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Abstract. We prove a conjecture of Wilson from 1974 on the number of Steiner Triple
Systems. The proof illustrates our method of Randomised Algebraic Construction, which
we developed recently to resolve a question of Steiner from 1853 on the existence of
combinatorial designs.
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1. Introduction

A Steiner system with parameters (n, q, r) is a set S of q-subsets of an n-set1 X,
such that every r-subset of X belongs to exactly one element of S. The question
of whether there is a Steiner system with given parameters is one of the oldest
problems in combinatorics, dating back to work of Plücker (1835), Kirkman (1846)
and Steiner (1853); see [16] for a historical account.

More generally, we say that a set S of q-subsets of an n-set X is a design with
parameters (n, q, r, λ) if every r-subset of X belongs to exactly λ elements of S.
There are some obvious necessary ‘divisibility conditions’ for the existence of such
S, namely that

(
q−i
r−i
)

divides λ
(
n−i
r−i
)

for every 0 ≤ i ≤ r − 1 (fix any i-subset I of
X and consider the sets in S that contain I). It is not known who first advanced
the ‘Existence Conjecture’ that the divisibility conditions are also sufficient, apart
from a finite number of exceptional n given fixed q, r and λ.

The case r = 2 has received particular attention because of its connections to
statistics, under the name of ‘balanced incomplete block designs’. The first result
in this direction was obtained by Kirkman in 1847, who proved the Existence Con-
jecture for objects now known as Steiner Triple Systems, namely Steiner systems
with parameters (n, 3, 2). We refer the reader to [3] for a summary of the large
literature and applications of this field. The Existence Conjecture for r = 2 was a
long-standing open problem, eventually resolved by Wilson [17, 18, 19] in a series
of papers that revolutionised Design Theory, and had a major impact in Combi-
natorics. In [6] we proved the Existence Conjecture in general, via a new method
which we call Randomised Algebraic Constructions.

Our inductive proof requires us to prove a more general result, which can be
roughly stated that dense pseudorandom simplicial complexes have clique decom-
positions. We will illustrate the method by considering the case of triangle decom-
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positions of dense pseudorandom graphs. This case admits many simplifications,
to the extent that we will be able to give much of the proof in this short article
(the remaining technical details can be found in the full version [7]).

We will also use our result on triangle decompositions to prove the following
estimate on the number STS(n) of Steiner Triple Systems on n points, conjectured
by Wilson [20].

Theorem 1.1. STS(n) = (n/e2 + o(n))n
2/6 if n is 1 or 3 mod 6, otherwise 0.

Our expository goal in this article is to provide an informal introduction to
the ideas of [6], so we will be rather imprecise in places, leaving the reader who
desires more formality to consult [7] or [6]. Furthermore, there are some additional
simplifications available in the case of triangle decompositions (many of which
were pointed out by an anonymous referee and other readers of an earlier version
of this paper), which will be remarked on during the paper, but not implemented
as they are specific to triangle (or graph) decompositions, and so not very helpful
for understanding the general (hypergraph) case.

2. Triangle decompositions

Next we will state our result on triangle decompositions of dense pseudorandom
graphs. In this case, the necessary divisibility conditions mentioned above show
that the number of edges must be divisible by three, and the degree of any vertex
must be even. We say that G is tridivisible if it satisfies these divisibility conditions.
The pseudorandomness condition is as follows. Let G be a graph on n vertices.
The density of G is d(G) = |G|/

(
n
2

)
. We say that G is c-typical if every vertex has

(1 ± c)d(G)n neighbours and every pair of vertices have (1 ± c)d(G)2n common
neighbours. (We write b± c for any real between b− c and b+ c.)

Theorem 2.1. There exist 0 < c0 < 1 and n0 ∈ N so that if n ≥ n0 and G is
a c-typical tridivisible graph on n vertices with d(G) > n−10−7

and c < c0d(G)106

then G has a triangle decomposition.

In this paper, we will sketch the proof of a slightly weaker theorem, using the
following stronger notion of typicality from [6], from which it is not difficult to
deduce Theorem 2.1 via standard ‘Szemerédi Regularity’ methods (see [7] for more
remarks on this).

We say that G is (c, h)-typical if

| ∩x∈S G(x)| = (1± |S|c)d(G)|S|n for any S ⊆ V (G) with |S| ≤ h.

Note that being c-typical is essentially the same as being (c, 2)-typical (up to a
factor of 2 in c).

Henceforth, we will assume that G is (c, 16)-typical.
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2.1. The number of Steiner Triple Systems. The upper bound in Theorem
1.1 was recently proved by Linial and Luria [10], who showed that STS(n) ≤
(n/e2 + O(

√
n))n

2/6 Our lower bound will be STS(n) ≥ (n/e2 + O(n1−a))n
2/6

for some small a > 0. The idea is to prove a lower bound on the number of
‘almost’ Steiner Triple Systems S such that Theorem 2.1 can be applied to the
graph Kn \

⋃
S of uncovered edges, thus completing S to a (genuine) Steiner

Triple System. It has been known since the pioneering work of Rödl [14] that
almost Steiner Triple Systems (and almost designs) can be constructed by the
semirandom method (nibble). Rather than using the classical nibble, it will be
most convenient for us to apply the recent analysis of the triangle removal process
by Bohman, Frieze and Lubetzky [2].

We will say that an event E holds with high probability (whp) if P(E) = 1 −
e−Ω(nb) for some b > 0 as n → ∞. Note that when n is sufficiently large, by
union bounds we can assume that any specified polynomial number of such events
all occur (this point is not important in this section but will be used later in the
paper).

In the triangle removal process, we start with the complete graph Kn, and
at each step we delete the edges of a uniformly random triangle in the current
graph. It is shown in [2] that whp the process persists until only O(n3/2+o(1))

edges remain, but we will stop at n2−10−7

edges (i.e. at the nearest multiple of 3 to
this number) so that we can apply Theorem 2.1. We need the following additional
facts from [2] about this stopped process: whp the final graph is n−1/3-typical,
and when pn2/2 edges remain the number of choices for the deleted triangle is
(1± n−2/3)(pn)3/6.

Proof of Theorem 1.1. Consider the following procedure for constructing a
Steiner Triple System on n vertices: run the triangle removal process until n2−10−7

edges remain, then apply Theorem 2.1 (if its hypotheses are satisfied, which occurs
in 1−o(1) proportion of all instances of the process). Writing m for the number of
steps and p(i) = 1−6i/n2, the logarithm of the number of choices in this procedure
is

L1 =

m∑
i=1

(log(p(i)3n3/6)± 2n−2/3) = (n2/6)(log(n3/6)− 3± n−10−8

),

since
∑m
i=1 log p(i) = (1+O(n−10−7

log n))(n2/6)
∫ 1

0
log p dp and

∫ 1

0
log p dp = −1.

Also, for any fixed Steiner Triple System, the logarithm of the number of times it
is counted by this procedure is at most

L2 =

m∑
i=1

log(p(i)n2/6) = (n2/6)(log(n2/6)− 1± n−10−8

).

Therefore log(STS(n)) ≥ L1 − L2 = (n2/6)(log(n) − 2 ± 2n−10−8

), which implies
the stated bound on STS(n). 2
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2.2. Strategy. Our strategy for obtaining a triangle decomposition of G can be
thought of as variant of the well-known Absorbing Method (see the survey [15]).
We begin by creating an ‘absorbing’ set of edge-disjoint triangles, which we call
the template T . Next we extend T to an almost-perfect triangle decomposition
of G by standard random greedy methods. Finally, the ‘absorbing’ property of
the template allows us to rearrange its triangles in order to complete this to the
desired perfect triangle decomposition (the ‘absorption’).

However, there is an important difference from standard applications that
makes our setting more difficult. To explain this, we first note that the trian-
gle decomposition problem can be reformulated as the perfect matching problem
in an auxiliary 3-graph H, whose vertices are all edges of G, and whose edges are
all {xy, yz, zx} such that xyz is a triangle of G. In a typical application of the
Absorbing Method to find a perfect matching in a k-graph H, the strategy is to
show that any k-set S ⊆ V (H) has many ‘absorbers’ A in H, meaning that A is a
small matching such that there is another matching B with

⋃
B = S ∪

⋃
A. One

then shows that if T is a random matching covering a small constant proportion
of V (H) then whp every k-set has many absorbers in H.

This sketch is plausible in dense settings, where for any S we typically have
Θ(|V (H)|ak) absorbers in H with a edges, each of which appears in T with proba-
bility Θ(|V (H)|−a(k−1)), so whp Θ(|V (H)|a) appear in T for any S. However, the
auxiliary hypergraph for triangle decompositions is very sparse: it has Θ(n2) ver-
tices but only Θ(n3) edges. If we were to choose T randomly then the probability
for any fixed triangle to appear would be O(n−1). On the other hand, to absorb
some fixed (tridivisible) S ⊆ E(G), we need T to contain a set A of a edge-disjoint
triangles such that S ∪ A has a triangle decomposition B, so we need ω(na) such
A in G.

To see that this is impossible, we imagine selecting the triangles of A one at a
time and keeping track of the number E of edges that belong to a unique triangle
of S ∪ A. If a triangle uses a vertex that has not been used previously then it
increases E, and otherwise it decreases E by at most 3. We can assume that no
triangle is used in both A and B, so we terminate with E = 0. Thus there can be
at most 3a/4 steps in which E increases, so there are only O(n3a/4) such A in G.

The key idea for circumventing this obstacle is to instead define T by ran-
domly embedding V (G) into a field and taking those triangles defined by a certain
algebraic condition; this is the method of Randomised Algebraic Construction in-
troduced in [6]. We let G∗ =

⋃
T be the underlying graph of T . We will show that

G∗ is typical with respect to G (it behaves like a random subgraph of G in a way
we will define later) and also that G∗ is ‘linearly typical’ (it has certain algebraic
properties which we will define later). Obtaining this combination of random-like
and algebraic properties is the key to the proof.

We will now sketch in more detail the various steps in constructing a triangle
decomposition of G. Firstly, in the Nibble step, the typicality properties of G and
G∗ and the semirandom method give a set N of edge-disjoint triangles in G \ G∗
such that the leave L := (G\G∗)\

⋃
N has ‘small’ maximum degree; in particular,

N ∪ T is an almost-perfect triangle decomposition of G and L is a small fraction
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of G.

More precisely, L will have maximum degree at most c1n, where c � c1 �
c2 � c3 � d(G) are parameters defined below (recall that d(G) is the density of
G and G is (c, 16)-typical). It may be helpful at first to think of these parameters
as absolute constants, although in our application to the proof of Theorem 1.1 we
allow them to decay polynomially with n.

The remaining steps of the proof work towards absorbing L. Our goal is to
find A ⊆ T and a set B of edge-disjoint triangles such that

⋃
B = L ∪

⋃
A. Then

N ∪ (T \A) ∪B will be a triangle decomposition of G.

In the Cover step, we apply a random greedy algorithm to find a set M c of
edge-disjoint triangles which cover the leave L and whose edges are in G∗ ∪ L.
Thus N ∪M c ∪ T is a set of triangles which covers every edge of G, but which
covers some edges twice, namely the spill S = G∗ ∩

⋃
M c. We use the typicality

properties of G and G∗ and the bounded maximum degree of L to show that S
has maximum degree at most c2n.

In an ideal world, we would have S =
⋃
A for some A ⊆ T ; then B = M c would

satisfy
⋃
B = L∪

⋃
A, giving the triangle decomposition N∪(T \A)∪B. However,

this is too much to hope for, because of the sparsity of T (as discussed above).
Instead, in the Hole step, we will find a set M i of edge-disjoint triangles in G∗,
such that

⋃
M i is edge-disjoint from S and S∪

⋃
M i has a triangle decomposition

Mo (and has maximum degree at most c3n). We think of M i as the ‘inner’ set
and Mo as the ‘outer’ set. We can also think of (Mo,M i) as a decomposition of
S in which we allow triangles to have ‘signs’ (positive for Mo, negative for M i).
This line of thought is helpful for understanding the proof, as a preliminary step
is to obtain an even weaker decomposition in which we allow each triangle to have
any integer weight (an idea introduced in [5] and [21]).

Again, in an ideal world, if we had Mo ⊆ T , we could take A = Mo and
B = M c ∪M i to obtain a triangle decomposition N ∪ (T \A) ∪B. However, this
is again too much to hope for, so now the algebraic properties of T will come into
play, enabling us to make local rearrangements to include the triangles of Mo, one
by one. For each triangle of Mo, we find a copy of K8,8,8 in G∗ which contains
it and whose edges are decomposed into 64 triangles of T . Then we shuffle: we
remove these 64 triangles of T and replace them with 63 triangles disjoint from the
triangle from Mo (it is not hard to see that this is possible). Repeating this, we
have a way of rearranging T in order to cover exactly the edges of G not covered
by N ∪ M c ∪ M i. Note that it is in finding these special copies of K8,8,8 that
the algebraic structure is critical: typical sets of triangles (chosen, for instance, at
random from G) of a similar density do not contain any such dense structures.

There is one final complication: we have to be able to find these copies of K8,8,8,
and we have to be able to do so edge-disjointly, otherwise earlier shuffles might
affect our ability to perform later ones. This is possible if the triangles Mo happen
to have certain algebraic properties, but this need not be the case. Thus, before
looking for shuffles, we modify M c ∪M i to find a ‘nicer’ set M2 of edge-disjoint
triangles: M2 still covers the leave L and some edges of G∗, but now G∗ ∩

⋃
M2

has a triangle decomposition. This modification idea echoes that used in the Hole
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step, in which we started with a weaker form of decomposition (integral) and then
modified it to obtain a better decomposition (signed). Both these modifications are
performed in the Completion step: which replaces M c, Mo and M i by other sets
of triangles with the same properties, where M1 plays the role of M c ∪M i, M2 of
Mo, and each triangle f of M2 can be embedded in a small subgraph that has one
triangle decomposition (part of M4) using f and another triangle decomposition
(part of M3) contained in T .

We can encapsulate the above discussion of the proof strategy as follows. We
say that J ⊆ G is c-bounded if |J(v)| < c|V (G)| for every v ∈ V (G), where
J(v) = {u ∈ V (G) : uv ∈ J} is the neighbourhood of v in J .

Strategy 2.2. Suppose we have G∗ ⊆ G with a ‘template’ triangle decomposition
T such that

Nibble G \ G∗ contains a set N of edge-disjoint triangles with ‘leave’ L := (G \
G∗) \

⋃
N that is c1-bounded,

Cover For any L ⊆ G \G∗ that is c1-bounded, there is a set M c of edge-disjoint
triangles inG such that L = (G\G∗)∩(

⋃
M c) and the ‘spill’ S := G∗∩(

⋃
M c)

is c2-bounded,

Hole For any tridivisible S ⊆ G∗ that is c2-bounded, there are ‘outer’ and ‘inner’
sets Mo,M i of edge-disjoint triangles in G∗ such that

⋃
Mo is c3-bounded

and (S,
⋃
M i) is a partition of

⋃
Mo,

Completion We can modify L, M c, Mo and M i to obtain sets M1, M2, M3, M4

of edge-disjoint triangles in G∗ such that (L,
⋃
M2) is a partition of

⋃
M1,⋃

M3 =
⋃
M4, M3 ⊆ T and M2 ⊆M4.

The key step is choosing T (which determines G∗). To motivate the construc-
tion, suppose that V (G) is an abelian group, and consider the set Σ of triples xyz
such that x + y + z = 0. We note that Σ is a good ‘model’ for a triangle decom-
position, as for any xy there is a unique z such that x + y + z = 0. However, we
cannot simply take Σ, as not all such xyz are triangles of G; moreover, x, y, z may
not even be pairwise distinct. The idea is that a suitable random subset of Σ can
act as a template, which covers a large fraction of G (more precisely, it has density
Θ(d(G)2) in G).

It is not hard to see that G contains a triangle decomposition under the
assumptions of Strategy 2.2. Indeed, we start by taking the sets N provided
by Nibble and then the sets M c and S provided by Cover. Now we note
that S =

⋃
T +

⋃
N +

⋃
M c − G is tridivisible, as any integer linear combi-

nation of tridivisible graphs is tridivisible. So we can apply Hole to obtain Mo

and M i. Then we can apply Completion to obtain M1,M2,M3,M4. Finally,
M = N ∪M1 ∪ (M4 \M2) ∪ (T \M3) is a triangle decomposition of G. In the
remainder of the paper we will sketch the various steps of Strategy 2.2.

2.3. Template. We choose the template as follows.
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Construction 2.3. Let a ∈ N be such that 2a−2 < |V (G)| ≤ 2a−1. Let π :
V (G)→ F2a \ {0} be a uniformly random injection. Let

T = {xyz ∈ K3(G) : π(x) + π(y) + π(z) = 0} and G∗ =
⋃
T.

In this subsection we establish the typicality properties of G∗, deferring discus-
sion of the algebraic properties of T until they are needed in Section 4. We adopt
this organisation for expository purposes, but note that we could equally well have
proved all properties of T that we need later hold whp before proceeding to the
other steps of Strategy 2.2, so one can imagine that T is fixed from the start with
these properties.

We start with some notation and preliminary observations. Throughout we
write n = |V (G)|. We identify G with its edge set E(G), so that |G| denotes the
number of edges of G (rather than the number of vertices, as is used by some
authors). We write Ks(G) for the set of copies of Ks in G. We write [n] =
{1, . . . , n}. We define

γ = 2−an,

and note that 1/4 < γ < 1/2. We observe that if x, y, z ∈ F2a \{0} and x+y+z = 0
then x, y, z are pairwise distinct. We note that +1 = −1 in F2a , so we can use +
and − interchangeably in F2a -arithmetic. We consider F2a as a vector space over
F2, and observe that any two nonzero elements span a subspace of dimension two.

Now we define the typicality condition for (G,G∗) and show that it holds whp.
Let G∗ be a subgraph of G. We say that (G,G∗) is (c, h)-typical if

|
⋂
x∈S∗

G∗(x) ∩
⋂

x∈S\S∗
G(x)| = (1± |S|c)d(G∗)|S

∗|d(G)|S|−|S
∗|n

for any S∗ ⊆ S ⊆ V (G) with |S| ≤ h.

Lemma 2.4. whp d(G∗) = (1± 3c)γd(G)3 and (G,G∗) is (6c, 16)-typical.

The proof uses the following consequence of Azuma’s inequality.

Definition 2.5. Let Sn be the symmetric group, f : Sn → R and b ≥ 0. We say
that f is b-Lipschitz if for any σ, σ′ ∈ Sn such that σ = τ ◦σ′ for some transposition
τ ∈ Sn we have |f(σ)− f(σ′)| ≤ b.

For a proof of the following lemma, see e.g. the discussion after Theorem 3.7
in [13].

Lemma 2.6. Suppose f : Sn → R is b-Lipschitz, σ ∈ Sn is uniformly random and
X = f(σ). Then

P(|X − EX| > t) ≤ 2e−t
2/2nb2 .

Proof of Lemma 2.4. We start by estimating E|G∗| =
∑
e∈G P(e ∈ G∗). For

any e = xy, given π(x) and π(y), we have e ∈ G∗ if and only if π(z) = π(x) +
π(y) for some z such that xyz ∈ K3(G). Since G is (c, 16)-typical, there are
(1 ± 2c)d(G)2n choices for z. Each satisfies π(z) = π(x) + π(y) with probability
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(2a − 3)−1, so E|G∗| = |G|(1 ± 2c)d(G)2n(2a − 3)−1. We can view π as σ ◦ π0,
where π0 : V (G)→ F2a \ {0} is any fixed injection and σ is a random permutation
of F2a \ {0}. Any transposition of σ affects |G∗| by O(n), so by Lemma 2.6 whp
d(G∗) = (1± 2.1c)γd(G)3.

Similarly, if S∗ ⊆ S ⊆ V (G) with |S| ≤ 16, we write Y =
⋂
x∈S∗ G

∗(x) ∩⋂
x∈S\S∗ G(x), and estimate E|Y | =

∑
y∈V (G) P(y ∈ Y ). For any y ∈ ∩x∈SG(x),

given π(y) and π(x) for all x ∈ S, we have y ∈ Y if and only if for all x ∈ S∗ there
is xyzx ∈ K3(G) such that π(zx) = π(x) + π(y). Since G is (c, 16)-typical, there
are (1±|S|c)d(G)|S|n choices for y. By excluding O(1) choices of y we can assume
π(x)+π(y) 6= π(x′) for all x, x′ ∈ S. Then for each x ∈ S∗ there are (1±2c)d(G)2n
choices for zx, and for any set of choices, with probability (1+O(1/n))2−a|S

∗| they
all satisfy π(zx) = π(x) + π(y). This gives

E|Y | = O(1) + (1± |S|c)d(G)|S|n · ((1± 2c)d(G)2n)|S
∗| · (1 +O(1/n))2−a|S

∗|.

Any transposition of σ fixing every element of S affects |Y | by O(1), so by Lemma
2.6 applied on [n] \ S whp |Y | = (1 ± (3|S| + 1)c)d(G)|S|(γd(G)2)|S

∗|n = (1 ±
6|S|c)d(G∗)|S|d(G)|S|−|S

∗|n. 2

Henceforth, we assume that G∗ has been chosen to satisfy the conclusion of
Lemma 2.4.

2.4. Nibble. To implement the Nibble step, we will show that the following the-
orem can be applied with H = G \G∗.

Theorem 2.7. There are b0 > 0 and n0 ∈ N so that if n > n0, n−0.1 < b < b0
and H is a b-typical graph on n vertices with d(H) > b, then there is a set N of
edge-disjoint triangles in H such that L = H \

⋃
N is b1/4-bounded.

We remark that the parameters in Theorem 2.7 are not very sharp: we have
just fixed some convenient values that suffice for our purposes. Similar results are
well-known, but we are not aware of any reference that implies the theorem as
stated, so we sketch a proof in [7].

To apply the theorem we show that G \ G∗ is 50c-typical. First we recall
that (G,G∗) is (6c, 16)-typical and note that as d(G∗) = (1 ± 3c)γd(G)3 and
1/4 < γ < 1/2 we have 0.24d(G)3 < d(G∗) < 0.51d(G) for small c. Now, for any
v ∈ V (G) we have

|(G \G∗)(v)| = (1± c)d(G)n− (1± 6c)d(G∗)n

= (d(G)− d(G∗))n± 6c(d(G) + d(G∗))n = (1± 20c)d(G \G∗)n.

Furthermore, for any u, v ∈ V (G) we estimate |(G \G∗)(u) ∩ (G \G∗)(v)| as

|G(u) ∩G(v)| − |G∗(u) ∩G(v)| − |G(u) ∩G∗(v)|+ |G∗(u) ∩G∗(v)|
= (1± 2c)d(G)2n− 2(1± 12c)d(G)d(G∗)n+ (1± 12c)d(G∗)2n

= (d(G)− d(G∗))2n± 12c(d(G) + d(G∗))2n = (1± 50c)d(G \G∗)2n.
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Thus G \G∗ is 50c-typical, so we obtain Nibble with c1 = (50c)1/4.
We give here the values of some other parameters that will be used in the paper

(we have already mentioned c1, c2, c3 in Strategy 2.2; c4 and c5 will be used in the
Completion step):

c1 = (50c)1/4, c2 = 102c1d(G)−6, c3 = 1020c2d(G)−50,

c4 = 1020c3d(G)−100, c5 = 1010c4d(G)−180.

The tightest constraint on c that will be required in our calculations is 100c5 =
1054(50c)1/4d(G)−336 < 10−6d(G)180; this holds for small c0 if c < c0d(G)3000.
(This is the bound we need if G is (c, 16)-typical, but if G is c-typical we need the
stronger bound in Theorem 2.1.)

2.5. Cover. Recall that in the Cover step we want to choose a set M c of edge-
disjoint triangles in G∗ ∪ L which cover the leave L, such that S = G∗ ∩

⋃
M c is

c2-bounded. This can be most easily achieved by a deterministic greedy algorithm,
but in keeping with our goal of illustrating the ideas of [6], we will use the following
random greedy algorithm that can be applied in more general settings.

Algorithm. Let L = {ei : i ∈ [t]} (with edges ordered arbitrarily). Let M c =
{Ti : i ∈ [t]} be triangles such that Ti consists of ei and two edges of G∗, and is
chosen uniformly at random from all such triangles that are edge-disjoint from all
previous choices; if there is no available choice for Ti then the algorithm aborts.

To analyse the algorithm we will use a concentration inequality. We say that
a random variable Y is (µ,C)-dominated, if there are constants µ1, . . . , µm with∑m
i=1 µi < µ, and we can write Y =

∑m
i=1 Yi, such that |Yi| ≤ C for all i, and

conditional on any given values of Yj for j < i we have E|Yi| < µi. The following
lemma follows easily (see [6, Lemma 2.7]) from Freedman’s inequality [4] (or from
Hoeffding’s inequality and a coupling argument, as noted by a referee).

Lemma 2.8. If Y is (C, µ)-dominated then

P(|Y | > (1 + c)µ) < 2e−µc
2/2(1+2c)C .

For the following lemma, we recall that G∗ satisfies the conclusion of Lemma
2.4, L is c1-bounded, where c1 = (50c)1/4, and c2 = 102c1d(G)−6.

Lemma 2.9. whp the algorithm to choose M c does not abort, and S := G∗ ∩
(
⋃
M c) is c2-bounded.

Proof. For i ∈ [t] we let Bi be the bad event that Si := G∗ ∩ (∪j<iTj) is not
c2-bounded. We define a stopping time τ be the smallest i for which Bi holds or
the algorithm aborts, or ∞ if there is no such i. It suffices to show whp τ =∞.

We fix t0 ∈ [t] and bound P(τ = t0) as follows. For any i < t0, since Bi does not
hold, Si is c2-bounded. Writing ei = viv

′
i, we can bound the number of excluded

choices for Ti by c2n < |G∗(vi)∩G∗(v′i)|/2, so at most one half of the triangles on
ei are excluded.
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Next we fix e = vv′ ∈ G∗, and estimate re :=
∑
i≤t0 P

′(e ⊆ Ti), where P′
denotes the conditional probability given the choices made before step i. We
compare re to the expected number of times that e would be covered if we chose
all triangles independently. To be precise, we let

Ee :=
∑
i≤t0

P(e ⊆ T ′i ),

where each T ′i is a uniform random triangle consisting of ei and two edges of G∗,
and (T ′i : i ∈ [t]) are independent. By the bound on excluded choices, P′(e ⊆ Ti) <
2P(e ⊆ T ′i ), so re < 2Ee.

The ith summand in Ee is only nonzero when ei ∩ e 6= ∅. As L is c1-bounded,
the number of such i is at most |L(v)|+ |L(v′)| < 2c1n. Also, for each i such that
ei ∪ e spans a triangle, we have

P(e ⊆ T ′i ) = |G∗(vi) ∩G∗(v′i)|−1 < 2d(G∗)−2n−1.

Therefore Ee < 4c1d(G∗)−2 < c2/4.
Finally, fix v ∈ V (G) and consider X = |St0(v)| =

∑
i≤t0 Xi, where Xi =∑

v∈e∈G∗ 1e⊆Ti
. We have |Xi| ≤ 2 and∑

i≤t0

E′(Xi) =
∑
i≤t0

∑
v∈e∈G∗

P′(e ⊆ Ti) =
∑

v∈e∈G∗
re < c2n/2.

By Lemma 2.8 we have P(X ≥ c2n) < 2e−c2n/24. Taking a union bound over
i ≤ t0 ≤ t, whp |S(v)| < c2n, i.e. S is c2-bounded and τ =∞. 2

2.6. Random greedy algorithms. Below we will require several more random
greedy algorithms similar to that used in Cover, so for future reference we now
make some further comments on the proof of Lemma 2.9. One could formulate an
abstract general lemma to cover all cases (see [6, Lemma 4.11]), but here we will
prefer the more intuitive approach of identifying the key principles of the proof,
so that it will be clear how it may be adapted to future instances. For a gen-
eral random greedy algorithm, we identify some desired boundedness conclusion,
then at each step of the algorithm, assuming that boundedness has not failed, we
show that at most one half (say) of the choices of the required configuration have
been excluded. Then for each edge e in the underlying graph H we estimate the
expected number Ee of times that e would be covered if we chose all configura-
tions independently. If Ee < b/4 and the configurations have constant size (not
depending on n) then the graph of all covered edges is whp b-bounded.

We also note for future reference some estimates that are useful for such argu-
ments. Suppose H is a small fixed graph (|H| ≤ 500 say), F ⊆ V (H) and φ is
an embedding of H[F ] in G∗. We call E = (φ, F,H) an extension. Let XE(G∗)
be the number of embeddings φ∗ of H in G∗ that restrict to φ on F . We suppose
that E is 16-degenerate, meaning that we can construct the embedding one vertex
at a time, so that at each step we add a vertex adjacent to at most 16 existing
vertices. As (G,G∗) is (6c, 16)-typical, when we add a vertex adjacent to t ≤ 16
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existing vertices, there are (1± 6tc)d(G∗)tn choices. Multiplying these estimates,
we obtain the following estimate for XE(G∗).

Lemma 2.10. Suppose E = (φ, F,H) is a 16-degenerate extension with |H| ≤ 500.
Then

XE(G∗) = (1± 7|H|c)d(G∗)|H\H[F ]|n|V (H)|−|F |.

Now suppose that we wish to exclude embeddings φ∗ that use some edge in
J , which is c-bounded. Fix e ∈ H \ H[F ] and consider the embeddings φ∗ with
φ∗(e) ∈ J . If e ∩ F 6= ∅ there are at most cn choices for the embedding of e then
at most n|V (H)|−|F |−1 choices for the remainder of φ∗. If e ∩ F = ∅ there are at
most cn2 choices for the embedding of e then at most n|V (H)|−|F |−2 choices for the
remainder of φ∗. Thus at most |H|cn|V (H)|−|F | choices of φ∗ are excluded, which
is a negligible fraction of XE(G∗).

3. Hole

In this section we establish Hole. Our first step is to consider an integral relax-
ation, in the following sense. Instead of thinking of (S,

⋃
M i) as a partition of⋃

Mo, we think of S as a weighted sum of edge sets of triangles, where triangles
in Mo have weight 1 and triangles in M i have weight −1. We can express this by
the equation ΦA = S, where Φ is the corresponding ±1-vector indexed by trian-
gles, and A is the inclusion matrix of triangles against edges, i.e. Afe = 1e⊆f for
any edge e and triangle f . It is straightforward to show that this equation has a
solution if we allow Φ to have any integer weights on triangles (see [5, 21, 22] for
more general results). However, we also need to control the maximum degree of
the multigraph formed by these triangles, so that we can continue to apply random
greedy algorithms as discussed in the previous section; in particular, we will apply
such an algorithm later in this section to convert the integral decomposition into
the signed decomposition required by Hole.

First we set up some more notation. It will be more convenient to work with
linear maps rather than matrices. For any graph H we define Z-linear bound-
ary/shadow maps ∂j : ZKi(H) → ZKj(H) for i ≥ j ≥ 0 by ∂j(e) =

∑(
e
j

)
for

e ∈ Ki(H), i.e. for J ∈ ZKi(H) and f ∈ Kj(H) we define ∂j(J)f =
∑
f⊆e∈Ki(H) Je.

For example, if J ∈ ZH then ∂1(J) ∈ ZV (H) (identifying H with K2(H) and V (H)
with K1(H)) is defined by ∂1(J)v =

∑
v∈e∈H Je.

It will also be convenient to identify vectors with (generalised) sets. It is stan-
dard to identify v ∈ {0, 1}X with the set {x ∈ X : vx = 1}. Similarly, we can
identify v ∈ NX with the multiset in X in which x has multiplicity vx (for our pur-
poses 0 ∈ N). We also apply similar notation and terminology as for multisets to
vectors v ∈ ZX (‘intsets’). Here our convention is that ‘for each x ∈ v’ means that
x is considered |vx| times in any statement or algorithm, and has a sign attached to
it (the same as that of vx); we also refer to x as a ‘signed element’ of v. For v ∈ ZX
we write v = v+ − v−, where v+

x = max{vx, 0} and v−x = max{−vx, 0} for x ∈ X.
Given J ∈ NG and v ∈ V (G), we define J(v) ∈ NV (G) by J(v)u = 1uv∈GJuv. Then
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we can extend the definition of boundedness to multigraphs: J is c-bounded if
|J(v)| < cn for every v ∈ V (G).

3.1. Integral decomposition. Our integral relaxation of Hole is expressed by
the following lemma (in which Kn denotes the complete graph on V (G), and we
recall that S is c2-bounded); for Hole we will need the additional properties that
Φ(f) = 0 for any f ∈ K3(Kn) \K3(G∗), and Φ(f) ∈ {0, 1,−1} for all f ∈ K3(G∗),
as then we can write Φ = Mo −M i.

Lemma 3.1. There is Φ ∈ ZK3(Kn) with ∂2Φ = S such that ∂2Φ+ is 100c2-
bounded.

Proof. We will construct Φ = Φ0 + Φ1 + Φ2 such that J0 = S − ∂2Φ0, J1 =
J0 − ∂2Φ1, J2 = J1 − ∂2Φ2 satisfy ∂iJ

i = 0 for i = 0, 1, 2. In words, we reduce
to zero the sum of all values, then the sum of all values at any given vertex, and
finally the sum of all values (i.e. the value) at any given edge. Recalling that S
is tridivisible, each J i will be tridivisible, in the ‘intgraph’ sense: i.e.

∑
e J

i
e is

divisible by 3 and
∑
u J

i
uv is divisible by 2 for all v.

Step 0: For Φ0, we choose |S|/3 independent uniformly random triangles in
Kn; then J0 = S − ∂2Φ0 satisfies ∂0J

0 = 0. (Note that ∂0J
0 =

∑
e J

0
e .) For

each vertex v, the number of these triangles containing v is binomial with mean
|S|/n < c2n/2, so by the Chernoff bound whp ∂2Φ0 is 1.1c2-bounded.

Step 1: We let J∗ = ∂1J
0, so ∂0J

∗ = 2∂0J
0 = 0, i.e. |J∗+| = |J∗−|. Note

for all x ∈ V (G) that J∗x is even, as J0 is tridivisible, and |J∗x | < 1.1c2n. We
fix an arbitrary sequence ((x+

i , x
−
i ) : i ∈ [|J∗+|/2]) so that each x ∈ V (G)

occurs J∗+x /2 times as some x+
i and J∗−x /2 times as some x−i . For each i we

choose aibi ⊆ V (G) \ {x+
i , x

−
i } independently uniformly at random, and let Φ1 =∑

i∈[|J∗+|/2]({x
+
i aibi} − {x

−
i aibi}); then J1 = J0 − ∂2Φ1 satisfies ∂1J

1 = 0.

We claim that whp ∂2Φ±1 are 8c2-bounded. To see this, we first fix any e ∈ Kn

and estimate the expected contributions to e from each step i, according to whether
e contains x+

i , x−i , or neither. Each endpoint of e occurs at most 0.6c2n times as x±i ,
and for such i we cover e with probability 2/(n− 2), so the expected contribution
to (∂2Φ±1 )e from all such i is at most 2.5c2. At any other step, we cover e with

probability
(
n−2

2

)−1
, so the total expected contribution to (∂2Φ±1 )e from these

steps is at most 1.1c2. Now, for each vertex v, summing over its incident edges,
|∂2Φ±1 (v)| are both (4c2n, 1)-dominated, so the claim holds by Lemma 2.8.

Step 2: We start by fixing an arbitrary expression J1 =
∑
C∈C0 C, where each

C is a closed walk in G∗ with edge weights alternating between 1 and −1, and
there are no cancellations, i.e. every edge appears in the sum only with weight 1
or only with weight −1. As is well-known, such an expression may be found by
a greedy algorithm: each C can be obtained by following an arbitrary alternating
walk on the signed elements of J1 until we return to our starting point using an
edge with the opposite sign to that of the first edge, whereupon we add −C to J1

and repeat the procedure.
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Next we express each C ∈ C0 as a sum of signed four-cycles in the complete
graph Kn on V (G), where we write each closed walk of length 2m as a chain of
m− 1 signed four-cycles, using the identity

m−1∑
i=1

(−1)i({xixi+1} − {xi+1yi+1}+ {yi+1yi} − {yixi})

= {x1y1}+ (−1)m{xmym}+

m−1∑
i=1

(−1)i{xixi+1}+

m−1∑
i=1

(−1)i{yiyi+1}.

This identity can be used as is if xi 6= yi for i ∈ [m]. For each i such that xi = yi,
we note that 1 < i < m, xi−1 6= yi−1, xi+1 6= yi+1, and xi+1 6= yi−1, so we can
replace the four-cycles for summands i− 1 and i by

(−1)i−1({xi−1xi} − {xixi+1}+ {xi+1yi−1} − {yi−1xi−1}, and

(−1)i({xi+1yi−1} − {yi−1yi}+ {yiyi+1} − {yi+1xi+1}).

Thus we can write J1 =
∑
C∈C C, where each summand is a signed four-cycle in

Kn. Furthermore, the above construction has the property that for each v ∈ V (G)
and w ∈ {−1, 1} we use at most 3|J1+(v)| < 24c2n edges at v with weight w.

For each C = {ab} − {bc} + {cd} − {da} ∈ C we choose x ∈ V (G) \ {a, b, c, d}
independently uniformly at random, and add {xab} − {xbc} + {xcd} − {xda} to
Φ2; then ∂2Φ2 =

∑
C∈C C = J1. Let Γ denote the multigraph formed by summing

{xa, xb, xc, xd} over all such C. For any e ∈ Kn, at most 48c2n elements of C can
contribute to Γe, so EΓe < 49c2n. Then for any v, summing over its incident edges,
|Γ(v)| is (49c2n, 4)-dominated, so by Lemma 2.8 (modified) whp Γ is 50c2-bounded.
Defining Φ = Φ0 + Φ1 + Φ2, we have ∂2Φ = S and ∂2Φ+ is 100c2-bounded. 2

We note that the argument given in Step 2 does not generalise to hypergraph
decompositions, where the corresponding arguments in [6] are considerably more
difficult. As noted by a referee, we could have proved Lemma 3.1 more directly
by repeatedly using triangles to shortcut walks in S, but we prefer the proof given
here, as it at least shares some features of the arguments in [6].

3.2. Signed decomposition. To obtain the signed decomposition required by
Hole, we will modify the integral decomposition Φ obtained in the previous subsec-
tion using the following ‘octahedral’ configurations. Consider a copy of K2,2,2, the
complete tripartite graph with 2 points in each part, with parts {(j, 0), (j, 1)} for
j ∈ [3]. We denote its triangles by {fx : x ∈ {0, 1}3}, where fx = {(j, xj) : j ∈ [3]}.
The sign of fx is s(fx) = (−1)

∑
x. Thus each edge is in one triangle of each sign.

Defining Ω =
∑
x{0,1}3 s(fx){fx} ∈ ZK3(K2,2,2), we see that ∂2Ω = 0. This gives a

method to eliminate any signed triangle f from Φ without altering ∂2Φ: we add
some copy of Ω with the opposite sign to f in which (say) f000 = f , thus replacing f
by seven other signed triangles that have the same total 2-shadow. Similarly (and
more importantly), we can eliminate any pair of triangles f, f ′ that have opposite
sign and share an edge e, replacing f, f ′ by six other signed triangles that have
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the same total 2-shadow and do not use e. We apply this method in the following
two-phase algorithm.

Octahedral Elimination Algorithm (Phase I). We eliminate all triangles in Φ,
according to a random greedy algorithm, where in each step we consider some
original signed element f of Φ, and choose an octahedral configuration Ωf to
replace f . We refer to edges of Ωf not in f as new edges, and choose Ωf uniformly
at random subject to the new edges belonging to G∗ and being disjoint from ∂2Φ+

and all new edges from previous steps.

Let Φ′ denote the result of Phase I (if it does not abort). Then ∂2Φ′ = ∂2Φ = S,
and we can write ∂2Φ′+ = ∂2Φ+ + Γ, where Γ is the graph of new edges, and every
signed element of Φ′ contains at most one edge of ∂2Φ+.

Octahedral Elimination Algorithm (Phase II). We replace all signed edges apart
from those in S and Γ. To do this, we fix a sequence S of pairs of signed elements
of Φ′, so that (i) for each ff ′ ∈ S, there is some e ∈ ∂2Φ+ such that f and f ′ both
contain e, and f and f ′ have opposite signs, and (ii) the multiset consisting of all
e as in (i) is ∂2Φ−. Now we eliminate each ff ′ ∈ S, according to a random greedy
algorithm, by subtracting some copy Ωff ′ of Ω with f000 = f and f001 = f ′, or
vice versa, depending on the signs. We refer to edges of Ωff ′ not in f or f ′ as new
edges, and choose Ωff ′ uniformly at random subject to the new edges belonging
to G∗ and being distinct from ∂2Φ+ ∪ Γ and all new edges from previous steps.

Let Ψ denote the result of this algorithm (if it does not abort) and Γ′ the graph
of new edges for Phase II. Then ∂2Ψ = S and ∂2Ψ− = Γ ∪ Γ′ ⊆ G∗. This implies
Ψ(f) = 0 for any f ∈ K3(Kn) \K3(G∗), and Ψ(f) ∈ {0, 1,−1} for all f ∈ K3(G∗),
so Ψ = Mo −M i, where Mo and M i are as in Hole, once we have verified the
boundedness condition.

Lemma 3.2. whp the Octahedral Elimination Algorithm produces Mo and M i as
in Hole.

Sketch proof. We will indicate how to analyse the algorithm in a similar way to
the proof of Lemma 2.9, following the discussion after the proof of that Lemma
2.9. Recall that at each step of the algorithm, assuming that boundedness has not
failed, we want to show that the number of excluded configurations is less than
half of the total; then it suffices to estimate the expected number Ee of times that
any given edge e would be covered if we chose all configurations independently.

We first show that whp Γ is c′2-bounded, where c′2 = 105c2d(G∗)−9. Here
a configuration for f consists of the new edges of some Ωf . By Lemma 2.10,
at each step, the number of choices of Ωf with all new edges belonging to G∗

(with no excluded configurations) is (1± 60c)d(G∗)9n3. Assuming that the graph
of previous new edges is c′2-bounded, as ∂2Φ+ is 100c2-bounded, the number of
excluded configurations is at most 10c′2n

3, which is less than half of the total.
Next, for each e ∈ G∗, we consider separately the contributions to Ee, according
to whether e intersects f in 0 or 1 vertex (there is no contribution to new edges
from triangles containing e). There are at most 600c2n signed elements of Φ that
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intersect e in 1 vertex. For each of these, a random configuration covers e with
probability at most 3n2/(1 − 60c)d(G∗)9n3, so the total contribution to Ee from
such elements is at most 2000c2d(G∗)−9. Also, Φ has at most 100c2n

2 signed
elements, and for each one that is disjoint from e the contribution to Ee is at most
6n/(1 − 60c)d(G∗)9n3, so the total contribution from such elements is at most
1000c2d(G∗)−9. We obtain Ee < 3000c2d(G∗)−9, which implies the claimed bound
on Γ.

Next we claim that whp Γ′ is c′′2 -bounded, where c′′2 = 20c′2d(G∗)−7. The
argument is very similar to that given for Γ. Now a configuration for ff ′ consists
of the new edges of some Ωff ′ . By Lemma 2.10, at each step, the number of choices
of Ωff ′ with all new edges belonging to G∗ (with no excluded configurations) is
(1± 50c)d(G∗)7n2. Assuming that the graph of previous new edges is c′′2 -bounded,
as ∂2Φ+ ∪ Γ is 2c′2-bounded, the number of excluded configurations is at most
10c′′2n

2, which is less than half of the total. Next, for each e ∈ G∗, we consider
separately the contributions to Ee according to whether e intersects f ∪ f ′ in 0 or
1 vertex (there is no contribution to new edges if e ⊆ f ∪ f ′).

First we consider those ff ′ ∈ S that intersect e in 1 vertex x. There are
two choices for x ∈ e. If x ∈ f ∩ f ′ then there are at most 200c2n choices for
f ∩f ′ ∈ ∂2Φ+∪∂2Φ−, which determines f and f ′. If {x} = f \f ′ then there are at
most |Γ(x)| < c′2n choices for f , and so f ′. The same bound applies if {x} = f ′ \f ,
so there are at most 5c′2n such ff ′. Each contributes at most 2n/(1−50c)d(G∗)7n2

to Ee, so the total contribution from such ff ′ is at most 11c′2d(G∗)−7. Also,
|S| = |∂2Φ−| < 100c2n

2, and for each ff ′ ∈ S with e∩(f∪f ′) = ∅ the contribution
to Ee is at most 2/(1−50c)d(G∗)7n2, so the total contribution from such elements
is at most 300c2d(G∗)−7. We obtain Ee < 12c′2d(G∗)−7, which implies the claimed
bound on Γ′. Recalling that d(G∗) > 0.24d(G)3 and c3 = 1020c2d(G)−50 we see
that

⋃
Mo = ∂2Ψ+ = S ∪Γ∪Γ′ is c3-bounded, so we have the required properties

for Hole. 2

4. Completion

For the Completion step, we divide the analysis into two parts. Firstly, we will
determine what conditions on M1 and M2 enable us to find M3 and M4. Secondly,
we will show that the sets M c, Mo and M i from Cover and Hole can be modified
to give M1 and M2 satisfying the required conditions. For convenient notation we
suppress the embedding π : V (G) → F2a whenever we do not need to refer to it,
instead thinking of V (G) as a subset of F2a .

4.1. Shuffles. Suppose we have a set M2 of edge-disjoint triangles in G∗, and we
want to find sets M3 and M4 of edge-disjoint triangles in G∗ such that

⋃
M3 =⋃

M4, M3 ⊆ T and M2 ⊆ M4. Our basic building blocks (‘shuffles’) will be edge-
disjoint subgraphs of G∗, each having two different triangle decompositions, one
only using triangles in T , and the other including any specified triangle of M2.
Then the unions over all blocks of the two triangle decompositions will give M3

and M4 as required.
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We define the shuffles as follows. Fix x = (x1, x2, x3) ∈ F3
2a and t = (t1, t2) ∈

F2
2a such that {x1, x2, x3, t1, t2} is linearly independent over F2. Let 〈x〉 be the

subspace of F2a generated by {x1, x2, x3}. The xt-shuffle Sxt is the complete
tripartite graph with parts ti + 〈x〉 = {ti + y : y ∈ 〈x〉}, i ∈ [3], where t3 := t1 + t2.
If Sxt ⊆ G∗ then it has a triangle decomposition M3xt only using triangles in T :
take all triangles y1y2y3 where each yi ∈ ti + 〈x〉 and y1 + y2 + y3 = 0. We define
another triangle decomposition M4xt of Sxt by translating each triangle of M3xt

by (x1, x2, x3), i.e. M4xt consists of all triangles y1y2y3 where each yi ∈ ti + 〈x〉
and x1 + x2 + x3 + y1 + y2 + y3 = 0.

To construct M3 and M4, we choose shuffles according to a random greedy
algorithm, where in each step we consider some z1z2z3 ∈ M2, and choose some
shuffle Sxt ⊆ G∗ such that zi = ti + xi for all i ∈ [3]. We will see in Lemma
4.1 that the Randomised Algebraic Construction is whp such that there are many
choices for such a shuffle. This is the most important property of the construction,
and it would not hold if we had chosen the template to be a uniformly random set
of edge-disjoint triangles; in fact the expected number of shuffles (or any ‘shuffle-
like’ configuration) would be o(1). First we identify a property that we need for
triangles in M2 so that the required shuffles exist and can be chosen to be edge-
disjoint. We say that z1z2z3 is octahedral if z1 + z2 + z3 6= 0 and there is a copy K ′

of K2,2,2 in G such that π(K ′) has parts {z1, z2 +z3}, {z2, z1 +z3} and {z3, z1 +z2};
we call K ′ the associated octahedron of z1z2z3. We assume

(P1) all triangles in M2 are octahedral, with edge-disjoint associated octahedra.

The associated octahedron has all the properties that we require for the con-
struction of M3 and M4, so we could implement our algorithm without using shuf-
fles. (This remark was communicated to the author by Yang, and independently
by Glebov and Luria.) We have opted to keep the shuffle argument in this paper,
as it indicates how to treat general (hyper)graphs (we only see how to dispense
with it for triangles).

Lemma 4.1. Under the random choice of π used in the definition of T , whp for
any octahedral z1z2z3 there are (1 ± 200c)d(G)180γ1822a shuffles Sxt ⊆ G∗ such
that ti + xi = zi for i ∈ [3].

Proof. We can write the number of such shuffles as a sum of indicator variables
X =

∑
1E(K,`,x,t), where the sum ranges over all (K, `, x, t) such that K is a

copy of K8,8,8 in G containing the associated octahedron K ′ of z1z2z3, ` is a
bijective labelling of each part of K by F3

2, we let E(K, `, x, t) be the event that
π(w) = ti + `(w) · x for all i ∈ [3] and w in the ith part of K, and we assume `
is consistent with K ′, in that `(π−1(zi)) = ei and `(π−1(zi + zj)) = ei + ej for
{i, j} ⊆ [3].

As G is (c, 16)-typical, there are (1± 181c)d(G)180n18 choices of (K, `). There
are 22a −O(n) choices of t, which determines x given z, as only O(n) choices of t
are excluded by the condition that {x1, x2, x3, t1, t2} is linearly independent over
F2: there are O(1) possible linear relations between them, and each such relation
is linearly independent or contradictory to the system ti + xi = zi for i ∈ [3] (as
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z1 + z2 + z3 6= 0), so is satisfied by at most 2a choices of t. Given (K, `, x, t),
conditional on π|K′ , we have P(E(K, `, x, t)) = (1 + O(1/n))2−18a. Therefore
EX = (1± 182c)d(G)180γ1822a.

Also, any transposition τ of π affects X by at most 100 · 2a. To see this,
we estimate the number of shuffles containing z1z2z3 and any fixed v ∈ F2a \
{z1, z2, z3, z1 +z2, z1 +z3, z2 +z3}. Consider any j ∈ [3], b ∈ F3

2 \{ej , (1, 1, 1)−ej},
and the equations ti + b · x = v and ti + xi = zi for i ∈ [3] in (t, x). We have
four linearly independent constraints, so there are at most 2a solutions. Including
multiplicative factors for i, b and τ gives the required bound. Now by Lemma 2.6
whp X = (1± 200c)d(G)180γ1822a. 2

4.2. Linear extensions. We digress to note a more general estimate for future
reference. Suppose H is a graph, y = (yi : i ∈ [g]) are variables, and for all
v ∈ V (H) we have distinct linear forms Lv(y) = cv +

∑
i∈Sv

yi for some cv ∈ F2a

and Sv ⊆ [g]. We call E = (L,H) a linear extension with base F = {v ∈ V (H) :
Sv = ∅}. Let XE(G∗) be the number of L-embeddings of H, i.e. embeddings φ of
H in G∗ such that for some y ∈ Fg2a we have φ(v) = Lv(y) for all v ∈ V (H). The
above argument (see also [6, Lemma 5.15]) gives the following formula analogous
to that obtained for shuffles.

Lemma 4.2. Let E = (L,H) be a 16-degenerate linear extension with |H| ≤ 500.
Suppose

• H has a triangle decomposition M such that for each xyz ∈ M we have
Lx + Ly = Lz,

• The incidence matrix of {Sv : v ∈ V (H)} has full column rank g ≥ 1.

Then
XE(G∗) = (1± 1.1|H|c)d(G)|H\H[F ]|γ|V (H)\F |2ga.

4.3. Shuffle algorithm. Recalling our general framework for random greedy
algorithms, we want to show that, of the potential shuffles Sxt with ti+xi = zi for
i ∈ [3], at most half are excluded due to sharing an edge with a previous shuffle,
assuming some boundedness condition on the graph Γ of new edges from previous
shuffles. We classify the potential restrictions according to the label of the shuffle
edge involved, which is specified by some {j, k} ⊆ [3] and bj , bk ∈ F3

2 such that
bj /∈ {(ej , (1, 1, 1)− ej) or bk /∈ {(ek, (1, 1, 1)− ek) (here we do not consider edges
of the associated octahedra: these are already determined, and edge-disjoint by
(P1).) For any vjvk ∈ G∗, the shuffles excluded because of mapping the given
labelled shuffle edge to vjvk are given by the (x, t)-solutions of the system S of
equations tj + bj ·x = vj , tk + bk ·x = vk and ti +xi = zi for i ∈ [3]. There may be
0, 1 or 2a solutions. We can ignore the case of 0 solutions, as it does not exclude
anything. For the cases with 1 solution, we can bound the number of excluded
choices by the number of edges covered by all shuffles, which is 192|M2|.

It remains to consider the case that S has 2a solutions, which occurs when
one of the equations is redundant, due to being a linear combination of the other
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equations. There are a constant number of linear combinations, and each constrains
(vj , vk) to lie on a line, as may be seen from general considerations of linear algebra,
or simply by enumerating the possibilities: wlog tk + bk · x = vk is redundant, due
to

(i) bk = ek and vk = zk,

(ii) bk = (1, 1, 1)− ek and vk = z1 + z2 + z3 − zk,

(iii) bj + bk = ej + ek and vj + vk = zj + zk,

(iv) bj + bk = ei and vj + vk = zi, where [3] = {i, j, k}.

In cases (i) and (ii) where vk is fixed, assuming that Γ is c5-bounded, there are
at most c5n choices for vj such that vjvk ∈ Γ. In cases (iii) and (iv) we need an
additional boundedness condition:

We say that Γ is linearly c5-bounded if Γ is c5-bounded and also contains at
most c52a edges from any line of the form {(x1 + µ, x2 + µ) : µ ∈ F2a}.

We also need similar conditions so that we can avoid the associated octahedra;
writing ∆ for the union of all associated octahedra of triangles in M2, we will
ensure that

(P2) ∆ is linearly c4-bounded.

Then the total number of excluded shuffles is at most 192(|M2|+ (c4 + c5)22a) <
200c522a, which is less than half of the total.

Next we fix e ∈ G∗ and estimate Ee. To do so, we fix bj , bk as above, write
e = vjvk and estimate the sum over z1z2z3 ∈ M2 of the probability p that a
random shuffle Sxt with ti + xi = zi for i ∈ [3] satisfies tj + bj · x = vj and
tk + bk · x = vk. For fixed z1z2z3, if the system S as above has N solutions then
p = N/(1 ± 200c)d(G)180γ1822a. When N = 1 the total contribution is at most
|M2|/(1 − 200c)d(G)180γ1822a < 1.1c4d(G)−180γ−18. If N = 2a then (z1, z2, z3)
is constrained to lie in a certain plane (this can be seen by linear algebra, or by
considering each possibiity as above: e.g. in case (iii) the plane is vj+vk = zj+zk).
Thus we see the final property that we need from M2:

(P3) M2 contains at most c42a elements z1z2z3 from any basic plane of the form
b · z = v where b ∈ F3

2 \ {0}.

(Note that by (P1) we can assume v 6= 0 in (P3).) Then the total contribution
is at most c42a · 2a/(1 − 200c)d(G)180γ1822a. Summing over {j, k}, bj and bk, we
can estimate Ee < 250c4d(G)−180γ−18 = c5/4. Applying Lemma 2.8 as in the
proof of Lemma 2.9, we deduce that whp the boundedness assumptions on Γ used
above do not fail (linear boundedness follows in the same way as boundedness),
and so the algorithm does not abort. This completes the analysis of the first part of
Completion: given M1 and M2 as in Completion, under the conditions (P1–P3)
on M2, we can find M3 and M4 as in Completion.
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4.4. Octahedral Elimination Algorithm. To complete the proof of Com-
pletion, and so of the theorems, it remains to show that we can find M1 and M2

satisfying the conditions (P1–P3). We apply a similar two-phase algorithm to that
used in Hole.

Phase I. We start with Φ = M c+M i−Mo, so ∂2Φ = L, ∂2Φ+ =
⋃

(M c∪M i),
∂2Φ− =

⋃
Mo. Next we eliminate all triangles in Φ according to a random greedy

algorithm, where in each step we consider some original signed element f of Φ,
and choose an octahedral configuration Ωf to replace f . We say that a triangle
f ′ of Ωf is far if |f ′ ∩ f | ≤ 1, and that Ωf is valid if (i) none of its triangles are
template triangles, with the possible exception of f , and (ii) all of its far triangles
are octahedral, and their associated octahedra share edges only in Ωf , in which
case we denote their union by the extended configuration Ω+

f . We say that an edge

of Ω+
f not in f is new, and choose a valid Ωf uniformly at random subject to the

new edges being distinct from all new edges from previous steps.

Let Φ′ denote the result of Phase I (if it does not abort). We have ∂2Φ′ =
∂2Φ = L, and writing Γ for the graph of new edges, every signed element of Φ′ is
either a far triangle consisting of three edges of Γ, or is not far and consists of two
edges of Γ and one edge of ∂2Φ+.

Phase II. Now we will eliminate all triangles of Φ′ apart from those that contain
an edge of L or were far in the previous modification procedure. We partition all
such triangles into a sequence S of pairs of signed elements of Φ′, so that for each
ff ′ ∈ S, there is some e ∈ ∂2Φ+ such that f and f ′ both contain e, and f and
f ′ have opposite signs. We eliminate each ff ′ ∈ S, according to a random greedy
algorithm, by subtracting some copy Ωff ′ of Ω with f000 = f and f001 = f ′, or vice
versa, depending on the signs. Now we say that Ωff ′ is valid if all of its triangles
apart from f and f ′ are octahedral, and their associated octahedra share edges
only in Ωff ′ , in which case we denote their union by the extended configuration
Ω+
ff ′ . We refer to edges of Ω+

ff ′ not in f or f ′ as new edges, and choose a valid
Ωff ′ uniformly at random subject to the new edges being distinct from Γ and all
new edges from previous steps.

Let Ψ denote the result of this algorithm (if it does not abort) and Γ′ the graph
of new edges for Phase II. Since ∂2Ψ = ∂2Φ = L, defining M1 = Ψ+ and M2 = Ψ−,
we see that

⋃
M2 = Γ ∪ Γ′ and

⋃
M1 = L ∪ Γ ∪ Γ′, so (L,

⋃
M2) is a partition of⋃

M1. The following lemma completes the proof of Completion, and so of the
theorems, under the assumption that G is (c, 16)-typical.

Lemma 4.3. whp M2 satisfies (P1), (P2) and (P3).

Sketch Proof. To analyse Phase I, we first estimate the number of choices for
an extended configuration on a triangle f . This can be described by the linear
extension (Ω+

f , L), where Ω+
f is as above, we have variables z = (z1, z2, z3), which

we also use to label the vertices of Ωf \f , we define Lx = x for all x ∈ Ωf , and define
Lx for all other x as required for the far triangles in Ωf to be octahedral, i.e. in the
associated octahedron for a triangle abc, the linear forms on the two vertices in each
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of the three parts are {La, Lb +Lc}, {Lb, Lc +La} and {Lc, La +Lb}. By Lemma
4.2 whp G∗ is such that for any triangle f in Φ, there are (1 ± 60c)d(G)45γ1523a

valid choices of Ωf . Here we also use the fact that for any triangle abc of Ωf
other than f there are only 22a solutions to La(z)+Lb(z)+Lc(z) = 0. The precise
exponents of d(G) and γ (which are not important for the argument) may be easily
calculated from the observation that adding an octahedron to a triangle adds 3
new vertices and 9 new edges, and Ω+

f is the composition of 5 such extensions.

Next we claim that whp the graph Γ of new edges is linearly c′3-bounded, where
c′3 = 400c3d(G)−45γ−15. We assume this bound on the current graph of new edges
and estimate how many configurations are excluded. Consider any edge uu′ of
the extended configuration. Suppose first that uu′ ∩ f = ∅. If Lu(y) + Lu′(y) is
not constant, then for any vv′ ∈ G∗ the number of L-embeddings with Lu(y) = v
and Lu′(y) = v′ is at most 2a. There are at most 45(|M c| + |M i| + |Mo|) <
100c3n

2 choices for a previous new edge vv′, so this excludes at most 100c3n
22a

configurations. On the other hand, if Lu(y) + Lu′(y) is constant, then Lu(y) and
Lu′(y) are constrained to lie on a basic line; there are at most c′32a choices for
vv′ by linear boundedness, and each such vv′ excludes at most 22a configurations.
The latter estimate also applies to the case when one of u or u′ is in f . Summing
these bounds over all uu′, we see that fewer than half of the total configurations
are excluded.

Next we fix any edge uu′ of the extended configuration, any vv′ ∈ G∗, and
estimate the sum over f ∈ Φ of the probability p that a random configuration
satisfies Lu(y) = v and Lu′(y) = v′. If uu′ ∩ f = ∅ and Lu(y) + Lu′(y) is not
constant, then p < 2a/(1 − 60c)d(G)45γ1523a for any f ∈ Φ. There are at most
c3n

2 choices for f , so the total contribution is at most 2c3d(G)−45γ−15. Otherwise,
if Lu(y)+Lu′(y) is constant or one of u or u′ is in f , then one vertex of f is specified
by (Lu(y), Lu′(y)). For example, writing f = abc, in the associated octahedron for
az2z3, if u = z2 and u′ = a+ z2 then a is specified by (Lu(y), Lu′(y)). Then there
are at most 2c3n choices for f (as

⋃
Mo is c3-bounded). For each such f we have a

contribution of at most 22a/(1− 60c)d(G)45γ1523a, so again the total contribution
is at most 2c3d(G)−45γ−15. Summing these bounds over all uu′ we can estimate
Evv′ < 100c3d(G)−45γ−15 = c′3/4. Applying Lemma 2.8 as in the proof of Lemma
2.9, we deduce the claimed bound on Γ.

We also claim that whp there are at most 2c′32a far triangles in any basic plane
Π = {z : b·z = v}. To see this, we first consider the contribution from the template
triangles Π∗ = Π∩T . Since z1+z2+z3 = 0 is linearly independent or contradictory
to the defining equation of Π we have |Π∗| ≤ 2a. Summing Evv′ < c′3/4 over an edge
vv′ in each triangle of Π∗, by Lemma 2.8 whp Π contains at most c′32a template
triangles. Now fix any far non-template triangle f ′ of the extended configuration,
any g ∈ K3(G∗), and estimate the sum over f ∈ Φ of the probability p that a
random configuration satisfies Lf ′(y) = g. If f ′ ∩ f = ∅ then as f ′ is non-template
it determines the configuration, so p < 1/(1 − 60c)d(G)45γ1523a, giving a total
contribution of at most 2c3d(G)−45γ−15n−1. Otherwise, f ′ determines one of the
associated octahedra, so specifies one vertex of f , for example, writing f = abc,
if f ′ = {z2, a + z2, a + z3} then a is specified. Then there are at most 2c3n
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choices for f ; for each such f we have p < 2a/(1− 60c)d(G)45γ1523a, so again the
total contribution is at most 2c3d(G)−45γ−15n−1. Summing over f ′ and applying
Lemma 2.8 as in the proof of Lemma 2.9, we deduce the claimed bound on Π. This
completes the analysis of Phase I.

We omit the similar analysis of Phase II (see [7] for more details). Finally, M2

satisfies the conditions (P1–P3): indeed, (P1) holds by definition of the extended
configurations and random greedy algorithms, (P2) holds as ∆ ⊆ Γ∪Γ′, and (P3)
holds as whp Ψ has at most c4n triangles in any basic plane: this holds for the new
triangles in this algorithm by the same argument as for Φ′, and we may include
the far triangles from the previous algorithm in this estimate. 2

5. Concluding remarks

Although we have proved Wilson’s conjecture, one may still ask for more precise
estimates (even an asymptotic formula) for the number of Steiner Triple Systems,
and more generally designs. Such results have been obtained by Kuperberg, Lovett
and Peled [9], using very different methods to ours, but only for designs within a
certain range of parameters. One open case of particular interest (drawn to my at-
tention by Ron Peled) is the problem of estimating the number G(n, d) of d-regular
graphs on n vertices. These may be viewed as designs with parameters (n, 2, 1, d),
for which our methods give G(n, d) = d!−n(dn/e+ o(dn))dn/2. Much more precise
results have been obtained by McKay and Wormald, including asymptotic enu-
meration for d = ω(n/ log n) (see [11]) and d = o(

√
n) (see [12]); their conjecture

in [11] regarding a general asymptotic formula remains open.
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