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Abstract
A subset A of a group G is called product-free if there is no solution to a = bc with
a, b, c all in A. It is easy to see that the largest product-free subset of the symmetric
group Sn is obtained by taking the set of all odd permutations, i.e. Sn\An, where An

is the alternating group. In 1985 Babai and Sós (Eur. J. Comb. 6(2):101–114, 1985)
conjectured that the group An also contains a product-free set of constant density.
This conjecture was refuted by Gowers (whose result was subsequently improved by
Eberhard), still leaving the long-standing problem of determining the largest product-
free subset of An wide open. We solve this problem for large n, showing that the
maximum size is achieved by the previously conjectured extremal examples, namely
families of the form {π : π(x) ∈ I,π(I ) ∩ I = ∅} and their inverses. Moreover, we
show that the maximum size is only achieved by these extremal examples, and we
have stability: any product-free subset of An of nearly maximum size is structurally
close to an extremal example. Our proof uses a combination of tools from Combina-
torics and Non-abelian Fourier Analysis, including a crucial new ingredient exploit-
ing some recent theory developed by Filmus, Kindler, Lifshitz and Minzer for global
hypercontractivity on the symmetric group.

1 Introduction

The problem of determining the largest product-free sets in groups was first raised
by Babai and Sós [2] in 1985, who asked whether a finite group always contains a
product-free set of constant density. They were particularly interested in the alter-
nating group An ⊆ Sn, and they conjectured that An indeed contains such a large
product-free set. The Babai-Sós conjecture was refuted by Gowers [8], who showed
that any product-free set in An can have density at most O(1/n1/3). Moreover,
he demonstrated a more general phenomenon by showing that any D-quasirandom
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group can only have product-free sets of density at most O(1/D1/3). Here, a group
is said to be D-quasirandom if the dimension of any non-trivial irreducible represen-
tation is at least D.

In the reverse direction, answering a question raised by Gowers, Nikolov and Py-
ber [12] showed that if a finite group G has a non-trivial irreducible representation
of dimension D, then G does contain a product-free set of density �(1/D). Com-
bined with Gowers’ result one sees that the density of the largest product-free set
in a group is determined by its quasirandomness, with some polynomial dependence
that remains to be investigated. Thus, a key open problem is to determine the precise
connection between the quasirandomness of a group and the density of its largest
product-free sets.

Here, motivated by the original question of Babai and Sós [2], recently highlighted
again by Green [9], we study the largest product-free sets in An. It was conjectured
independently by Crane (personal communication) and Kedlaya [11] that the follow-
ing sets (and their inverses) provide the extremal examples

Fx
I := {π : π(x) ∈ I,π(I ) ∩ I = ∅} .

Writing μ for uniform measure on An and |I | = t
√

n, one can calculate μ(Fx
I ) ≈

te−t2
n−1/2. Improving earlier bounds of Kedlaya [11] and Gowers [8], the conjecture

was proved up to logarithmic factors by Eberhard [4], who showed that any product-
free A ⊆ An has μ(A) = O(n−1/2 log7/2 n). Besides being off by logarithmic factors,
Eberhard’s techniques do not seem to be sufficient to prove any structural results re-
garding the extremal families. Our main result here answers the question completely
for large n, as follows.

Theorem 1.1 Suppose n is sufficiently large and A ⊆ An is a product-free subset of
maximum size. Then A or A−1 is some Fx

I .

In fact, our techniques allow us to prove structural results for any product-free set
in An whose density is at least (say) n−100, thus bypassing the “quasirandomness
barrier” that has limited previous techniques in high rank groups [4, 8].

The notion of quasirandomness for groups appeared implicity in the work of Sar-
nak and Xue [15], and was later used by Bourgain and Gamburd [3] to show that
most Cayley graphs over SLd(Z/pZ) are expanders. It is a major open problem to
prove analogues of the Bourgain-Gamburd theorem for finite simple groups of high
rank. Indeed, their technique crucially relies on the fact that the quasirandomness of
SLd(Z/pZ) is polynomial in its size. Therefore, to handle finite simple groups of
high rank, it is important to develop techniques that go beyond the quasirandomness
parameter. The techniques presented herein do so for the group An: we combine ideas
from harmonic analysis and representation theory to argue about sets whose density
is 1/Dω(1).

1.1 Stability

Besides our exact result on the size of maximum product-free sets in An, we also
obtain stability results describing the approximate structure of product-free sets that
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are somewhat large. The following ‘99% stability’ result shows that any moderately
large product-free subset of An is essentially contained in an extremal family; note
that it applies to sets whose measure is much smaller than the extremal family.

Theorem 1.2 Suppose n is sufficiently large and A ⊆ An is a product-free set
with μ(A) ≥ n−0.66. Then there is some Fx

I such that μ(A\Fx
I ) < n−0.66 or

μ(A−1\Fx
I ) < n−0.66.

Moreover, if A ⊆ An is a product-free set with size very close to the maximum we
show that A or A−1 is contained in some Fx

I .

Theorem 1.3 There exists an absolute constant c such that if n is sufficiently large
and A ⊆ An is a product-free set with μ(A) > maxI,x μ

(
Fx

I

)− c
n

then there is some
Fx

I such that A ⊆ Fx
I or A−1 ⊆ Fx

I .

We also study the following ‘1% stability’ problem.

Problem 1.4 Suppose that A ⊆ An is a product-free set of density > 1/nC for an
absolute constant C. What can be said about the structure of A?

Dictators and t-umvirates. Here we describe the structures appearing in the an-
swer to this problem. A set of the form Di→j = {σ ∈ An : σ(i) = j} is called a dicta-
tor. Let D1, . . .Dt be distinct dictators that have a nonempty intersection. Following
Friedgut [7], we call their intersection a t-umvirate. Equivalently, a t-umvirate UI→J

corresponding to ordered sets I = (i1, . . . , it ), J = (j1, . . . , jt ) is the set of permuta-
tions that send each ik to jk .

Densities. Let A,B ⊆ Sn. The density of A inside B is μB (A) := |A∩B|
|B| . To re-

strict A ⊆ Sn to UI→J we write AI→J = A ∩ UI→J and μ(AI→J ) = |A∩UI→J |
|UI→J | for

its density in the ambient space UI→J .
Product-free sets correlate with t-umvirates. Our next ‘1% stability’ theorem

shows that any product-free set that is somewhat dense has some local structure.
This is analogous to the strong local structure exhibited by the extremal families Fx

I ,
which have �(1) density inside each dictator 1x→i with i ∈ I , as when |I | = �(

√
n)

a random permutation sends I to its complement with probability �(1). We show that
a similar, albeit weaker, phenomenon holds for product-free sets with any polynomial
density that can be much smaller than that in the extremal examples: such sets have a
density bump inside a t-umvirate.

Theorem 1.5 Fix r ∈ N, suppose n is sufficiently large, and A ⊆ An is product-free
with μ(A) > n−r . Then there exists some t-umvirate with t ≤ 4r in which A has
density at least nt/4μ(A).

The proof will use the trace method, a recent level-d inequality due to Filmus,
Kindler, Lifshitz and Minzer [6], and novel upper bounds on eigenvalues of Cayley
graphs over the symmetric group.



1332 P. Keevash et al.

Globalness. Theorem 1.5 naturally leads us to define the notion of ‘globalness’,
which plays a crucial role throughout the paper. This is intuitively a pseudorandom-
ness property stating that membership is not determined by local information, which
one can think of as being the polar extreme to dictators.

More precisely, we make the following definition, saying that small restrictions do
not have large measure. We include two versions of the same concept with different
parameterisations, as we need the first version when referring to [6], but the second
version is more natural for the applications in our paper.

Definition 1.6 We say A ⊆ An is (t, ε)-global if the density of A inside each t-
umvirate is < ε2. We say that A is relatively (t,K)-global if the density of A inside
each t-umvirate is at most Kμ(A).

1.2 Product-free triples

We also consider the following cross version of the question. Given A,B,C ⊆ An,
we say that the triple (A,B,C) is product-free if there is no solution of1 ab = c

with a ∈ A, b ∈ B , c ∈ C. In particular, (A,A,A) is product-free if and only if A is
product-free. We consider the following problem.

Problem 1.7 What are the possible sizes of product-free triples?

Problem 1.7 incorporates the well-studied problem of upper bounding sizes of
independent sets inside Cayley graphs (see e.g. Ellis, Friedgut and Pilpel [5]), which
concerns the special case A = A−1 and B = C.

For simplicity we restrict ourselves to the question of maximising min(μ(A),

μ(B),μ(C)) when (A,B,C) is product-free. Gowers [8] established an upper bound
of (n − 1)−1/3 by showing that if (A,B,C) is product-free then μ(A)μ(B)μ(C)

≤ 1
n−1 . Eberhard [4] improved this to O(n−1/2 log3.5 n) by showing that one of

μ(A)μ(B), μ(A)μ(C), μ(B)μ(C) is O(n−1 log7 n). We obtain the following bound,
which gives the correct order of magnitude, as shown by examples of the form

A = 1I→I := {π : π(I) ∩ I = ∅} C = B = 1x→I := {π : π(x) ∈ I } .

Theorem 1.8 Let n be sufficiently large and A,B,C ⊆ An with (A,B,C) product-
free. Then one of μ(A), μ(B), μ(C) is at most 100

√
logn/

√
n.

In fact, we show corresponding stability results that are a bit harder to state (see
Theorem 6.4). Roughly speaking, they say that any sufficiently dense product-free
triple has the approximate form

(
1I→J ,1x→I ,1x→J

)
. Moreover, we also prove a

version of Theorem 1.5 that finds structure in product-free triples that are only poly-
nomially dense.

As discussed later in the introduction, our approach can be viewed as an non-
abelian analogue of Roth’s bound for sets of integers with no three-term arithmetic

1To clarify our notation for composition of permutations: we mean that a(b(x)) = c(x) for all x ∈ [n].
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progression, whereby we improve the earlier approaches of Gowers and Eberhard by
establishing a form of the ‘Structure versus Randomness’ dichotomy. We achieve this
by exploiting some recent theory developed by Filmus, Kindler, Lifshitz and Minzer
[6] for global hypercontractivity on the symmetric group, and by also developing
some further theory of the ‘Cayley operators’ associated to global subsets.

1.3 Techniques

We call a set of the form 1x→I = {σ : σ (x) ∈ I } a star and
{
σ : σ−1 (x) ∈ I

}= 1−1
x→I

an inverse star.
The main steps in the proof of our main theorem (Theorem 1.1) are as follows.

1. Dictatorial structure: We show that A has large density inside many dictators. In
fact, we show that in some sense, the product freeness of A is completely ex-
plained by its densities inside dictators.

2. Star structure: We upgrade our dictatorial structure into a tighter star structure, by
finding some S that is either a star or an inverse star such that |A\S| is small and
A has significant density in each restriction defined by S.

3. Bootstrapping: Using the approximate star structure, we deduce our exact results
from further stability analysis showing that any small deviation from the structure
leads to a suboptimal configuration.

Gowers’ approach: the second eigenvalue. We start out along the path estab-
lished by Gowers [8]. His idea was to express the number of products in A ⊆ An of
density α as the sum of a ‘main term’ and an ‘error term’, where the error term is
smaller in magnitude than the main term when α is large, so the number of products
cannot be zero. The main term α3|An|2 is the expected number of products in a ran-
dom set of density α, whereas his bound for the error term is (n − 1)−1/2 α3/2|An|2,
which for product-free A implies α ≤ (n − 1)−1/3.

We will now outline his argument. Let f = 1A be the indicator function of A ⊆ An

and T be the linear operator on L2(An) defined by

(T g)(π) = Eσ∼An [f (σ )g(σ ◦ π)] .

Then A contains a product if and only if 〈f,Tf 〉 > 0. Let V ′ be the space of functions
of expectation 0. Then we have 〈f,Tf 〉 = α3 + 〈

f ′, Tf ′〉, where f ′ = f − α ∈ V ′.
Writing T ∗ for the adjoint of T , some Representation Theory of Sn (discussed in
more detail below) tells us that the self-adjoint operator T ∗T acts on V ′ with all
eigenvalues bounded absolutely by α

n−1 . We deduce

〈
f ′, Tf ′〉2 ≤ ‖f ′‖2

2‖Tf ′‖2
2 = ‖f ′‖2

2

〈
f ′, T ∗Tf ′〉

≤ ‖f ′‖3
2‖T ∗Tf ′‖2 ≤ ‖f ′‖4

2α/ (n − 1) ≤ α3/ (n − 1) .

Thus we can deduce 〈f,Tf 〉 > 0 if α3 >
√

α3/ (n − 1), i.e. if α > (n − 1)−1/3.
Beyond spectral gap: the degree decomposition. This path was continued by

Eberhard [4], whose improved bound is based on a refined analysis of the main con-
tribution to the error term (he credits Ellis and Green for suggesting this approach),
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replacing the basic decomposition f = α + f ′ by a refined ‘level’ decomposition
f =∑n−1

d=0 f =d .
Instead of working with functions on An, henceforth it will be more convenient to

work with functions on Sn that are supported on An, so we will now let α = |A|/n!
denote the density of A inside Sn. This allows us to import machinery developed for
Sn without reworking it for An, although it introduces some slight inconvenience in
keeping track of factors of 2 in the calculations.

For d ≤ n, let Wd be the linear subspace of L2(Sn) generated by indicators of
d-umvirates. The degree of a nonzero function f is the minimal d such that f ∈
Wd . We define V=d = Wd ∩ W⊥

d−1 and note that the spaces V=d form an orthogonal
decomposition of L2(Sn), known as the degree decomposition of Sn. For a function
f on Sn we write f =d for the projection of f onto V=d .

To set up Eberhard’s refined analysis, we write f = 2α + 2f =1 + f ′′ with

f ′′ ∈ V ′′ =
{
g − 2E [g] − 2g=1 : g is supported on An

}
.

Again, some Representation Theory shows that T ∗T acts on V ′′ with all eigenvalues
O(α/n2). Similarly to the above argument this implies

〈f,Tf 〉 = 2α3 + 2
〈
f =1, Tf =1

〉
+ 〈

f ′′, Tf ′′〉 ,

where
〈
f ′′, Tf ′′〉 = O(α3/2/n) is negligible compared to α3 when α � n−2/3. Thus

it suffices to control the ‘linear term’
〈
f =1, Tf =1

〉
, which turns out to be equal to

Eσ,π∼Sn

[
f =1 (σ )f =1 (π)f =1 (σπ)

]
.

However, it is not generally true that the linear term is small compared with the
main term. Indeed, this would imply ‘product mixing’, i.e. that the number of prod-
ucts is close to that in a random set of the same density, but Eberhard [4] constructed
examples with significantly more products when α = o

(
n−1/3

)
. The key to his ap-

proach is that the above counting argument only needs a lower bound on the linear
term, and that this exhibits much nicer concentration properties than the upper bound.
Nevertheless, even these better estimates break down for densities within a polyloga-
rithmic factor of the optimum bound.

1.4 Our approach: structure versus randomness

Our approach to stability can be viewed as a further refinement of this method that is
close in spirit to Roth’s theorem, in that it is analogous to the ‘structure versus ran-
domness’ dichotomy: for Roth’s theorem, if the error term is large then A correlates
with an arithmetic progression, whereas in our setting, if the linear term cancels the
main term then A correlates with dictators.

Our starting point for this strategy is the formula

f =1(π) =
∑

i,j∈[n]
aij xi→j ,
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where xi→j (π) = 1π(i)=j , and each

aij = (1 − 1/n)(μ(Ai→j ) − μ(A))

measures the correlation of f with a dictator. A large value of ai,j corresponds to a
large density inside a dictator. On the other hand, having all ai,j of the same order
of magnitude as μ(A) can be interpreted as pseudorandomness. Some calculations
reveal that

‖f =1‖2
2 = 1

n−1

∑

i,j∈[n]

a2
ij ,

and that

Eσ,π∼Sn

[
f =1 (σ )f =1 (π)f =1 (σπ)

]
= 1

(n − 1)2

∑

i,j,k∈[n]

aij ajkaik.

These formulae alone do not suggest any structural properties for a contribution of
−α3 to the left hand side; in principle, �(n/α) values of ai,j = −α could contribute
1
n2 �(n/α)3/2(−α)3, so when α = o

(
n−1/3

)
we seem to have no structure.

Such extreme situations can be ruled out by concentration of measure, which is a
key tool in Eberhard’s approach, but seems doomed to give up logarithmic factors.
However, much stronger structure can be extracted from a recent hypercontractive
inequality of Filmus, Kindler, Lifshitz, and Minzer [6].

It will be convenient for us to put the coefficients aij inside a matrix A = (
aij

)

and to equip real valued n × n matrices with the inner product
〈(
mij

)
,
(
nij

)〉 =∑n
i=1

∑n
j=1 mijnij . We then have

‖f =1‖2
2 = 1

n − 1
‖A‖2

2

and

Eσ,π

[
f =1 (π)f =1 (σ )f =1 (σπ)

]
= 1

(n − 1)2

〈
A2,A

〉
.

Our idea is to decompose A = Arand + Astruc + A− as follows. We let the matrix
A− consist of the negative coefficients aij , where the other coefficients are replaced
by 0. We then set the matrix Astruc to consist of the ‘large’ values aij ≥ ε, for some
carefully chosen ε > 0. Finally, we let Arand consist of the ‘small’ positive coefficients
aij ∈ (0, ε).

We then expose the dictatorial structure of A by showing that

Eσ,π

[
f =1 (π)f =1 (σ )f =1 (σπ)

]
≥ 〈AstrucA−,Astruc〉 + 〈A−Astruc,Astruc〉

+
〈
A2

struc,A−
〉
+ o

(
α3
)

. (1)
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This could be understood intuitively as follows. Writing AB = {στ : σ ∈ A,τ ∈ B},
we see that the dictators satisfy Dj→k ·Di→j = Di→k . When expanding (1) in terms
of the coefficients aij , it shows that the only significant negative contribution to

Eσ,π

[
f =1 (π)f =1 (σ )f =1 (σπ)

]

comes from triples ajkaij aik corresponding to dictators Dj→k ·Di→j = Di→k , with
the property that A has a large density in two of the dictators and a small density in
the remaining one.

To establish (1) we will expand the inner product
〈
A2,A

〉
in terms of the matrices

A−,Astruc, Arand and use the inequality

〈MN,S〉 ≤ ‖M‖2‖N‖2‖S‖2

to upper bound the undesirable terms. Our proof will thus crucially rely on upper
bounds for ‖Arand‖2 and ‖A−‖2, which we will establish via a hypercontractive in-
equality for global functions, as discussed in the next subsection.

Level-1 inequalities. The relationship between hypercontractive inequalities and
inequalities that upper bound the ‘level-1 weight’ ‖f =1‖2

2 is well-known in the con-
text of Boolean functions f : {0,1}n → {0,1}. The inequality

‖f =1‖2
2 ≤ 2E2 [f ] log

(
1

E [f ]

)

is true for all Boolean functions and is known as the level-1 inequality (see O’Donnell
[13, Chap. 5]). As

1

(n − 1)2

〈
A2,A

〉
≤ ‖A‖3

2

(n − 1)2
= ‖f =1‖3

2√
n − 1

,

a similar level-1 inequality for the symmetric group would be most desirable, as it

would imply that
‖f =1‖3

2√
n−1

is negligible compared to α3. However, such an inequality
is not true in general, as it fails for dictators, and more generally for t-umvirates with
small t .

The local nature of the obstructions suggests that the approach could be rescued
by proving a level-1 inequality for global functions. Indeed, this was achieved in the
analogous setting of general product spaces by Keevash, Lifshitz, Long and Minzer
[10], who developed a hypercontractivity theory for global functions that has recently
been a fruitful source of many applications. The corresponding results in the setting
of the symmetric group have recently been established by Filmus, Kindler, Lifshitz
and Minzer [6]. Their level-1 inequality shows that if f : Sn → {0,1} is (2, ε)-global
then

‖f =1‖2
2 ≤ 2εE [f ] logO(1)

(
1

ε

)
.

This inequality cannot be applied directly to our setting, as we cannot guarantee
that f has small density inside each duumvirate. However, we are able to extend their
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approach to obtain the upper bounds

‖A−‖2 ≤ E [f ] logO(1) (2/E [f ])

and

‖Arand‖2
2 ≤ εE [f ] logO(1)

(
2

ε

)
.

The key idea is to apply the hypercontractive result of [6] to

f− :=
∑

aij <0

aij

(
xi→j − 1

n

)

and to

frand :=
∑

0<aij <ε

aij

(
xi→j − 1

n

)
.

These inequalities will establish (1). As an expository simple case of our argument,
in the next section we will show that this can be used to recover Eberhard’s result,
by setting ε = 1, so that Astruc = 0. Extracting the star structure for smaller ε is
considerably more complicated, so we defer an overview of this part of the argument
to Sect. 5.3.

1.5 From star structure to extremal families

Once we know that A is almost contained in a star or inverse star S, say S = 1x→I ,
then it is not too hard to show that it is in fact almost contained in Fx

I . In other
words, we wish to show for each i, i′ ∈ I that A has small density inside the dicta-
tor Di→i′ . We accomplish this by inspecting the triple (Ai→i′ ,Ax→i ,Ax→i′). Such
triples should be intuitively considered as product-free after factoring out the corre-
sponding dictators with

Di→i′Dx→i = Dx→i′ .

To formalise this, we would like a variant of Eberhard’s bound that holds not only for
product-free triples A′,B ′,C′ ⊆ An, but also for product-free sets A′,B ′,C′ living
inside compatible dictators. This can be achieved by the following transformation. We
set A′ = (

i′ n
)
A(n i), B ′ = (i n)A(nx), and C′ = (

i′ n
)
A(x n). The transformation

from (A,B,C) to
(
A′,B ′,C′) preserves products. Moreover, the restrictions

(
A′

n→n,B
′
n→n,C

′
n→n

)

correspond to the original restrictions

(Ai→i′ ,Bx→i ,Cx→i′) .
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We may then view the triple
(
A′

n→n,B
′
n→n,C

′
n→n

)
as subsets of An−1 and translate

Eberhard’s bounds inside An−1 to the densities of Ai→i′ , Bx→i and Cx→i′ .
Similar considerations combined with some more involved structural arguments

will show that μ
(
A \ Fx

I

)
is much smaller than μ

(
Fx

I \ A
)
, thereby showing that Fx

I

is extremal.

1.6 Eigenvalues of global Cayley graphs

The main tool for proving our 1% stability result (Theorem 1.5) is an upper bound
on the eigenvalues of Cayley graphs Cay(Sn,A) that correspond to global sets A. We
believe that the result has independent interest and will be beneficial in various other
applications; indeed, the study of Cayley graphs on Sn and their eigenvalues is the
basis of an entire field of research (see e.g. Diaconis [14]).

Let A = A−1 and let TA be the operator corresponding to the random walk on
Cay(G,A), given by TAf (x) := Ea∼A[f (ax)]. As mentioned above, the operator TA

preserves each of the spaces V=d . We define

rd(TA) = sup
f ∈V=d

‖TAf ‖2

‖f ‖2
,

or equivalently rd (TA)2 is the largest eigenvalue of the self-adjoint operator T ∗
ATA

acting on V=d .
A useful fact from representation theory gives lower bounds on the dimension of

each eigenspace of TA using the observation that each is invariant under the action
of Sn from the right. Indeed, this was a crucial ingredient in the seminal work of
Ellis, Friedgut and Pilpel [5], who derived bounds on the dimensions from well-
known properties of invariant spaces; in particular, the dimensions are �(nd) when
d = O(1).

The trace method provides a fundamental way to exploit this lower bound. Specif-
ically, writing mλ for the multiplicity of an eigenvalue λ of TA, we have

1

μ(A)
= tr(T ∗

ATA) =
∑

λ∈spec(TA)

mλλ
2.

When A is dense (i.e. μ(A) = �(1)) we thus obtain |λ| = O(1/
√

mλ), and so
rd(TA) = Od(1/nd/2). Furthermore, if A is closed under conjugation then the op-
erator TA commutes with the action of Sn from both sides, in which case we have
mλ ≥ �(n2d), giving the stronger bound rd(TA) = Od(1/nd). We show that similar
statements hold for global sets, even when they are quite sparse.

Theorem 1.9 Let C,d > 0 and suppose that n is sufficiently large. Suppose that A ⊆
Sn is relatively (2d,K)-global with μ(A) ≥ n−C . Then

rd(TA) ≤
√

K logO(d) n

nd/2
.
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Furthermore, if A is also closed under conjugation then

rd (TA) ≤
√

K logO(d)(n)

nd
.

Theorem 1.9 is the crucial new ingredient for proving our 1% stability result for
product-free sets of density ≥ n−C (Theorem 1.5).

1.7 Organisation of the paper

We start in the next section with some technical preliminaries on the representation
theory of Sn and also the proofs of the results discussed immediately above, i.e. new
eigenvalue estimates for global sets and their application to the proof of our 1% sta-
bility result. Section 3 considers the analysis of linear functions on the symmetric
group. The main result of this section will be a level-1 inequality for the pseudoran-
dom part of a function, which in itself will suffice to recover Eberhard’s result. We
then move into more refined arguments that extract structural properties of product-
free sets, first exposing the dictatorial structure in Sect. 4 and then the precise star
structure in Sect. 5. In Sect. 6 we implement our bootstrapping arguments that refine
the approximate structure to deduce our main results, giving the exact extremal re-
sult and strong stability results for product-free sets in An. The final section contains
some concluding remarks.

2 1% stability

This section contains some background on the representation theory of Sn, our new
eigenvalue estimates for global sets and their application to the proof of our 1% sta-
bility result.

2.1 Notation

We write X = O(Y) if there exists an absolute constant C > 0 such that X ≤ C · Y ,
and similarly X = �(Y) if there exists an absolute constant c > 0 such that X ≥ c ·Y .
We write X = �(Y) ifX = O (Y) and X = �(Y). We also write X ≤ Y logO(1) n if
there exists an absolute constant C such that X ≤ Y logC n.

For A,B ⊆ Sn we write

μA (B) = |A ∩ B|
|A| = Pr

a∼A
[a ∈ B] .

Here a ∼ A means that a is uniformly distributed in A. We also write σ, τ ∼ Sn to
mean that σ, τ are independent and uniformly distributed in Sn.

We discuss the space of real-valued functions on Sn equipped with expectation
inner product and Lp-norms. For a function f : Sn → R we often write E [f ] to
denote Eσ∼Sn [f (σ )], although we caution the reader that this usage will depend on
context, as when we define E [fI→J ] below the expectation will be conditioned on
the given restriction.
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2.2 Restrictions

We define restrictions of functions in a manner that naturally generalizes the notion
of restrictions of subsets of Sn used in the introduction.

Definition 2.1 Let I = (i1, . . . , it ) , J = (j1, . . . , jt ) ⊆ [n] be ordered sets of size t .
We denote by UI→J the t-umvirate of permutations sending each il to jl .

We define xi→j : Sn → {0,1} by

xi→j (π) = 1π(i)=j .

Let I ⊆ [n], J ⊆ [n] be ordered sets of some size t . We denote by fI→J : UI→J → R

the restriction of f to UI→J . We write

E [fI→J ] = Eσ∼Sn [f (σ ) |σ ∈ UI→J ]

and

‖fI→J ‖2
2 = Eσ∼Sn

[
f 2 (σ ) |σ ∈ UI→J

]
.

We may identify UI→J with Sn−t via any fixed permutations σ,π such that σ(n− t +
l) = il and π(jl) = n− t +1 for each l ∈ [t]. Then πUI→J σ is the set of permutations
on Sn fixing n − t + l for each l ∈ [t], which can be identified with Sn−t . We will use
this identification to import results on the symmetric group Sn−t to the t-umvirate
UI→J .

2.3 Orthogonal decompositions

Our proof will use spectral analysis over Sn, so we need to recall its level decompo-
sition and the more refined representation theoretical decomposition into isotypical
components.

The level decomposition. We start by decomposing according to degree, as dis-
cussed in the introduction.

Definition 2.2 The space Wd is the linear span of the indicators of the d-umvirates.
We say that a real-valued function on Sn has degree at most d if it belongs to Wd .

By construction, Wd−1 ⊆ Wd for all d ≥ 1. We define the space of functions of
pure degree d as V=d = Wd ∩ W⊥

d−1. It is easy to see that Vn = Vn−1, and so we can
decompose each real-valued function f : Sn →R as f = f =0 +f =1 +· · ·+f =n−1,
where f =i ∈ V=i . We refer to this decomposition as the level decomposition of f .

Sometimes we require the following finer decomposition that decomposes each
f =i into more structured pieces.

The representation theoretic decomposition. Here we will list the properties we
require of the finer decomposition of functions on Sn into isotypical components;
these can be found e.g. in [6, Sect. 7.2].

We adopt the following standard notation. We write λ � n to denote that λ is a
partition of n. A partition λ uniquely corresponds to a Young diagram. Its transpose λt
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is obtained by swapping the roles of the rows and the columns of the Young diagram.
We let Sn act on L2 (Sn) from the left by (τ, f ) �→ τ f where τ f (σ ) = f (τ−1σ) and
from the right by (f, τ ) �→ f τ where f τ (σ ) = f (στ−1).

Lemma 2.3 There exists an orthogonal decomposition L2 (Sn) =⊕
λ�n V=λ with the

following properties:

1. For some numbers dim (λ), each V=λ is the direct sum of dim (λ) irreducible rep-
resentations of dimension dim (λ).

2. If T : L2 (Sn) → L2 (Sn) commutes with the action of Sn either from the left or
from the right then TV=λ ⊆ V=λ, and so TV=d ⊆ V=d . (See the proof of [6, Claim
7.4].)

3. If T is self adjoint and commutes with the action from one side then the dimen-
sion of each eigenspace of T inside V=λ is at least dim (λ). If it commutes with
the action of Sn from both sides then V=λ is contained in an eigenspace of T.
(Both follow from Schur’s Lemma. See [6, Claim 7.5] for the first. The second uses
irreducibility as an Sn × Sn module of the isotypic component End(V=λ).)

4. V=λ ≤ V=d if and only if the first row of λ is of length n− d . In this case, we write
dλ = d and d̃λ = min (dλ, dλt ).

5. Multiplication by the sign character sends Vλ to Vλt . (See [6, Lemma 7.3].)
6. If n is sufficiently large, d < n/10 and d̃λ > d then dim (λ) >

(
n
ed

)d . (See [6,
Lemma 7.7].)

We write f =λ for the projection of f onto Vλ. We identify functions f : An →
{0,1} with function on Sn whose value is 0 on the odd permutations. Such functions
satisfy sign · f = f . This gives rise to two decompositions of f as a sum of elements
in Vλ, which therefore must be equal. The first is f = ∑

λ�n f =λ and the second is
∑

λ�n sign · f =λt
. This shows that sign · f =λ = f =λt

.

2.4 Operators from functions

We write E [f ] for Eπ∼Sn [f ]. Thus if f = 1A for A ⊆ An then E[f ] = |A|/n! de-
notes the density of A in Sn, not An. For f ∈ L2 (Sn) we define operators Lf and Rf

on L2 (Sn) by

Lf g (σ ) = Eπ [f (π)g(πσ)] and Rf g (σ ) = Eπ [g(σπ)f (π)] .

When f = 1A

μ(A)
, the operator Lf is the operator corresponding to the random walk

sending σ to aσ for a random a ∈ A. Similarly, Rf corresponds to the random walk
that sends σ to σa. The operators Lf and Rf commute with the actions of Sn from
one side. Indeed, for any g ∈ L2 (Sn) and σ, τ ∈ Sn we have

(
Lf (g) τ

)
(σ ) = Lf g

(
στ−1

)
= Eπ

[
f (π)g(πστ−1)

]
= Lf (gτ) (σ ).

Similarly, we have Rh (τg) = τ (Rhg). When f is a class function (meaning that
f (σ ) depends only on the conjugacy class of σ ) we have Lf = Rf . Indeed, when f
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is a class function we have

Lf g(σ ) = Eπ [f (π)g (πσ)] = Eπ

[
f
(
σ−1πσ

)
g (πσ)

]
= Eπ [f (π)g (σπ)]

= Rf g(σ ).

Thus for a class function Lf = Rf commutes with the Sn actions on both sides.
As mentioned, the trace method plays a crucial role in our work, and computing

the trace of the operator L∗
f Lf will allow us to upper bound its eigenvalues.

Lemma 2.4 The operators L∗
f Lf and R∗

f Rf both have trace ‖f ‖2
2.

Proof We only consider T = Lf , as the proof for Rf is similar. We have

tr
(
T∗T

)=
∑

π∈Sn

n! 〈T∗T1π ,1π

〉

=
∑

π∈Sn

n! 〈T1π ,T1π 〉 =
∑

π∈Sn

∑

σ∈Sn

T1π (σ )2

=
∑

π∈Sn

∑

σ∈Sn

(
Eτ∼Sn [f (τ)1π (τσ )]

)2

=
(

1

n!
)2 ∑

π∈Sn

∑

σ∈Sn

f
(
πσ−1

)2 = ‖f ‖2
2. �

2.5 Hypercontractivity of global functions

In this subsection we state two inequalities from [6]. To do so, we need the following
natural extension of the definition of globalness from sets to functions.

Definition 2.5 We say f : Sn → R is (d, ε)-global if for every ordered I, J ⊆ [n] of
size d we have ‖fI→J ‖2 ≤ ε. We say f is relatively (d,K)-global if ‖fI→J ‖2

2 ≤
K‖f ‖2

2 for each such I, J .

The hypercontractivity inequality of [6] takes the following form.

Theorem 2.6 There exists an absolute constant C such that the following holds. Let
d, q ∈ N with q ≥ 2 and n ≥ qC·d2

. If f : Sn → R is (2d, ε)-global then

‖f ‖q ≤ qO(d2)ε
1− 2

q ‖f ‖
2
q

2 .

We also require the level-d inequality of [6], which is a consequence (not imme-
diate) of their hypercontractive inequality, showing that global functions have low
weight on the first d levels.
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Theorem 2.7 There exists C > 0 such that if n ≥ 2Cd3
logCd

(
1

‖f ‖2

)
and f : Sn → Z

is (2d, ε)-global then

‖f ≤d‖2 ≤ 2Cd4‖f ‖2ε logCd

(
1

‖f ‖2
2

)

.

2.6 Eigenvalues of global Cayley graphs

We show the following stronger version of Theorem 1.9. Let T : L2 (Sn) → L2 (Sn)

be an operator that commutes with the action of Sn either from the left or from the
right. Then we write

rd (T) = supf ∈Vd

‖Tf ‖2

‖f ‖2
and rλ (T) = supf ∈Vλ

‖Tf ‖2

‖f ‖2
.

When T is self-adjoint rd (T) is the largest eigenvalue of T inside Vd ; in general,
rd (T)2 is the largest eigenvalue of T∗T. Similarly for rλ. Theorem 1.9 is immediate
from the following result applied with f = 1A and ε = √

Kμ(A), noting that ‖f ‖2 =√
μ(A) and Lf = μ(A)TA, where TA is the random walk operator corresponding to

A.

Theorem 2.8 There is an absolute constant C such that if f : Sn → Z is (2d, ε)-

global for some ε > 0 and n ≥ 2Cd3
logCd

(
1

‖f ‖2

)
then

rd
(
Lf

)≤
2Cd4‖f ‖2ε logCd

(
1

‖f ‖2
2

)

nd/2 .

If moreover f is a class function then

rd
(
Lf

)≤
2Cd4‖f ‖2ε logCd

(
1

‖f ‖2
2

)

nd
.

To prove Theorem 2.8 we rely on the following lemma.

Lemma 2.9 For each d and λ, the operator Lf agrees with Lf =d on V=d and with
Lf =λ on V=λ.

Proof Let Rσ be the operator sending g to gσ . Then Rσ commutes with the action of
Sn from the left. By Lemma 2.3 it therefore preserves the spaces V=d and V=λ. Let
g ∈ V=d and let σ ∈ Sn. Then as Rσ g is in V=d and as f =d is the projection of f

onto V=d we have

Lf (g) (σ ) = 〈f,Rσ g〉 =
〈
f =d ,Rσ g

〉
= Lf =d g (σ ) .

The proof that Lf agrees with Lf =λ on V=λ is similar. �
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Proof of Theorem 2.8 Let f : Sn → Z be (2d, ε)-global.
The trace of the operator L∗

f =d Lf =d is ‖f =d‖2
2 by Lemma 2.4. By Lemma 2.9,

and standard linear algebra we have

rd
(
Lf

)= rd
(
Lf =d

)=
√

rd

(
L∗

f =d Lf =d

)
.

On the other hand, the trace of a self-adjoint operator is the sum of its eigenvalues.
Applying Lemma 2.3 gives

min
λ:dλ=d

dim (λ) · rd
(

L∗
f =d Lf =d

)
≤ tr

(
L∗

f =d Lf =d

)
= ‖f =d‖2

2.

Putting everything together, plugging in Theorem 2.7 and Lemma 2.3 we obtain

rd
(
Lf

)≤ ‖f =d‖2√
minλ:dλ=d dim (λ)

≤
(ed)d/2 2Cd4‖f ‖2ε logCd

(
1

‖f ‖2

)

nd/2
,

for some absolute constant C. This implies that the theorem holds with 2C replac-
ing C. When f is a class function the same proof works with dim (λ) replaced by
dim (λ)2 to give

rd
(
Lf

)≤
22Cd4‖f ‖2ε logCd

(
1

‖f ‖2

)

nd
. �

2.7 The trace bound in high dimensions

The above upper bound on rd
(
Lf

)
is complemented by the following simpler bound

that is more effective when d̃λ is large.

Lemma 2.10 Let d < n
10 and suppose that d̃λ ≥ d . Then rλ

(
Lf

)≤ (
ed
n

)d/2 ‖f ‖2.

Proof The trace of L∗
f Lf is ‖f ‖2

2. On the other hand, by Lemma 2.3

‖f ‖2
2 = tr

(
L∗

f Lf

)
≥ dim (λ) rλ

(
Lf

)2 ≥
( n

ed

)d

rλ
(
Lf

)2
. �

2.8 Proof of our 1% stability results

Here we prove a version of Theorem 1.5 that is stronger in two ways: we consider
any triple of global sets with density ≥ n−O(1) and we establish the product mixing
phenomenon. For a function f : Sn → R we write f̃ for f · sign. Theorem 1.5 (in
contrapositive form) is immediate from the following by setting f = g = h = 1A,
noting that f̃ = f if f is supported on An.
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Theorem 2.11 Fix C > 0 and suppose that n is sufficiently large. Let f,g,h : Sn →
{0,1} with E [f ]E [g]E [h] ≥ n−C be

(
i, n

i
4

)
-relatively global for each i ≤ 8 �C�.

Then

Eσ,τ∼Sn [f (σ )g (τ)h (στ)] = E [f ]E [g]E [h]
(

1 ± n−0.1
)

+E

[
f̃
]
E

[
g̃
]
E

[
h̃
]
.

The first step of the proof is to separate the left hand side Eσ,τ∼Sn [f (σ )g(τ) ×
h(στ)] into low degree terms and high degree ones, as in the following lemma.

Lemma 2.12 Let d < n
2 − 1. Then

Eσ,τ∼Sn [f (σ )g (τ)h (στ)]

=
d∑

i=0

〈
g=i ,Lf h=i

〉
+

d∑

i=0

〈
g̃=i ,L

f̃
h̃=i

〉
+

∑

λ: d̃λ>d

〈
g=λ,Lf h=λ

〉
.

Proof As Lf commutes with the action of Sn from the right it preserves each V=λ.
We may therefore use orthogonality to obtain the following expansion into isotypical
parts:

Eσ,τ∼Sn [f (σ )g (τ)h (στ)] = 〈
g,Lf h

〉=
∑

λ�n

〈
g=λ,Lf h=λ

〉

=
∑

λ: d̃λ≤d

〈
g=λ,Lf h=λ

〉+
∑

λ: d̃λ>d

〈
g=λ,Lf h=λ

〉
.

Regrouping terms of small degree. As d < n
2 − 1 at most one of dλt , dλ can be

at most d , so

∑

d̃λ≤d

〈
g=λ,Lf h=λ

〉=
∑

λ:dλ≤d

〈
g=λ,Lf h=λ

〉+
∑

λ:dλ≤d

〈
g=λt

,Lf h=λt
〉
.

As V=i =∑
λ:dλ=i V=λ we have

∑

λ:dλ≤d

〈
g=λ,Lf h=λ

〉=
d∑

i=0

〈
g=i ,Lf h=i

〉
.

Regrouping terms of small ‘dual’ degree. On the other hand, by Lemma 2.3 we
have g=λt = ˜̃g=λ. Hence,

∑

dλ≤d

〈
g=λt

,Lf h=λt
〉
=

∑

dλ≤d

〈
˜̃g=λ,Lf

(
˜̃
h=λ

)〉

=
∑

dλ≤d

Eπ,σ

[
f̃ (σ ) g̃=λ (π) h̃=λ (σπ)

]
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=
∑

dλ≤d

〈
L

f̃
h̃=λ, g̃=λ

〉

=
d∑

i=0

〈
L

f̃
h̃=i , g̃=i

〉
. �

We now prove a lemma showing that the high degree terms are negligible.

Lemma 2.13
∣∣∣∣∣∣

∑

λ: d̃λ>d

〈
g=λ,Lf h=λ

〉
∣∣∣∣∣∣
≤
(

n

e (d + 1)

)− d+1
2 ‖f ‖2‖g‖2‖h‖2.

Proof By Lemma 2.10 and Cauchy–Schwarz we have
∑

λ: d̃λ>d

〈
g=λ,Lf h=λ

〉≤
∑

λ: d̃λ>d

rλ
(
Lf

)‖h=λ‖2‖g=λ‖2

≤
(

n

e (d + 1)

)− d+1
2 ‖f ‖2

∑

λ�n

‖h=λ‖2‖g=λ‖2,

where
∑

λ�n ‖h=λ‖2‖g=λ‖2 ≤
√∑

λ�n ‖h=λ‖2
2

∑
λ�n ‖g=λ‖2

2 = ‖h‖2‖g‖2. �

We now prove the theorem by combining the bound on ‖f ≤d‖2
2 from the level-d

inequality with the bounds from Lemma 2.13 on the eigenvalues of Lf that corre-
spond to large degrees.

Proof of Theorem 2.11 Let d = 4 �C�. We have

〈
Lf g,h

〉=
〈
Lf h=0, g=0

〉
+
〈
L

f̃
h̃=0, g̃=0

〉

±
d∑

i=1

∣∣∣
〈
g=i ,Lf h=i

〉
+
〈
g̃=i ,L

f̃
h̃=i

〉∣∣∣

±
∑

d̃λ>d

∣∣〈g=λ,Lf h=λ
〉∣∣ .

The main terms are
〈
Lf h=0, g=0

〉 = E [f ]E [g]E [h] and
〈
L

f̃
h̃=0, g̃=0

〉
=

E

[
f̃
]
E

[
g̃
]
E

[
h̃
]
.

By Lemma 2.13, using E [f ]E [g]E [h] ≥ n−C , we bound the high-degree error
terms as

∑

d̃λ>d

∣∣〈g=λ,Lf h=λ
〉∣∣≤

(
n

e (d + 1)

)− d+1
2 ‖f ‖2‖g‖2‖h‖2 ≤ E [f ]E [g]E [h]

n
.
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For any i ≤ 8 �C�, as f is (i, ni/4)-relatively global it is (i, ni/8‖f ‖2)-global, and
similarly for g,h. By Theorems 2.7 (for g and h) and 2.8 (for f ) we bound the low-
degree error terms as

d∑

i=1

∣∣∣
〈
Lf h=i , g=i

〉∣∣∣≤
d∑

i=1

ri
(
Lf

)‖g=i‖2‖h=i‖2

≤
d∑

i=1

n3i/8(logn)O(1)
E [f ]E [g]E [h]

ni/2

≤ n−1/8(logn)O(1)
E [f ]E [g]E [h] .

The same bounds hold replacing f,g,h on the left-hand side by f̃ , g̃, h̃ (which have
the same globalness properties) so the theorem follows. �

2.9 The linear terms dominate

For future reference, we conclude this section by noting that the above arguments
establish the following key point that we mentioned in the introduction: when
E [f ]E [g]E [h] is large, the only significant contribution to E [f ]E [g]E [h] comes
from the linear terms. The following is immediate from Lemmas 2.12 and 2.13 with
d = 1.

Proposition 2.14 Let f,g,h : An → {0,1} have densities α,β, γ in Sn. Then
∣∣∣Eπ,σ∼Sn [f (π)g(σ ◦ π)h(σ )] − 2αβγ − 2Eπ,σ∼Sn[f =1(π)g=1(σ ◦ π)h=1(σ )]

∣∣
∣

≤ 2e

n

√
αβγ .

3 Analysis of linear functions over the symmetric group

The main result of this section is our level-1 inequality for the pseudorandom part of
a function. This in itself will suffice to recover Eberhard’s result (for expository pur-
poses we will give the argument at the end of the section). We will start by describing
a canonical way to represent f =1 as a linear combination of the dictators xi→j . This
canonical representation f =1 =∑

aij xi→j will naturally lead to a decomposition of

f =1 as a sum of its random part frand := ∑∣∣aij

∣∣<ε aij

(
xi→j − 1

n

)
and its structural

part fstruc. Our level-1 inequality will bound ‖frand‖2 by ε‖f ‖2 up to logarithmic
factors.

3.1 The normalized form of linear functions

We say that a linear function
∑

i,j aij xi→j is in normalized form if for each i we
have

∑n
j=1 aij = 0 and for each j we have

∑n
i=1 aij = 0. Every linear function in
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normalized form has zero expectation, i.e. is in V=1. We will soon show the converse,
i.e. that every f ∈ V=1 has a normalized form, which is unique. First we give a simple
formula for the inner product between two linear functions, which holds when at least
one of them is in normalized form.

Lemma 3.1 Let f = ∑
i,j∈[n] aij xi→j be in normalized form. Let g = ∑

i,j bij xi→j

be an arbitrary linear function. Then

〈f,g〉 =
∑

i,j aij bij

n − 1
.

Proof Consider the linear functionals ϕ,ψ : Rn×n → R given by

ϕ
((

bij

)
i,j

)
= 1

n − 1

∑

i,j

aij bij

and

ψ
((

bij

)
i,j

)
=
〈
f,
∑

bij xi→j

〉
.

As both ϕ,ψ are linear it is enough to show that ϕ = ψ on a basis. Hence, it is
sufficient to prove the lemma when g = xi→j . There we may use the fact that f is in
normalized form to deduce that

〈f,g〉 = 1

n
aij + 1

n (n − 1)

∑

i′ �=i,j ′ �=j

ai′j ′

= 1

n
aij − 1

n (n − 1)

∑

j ′ �=j

aij ′

= 1

n
aij + 1

n (n − 1)
aij

= 1

n − 1
aij .

This completes the proof. �

We are now ready to show that every function in V=1 has a normalized form, which
is unique. In fact, we give an explicit formula for the coefficients of each f =1 ∈ V=1.

Lemma 3.2 Let f : Sn → R. Let

aij = n − 1

n

(
E

[
fi→j

]−E [f ]
)
.

Then
∑

i,j aij xi→j is the unique normalized form of f =1.
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Proof First we note that
∑

j E[fi→j ] = nEf for each i, so L := ∑
i,j aij xi→j is a

linear function in normalized form. As f =1 is the projection of f onto the space V=1
of linear functions with expectation 0, to prove the lemma it suffices to show that L

is the unique function in normalized form satisfying 〈L,g〉 = 〈f,g〉 for all g ∈ V=1.
By linearity, we can restrict attention to g = xi→j − 1

n
, as such functions g span

V=1. For such g we have

〈f,g〉 = 1

n
E

[
fi→j

]− 1

n
E [f ] = 1

n − 1
aij .

On the other hand, as L is normalized form, by Lemma 3.1 we have

〈L,g〉 =
〈
∑

i,j

aij xi→j , g

〉

= 1

n − 1
aij .

Thus L is a normalised form of f . Furthermore, if L′ = ∑
i,j a′

ij xi→j is also a
normalised form of f then the previous calculation gives aij = (n − 1) 〈L,g〉 =
(n − 1)

〈
L′, g

〉= a′
ij , so we have uniqueness. �

For f =∑
i,j aij xi→j in normalized form, Lemma 3.1 gives the Parseval formula

‖f ‖2
2 = (n − 1)−1 ∑

i,j a2
ij . For any linear function, not necessarily in normalized

form, we still have the following upper bound, which has the same form up to a
constant factor.

Lemma 3.3 Let g = ∑
i,j ai,j

(
xi→j − 1

n

)
be a function in V=1. Then ‖g‖2

2 ≤
8
n

∑
i,j a2

ij .

Proof Computing, we get

‖g‖2
2 =

∑

i,j

a2
i,j

1

n

(
1 − 1

n

)
−
∑

i,j

∑

i′ �=i

ai,j ai′,j
1

n2
−
∑

i,j

∑

j ′ �=j

ai,j ai,j ′
1

n2

+
∑

i,j

∑

i′ �=i,j ′ �=j

ai,j ai′,j ′
1

n2(n − 1)
.

We bound each term on the right hand side separately. Using 2 |ab| ≤ a2 + b2, each
of the sums on the right hand side is ≤ 2

n

∑
i,j a2

i,j , and so ‖g‖2
2 ≤ 8

n

∑
i,j a2

i,j . �

Using Lemma 3.1 we can now derive a useful formula for the linear term in the
count for the number of products in terms of the coefficient matrices of the normalised
forms.

Lemma 3.4 Let f = ∑
i,j aij xi→j , g = ∑

i,j bij xi→j , h = ∑
i,j cij xi→j all be lin-

ear functions in normalized form. Let their coefficient matrices be defined by Mf =(
aij

)
i,j

,Mg = (
bij

)
i,j

, and Mh = (
cij

)
i,j

. Then

Eσ,τ∼Sn [f (σ )g(τ)h(στ)] = 1

(n − 1)2

〈
MgMf ,Mh

〉
.
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Proof We have

Rτh (σ ) =
∑

i,j∈[n]

cij xi→j (στ) =
∑

i,j

cij

∑

k

xi→k (τ ) xk→j (σ )

=
∑

k,j

dkj (τ ) xk→j (σ ) ,

where dkj (τ ) =∑
i cij xi→k (τ ). By Lemma 3.1 we therefore have

Lf h (τ) = 〈f,Rτh〉 = 1

n − 1

∑

i,j∈[n]

aij dij (τ ) = 1

n − 1

∑

i,j,k

aij ckj xk→i (τ ) =

= 1

n − 1

∑

i,j

eij xi→j (τ ) ,

where eij =∑
k ajkcik . We deduce that

E [f (σ )g (τ)h (στ)] = 〈
g,Lf h

〉= 1

(n − 1)2

∑

i,j

eij bij

= 1

(n − 1)2

∑

i,j,k

bij ajkcik = 1

(n − 1)2

〈
MgMf ,Mh

〉
. �

3.2 Global hypercontractivity and the level-1 inequality

The following lemma shows that Theorem 2.6 may be applied to linear functions with
small coefficients. The lemma is applicable for frand defined above.

Lemma 3.5 Let g = ∑
i,j aij

(
xi→j − 1

n

)
∈ V=1 with |aij | < ε for all i, j . Then g is

(
2, ε′)-global for ε′ = 9ε +

√
8

n−2

∑
i,j a2

ij .

Proof We need to show ‖gI→J ‖2 ≤ ε′ for any restriction with |I | = |J | ≤ 2. By
averaging, it suffices to consider |I | = |J | = 2. Take distinct i, j, k, �, and consider
the restriction i → j, k → �, corresponding to the duumvirate Ui→j,k→l . We apply
the bound

∥∥gi→j,k→�

∥∥
2 ≤ |L| + ∥∥g̃i→j,k→l

∥∥
2 ,

where we define g̃ : Ui→j,k→l → R by

g̃(π) =
∑

t �=i,j

∑

q �=k,�

at,q

(
xt→q − 1

n − 2

)
,

and let

L = gi→j,k→l − g̃ =
(

1 − 1

n

)
(ai,j + ak,�),
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− 1

n

∑

t �=j

ai,t − 1

n

∑

t �=�

ak,t − 1

n

∑

t �=i

at,j − 1

n

∑

t �=k

at,�

+
∑

t �=i,j

∑

q �=k,�

at,q

(
1

n − 2
− 1

n

)
.

By the triangle inequality we have |L| ≤ 9ε. For the second term above, we may use
the aforementioned identification between Ui→j,k→l and Sn−2 to apply Lemma 3.3,
deducing that

∥∥g̃i→j,k→�

∥∥2
2 ≤ 8

n − 2

∑

t �=i,j

∑

q �=k,�

a2
t,q .

Thus we obtain the required bound
∥∥gi→j,k→�

∥∥
2 ≤ ε′. �

3.3 A level-1 inequality for the pseudorandom part

We now show the desired upper bound on the L2-norm ‖frand‖2 of the pseudorandom
part of f =1; in fact, we bound the right hand side of the bound ‖frand‖2

2 ≤ 8X2 from
Lemma 3.3, where X2 is as in the following statement.

Lemma 3.6 Let ε ∈
(

0, 1
2

)
and f : Sn → {0,1} with E [f ] ≤ 1

2 . Write f =1 =
∑

i,j aij xi→j in normalized form and let frand = ∑
i,j aij

(
xi→j − 1

n

)
1|aij |<ε . De-

note ε′′ = max (ε,E [f ]). Then

X2 := 1

n − 1

∑

i,j

a2
ij 1|aij |<ε ≤ E [f ] ε′′ logO(1)

(
1

ε′′

)
.

Proof We note that frand ∈ V=1 and by Lemma 3.1 we have

X2 = 〈frand, f 〉 =
〈
frand, f

=1
〉
.

Let q = 10 log
(
1/ε′′) and ε′ = 9ε + 3‖frand‖2, so that frand is

(
2, ε′)-global by

Lemma 3.5. Applying Hölder’s inequality and Theorem 2.6, we obtain

X2 = 〈frand, f 〉 ≤ ‖frand‖q ‖f ‖q/(q−1)

≤ qO(1)(ε′)1− 2
q ‖frand‖

2
q

2 ‖f ‖q/(q−1)

= qO(1)(ε′)1− 2
q ‖frand‖

2
q

2 ‖f ‖2− 2
q

2 ,

where we used the fact that f is {0,1}-valued. Using ‖frand‖2
2 ≤ 8X2 by Lemma 3.3

and rearranging we get

X2 ≤ qO(1)(ε′)
q−2
q−1 E[f ].
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We next consider two cases according to which of ε and X is larger.

1. If X ≤ ε then ε′ ≤ 20ε, so we obtain

X2 ≤ qO(1)ε
q−2
q−1 E[f ].

2. If X > ε then ε′ ≤ 20X, so X2 ≤ qO(1)X
q−2
q−1 E[f ], yielding

X2 ≤ qO(1)
E[f ]2− 2

q .

In both cases the lemma follows by plugging in q = 10 log
(
1/ε′′). �

3.4 Recovering Eberhard’s result

For expository purposes, we will now cash in on our level-1 inequalities and deduce
Eberhard’s result (up to the polylog factor). We will repeatedly use the following
upper bound on |〈MN,S〉| for three matrices M,N,S.

Lemma 3.7 Let M,N,S ∈ R
n×n. Then we have

|〈MN,S〉| ≤ ‖M‖2‖N‖2‖S‖2.

Proof Write Nei = vi, Sei = ui . By Cauchy–Schwarz

|〈MN,S〉| =
∣∣∣∣∣

n∑

i=1

〈Mvi,ui〉
∣∣∣∣∣
≤

n∑

i=1

‖M‖2‖vi‖2‖ui‖2

≤ ‖M‖2

√√√√
n∑

i=1

‖vi‖2
2

√√√√
n∑

i=1

‖ui‖2
2 = ‖M‖2‖N‖2‖S‖2. �

Lemma 3.8 Let A,B,C ⊆ An and write α = |A|
n! , β = |B|

n! , γ = |C|
n! . Then

Pr
σ,τ∼Sn

[σ ∈ A,τ ∈ B,στ ∈ C] ≥ 2αβγ − 2e
√

αβγ

n
− αβγ√

n
logO(1)

(
1

αβγ

)

− α logO(1)

(
1

α

)√
βγ

n
− β logO(1)

(
1

β

)√
γ α

n
− γ logO(1)

(
1

γ

)√
αβ

n
. (2)

Proof Write f = 1A, f =1 = ∑
aij xi→j , A = (

aij

)
, A− = (

aij 1aij <0
)
, A+ =(

aij 1aij >0
)
. We use analogous notation for g = 1B and h = 1C , with g =∑

bij xi→j

and h =∑
cij xi→j .

Then by Proposition 2.14

Pr
σ,τ∼An

[σ ∈ A,τ ∈ B,στ ∈ C] = Eσ,τ∼Sn [f (σ )g (τ)h (στ)]

≥ 2αβγ + 2E
[
f =1 (σ )g=1 (τ )h=1 (στ)

]
− 2e

√
αβγ

n
.
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By Lemma 3.4 we have

E

[
f =1 (σ )g=1 (τ )h=1 (στ)

]
= 〈BA,C〉

(n − 1)2 .

By our level 1 inequality (Lemma 3.6), applied with ε = α (noting that each aij > −α

by Lemma 3.2), we have

‖A−‖2
2 ≤ nα2 logO(1) (1/α) ,

with analogous statements for B− and C−. By our Parseval lemma (Lemma 3.1) we
have

‖A+‖2
2 ≤ ‖A‖2

2 = (n − 1)α,

and similarly for B and C.
We may now expand 〈BA,C〉 by writing A = A+ + A− and similarly for B and

C. After discarding the terms with a positive contribution to 〈BA,C〉 we are left with
the four terms

〈B+A−,C+〉 , 〈B−A+,C−〉 , 〈B+A+,C−〉 , 〈B−A−,C−〉 .

The lemma now follows from Lemma 3.7. �

When (A,B,C) is product-free the above immediately implies the following

bounds on their densities, as if min (αβ,βγ, γ α) ≥ logR n
n

for sufficiently large R

then all terms bar 2αβγ in the right hand side of (2) are o (αβγ ).

Corollary 3.9 Let (A,B,C) be product-free. Write α = |A|
n! , β = |B|

n! and γ = |C|
n! .

Then

min (αβ,βγ, γ α) ≤ logO(1) n

n
.

For future reference, we also note the following slightly stronger bound for the

regime β,γ ≥ ε > 1
δ
√

n
, where we can replace the factor logO(1) n by 1

ε
logO(1)

(
1
ε

)
.

Corollary 3.10 Let (A,B,C) be product-free. Write α = |A|
n! , β = |B|

n! and γ = |C|
n! .

Suppose min (β, γ ) ≥ ε with 1/2 > ε > 1
δ
√

n
. Then

α ≤ 1

εn
logO(1)

(
1

ε

)
.

4 Dictatorial structure

In this section we will expose the dictatorial structure of product-free sets and triples
that are not too sparse. Throughout the remainder of the paper we adopt the following
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notation. We let A,B,C ⊆ Sn and f = 1A,g = 1B,h = 1C . We write the linear parts
in normalized form as

f =1 =
∑

aij xi→j , g=1 =
∑

i,j

bij xi→j , h=1 =
∑

i,j

cij xi→j .

We write A = (
aij

)
, B = (

bij

)
and C = (

cij

)
, where the matrices are distinguished

from the corresponding sets by the font (and also by context). Proposition 2.14 shows
that in order to understand

Eσ,τ∼Sn [f (σ )g (τ)h (στ)]

it is sufficient to understand the linear part

Eσ,τ∼Sn

[
f =1 (σ )g=1 (τ )h=1 (στ)

]
,

for which Lemma 3.4 gives the formula

Eσ,τ∼Sn

[
f =1 (σ )g=1 (τ )h=1 (στ)

]
= 1

(n − 1)2
〈BA,C〉 .

We will decompose the matrix A (and similarly B,C) into three parts:

1. The matrix A− contains the negative coefficients of A, and so represents the neg-
ative correlations that A has with dictators.

2. The matrix Arand contains the small positive coefficients of A, and so represents
the pseudorandom part of f =1.

3. The matrix Astruc contains the large coefficients of A, and so corresponds to the
dictators with which A is heavily correlated.

We expand 〈BA,C〉 according to this decomposition and show that most of the neg-
ative contributions come from the terms

〈BstrucA−,Cstruc〉 + 〈B−Astruc,Cstruc〉 + 〈BstrucAstruc,C−〉 ,

namely those compatible triples of dictators for which two of the matrices have a
strong positive correlation and the third has a negative correlation.

4.1 Parameters

The following parameters will be used throughout the remainder of the paper. We let

μ(A) = α, μ(B) = β, μ(C) = γ, where αβγ > n−O(1).

We fix R much larger than all the absolute constants implicitly appearing in our O (1)

notation and suppose that n is sufficiently large with respect to R. Motivated by the
calculation in Lemma 4.2 below, we let

δ = log−R n, εA = nδα min (β, γ ) , εB = nδβ min (α, γ ) ,



On the largest product-free subsets of the alternating groups 1355

εC = nδγ min (α,β) .

By Corollary 3.9 and the definition of δ, we have εA, εB, εC = o(1) when (A,B,C)

are product-free.
Note also that in our exact result, which is the case of most interest, we have

A = B = C and α = β = γ = �
(

1√
n

)
, so εA = εB = εC = �(δ).

4.2 Our decomposition

For a matrix M = (
mij

)
and an interval I ⊆ R we write MI = (

aij 1aij ∈I

)
. As men-

tioned above, our idea is to decompose our matrix A as the sum

A = A− + Astruc + Arand,

where A− = A(−∞,0), Arand = A(0,εA) and Astruc = A[εA,∞). We decompose B and C
similarly with εB and εC replacing εA.

As mentioned in the introduction, the key to our approach is to combine Lemma
3.7 with the following upper bounds on ‖Arand‖2

2 and ‖A−‖2
2, which will follow easily

from our level-1 inequalities in the previous section.

Lemma 4.1 Let A ⊆ Sn and let A−,Astruc,Arand as above. Then

1. ‖A−‖2
2 ≤ nα2 logO(1) (1/α).

2. ‖Arand‖2
2 ≤ nαεA logO(1) (1/α).

3. ‖Astruc‖2
2 ≤ nα.

Analogous statements hold for B and C.

Proof Statements (1) and (2) follow immediately from Lemma 3.6. Statement (3)
follows from Lemma 3.1 and the fact that ‖f =1‖2

2 ≤ ‖f ‖2
2 = α. �

We are now ready to show that the only significant negative contributions to
〈BA,C〉 come from two structure matrices and one negative coefficient matrix.

Lemma 4.2 If αβγ > n−O(1) then

〈BA,C〉 ≥ 〈BstrucA−,Cstruc〉 + 〈B−Astruc,Cstruc〉 + 〈BstrucAstruc,C−〉
+ √

δn2(logn)O(1)αβγ.

Proof We expand the left hand side according to the decomposition A = A− +
Astruc + Arand and similarly for B, C. For a lower bound we can discard all the terms
that involve an even number of A−,B−,C− as those have a non-negative contribution
to 〈BA,C〉. For the remaining terms not listed on the right hand side above we may
apply Lemmas 3.7 and 4.1 to deduce that they have absolute value at most

< n1.5(logn)O(1)
((√

εB + √
εC

)
α
√

βγ
)
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+ n1.5(logn)O(1)
((√

εA + √
εC

)
β
√

αγ
)

+ n1.5(logn)O(1)
((√

εA + √
εB

)
γ
√

αβ
)

+ αβγn1.5(logn)O(1)

≤ √
δn2(logn)O(1)αβγ.

Here, the first three lines corresponds to terms such as 〈BrandA−,Cstruc〉 and
〈BrandA−,Crand〉, while the fourth line corresponds to the term 〈B−A−,C−〉. The
final inequality follows by plugging in the values of εA, εB, εC . �

5 Star structure

In this section we will refine the dictatorial structure established in the previous sec-
tion to extract a strong star structure that explains how some set or triple in An can be
quite dense yet product-free. These stability results will then be refined by bootstrap-
ping arguments in the next section to deduce our exact and strong stability results.

Equivalence and inversion. The equation ab = c can be written in 6 equivalent
ways, e.g. we may write ca−1 = b and b−1a−1 = c−1. Thus if the triple (A,B,C) is
product-free then we have 6 equivalent product-free triples such as

(
C,A−1,B

)
and(

B−1,A−1,C−1
)
. The structure explaining this product-freeness may appear in any

of 6 different forms, so to avoid cumbersome statements, we will say that a certain
structural statement for (A,B,C) holds up to equivalence if it holds when (A,B,C)

is replaced by one of its 6 equivalent triples. Similarly, for a single product-free set
A, the structural statement for A may apply to A or A−1, so we will say that it holds
up to inversion.

5.1 Goals of this section

Our first main result of this section will show that any product-free set has a strong
star structure under a fairly mild assumption on its density (recall that δ−1 = logR n).

Proposition 5.1 Suppose that A is product-free with μ(A) ≥ δ−2n−2/3. Then up to
inversion there exist x ∈ [n] and I ⊆ [n] such that

μ(A \ 1x→I ) ≤ O(δ−2)n− 2
3 .

Moreover, for each i ∈ I we have μ(Ax→i ) ≥ n−1/3.

Our second main result of the section describes the star structure for product-free
triples under mild density assumptions: up to equivalence B and C must be strongly
correlated with stars at some common vertex x.

Proposition 5.2 Suppose that (A,B,C) is product-free with

α min (β, γ )2 , β min (α, γ )2 , γ min (α,β)2 ≥ δ−6n−2.
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Then up to equivalence there exist x ∈ [n] and I, J ⊆ [n] such that the following
hold:

1. We have μB (1x→I ) ≥ 1
100 and μC (1x→J ) ≥ 1

100 .
2. For each i ∈ I and j ∈ J we have μ(Bx→i ) ≥ εB and μ

(
Cx→j

)≥ εC .

5.2 Associated stars

As mentioned at the start of Sect. 4, the notation introduced there (such as aij and
εA) will be in force for the remainder of the paper. We now introduce some further
notation, that will also be used throughout the remainder of the paper, to describe the
stars associated to the structured parts of A, B and C.

For each i ∈ [n], we define the associated star for (A, i) by

SA(i) =
⋃

j∈LA(i)

1i→j , where LA (i) = {j : aij > εA}.

Similarly, we define the associated inverse star for (A, i) by

S′
A(i) =

⋃

j∈L′
A(i)

1j→i , where L′
A (i) = {j : aji > εA}.

We write

sA (i) =
∑

j∈Li(A) aij

n − 1
and s′

A (i) =
∑

j∈L′
A(i) aji

n − 1
.

We may interpret sA (i) and s′
A (i) combinatorially as the correlation between A

and the corresponding associated (inverse) star by noting that

sA (i) = μ(A ∩ SA (i)) − μ(A)μ(SA (i))

and similarly for s′
A (i). We also define the corresponding notions for B and C sim-

ilarly. We say that an associated star SA (i) is small if sA (i) ≤ δμ(A), or otherwise
we say that it is large. We use this terminology for associated stars and associated
inverse stars for each of A,B,C.

5.3 Overview of proof

We will now give an overview of the arguments used to extract star structure from the
inequalities discussed above. For simplicity in the overview we will concentrate on
the case of a single product-free set A, which is analysed by applying the inequalities
with A = B = C.

For terms such as 〈AstrucA−,Astruc〉 we use the fact that each coefficient of A−
is at least −α, which provides the following lower bound in terms of the associated
stars:

1

(n − 1)2
〈AstrucA−,Astruc〉 ≥ −α

n∑

i=1

sA (i)2 .
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Summing over all the similar terms, we thus reduce our goal to a lower bound

−α

n∑

i=1

(
sA (i)2 + sA (i) s′

A (i) + s′
A (i)2

)
≥ −α3 + X, (3)

where X dominates the error terms unless A has strong star structure.
There will be two main ingredients in this bound. The first ingredient concerns

getting rid of the small associated stars: we use the level-1 inequality (Lemma 3.6)
to show that the ith contribution to (3) is negligible unless either SA (i) or S′

A (i) is
large.

The second ingredient provides a combinatorial analysis of large associated (in-
verse) stars, which is motivated by the heuristic that such stars should be essentially
disjoint. Writing sA := ∑

i sA(i) and s′
A = ∑

i s
′
A(i), we should therefore expect

sA + s′
A to be essentially bounded by α. In terms of the rescaled star sizes

vi := sA(i)

sA + s′
A

and v′
i := s′

A(i)

sA + s′
A

,

our goal is then essentially reduced to showing that

n∑

i=1

v2
i + viv

′
i + v′2

i ≤ 1,

and moreover that if the sum is close to 1 then some vi or v′
i is close to 1, which is

equivalent to the required approximation of A by an associated star or inverse star.

5.4 Relating significant negative contributions to associated stars

We start the implementation of the above overview by expressing the significant neg-
ative contributions to 〈BA,C〉 (as described in Lemma 4.2) in terms of associated
stars.

We write
−→
1 for the all-ones vector in R

n. The following inequalities are immedi-
ate from the facts that each coefficient A− is at least −α, and similarly for B and C,

using the identity
〈
X

−→
1 , Y

−→
1
〉
=∑

i,j,k xij yik for any matrices X = (xij ), Y = (yij ).

Lemma 5.3 We have the following inequalities.

1

(n − 1)2
〈B−Astruc,Cstruc〉 ≥ − β

(n − 1)2

〈
At

struc
−→
1 ,Ct

struc
−→
1
〉
= −β

n∑

i=1

s′
A (i) s′

C (i)

1

(n − 1)2
〈BstrucAstruc,C−〉 ≥ −γ

(n − 1)2

〈
Astruc

−→
1 ,Bt

struc
−→
1
〉
= −γ

∑

i=1

sA (i) s′
B (i)

1

(n − 1)2
〈BstrucA−,Cstruc〉 ≥ −α

(n − 1)2

〈
Bstruc

−→
1 ,Cstruc

−→
1
〉
= −α

∑

i=1

sB (i) sC (i)
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5.5 Small associated stars have a small contribution

We will now bound the terms appearing in Lemma 5.3 by replacing the matrices such
as Astruc that represent the dictatorial structure of A with certain matrices A� that
represent the star structure of A.

We let A� be obtained from Astruc as follows. Each row eiAstruc of Astruc either
corresponds to a large associated star if the sum of its coefficients is > δμ(A)(n− 1),
or otherwise it corresponds to a small associated star. We let A� be obtained from
Astruc by replacing all the rows that correspond to small associated stars with 0.

Similarly, we let A′
� corresponding to large associated inverse stars be obtained

from At
struc by replacing its rows that correspond to small associated inverse stars

with 0. We define B�, C�, B′
� and C′

� similarly.

The following lemma will replace the terms
〈
At

struc
−→
1 ,Ct

struc
−→
1
〉
,
〈
Astruc

−→
1 ,

Bt
struc

−→
1
〉
, and

〈
Bstruc

−→
1 ,Cstruc

−→
1
〉

by the corresponding terms
〈
A′

�

−→
1 ,C′

�

−→
1
〉
,
〈
A�

−→
1 ,

B′
�

−→
1
〉
, and

〈
B�

−→
1 ,C�

−→
1
〉
. The applicability of the lemma to these terms will follow

from the level-1 inequality (Lemma 3.6).

Lemma 5.4 Let M = (
mij

)
,N = (

nij

)
be matrices with entries in [n−2,1]. Let

η1, η2 > 0, and suppose for each i that

‖M(
2−i ,21−i

]‖2
2 ≤ η12−i logO(1) n,

‖N(
2−i ,21−i

]‖2
2 ≤ η22−i logO(1) n.

Define matrices M� = (m�
ij ) and N� = (n�

ij ) by

m�
ij = mij 1∑

j ′ mij ′>δη1 and n�
ij = nij 1∑

j ′ nij ′>δη2 .

Then we have
∣∣∣
〈
M

−→
1 ,N

−→
1
〉
−
〈
M�

−→
1 ,N�

−→
1
〉∣∣∣≤ δη1η2 logO(1) n

+ δη1‖N�‖1 + δη2‖M�‖1.

Proof We have
∣∣∣
〈
(M − M�)

−→
1 ,N�

−→
1
〉∣∣∣≤ ‖ (M − M�)

−→
1 ‖∞‖N�

−→
1 ‖1 ≤ δη1‖N�‖1,

and similarly
∣∣∣
〈
M�

−→
1 , (N − N�)

−→
1
〉∣∣∣≤ δη2‖M�‖1.

Let M̃ = M − M� and Ñ = N − N�. It remains to show that
〈
M̃

−→
1 , Ñ

−→
1
〉
≤ δη1η2 logO(1) n.



1360 P. Keevash et al.

We will use the dyadic expansion

M̃ =
2�logn�∑

i=1

M̃(
2−i ,21−i

] and Ñ =
2�logn�∑

i=1

Ñ(
2−i ,21−i

].

Each of the resulting terms will be bounded using the following claim.

Claim 5.5 Let M ′,N ′ be matrices such that each row of M ′ has at most m′ nonzero
coefficients and each row of N ′ has at most n′ nonzero coefficients. Then

∣∣∣
〈
M ′−→1 ,N ′−→1

〉∣∣∣≤
√

m′n′‖M ′‖2‖N ′‖2.

Proof This follows from Cauchy–Schwarz as

∣∣∣
〈
M ′−→1 ,N ′−→1

〉∣∣∣=
∣∣∣∣∣

∑

i

〈(
M ′)t ei ,

−→
1
〉 〈(

N ′)t ei ,
−→
1
〉
∣∣∣∣∣

≤
∑

i

√
m′

∥∥
∥
(
M ′)t ei

∥∥
∥

2

√
n′
∥∥
∥
(
N ′)t ei

∥∥
∥

2

≤ √
m′n′ ∥∥M ′∥∥

2

∥∥N ′∥∥
2 . �

For each row v of M̃(
2−i ,21−i

], all nonzero coefficients are ≥ 2−i and 〈v,1〉 ≤ δη1,

so v has ≤ 2iδη1 nonzero coefficients. Similarly each row of Ñ(
2−j ,21−j

] has ≤ 2j δη2

nonzero coefficients. Applying the claim, we obtain

〈
M̃

−→
1 , Ñ

−→
1
〉
=

2�logn�∑

i=1

2�logn�∑

j=1

〈
M̃(

2−i ,21−i
]−→1 , Ñ(

2−j ,21−j
]−→1

〉

≤
2�logn�∑

i=1

2�logn�∑

j=1

2
i+j

2 δ
√

η1η2‖M̃(
2−i ,21−i

]‖2‖Ñ(
2−j ,21−j

]‖2

≤4δη1η2 logO(1) n,

where the final inequality uses the assumption of the lemma. �

5.6 Combinatorial analysis of the star structure matrices

In the next section we will use Lemma 5.4 to complete our transition from dictatorial
structure matrices Astruc to the star-structure matrices A�. To achieve this, we first
need to control the error terms that will arise from applying Lemma 5.4, namely the
L1-norms of the star structure matrices.

As discussed in the overview, this comes down to a combinatorial argument show-
ing that the corresponding large associated stars and inverse stars are essentially dis-
joint, provided that A,B,C (and so the parameters εA, εB, εC ) are sufficiently large.
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This is captured by saying for each E ∈ {A,B,C} that
∑

μ(E ∩ S) ≈ μ(E), where
the sum is over all large associated stars and inverse stars of E.

Lemma 5.6 Let ε > 0, δ > 0 and E ⊆ Sn with μ(E) < 10−3ε2. Let S be a collection
of stars and inverse stars, containing for each x ∈ [n] at most one star at x and at
most one inverse star at x. Suppose for each S ∈ S that δμ(E) ≤ μ(E ∩ S) and
ε
2μ(S) ≤ μ(E ∩ S). Then

∑

S∈S
μ(E ∩ S) ≤ μ(E) + 25

ε2 μ(E)2 + 1.5

δ2n
.

Proof Write S = S+ ∪ S−, where S+ consists of stars and S− consists of inverse
stars.

We claim for any S ′ ⊆ S+ or S ′ ⊆ S− that

�S ′ :=
∑

S∈S ′
μ(E ∩ S) ≤ μ(E) + 5

ε2 �2
S ′ . (4)

To see this, we first apply Inclusion–Exclusion to get

μ(E) ≥ �S ′ −
∑

{S1,S2}⊆S ′
μ(S1 ∩ S2) . (5)

Next, for any distinct stars S1, S2 ∈ S ′, we can write their intersection S1 ∩ S2 as a
union of duumvirates Ux1x2→y1y2 , where Ux1→y1 ⊆ S1 and Ux2→y2 ⊆ S2, so

μ(S1 ∩ S2) ≤
(

n

n − 1

)
μ(S1)μ (S2) ≤ 5

ε2
μ(E ∩ S1)μ(E ∩ S2).

Summing over distinct S1, S2 in S ′ and substituting in (5) we deduce (4), as claimed.
Next we claim that �S± ≤ 1.1μ(E). Indeed, if this were false then we find S ′ ⊆

S± with 1.1μ(E) ≤ �S ′ ≤ 2.1μ(E). However, then (4) gives 1.1μ(E) ≤ μ(E) +
5
ε2 (2.1μ(E))2, which contradicts μ(E) < 10−3ε2. Thus the claim holds. As �S± ≥
|S±|δμ(E) we deduce |S±| < 1.1δ−1.

Now we repeat the calculation for (4) with S in place of S ′. The upper bound on
μ(S1 ∩ S2) needs an extra term of 1

n
for a dictator Ux→y in the intersection of a star

at x and an inverse star at y. As |S±| < 1.1δ−1, we obtain

�S :=
∑

S∈S
μ(E ∩ S) ≤ μ(E) + 5

ε2
�2
S + (1.1δ−1)2

n
.

As �S = �S+ + �S− ≤ 2.2μ(E) the lemma follows. �

Lemma 5.6 can be restated in terms of the star-structure matrices. It translates to
the following upper bound on their 1-norms.
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Lemma 5.7 For (A,B,C) as in Proposition 5.2 we have 1
n−1

(‖A�‖1 + ‖A′
�‖1

) ≤
α (1 + 2δ), etc for B,C.

Proof Let SA be the set of large associated stars for A. For each S ∈ SA we have
μ(A ∩ S) ≥ δμ(A) by definition. On the other hand, for each dictator 1i→j con-
tained in S we have

εA < aij = n − 1

n

(
μ
(
Ai→j

)− α
)
,

which gives μ
(
Ai→j

) ≥ εA, and so μ(A ∩ S) ≥ εAμ(S). Hence we can apply
Lemma 5.6 with ε = εA, which gives

1

n − 1

(‖A�‖1 + ‖A′
�‖1

)≤
∑

S∈SA

μ(A ∩ S) ≤ α + 25α2

ε2
A

+ 1.5

δ2n
.

Substituting εA = nδα min(β, γ ) and using α min (β, γ )2 ≥ δ−6n−2 gives ε2
A/α ≥

δ−4. As our assumptions imply α ≥ δ−3n−1, we have 1.5
δ2n

≤ 1.5δα, so the lemma
follows. �

5.7 Reducing to large associated stars

The following lemma combines everything that we proved so far. It reduces us to

upper bounding the star structure inner products
〈
A′

�

−→
1 ,C′

�

−→
1
〉
,
〈
A�

−→
1 ,B′

�

−→
1
〉

and
〈
B�

−→
1 ,C�

−→
1
〉
.

Lemma 5.8 Suppose that (A,B,C) are as in Proposition 5.2. Then we have

Pr
σ,τ∼Sn

[σ ∈ A,τ ∈ B,στ ∈ C] ≥ 2αβγ (1 − δ1/4)

− 2

(n − 1)2

∣∣∣β
〈
A′

�

−→
1 ,C′

�

−→
1
〉
+ γ

〈
A�

−→
1 ,B′

�

−→
1
〉
+ α

〈
B�

−→
1 ,C�

−→
1
〉∣∣∣ .

Proof By Proposition 2.14 (reducing to the linear term) we have

Pr
σ,τ∼Sn

[σ ∈ A,τ ∈ B,στ ∈ C] ≥ 2αβγ + 2

(n − 1)2
〈BA,C〉 − O

(√
αβγ

n

)
.

Our assumption implies αβγ ≥ δ−6n−2, so the last term is O(δ3αβγ ). Recall from
Lemma 4.2 (reducing to the significant negative terms) that

〈BA,C〉 ≥ 〈B−Astruc,Cstruc〉 + 〈BstrucA−,Cstruc〉 + 〈BstrucAstruc,C−〉
− √

δn2(logn)O(1)αβγ.

Applying Lemma 5.3 (lower bounding the negative entries) we obtain

〈BA,C〉 ≥ −β
〈
At

struc
−→
1 ,Ct

struc
−→
1
〉
− γ

〈
Astruc

−→
1 ,Bt

struc
−→
1
〉
− α

〈
Bstruc

−→
1 ,Cstruc

−→
1
〉
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− √
δn2(logn)O(1)αβγ.

It remains to approximate the above matrix inner products by the corresponding terms
involving star structure matrices. The calculations for the three terms are analogous,

so we only show the details for the first term −β
〈
At

struc
−→
1 ,Ct

struc
−→
1
〉
. We will apply

Lemma 5.4 to M = At
struc and N = Ct

struc. The level-1 inequality (Lemma 3.6) shows
that its hypotheses are satisfied with η1 = αn and η2 = γ n. Thus we obtain

∣∣
∣
〈
At

struc
−→
1 ,Ct

struc
−→
1
〉
−
〈
A′

�

−→
1 ,C′

�

−→
1
〉∣∣
∣

≤ δαγ n2(logn)O(1) + δαn‖C′
�‖1 + δγ n‖A′

�‖1.

By Lemma 5.7 we have ‖A′
�‖1 ≤ α(1 + 2δ)n and ‖C′

�‖1 ≤ γ (1 + 2δ)n. Re-
calling that 〈BA,C〉 is multiplied by 2

(n−1)2 in the main calculation, we see

that replacing −β
〈
At

struc
−→
1 ,Ct

struc
−→
1
〉

by −β
〈
A′

�

−→
1 ,C′

�

−→
1
〉

incurs an error term

≤ δαβγ (logn)O(1). Similar reasoning applies to the other terms, so the lemma fol-
lows. �

5.8 Product-free triples are somewhat explained by stars

We have now prepared the two main ingredients described in the proof overview
earlier in the section: we have shown that the contributions from small associated
stars are negligible and reduced the analysis of large associated stars to bounding the
star structure terms that appear in Lemma 5.8. Our final lemma in preparation for the
proof of Proposition 5.2, shows that the star structure terms are small except where
they have a common row with a large sum, which corresponds to the associated stars
with common centre required to prove Proposition 5.2.

Lemma 5.9 Let η1, η2 > 0. Let M�,N� be matrices with nonnegative coefficients and

suppose that there is no coordinate i with both (M�
−→
1 )i >

η1
100 and (N�

−→
1 )i >

η2
100 .

Then
〈
M�

−→
1 ,N�

−→
1
〉
≤ η2

100
‖M�‖1 + η1

100
‖N�‖1.

Proof The terms of
〈
M�

−→
1 ,N�

−→
1
〉

that correspond to a coordinate in which M�
−→
1

is ≤ η1
100 sum up to at most η1

100‖N�
−→
1 ‖1. In the rest of the terms the corresponding

coordinate of N�
−→
1 is at most η2/100. We therefore have
〈
M�

−→
1 ,N�

−→
1
〉
≤ η1

100
‖N�

−→
1 ‖1 + η2

100
‖M�1‖1

= η1

100
‖N�‖1 + η2

100
‖M�‖1. �

We are now ready to prove Proposition 5.2.
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Proof of Proposition 5.2 By Lemma 5.8 we have

αβγ ≤ 2

n2

(
β
〈
A′

�

−→
1 ,C′

�

−→
1
〉
+ γ

〈
A�

−→
1 ,B′

�

−→
1
〉
+ α

〈
B�

−→
1 ,C�

−→
1
〉
.
)

.

If there is no coordinate i in which (A′
�

−→
1 )i > αn/100 and (C′

�

−→
1 )i > γ n/100 then

Lemma 5.9 and Lemma 5.7 bound
〈
A′

�

−→
1 ,C′

�

−→
1
〉

by ‖A′
�‖1γ n/100+‖C′

�‖1αn/100 <

1
40αγn2. Similar calculations apply to the other two terms. However, these bounds
cannot all hold, as then the inequality above would give αβγ < 3 · 2

40αβγ , which
is a contradiction. Thus we have the required coordinate i for one of the terms,

e.g. for the third term this would give (B�
−→
1 )i > βn/100 and (C�

−→
1 )i > γ n/100,

so μB(SB(i)) > 1/100 and μC(SC(i)) > 1/100, which corresponds to the stars de-
scribed in the Proposition. �

5.9 A dense product-free set is explained by a single star

Now we will specialise the analysis of star structure terms from product-free triples
to a single product-free set, where we will obtain the stronger structural conclusion
that a single star explains the lack of products. We require the following lemma that
bounds the star structure terms under the assumption that no single star accounts for
almost all of the star structure matrices.

Lemma 5.10 Let ζ ∈ [0,1/2] and suppose that

max
(
‖A�

−→
1 ‖∞,‖A′

�

−→
1 ‖∞

)
≤ (1 − ζ )

(‖A�‖1 + ‖A′
�‖1

)
.

Then
〈
A�

−→
1 ,A�

−→
1
〉
+
〈
A′

�

−→
1 ,A′

�

−→
1
〉
+
〈
A′

�

−→
1 ,A�

−→
1
〉
≤ (1 − ζ/2)

(‖A�‖1 + ‖A′
�‖1

)2
.

Proof The lemma is immediate from the following claim applied to v = A�
−→
1

‖A�‖1+‖A′
�‖1

and u = A′
�

−→
1

‖A�‖1+‖A′
�‖1

.

Claim 5.11 Let v,u ∈ [0,1 − ζ ]n with ‖v‖1 + ‖u‖1 = 1. Then

‖v‖2
2 + ‖u‖2

2 + 〈v,u〉 ≤ 1 − ζ(1 − ζ ).

To see this, suppose that v1 + u1 ≥ vi + ui for all other i. Then we have

‖v‖2
2 + ‖u‖2

2 + 〈v,u〉 =
n∑

i=1

(
(vi + ui)

2 − viui

)

≤
n∑

i=1

(v1 + u1) (vi + ui) − v1u1
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= v1 + u1 − v1u1.

The function f (u1, v1) := v1 + u1 − v1u1 is increasing in both coordinates, so is
maximised when u1 + v1 = 1. Now g(v1) := f (1 − v1, v1) = 1 − v1(1 − v1) is a
convex function of v1, so is maximised at the boundary of its domain [ζ,1 − ζ ]. This
proves the claim, and the lemma follows. �

Now we can show for any moderately dense product-free set A ⊆ An that some
associated star or inverse star explains A up to a factor 1 + O(δ1/4).

Lemma 5.12 Suppose that A ⊆ An is product-free with μ(A) ≥ δ−2n−2/3. Then
maxi∈[n] max{sA(i), s′

A(i)} = (1 + O(δ1/4))α.

Proof We define ζ ′ ∈ [0,1] by

max
(
‖A�

−→
1 ‖∞,‖A′

�

−→
1 ‖∞

)
= (1 − ζ ′)(‖A�‖1 + ‖A′

�‖1)

and let ζ = min(ζ ′,1/2). Applying Lemma 5.8 with A = B = C, then Lemma 5.10,
and then Lemma 5.7, we obtain

(n − 1)2α3
(

1 − O
(
δ1/4

))
≤ α

(〈
A′

�

−→
1 ,A′

�

−→
1
〉
+
〈
A�

−→
1 ,A′

�

−→
1
〉
+
〈
A�

−→
1 ,A�

−→
1
〉)

≤ α
(‖A�‖1 + ‖A′

�‖1
)2

(1 − ζ/2)

≤ n2α3 (1 − ζ/2) (1 + O (δ)) .

Thus ζ = O(δ1/4), so ζ ′ = ζ , and ‖A�‖1 + ‖A′
�‖1 = (1 + O(δ1/4))αn, so by defini-

tion of ζ ′ we have

(n − 1)max
i∈[n] max{sA(i), s′

A(i)} = max
(
‖A′

�

−→
1 ‖∞,‖A′

�

−→
1 ‖

)
= (1 + O(δ1/4))αn.

This completes the proof. �

5.10 A dense product-free set is close to a single star

Now we will refine the star structure obtained in the previous subsection to prove
Proposition 5.1, which shows that any moderately dense product-free set is closely
approximated by a single star. Our idea is to use the (inverse) star S provided above
with the fact that (A,A,A \ S) is a product-free triple to which we can apply Propo-
sition 5.2 to deduce that A \ S is small.

Proof of Proposition 5.1 By Lemma 5.12 there is a large associated (inverse) star S1
such that μ(A \ S1) < O(δ1/4)μ (A). Without loss of generality S1 = 11→I1 . Let

I =
{
i : μ(A1→i ) ≥ n− 1

3

}
,

let S = 11→I , and let C = A \ S.
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We assert that μ(C) ≤ δ−2n−2/3. Suppose otherwise. Then the triple (A,A,C) is
product-free, and we can apply Proposition 5.2 to deduce that its conclusion holds for
some triple equivalent to (A,A,C). In principle, the possibilities are for some i that

1. μA(SA(i)) > 1/100 and μA(S′
A(i)) > 1/100, or

2. μA(S′
A(i)) > 1/100 and μC(S′

C(i)) > 1/100, or
3. μA(SA(i)) > 1/100 and μC(SC(i)) > 1/100.

However, μA(SA(1)) is so large that it precludes the existence of any other associated
star or inverse star S with μA(S) > 1/100, so the only possibility is that (3) holds

with i = 1. However, by definition of C we have μ
(
C1→j

) ≤ n− 1
3 for all i, but as

SC(1) �= ∅ we can choose j with

μ(C1→j ) > c1j > εC = nδμ(C)μ(A) > n− 1
3 .

This contradiction completes the proof. �

5.11 Product-free triples when one set has no large associated stars

We have now completed the proofs for the main goals of the section. For future refer-
ence we will conclude the section by proving a star-structure theorem for product-free
triples (A,B,C) where A has no large associated stars and inverse stars. The ratio-
nale is that after reordering we expect B and C to look like stars and A to look like
1I→J . We therefore expect A to have no large associated stars. Under this assump-
tion, we strengthen the conclusion of Proposition 5.2 (product-free triples are some-
what explained by stars) to the same level of accuracy that we achieved for a single
product-free set: we show that B and C are each explained up to a factor 1 +O(δ1/4)

by a single star with the same centre.

Lemma 5.13 Suppose that (A,B,C) are as in Proposition 5.2 and that A has no
associated stars and inverse stars. Then there exists i ∈ [n] such that μ(B \ SB (i)) ≤
O(δ1/4)β and μ(C \ SC (i)) ≤ O(δ1/4)γ .

Proof The proof is similar to that of Lemma 5.12. By assumption we have A� and
A′

� = 0, so Lemma 5.8 reduces to

(n − 1)2αβγ
(

1 − O
(
δ1/4

))
= α

〈
B�

−→
1 ,C�

−→
1
〉
.

Let v = B�
−→
1

‖B�‖1
and u = C�

−→
1

‖C�‖1
. Then 〈v,u〉 > 1 − O(δ1/4), as otherwise Lemma 5.7

would give

(n−1)2αβγ < (1−�(δ1/4))α‖B�‖1‖C�‖1 < (1−�(δ1/4))α(1+2δ)βn(1+2δ)γ n,

which is a contradiction. Now in the place of Claim 5.11 we must show that there is
some coordinate i with both vi and ui at least 1 − O

(
δ1/4

)
. As

〈v,u〉 ≤ ‖v‖∞‖u‖1 = ‖v‖∞
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we have ‖v‖∞ ≥ 1 − O
(
δ1/4

)
and similarly ‖u‖∞ ≥ 1 − O

(
δ1/4

)
, so each of u and

v has one coordinate equal to 1 − O
(
δ1/4

)
with the others all O

(
δ1/4

)
. It remains to

note that ‖v‖∞ and ‖u‖∞ must be achieved at the same coordinate, as otherwise we
would have

〈v,u〉 ≤ O
(
δ1/4

)
(‖v‖1 + ‖u‖1) = O

(
δ1/4

)
,

which contradicts 〈v,u〉 > 1 − O(δ1/4). �

6 Bootstrapping

In this section we will use the star structure established in the previous section to
prove our main results, which give exact extremal results and strong stability results
for product-free sets in An. The proofs will use the large restrictions provided by the
star structure to deduce that other restrictions must be much smaller. This will allow
us to progressively tighten our approximate structure until it becomes exact.

6.1 Product-free restrictions

As discussed in Sect. 1.5, if some product-free A ⊆ An is well approximated by
a star 1x→I then for each i, i′ ∈ I we will see that A has small density in Di→i′
by inspecting the triple (Ai→i′ ,Ax→i ,Ax→i′) and factoring out the corresponding
dictators. This is formalised by the following lemma.

Lemma 6.1 Let ε > 1
δ
√

n
, and let (A,B,C) be product-free. Suppose that μ

(
Bi→j

)≥
ε and μ(Ci→k) ≥ ε. Then

μ
(
Aj→k

)≤ logO(1) (1/ε)

εn
.

Proof We apply the following transformation that preserves products: let B ′ =
(jn)Bi→j (ni), A′ = (nk)Aj→k (nj) and C′ = (nk)Ci→k (ni). Then the equa-
tion ab = c in

(
A′,B ′,C′) is equivalent to the corresponding equation inside(

Aj→k,Bi→j ,Ci→k

)
. As

(
A′,B ′,C′) can be viewed as product-free subsets of An−1

the lemma follows from Corollary 3.10. �

The following lemma shows that if (A,B,C) are product-free and B , C are dense
in stars 1x→I , 1x→J then A is sparse outside of 1I→J := {σ : σ(I) ∩ J = ∅}.

Lemma 6.2 Let ε > 1
δ
√

n
and let (A,B,C) be a product-free triple. Let x ∈

[n] and let I, J ⊆ [n]. Suppose that for each i ∈ I and each j ∈ J we have
μ(Bx→i ) ,μ

(
Cx→j

)≥ ε. Suppose further that μ(A) ≥ 1
δεn

. Then |I | |J | ≤ 10n logn

and

μ
(
A \ 1I→J

)≤ |I | |J | logO(1) (1/ε)

εn2
.
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Proof By a union bound and Lemma 6.1 we have

μ
(
A \ 1I→J

)≤
∑

i∈I,j∈J

1

n
μ
(
Ai→j

)≤ |I | |J |
n

logO(1)(1/ε)

εn
. (6)

To complete the proof we show that |I | |J | ≤ 10n logn. Suppose otherwise.
Then by removing elements from either I or J we may assume that |I | |J | ∈
(10n logn,20n logn). In which case we have

μ
(
1I→J

)=
(

1 − |J |
n

)(
1 − |J |

n − 1

)
· · ·

(
1 − |J |

n − |I |
)

≤
(

1 − |J |
n

)|I |
≤ e−|J ||I |/n ≤ n−3,

Together with (6) this yields

μ(A) ≤ logO(1) n

εn
+ n−3,

which contradicts the hypothesis μ(A) ≥ 1
δεn

. This shows that |I | |J | ≤ 10n logn.
�

6.2 Stability result for product-free sets

We now prove the following stronger version of Theorem 1.2.

Theorem 6.3 Suppose that A is product-free with μ(A) ≥ δ−2n−2/3. Then up to in-
version there exist x ∈ [n] and I ⊆ [n] with |I |2 ≤ 10n logn such that μ(Ax→i ) ≥
n− 1

3 for each i ∈ I and

μ
(
A \ Fx

I

)≤ O
(
δ−2

)
n−2/3.

Proof By Proposition 5.1, up to inversion there exist x ∈ [n] and I ⊆ [n] such that for

each i ∈ I we have μ(Ax→i ) ≥ n−1/3 and μ(A \ 1x→I ) ≤ O(δ−2)n− 2
3 . Without loss

of generality we assume this for A rather than A−1. By Lemma 6.2 with A = B = C

and ε = n− 1
3 we have |I |2 ≤ 10n logn and

μ
(
A \ 1I→I

)≤ logO(1) n

n2/3
.

This shows that

μ
(
A \ Fx

I

)≤ μ(A \ 1x→I ) + μ
(
A \ 1I→I

)≤ O
(
δ−2

)
n− 2

3 . �
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6.3 Bootstrapping triples

With slightly more work we are also able to prove the following stability result for
product-free triples that are somewhat sparse (we replace a log factor by a log log
factor).

Theorem 6.4 There is an absolute constant K such that if n is sufficiently large and
(A,B,C) is a product-free triple in An with

min (αβ,βγ, γ α) ≥ (log logn)K

n

then up to equivalence there exist I, J ⊆ [n] , x ∈ [n] with |I | |J | ≤ 10n logn such
that

μB (1x→I ) ,μC (1x→J ) ≥ 1 − O
(
δ1/4

)
and μ

(
A \ 1I→J

)≤ δ−2n.

In particular, we have

μ
(
A \ 1I→J

)= o(α), μ(B\1x→I ) = o(β), μ(C\1x→J ) = o(γ ).

The idea of the proof is to start with the weaker star structure guaranteed from
Proposition 5.2. Lemma 6.2 will then easily imply a weaker variant of the theorem
with 1 − O

(
δ1/4

)
replaced by 1

100 . This will allow us to show that actually A has no
large associated stars and inverse stars, so instead of Proposition 5.2 we may apply
the more suitable Lemma 5.13.

Proof We claim that α ≥ 1
δ100n

. Indeed, otherwise our assumption implies ε :=
min(β, γ ) > (log logn)Kδ100, and then Corollary 3.10 gives α ≤ logO(1)(1/ε)

εn
, so re-

calling δ−1 = logR n we have min(αβ,αγ ) <
(log logn)O(1)

n
, which contradicts our as-

sumption for K large enough. Thus we have the claimed lower bound on α.
Similarly, we have the same bound on β and γ . Combining these with min(αβ,βγ,

γ α) ≥ (log logn)K

n
we deduce the assumption of Proposition 5.2. By this Proposition,

up to equivalence of the triple (A,B,C) there exist associated stars SB (x) = 1x→I ,
SC (x) = 1x→J , such that μB (SB (x)) > 1

100 and μC (SC (x)) ≥ 1
100 . Our assump-

tions imply min (εB, εC) ≥ δ, so by Lemma 6.2 we have |I | |J | ≤ 10n logn and

μ
(
A \ 1I→J

)≤ 1

δ2n

We now assert that A has no large associated star or inverse star S. Indeed, for
such S, as μ(A ∩ S) ≥ δμ(A) we would have

μ(S) ≤ μ(A)

εA

≤ μ(A)

δ
≤ μ(A ∩ S)

δ2
.

On the other hand,

μ(A ∩ S) ≤ μ
(
S ∩ 1I→J

)+ μ
(
A \ 1I→J

)
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≤ 2μ(S) e− |I ||J |
n + 1

δ2n
.

We have

|I ||J |
n2

≥ μ(SB(x))μ(SC(x)) ≥ β

100

γ

100
>

(log logn)K

104n
,

so

μ(A) ≤ δ−1μ(A ∩ S) ≤ 2μ(S) δ8 + 1

δ3n
≤ 2μ(A) δ6 + 1

δ3n
.

This contradicts the bound μ(A) = α ≥ 1
δ100n

, so such S cannot exist.
Thus we can apply Lemma 5.13 to obtain the required stronger approximation of B

and C by associated stars, i.e. μB (SB (x)) and μC (SC (x)) are both 1−O
(
δ1/4

)
. �

6.4 Further bootstrapping of product-free sets

Recall from Theorem 6.3 that if A is a dense product-free set then μ
(
A \ Fx

I

)
is

small for some x and I . If A is extremal this implies μFx
I

(A) ≈ 1. Our goal in this
subsection is to show for such A that

μ
(
A \ Fx

I

)≤ 1

2
μ
(
Fx

I \ A
)

and therefore any extremal product-free A must be of the form Fx
I . Our proof will

also work for sets that are sufficiently close to extremal.
We require various lemmas that will be applied to certain restrictions of A. The

first considers a product-free triple (A,B,C) (which will be restrictions of the orig-
inal A) and shows that if two sets are dense in sets of the form 1I→I then the third
must be empty.

Lemma 6.5 Let I1, I2, J1, J2 ⊆ [n] with n sufficiently large and |I1| + |I2| + |J1| +
|J2| ≤ 40

√
n. Suppose that (A,B,C) is product-free. If μI1→J1

(C) and μI2→J2
(B)

are both at least 1 − e−2000 then A is empty. Similar statements hold for all permu-
tations of ABC.

Proof We only prove the first statement, as the proofs for permutations of ABC are
similar. Suppose on the contrary that there exists τ ∈ A. Let σ ∼ Sn be a random
permutation. We will derive a contraction by showing that Pr [σ ∈ B,τσ ∈ C] > 0.
By assumption, we have

Pr [σ ∈ B,τσ ∈ C] ≥ Pr
[
σ (I1) ⊆ J1, τσ (I2) ⊆ J2

]− 2e−2000.

On the other hand,

Pr
[
σ (I1) ⊆ J1, τσ (I2) ⊆ J2

]= μ
(

1I1→J1
∩ 1I2→τ−1

(
J2
)
)
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≥
(

1 − |I1| + |I2| + |J1| + |J2|
n

)|I1|+|I2|

> 2e−2000,

provided that n is sufficiently large. Indeed, the second inequality follows from defin-
ing a random σ on the indices i ∈ I1 ∪ I2 one by one, noting that in each step we have
at least n − |I1| − |I2| − |J1| − |J2| free options. Thus Pr [σ ∈ B,τσ ∈ C] > 0, con-
trary to our assumption that (A,B,C) is product-free, so A = ∅. �

We now show that if (A,B,C) is a product-free triple, B contains almost all of
1I1→J1

and A contains almost all of Fx
I then C is small.

Lemma 6.6 Let ζ ∈ (
0, e−2000

)
and let (A,B,C) be a product-free triple in An with n

sufficiently large. Suppose for some I1, J1, I of size ≤ 10
√

n that μI1→J1
(B) ≥ 1− ζ

and μFx
I

(A) ≥ 1 − 1
2e−2000. Then

μ(C) ≤
(
e2000ζ

) |I |
2

.

Moreover, if ζ <
|I |

2e2000n
then C is empty.

Proof Let

I2 := {i ∈ I : μI→I (Ax→i ) ≥ 1 − e−2000}.

By definition of Fx
I , our assumption on A and Markov’s inequality we have |I2| ≥ |I |

2 .
Similarly, letting

J := {j ∈ [n] : μI1→J1

(
Bj→x

)≥ 1 − e−2000},

Markov’s inequality applied to B gives |J | ≥ (
1 − e2000ζ

)
n.

For each i ∈ I2 and j ∈ J we can apply Lemma 6.5 to the triple (Ax→i ,Bj→x,

Cj→i ) to conclude that each such Cj→i is empty, so C ⊆ 1J→I2
. This shows that

μ(C) ≤ μ
(

1J→I2

)
=

|I2|∏

i=1

∣∣J
∣∣− i

n − i
≤
(

1 −
∣∣J
∣∣

n

)|I2|
≤
(
e2000ζ

)|I |/2
.

Finally, if ζ <
|I |

2e2000n
then

∣∣I2
∣∣< |J |, and so C ⊆ 1J→I2

= ∅. �

After the above preliminary lemmas, we now come to the main engine of our
bootstrapping approach, which shows that if μ

(
A \ Fx

I

)
is somewhat small then it is

much smaller than μ
(
Fx

I \ A
)
.

Lemma 6.7 Let A ⊆ An be product-free with n sufficiently large. Suppose that

I := {i ∈ [n] : μ(A1→i ) ≥ n− 1
3 }.
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satisfies
√

n
10 < |I | ≤ 10

√
n. Suppose μFx

I
(A) ≥ 1 − ζ with ζ ∈ (

0, e−20000
)
. Then

μ
(
A \ Fx

I

)≤ ζn−2/3 logO(1) n.

Moreover, if ζ ≤ 1
e8000√n

then A ⊆ Fx
I .

Proof We define I2 ⊆ I1 ⊆ I by

I1 = {i ∈ I : μI→I (Ax→i ) ≥ 1 − e−2000} and

I2 = {i ∈ I1 : μI→I (Ax→i ) ≥ 1 − 2ζ }.

By Markov’s inequality we have |I \ I1| ≤ e2000ζ |I | and |I2| ≥ 1
2 |I |.

Let J ⊆ I consist of the
⌊

80 · e4000ζ
√

n
⌋

indices i ∈ I in which μ(Ax→i ) is
largest. We partition

(
A \ Fx

I

)
into the following three bad events and bound each

of their measures separately.

1. Let B1 = {σ ∈ A : σ(x) ∈ I and σ(I) ∩ I �= ∅}.
2. Let B2 = {σ ∈ A : σ(x) ∈ J }.
3. Let B3 = {σ ∈ A : σ(x) ∈ I ∪ J }.
To prove the lemma, it suffices to show for each i ∈ [3] that μ(Bi) < ζn−2/3 logO(1) n,
and if moreover ζ ≤ 1

e8000√n
then Bi = ∅.

Upper bounding μ(B1). By a union bound we have

μ(B1) ≤
∑

i,j∈I

μ
(
Ai→j

)

n
.

By definition of I1, for each i, j ∈ I1 we can apply Lemma 6.5 to (Ax→j ,Ai→j ,

Ax→i ) to obtain Ai→j = ∅. For general i, j ∈ I we may apply Lemma 6.1 to obtain

μ
(
Ai→j

)≤ n− 2
3 logO(1) n.

Therefore,

μ(B1) ≤
∑

i,j∈I

μ
(
Ai→j

)

n
≤ 2 |I \ I1| |I |n−5/3 logO(1) n ≤ ζn−2/3 logO(1) n.

Moreover, if ζ ≤ 1
e8000√n

then |I\I1| ≤ e2000ζ |I | < e−6000|I |/√n < 1, i.e. I1 = I

and so B1 = ∅.
Upper bounding μ(B2). By definition of I , a simple union bound gives

μ(B2) ≤
∑

j∈J

μ
(
Ax→j

)

n
≤ |J |

n
n−1/3 = O(ζn−5/6).

Moreover, if ζ ≤ 1
e8000√n

then |J | < 1, i.e. J = ∅ and so B2 = ∅,
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Upper bounding μ(B3). Here we will use the bound μ(B3) ≤ μ
(
Ax→j

)
, where

we fix j ∈ I ∪ J to maximise μ
(
Ax→j

)
.

It suffices to show that μ
(
Ax→j

)≤ (
2e2000ζ

)√
n

20 , and moreover that if ζ ≤ 1
e8000√n

then Ax→j = ∅. We suppose for a contradiction that this fails.
We will consider J ′ := J ∪ {j}, noting that |J ′| = ⌊

80 · e4000ζ
√

n
⌋ + 1 and for

each j ′ ∈ J ′ we have μ
(
Ax→j ′

)≥ μ
(
Ax→j

)
.

We will apply Lemma 6.6 to the product-free triple
(
Ai→j ′ ,Ax→i ,Ax→j ′

)
for

each i ∈ I2 and j ′ ∈ J ′. By our above assumption on C := Ax→j the conclusion of
this lemma does not hold, so one of the hypotheses does not hold. By definition of I2,
the hypothesis for B := Ax→i is satisfied with 2ζ in place of ζ . Thus the hypothesis
for Ai→j ′ does not hold, so

μFx
I

(
Ai→j ′

)≤ 1 − 1
2e−2000.

Inclusion–Exclusion then shows that

μFx
I

(
A
)≥

∑

i∈I2,j
′∈J ′

e−4000μFx
I

(
1i→j ′

)−
∑

i1,i2∈I2
j1,j2∈J ′

μFx
I

(
1i1→j1 ∩ 1i2→j2

)

≥ e−4000|I2||J ′|/n − 2|I2|2|J ′|2/n2 ≥ e−4000|I2||J ′|/2n.

However, by assumption μFx
I

(
A
)≤ ζ , so

|J ′| ≤ 2e4000ζn/|I2| ≤ 4e4000ζn/|I | < 40e4000ζ
√

n,

which contradicts the choice of |J ′|. Thus the required bound for μ
(
Ax→j

)
holds, so

the lemma follows. �

We conclude this section with the proof of Theorem 1.3, which implies Theorem
1.1 (our main theorem).

Proof of Theorem 1.3 We introduce the absolute constant c = e−9000. We need to
show that if n is sufficiently large and A ⊆ An is a product-free set with μ(A) >

maxI,x μ
(
Fx

I

)− c
n

then up to inversion A is contained in some Fx
I . By Theorem 6.3

there exists some Fx
I such that μ

(
A \ Fx

I

)≤ n−0.66, where we may assume that this

holds for A rather than A−1, and moreover μ(Ax→i ) ≥ n− 1
3 for each i ∈ I . We note

that μ(Fx
I ) ∼ μ(A) ∼ 1/

√
2en, so

√
n

10 < |I | < 10
√

n. Writing μFx
I

(A) = 1 − ζ we

have ζ = O(n−0.16) < e−20000.
Thus we can apply Lemma 6.7 to obtain

μ
(
A \ Fx

I

)≤ ζn−2/3 logO(1) n < ζμ(Fx
I )/2.

We deduce

μ
(
Fx

I

)− c

n
≤ μ(A) ≤ μ

(
Fx

I

)
μFx

I
(A) + μ

(
A \ Fx

I

)≤ μ
(
Fx

I

)
(1 − ζ/2) .
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By choice of c this implies ζ ≤ 1
e8000√n

, so we can apply Lemma 6.7 to obtain A ⊆
Fx

I . �

7 Concluding remarks

Our methods for bounding product-free subsets of the alternating group have justified
the intuitive idea that globalness can be regarded as a pseudorandomness notion,
by showing estimates on the eigenvalues of Cayley operators for global sets that
correspond to the intuition for random sets. Given the large literature on random
Cayley graphs inspired by the seminal paper of Alon and Roichman [1], one natural
direction for further research is whether analogous results hold for Cayley graphs
with respect to global sets.

We also propose the study of extremal problems for word maps in general groups
(see the survey of Shalev [16] for background). Fix any group G. Any word w =
w(x1, . . . , xd) in the free group Fd on d generators naturally defines a word map
w : Gd → G. For example, if d = 3, w = x1x2x

−1
3 , and A ⊆ G then A is product-

free iff A3 ∩ kerw = ∅. Our main result therefore describes the largest A ⊆ An such
that A3 ∩ kerw = ∅, and so suggests the following more general problem.

Problem 7.1 For any finite group G and word w ∈ Fd , what is the largest A ⊆ G with
Ad ∩ kerw = ∅?
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