edge of H maps to twelve new edges in H̃;

the colours red, blue (dark) and green (light) describe the

tripartition of H̃ .

The level of generality at which Theorem 1.1 applies comes at a price, however:

for a few specific 3-graphs of interest, such as the sphere and the torus for

example, the aforementioned arguments (i.e., that of Brown–Erdős–Sós, and

the one based on the degenerate 3-graph Turán problem) yield better estimates

than what is promised by Theorem 1.1.

This paper is organised as follows. We begin with some definitions and

establish some of the basic notions we need for the proof of our main result in

Section 2. The proof of Theorem 1.1 then follows in Section 3. We conclude with

a discussion about the limits of our approach, as well as some open problems,

in Section 4.

2. Preliminaries

Our notation is for the most part standard. Given a 2-graph or a 3-graph G,

we write v(G) and e(G) for the number of vertices and edges of G respectively.

For a set S of vertices in a 2-graph G, we write Γ(S) for the set of common
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neighbours of S in G, and following a common abuse, we write Γ(x) for Γ({x}),
Γ(x, y) for Γ({x, y}), and so on; in the sequel, whenever we refer to Γ(·), the
underlying graph will always be clear from the context, so there should be no

cause for confusion. In those arguments that will involve working with both

2-graphs and 3-graphs in close proximity, we shall refer to the edges of 3-graphs

as faces to avoid confusion. Finally, in what follows, pairs and triples refer

respectively to unordered two-element and three-element sets; again, we abuse

notation slightly and abbreviate a pair {x, y} as xy, a triple {x, y, z} as xyz,

and so on.

It will be convenient to work with 3-partite 3-graphs; the following fact

facilitates this, and follows from an easy averaging argument.

Proposition 2.1: Any 3-graph on 3n vertices withm edges contains a 3-partite

subgraph with vertex classes of size n and at least 2m/9 edges.

Now, let H be a fixed 3-graph and let G be a 3-partite 3-graph whose three

vertex classes X , Y and Z are each of size n. Our strategy to construct

a homeomorph of H in G will involve gluing various building blocks

together appropriately; below, we introduce the notions we require to execute

this strategy.

First, we shall construct an auxiliary 2-graph S(H) from H that will be

helpful in finding a homeomorphic copy of H in G. The construction of S(H)

from H , illustrated in Figure 2, is as follows: first, for each pair xy that is

contained in some face of H , we introduce a new vertex u = uxy in S(H) and

add the edges xu and yu to S(H); then, for each face xyz of H , we introduce

a new vertex u = uxyz in S(H) and add the edges xu, yu and zu to S(H).

We record a few facts about S(H) below.

(1) Each face xyz of H gives rise to three specific 4-cycles in S(H), namely

the 4-cycles

{x, uxy, y, uxyz}, {y, uyz, z, uxyz} and {z, uzx, x, uxyz};

we call the 4-cycles of this form the special 4-cycles of S(H).

(2) S(H) is bipartite, with the set V1 of the original vertices of H and the

set V2 of the new vertices added in the construction of S(H) forming a

bipartition.

(3) The degree of any vertex of S(H) in V2 is at most 3.
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H S(H)

Figure 2. The construction of S(H) from H ; the colours

red (light) and blue (dark) describe the bipartition of S(H).

Next, we describe the structures within G that will serve as building blocks in

constructing a homeomorph of H . The link graph Lz of a vertex z ∈ Z is the

bipartite graph between X and Y whose edges are those pairs xy for which xyz

is a face of G. Notice that a 4-cycle in the link graph Lz corresponds to four

faces of G (all sharing the vertex z) that, taken together, are homeomorphic to

a disk; we call such a collection of four faces of G a 4-disk with centre z, and

call the associated 4-cycle in the link graph Lz the boundary of the 4-disk.

Observe that a fixed 4-cycle in the complete bipartite graph between X and Y

may be the boundary of anywhere between 0 and n different 4-disks in G. We

set KH = 3v(H)3, and call a 4-cycle between X and Y

(1) H-admissible if the cycle is the boundary of more than KH different

4-disks in G, and

(2) H-forbidden if this cycle is the boundary of between 0 andKH different

4-disks in G.

The definitions of admissible and forbidden 4-cycles are motivated by the

following observation. As noted earlier, each face of H corresponds to three

special 4-cycles in S(H), and if we manage to find a copy of S(H) in X × Y

with the property that all its 4-cycles form boundaries of 4-disks in G with

distinct centres, then we may glue the corresponding 4-disks together to obtain

a homeomorph of H in G.

We shall rely on H-admissible 4-cycles between X and Y to build a homeo-

morph of H in G. First, assuming G has sufficiently many edges, we shall show

that we may pass to a subgraph G′ of G in which most of the 4-cycles in X×Y
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are H-admissible. Next, we shall show, using G′, that we may find a copy

of S(H) between X and Y with the property that each of the 4-cycles in this

copy is H-admissible. Finally, since an H-admissible 4-cycle is contained in at

least 3v(H)3 ≥ 3e(H) different link graphs, we will be able to ensure that we

never re-use central vertices when gluing the appropriate 4-disks in G′ together
to construct a homeomorph of H .

3. Proof of the main result

As before, let H be a fixed 3-graph, take KH = 3v(H)3, and let G be a 3-partite

3-graph whose three vertex classes X , Y and Z are each of size n.

Our first goal is to find a vertex z ∈ Z whose link graph Lz is sufficiently

dense so as to contain many copies of the auxiliary 2-graph S(H) defined in

Section 2, and which has a small number of H-forbidden 4-cycles. In order to

achieve this, we use a straightforward application of dependent random choice;

with the set-up as above, we have the following claim.

Lemma 3.1: If e(G) ≥ Cn3−δ, then there exists a vertex z ∈ Z such that

(1) e(Lz) ≥ (C/2)n2−δ, and

(2) the number ofH-forbidden 4-cycles in Lz is at most (2KH/C)n1+δe(Lz).

Proof. Select a vertex z ∈ Z uniformly at random. It is clear that

E[e(Lz)] = e(G)/n.

Note that the probability that any given H-forbidden 4-cycle is contained in Lz

is at most KH/n. Therefore, writing Bz for the number of H-forbidden 4-cycles

in Lz , we have E[Bz ] ≤ KHn3.

Putting the two estimates above together, we have

E[e(Lz)− (C/2)n2−δ − (C/2KH)n−1−δBz)] ≥ 0,

so there must exist a vertex z ∈ Z for which we have both

e(Lz)− (C/2)n2−δ ≥ 0

and

e(Lz)− (C/2KH)n−1−δBz ≥ 0,

proving the claim.
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Our proof of Theorem 1.1 will hinge around finding a copy of the

auxiliary 2-graph S(H) within the link graph Lz promised by Lemma 3.1 while

avoiding H-forbidden 4-cycles. To find this copy, we first show that we can pass

to a large subset Y ′ ⊂ Y within which almost all pairs and triples are well-

behaved. To quantify what it means to be well-behaved, we make the following

definitions.

(1) We call a pair y1y2 of vertices in Y good if

|Γ(y1, y2)| ≥ n1−2ε

and there are at most

(KH/C)n1−3ε|Γ(y1, y2)|

H-forbidden 4-cycles containing both y1 and y2, and bad otherwise.

(2) We call a triple y1y2y3 of vertices in Y good if

|Γ(y1, y2, y3)| ≥ n1−3ε,

and bad otherwise.

With this set-up, we next show the following.

Lemma 3.2: Let ε ≤ 1/5, C ≥ 1 and let Lz be a bipartite graph between X

and Y with (C/2)n2−ε edges in which the number of H-forbidden 4-cycles is

at most KHn3+1/5−ε. Then there is a subset Y ′ of Y of size at least n1−ε/4

within which

(1) at most (400/C)
(|Y ′|

2

)
pairs are bad, and

(2) at most (600/C)
(|Y ′|

3

)
triples are bad.

Proof. To prove the lemma, we start by selecting a vertex x ∈ X uniformly at

random. Clearly, we have

E[|Γ(x)|] = (C/2)n1−ε.

Notice that if a pair y1y2 in Y is bad, then either

(a) |Γ(y1, y2)| < n1−2ε, or

(b) the number of H-forbidden 4-cycles through y1 and y2 is at least

(KH/C)n1−3ε|Γ(y1, y2)|,
or possibly both.
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First, given a bad pair y1y2 in Y for which (a) holds, since |Γ(y1, y2)| < n1−2ε,

the probability that both y1 and y2 belong to Γ(x) is at most n−2ε; hence, the

number P1 of such pairs surviving in Γ(x) satisfies

E[P1] ≤ n2−2ε.

Next, let Q denote the set of bad pairs y1y2 for which (b) holds, so each

pair y1y2 ∈ Q lies in at least (KH/C)n1−3ε|Γ(y1, y2)| H-forbidden 4-cycles.

Since the total number of H-forbidden 4-cycles in Lz is at most KHn3+1/5−ε,

we get ∑
y1y2∈Q

(KH/C)n1−3ε|Γ(y1, y2)| ≤ KHn3+1/5−ε,

which implies that ∑
y1y2∈Q

|Γ(y1, y2)| ≤ Cn2+1/5+2ε.

It follows that the number P2 of pairs in Q surviving in Γ(x) satisfies

E[P2] =
∑

y1y2∈Q

|Γ(y1, y2)|
n

≤ Cn1+1/5+2ε.

Thus, the total number Px of bad pairs surviving in Γ(x), which is clearly at

most the sum P1 + P2, satisfies

E[Px] ≤ E[P1] + E[P2] ≤ Cn1+1/5+2ε + n2−2ε ≤ (1 + C)n2−2ε;

here, the last inequality relies on the fact that ε ≤ 1/5.

Finally, given a bad triple y1y2y3 in Y , since |Γ(y1, y2, y3)| < n1−3ε, the

probability that this triple survives in Γ(x) is at most n−3ε. Writing Tx for the

number of bad triples surviving in Γ(x), we again have

E[Tx] ≤ n3−3ε.

Putting the above estimates together, we get

E

[
|Γ(x)| − Cn1−ε

4
− CPx

12(1 + C)n1−ε
− CTx

6n2−2ε

]
≥ 0,

which in particular implies that there is some x ∈ X for which we have

(A) |Γ(x)| ≥ Cn1−ε/4,

(B) |Γ(x)| ≥ CPx/12(1 + C)n1−ε, and

(C) |Γ(x)| ≥ CTx/6n
2−2ε.
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Multiplying the inequality in (B) by the one in (A), the inequality in (C) by

the square of the one in (A), we see that for this choice of x ∈ X , we have

Px ≤ (48(1 + C)/C2)|Γ(x)|2 ≤ (400/C)

(|Γ(x)|
2

)
,

and

Tx ≤ (96/C3)|Γ(x)|3 < (600/C3)

(|Γ(x)|
3

)
,

provided n is sufficiently large. Taking Y ′ = Γ(x) for this choice of x proves the

claim.

We are now ready to put these two lemmas together to prove our main result.

Proof of Theorem 1.1. Our given goal is to find a homeomorph of a given 3-

graph H in any large 3-graph G with sufficiently many faces. Appealing to

Proposition 2.1, we start by assuming that G is a 3-partite 3-graph whose three

vertex classes X , Y and Z are each of size n, and which has at least Cn3−1/5

faces for some suitably large constant C depending on H alone. As described in

Section 2, we shall work with the auxiliary 2-graph S(H) to find a homeomorph

of H in G.

First, we apply Lemma 3.1 to G with δ = 1/5. This gives us a vertex z ∈ Z

whose link graph Lz contains (C/2)n2−ε edges for some ε ≤ δ = 1/5 in which

the number of H-forbidden 4-cycles is at most

(2KH/C)n1+1/5e(Lz) = KHn3+1/5−ε.

This link graph satisfies the requirements of Lemma 3.2, so we apply the lemma

to pass to a subset Y ′ ⊂ Y within which most pairs and most triples are good.

Recall that S(H) is bipartite and admits a bipartition (V1, V2) where each

vertex in V2 has degree at most 3, and where V1 is in fact the original set of

vertices of H .

We shall first embed the vertices of V1 into Y
′ in such a way that no embedded

pair is bad and no embedded triple is bad. In order to show that this is possible,

we note that the proportion of bad pairs in Y ′ is at most 400/C and the

proportion of bad triples in Y ′ is at most 600/C3. We define a 3-graph D(Y ′)
on the vertex set Y ′ whose edges are those that are potentially problematic for

our embedding, i.e., those triples y1y2y3 which are either bad, or for which one

of the pairs y1y2, y2y3 or y1y3 is bad. The density of this 3-graph D(Y ′) is at
most 1200/C + 600/C3 ≤ 2000/C.



Vol. 243, 2021 A UNIVERSAL EXPONENT FOR HOMEOMORPHS 151

Our goal now is to find a complete 3-graph on |V1| vertices in the complement

of D(Y ′), since the existence of such a subgraph enables us to inject V1 into Y ′

whilst avoiding all bad pairs and bad triples. A bound of de Caen [2] shows that

a copy of the complete 3-graph K3
t on t vertices can be found in any 3-graph

on n vertices of density at least

1−
(
t− 1

2

)−1

,

provided n is sufficiently large. Therefore, we may find our embedding (again,

assuming that n is sufficiently large) provided that

2000/C ≤
(|V1|

2

)−1

,

which we may ensure by taking C ≥ 1000v(H)2.

It remains to find an embedding of the vertices of V2 into X . For each

vertex u of degree 3 in V2 that we need to embed into X , we have a choice

of n1−3ε vertices in the common neighbourhood of its three already-embedded

neighbours from V1; we choose its image from these candidates uniformly at

random. Similarly, for each vertex v of degree 2 in V2, we choose its image

uniformly at random from the n1−2ε vertices in the common neighbourhood of

its two already-embedded neighbours from V1.

The probability that this embedding is not proper, i.e., that some two vertices

in V2 get mapped to the same vertex in X , is at most |V2|2n3ε−1 < 1/2,

provided n is large (since ε ≤ 1/5 and |V2| ≤ 10v(H)3).

We shall next show that for this embedding, the probability of some special

4-cycle in S(H) mapping to an H-forbidden 4-cycle is also at most 1/2. Since

the number of special 4-cycles in S(H) is 3e(H), it suffices to show for each

special 4-cycle C in S(H) that the probability of its image being H-forbidden

is at most 1/(6e(H)). Let y1 and y2 be the images of vertices of C in V1 (which

have been fixed earlier deterministically), and consider u′ and v′, the (random)

images of the two vertices u and v of C from V2 whose degrees in S(H) are

respectively 3 and 2. Let y3 be the vertex in Y ′ so that u′ is chosen uniformly

at random from Γ(y1, y2, y3). Suppose for a contradiction that the probability

of the image of C being H-forbidden is at least 1/(6e(H)). Then this implies

that at least a 1/(6e(H)) proportion of the 4-cycles formed by taking y1 and y2,

together with a vertex x1 ∈ Γ(y1, y2, y3) and a vertex x2 ∈ Γ(y1, y2) are H-

forbidden. This leads us to conclude that the number of H-forbidden 4-cycles
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through y1 and y2 is at least

(1/6e(H))n1−3ε|Γ(y1, y2)|.
However, if 1/(6e(H)) ≥ KH/C, then this would imply that y1y2 is a bad pair,

a contradiction; this final inequality may be ensured by taking C ≥ 18v(H)6,

since e(H) ≤ v(H)3 and KH = 3v(H)3.

We have shown that it is possible to embed S(H) into Lz in such a way that

all of the special 4-cycles in this embedding are H-admissible. This embedding

extends to a homeomorph of H inside G as follows. For each 4-cycle C in Lz

that is the image of some special 4-cycle of S(H), we claim that we may choose

a unique vertex z(C) ∈ Z such that C is also contained in the link graph Lz(C):
indeed, C is H-admissible, so there are at least KH = 3v(H)3 ≥ 3e(H) choices

for z(C). We then use z(C) to turn each of the embedded special 4-cycles C
in Lz into a 4-disk in G, noting that these 4-disks all have distinct centres; the

result is a homeomorph of H in G.

4. Conclusion

Below, we address some of the limitations of our approach to finding homeo-

morphs of a fixed target 3-graph H , as well as some potential avenues for

improvement.

It seems plausible that the exponent of 3 − 1/5 that we obtain may

be improved somewhat by a more judicious application of the methods developed

here. However, the ideas developed in this paper reach a bottleneck,

conjecturally, at the exponent of 3 − 1/4. This is because it is believed [16]

that there exist n-vertex 3-graphs with Ω(n3−1/4) edges that do not contain

any octahedra, though the best constructions presently known, see [6], only

manage Ω(n3−1/3) edges. If a 3-graph does not contain any octahedra, then

our approach based on H-admissible 4-cycles falls apart, since if all the 4-cycles

in the link graphs are H-forbidden, then our method for extending S(H) to a

homeomorph of H fails due to degeneracy concerns.

Another important fact to bear in mind is that while Ω(n5/2) edges guarantee

a homeomorph of S2 in any n-vertex 3-graph, the number of edges needed to

guarantee a homeomorph of S2 of bounded size comes with an exponent strictly

greater than 5/2, as can be verified by a standard deletion argument applied

to a (binomial) random 3-graph of the appropriate density. Our methods here
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end up finding bounded-size homeomorphs: indeed, we find a homeomorphic

copy of H that has 12e(H) edges. Any strategy that does not plan for the

possibility of finding large homeomorphs of H , i.e., of size unbounded in terms

of H , cannot prove Conjecture 1.2.

We leave the reader with a reminder of the specialisation of Conjecture 1.2

to the torus as reiterated by Linial [8, 9].

Conjecture 4.1: There is a C > 0 such that any 3-graph G on n vertices

with at least Cn5/2 edges contains a homeomorph of the torus.

By adapting the arguments of Brown, Erdős, and Sós [1] to triple-pyramidal

complexes (from double-pyramidal complexes), it may be shown that an expo-

nent of 3 − 1/3 suffices for the torus, but improving on this bound remains an

attractive starting point to Conjecture 1.2 in its full generality.
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