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Abstract

We consider the following Turán problem. How many edges can there be in a(q + 1)-uniform
hypergraph onn vertices that does not contain a copy of the projective geometryPGm(q)? The case
q = m = 2 (the Fano plane) was recently solved independently and simultaneously by Keevash and
Sudakov (The Turán number of the Fano plane, Combinatorica, to appear) and Füredi and Simonovits
(Triple systems not containing a Fano configuration, Combin. Probab. Comput., to appear). Here we
obtain estimates for generalq andm via the de Caen–Füredi method of links combined with the
orbit-stabiliser theorem from elementary group theory. In particular, we improve the known upper
and lower bounds in the caseq = 2,m = 3.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

For anr-uniform hypergraphF , the Turán number ex(n,F) is the maximum number
of edges in anr-uniform hypergraph onn vertices that does not contain a copy ofF .
Determining these numbers is one of the central problems in extremal combinatorics. For
ordinary graphs (the caser=2) this is completely solved for many instances, including all
complete graphs. Turán proved that the unique largest graph onn vertices not containing
a copy ofKt (the complete graph ont vertices) is the complete(t−1)-partite graph with
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part sizes as equal as possible. Moreover, asymptotic results are known for all non-bipartite
graphs.
In contrast, for nearly anyr-uniform hypergraphF with r > 2, the problem of finding the

numbersex(n,F) is notoriously difficult. Even the asymptotics of hypergraph Turán num-
bers are poorly understood. It is not hard to show that the limit�(F) = limn→∞ ex(n,F)/(
n
r

)
exists. It is usually called theTurán density. It is a famous open problem of Turán to

determine the numbersex(n,K(r)
s ), whereK(r)

s denotes the completer-uniformhypergraph
on s vertices. In particular, he conjectured that�(K(3)

4 ) is equal to 5/9, and Erd˝os offered
a $1000 prize for the solution of even this case. There are very few exact results on hy-
pergraph Turán numbers. Most of these are described in the excellent survey of Füredi[4].
More recently, there have been three new exact results (see[6–8,11,12]for details). Most
of the progress has been for triple systems (the caser = 3), where there have also been
some new results on Turán densities (see[14]).
In this paper we will consider the Turán problem when the forbidden hypergraph is

PGm(q), i.e. the projective geometry of dimensionm over the field withq elements. For
the Fano plane (the casem = q = 2) the exact Turán number was determined inde-
pendently and simultaneously by Keevash and Sudakov[11] and Füredi and Simonovits

[8]. They showed thatex(n, PG2(2)) = (
n
3

) −
( �n/2�

3

)
−
( �n/2	

3

)
for n sufficiently

large. In particular�(PG2(2)) = 3/4, which was proved earlier by de Caen and Füredi
[2]. The caseq = 2, m = 3 was considered by Cioab˘a [1], who obtained the bounds
27/32��(PG3(2))�27/28.
Our first result gives general bounds for�(PGm(q)).

Theorem 1.1. The Turán density ofPGm(q) satisfies

q∏
i=1

(
1− i∑m

j=1 qj

)
��(PGm(q))�1− 1(

qm

q

) .
For the caseq = 2, our next theorem improves the general upper bound of Theorem1.1.

Theorem 1.2. The Turán density ofPGm(2) satisfies

(2m+1 − 3)(2m+1 − 4)

(2m+1 − 2)2
��(PGm(2))�



1− 3

22m − 1
, m odd,

1− 6

(2m − 1)(2m+1 + 1)
, m even.

Note that in the casem = 3 this improves the known upper bound to 20/21. Next we
concentrate further on this case, where we are able to improve both the upper and lower
bounds.

Theorem 1.3. The Turán density ofPG3(2) satisfies

3
√
3+ 2

√
2(9− 5

√
3) − 6��(PG3(2))�13/14.
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For comparison purposes, note that 3
√
3+2

√
2(9− 5

√
3)−6∼ 0.844778 and 27/32=

0.84375.

Notation. Our graphs and multigraphs are denoted by the letterG or J, possibly with
subscripts. IfG is a graph or multigraph, thene(G) denotes the number of edges it contains,
counted with multiplicity. IfX is a subset of the vertex set thenGX denotes the restriction
of G to X (i.e. the induced subgraph) ande(X) = e(GX) is the number of edges there. In
particular, ifu, v are vertices we writee(uv) for the multiplicity of the pairu, v. We write
d(u) = ∑

v e(uv) for the degree ofu anddX(u) = ∑
v∈X e(uv) for the degree ofu in X.

Our hypergraphs andmultihypergraphs are denoted by calligraphic letters such asH andG.
(In anr-uniform multihypergraph eachr-subsetA of the vertex set has some non-negative
integer multiplicitye(A).) SupposeH is anr-uniform hypergraph andx is a vertex. The
link of x is an(r − 1)-uniform hypergraphL(x) on the same vertex set asH, whereA is an
edge ofL(x) exactly whenA∪{x} is an edge ofH. If X is a subset of the vertex set then the
link multihypergraphof X is the(r − 1)-uniform multihypergraphL(X) = ∑

x∈X L(x). In
other words, each(r − 1)-tupleA has multiplicity inL(X) equal to the number of vertices
x ∈ X such thatA ∪ {x} is an edge ofH.

The rest of this paper is organised as follows. In the next section we will define the
projective geometriesPGm(q) and prove Theorems1.1 and1.2. Section 3 contains the
proof of Theorem1.3. The upper bound requires a technical lemma, the proof of which
we postpone to Section 4. The final section contains some concluding remarks and open
problems.

2. General bounds

In this section we prove Theorems1.1 and1.2. We start by recalling some elementary
algebra. LetFq denote the field withq elements. Theprojective geometryof dimension
m overFq , denotedPGm(q), is the following hypergraph. Its vertex set is the set of all
one-dimensional subspaces ofFm+1

q . Its edges correspond to two-dimensional subspaces

of Fm+1
q , in that for each two-dimensional subspace, the set of one-dimensional subspaces

that it contains is an edge of the hypergraphPGm(q).
We can identify a one-dimensional subspace by picking one of its non-zero vectors.

There areq−1 choices of this representative, which are equivalent in the sense that they are
scalarmultiples of oneanother.A two-dimensional subspace containsq+1one-dimensional
subspaces, forwhichwecanchoose representativesof the form{x, y, x+y,2x+y, . . . , (q−
1)x + y}. To count the two-dimensional subspaces consider picking a non-zero vector and
thenanotherwhich is not equivalent. There are(qm+1−1)(qm+1−q) such choices, andeach

two-dimensional subspace is generatedby(q2−1)(q2−q) choices, giving(q
m+1−1)(qm+1−q)

(q2−1)(q2−q)

subspaces. ThereforePGm(q) is a(q + 1)-uniform hypergraph withq
m+1−1
q−1 = ∑m

j=0 qj

vertices and(q
m+1−1)(qm−1)
(q2−1)(q−1) edges.
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Fig. 1. The Fano plane inPG3(2).

LetGLm(q) denote thegeneral lineargroup of invertible linear maps fromF
m
q to itself.

The set of non-zeromultiples of the identity matrix forms a normal subgroupD inGLm(q);
the quotientGLm(q)/D is theprojective linear groupPGLm(q). This is the automorphism
group ofPGm−1(q). Note that in the caseq = 2 there is only one non-zero field element.
Here we can identifyPGm−1(2) with the non-zero elements ofFm

2 , andD consists only
of the identity element. ThenPGLm(2) = GLm(2), and it is customary to denote both by
Lm(2). (It is also equal to the special linear group and projective special linear group in this
case, but these will not be relevant to our discussion.)
From our discussion of the case of generalq we know thatPGm(2) is a 3-uniform

hypergraph, with 2m+1 − 1 vertices and13(2
m − 1)(2m+1 − 1) edges. The automorphism

group ofPGm(2) isLm+1(2), the group of invertible linear maps fromFm+1
2 to itself. For

illustrative purposes, and because it will be important later, we will describe the specific
examplePG2(2). We will use the following concise notation for its elements. A non-zero
elementx = (x1, x2, x3) of F32 is described by a string containing some combination of the
symbols 0,1,2, where symboli appears in the string forx exactly whenxi+1 = 1. With
this notation, the vertices ofPG2(2) are 0,1,2,01,02,12,012 and the lines are as shown
on the left of Fig.1 (the circle is also a line). This configuration is commonly known as the
Fano plane. Its automorphism groupL3(2) has 168 elements. It will be helpful later to note
thatL3(2) is doubly transitive, transitive on lines and transitive on non-collinear triples.
An obvious property ofPGm(q) is that every pair of pointsx, y belongs to exactly one

edge, for which we can choose representatives{x, y, x+y,2x+y, . . . , (q−1)x+y}. Note
thatPGm(q) contains a copy ofPGm−1(q), for example that consisting of the equivalence
classes of all non-zero vectorsx = (x1, . . . , xm+1) in Fm+1

q which havexm+1 = 0. LetX
be the set of vertices of this copy ofPGm−1(q) and letYbe the remaining vertices. ThenY
consists of the equivalence classes of all vectors withxm+1 �= 0; we can pick representatives
so thatxm+1 = 1, and then all possibleqm vectors appear in the firstm co-ordinates. Any
edge ofPGm(q) that intersectsY has the form{x, y, x + y,2x + y, . . . , (q − 1)x + y},
wherex ∈ X andy ∈ Y , so it intersectsY in exactlyq − 1 points.
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To continue our discussion we introduce a definition. Consider anyr-uniform hypergraph
H and a vertexx. Thelink of x is an(r − 1)-uniform hypergraphL(x) on the same vertex
set asH, whereA is an edge ofL(x) exactly whenA ∪ {x} is an edge ofH. Suppose that
H = PGm(q) andx is a vertex ofX (with the notation of the previous paragraph). Then the
link L(x) restricted toY is a perfect matchingMx ofY, i.e. a set ofqm−1 mutually disjoint
q-tuples. Indeed, for eachy ∈ Y the unique edge ofL(x) containingy is {y, x + y,2x +
y, . . . , (q−1)x+y}.Asx ranges overPGm−1(q)weobtain a set ofq

m−1
q−1 perfectmatchings

ofYsuch that each pair of vertices ofYappear in exactly one edge. Fig.1 illustrates this in
the caseq = 2,m = 3. HereX is the Fano plane andwe can think ofY�F32 as the vertices of
a cube. The edges of the cube (in bold) comprise the three matchingsM0,M1,M2, the long
diagonals form thematchingM012, and the face diagonals (dotted lines) form the remaining
three matchingsM01,M02,M12.
Our strategy for finding a copy ofPGm(q) in a sufficiently dense(q + 1)-uniform

hypergraph is as follows. By induction we will be able to assume that there is a copy of
PGm−1(q), which we denoteX and label as before with the equivalence classes of all non-
zero vectorsx ∈ Fm+1

q with xm+1 = 0.We will find a particular setYof qm vertices, which

can be labelled with the vectorsx ∈ Fm+1
q with xm+1 = 1 and define the matchings{Mx :

x ∈ X}asabove, i.e.Mx contains allq-tuples of the form{y, x+y,2x+y, . . . , (q−1)x+y}
for y ∈ Y . This labellingwill have theproperty that there is anautomorphism� ∈ PGLm(q)

so thatMx ⊂ L(�(x)) for everyx ∈ PGm−1(q). Clearly, this gives a copy ofPGm(q), as
we can relabel�(x) asx without altering the hypergraph. In order to make this argument
we need the links of the vertices inPGm−1(q) to be large (i.e. we need large degrees). This
is achieved by the following fact.

Fact 2.1. Let �, � > 0 and letk�1, r�2 andn0 be positive integers. Then there isn1 so
that for alln�n1 any r-uniformmultihypergraphH on n vertices with at least(�+2�) (n

r

)
edges and maximum multiplicity at most k contains an r-uniform multihypergraphH′ with
m vertices and minimum degree at least(� + �)

(
m−1
r−1

)
, for somem�n0.

This follows from a standard argument involving deleting vertices of small degree, but
for the convenience of the reader we will give the following brief proof.

Proof. Suppose thatH is a counterexample to the statement. Then we can construct a
sequenceHn,Hn−1, . . . ,Hn0 whereHm−1 is obtained fromHm by deleting a vertex of

degree at most(� + �)
(
m−1
r−1

)
. Then

k
(n0
r

)
� e(Hn0)�(� + 2�)

(n
r

)
−

n∑
m=n0+1

(� + �)
(
m − 1

r − 1

)

= (� + 2�)
(n0
r

)
+ �

n∑
m=n0+1

(
m − 1

r − 1

)
.

From the crude estimateknr0 > �n we obtain a contradiction withn1 = �−1knr0, so the Fact
is true. �
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Wewill need the following piece of elementary group theory. (See[10] for an introduction
to this subject.) Suppose a groupG acts on a setX, with the action written on the left. For
an elementx in X, the stabiliser ofx is the subgroupGx of G that fixesx. The orbit ofx is
Gx = {gx : g ∈ G}, i.e. the set of all images ofxunder the action ofG. The orbit-stabiliser
theorem states that|G| = |Gx ||Gx|. In particular, ifG acts transitively onX (i.e. the whole
of X is a single orbit) then|Gx | = |G|/|X|. LetG(x, y) denote the set of elements ofG that
take elementx to elementy. If g is any element takingx to y thenG(x, y) is the cosetgGx ,
so it also has size|G|/|X|. We will apply this to the action ofPGLm(q) onPGm−1(q),
which is obviously transitive, as one can map any line to any other line via an invertible
linear map. In this case there are|PGLm(q)|/|PGm−1(q)| elements mappingx to y, for
anyx, y ∈ PGm−1(q).
Now we give the proof of Theorem1.1, which gives bounds on the Turán density of

PGm(q) for generalmandq.

Proof of Theorem 1.1. We start with the lower bound. Lett = |PGm(q)|−1= ∑m
j=1 qj

and letH(n) be the ‘blow-up’ ofK(q+1)
t , i.e. we divide a set ofn vertices into parts

X1, . . . , Xt with ||Xi |−|Xj ||�1 for all i, j and take as edges all(q+1)-tuples of the form
x1 · · · xq+1 with xi ∈ Xai for some pairwise distincta1, . . . , aq+1. Recall thatPGm(q)

is a (q + 1)-uniform hypergraph ont + 1 points in which every pair of points belong to
some edge. It is clear thatH(n) does not contain a copy ofPGm(q), as for any set of
t + 1 points some two will fall into the sameXi , so there will not be an edge through

them. SinceK(q+1)
t has

(
t

q+1
)
edges, we get a lower bound on the density�(PGm(q)) of

limn→∞
(

n
q+1

)−1
e(H(n)) = (q + 1)!

(
t

q+1
)
/tq+1 = ∏q

i=1(1− i/t).

Nowwe prove the upper bound by induction, the casem = 1 being trivial. Supposem�2
and define� = 1− 1/

(
qm

q

)
. Suppose� > 0 and letH be a(q + 1)-uniform hypergraph

with minimum degree at least(�+�)
(
n−1
q

)
. By Fact2.1it suffices to prove thatH contains

a copy ofPGm(q) whenn is sufficiently large.
Note thatH contains a copy ofPGm−1(q) by induction hypothesis. LetX be its set

of vertices and letZ = V (H)\X. Let G be thelink multihypergraphof X on Z, i.e. each
q-tupleA ⊂ Z appears inG with multiplicity equal to the number of verticesx ∈ X such
thatA∪ {x} is an edge ofH. Note that there are less than|X|nq−1 q-tuples that intersectX,
each of which can have multiplicity at most|X| in G. By the minimum degree assumption
we have

e(G) >
∑
x∈X

|L(x)| − |X|2nq−1 > |PGm−1(q)|(� + �/2)
(
n − 1

q

)
,

for largen. By averaging there must be a subsetY ⊂ Z with |Y | = qm so that

e(GY ) > |PGm−1(q)|�
(
qm

q

)
= |PGm−1(q)|

((
qm

q

)
− 1

)
.

Choose an arbitrary labelling of the vertices ofYwith the vectorsy in Fm+1
q with ym+1 = 1.

Define the perfect matchings{Mx : x ∈ X} as in the discussion before the theorem. As
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we remarked earlier, it suffices to show that there is an automorphism� ∈ PGLm(q)

so thatMx ⊂ L(�(x)) for every x ∈ PGm−1(q). Consider any pair(A, x) such that
x ∈ PGm−1(q), A ∈ My for somey ∈ PGm−1(q) andA /∈ L(x). We cannot use any
� that mapsy to x; there are exactly|PGLm(q)|/|PGm−1(q)| such� by the piece of

group theory discussed earlier. Sincee(GY ) > |PGm−1(q)|
((

qm

q

)
− 1

)
there are at most

|PGm−1(q)|−1 such pairs(A, x) and so at most|PGm−1(q)|−1
|PGm−1(q)| |PGLm(q)| automorphisms

that violate any conditionMa ⊂ L(�(a)). This leaves at least one automorphism that
satisfies the required conditions, so we are done.�

Next we prove Theorem1.2, which gives an improvement to the upper bound when
q = 2. The proof method is the same as for Theorem1.1, except that we also use the result
of Füredi and Kündgen on the Turán problem for integer-weighted graphs, which was an
important ingredient in[1,8,11,14]. An integer-weighted graph is a graphG together with
an assignment of integral weights to its edges. The weight of the graph is the sum of the
weights of its edges. DefinefZ(n, k, r) to be the maximum weight of an integer weighted
graph onnvertices in which every subset ofkvertices induces a subgraph of weight at most
r. Letf (k, r) denote the smallest numbert so that

∑k−1
i=1�1+ it� > r. Füredi and Kündgen

[5] showed thatfZ(n, k, r) = f (k, r)
(
n
2

) + O(n). We will only use the upper bound,
applied to multigraphs (which in particular are integer-weighted graphs). In the following
lemma we calculatef (k, r) in the case that we will use.

Lemma 2.2.

f

(
2m, (2m − 1)

((
2m

2

)
− 1

))
=
{
2m − 1− 3

2m+1, m�3 odd,
2m − 1− 6

2m+1+1, m�4 even.

The proof of this lemma is an easy but slightly tedious calculation, which we give in
Appendix A.

Proof of Theorem 1.2. The lower bound is given by Theorem1.1. We prove the upper
bound by induction form�2. Form = 2, i.e. the Fano plane, we have�(PG2(2)) = 3/4
(by de Caen and Füredi[2]) which is less than the bound of 7/9 claimed by our theorem.
Nowsupposem�3, anddefine�m to be equal to 1− 3

22m−1 if mis odd and1− 6
(2m−1)(2m+1+1)

if m is even. Note that from Lemma2.2we have

(2m − 1)�m = f

(
2m, (2m − 1)

((
2m

2

)
− 1

))
. (1)

Suppose� > 0 and letH be a 3-uniform hypergraph with minimum degree at least(�m +
�)
(
n−1
2

)
. By Fact2.1 it suffices to prove thatH contains a copy ofPGm(2) whenn is

sufficiently large. It is straightforward to verify the inequality

1− 3

22(m−1) − 1
�1− 6

(2m − 1)(2m+1 + 1)
�1− 3

22(m+1) − 1
,
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i.e. that�m is an increasing sequence. ThereforeH contains a copy ofPGm−1(2) by the
induction hypothesis.
LetX be the vertex set of thisPGm−1(2) and letZ = V (H)\X. LetG be the link multi-

graph ofX onZ (defined as before). Note that there are less than|X|n pairs of vertices that
intersectX, each having multiplicity at most|X| in G. By the minimum degree assumption
we have

e(G) >
∑
x∈X

|L(x)| − |X|2n > (2m − 1)(�m + �/2)
(
n − 1

2

)
.

From Eq. (1) and the forementioned result of Füredi and Kündgen it follows that there is

some subsetY ⊂ Z with |Y | = 2m so thate(GY ) > (2m − 1)
( (

2m

2

)
− 1

)
. Choose an

arbitrary labelling of the vertices ofYwith the elements ofFm
2 . For x �= 0 letMx be the

perfect matching ofY in which any elementy is matched withy + x. As in the proof of
Theorem1.1we can find an automorphism� ∈ Lm(2) so thatMx ⊂ L(�(x)) for every
x ∈ X. ThusX ∪ Y spans a copy ofPGm(2), so we are done.�

3. Dimension three

In this section we give the proof of Theorem1.3. First we give the lower bound.

Theorem 3.1. The Turán density ofPG3(2) is at least3
√
3 + 2

√
2(9− 5

√
3) − 6 ∼

0.844778.

Proof. Consider the followingconstruction.Divideasetofnvertices intopartsX1, X2, Y, Z
so that

∣∣|X1| − �n
∣∣�1, ∣∣|X2| − �n

∣∣�1, ∣∣|Y | − �n
∣∣�1 and∣∣|Z| − �n

∣∣�1, where�,�, �
are constants that we will specify later with 2� + � + � = 1. LetX = X1 ∪ X2. Define a
3-uniform hypergraphHn, whose edges are all triples that do not lie entirely within one of
the setsX, Y,Z and are not of the formabcwith a ∈ Y andb, c ∈ Xi for somei.
To see that this does not contain a copy ofPG3(2) we will use a result of Pelikán[15]

that in any weak 3-colouring ofPG3(2) there must be (exactly) 5 points of each colour.
(A weak colouring of a hypergraph is a colouring of the vertices in which there is no edge
where all vertices have the same colour.) Indeed, suppose that there is a copy ofPG3(2) in
Hn. Then(X, Y, Z) defines a proper 3-colouring ofPG3(2), which therefore has 5 points
in each part.Without loss of generality it has at least 3 points inX1, call themx, y, z. There
are no edges ofHn entirely withinX1, sox, y, z cannot be collinear. Consider the lines
(x, y, x+y), (x, z, x+z), (y, z, y+z). These are edges ofPG3(2), and there are no edges
inHn of the formabcwith a ∈ Y andb, c ∈ X1, so we must havex + y, x + z, y + z ∈ Z.
However(x + y) + (x + z) = y + z, so there are three collinear points inZ. There are no
edges ofHn entirely withinZ, so we have a contradiction.
The number of edges inHn is

e(Hn) =
(n
3

)
−
( |X|
3

)
−
( |Y |
3

)
−
( |Z|
3

)
− |Y |

( |X1|
2

)
− |Y |

( |X2|
2

)
.



P. Keevash / Journal of Combinatorial Theory, Series A 111 (2005) 289–309 297

Therefore we have a lower bound for the density�(PG3(2)) of

lim
n→∞

(n
3

)−1
e(Hn) = 1− 8�3 − �3 − �3 − 6��2.

This lower bound is optimised by the following choice of parameters:

� = 1
2(

√
3− 1−

√
6− 10/

√
3) ∼ 0.128067,

� = 1−
√
1− 1/

√
3∼ 0.349885,

� = 1+
√
3− √

3− √
3∼ 0.393982.

This gives the lower bound

�(PG3(2))�3
√
3+ 2

√
2(9− 5

√
3) − 6∼ 0.844778,

as required. �

Next, we want to improve the upper bound on�(PG3(2)) which comes from Theorem
1.2. Our broad strategy is the same.We find a copyXof the Fano planePG2(2), and a setY
of 8 vertices labelled with the elements ofF32, so that defining the matchings{Mx : x ∈ X}
as before there is an automorphism� ∈ L3(2) so thatMx ⊂ L(�(x)). The improvement
comes from a closer analysis of the conditions under which we can find a setY that has such
a labelling. This is achieved by the following technical lemma, whose proof we postpone
to the next section.

Lemma 3.2. Suppose� > 0.LetGbeamultigraphonn verticeswithmaximummultiplicity
7 and with at least(6.5+ �)

(
n
2

)
edges. Suppose also that for each pair of verticesx, y we

have a setTx,y ⊂ PG2(2) and that|Tx,y | is the multiplicity of the pairx, y in G. Then we
can find8 vertices of G and label them with the elements ofF32 so for everya ∈ PG2(2)
andx ∈ F32 we havea ∈ Tx,x+a .

Now we can prove the upper bound in Theorem1.3, which we restate as the following
theorem.

Theorem 3.3. The Turán density ofPG3(2) is at most13/14.

Proof. Suppose� > 0 and letH be a 3-uniform hypergraph with minimum degree at least
(13/14+ �)

(
n
2

)
. By Fact2.1it suffices to prove thatH contains a copy ofPG3(2) whenn

is sufficiently large. Note thatH contains a copy of the Fano planePG2(2), since this has
Turán density 3/4 (see[2]). LetX be its set of vertices and letZ = V (H)\X. Fory, z ∈ Z

letTy,z be the set of verticesx inXsuch thatxyzis an edge ofH. LetG be the linkmultigraph
of X onZ, i.e. the multiplicity ofyz is |Ty,z|. By the minimum degree assumption we have
e(G) >∑

x∈X |L(x)|−|X|2n > (6.5+�)
(
n
2

)
. By Lemma3.2we can find 8 verticesY ⊂ Z

and label them with the elements ofF32 so for everyx ∈ X and for everyy ∈ Y the pair
(y, y + x) belongs toL(x). ThenX∪Y spans a copy ofPG3(2) inH, so we are done.�
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4. A technical lemma

This section is devoted to theproof of Lemma3.2.Akey ingredient is the following lemma
on automorphisms of the Fano plane. Recall that the elements of the Fano planePG2(2)
can be identified with non-zero elements ofF32, which we denote by 0,1,2,01,02,12,012,
where e.g. 02 denotes the vector(1,0,1).

Lemma 4.1. Suppose that for eachx ∈ PG2(2) we have a subsetSx ⊂ PG2(2) with the
following properties:

(i) noSx is equal to the whole ofPG2(2),
(ii)

∑
x∈PG2(2) |Sx |�9,

(iii) at least oneSx is empty,
(iv) if exactly oneSx is empty then we haveS0 = S1 = S01 = {0,1} andS02 = S12 =

S012= {01},
(v) there are not two linesL1, L2 of PG2(2) such thatSx = L2 for eachx ∈ L1.

Then there is an automorphism� ∈ L3(2) such that�(x) /∈ Sx for all x.

The proof of this lemma is long and uninstructive, so we relegate it to Appendix B.

Proof of Lemma 3.2. Suppose� > 0. LetG be a multigraph onn vertices with maximum
multiplicity 7 and minimum degree at least(6.5+ �)(n − 1). Suppose also that for each
pair of verticesx, y we have a setTx,y ⊂ PG2(2) and that|Tx,y | is the multiplicity of the
pair x, y in G. By Fact2.1 it is enough to show that we can find 8 vertices ofG and label
them with the elements ofF32 so for everya ∈ PG2(2) andx ∈ F32 we havea ∈ Tx,x+a .
For everya ∈ PG2(2) let Ma denote the matching ofF

3
2 in which x is paired with

x + a. Our strategy will be to find 8 vertices and a labelling byF32 such that the setsSa =
PG2(2)\⋂e∈Ma

Te for a ∈ PG2(2) satisfy the conditions of Lemma4.1. It will then follow
that there is an automorphism� of PG2(2) such that�(a) /∈ Sa , i.e.�(a) ∈ ⋂e∈Ma

Te, for
all a. Now we relabel our set of 8 vertices so that the vertex with labela has now has label
�(a). This has the effect of relabellingMa asM�(a), so now we havea ∈ ⋂

e∈Ma
Te, as

required.
We choose the 8 vertices as follows. Letv1v2 be any edge of multiplicity 2. We claim

that we can choosev3, . . . , v8 so that
∑j−1

i=1 e(vivj ) > 6.5(j − 1) for 3�j�8. (Recall
that in a multigraphe(xy) denotes the multiplicity of the edgexy.) For suppose we cannot
choose somevj in this manner. LetU = {v1, . . . , vj−1}. Then for everyv /∈ U we have

dU(v) = ∑j−1
i=1 e(viu)�6.5(j − 1). Therefore

(j − 1)(6.5+ �)(n − 1) �
∑
u∈U

d(u) = 2e(U) +
∑
v /∈U

dU(v)�14
(
j − 1

2

)

+6.5(j − 1)(n − j + 1).

This implies that 2�(n−1)�j−2,which is a contradiction fornsufficiently large.Therefore
we can choosev1, . . . , v8 as described.
Next, we attempt to improve our choice in the followingmanner. Suppose there is a subset

I ⊂ {1, . . . ,8} and a bijectionf : {1, . . . , |I |} → I such thate(vivj )�e(vf (i)vf (j)) for
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every 1� i < j� |I | and at least one inequality is strict. Then we will choosev′
i = vf (i) for

1� i� |I | and then repeat the above argument to complete the set, choosingv′|I |+1, . . . , v′
8

so that
∑j−1

i=1 e(v′
iv

′
j ) > 6.5(j − 1) for |I | + 1�j�8. Now we iterate this improvement

procedure. Clearly there can only be finitely many iterations. [To see this formally, define
a total order on 8-tuples of vertices, where(v1, . . . , v8) < (v′

1, . . . , v
′
8) when there are

a < b such thate(vavb) < e(v′
av

′
b) ande(vivj ) = e(v′

iv
′
j ) for all (i, j) colexicographically

less than(a, b), i.e. i, j�b − 1 or j = b and i < a. Each iteration increases the rank
of our 8-tuple in this order, and there are only finitely many possible choices for all the
multiplicitiese(vivj ), so the process terminates.] Therefore we may assume that the choice
v1, . . . , v8 cannot be improved.
Write me = |PG2(2)\Te|, i.e. 7− me is the multiplicity of the edgee. Then we must

have
∑j−1

i=1 mvivj ��j/2� − 1 for eachj�3. Otherwise we would have

j−1∑
i=1

e(vivj )�7(j − 1) − �j/2��6.5(j − 1),

which contradicts our choice ofvj . LetJbe the graph onv1, . . . , v8 in whichvi is adjacent
to vj exactly wheneG(vivj ) < 7. We use the notationd∗(vj ) to denote the number of
verticesvi adjacent inJ to vj with i < j . Note that

d∗(vj )�
j−1∑
i=1

mvivj ��j/2� − 1, (2)

for eachj�3. In particular

e(J ) =
8∑

j=3
d∗(vj )�

8∑
j=3

(�j/2� − 1) = 0+ 1+ 1+ 2+ 2+ 3= 9.

Now we need the following claim.

Claim 4.2. There are two disjoint four-cycles in the complement of J.

Proof. Suppose for the sake of contradiction that the claim is not true. We will repeatedly
use the observation that a graph on 4 vertices has aC4 in its complement exactly when it has
maximumdegree at most 1. For 1� i�j�8wewill use the notationVij = {vk : i�k�j}.
Consider first the case whenV15 = {v1, . . . , v5} is an independent set inJ. Thene(J ) =

d∗(6) + d∗(7) + d∗(8)�2+ 2+ 3 = 7, by Eq. (2). For eachv ∈ V15 the restriction ofJ
to vv6v7v8 has a vertex of degree 2. Otherwise there would be aC4 in its complement, and
sinceV15\{v} is independent it also has aC4 in its complement, so we have a contradiction.
Now V68 = {v6, v7, v8} cannot be an independent set, as then eachv ∈ V15 would have
two neighbours inV68, giving e(J )�10, a contradiction. In factV68 must contain at least
two edges. For ifxy is the only edge inV68 then eachv ∈ V15 is adjacent to at least
one ofx, y. Including the edgexywe get at least 6 edges withinV15 ∪ {x, y}. However
d∗(x) + d∗(y)�3+ 2�5, so this is a contradiction.
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SinceV68 contains at least 2 edges there is an edge inV68 incident tov8, so eachx ∈ V68
has at most 2 neighbours inV15. If V68 contains exactly 2 edges then there are at most 5
edges betweenV15 andV68; two vertices ofV68 each being adjacent to at most two vertices
of V15 and the other being adjacent to at most one vertex ofV15. On the other hand ifV68 is
complete then there are at most 4 edges betweenV15 andV68; wherev8 andv7 each have
at most one neighbour inV15 andv6 has at most two neighbours inV15.
For eachx ∈ V68 and each pairu, v ∈ V15 we consider the partition into two 4-tuples

Axuv = V15∪ {x}\{u, v} andBxuv = V68∪ {u, v}\{x}. Observe that for eachx ∈ V68 the
complement ofJcontains aC4 onAxuv unlessxhas exactly 2 neighbours inV15 and neither
is u or v. Also, if the complement ofJ does contain aC4 onAxuv then by assumption it
cannot contain aC4 onBxuv. Write {y, z} = V68\{x}. It follows that there is at least one
edge between{u, v} and{y, z}. Also, if yz is not an edge there are at least two such edges,
asu, v is not an edge.
Choosex ∈ V68 to have at most one neighbour inV15. Then for any pair{u, v} in V15

the complement ofJ contains aC4 on Axuv, so by the above there is at least one edge
between{u, v} and{y, z} = V68\{x}. In particular, there is at most one vertex inV15 with
no neighbour in{y, z}, so at least 4 edges betweenV15 and{y, z}. Therefore each ofy and
zhas two neighbours inV15. This is only possible whenV68 contains exactly two edges.
Now choosex ∈ V68 so that the other verticesy, z are not adjacent. Suppose first that

x has at most one neighbour inV15. Then there are at least two edges between{u, v} and
{y, z} for any pair{u, v} in V15. If any u ∈ V15 is not adjacent toy or z then the other four
vertices ofV15 must all be adjacent to bothy andz, which is impossible. Therefore every
u ∈ V15 is adjacent toy or z. However this forces one ofy or z to be adjacent to 3 vertices
of V15, which is impossible.
It follows thatx has 2 neighbours inV15, call thema andb. Sincee(J )�7 there are at

most 3 edges between{y, z} andV15. Therefore we can assumea is not adjacent to bothy
andz. For any otherv ∈ V15 the complement ofJ contains aC4 onAxav, and so there are
at least two edges between{a, v} and{y, z}, i.e.v is adjacent toy or z. This gives at least 4
edges between{y, z} andV15, which is a contradiction. This completes the analysis of the
case when{v1, . . . , v5} is an independent set inJ.
Next, we will consider the case whenV14 = {v1, . . . , v4} is an independent set inJ. Then

e(J ) = d∗(5)+d∗(6)+d∗(7)+d∗(8)�1+2+2+3= 8, by Eq. (2).We can assume that
there is no independent set of size 5 inJ. For by definition of the improvement procedure of
8-tuples it would follow thatV15 is independent, and we have already dealt with this case.
It follows that eachv ∈ V58 has at least one neighbour inV14, so there are at most 4 edges
insideV58. Also, for any non-adjacent pairu, v ∈ V58 there is a paira, b ∈ V14 such thatu
is adjacent toa andv is adjacent tob. For if only onea ∈ V14 was adjacent tou or v then
V14∪ {u, v}\{a} would be independent.
For brevity we letJ58 denote the restriction ofJ to V58. Note thatJ58 contains a vertex

of degree at least 2. Otherwise its complement has aC4, and sinceV14 is independent it
has aC4 in the complement, giving a contradiction. Also, we claim thatJ58 cannot have
an independent set of size 3. For supposeV58\{v} is independent for somev ∈ V58. Then
v must be the vertex of degree at least 2 inJ58. Note that for everyu ∈ V14 eitheru has 2
neighbours inV58\{v} or v has 2 neighbours inV14\{u}. There is at least oneu ∈ V14 that
does not have 2 neighbours inV58\{v}, otherwise we would have at least 8 edges between
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V14 andV58, and at least 2 edges insideV58, giving e(J )�10, a contradiction. Thereforev
has at least 2 neighbours inV14; without loss of generality they arev3 andv4. Nowd∗(v)�2
andv has at least 2 neighbours inV58, sowemust havev = v6, with v6 adjacent tov7 andv8.
Sincev6 does not have 2 neighbours inV14\{v3} we know thatv3 has at least 2 neighbours
in V58\{v6}. Similarly v4 has at least 2 neighbours inV58\{v6}. Thereforev8 is adjacent
to bothv3 andv4, and without loss of generalityv5 is adjacent tov3 andv7 is adjacent to
v4. We have now listed 8 edges ofJ, so there are no more. Observe now thatv3v7v5v4 and
v1v6v2v8 give two disjoint four-cycles in the complement ofJ. This contradiction shows
thatJ58 cannot have an independent set of size 3.
Nowwe know thatJ58 contains a vertex of degree at least 2 and no independent set of size

3. This easily implies that it must contain a triangle or a path of length three. In particular
J58 has at least 3 edges, so there are at most 5 edges betweenV58 andV14.
Suppose there isv ∈ V58 so thatV58\{v} is a triangle inJ. For any pairx, y ∈ V58\{v}

we claim that there are at most 3 edges between{x, y} andV14. If neither of{x, y} is v8
this holds because there are at mostd∗(x) + d∗(y)�4 edges withinV14 ∪ {x, y} and one
of them joinsx to y. On the other hand, if sayx = v8 then since it has two neighbours
in V58 it has at most one neighbour inV14. Also d∗(y)�2, so again there are at most 3
edges between{x, y} andV14. Recall thate(J58)�4, so we can choosex, y ∈ V58\{v} not
adjacent tov. Let z be the fourth element ofV58. For eacha ∈ V14 consider the 4-tuples
axyv andV14 ∪ {z}\{a}. One of them contains a vertex of degree at least 2, so eithera is
adjacent to one ofx, y or z has at least 2 neighbours inV14\{a}. Since there are at most
3 edges betweenx, y andV14 we see thatz has at least 2 neighbours inV14. Sincez also
has 2 neighbours inV58 we must havez = v6 andx, y equal tov7, v8 (in some order), so
v = v5. In particular, we see thatv5 andv6 are not adjacent, i.e. the only edges ofJ58 form a
triangle onV68. Now repeat the argument choosingx = v6 andy = v7 (say). We conclude
thatz = v8 has at least 2 neighbours inV14, which is impossible. It follows thatJ58 does
not contain a triangle.
Sincee(J58)�4 we know thatJ58 is either a path of length 3 or a 4-cycle. In particular,

we can label the vertices ofV58 as x00, x01, x10, x11 so thatxi0xi1 is not an edge ofJ
for i = 0,1. Consider any labelling ofV14 asy00, y01, y10, y11. Note thatxi0xi1yj0yj1
spans a bipartite subgraph ofJ for each of the 4 choices ofi, j ∈ {0,1}. These fall into
two complementary pairs, and in each pair at least one of the subgraphs has a vertex
of degree 2.
Recall that there at most 5 edges betweenV14 andV58. Suppose that there are three

vertices (sayv1, v2, v3) of V14 with at most one neighbour inV58. They do not have a
common neighbour inV58, as this would have to bev8, but v8 has at least one neighbour
in V58 already. Now not every pair amongv1, v2, v3 can have a common neighbour inV58,
as this would give at least 6 edges betweenV14 andV58. Therefore we can assume that
v1 andv2 do not have a common neighbour inV58. Then the 4-tuplexi0xi1v1v2 does not
have a vertex of degree 2 fori = 0,1 soxi0xi1v3v4 must have a vertex of degree 2 for
i = 0,1. This gives at least 4 edges incident with{v3, v4}. Then we may suppose that
v1 has no neighbours inV58. Note thatv4 cannot be adjacent to all ofV58. For recall we
noted at the beginning of this case that for any non-adjacent pairu, v ∈ V58 there is a pair
a, b ∈ V14 such thatu is adjacent toa andv is adjacent tob. This implies that one of
xi0, xi1 has a neighbour inV14\{v4} for i = 0,1, giving at least 6 edges betweenV14 and
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V58, a contradiction. Therefore we may suppose thatv4 is not adjacent tox00, say. Since
v1 has no neighbours inV58 there is at most one edge inx10x11v1v2, so there is a degree
2 vertex inx00x01v3v4. Sincev4 is not adjacent tox00 we see thatv3 is adjacent tox01.
Now consideringx10x11v3v4 shows thatv4 is adjacent tox10 andx11. However,x00 has a
neighbour inV14 and one ofx10, x11 has a neighbour inV14\{v4}, giving at least 6 edges
betweenV14 andV58, a contradiction.
It follows that there cannot be 3 vertices ofV14 with at most one neighbour inV58. Then

two vertices, sayv3, v4, have at least two neighbours inV58, and wemay assume thatv4 has
at least asmany asv3. There is at most one edge between{v1, v2} andV58 sowe can suppose
thatv1 is isolated andv2 has degree at most 1.We can suppose thatv4 is not adjacent tox00.
Consideringv3v4x00x01 we see thatv3 is adjacent tox01. Also v1v4x00x01 has at most one
edge, sov2v3x10x11 has a vertex of degree 2. This vertex cannot bev2 orv3 (that would give
3 neighbours tov3, andv4 has at least as many). Then we can suppose thatx10 is adjacent to
v2 andv3. Now v2 is adjacent tox10, v3 to x01, x10, andv4 has degree 2. Thenv2v3x00x01
has one edge, sov1v4x10x11 has a vertex of degree 2, which must bev4. Now v1v3x10x11
andv2v4x00x01 each have at most one edge, which is a contradiction. This completes the
analysis of the case when{v1, . . . , v4} is an independent set inJ.
Now we can assume thatJ does not have an independent set of size 4, by definition of

our improvement procedure forv1, . . . , v8. ThenV17 is not bipartite, as then it would have
an independent set of size 4. It cannot be connected, as it has at most 6 edges, and a tree is
bipartite.
Consider the case when the components are a 5-cycle and an isolated edge. Label the

5-cyclex1 · · · x5 consecutively and the edgey1y2. Note thatx2x5x3y1 is a 4-cycle in the
complement ofJ, sov8 has at least 2 neighbours in{x1, x4, y2}. Similarly, for any non-
adjacenta, b in the 5-cycle andyi in the isolated edgewe see thatv8 has at least 2 neighbours
in {a, b, yi}. It follows thatv8 is adjacent toy1 andy2, or it would be joined to the entire 5-
cycle, which is impossible as it has at most 3 neighbours. Thenv8 has at most one neighbour
on the 5-cycle, so we can choosea, b in the 5-cycle so that{a, b, v8} is independent. Then
v8 only has one neighbour in{a, b, y1}, a contradiction.
Now every component ofV17 must have size at most 4, so we can partitionV17 = L∪R

so that|L| = 3, |R| = 4 and there are no edges betweenL andR. Thenacbdis a 4-cycle in
the complement ofJ for each paira, b ∈ L and pairc, d ∈ R. Thereforeabcv8 has a vertex
of degree 2 for everya ∈ L andb, c ∈ R. In particularv8 is adjacent to one ofb, c for
eachb, c ∈ R, so is adjacent to at least 3 vertices ofR. Thereforev8 is adjacent to exactly 3
vertices ofRand to no vertices ofL. Saybv8 is not an edge,b ∈ R. If there isc such thatbc
is not an edge thenabcv8 does not have a vertex of degree 2 for anya ∈ L, contradiction.
Thereforeb has degree 3. ThenV17\{b} is a graph on 6 vertices with at most 3 edges, and
it does not consist of 3 disjoint edges. Such a graph has an independent set of size 4. (This
follows fromTurán’s theorem, but is also easy to see directly.) This contradiction completes
the proof of Claim4.2. �

Nowwe return to the proof of Lemma3.2. Recall that it suffices to labelv1, . . . , v8 byF32
so that the setsSa = PG2(2)\⋂e∈Ma

Te for a ∈ PG2(2) satisfy the conditions of Lemma
4.1. Recall also thatme = |PG2(2)\Te|. We chosev1, . . . , v8 so that∑i<j mvivj �9, so
any labelling will satisfy condition (ii). By Claim4.2we know that the complement ofJ
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has two disjoint four-cycles. Consider a labelling ofv1, . . . , v8 by F32 so that one 4-cycle
is labelled in cyclic order(0,0,0), (1,0,0), (1,1,0), (0,1,0) and the other is labelled
(0,0,1), (1,0,1), (1,1,1), (0,1,1). Then the matchingsM(1,0,0) andM(0,1,0) belong to
the complement ofJ, so by definitionS(1,0,0) = S(0,1,0) = ∅. Therefore this labelling
satisfies conditions (iii) and (iv).
Suppose that the labelling does not satisfy condition (i). Then there isa ∈ PG2(2) such

thatSa = PG2(2), i.e.
⋂

e∈Ma
Te = ∅. Then∑e∈Ma

me�7 so there are at most 2 other
edgesewithme > 0; call theme1, e2.We chosev1, . . . , v8 so that

∑j−1
i=1 mvivj ��j/2�−1.

In particular,me�3 for all e, at most onee hasme = 3 and at most threee haveme�2.
It follows that we can choosex, y so that{a, x, y} is a basis ofF32, m(0,a) + m(x,x+a)�4
andm(y,y+a) + m(x+y,x+y+a)�4. Now we relabel our vertex set by interchanging the
labels 0 andx + a. Note that the edges labelled{0, a}, {x, x + a} are now labelled{0, x},
{a, a + x}. Even if e1, e2 are now both inMa we still have

∑
e∈Ma

me�6. For the same
reason

∑
e∈Mx

me�6. Also at least three of theSi are empty. Therefore conditions (i)–(iv)
are satisfied by this labelling.
Finally, suppose that the labelling does not satisfy condition (v), i.e. there are lines

L1, L2 so thatSx = L2 for eachx ∈ L1. Suppose thatLi = {xi, yi, xi + yi}. Let
A = {0, x1, y1, x1 + y1} andB = F32\A. Since

∑
e me�9 we must have

∑
e me = 9,∑j−1

i=1 mvivj = �j/2� − 1 for 3�j�8, and all edgesewith me > 0 lie withinA or within
B. Note that all edges ofMx1,My1,Mx1+y1 are withinA or within B. We may assume that
however we permute the labels onA we still haveSx = L2 for eachx ∈ L1. Otherwise
all conditions of Lemma4.1are satisfied, and we are done. By possibly renamingA,B and
the elements ofL2 we deduce that the setsTe for edgesewithin A or within B have the
following properties.

(1) Each of the three matchings of size two withinAhas an edgeeon whichPG2(2)\Te =
{x2}.

(2) For each matching{e, f } within Bwe havePG2(2)\(Te ∪ Tf ) = {y2, x2 + y2}
There must be 3 elements ofV48 = {v4, . . . , v8} in B and 2 elements ofV48 in A, as if

either set contained 4 then the one with smallest index would be incident to an edgeewith
me > 0 crossing betweenA andB. Since

∑7
i=1mviv8 = 3, it follows thatv8 ∈ B. Then the

edges withinA with me > 0 must form a triangle in which each edgee hasme = 1. Let
a ∈ A be the vertex that is not in this triangle.
There are two possibilities for the edges inB. Consider first the case when there are

x, y ∈ B so thatmxv8 = 2,myv8 = 1. Letz be the other vertex ofB. Thenmxz = 1 and
mxy = 2. The other case is whenme = 1 for each edge inB. Then for each matching{e, f }
withinBwe havePG2(2)\Te = {y2} andPG2(2)\Tf = {x2+y2}, or vice versa. It follows
that there is a vertexz such thatPG2(2)\Te is the same set (say{y2}) for all edges within
B incident toz. In either case we consider the new labelling obtained by interchanging the
labelsaandz. In the first case the only effect on the setsSi is that the edge formerly labelled
xznow contributes to a differentSi . This labelling clearly satisfies the conditions of Lemma
4.1. In the second case we have a situation isomorphic to that described in condition (iv)
of Lemma4.1. In all cases we deduce that there is an automorphism� ∈ L3(2) such that
�(a) /∈ Sa , i.e.�(a) ∈ ⋂e∈Ma

Te, for all a ∈ PG2(2). Now we relabel our set of 8 vertices
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so that the vertex with labela has now has label�(a). This has the effect of relabelling
Ma asM�(a), so now we havea ∈ ⋂

e∈Ma
Te for all a. This completes the proof of the

lemma. �

5. Concluding remarks and open problems

The construction for the lower bound in Theorems1.1and1.2seems very naïve, but we
suspect it may be optimal for sufficiently largem. For q = 2 we have seen that it is not
optimal form = 2 orm = 3. The constructions that beat it are based on colouring properties
of the projective geometries. Ift = �(PGm(q)) denotes the chromatic number ofPGm(q)

then a natural competing construction is to divide a set of vertices intot − 1 parts and take
as edges all(q + 1)-tuples that do not fall entirely within one of the classes. This gives a
lower bound on the Turán density of 1− (t − 1)−q .
However, it is not hard to see that�(PGm(q))�m for all m, q�2 (except whenm =

q = 2 when we have�(PG2(2)) = 3). Indeed,�(PGm+1(q))��(PGm(q))+ 1, as given
PGm+1(q)we can colour a copy ofPGm(q) inside it and then assign one new colour to all
the other vertices. Pelikán[15] shows that�(PG3(2)) = 3 and�(PG2(q)) = 2 for all q >

2, so this verifies theobservation.We remark inpassing that thedeterminationof�(PGm(q))

in general is open. In addition to the results mentioned it is known that�(PG4(2)) = 4 (see
[15]) and�(PG5(2)) = 5 (see[3]).Haddad[9] showed that limm→∞ �(PGm(2)) = ∞, and
conjectured that in fact�(PGm(2)) = m for m�3. (We note that his proof actually shows
that limm→∞ �(PGm(q)) = ∞, via the result of[13] on the non-existence of blocking sets
in PGm(q).)
In any case, the construction described above cannot give a lower bound better than

1− (m − 1)−q for the Turán density ofPGm(q). For largem this is much worse than the
lower bound from Theorem1.1, which is 1− O(q2−m). It seems unlikely that variations
along the lines of[1] and our construction in Theorem3.1can close this gap, which provides
some grounds for thinking that the naïve construction may eventually be optimal. Also, we
note that the Lagrangianmethod (seeChapter 6 of[4]) easily shows that any(q+1)-uniform
hypergraph with density at least

∏q
i=1(1− i/t) contains some subhypergraph on at leastt

vertices that is a 2-cover, i.e. any pair of vertices is contained in some edge. SincePGm(q)

is a 2-cover, this could be viewed as giving further support to this suggestion.
It would be very interesting to determine the Turán density ofPGm(q) for any pair

m, q�2 other than the Fano plane. We have focussed particularly on the caseq = 2,
m = 3 in the latter part of this paper. Our methods suggest that further improvements on
our upper bound should be possible, although it would be preferable to achieve this without
magnifying the amount of caseanalysis required.Anobvious starting point is to try to reduce
the constant 6.5 in the statement of Lemma3.2. Considering the complete balanced 7-partite
graph in which every edge has multiplicity 7, we see that this constant cannot be less than
6, so the best possible upper bound that could be proved by our methods is 6/7. Note that

6/7∼ 0.857143 is fairly close toour lowerboundof 3
√
3+2

√
2(9− 5

√
3)−6∼ 0.844778.

It is hard to make a plausible conjecture on the true value of�(PG3(2)). The construction
seems simple enough that it is hard to imagine beating it, but the same could have been said
of that in[1]. Also, it would be somewhat surprising if the density was irrational.
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Our proof of the auxiliary Lemma4.1 (given in Appendix B) is somewhat ad hoc, and
our only concern is to obtain the minimum necessary for the proof of Lemma3.2. However,
we believe that the following general problem may be interesting.

Problem 5.1(Group marriage problem). Let G be a group acting on a set X. Suppose we
have a subsetAx ⊂ X for eachx ∈ X.When is there an elementg ∈ G so thatgx ∈ Ax

for eachx ∈ X?

Note that in the case whenG is the entire symmetric group the problem asks for a system
of distinct representatives of the sets{Ax : x ∈ X}. This is an equivalent formulation of
Hall’s marriage problem, and the necessary and sufficient condition is that|⋃y∈Y Ay |� |Y |
for eachY ⊂ X. For generalG, an obvious necessary condition is theorbit conditionthat⋃

y∈Y Ay must contain an orbit ofY for eachY ⊂ X. However, this is not sufficient. For
example, supposeG is the cyclic group of order 3 acting on{1,2,3} via the permutation
(123) and letA1 = {2}, A2 = {1}, A3 = {3}. It is easy to check that⋃y∈Y Ay contains an
orbit ofY for eachY ⊂ {1,2,3}, but the only possible marriage is the permutation(12),
which is not in the group. It would be interesting to classify the groupsG for which the
orbit condition is sufficient for the groupmarriage problem. It seems likely that ‘sufficiently
transitive’groups should have this property, and in particular thatL3(2) should.A nice proof
of this would make the proof of Lemma3.2much cleaner.

Appendix A. Proof of Lemma 2.2

Note that ifs is an integer we have
∑k−1

i=1�1+ i(s + t)� = s
(
k
2

)
+∑k−1

i=1�1+ it�. Since
(2m − 1)

( (
2m

2

)
− 1

)
= (2m − 2)

(
2m

2

)
+
((

2m

2

)
− 2m + 1

)
we havef (2m, (2m − 1)( (

2m

2

)
− 1

))
= 2m − 2 + f

(
2m,

(
2m

2

)
− 2m + 1

)
. Therefore it suffices to compute

f
(
2m,

(
2m

2

)
− 2m + 1

)
.

First supposem�3 is odd. Letp = (2m + 1)/3 (an integer). Note that ifi = xp + r,
with 1�r�p then

�1+ i(1− 1/p)� = x(p − 1) + r + �1− r/p� = i − x.

Therefore

2m−1∑
i=1

�1+ i(1− 1/p)� =
p∑
i=1

i +
2p∑

i=p+1
(i − 1) +

2m−1∑
i=2p+1

(i − 2)

=

2m−1∑

i=1
i


− p − 2(2m − 1− 2p)

=
(
2m

2

)
+ 3p − 2m+1 + 2=

(
2m

2

)
− 2m + 3.
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On the other hand, ift < 1− 1/p then�1+ pt��p − 1 and�1+ 2pt��2p − 2, so∑2m−1
i=1 �1+ it��

(
2m

2

)
− 2m + 1. By definition it follows thatf

(
2m,

(
2m

2

)
− 2m + 1

)
=

1− 1/p and so

f

(
2m, (2m − 1)

((
2m

2

)
− 1

))
= 2m − 2+ 1− 1/p = 2m − 1− 3

2m + 1
.

Now supposem is even. Letp = (2m − 1)/3 (an integer). We have
2m−1∑
i=1

�1+ i(1− 1/p)� =
p∑
i=1

i +
2p∑

i=p+1
(i − 1) +

2m−1∑
i=2p+1

(i − 2) =
2m−1∑
i=1

i − 3p

=
(
2m

2

)
− 2m + 1.

Let� = 1
p(2p+1) . Note that for 0�� < �we have�1+ i(1−1/p+�)� = �1+ i(1−1/p)�.

For wheni�2p + 1 we havei� < 1/p and for 2p + 2� i�2m − 1 we havei� < 2/p;
in neither case do we add enough to exceed�1+ i(1− 1/p)� + 1. On the other hand,
�1+ i(1− 1/p + �)� is equal to�1+ i(1− 1/p)�, except wheni = 2p + 1 when we
have�1+ (2p + 1)(1− 1/p + �)� = 2p = �1+ (2p + 1)(1− 1/p)� + 1. Therefore∑2m−1

i=1 �1+ i(1−1/p+�)� =
(
2m

2

)
−2m+2.We deduce thatf

(
2m,

(
2m

2

)
− 2m + 1

)
=

1− 1/p + � = 1− 2/(2p + 1) and so

f

(
2m, (2m − 1)

((
2m

2

)
− 1

))
= 2m − 2+ 1− 2/(2p + 1)

= 2m − 1− 6

2m+1 + 1
.

This completes the proof of the lemma.

Appendix B. Proof of Lemma 4.1

We divide into cases according to the number of non-empty setsSx . First we deal with
the case when exactly oneSx is empty. Here condition (iv) determines the setsSx precisely.
We choose�(0) = 01, �(1) = 02, �(2) = 0 and extend by linearity. This gives� =
(0,01,12,2)(1,02)(012) (using cycle notation), which satisfies the condition�(x) /∈ Sx
for all x. Next we consider the case when exactly oneSx is non-empty, sayS0. By condition
(i) we can picku /∈ S0, and then any� with �(0) = u will do.
Now suppose there are exactly two non-empty sets, saySx and Sy . From condition

(ii) we can suppose without loss of generality that|Sy |�5. By condition (i) we can pick
u ∈ PG2(2)\Sx and thenv ∈ PG2(2)\(Sy ∪ {u}). Now L3(2) is transitive on pairs of
elements inPG2(2), so we can choose� so that�(x) = u and�(y) = v, as required.
Now consider the case when there are exactly three non-emptySx . There are two possi-

bilities, according to whether the three indexing elements are collinear or not. Suppose first
that they are collinear. SinceL3(2) is transitive on lines and can permute the points within a
given line arbitarily, we can assume thatS0, S1, S01 are non-empty, with|S0|� |S1|� |S01|.
We need to find elementsa �= b so thata /∈ S0, b /∈ S1 anda+b /∈ S01. Then we can define
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�(0) = a, �(1) = b and an arbitarily linear extension gives us the required automorphism.
Let T = {a + b : a /∈ S0, b /∈ S1, a �= b}. Suppose for the sake of contradiction that
T ⊂ S01. Since|S01| < 7 there isc /∈ T . Then for eacha /∈ S0, a �= c we havea + c ∈ S1,
and so|S1|�6− |S0|. Therefore 9� |S0| + |S1| + |S01|�6+ |S01|, so|S01|�3. It follows
that|S0| = |S1| = |S01| = 3. Note that ifb /∈ S1 then we must haveb /∈ S0 also, otherwise
|T |� |{a + b : a /∈ S0}| = 4, which contradictsT ⊂ S01. This shows thatS0 ⊂ S1.
Similarly we haveS1 ⊂ S0, i.e.S0 = S1. Note that the complement ofS0 cannot contain
a linea, b, a + b. For lettingd denote its other element we see thatT contains the distinct
elementsa, b, a + b, a + d, b + d, a + b + d, which contradictsT ⊂ S01. It follows that
S0 = S1 = S01 is a line. This contradicts condition (v).We conclude thatT is not contained
in S01, so the required automorphism� exists.
We also have the possibility that there are exactly three non-emptySx and the indexing

set is not collinear. SinceL3(2) is transitive on non-collinear triples and can permute the
points within a given non-collinear triple arbitarily, we can assume thatS0, S1, S2 are non-
empty, with|S0|� |S1|� |S2|.We need to find a non-collinear triplea, b, c such thata /∈ S0,
b /∈ S1, c /∈ S2. Then we can define�(0) = a, �(1) = b, �(2) = c and extend linearly
to obtain the required automorphism. Suppose this is not possible. Then for eacha /∈ S0,
b /∈ S1, a �= b we haveS2 ⊂ {a, b, a + b}. Since|S0| + |S1| + |S2|�9 we must have
|S0| = |S1| = |S2| = 3. ThenS2 = {a, b, a + b} for any a /∈ S0, b /∈ S1, a �= b. In
particular the 4 elementsa /∈ S0 all belong toS2, which is a contradiction. We conclude
that the required automorphism exists, which finishes the case when there are exactly three
non-emptySx .
The last case, when the number of non-emptySx is 4 or 5, is the most complicated. We

may assume thatS12 andS012 are empty. Pick anya /∈ S0 and extend to a basis{a, b, c} of
F32. Consider the following bipartite graphB1. The left vertex class is{1,01,2,02}, the right
vertex class is{b, a+b, c, a+c, b+c, a+b+c}, and an elementi in the left class is joined
to an elementj in the right class exactly whenj ∈ Si .We want to find a matching of the left
class into the right class in the complement graph ofB1 in such a way that the pairs{1,01}
and{2,02} are each matched with one of the pairs{b, a+ b}, {c, a+ c}, {b+ c, a+ b+ c}.
With such a matching we can construct the automorphism� by mapping{1,01,2,02} to
their match, 0 toa, 12 to�(1) + �(2) and 012 to�(01) + �(2). Suppose for the sake of
contradiction that no such matching exists.
Note that we can match{1,01} to {b, a + b} in the complement exactly whenB1 re-

stricted to these four vertices has maximum degree at most 1. Consider the following
auxiliary bipartite graphB2. The left vertex class consists of the pairs{1,01},{2,02}, the
right vertex class consists of the pairs{b, a + b}, {c, a + c}, {b + c, a + b + c}, and
a pair on the left is joined to a pair on the right exactly whenB1 restricted to these
four vertices has a vertex of degree 2. Note that a matching of the left class into the
right class in the complement ofB2 will give us the matching in the complement of
B1 we require. By Hall’s theorem (or direct analysis) we can do this unless one vertex
on the left side is joined to all vertices on the right side, or some two vertices on the
right side are joined to both vertices on the left side.
Consider the case when some two vertices on the right side, say{b, a+b} and{c, a+ c},

are joined to both{1,01} and {2,02}. Then for each pair{x, a + x} with x = b, c the
restrictions ofB1 to {1,01, x, a + x} and{2,02, x, a + x} each contain a vertex of degree
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2. Therefore|S1|+ |S01|�4 and|S2|+ |S02|�4, so|S1|+ |S01|+ |S2|+ |S02|�8. Then by
condition (ii) we have|S0|�1, so we can choose a vertexa′ among{b, a+b, c, a+c}with
a′ /∈ S0. Note thata′ has degree at least 2 inB1, as it is joined to at least one of{1,01} and
at least one of{2,02}. Now repeat the above construction usinga′ instead ofa. Specifically,
we let{a′, b′, c′} be a basis ofF32, from which we constructB ′

1 asB1 was constructed from{a, b, c}, and constructB ′
2 fromB ′

1 asB2 was constructed fromB1. As above we conclude
that inB ′

2 either one of the pairs{1,01} and{2,02} is joined to all of the pairs{b′, a′ + b′},
{c′, a′ + c′}, {b′ + c′, a′ + b′ + c′}, or some two of the pairs{b′, a′ + b′}, {c′, a′ + c′},
{b′ + c′, a′ + b′ + c′}, are joined to both of the pairs{1,01}, {2,02}. The first possibility
cannot occur, as if say{1,01} is joined to all of{b′, a′+b′}, {c′, a′+c′}, {b′+c′, a′+b′+c′}
then|S1|+|S01|�6, which gives|S1|+|S01|+|S2|+|S02|�10, a contradiction. Therefore
some two of the pairs{b′, a′ + b′}, {c′, a′ + c′}, {b′ + c′, a′ + b′ + c′}, are joined to both of
the pairs{1,01}, {2,02}. Recall however thata′ is also joined to at least 2 of{1,01,2,02}.
This gives|S1| + |S01| + |S2| + |S02|�10, a contradiction.
Therefore we are reduced to the case when one vertex ofB2, say{1,01}, is joined to

each of the vertices{b, a + b}, {c, a + c} and {b + c, a + b + c}. Then for each pair
{x, a+x} there is a vertex of degree 2 in the restriction ofB1 to {1,01, x, a+x}. Therefore
|S1| + |S01|�6. By assumption at least two otherSx are non-empty, so by condition (ii)
|S1| + |S01| is equal to 6 or 7, and each otherSx has at most 2 elements. Without loss of
generality suppose that|S1|� |S01|. We claim that we can picka′ ∈ S1\S0 with a′ �= a. For
if |S1| + |S01| = 6 thena does not belong toS1 or S01, |S1|�3 and|S0|�2, so we can pick
a′ ∈ S1\S0.Also, if |S1|+ |S01| = 7 then|S1|�4 and|S0|�1 so we can choosea′ ∈ S1\S0
with a′ �= a. Again we repeat the construction usinga′ instead ofa, letting {a′, b′, c′} be
a basis ofF32 and constructing the bipartite graphsB

′
1 andB

′
2. As before we conclude that

in B ′
2 either one of the pairs{1,01} and{2,02} is joined to all of the pairs{b′, a′ + b′},

{c′, a′ + c′}, {b′ + c′, a′ + b′ + c′}, or some two of the pairs{b′, a′ + b′}, {c′, a′ + c′},
{b′ + c′, a′ + b′ + c′}, are joined to both of the pairs{1,01}, {2,02}. However, condition
(ii) gives |S2| + |S02|�9− |S1| − |S01|�3, so the only possibility is that the pair{1,01}
is joined to all of the pairs{b′, a′ + b′}, {c′, a′ + c′}, {b′ + c′, a′ + b′ + c′} in B ′

2.
By definition, for each pair{x′, a′ + x′} there is a vertex of degree 2 in the restriction of

B ′
1 to {1,01, x′, a′ + x′}. In particularB ′

1 has at least 6 edges. Alsoa
′ is in S1, which is an

extra element not counted byB ′
1, so|S1| + |S01| = 7. In particular|S1|�4, as|S1|� |S01|.

Also, the two other non-emptySx must each contain one element. In particular|S0|�1.
Now we will divide into cases according to the structure ofB1. We define three possible
types for the subgraph induced by{1,01, x, a + x}; we say it hastype1 if 1 has degree 2,
type01 if 01 has degree 2, andtype Cif one ofxor a+x has degree 2. Note that a subgraph
has at least one type, and possibly more than one. We say thatB1 hastype(�,�, �) if the
three subgraphs{1,01, x, a+ x} have types�, � and� (in some order). Again,B1 can have
more than one type. Since|S1|� |S01| and|S1|�4, it follows thatB1 has at least one type
among(1,1,1), (1,1, C), (1,1,01) and(1, C, C).
Suppose first that one type ofB1 is (1,1,1), i.e. 1 is joined to all vertices except fora.

Thena /∈ S1, by condition (i). Since|S1| + |S01| = 7 we have|S01| = 1. By changing
basis we can assume thatb /∈ S0 andc /∈ S0. We can choosea′ = b in the construction
of B ′

1. Consider the induced subgraph ofB ′
1 on {1,01, a, a + b}. Since 1a is not an edge

and|S01| = 1, the vertex of degree 2 must bea + b. In particulara + b ∈ S01. The same
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argument applied to the choicea′ = c shows thata+ c ∈ S01. However this contradicts the
fact that|S01| = 1, soB1 cannot have(1,1,1) as a type.
Next suppose thatB1 has(1,1, C) as a type. We can suppose thatb, b + a, c, c + a

belong toS1 and thatb + c belongs toS1 andS01. From the previous paragraph we know
thata + b + c /∈ S1. We can also suppose thatb /∈ S0. Choosea′ = b and consider the
subgraphs induced byB ′

1 on {1,01, a, a + b} and{1,01, a + c, a + b + c}. Then 1 has
degree 1 in each, so 01 has degree at least 1 in each. Together withb + c ∈ S01 we get
|S01|�3, i.e.|S1| + |S01|�8, which is a contradiction. ThereforeB1 cannot have(1,1, C)
as a type.
Now suppose thatB1 has(1,1,01) as a type. We can suppose thatb, b + a, c, c + a

belong toS1 and thatb+ c, a+ b+ c belong toS01. Also,b+ c, a+ b+ c do not belong to
S1, as that would give type(1,1, C). We can supposeb /∈ S0 and choosea′ = b. Consider
the subgraph induced byB ′

1 on {1,01, c, b+ c}. Since 1 is not joined tob + c the degree 2
vertex must be 01 orc. In particularc ∈ S01. Similarly, considering{1,01, a+c, a+b+c}
shows thata + c ∈ S01. This gives|S01|�4, i.e.|S1| + |S01|�8, which is a contradiction.
ThereforeB1 cannot have(1,1,01) as a type.
Finally, suppose thatB1 has(1, C, C) as a type. Then|S1 ∩ S01|�2, so we can choose

a′ ∈ (S1 ∩ S01)\S0. NowB ′
1 has at least 6 edges, which does not count the contribution of

2 thata′ makes to|S1| + |S01|, so again we get the contradiction|S1| + |S01|�8. We have
shown that if there is no automorphism� with �(x) /∈ Sx for all x thenB1 must have a type
that leads to a contradiction. Therefore the required automorphism exists, which completes
the proof of the lemma.
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