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Abstract

We consider the following Turan problem. How many edges can there bégnt+al)-uniform
hypergraph om vertices that does not contain a copy of the projective geonistty, (¢)? The case
q = m = 2 (the Fano plane) was recently solved independently and simultaneously by Keevash and
Sudakov (The Turan number of the Fano plane, Combinatorica, to appear) and Fiiredi and Simonovits
(Triple systems not containing a Fano configuration, Combin. Probab. Comput., to appear). Here we
obtain estimates for genergland m via the de Caen-Firedi method of links combined with the
orbit-stabiliser theorem from elementary group theory. In particular, we improve the known upper
and lower bounds in the cage= 2, m = 3.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For anr-uniform hypergraph, the Turdn number €x, F) is the maximum number
of edges in arr-uniform hypergraph om vertices that does not contain a copy JBf
Determining these numbers is one of the central problems in extremal combinatorics. For
ordinary graphs (the cage=2) this is completely solved for many instances, including all
complete graphs. Turan proved that the unique largest graphvertices not containing
a copy ofK; (the complete graph onvertices) is the completé — 1)-partite graph with
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part sizes as equal as possible. Moreover, asymptotic results are known for all non-bipartite
graphs.

In contrast, for nearly anyuniform hypergraptf with » > 2, the problem of finding the
numbersx (n, F) is notoriously difficult. Even the asymptotics of hypergraph Turan num-
bers are poorly understood. Itis not hard to show that the fufft) = lim, .o ex(n, F)/

(’j) exists. It is usually called th@uran densitylt is a famous open problem of Turan to
determine the numbees (n, Ks(r)), WhereKs(’) denotes the completeuniform hypergraph
onsvertices. In particular, he conjectured thm{f)) is equal to 39, and Erd$ offered

a $1000 prize for the solution of even this case. There are very few exact results on hy-
pergraph Turan numbers. Most of these are described in the excellent survey of[&Jiredi
More recently, there have been three new exact result{§s€el1,12]for details). Most

of the progress has been for triple systems (the gase3), where there have also been
some new results on Turan densities (geH).

In this paper we will consider the Turan problem when the forbidden hypergraph is
PG, (q), i.e. the projective geometry of dimensianover the field withq elements. For
the Fano plane (the case = ¢ = 2) the exact Turan number was determined inde-
pendently and simultaneously by Keevash and Sudkbland Furedi and Simonovits
[8]. They showed thatx(n, PG2(2) = (3) — (L"{,’ZJ) - (["éz1> for n sufficiently
large. In particulam(P G2(2)) = 3/4, which was proved earlier by de Caen and Firedi
[2]. The casey = 2, m = 3 was considered by Cioalj1], who obtained the bounds
27/32< (P G3(2)) <27/28.

Our first result gives general bounds faiP G, (¢)).

Theorem 1.1. The Turan density aPG,, (¢) satisfies

d i 1
[l (1— W) <T(PGum(g)<1- m

i=1 j=1 q
For the cas@ = 2, our next theorem improves the general upper bound of Thebrem

Theorem 1.2. The Turan density aP G,, (2) satisfies
1 1 1 3 dd
(2m+ _ 3)(2m+ — 4 - W_’ moad,
(2m+1 — 2)2 §TC(PGm (2)) g 6

S @n — pntl 41y

n even.

Note that in the casa = 3 this improves the known upper bound to/2@. Next we
concentrate further on this case, where we are able to improve both the upper and lower
bounds.

Theorem 1.3. The Turan density aP G3(2) satisfies

3v3+2,/2(9 - 5v3) — 6<n(PG3(2)) <13/14.
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For comparison purposes, note thaf®3+2,/2(9 — 5+/3) —6 ~ 0.844778 and 2732 =
0.84375.

Notation. Our graphs and multigraphs are denoted by the l&iter J, possibly with
subscripts. IS is a graph or multigraph, ther{G) denotes the number of edges it contains,
counted with multiplicity. IfX is a subset of the vertex set théry denotes the restriction
of G to X (i.e. the induced subgraph) aadX) = ¢(Gy) is the number of edges there. In
particular, ifu, v are vertices we write(uv) for the multiplicity of the pain, v. We write
d(u) =), e(uv) for the degree ofl anddy (u) = ) .y e(uv) for the degree ofiin X.
Our hypergraphs and multihypergraphs are denoted by calligraphic letters s4@nd§ .

(In anr-uniform multinypergraph eaahsubsetA of the vertex set has some non-negative
integer multiplicitye(A).) SupposeH is anr-uniform hypergraph and is a vertex. The
link of xis an(r — 1)-uniform hypergrapH.(x) on the same vertex set & whereAis an
edge ofL (x) exactly whemA U {x} is an edge of. If Xis a subset of the vertex set then the
link multinypergraplof Xis the(r — 1)-uniform multihypergraptL (X) = 3" .y L(x).In
other words, eacltr — 1)-tuple A has multiplicity inL (X) equal to the number of vertices
x € X suchthatA U {x} is an edge of4.

The rest of this paper is organised as follows. In the next section we will define the
projective geometrie® G,,(¢) and prove Theorem$.1 and1.2 Section 3 contains the
proof of Theoreml.3. The upper bound requires a technical lemma, the proof of which
we postpone to Section 4. The final section contains some concluding remarks and open
problems.

2. General bounds

In this section we prove Theorenisl and1.2 We start by recalling some elementary
algebra. LetF, denote the field witlg elements. Therojective geometrpf dimension
mover [, denotedP G,,(g), is the following hypergraph. Its vertex set is the set of all
one-dimensional subspaces[l?cgf“. Its edges correspond to two-dimensional subspaces

of [F;”*l, in that for each two-dimensional subspace, the set of one-dimensional subspaces
that it contains is an edge of the hypergrap&,, (¢).

We can identify a one-dimensional subspace by picking one of its non-zero vectors.
There are; — 1 choices of this representative, which are equivalent in the sense that they are
scalar multiples of one another. A two-dimensional subspace cogtaih®ne-dimensional
subspaces, for which we can choose representatives of thé&fosmx +y, 2x+y, ..., (g—

1)x + y}. To count the two-dimensional subspaces consider picking a non-zero vector and
then another which is not equivalent. There@t&*1—1) (4”1 —¢) such choices, and each

. . . . - m+1__ m+1_
two-dimensional subspace is generatedgSy- 1) (¢2—¢) choices, glvm%ﬁ

subspaces. TherefoeG,,(q) is a(g + 1)-uniform hypergraph Witl’% = Z’}’:Oqf

i da" =" -1
vertices an @D edges.
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Fig. 1. The Fano plane iRG3(2).

Let GL,,(¢) denote theeneral lineargroup of invertible linear maps frovﬂzg' to itself.
The set of non-zero multiples of the identity matrix forms a normal subgonpG L, (¢);
the quotienG L,,(¢)/ D is theprojective linear groupP G L,, (¢). This is the automorphism
group of PG,,—1(q). Note that in the casg = 2 there is only one non-zero field element.
Here we can identify? G,,—1(2) with the non-zero elements &%, andD consists only
of the identity element. TheRGL,,(2) = GL,,(2), and it is customary to denote both by
L,,(2). (Itis also equal to the special linear group and projective special linear group in this
case, but these will not be relevant to our discussion.)

From our discussion of the case of genegale know thatPG,,(2) is a 3-uniform
hypergraph, with 7+l _ 1 vertices andé(Z’” — 1(2mt1 1) edges. The automorphism
group of PG, (2) is L,+1(2), the group of invertible linear maps froiF@“rl to itself. For
illustrative purposes, and because it will be important later, we will describe the specific
exampleP G2(2). We will use the following concise notation for its elements. A non-zero
elementt = (x1, x2, x3) of [F% is described by a string containing some combination of the
symbols 01, 2, where symbol appears in the string for exactly whenx; 1 = 1. With
this notation, the vertices dtG2(2) are Q 1, 2, 01, 02, 12, 012 and the lines are as shown
on the left of Fig.1 (the circle is also a line). This configuration is commonly known as the
Fano planelts automorphism groups(2) has 168 elements. It will be helpful later to note
that L3(2) is doubly transitive, transitive on lines and transitive on non-collinear triples.

An obvious property of? G, (¢) is that every pair of points, y belongs to exactly one
edge, for which we can choose representatives, x+vy, 2x+y, ..., (¢ —1)x + y}. Note
thatPG,,(q) contains a copy oP G,,,—1(g), for example that consisting of the equivalence
classes of all non-zero vectars= (x1, ..., x,+1) in [Ff]'”rl which havex,, 1 = 0. LetX
be the set of vertices of this copy B1G,,_1(¢) and letY be the remaining vertices. Th¥n
consists of the equivalence classes of all vectors wjthy # O; we can pick representatives
so thatx,, 11 = 1, and then all possibl¢” vectors appear in the firgt co-ordinates. Any
edge ofPG,,(¢) that intersect has the form{x, y,x +y,2x 4+ y,..., (¢ — Dx + y},
wherex € X andy € Y, so it intersect¥ in exactlyg — 1 points.
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To continue our discussion we introduce a definition. Consider-amyform hypergraph
‘H and a vertex. Thelink of xis an(r — 1)-uniform hypergrapli(x) on the same vertex
set ast, whereA is an edge of.(x) exactly whenA U {x} is an edge of{. Suppose that
‘H = PG, (g) andxis a vertex oiX (with the notation of the previous paragraph). Then the
link L(x) restricted toY is a perfect matching/, of Y, i.e. a set of;” ~! mutually disjoint
g-tuples. Indeed, for each € Y the unique edge af (x) containingy is {y, x + y, 2x +
v, ..., (@g—Dx+y}. Asxranges oveP G,,_1(q) we obtain a set oﬁf;T’ll perfect matchings

of Y such that each pair of verticesYbaippear in exactly one edge. Figillustrates this in
the casg = 2,m = 3. HereXis the Fano plane and we can thinkiof [Fg as the vertices of

a cube. The edges of the cube (in bold) comprise the three matadingd1, M», the long
diagonals form the matchin¥o12, and the face diagonals (dotted lines) form the remaining
three matching®4o1, Moz, M12.

Our strategy for finding a copy oPG,,(¢) in a sufficiently denség + 1)-uniform
hypergraph is as follows. By induction we will be able to assume that there is a copy of
PG,,—1(q), which we denot& and label as before with the equivalence classes of all non-
zero vectors € [FZ]’”rl with x,,+1 = 0. We will find a particular set of g™ vertices, which

can be labelled with the vectoxse [Fz”l with x,,+1 = 1 and define the matchinga/, :

x € X}asabove,i.eM, contains alg-tuples of the formfy, x+y, 2x+v, ..., (¢g—Dx+y}

fory € Y. Thislabelling will have the property that there is an automorphismP G L,,, (q)

so thatM, C L(n(x)) for everyx € PG,,—1(q). Clearly, this gives a copy a?G,,(¢q), as

we can relabek(x) asx without altering the hypergraph. In order to make this argument
we need the links of the vertices NG ,,,_1(q) to be large (i.e. we need large degrees). This
is achieved by the following fact.

Fact 2.1. Leto, ¢ > Oand letk >1, r >2 andng be positive integers. Then therenig so
that for all n > ny any r-uniform multihypergrap® on n vertices with at leagb + 2¢) (f)
edges and maximum multiplicity at most k contains an r-uniform multihypergképtith

m vertices and minimum degree at leastt ¢) ('f_‘f) for somem > no.

This follows from a standard argument involving deleting vertices of small degree, but
for the convenience of the reader we will give the following brief proof.

Proof. Suppose tha# is a counterexample to the statement. Then we can construct a
sequencé,, Hy—1, ..., Hnyo Wheret,,_1 is obtained front,, by deleting a vertex of

degree at mos® + ¢) (’:’:11) Then

k (”ro) > e(Hng) = (0 + 2¢) (}:) _m=,§+1(5+8) <T—_11>
=@+29 (") +e )y (T__11>

m=ng+1

From the crude estimate:; > en we obtain a contradiction withy = ¢~1kn), so the Fact
is true. [J
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We will need the following piece of elementary group theory. (86¢for an introduction
to this subject.) Suppose a groGpacts on a seX, with the action written on the left. For
an elemenk in X, the stabiliser ok is the subgroug;; of G that fixesx. The orbit ofx is
Gx = {gx : g € G}, i.e. the set of allimages afunder the action oB. The orbit-stabiliser
theorem states th&r| = |G, ||Gx|. In particular, ifG acts transitively oiX (i.e. the whole
of Xis a single orbit) thenG,| = |G|/|X|. LetG(x, y) denote the set of elements@that
take elemenk to elemeny. If gis any element takingtoy thenG (x, y) is the coset Gy,
so it also has siz&G|/| X|. We will apply this to the action oPGL,,(q) on PG,,—1(q),
which is obviously transitive, as one can map any line to any other line via an invertible
linear map. In this case there d®GL,,(¢)|/|PG-1(q)| elements mapping to y, for
anyx,y € PGp-1(q).

Now we give the proof of Theorerh.1, which gives bounds on the Turan density of
PG, (q) for generamandg.

Proof of Theorem 1.1 We start with the lower bound. Let= |PG,,(¢)|—1 = Z;'?:lqj

and letH(n) be the ‘blow-up’ ofo‘”l), i.e. we divide a set oh vertices into parts
X1, ..., X, with[|X;|—|X;[|<1foralli, j and take as edges & + 1)-tuples of the form
x1---Xxg4+1 With x; € X, for some pairwise distinaty, ..., a,41. Recall thatP G, (q)

is a(g + 1)-uniform hypergraph om + 1 points in which every pair of points belong to
some edge. It is clear thd{(n) does not contain a copy a&?G,,(q), as for any set of
t + 1 points some two will fall into the sam¥;, so there will not be an edge through

them. Sincd(t(‘”l) has(qil) edges, we get a lower bound on the densit§ G,, (¢)) of

-1
iMoo (,10) O = @+ D! (1) /1940 = [Ty @—i/n).

Now we prove the upper bound by induction, the case 1 being trivial. Suppose > 2
and definey = 1—1/ (qqm). Suppose > 0 and letH be a(g + 1)-uniform hypergraph

with minimum degree at leaét + ¢) (”;1>. By Fact2.1it suffices to prove that contains

a copy of PG,,(q) whenn s sufficiently large.

Note that? contains a copy ofPG,,—1(q) by induction hypothesis. LeX be its set
of vertices and leZ = V(#)\X. Let G be thelink multihypergraphof X on Z, i.e. each
g-tuple A C Z appears irg with multiplicity equal to the number of verticase X such
thatA U {x} is an edge of{. Note that there are less thgxijn?~1 g-tuples that intersedt,
each of which can have multiplicity at mgst| in G. By the minimum degree assumption
we have

. -1
e(@) > Y ILG)| = X0t > |PGu1(@)|(5 + £/2) (" . ) :

xeX

for largen. By averaging there must be a subBet Z with |Y| = ¢™ so that
q" q"
e(Gy) > IPGml(q)|5< q ) = [PGm-1(q)] (( g ) - 1>.

Choose an arbitrary labelling of the verticeafith the vectory in "1 with Vm+1 = 1.
Define the perfect matchindd/, : x € X} as in the discussion before the theorem. As
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we remarked earlier, it suffices to show that there is an automorphismPGL,,(q)

so thatM, C L(n(x)) for everyx € PG,,_1(¢). Consider any paifA, x) such that
x € PGy-1(q), A € M, for somey € PG,,—1(q) andA ¢ L(x). We cannot use any
7 that mapsy to x; there are exactlyPGL,,(q)|/|PGn-1(q)| suchrn by the piece of

group theory discussed earlier. Sin€€y) > |PG,,—1(q)| ((’1:) - 1) there are at most

|PG,n_1(¢q)| — 1 such pairgA, x) and so at mosk‘fﬁg%%’;ll |PGL,,(q)| automorphisms
that violate any conditionM, C L(n(a)). This leaves at least one automorphism that

satisfies the required conditions, so we are dons.

Next we prove Theorem.2, which gives an improvement to the upper bound when
g = 2. The proof method is the same as for Theoflefnexcept that we also use the result
of Furedi and Kiindgen on the Turan problem for integer-weighted graphs, which was an
important ingredient ifl1,8,11,14] An integer-weighted graph is a graghtogether with
an assignment of integral weights to its edges. The weight of the graph is the sum of the
weights of its edges. Defingy (n, k, r) to be the maximum weight of an integer weighted
graph om vertices in which every subsetbkfertices induces a subgraph of weight at most
r. Let f (k, r) denote the smallest numkteso thaty *_!|1+it] > r. Firedi and Kiindgen
[5] showed thatfz(n,k,r) = f(k,r)(3) + O(n). We will only use the upper bound,
applied to multigraphs (which in particular are integer-weighted graphs). In the following
lemma we calculat¢ (k, r) in the case that we will use.

Lemma 2.2.
om 2’"_]_—i m>3odd
" m _ . 2m+l’ =
(e -o((3)-1) -2 T nie

The proof of this lemma is an easy but slightly tedious calculation, which we give in
Appendix A.

Proof of Theorem 1.2 The lower bound is given by Theoreinl We prove the upper
bound by induction for >2. Form = 2, i.e. the Fano plane, we hazéP G2(2)) = 3/4
(by de Caen and FurefR]) which is less than the bound of ¥ claimed by our theorem.
Now suppose: >3, and defing,, to be equal to > if mis odd and & m
if mis even. Note that from Lemnia2we have

@~ D)o, = f (2 @ - 1) ((2:) - )) | M)

Suppose > 0 and letH be a 3-uniform hypergraph with minimum degree at l¢ast+
€) <”§1>. By Fact2.1lit suffices to prove that{ contains a copy o G,,(2) whenn is
sufficiently large. It is straightforward to verify the inequality

3 6 3
T o2m-1) _ 1 <1- (2n — 1)(2m+1 4 1) <1- 22(m+1) _ 1’

1
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i.e. thatd,, is an increasing sequence. Therefgteontains a copy oPG,,—1(2) by the
induction hypothesis.

Let X be the vertex set of thiBG,,_1(2) and letZ = V (H)\ X. Let G be the link multi-
graph ofX on Z (defined as before). Note that there are less {ian pairs of vertices that
intersectX, each having multiplicity at mo$| in G. By the minimum degree assumption
we have

e(G) > Y 1L — X Pn > 2" — (0 +¢/2) (” ; 1) .

xeX

From Eq. @) and the forementioned result of Fiiredi and Kindgen it follows that there is
some subseY C Z with |Y| = 2™ so thate(Gy) > (2" — 1)( (22) - 1). Choose an

arbitrary labelling of the vertices of with the elements of}'. Forx # 0 let M, be the
perfect matching o¥ in which any elemeny is matched withy + x. As in the proof of
Theoreml.1we can find an automorphism e L,,(2) so thatM, C L(n(x)) for every
x € X. ThusX U Y spans a copy oPG,,(2), so we are done. ]

3. Dimension three

In this section we give the proof of Theoreh8. First we give the lower bound.

Theorem 3.1. The Turan density oPG3(2) is at least3v/3 + 2,/2(9 —5v3) — 6 ~
0.844778.

Proof. Considerthe following construction. Divide a sehekertices into partX 4, Xo, Y, Z
so that||X1| — on| <1, ||X2| — an|<1, ||Y]| — fn| <1 and||Z| — yn|<1, whereo, B,y
are constants that we will specify later with 2 f +y = 1. LetX = X; U X». Define a
3-uniform hypergrapt#,,, whose edges are all triples that do not lie entirely within one of
the setsX, Y, Z and are not of the forrmbcwith a € Y andb, ¢ € X; for somei.

To see that this does not contain a copyPaf3(2) we will use a result of PelikafL5]
that in any weak 3-colouring aP G3(2) there must be (exactly) 5 points of each colour.
(A weak colouring of a hypergraph is a colouring of the vertices in which there is no edge
where all vertices have the same colour.) Indeed, suppose that there is a ¢o@y(@ in
H,. Then(X, Y, Z) defines a proper 3-colouring &fG3(2), which therefore has 5 points
in each part. Without loss of generality it has at least 3 poinisircall themx, y, z. There
are no edges off,, entirely within X1, sox, y, z cannot be collinear. Consider the lines
x,y,x+y), (x,z,x+2), (y,z, y+2z). These are edges #G3(2), and there are no edges
in H, of the formabcwitha € Y andb, ¢ € X1, sowe musthave+y,x+z,y+z € Z.
However(x + y) + (x + z) = y + z, So there are three collinear pointsdanThere are no
edges ofH,, entirely withinZ, so we have a contradiction.

The number of edges iH,, is

et = () - ("3") - ('?) - ('?) —Iy] <');1') 1y ('X;'>.



P. Keevash / Journal of Combinatorial Theory, Series A 111 (2005) 289-309 297
Therefore we have a lower bound for the density G3(2)) of
. ny\—1
lim ( ) e(Hp) =1— 842 — 2 — 9% — 6pa°.
n—oo \ 3

This lower bound is optimised by the following choice of parameters:

2=3(/3-1-/6-10/+/3) ~ 0.128067
p=1—4/1-1/v/3~0.349885

y=1++/3—+/3—+/3~0.393982

This gives the lower bound

T(PG3(2)) =3v3+ 2/2(9 — 5v3) — 6 ~ 0.844778

as required. O

Next, we want to improve the upper bound ofP G3(2)) which comes from Theorem
1.2 Our broad strategy is the same. We find a cEpf the Fano plan® G2(2), and a seY
of 8 vertices labelled with the eIements@‘, so that defining the matchinga/, : x € X}
as before there is an automorphiane L3(2) so thatM, C L(n(x)). The improvement
comes from a closer analysis of the conditions under which we can fin&f éhedthas such
a labelling. This is achieved by the following technical lemma, whose proof we postpone
to the next section.

Lemma 3.2. Suppose > 0.Let G be amultigraph on n vertices with maximum multiplicity
7 and with at leas{6.5 + &) (’;) edges. Suppose also that for each pair of verticeswe
have a sef, , C PG2(2) and that|7, ,| is the multiplicity of the paiw, y in G. Then we
can find8 vertices of G and label them with the eIementﬁ;fso for everyu € PG»(2)
andx € 3 we haver € Ty 1.

Now we can prove the upper bound in Theor&r® which we restate as the following
theorem.

Theorem 3.3. The Turan density aP G3(2) is at mostl3/14.

Proof. Suppose > 0 and letH be a 3-uniform hypergraph with minimum degree at least
(13/14+¢) (’é) By Fact2.1it suffices to prove thak contains a copy of G3(2) whenn

is sufficiently large. Note thek contains a copy of the Fano pla®&s,(2), since this has
Turan density 34 (se€2]). Let X be its set of vertices and &t = V(H)\X. Fory,z € Z
letT, . be the set of verticesin X such thakyzis an edge o . LetG be the link multigraph

of XonZ, i.e. the multiplicity ofyzis |T} .|. By the minimum degree assumption we have
e(@) > Y ex IL()|—1X[?n > (6.5+¢) (). By Lemma3.2we can find 8 vertices C Z

and label them with the eIements[Bj so for everyx € X and for everyy € Y the pair

(y, y +x) belongs taL(x). ThenX UY spans a copy o G3(2) in H, so we are done.
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4. A technical lemma

This section is devoted to the proof of Lem®a A key ingredientis the following lemma
on automorphisms of the Fano plane. Recall that the elements of the FanaPla(i2)
can be identified with non-zero elementéféfwhich we denote by, 2, 01, 02, 12, 012,
where e.g. 02 denotes the vectar0, 1).

Lemma 4.1. Suppose that for eache PG2(2) we have a subset, ¢ PG2(2) with the
following properties

(i) no S, is equal to the whole aP G2(2),
(i) 2 cepga 15:1<9,
(iii) atleast ones, is empty
(iv) if exactly oneS, is empty then we havi& = S1 = So1 = {0, 1} and Sg2 = S12 =
So12 = {01},
(v) there are not two lined.1, Lo of PG2(2) such thatS, = L, for eachx € L.
Then there is an automorphisme L3(2) such thatt(x) ¢ S, for all x.

The proof of this lemma is long and uninstructive, so we relegate it to Appendix B.

Proof of Lemma 3.2 Suppose > 0. LetG be a multigraph om vertices with maximum
multiplicity 7 and minimum degree at lea@.5 + ¢)(n — 1). Suppose also that for each
pair of verticest, y we have a sef , C PG2(2) and thaiT ,| is the multiplicity of the
pairx, y in G. By Fact2.1it is enough to show that we can find 8 vertice<énd label
them with the elements cﬁ% so for everya € PG2(2) andx € [Fg we haver € Ty x4q4.

For everya € PG2(2) let M, denote the matching dﬁg in which x is paired with
x + a. Our strategy will be to find 8 vertices and a Iabelling[@ysuch that the set§, =
PG2(2)\ ﬂeeMa T, fora € PG2(2) satisfy the conditions of Lemmal. It will then follow
that there is an automorphismof P G2(2) such thatt(a) ¢ Sq, i.e.n(a) € (,cpy, Te, fOr
all a. Now we relabel our set of 8 vertices so that the vertex with latbels now has label
n(a). This has the effect of relabellint, as M), S0 now we have: ¢ ﬂeeMa T,, as
required.

We choose the 8 vertices as follows. heb, be any edge of multiplicity 2. We claim
that we can chooses, ..., vg SO thatZ{:_lle(v,-vj) > 6.5(j — 1) for 3<j<8. (Recall
that in a multigrapte(xy) denotes the multiplicity of the edge.) For suppose we cannot
choose some; in this manner. LeU = (v, ..., v;_1}. Then for everyw ¢ U we have

dy () = Y17 e(wiu) <6.5(j — 1). Therefore
(=65 +00 -1 < ¥ dw =2w) + Y avm<a(’ 1)

uel veU
+65( —D(n—j+1).
Thisimplies that 2(n — 1) < j —2, which is a contradiction farsufficiently large. Therefore
we can choose;, ..., vg as described.
Next, we attempt to improve our choice in the following manner. Suppose there is a subset
I C{1,...,8} and a bijectionf : {1,...,|I|} — I such that(v;v;)<e(vrG)vy)) for
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every I<i < j <|/| and at least one inequality is strict. Then we will choose: v ;) for
1<i<|I| and then repeat the above argument to complete the set, ch®9§jrqg. VA

o) thatZ{:—lle(v;v}) > 6.5(j — 1) for |I| + 1< j <8. Now we iterate this improvement
procedure. Clearly there can only be finitely many iterations. [To see this formally, define
a total order on 8-tuples of vertices, wheg, ..., vg) < (vy,...,vg) when there are
a < bsuchthae(v,vp) < e(v,v,) ande(v;v;) = e(v;v}) forall (i, j) colexicographically
less than(a, b), i.e.i, j<b —1orj = b andi < a. Each iteration increases the rank
of our 8-tuple in this order, and there are only finitely many possible choices for all the
multiplicitiese(v;v;), so the process terminates.] Therefore we may assume that the choice
v1, ..., vg cannot be improved.

Write m, = |PG2(2)\T,|, i.e. 7— m, is the multiplicity of the edge. Then we must
havezif;llmvivj < |j/2] — 1 for eachj > 3. Otherwise we would have

j—1
D eivp)<T(j—1) — 1j/2] <65(j — 1),
i=1

which contradicts our choice of;. LetJ be the graph omg, . .., vg in whichv; is adjacent
to v; exactly wheneg (v;v;) < 7. We use the notatiod*(v;) to denote the number of
verticesy; adjacent inJ to v; with i < j. Note that

j—1

d* ()<Y my; <Lj/2] -1, @
i=1

for eachj > 3. In particular
8 8
e()=) d*wH< Y (lj/2l-D=0+1+1+2+2+3=09.
j=3 j=3

Now we need the following claim.
Claim 4.2. There are two disjoint four-cycles in the complement.of J

Proof. Suppose for the sake of contradiction that the claim is not true. We will repeatedly
use the observation that a graph on 4 vertices l@agiaits complement exactly when it has
maximum degree at most 1. Fok < j <8 we will use the notatioW;; = {vx : i <k<j}.
Consider first the case whéfis = {v1, ..., vs} is an independent set ih Thene(J) =
d*(6) +d*(7) + d*(8) <2+ 2+ 3 =7, by Eq. @). For eachv € V15 the restriction of]
to vvgv7vg has a vertex of degree 2. Otherwise there would 6g i its complement, and
sinceVis\{v} is independent it also haga in its complement, so we have a contradiction.
Now Ves = {vg, v7, vg} cannot be an independent set, as then eaehV;s would have
two neighbours inVgg, giving e(J) > 10, a contradiction. In fact¥sg must contain at least
two edges. For iy is the only edge inVeg then eachw € Vi5 is adjacent to at least
one ofx, y. Including the edgexy we get at least 6 edges withiris U {x, y}. However
d*(x) + d*(y) <3+ 2<5, so this is a contradiction.



300 P. Keevash / Journal of Combinatorial Theory, Series A 111 (2005) 289-309

SinceVgg contains at least 2 edges there is an edd&gincident tovg, so eachx € Vgg
has at most 2 neighbours Ins. If Vgg contains exactly 2 edges then there are at most 5
edges betweeW; s and Vgg; two vertices ofVgg each being adjacent to at most two vertices
of V15 and the other being adjacent to at most one verték @fOn the other hand i¥gg is
complete then there are at most 4 edges betwaggand Vgg; wherevg andvy each have
at most one neighbour iti;5 andvg has at most two neighbours 5.

For eachy € Vgg and each pain, v € V15 we consider the partition into two 4-tuples
Ay = VisU {x}\{u, v} and By, = Vs U {u, v}\{x}. Observe that for each € Vg the
complement of contains a4 on A, unlessc<has exactly 2 neighbours I s and neither
is u or v. Also, if the complement of does contain &4 on A,,, then by assumption it
cannot contain &4 on B,,,. Write {y, z} = Vgg\{x}. It follows that there is at least one
edge betweefu, v} and{y, z}. Also, if yzis not an edge there are at least two such edges,
asu, v is not an edge.

Choosex € Vgg to have at most one neighbour ¥as. Then for any paifu, v} in Vis
the complement ofl contains aC4 on A,,,, SO by the above there is at least one edge
between{u, v} and{y, z} = Ves\{x}. In particular, there is at most one vertexVips with
no neighbour iy, z}, so at least 4 edges betweE and{y, z}. Therefore each of and
z has two neighbours if15. This is only possible wheklgg contains exactly two edges.

Now choosex € Vgg so that the other vertices z are not adjacent. Suppose first that
x has at most one neighbour 5. Then there are at least two edges betwgen} and
{y, z} for any pair{u, v} in Vis. If any u € Vi5is not adjacent tg or zthen the other four
vertices ofVi5 must all be adjacent to bothandz, which is impossible. Therefore every
u € Visis adjacent toy or z However this forces one gfor zto be adjacent to 3 vertices
of V15, which is impossible.

It follows thatx has 2 neighbours ifr15, call thema andb. Sincee(J) <7 there are at
most 3 edges betwedn, z} and V5. Therefore we can assumads not adjacent to bot
andz. For any othew € V35 the complement of contains aC4 on A,,,, and so there are
at least two edges betweén v} and{y, z}, i.e.v is adjacent ty or z. This gives at least 4
edges betweefy, z} and V15, which is a contradiction. This completes the analysis of the
case whervy, ..., vs} is an independent set ih

Next, we will consider the case wh&hs = {v1, . .., va} is anindependent setihThen
e(J) =d*(5)+d*(6)+d*(7)+d*(8)<1+2+2+3 = 8, by Eq. . We can assume that
there is no independent set of size Siror by definition of the improvement procedure of
8-tuples it would follow that/;s is independent, and we have already dealt with this case.
It follows that eachy € Vsg has at least one neighbourifis, so there are at most 4 edges
inside Vsg. Also, for any non-adjacent pait, v € Vsg there is a pait, b € V14 such thau
is adjacent tm andv is adjacent td. For if only onea € V14 was adjacent ta or v then
V14 U {u, v}\{a} would be independent.

For brevity we let/sg denote the restriction afto Vsg. Note that/sg contains a vertex
of degree at least 2. Otherwise its complement h&%,aand sinceVi4 is independent it
has aC4 in the complement, giving a contradiction. Also, we claim thgf cannot have
an independent set of size 3. For suppUsg {v} is independent for some € Vsg. Then
v must be the vertex of degree at least Z4g. Note that for every: € V14 eitheru has 2
neighbours inVsg\{v} or v has 2 neighbours if14\{u}. There is at least one € V14 that
does not have 2 neighbours¥g\{v}, otherwise we would have at least 8 edges between
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V14 andVsg, and at least 2 edges insiffgs, giving e(J) > 10, a contradiction. Thereforie
has at least 2 neighbours¥g; without loss of generality they akg andvs. Nowd* (v) > 2
andv has at least 2 neighbours¥gg, so we must have = vg, with vg adjacent ta;y andvs.
Sincevg does not have 2 neighboursifis\ {vs} we know thatvz has at least 2 neighbours
in Vsg\{ve}. Similarly v4 has at least 2 neighbours Wsg\{ve}. Thereforevg is adjacent
to bothvs andvg, and without loss of generalitys is adjacent tas andvy is adjacent to
v4. We have now listed 8 edges &fso there are no more. Observe now thatvsvg and
v1vev2vg give two disjoint four-cycles in the complement &f This contradiction shows
that Jsg cannot have an independent set of size 3.

Now we know that/sg contains a vertex of degree at least 2 and no independent set of size
3. This easily implies that it must contain a triangle or a path of length three. In particular
Jsg has at least 3 edges, so there are at most 5 edges beggeand V4.

Suppose there is € Vsg so thatVsg\{v} is a triangle inJ. For any pairx, y € Vsg\{v}
we claim that there are at most 3 edges betwgery} and V4. If neither of{x, y} is vg
this holds because there are at méistr) + d*(y) <4 edges withinV14 U {x, y} and one
of them joinsx to y. On the other hand, if say = vg then since it has two neighbours
in Vsg it has at most one neighbour 4. Also d*(y) <2, so again there are at most 3
edges betweefx, y} andV14. Recall that(Jsg) <4, so we can choose y € Vsg\{v} hot
adjacent tav. Let z be the fourth element dfsg. For eachu € Vi4 consider the 4-tuples
axyv andViq U {z}\{a}. One of them contains a vertex of degree at least 2, so eitlser
adjacent to one af, y or z has at least 2 neighbours 4\{a}. Since there are at most
3 edges between, y and V14 we see that has at least 2 neighbours 4. Sincez also
has 2 neighbours if'sg we must have = vg andx, y equal tov7, vg (in some order), so
v = vs. In particular, we see that andvg are not adjacent, i.e. the only edgesgegfform a
triangle onVeg. Now repeat the argument choosing= ve andy = v7 (say). We conclude
thatz = vg has at least 2 neighbours ¥4, which is impossible. It follows thalsg does
not contain a triangle.

Sincee(Jsg) <4 we know that/sg is either a path of length 3 or a 4-cycle. In particular,
we can label the vertices dfsg as xoo, x01, X10, X11 SO thatx;ox;1 is not an edge of
for i = 0, 1. Consider any labelling o¥14 as yoo, yo1, y10, y11. Note thatx;ox;1y;0y;1
spans a bipartite subgraph &for each of the 4 choices of j € {0, 1}. These fall into
two complementary pairs, and in each pair at least one of the subgraphs has a vertex
of degree 2.

Recall that there at most 5 edges betwégn and Vsg. Suppose that there are three
vertices (say1, v2, v3) of V14 with at most one neighbour iWsg. They do not have a
common neighbour iVsg, as this would have to bes, but vg has at least one neighbour
in Vsg already. Now not every pair among, vz, vz can have a common neighbourligg,
as this would give at least 6 edges betwégp and Vsg. Therefore we can assume that
v1 andvy do not have a common neighbour ¥gs. Then the 4-tuple:;px;1v1v2 does not
have a vertex of degree 2 for= 0, 1 sox;ox;1v3v4 must have a vertex of degree 2 for
i = 0,1. This gives at least 4 edges incident wjils, v4}. Then we may suppose that
v1 has no neighbours ifsg. Note thatvs cannot be adjacent to all dfsg. For recall we
noted at the beginning of this case that for any non-adjacenupaie Vsg there is a pair
a,b € Viq such thatu is adjacent taa and v is adjacent tdh. This implies that one of
x;0, xi1 has a neighbour ifY14\{v4} for i = 0, 1, giving at least 6 edges betwe®iy and
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Vss, a contradiction. Therefore we may suppose that not adjacent tagg, say. Since
v1 has no neighbours iffsg there is at most one edge igx11v1v2, SO there is a degree
2 vertex inxpoxp1v3v4. Sincevy is not adjacent tagg we see thavs is adjacent tovp;.
Now consideringriox11v3v4 Shows thaby is adjacent tor1p andxy1. However,xgg has a
neighbour inVy14 and one ofx1g, x11 has a neighbour ifv14\{v4}, giving at least 6 edges
betweenVi4 andVsg, a contradiction.

It follows that there cannot be 3 verticesWfs with at most one neighbour ivisg. Then
two vertices, says, vg4, have at least two neighbours¥gs, and we may assume thathas
atleastas many ag. There is at most one edge betwéen v,} andVsg so we can suppose
thatvq is isolated and, has degree at most 1. We can supposewthistnot adjacent tagp.
Consideringusvsxooxo1 We see thabs is adjacent torgs. AlsSo vivaxpoxor has at most one
edge, sapvsxiory1 has a vertex of degree 2. This vertex cannatber vs (that would give
3 neighbours t@s, andvg has at least as many). Then we can supposeiba adjacent to
v andvs. Now vy is adjacent tocig, v3 tO x01, x10, andvg has degree 2. Tharpvzxooxo1
has one edge, sav4xiox11 has a vertex of degree 2, which mustiae Now vv3x10x11
andvavaxgoxo1 €ach have at most one edge, which is a contradiction. This completes the
analysis of the case whéng, ..., v4} is an independent set ih

Now we can assume thatdoes not have an independent set of size 4, by definition of
our improvement procedure fot, .. ., vg. ThenVs7is not bipartite, as then it would have
an independent set of size 4. It cannot be connected, as it has at most 6 edges, and a tree is
bipartite.

Consider the case when the components are a 5-cycle and an isolated edge. Label the
5-cyclex; - - - x5 consecutively and the edgey,. Note thatxoxsx3ys is a 4-cycle in the
complement of], sovg has at least 2 neighbours {n1, x4, y2}. Similarly, for any non-
adjacent:, b inthe 5-cycle and; inthe isolated edge we see thghas atleast 2 neighbours
in {a, b, y;}. It follows thatvg is adjacent ta;; andy», or it would be joined to the entire 5-
cycle, which isimpossible as it has at most 3 neighbours. Theas at most one neighbour
on the 5-cycle, so we can choasgb in the 5-cycle so thafa, b, vs} is independent. Then
vg only has one neighbour ifa, b, y1}, a contradiction.

Now every component df17 must have size at most 4, so we can partifign= L U R
sothat/L| = 3, |R| = 4 and there are no edges betwéeandR. Thenacbdis a 4-cycle in
the complement o for each paiu, b € L and paitc, d € R. Thereforezbcvg has a vertex
of degree 2 for every € L andb, ¢ € R. In particularvg is adjacent to one d#, ¢ for
eachb, c € R, sois adjacent to at least 3 verticefofThereforevg is adjacent to exactly 3
vertices ofRand to no vertices df. Saybvg is not an edgej € R. If there isc such thabc
is not an edge thembcvg does not have a vertex of degree 2 for any L, contradiction.
Thereforeb has degree 3. TheW 7\ {b} is a graph on 6 vertices with at most 3 edges, and
it does not consist of 3 disjoint edges. Such a graph has an independent set of size 4. (This
follows from Turan’s theorem, but is also easy to see directly.) This contradiction completes
the proof of Claim4.2 [

Now we return to the proof of Lemnta2 Recall that it suffices to label, . . ., vg by [Fg
so that the setS§, = PG2(2)\ ﬂeeMa T, for a € PG»(2) satisfy the conditions of Lemma
4.1 Recall also thatn, = |PG2(2)\T,.|. We chosevy, ..., vg SO thatZiq Myy; <9, SO
any labelling will satisfy condition (ii). By Claind.2we know that the complement df
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has two disjoint four-cycles. Consider a labellingwaf . . . , vg by [Fg so that one 4-cycle
is labelled in cyclic ordex0, 0, 0), (1, 0,0), (1, 1,0), (0,1, 0) and the other is labelled
(0,0,1), (1,0,1), (1,1, 1), (0, 1, 1). Then the matchings/(1 0,0 and Mg, 1,0) belong to
the complement o8, so by definitionS1,00) = So,1,00 = 9. Therefore this labelling
satisfies conditions (iii) and (iv).

Suppose that the labelling does not satisfy condition (i). Then therei® G2(2) such
thatS, = PG2(2), i.e. ﬂeeM“ T, = (. ThenZeeMa m. >7 So there are at most 2 other

edgeewithm, > 0; call themeq, e2. We chose, . . ., vg SO thatZ{:_l1 my; < Lj/2] -1
In particular,m, <3 for all ¢, at most onee hasm, = 3 and at most three havem, > 2.
It follows that we can choose, y so that{a, x, y} is a basis oth, mo,q) + Mx x+a) <4
andmy, ytay + Mx+y,x+y+a) <4. Now we relabel our vertex set by interchanging the
labels 0 andc + a. Note that the edges labell¢d, a}, {x, x + a} are now labelledO, x},
{a,a + x}. Even ifeq, e> are now both inM, we still haveZeeMa m. < 6. For the same
reason _,.,, m.<6.Also at least three of th§ are empty. Therefore conditions (i)—(iv)
are satisfied by this labelling.

Finally, suppose that the labelling does not satisfy condition (v), i.e. there are lines
L1, Lo so thatS, = L for eachx € Lj. Suppose thal; = {x;,y;,x; + y;}. Let
A = {0, x1, y1, x1 + y1} and B = F3\A. Since)_, m, <9 we must havey, m, = 9,
Z{;llmvivj =1j/2] — 1 for 3<j <8, and all edges with m, > 0 lie within A or within
B. Note that all edges a¥/,,, M,,, My, +,, are withinA or within B. We may assume that
however we permute the labels énwe still haveS, = L, for eachx € Lj. Otherwise
all conditions of Lemma.1are satisfied, and we are done. By possibly renarAiBgand
the elements of., we deduce that the sefs for edgese within A or within B have the
following properties.

(1) Each of the three matchings of size two witAihas an edgeon whichP G2(2)\T, =

{x2}.
(2) Foreach matchinfe, f} within B we haveP G2(2)\(T, U Tr) = {y2, x2 + y2}

There must be 3 elements Gig = {va, ..., vg} in Band 2 elements o¥4g in A, as if
either set contained 4 then the one with smallest index would be incident to ae efttge
m, > 0 crossing betweeA andB. SinceZleviv8 = 3, it follows thatvg € B. Then the
edges withinA with m, > 0 must form a triangle in which each edgé&asm, = 1. Let
a € A be the vertex that is not in this triangle.

There are two possibilities for the edgesBnConsider first the case when there are
x,y € B sothatm,, = 2, my,s = 1. Letzbe the other vertex d. Thenm,, = 1 and
myy = 2. The other case is whemn, = 1 for each edge iB. Then for each matching, f}
within Bwe haveP G2(2)\T, = {y2} andPG2(2)\Ty = {x2+ y2}, or vice versa. It follows
that there is a vertexsuch thatP G2(2)\T, is the same set (sdy-}) for all edges within
B incident toz. In either case we consider the new labelling obtained by interchanging the
labelsa andz. In the first case the only effect on the sgtss that the edge formerly labelled
xznow contributes to a differers}. This labelling clearly satisfies the conditions of Lemma
4.1 In the second case we have a situation isomorphic to that described in condition (iv)
of Lemma4.1 In all cases we deduce that there is an automorphismZ3(2) such that
n(a) ¢ Sy, 1.e.m(a) € ﬂeeMa T,, foralla € PG2(2). Now we relabel our set of 8 vertices
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so that the vertex with label has now has labet(a). This has the effect of relabelling
M, as Mr), SO now we haver € (1), T for all a. This completes the proof of the
lemma. O

5. Concluding remarks and open problems

The construction for the lower bound in Theoreinsand1.2 seems very naive, but we
suspect it may be optimal for sufficiently large Forq = 2 we have seen that it is not
optimal form = 2 orm = 3. The constructions that beat it are based on colouring properties
of the projective geometries.df= y(PG,,(q)) denotes the chromatic number®&,, (¢)
then a natural competing construction is to divide a set of vertices intb parts and take
as edges allg + 1)-tuples that do not fall entirely within one of the classes. This gives a
lower bound on the Turan density ofd1(: — 1)79.

However, it is not hard to see thatP G, (¢)) <m for all m, g >2 (except whem =
g = 2 when we havg(PG2(2)) = 3). Indeedy(PG,+1(q)) <y (PG, (q)) + 1, as given
PG,,+1(q) we can colour a copy aPG,,(¢) inside it and then assign one new colour to all
the other vertices. Pelikga5] shows thay (P G3(2)) = 3andy(PGaz(q)) = 2forallg >
2, sothis verifies the observation. We remark in passing that the determingtidn®@f, (¢))
in general is open. In addition to the results mentioned it is knownyitfa 4(2)) = 4 (see
[15]) andy(PG5(2)) = 5(sed3]). Haddad9] showed that limy— o x(P G, (2)) = oo, and
conjectured that in fagt(PG,,(2)) = m for m > 3. (We note that his proof actually shows
thatlim,,_, o (PG, (q)) = 00, via the result 0f13] on the non-existence of blocking sets
in PGp(q).)

In any case, the construction described above cannot give a lower bound better than
1— (m — 1)~ for the Turan density oP G,,(g). For largem this is much worse than the
lower bound from Theorerf.1, which is 1— O(g%~™). It seems unlikely that variations
along the lines of1] and our construction in Theorenl can close this gap, which provides
some grounds for thinking that the naive construction may eventually be optimal. Also, we
note that the Lagrangian method (see Chaptef#]d€asily shows that any +1)-uniform
hypergraph with density at Ieaﬁ?:l(l — i/t) contains some subhypergraph on at leéast
vertices that is a 2-cover, i.e. any pair of vertices is contained in some edge FRihoe)
is a 2-cover, this could be viewed as giving further support to this suggestion.

It would be very interesting to determine the Turan densityPdt,, (¢) for any pair
m, g >2 other than the Fano plane. We have focussed particularly on thegcase?,

m = 3 in the latter part of this paper. Our methods suggest that further improvements on
our upper bound should be possible, although it would be preferable to achieve this without
magnifying the amount of case analysis required. An obvious starting pointis to try to reduce
the constant & in the statement of Lemn&2. Considering the complete balanced 7-partite
graph in which every edge has multiplicity 7, we see that this constant cannot be less than
6, so the best possible upper bound that could be proved by our methgds ddie that

6/7 ~ 0.857143 s fairly close to our lower bound o§/3+2,/2(9 — 5v/3)—6 ~ 0.844778.

It is hard to make a plausible conjecture on the true valug 8iG3(2)). The construction
seems simple enough that it is hard to imagine beating it, but the same could have been said
of that in[1]. Also, it would be somewhat surprising if the density was irrational.
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Our proof of the auxiliary Lemmd.1 (given in Appendix B) is somewhat ad hoc, and
our only concern is to obtain the minimum necessary for the proof of Leggh&lowever,
we believe that the following general problem may be interesting.

Problem 5.1(Group marriage problem Let G be a group acting on a set X. Suppose we
have a subset, C X for eachx € X. When is there an elemegte G so thatgx € A,
for eachx € X?

Note that in the case whéiis the entire symmetric group the problem asks for a system
of distinct representatives of the s¢t§, : x € X}. This is an equivalent formulation of
Hall's marriage problem, and the necessary and sufficient condition idthat, Ay|>1Y|
for eachY C X. For general5, an obvious necessary condition is thbit conditionthat
Uyey Ay must contain an orbit of for eachY C X. However, this is not sufficient. For
example, suppos@ is the cyclic group of order 3 acting dd, 2, 3} via the permutation
(123 and letA; = {2}, A = {1}, A3 = {3}. Itis easy to check that), ., A, contains an
orbit of Y for eachY C {1, 2, 3}, but the only possible marriage is the permutatihg),
which is not in the group. It would be interesting to classify the gra@dsr which the
orbit condition is sufficient for the group marriage problem. It seems likely that ‘sufficiently
transitive’ groups should have this property, and in particularitgé2) should. A nice proof
of this would make the proof of Lemn#&2 much cleaner.

Appendix A. Proof of Lemma 2.2

Note that ifsis an integer we hav® i |1+ i(s +1)] = s (’;) + Y%= Ha+it]. Since
on _ 1)( (2;’) _ 1) =@ —2) ( 2) n ((2:) _omy 1) we havef (2", (2" — 1)
((ZZ) — )) =22+ f (2’”, (2;") —omy 1). Therefore it suffices to compute
(2 (%) -2"+1).

First supposen >3 is odd. Letp = (2" 4 1)/3 (an integer). Note that if = xp + r,
with 1<r < p then

L1+idQ-1/p)l=x(p—D+r+|1—r/p]l =i —x.
Therefore
2m—1 P 2p 2m—1
Y U+id-1p=) i+ > (-D+ Y (-2
i=1 i=1 i=p+1 i=2p+1
p L)

Zi —p—2(2" —1-2p)

i=1
2)11 2m
<2>+3p—2m+1+2=(2>—2"1+3.
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On the other hand, if < 1 —1/pthen|1+ pt|<p—1and|l1+ 2pr]<2p — 2, SO
214t < ( ) 2™ 4+ 1. By definition it follows thatf (2’" ( ) —2m 4 1) =
1-1/pandso

1 1 2" — om __ _ —2om _ 1 _ 3
f<2,(2 —1)<<2)—1>)_2 241-1/p=2"—1- =

Now supposenis even. Letp = (2" — 1)/3 (an integer). We have

-1 -1 21
Z [1+i(1— 1/p)J—Zl+ Z (—D+ > ((-2=) i-3p
i=p+1 i=2p+1 i=1

2m
— — 2" 4+ 1.
(2) *

Leto = S5 Note thatfor O< f < awe havel1+i(1—1/p+p)] = [1+i(1—1/p)].
For wheni <2p + 1 we have f§ < 1/p and for 2» + 2<i<2" — 1 we have § < 2/p;
in neither case do we add enough to excgkd- i(1 — 1/p)| + 1. On the other hand,
1+i(1—1/p+a)]isequaltol]l+i(1— 1/p)], except when = 2p + 1 when we
have|14+ 2p + 1)1 —-1/p + oc)J =2p=1[1+2p+1H(1 - l/p)J + 1. Therefore
Y214 iA—1/pt o) = ( )—2m+2 We deduce that (2m ( ) oy 1) -
1-1/p+a=1-2/(2p+1)andso

f(Z”’,(Z’” —1)((2:) —1)):2’" —2+41-2/2p+1)
- 6
=2 - loamir

This completes the proof of the lemma.

Appendix B. Proof of Lemma 4.1

We divide into cases according to the number of non-emptyS&etBirst we deal with

the case when exactly oi§g is empty. Here condition (iv) determines the sgtprecisely.
We chooser(0) = 01, n(1) = 02, n(2) = 0 and extend by linearity. This gives =
(0,01, 12, 2)(1, 02)(012) (using cycle notation), which satisfies the conditiar) ¢ S,
for all x. Next we consider the case when exactly §pés non-empty, sago. By condition
(i) we can picku ¢ So, and then anyt with 7(0) = « will do.

Now suppose there are exactly two non-empty sets,Ssagnd S,. From condition
(if) we can suppose without loss of generality th&t| <5. By condition (i) we can pick
u € PG2(2\Sy and therw € PG2(2)\(S, U {u}). Now L3(2) is transitive on pairs of
elements inPG»(2), so we can choose so thatr(x) = u andzn(y) = v, as required.

Now consider the case when there are exactly three non-efppTihere are two possi-
bilities, according to whether the three indexing elements are collinear or not. Suppose first
that they are collinear. Sindes(2) is transitive on lines and can permute the points within a
given line arbitarily, we can assume ttsgt S1, So1 are non-empty, withSo| <|[S1] <1So01|.

We need to find elements# b so thata ¢ So, b ¢ S1anda +b ¢ So1. Then we can define
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7n(0) = a, n(1) = b and an arbitarily linear extension gives us the required automorphism.
LetT ={a+b:a ¢ So,b ¢ S1,a # b}. Suppose for the sake of contradiction that
T C Sp1. Since|So1| < 7 thereisc ¢ T. Then for eacla ¢ Sp, a # ¢ we haveu + ¢ € Sy,
and s0/S1| > 6 — |So|. Therefore 9= |So| + |S1| + [So1| =6+ | So1|, SO|So1| < 3. It follows
that|So| = |S1] = |So1| = 3. Note that ifb ¢ S1 then we must have ¢ Sp also, otherwise
IT|>{a +b : a ¢ So}| = 4, which contradicts" C Sp1. This shows thatsy C Sj.
Similarly we haveS; C So, i.e. So = S1. Note that the complement 6§ cannot contain
alinea, b, a + b. For lettingd denote its other element we see tiaiontains the distinct
elementsi, b,a +b,a+d,b+d,a+ b+ d, which contradict§” C Sop1. It follows that

So = S1 = Sppis aline. This contradicts condition (v). We conclude that not contained

in So1, so the required automorphismexists.

We also have the possibility that there are exactly three non-esypand the indexing
set is not collinear. Sincés(2) is transitive on non-collinear triples and can permute the
points within a given non-collinear triple arbitarily, we can assumeg$basi, S, are non-
empty, with|Sp| < |S1]| <|S2|. We need to find a non-collinear triple b, ¢ such that: ¢ So,

b ¢ S1,c ¢ So. Then we can define(0) = a, n(1) = b, n(2) = ¢ and extend linearly

to obtain the required automorphism. Suppose this is not possible. Then fou @aéh,

b ¢ S1,a # b we haveSy C {a, b, a + b}. Since|So| + |S1| + [S2| <9 we must have

[Sol = [S1] = |S2| = 3. ThenS2 = {a,b,a + b} for anya ¢ So, b ¢ S1,a # b. In
particular the 4 elements ¢ Sp all belong toS», which is a contradiction. We conclude

that the required automorphism exists, which finishes the case when there are exactly three
non-emptys,.

The last case, when the number of non-emfytys 4 or 5, is the most complicated. We
may assume thatt;2 andSp12 are empty. Pick any ¢ So and extend to a basis, b, ¢} of
[Fg. Consider the following bipartite grapy . The left vertex class igl, 01, 2, 02}, the right
vertex classi$h, a+b, c,a+c, b+c, a+b+c}, and an elementn the left class is joined
to an elementin the right class exactly whene S;. We want to find a matching of the left
class into the right class in the complement grapBpin such a way that the paifg, 01}
and{2, 02} are each matched with one of the pditsa + b}, {c,a +c}, {b+c,a+b+c}.

With such a matching we can construct the automorphidmy mapping{1, 01, 2, 02} to
their match, 0 ta, 12 ton(1) + n(2) and 012 tor(01) + =(2). Suppose for the sake of
contradiction that no such matching exists.

Note that we can matcfi, 01} to {b, a + b} in the complement exactly wheBy re-
stricted to these four vertices has maximum degree at most 1. Consider the following
auxiliary bipartite graphB,. The left vertex class consists of the pdits01},{2, 02}, the
right vertex class consists of the pais a + b}, {c,a + ¢}, {b + c,a + b + ¢}, and
a pair on the left is joined to a pair on the right exactly when restricted to these
four vertices has a vertex of degree 2. Note that a matching of the left class into the
right class in the complement d#, will give us the matching in the complement of
B1 we require. By Hall's theorem (or direct analysis) we can do this unless one vertex
on the left side is joined to all vertices on the right side, or some two vertices on the
right side are joined to both vertices on the left side.

Consider the case when some two vertices on the right sid¢bsay- b} and{c, a + ¢},
are joined to botH1, 01} and {2, 02}. Then for each paifx, a + x} with x = b, ¢ the
restrictions ofB1 to {1, 01, x, @ + x} and{2, 02, x, a + x} each contain a vertex of degree
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2. ThereforgS1| + | So1| >4 and| S2| + | So2| =4, S0|S1| + |So1| + | S2| + | So2| = 8. Then by
condition (ii) we haveSp| < 1, so we can choose a vertgxamong(b, a + b, ¢, a + ¢} with
a’ ¢ So. Note thata’ has degree at least 2 By, as it is joined to at least one ¢f, 01} and
atleast one of2, 02}. Now repeat the above construction usingnstead of. Specifically,
we let{d’, b, ¢} be a basis of3, from which we construcB] asB; was constructed from
{a, b, ¢}, and construcB, from B] as B, was constructed from®;. As above we conclude
that in B, either one of the pairgl, 01} and{2, 02} is joined to all of the pair$y’, a’ + b'},
{c,a" + '}, (b +,a' + b + '}, or some two of the pair&’, a’ + b'}, {¢’,a’ + '},
{b' + ', a’ + b’ + '}, are joined to both of the paifd, 01}, {2, 02}. The first possibility
cannotoccur, asifsal, 01} is joinedto all of{p’, a’ +b'}, {c’, a’ +'}, {b'+c', a’ +b' +'}
then|S1|+|So1| = 6, which givegS1|+ | So1| + |S2| +|So2| = 10, a contradiction. Therefore
some two of the pair§’, a’ + '}, {c’,a’ + '}, {b' + ', a’ + b’ + '}, are joined to both of
the pairs{1, 01}, {2, 02}. Recall however that’ is also joined to at least 2 ¢1, 01, 2, 02}.
This gives|S1| + |So1| + |S2| + |Soz2| = 10, a contradiction.

Therefore we are reduced to the case when one verté,ofay{1, 01}, is joined to
each of the vertice$b, a + b}, {c,a + ¢} and{b + c¢,a + b + c¢}. Then for each pair
{x, a+ x} there is a vertex of degree 2 in the restrictiorBgfto {1, 01, x, a + x}. Therefore
|S1] + |So1| = 6. By assumption at least two oth&f are non-empty, so by condition (ii)
|S1] + |So1] is equal to 6 or 7, and each oth&r has at most 2 elements. Without loss of
generality suppose thg;| > | So1|. We claim that we can pick’ € S1\So with a” # a. For
if |S1] + |So1] = 6 thena does not belong t6; or Sp1, |S1]| >3 and|Sp| < 2, so we can pick
a’ € S1\So. Also, if |S1| +|So1| = 7 then|S1| >4 and|Sp| < 1 so we can choosg € S1\So
with a’ # a. Again we repeat the construction usimginstead ofa, letting {a’, b’, ¢’} be
a basis oifF% and constructing the bipartite grapB$ and B5. As before we conclude that
in By either one of the pairgl, 01} and{2, 02} is joined to all of the pairgd’, a’ + b'},
{c/,a" + '}, (b +',a’ + b + '}, or some two of the pair§’,a’ + b'}, {¢’,a’ + ¢},
(b +',a’ + b + '}, are joined to both of the paifd, 01}, {2, 02}. However, condition
(ii) gives | S2| + [So021 <9 — |S1] — |S01/ <3, so the only possibility is that the pdit, 01}
is joined to all of the pairgd’, a’ + b}, {c',a’ + '}, {b" + ¢',a’ + b + ¢} in B,

By definition, for each paifx’, a’ + x’} there is a vertex of degree 2 in the restriction of
Bjt0{1,01 x', a’ + x'}. In particularB] has at least 6 edges. Algbis in S1, which is an
extra element not counted B, so|S1| + |So1| = 7. In particularS1| >4, as|S1| > |Sol.
Also, the two other non-empt§, must each contain one element. In particul&y <1.
Now we will divide into cases according to the structureBaf We define three possible
types for the subgraph induced b, 01, x, a + x}; we say it hagypel if 1 has degree 2,
type01if 01 has degree 2, argpe Cif one ofx ora + x has degree 2. Note that a subgraph
has at least one type, and possibly more than one. We sagitiastype («, f3, y) if the
three subgraphd, 01, x, a + x} have typesg, 5 andy (in some order). AgainB1 can have
more than one type. Sings1| > |So1| and|S1| >4, it follows thatB; has at least one type
among(1,1, 1), (1,1, C), (1,1,01) and(1, C, C).

Suppose first that one type 8f is (1,1, 1), i.e. 1 is joined to all vertices except far
Thena ¢ S1, by condition (i). SincgS1| + |So1| = 7 we have|Sp1| = 1. By changing
basis we can assume thatt So andc ¢ Sp. We can choose’ = b in the construction
of B. Consider the induced subgraph®f on {1, 01, a, a + b}. Since L is not an edge
and|Sp1| = 1, the vertex of degree 2 must bet b. In particulara + b € Sp1. The same
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argument applied to the choieé= ¢ shows that: + ¢ € Sp1. However this contradicts the
fact that|Sp1| = 1, soB1 cannot havél, 1, 1) as a type.

Next suppose thaB1 has(1, 1, C) as a type. We can suppose thab + a,c,c + a
belong toS; and thath + ¢ belongs taS1 andSp1. From the previous paragraph we know
thata + b + ¢ ¢ S1. We can also suppose that¢ Sp. Chooser’ = b and consider the
subgraphs induced bg; on {1,01, a,a + b} and{1,01,a + c,a + b + c}. Then 1 has
degree 1 in each, so 01 has degree at least 1 in each. Togethér withe Sp1 we get
|So1] >3, i.e.|S1| + |So1| = 8, which is a contradiction. TherefoR cannot havél, 1, C)
as atype.

Now suppose thaB; has(1, 1, 01) as a type. We can suppose thab + a,c,c + a
belong toS1 and that + ¢, a + b + ¢ belong toSp1. Also, b + ¢, a + b + ¢ do not belong to
S1, as that would give typé€l, 1, C). We can supposk ¢ So and choose’ = b. Consider
the subgraph induced %, on {1, 01, ¢, b + ¢}. Since 1 is not joined tb + ¢ the degree 2
vertex must be 01 ar. In particularc € Sp1. Similarly, consideringl, 01, a +c¢, a+ b+ ¢}
shows that: + ¢ € So1. This gives|Sp1| >4, i.e.|S1]| + |So1| =8, which is a contradiction.
ThereforeB; cannot havel, 1, 01) as a type.

Finally, suppose thaB; has(1, C, C) as a type. ThenS1 N Sp1| > 2, so we can choose
a’ € (51N So1)\So. Now B has at least 6 edges, which does not count the contribution of
2 thata’ makes tgS1| + |So1/, SO again we get the contradictio$y | + |So1| > 8. We have
shown that if there is no automorphignwith n(x) ¢ S, for all xthenB; must have a type
that leads to a contradiction. Therefore the required automorphism exists, which completes
the proof of the lemma.
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