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Abstract
The triangle-free process begins with an empty graph on n
vertices and iteratively adds edges chosen uniformly at ran-

dom subject to the constraint that no triangle is formed. We

determine the asymptotic number of edges in the maximal

triangle-free graph at which the triangle-free process termi-

nates. We also bound the independence number of this graph,

which gives an improved lower bound on the Ramsey num-

bers R(3, t): we show R(3, t) > (1∕4 − o(1))t2∕ log t, which is

within a 4 + o(1) factor of the best known upper bound. Our

improvement on previous analyses of this process exploits the

self-correcting nature of key statistics of the process. Further-

more, we determine which bounded size subgraphs are likely

to appear in the maximal triangle-free graph produced by the

triangle-free process: they are precisely those triangle-free

graphs with density at most 2.
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1 INTRODUCTION

Constrained random graph processes provide both an interesting class of random graph models and

a natural source for constructions in graph theory. Although the dependencies introduced by the con-

straints make such processes difficult to analyze, the evidence to date suggests that they are particularly

useful for producing graphs of interest for certain extremal problems. Here we consider the triangle-free

random graph process, which is defined by sequentially adding edges, starting with the empty graph,

chosen uniformly at random subject to the constraint that no triangle is formed. Formally, let G(0) be

the empty graph on n vertices. At stage i we have a graph G(i); we denote its edge set by E(i), and let

O(i) be the set of pairs xy that are open, in that G(i) ∪ {xy} has no triangle. We obtain G(i + 1) from

G(i) by adding a uniformly random pair from O(i).
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This process was introduced by Bollobás and Erdős (see [9]), and first analyzed by Erdős et al.

[12], using a differential equations method introduced by Ruciński and Wormald [23] for the analysis

of the constrained graph process known as the “d-process.” One motivation for their work was that

their analysis of the triangle-free process led to the best lower bound on the Ramsey number R(3, t)
known at that time. The Ramsey number R(s, t) is the least number n such that any graph on n vertices

contains a complete graph with s vertices or an independent set with t vertices. In general, very little is

known about these numbers, even approximately. The upper bound R(3, t) = O(t2∕ log t) was obtained

by Ajtai et al. [1], but for many years the best known lower bound, due to Erdős [11], was Ω(t2∕ log2 t).
The order of magnitude was finally determined by Kim [17], who showed that R(3, t) = Ω(t2∕ log t). He

employed a semi-random construction that is loosely related to the triangle-free process, thus leaving

open the question of whether the triangle-free process itself achieves this bound; this was conjectured

by Spencer [25] and proved by Bohman [5]. There is now a large literature on the general H-free

process, obtained by replacing “triangle” by any fixed graph H in the definition; see [8, 10, 19–22,

28–33]. However, the theory is still very much in its early stages: we conjectured that our lower bound

for H strictly 2-balanced, given in [8], gives the correct order of magnitude for the length of the process,

but so far this has only been proved for some special graphs (cycles [21, 22, 29], K4 [30], and the

diamond [20]).

In this paper, we specialize to the triangle-free process, where we can now give an asymptotically

optimal analysis. Our improvement on previous analyses of this process exploits the self-correcting

nature of key statistics of the process. For a treatment of self-correction in a simpler context see [6].

The methods that we use to establish self-correction of the triangle-free process build on the ideas used

recently by Bohman et al. [7] for an analysis of the triangle-removal process. Furthermore, the results

of this paper have also been obtained independently and simultaneously by Fiz Pontiveros et al. [13];

their proof also exploits self-correction, but is different to ours in some important ways (particularly

in the methodologies for establishing self-correction and the analysis of the early part of the process,

and also including many subtle differences, such as the definitions of the ensemble of key statistics

that can be mutually controlled throughout the process).

Let G be the maximal triangle-free graph at which the triangle-free process terminates.

Theorem 1.1. With high probability, every vertex of G has degree (1 + o(1))
√

1

2
n log n. Thus the

number of edges in G is
(

1

2
√

2
+ o(1)

)
(log n)1∕2n3∕2 with high probability.

We also obtain the following bound on the size of any independent set in G.

Theorem 1.2. With high probability, G has independence number at most (1 + o(1))
√

2n log n.

An immediate consequence is the following new lower bound on Ramsey numbers. The best known

upper bound is R(3, t) < (1 + o(1))t2∕ log t, due to Shearer [24].

Theorem 1.3. R(3, t) >
(

1

4
− o(1)

)
t2∕ log t.

These results are predicted by a simple heuristic. The graph G(i) that we get after i steps of the

triangle-free process should closely resemble the Erdős-Rényi random graph Gn,p with i = n2p∕2, with

the exception that Gn,p should have many triangles while G(i) has none.

In addition to Theorems 1.1 and 1.2 we show that this heuristic extends to all small subgraph

counts; in particular, we answer the folklore question (brought to our attention by Joel Spencer) of



BOHMAN AND KEEVASH 223

which subgraphs appear in G. The density of a graph H with VH ≠ ∅ is 𝑑(H) = |EH ||VH | . The maximum
density m(H) of H is the maximum of 𝑑(H′) over nonempty subgraphs H′ of H.

Theorem 1.4. Let H be a nonempty triangle-free graph.

(i) If m(H) ≤ 2 then P(H ⊆ G) = 1 − o(1).
(ii) If m(H) > 2 then P(H ⊆ G) = o(1).

Thus, the small subgraphs that are likely to appear in G are exactly the same as the triangle-free

subgraphs that appear in Gn,p when p = Θ(n−1∕2 log1∕2 n).
Note that the lower bound on R(3, t) given by the triangle-free process is nonconstructive; for an

explicit construction of a triangle-free graph on Θ(t3∕2) vertices with independence number less than t
see Alon [2]. Alon et al. [3] gave a construction that can be applied to G to produce a regular Ramsey

R(3, t) graph, at the cost of a worse constant in the lower bound on R(3, t).
The bulk of this paper is occupied with the analysis required for the lower bound in Theorem 1.1. To

prove this, we in fact prove much more generally that we can “track” several ensembles of “extension

variables” for most of the process; this is formalized as Theorem 2.13. The proof of Theorem 2.13

is outlined in the next section, then implemented over the four following sections. In Section 3 we

present some coupling and union bound estimates that are needed throughout the paper, and also prove

Theorem 1.4, assuming Theorem 2.13. In Sections 4 to 6, we prove Theorem 2.13 via a self-correcting

analysis of three ensembles of random variables. Section 7 is mostly occupied by the proof of Theorem

1.2; it also contains the proof of the upper bound in Theorem 1.1, which is similar and easier. We

conclude with some brief remarks in Section 8.

2 OVERVIEW OF LOWER BOUND

In this section we outline the proof of the lower bound in Theorem 1.1. We are guided throughout by

the heuristic that G(i) should resemble Gn,p with i = n2p∕2. Before proceeding with the outline of the

proof we mention a consequence of this heuristic that is central to the entire argument. We introduce

a time parameter t that is a rescaling of the number of steps i, defined by

t = in−3∕2.

For intuition, it is helpful to think of t as a continuous parameter, as it takes values less than
√

log n,

which is negligible compared with the polynomial scalings of the key statistics of the process.

Note that

p = 2tn−1∕2.

We define Q(i) to be the number of open ordered pairs in G(i). (So Q(i) = 2|O(i)|.) This variable is

crucial to our understanding of the process. We have Q(0) = n2 −n, and the process ends exactly when

Q(i) = 0. How do we expect Q(i) to evolve? If G(i) resembles Gn,p then for any pair uv we should have

P(uv ∈ O(i)) ≈
(
1 − p2

)n−2 ≈ e−np2 = e−4t2

.

We set q(t) = e−4t2 n2 and expect to have

Q(i) ≈ q(t)

for most of the evolution of the process. This is exactly what we prove.
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2.1 Strategy

We use dynamic concentration inequalities for a carefully chosen ensemble of random variables asso-

ciated with the process. We aim to show V(i) ≈ v(t) for all variables V in the ensemble, for some

smooth function v(t), which we refer to as the scaling of V . Here V(i) denotes the value of V after i
steps of the process, and we scale time as t = in−3∕2. For each V we define a tracking variable  V(i)
and aim to show that V(i) = V(i)− V(i) satisfies |V(i)| < 𝛿V (t)v(t), for some error functions 𝛿V (t).
We use  V(i) rather than v(t) so that we can isolate variations in V from variations in other variables

that have an impact on V .

The improvement to earlier analysis of the process comes from “self-correction,” that is, the

mean-reverting properties of the system of variables. We take 𝛿V (t) = fV (t)+2gV (t), where we think of

fV (t) as the “main error term” and gV (t) as the “martingale deviation term.” We usually have gV ≪ fV ,

but there are some exceptions when t is small and hence fV (t) is too small. We require gV (t)v(t) to be

“approximately nonincreasing” in t, in that gV (t′)v(t′) = O(gV (t)v(t)) for all t′ ≥ t.1 We define the

critical window
WV (i) = [(fV (t) + gV (t))v(t), (fV (t) + 2gV (t))v(t)].

We aim to prove the trend hypothesis for V , which is the following statement2

V(i) ∶= |V(i)| − 𝛿V (t)v(t) is a supermartingale when |V(i)| ∈ WV (i). (1)

The trend hypothesis will follow from the variation equation for 𝛿V (t), which balances the changes in

V(i) and 𝛿V (t)v(t). Since errors can transfer from one variable to another, each variation equation is

a differential inequality that can involve many of the error functions.

We aim to track the process up to the time

tmax = 1

2

√
(1∕2 − 𝜀) log n,

where 𝜀 > 0 is a constant, fixed throughout the paper, that can be arbitrarily small. More precisely,

we will define a stopping time I as the first step i at which we have failure of various events (defined

below), which include the event that V satisfies its required bounds. It will suffice to show that I >
imax ∶= tmaxn3∕2 with high probability.

One way that I ≤ imax can occur is when there exists i∗ = I ≤ imax and some variable V where

V(i∗) is too large. In this situation, V enters WV from below at some3 step i′ < i∗, stays in WV (i)
for i′ ≤ i < i∗ then goes above WV (i∗) at step i∗. During this time V(i) is a supermartingale, with

V(i′ − 1) ≤ −gV (t′)v(t′) and V(i∗) ≥ 0, so we have an increase of at least gV (t′)v(t′) against the

drift of the supermartingale. Then we use Freedman’s martingale inequality [14], which is as follows.

Lemma 2.1 (Freedman). Suppose (X(i))i≥0 is a supermartingale with respect to the filtration  =
(i)i≥0. Suppose that X(i + 1) − X(i) ≤ B for all i and define V(j) =

∑j
i=1

Var(X(i) ∣ i−1). Then for
any a, v > 0 we have

1There will be one exceptional type of variable, the vertex degrees, for which this does not hold.
2We will only give the analysis for “upper critical window,” that is, we consider V(i) positive; the case of V(i) negative can

be treated in exactly the same way with reversed signs. We also remark that we need to “freeze” V(i) if V becomes “bad” (see

(13) in Section 2.5).
3We will be able to assume a certain lower bound i′ > iV via coupling arguments given in Section 3, and also that V is “good”

(see Section 2.5).
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P (∃i such that X(i) ≥ X(0) + a and V(i) ≤ v) ≤ exp

(
− a2

2(v + Ba)

)
.

To apply Freedman’s inequality, we let  = (i)i≥0 be the natural filtration for the triangle-free

process, in which each i consists of all events determined by the choice of the first i edges, and we

estimate

VarV (i) ∶= Var(V(i) ∣ i−1) and NV (i) ∶= |V(i + 1) −V(i)|.
Since gV (t)v(t) is approximately nonincreasing (unless V is a vertex degree variable), to obtain the

required estimate |V(i)| < 𝛿V (t)v(t) with subpolynomial failure probability, it suffices to have the

following two bounds, which together we call the boundedness hypothesis:

gV (t)2v(t)2 = 𝜔
(
VarV (i)(n log n)3∕2

)
, (2)

gV (t)v(t) = 𝜔 (NV (i) log n) . (3)

The lower bound of Theorem 1.1 will follow from Theorem 2.13, in which we show I > imax with

high probability, so every variable in our ensembles satisfies the required estimate for all i < imax; in

particular Q(i) > 0, so the process persists at least to step imax. The proof of Theorem 2.13 is by a union

bound over a polynomial number of events, each of which has subpolynomial failure probability (for

brevity, we say these events hold “whp,” meaning “with high probability”). We divide these events

into four groups, which are treated successively over the next four sections: first events not analyzed by

the critical window method described in this section, and then critical window events for three types

of variables. The above discussion proves that for each variable V the required critical window event

holds whp under the trend and boundedness hypotheses. For ease of reference we formulate this as a

lemma, in which IV denotes the first i ≥ iV (the “activation step” for V , see Definition 2.9) at which

the required estimate on V fails (we let IV = ∞ if there is no such step).

Lemma 2.2. For any variable V and step iV ≥ 1, if |V(iV )| < 𝛿V (tV )v(tV ) and the trend and
boundedness hypotheses for V hold for all iV ≤ i < I then whp we do not have I = IV ≤ imax.

2.2 Variables

All definitions are with respect to the graph G(i) of edges at step i of the triangle-free process. Some-

times we use a variable name to also denote the set that it counts, for example, Q(i) is the number of

ordered open pairs, and also denotes the set of ordered open pairs. We usually omit (i) and (t) from our

notation, for example, Q means Q(i) and q means q(t). We use capital letters for variable names and

the corresponding lower case letter for the scaling. We express scalings using the (approximate) edge

density and open pair density; these are respectively

p = 2in−2 = 2tn−1∕2 and q̂ = e−4t2

.

The next most important variable in our analysis, after the variable Q defined above, is the variable

Yuv which, for a fixed pair of vertices uv, is the number of vertices w such that uw is an open pair

and vw is an edge. It is natural that Yuv should play an important role in this analysis, as it directly
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controls the evolution in the number Q(i) of ordered open pairs: if uv is the edge selected at step

i + 1 then

Q(i) − Q(i + 1) = 2(1 + Yuv + Yvu).

Similarly, we have the following expression, used throughout the paper, for the probability (conditional

on the history of the process up to step i) that any particular open pair in Q(i) is not open in Q(i + 1):

P(uv ∉ Q(i + 1) ∣ i, uv ∈ Q(i)) = 2(1 + Yuv + Yvu)∕Q. (4)

From the heuristics (which we will prove) Y ≈ y = 2tq̂n1∕2 and Q ≈ q = q̂n2 we can approximate

edge-closure probabilities by

4y(t)∕q(t) = 8tn−3∕2 = −n−3∕2q̂′(t)∕q̂(t), (5)

which agrees with the intuition provided by the mean value approximation

q̂(t) − q̂(t + n−3∕2) ≈ −q̂′(t)n−3∕2.

To control these variables we need to embed them in some larger ensembles of variables that

mutually control each other. The motivation for introducing each of the ensembles defined below is as

follows: control of the global variables is needed to get good control of Q (better than that implied by

control of all Yuv), control of the stacking variables is needed to get good control of Yuv, and controllable

variables play a crucial role in our analysis of the stacking variables.

2.2.1 Global variables
We begin with the variable that we are most interested in understanding: the number of open pairs. We

also include two other variables that will allow us to maintain precise control on the number of open

pairs.

• Q = 2|O(i)| is the number of ordered open pairs. The scaling is q = q̂n2.

• R is the number of ordered triples with 3 open pairs. The scaling is r = q̂3n3.

• S is the number of ordered triples abc where ab is an edge and ac, bc are open pairs. The scaling is

s = pq̂2n3 = 2tq̂2n5∕2.

We refer to Q, R, and S as global variables.

2.2.2 Controllable variables
Next we formulate a very general condition under which we can approximate a variable up to a propor-

tional error with polynomial decay. Suppose Γ is a graph, J is a spanning subgraph of Γ and A ⊆ VΓ.

We refer to (A, J,Γ) as an extension. Suppose that 𝜙 ∶ A → [n] is an injective mapping. We define the

extension variables X𝜙,J,Γ(i) to be the number of injective maps f ∶ VΓ → [n] such that

(i) f restricts to 𝜙 on A,

(ii) f (e) ∈ E(i) for every e ∈ EJ not contained in A, and

(iii) f (e) ∈ O(i) for every e ∈ EΓ ⧵ EJ not contained in A.
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We call (J,Γ) the underlying graph pair of X𝜙,J,Γ. We introduce the abbreviations V = X𝜙,J,Γ,

n(V) = |VΓ| − |A|, e(V) = eJ − eJ[A], and o(V) = (eΓ − eJ) − (eΓ[A] − eJ[A]),

which are respectively the numbers of vertices, edges, and open pairs4 not contained in the base of the

extension. The scaling of V is a deterministic function of the time t defined by

v = xA,J,Γ = nn(V)pe(V)q̂o(V),

that is, it predicts the evolution of V according to the heuristic that each of the ∼ nn(V) injections

f ∶ VΓ → [n] satisfying (i) should independently satisfy (ii) for each e ∈ EJ ⧵ EJ[A] with probability

p and (iii) for each e ∈ EΓ ⧵ EΓ[A] with probability q̂. This prediction is correct only if there is no

subextension that is “dense,” in that it has scaling much smaller than 1.

When considering such subextensions (B, J[B′],Γ[B′]) with A ⊆ B ⊆ B′ ⊆ VΓ, we denote the

scaling by5

SB′

B = SB′

B (J,Γ) = n|B′|−|B|peJ[B′ ]−eJ[B] q̂(eΓ[B′ ]−eJ[B′])−(eΓ[B]−eJ[B]).

For example, SVΓ
A = v. Note that if A ⊆ B ⊆ B′ ⊆ B′′ ⊆ VΓ then SB′′

B = SB′′

B′ SB′

B .

Let t′ ≥ 1. We say that V is controllable at time t′ if o(V) > 0 (i.e., at least one pair not contained

in the base is open) and for 1 ≤ t ≤ t′ and A ⊊ B ⊆ VΓ we have

SB
A(J,Γ) ≥ n𝛿′ , (6)

where 𝛿′ > 0 is a fixed global parameter much smaller than 𝜀 (see (8) below for the parameter

hierarchy).

The controllable ensemble is the collection of variables X𝜙,J,Γ controllable at time 1 such that|VΓ| ≤ M3, where M = 3∕𝜀 (see (10)).

Remark 2.3. The proof that we can track the controllable ensemble (up to the precision needed for our

purposes) is relatively short. In a certain sense, our results on controllable variables can be viewed as

a triangle-free process analogue of the concentration on subgraph extensions in Gn,p that follows from

Kim-Vu polynomial concentration (see Lemma 3.4). A similar analogue should hold for the triangle

removal process, and the introduction of this idea would simplify the analysis of the triangle removal

process recently given by Bohman et al. [7].

We emphasize that variables in the controllable ensemble may not be controllable at all times, and

that when we call a variable “controllable” we mean that it is controllable at a particular time (usually

denoted by t).

2.2.3 Stacking variables
In order to understand the evolution of the global variables Q, R, and S, we now introduce an ensemble

of stacking variables. The name of this ensemble indicates that its members are obtained by stacking

basic building blocks, each of which is a one-vertex extension. We start with two such extensions which

4We hope that this will not be confusable with our use of the “little-o” notation o(1) → 0 as n → ∞.
5The letter “S” is used for scalings and stacking variables, but we hope that this will not lead to any confusion, as the use is

determined by the form of the superscript.
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are defined for every ordered pair uv. We have already met the first, Yuv, in our above discussion of

the evolution of Q; the second, Xuv, is clearly required for understanding the evolution of Yuv, as if w
contributes to Xuv and we select the edge vw then w will instead contribute to Yuv.

• Yuv is the number of vertices w such that uw is an open pair and vw is an edge. The scaling is

y = 2tq̂n1∕2.

• Xuv is the number of vertices w such that uw and vw are open pairs. The scaling is x = q̂2n.

The other two building blocks are one-vertex “degree” extensions defined for every vertex u.

• Xu is the open degree of u, defined as the number of vertices w such that uw is open. The scaling is

x1 = nq̂.

• Yu is the degree of u, defined as the number of vertices w such that uw is an edge. The scaling is

y1 = 2tn1∕2.

We will define stacking variables by composing certain sequences of such one-vertex extensions.

We start by setting up notation for describing an arbitrary such variable, although we will only track

a subset of the collection of the stacking variables, the M-bounded stacking variables, which will be

defined later in the section.

Definition 2.4. We define6 a symbol set Σ∗ = {O,E,YO,XO,YI ,XI} and let  be the set of all

nonempty finite sequences 𝜋 in Σ (i.e., 𝜋 ∈ ∪m≥1Σm) such that

(i) if E occurs then it only does so as the last symbol of 𝜋,

(ii) 𝜋(1) ∉ {YI ,XI},

(iii) there is no j with 𝜋(j) = O and 𝜋(j + 1) ∈ {YI ,XI}, except possibly in the last two positions.

For any 𝜋 ∈  and pair of vertices uv (we will only consider uv ∉ E(i)) we define S𝜋uv according

to the following rules. At each step there is an active rung (initially uv) and a last vertex (initially v).

Suppose we have constructed i − 1 steps of our stacking variable and that we have an active rung xy
with last vertex y. If 𝜋(i) = O (“open”) then the next step is an Xy extension, the single open pair in

this extension is the new active rung, and the new vertex is the new last vertex. If 𝜋(i) = E (“edge”)

then the next step is an Yy extension and then there is no active rung: the variable terminates here.

Now suppose 𝜋(i) ∉ {O,E}; that is, suppose 𝜋(i) indicates an X or Y extension on the active rung.

The superscript indicates the direction of this extension. For Y it determines whether we add Yxy or

Yyx, and the new open pair becomes the active rung. For X it determines which of the two new open

pairs becomes the active rung. In both cases, a superscript of O (for “outer”) indicates that the new

active rung is incident with the last vertex, y, while a superscript of I (for “inner”) indicates that the

next active rung is not incident with y (i.e., it is incident with x).

We think of S𝜋uv as counting injections 𝜓 from V(S𝜋uv) ∶= {𝛼u, 𝛼v, 𝛼1,… , 𝛼|𝜋|} to [n] such that

𝜓(𝛼u) = u, 𝜓(𝛼v) = v and each 𝜓(𝛼j) is a vertex that plays the role in the extension defined by 𝜋(j)
for j = 1,… , |𝜋|, that is, S𝜋uv = X𝜙,J,Γ is the extension variable with V(Γ) = V(S𝜋uv), A = {𝛼u, 𝛼v},

𝜙(𝛼u) = u, 𝜙(𝛼v) = v and (J,Γ) is defined so that edges specified by the extension are mapped to edges

of G(i), and likewise for open pairs.

The above distinction between “inner” and “outer” is crucial for understanding what kind of pro-

portional accuracy one should expect in controlling these variables. For an intuitive explanation of

6Each symbol represents a certain extension (as described below). We include condition (i) so that the definition makes sense

and (ii), (iii) so as to reduce the number of cases in the analysis of stacking variables.
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u

v

FIGURE 1 The stacking variable S𝜋uv corresponding to 𝜋 = YOXOXOYOOYOXIOOYOOE. Thick lines represent edges and thin

lines represent open pairs. Open pairs with one vertex in each row of the diagram are rungs. There are 3 triangular ladders,

namely 𝜋[−1; 4] = 𝜋[v; 4], 𝜋[4; 7], and 𝜋[8; 10], which respectively have sets of turning points {𝛼1, 𝛼2, 𝛼3}, {𝛼5}, and {𝛼9}

this phenomenon, and to clarify the meaning of the definition, we introduce a pictorial representation

of stacking variables, in which we think of the vertices of the active rung as the locations of the feet

of someone walking on the graph. An outer extension corresponds to moving the other foot to that

moved in the previous step, whereas an inner extension corresponds to moving the same foot (the intu-

ition in the latter case is that the variable then “sees less” of the graph and so suffers a less accurate

approximation).

In our pictorial representation (see Figure 1), we visualize 𝜋 as a horizontal strip of two rows (“top”

and “bottom”), with vertex labels arranged sequentially from left to right according to the correspond-

ing order in 𝜋. We start by assigning 𝛼u to the top and 𝛼v to the bottom. In each step we assign the

new vertex so that any pair of vertices meets both rows if and only if it is a rung (this uniquely defines

the assignment). The direction superscripts indicate whether the new vertex is added to the same (I) or

different (O) row to the last vertex. Conversely, any such drawing determines a unique order 𝛼1,… , 𝛼t
of vertices, which we call the stacking order, from which we can reconstruct 𝜋.

We note that the vertex set of any rung is a cutset of the graph Γ associated with S𝜋uv.

The simplest stacking variables are those of length 1, namely the building blocks SXO
uv = Xuv,

SYO
uv = Yvu, SO

uv = Xv, and SE
uv = Yv. The last two examples illustrate the general phenomenon that

when 𝜋(1) ∈ {O,E} we obtain an extension based at the single vertex v, which does not depend on u.

While we could denote this variable more simply by S𝜋v , it is convenient to have a unified notation for

stacking variables that allows the effective base of the extension to have one or two vertices.

We also introduce some further terminology which is suggested by the faint resemblance between

our drawings of stacking variables and ladders. A triangular ladder 𝜋[x; y] of 𝜋 is a portion of V(S𝜋uv)
cut off by a subsequence x − 2,… , y of consecutive positions in 𝜋 where x,… , y is a maximal subse-

quence such that 𝜋(j) ∉ {O,E} for all x ≤ j ≤ y. (In this definition, we adopt the convention 𝛼u = 𝛼−1

and 𝛼v = 𝛼0 so as to allow x ∈ {1, 2}.) If x < i < y we say that 𝛼i is a turning point if the superscript

of 𝜋(i + 1) is O. Note that if 𝛼i is a turning point then it is in at least two rungs. The open pairs con-

taining 𝛼i are 𝛼i−𝛼i and 𝛼j𝛼i for all i+ 1 ≤ j ≤ i+, where i− is the previous turning point (or x if there is

none) and i+ is the next turning point (or y if there is none). If 𝛼i is in the top row (for example) then

𝛼i− and 𝛼j for i + 1 ≤ j ≤ i+ are consecutive along the bottom row. We note that any stacking variable

is a concatenation of some number of triangular ladders and paths of open pairs, possibly ending with

a pendant edge.

We refer to an edge or open pair that is a not a rung as a stringer.

We do not track all of the stacking variables defined above; instead, we will track a certain finite

family (with size bounded as a function of 𝜀). The precise definition of this family is quite subtle,

as we need to take account of both size and direction in order to obtain an ensemble that can be

controlled mutually with the other ensembles of variables. We will impose a bound on the length of

any consecutive subsequence consisting only of symbols with superscript I (which corresponds to
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the walker keeping one foot fixed). We will also bound the weight of 𝜋 ∈  , defined by w(𝜋) =
w1(𝜋) + w2(𝜋), where

w1(𝜋) = |{i ∈ |𝜋| ∶ 𝜋(i) ∈ {O,E}}| and w2(𝜋) = |{i ∈ |𝜋| ∶ 𝜋(i) ∈ {XO,YO}}|. (7)

Now we define the M-bounded stacking variables that constitute our stacking ensemble.

Definition 2.5. We say that a stacking sequence 𝜋 ∈  (see Definition 2.4) is M-bounded if7

(i) w(𝜋) ≤ 2M, and w(𝜋′) < 2M, where 𝜋′ is obtained from 𝜋 by deleting 𝜋(|𝜋|),
(ii) 𝜋 does not contain any consecutive subsequence of length M using only {XI ,YI}.

We let M be the set of M-bounded stacking sequences.

The stacking ensemble is the collection of all variables of the form S𝜋uv where 𝜋 ∈ M .

We conclude this section with a simple observation on M-bounded stacking sequences.

Lemma 2.6. If 𝜋 ∈ M is an M-bounded stacking sequence then the length of 𝜋 is |𝜋| < 2M2.

Proof. Let w3(𝜋) be the number of maximal consecutive subsequences of 𝜋 using only {YI ,XI}.

By Definition 2.5.i we have w3(𝜋) ≤ 2M − 1, as any two such sequences are separated by positions

that contribute to w(𝜋). Furthermore, by Definition 2.5.ii each such subsequence of has length at most

M − 1. Therefore |𝜋| ≤ w(𝜋) + (M − 1)w3(𝜋) ≤ 2M + (2M − 1)(M − 1) < 2M2. ▪

2.3 Tracking variables

Recall that each variable V has a tracking variable  V and we track the difference V = V −  V , so

as to isolate variations in V from other variations in G(i).
The tracking variables are defined as follows. For the global variables we take

 Q = q,  R = n3 ⋅ (Q∕n2)3 = Q3n−3,  S = n3 ⋅ 2tn−1∕2 ⋅ (Q∕n2)2 = 2tn−3∕2Q2.

Note that  R and  S are chosen so that R and S isolate the variations in R and S that do not

naturally follow from the variation in Q.

If V is a one-vertex extension with a edges and b open pairs not within its base we take

 V = n ⋅ (2tn−1∕2)a ⋅ (Q∕n2)b.

That is, we set  Xuv = Q2n−3,  Yuv = 2tn−3∕2Q,  Xu = Qn−1, and  Yu = pn = 2tn1∕2.

For the stacking variable S𝜋uv with |𝜋| ≥ 2 we have two cases,8 depending on the form of 𝜋. The

first case is that 𝜋(|𝜋| − 1) ≠ O or 𝜋(|𝜋|) ∈ {O,E}. We write 𝜋 = 𝜋−◦U, where U is the last element

of 𝜋, and let

 S𝜋uv = S𝜋−uv  U.

Note that this choice of  S𝜋uv isolates variations that are not caused by variations in S𝜋−uv .

7The precise form of this definition will be crucial in Sections 6.6.4 (outer destruction) and 6.6.5 (fan end destruction).
8Section 6.3 includes more discussion and motivation of the definition of  S𝜋uv.
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The second case is that 𝜋(|𝜋| − 1) = O and 𝜋(|𝜋|) ∉ {O,E} (we must have |𝜋| ≥ 2). We write

𝜋 = 𝜋−OU, where U is the last element of 𝜋, let 𝛽 = 𝛼|𝜋|−2 and

 S𝜋uv =
⎧⎪⎨⎪⎩
∑

f∈S𝜋−uv
X2

f (𝛽) ⋅ Qn−2 if U ∈ {XI ,XO}∑
f∈S𝜋−uv

X2
f (𝛽) ⋅ 2tn−1∕2 if U = YI∑

f∈S𝜋−uv
Xf (𝛽)Yf (𝛽) ⋅ Qn−2 if U = YO,

recalling that Xa denotes the open degree of vertex a and Yb denotes the degree of vertex b.

For a variable V in the controllable ensemble we will only obtain fairly weak approximations, so

the precise definition of the tracking variable is not very important; it is convenient for the calculations

to isolate the variation due to Q, so we let

 V = nn(V)pe(V)(Qn−2)o(V).

2.4 Error functions and activation times

With the definitions of our variables in hand, we will now introduce some further notation and define

the error functions 𝛿V (recall that we aim to show V =  V ± v𝛿V for each variable V in each of the

three ensembles). Throughout the paper we fix parameters according to the hierarchy

n−1 ≪ 𝛿 ≪ 𝛿′ ≪ 𝜀; (8)

the roles of these parameters may be understood by reference to (9) and (10) for 𝜀, to (6) for 𝛿′, and to

Definition 2.7 for 𝛿. Our asymptotic notation is respect to n, for example, o(1) denotes a quantity that

can be made arbitrarily small for n sufficiently large. We track the process until the time tmax at which

q̂(tmax) = n−1∕2+𝜀; thus

tmax = 1

2

√
(1∕2 − 𝜀) log n. (9)

The constant M that bounds the size of the stacking and variables in the controllable ensemble depends

on tmax through 𝜀: we let

M = 3∕𝜀. (10)

We will now define the error functions 𝛿V .

Definition 2.7. Write9

e(t) = q̂(t)−1∕2n−1∕4 and L =
√

log n.

Our error functions take the form 𝛿V = fV + 2gV , where10

fV (t) = cV𝜙V (t), gV (t) = cV𝜙V (t) ⋅ 𝜗(t)L−1(1 + t−e(V)) and

9We hope that e will not be confused with the base of natural logarithms; the exponential function is denoted by exp throughout

the paper.
10We defer the definitions of cV and 𝜗 to Definition 2.8.



232 BOHMAN AND KEEVASH

𝜙V =
⎧⎪⎨⎪⎩

e if V is a stacking variable,

e2 if V is a global variable,

e𝛿 if V is in the controllable ensemble.

The behavior of the error functions in Definition 2.7 is mainly determined by the functions 𝜙V , and

can be understood without reference to the deferred definitions of cV and 𝜗, as the cV are “constants”

(i.e., independent of time; they are polylogarithmic in n) and the function 𝜗(t) is bounded by constants

(depending on 𝜀, but not on n). We introduce 𝜗 and the t−e(V) term in gV (t) to handle some technicalities

that arise for t = o(1) (which is not the most significant regime of the process, but nevertheless exhibits

slightly different behavior from the later regime, so our proof must account for this difference). When

t = Ω(1) we have gV = O(L−1fV ) = o(fV ), whereas if t = o(1) with sublogarithmic decay and e(V) > 0

then we have gV ≫ fV . The point of the t−e(V) term is that the dominant term in vgV as t → 0 does not

contain a power of t.
The intuition for taking 𝜙V = e for stacking variables is that they include the variables Yuv, which

have scaling y = 2tq̂n1∕2 = 2te−2, and which one cannot expect to control to proportional error bet-

ter than y−1∕2. Thus e is a natural reference point for discussing approximations. We note for future

reference that

e increases from e(0) = n−1∕4 to e(tmax) = n−𝜀∕2, (11)

so e always has sublogarithmic decay in n. The notation L =
√

log n will be convenient as we always

have t ≤ tmax < L. We also note for future reference that the density q̂ of open pairs is always much

large than the density p of edges: we have

q̂∕p = e−2∕2t > n𝜀∕2L > n𝜀∕2. (12)

We take 𝜙V = e2 for the global variables so that for these variables we can neglect “product” error

terms arising from applications of Lemma 2.14. This is well within the theoretical limit on the accuracy

for Q, namely q−1∕2 = e−1n−3∕4 ≪ e−2; the “extra room” will be helpful in the coupling arguments in

Section 3 for establishing the required estimates for small t. For variables in the controllable ensemble

we only require accuracy that decays sublogarithmically, so we take 𝜙V = e𝛿 , where for 𝛿 we recall

the parameter hierarchy (8).

The constants cV that appear in Definition 2.7 will be chosen in Definition 2.8 to establish the trend

hypotheses (i.e., to show that each V is a supermartingale). We will see that approximation errors

migrate in a complex fashion between the variables and so these choices are quite delicate. As we treat

each ensemble of variables in turn during the next three sections we will derive inequalities that these

constants must (and do) satisfy in order for the trend hypothesis to hold: see the “variation equations”

(22), (23), (24), (25), (30), (42), (43), and (44).

We think of the cV ’s as “constant” as they do not depend on time (they are all polylogarithmic in

n). We specify them now in advance of the analysis, but we will keep the notation general so that it is

clear how to choose the constants. We also define the function 𝜗(t) used above. Note that the constants

for the stacking variables are chosen very carefully, so that they decrease as the length of 𝜋 increases

(corresponding to more accurate approximations for longer extensions), which will be important in

Section 6.6.1 (simple destruction), and there is a more substantial decrease for each occurrence of O
or E (counted by w1(𝜋)), which will be important in Section 6.6.5 (fan end destruction). There is also

an adjustment for the case 𝜋 = O, as our argument for controlling degree extensions requires a slightly

smaller constant for open degree extensions (see Section 3.4).
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Definition 2.8. For all variables in the controllable ensemble we take cV = 1. For the global variables

we take

cR = L40, cS = 2L40, cQ = 4L40.

For a stacking variable V = S𝜋uv, recalling w1(𝜋) from (7), we set

cV = c𝜋 = L1594M2−|𝜋|−Mw1(𝜋)(2.2)−1𝜋=O .

Let K = M6 = (3∕𝜀)6 and 𝜗 ∶ [0,∞] → [1,∞] be any increasing smooth function such that

𝜗(t) = eKt for 0 ≤ t ≤ 1, sup
t≥0

|𝜗(t)| ≤ 2eK and sup
t≥0

(|𝜗′(t)| + |𝜗′′(t)|) < ∞.

Recalling from Definition 2.5 and Lemma 2.6 that w(𝜋) ≤ 2M and |𝜋| < 2M2, we see that L15 ≤

cV ≤ L1594M2

for any V = S𝜋uv.

Next we define the “activation step” iV at which we start tracking a variable V using the martingale

arguments in Section 2.1 (before then we will use the coupling arguments of Section 3). Our definition

is uniform across all V bar one technical exception in which the activation step is slightly later than

one might expect.

Definition 2.9. For any variable V , the activation step iV is the smallest i ≥ n5∕4 for which gV (t) ≤
L−1, except that if V is a stacking variable with e(V) = 1 we let iV = n1.26.

The activation time is tV = iVn−3∕2.

In the following lemma we give some estimates for the activation steps of various variables; we

also show that all error functions are o(1) after activation, and justify our earlier informal assertion that

the functions vgV are approximately nonincreasing (unless V is a vertex degree variable). The notation

Θ̃ denotes approximation up to a factor polylogarithmic in n.

Lemma 2.10. Let V be any variable in any ensemble with o(V) > 0 (i.e., not a vertex degree).

(i) If e(V) = 0 or V = S then tV = n−1∕4.
(ii) If V is a stacking variable with e(V) > 1 then tV = Θ̃(n−1∕4e(V)).

(iii) If V is in the controllable ensemble with e(V) > 0 then tV = Θ̃(n−𝛿∕4e(V)).
(iv) 𝛿V = o(1) for all t ≥ tV .
(v) v(t)gV (t) = O(v(t′)gV (t′)) whenever t ≥ t′.

Proof. For (i), we first note that if e(V) = 0 then gV = Θ̃(𝜙V ). We have 𝜙V ≤ e𝛿 < n−𝜀𝛿∕2 ≪ L−1

by (11), so by definition iV = n5∕4, that is, tV = n−1∕4. Also, gS(t) = Θ̃(e2)(1 + t−1) = Θ̃(n−1∕2t−1) for

t ≤ 1, so gS(n−1∕4) = Θ̃(n−1∕4)≪ L−1, giving tS = n−1∕4, as required.

For (ii), we have gV (t) = Θ̃(e)(1 + t−e(V)) = Θ̃(n−1∕4t−e(V)) for t ≤ 1, which hits L−1 at some

tV = Θ̃(n−1∕4e(V)); we obtain (iii) similarly from gV (t) = Θ̃(e𝛿)(1 + t−e(V)).
For (iv), we note that fV (tV ) = O(LgV (tV ))(1 + t−e(V)

V )−1. If e(V) = 0 then fV (tV ) = O(Le𝛿) =
o(1). Otherwise, as gV (tV ) ≤ L−1 by definition of tV , (i-iii) give fV (tV ) = O(LgV (tV ))(1 + t−e(V)

V )−1 =
O(te(V)

V ) = Õ(n−𝛿∕4) = o(1). The estimate for t ≥ tV follows as fV (t) and gV (t)∕𝜗(t) are decreasing in t,
and 𝜗(t) is bounded by 2eK = O(1) by Definition 2.8.

Finally, to see (v) we write h(t) = v(t)gV (t) = Θ(nn(V)q̂o(V)L−1cV𝜙V (1 + te(V))), then note that

h(t) = Θ(h(0)) for t = O(1), and as o(V) > 0 there is some t0 = O(1) such that h′(t) < 0 for t > t0. ▪
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2.5 Stopping times and the main technical result

In this section we formulate our main result regarding the stopping time I (mentioned above) that

provides the lower bound in Theorem 1.1. For convenience in breaking up the proof into sections, we

define

I = min{Iext, Iglo, Icon, Istk}

in terms of 4 other stopping times defined below, which are in turn analyzed over the next 4 sections.

Each of these stopping times is defined as the first step at which certain good events fail (or ∞ if there

is no such step). The stopping time Iext controls various events that we think of as “external” to the main

martingale strategy of critical window events in Section 2.1. The other stopping times control critical

window events for each of the three ensembles: Iglo controls global variables, Icon controls variables

in the controllable ensemble at times when they are controllable (at other times they are controlled by

Iext) and Istk controls stacking variables. We start by defining these critical window stopping times in

terms of stopping times JV and IV associated to each variable V as follows.

Definition 2.11. Consider any variable V in any ensemble, and write (see Section 2.2.2, all variables

can be thus expressed) V = X𝜙,J,Γ for some extension (A, J,Γ).
We say that V is bad (at step i) if there is an edge e = 𝜙(x)𝜙(y) of G(i) with x, y in A and some

w ∈ VΓ ⧵ A such that Γ contains xw and yw, and at least one of them is in J.

If V is not bad we call it good.

We let JV be the smallest11 i ≥ iV such that V is bad (or ∞ if there is no such time).

We let the stopping time IV be the smallest i with iV < i < JV such that |V(i)| > 𝛿V (t)v(t) and V
is controllable if in the controllable ensemble (or ∞ if there is no such time).

We let Iglo, Icon, and Istk be the respective minima of IV over all variables V in the global,

controllable, and stacking ensembles.

We note that the global variables are always good. We also note if some V is bad then V = 0, as a

copy of V would require either a triangle in G(i) (which does not exist in the triangle-free process!) or

a triangle containing two edges in G(i) and one open pair (which contradicts the definition of “open”).

For example, if uv is an edge then Yuv = 0. On the other hand, if uv is closed (not an edge or open)

then we do track Yuv; this will be important for example, for (67) in the proof of Theorem 1.1.

As indicated earlier, for the actual definition of the variableV(i) appearing in the trend hypothesis

of Section 2.1 we “freeze” it at step JV , as follows:

V(i) =

{|V(i)| − 𝛿V (t)v(t) if i < JV

V(JV − 1) if i ≥ JV .
(13)

While the stopping times Iglo, Icon, Istk are the main subject of the proof, we will also need some

additional information about the evolution of the process, which will be captured by the “external”

stopping time Iext. This includes properties of G(i) for i < n5∕4, sharper estimates on Q and Yuv for

i < iY , crude estimates for a broad class of extension variables, and control of vertex degrees (which

cannot be treated by the general strategy applied to all other variables).

Definition 2.12. We let the stopping time Iext be the first step i at which G(i) ∉ i (or ∞ if there is

no such step), where i is the “good event” that the following estimates hold, fixing a large absolute

constant C:

11See Definition 2.9 for iV (the “activation step”).
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(i) Q(i)∕q(t), Xu∕x1(t), and Xuv∕x(t) are 1 ± Ct2 for every vertex u and pair uv, whenever n−0.49 ≤

t ≤ 0.01,

(ii) Yuv(i)∕y(t) and Yu(i)∕y1(t) are 1±CL8t2±Ct−0.4n−0.2 for every vertex u and non-edge uv, whenever

n−0.49 ≤ t ≤ 0.01,

(iii) Zuv(i) ≤ L4 for all pairs uv, where the codegree Zuv(i) is the number of vertices adjacent to both

u and v in G(i),
(iv) for every extension (A, J,Γ) on at most M3 vertices and all injections 𝜙 ∶ A → [n] we have

X𝜙,J,Γ(i) < L4|VΓ| maxA⊆B⊆VΓ SVΓ
B (i),

(v) For every extension (A, J,Γ) on M3 + 1 vertices such that SVΓ
B ≤ y∕L7 for all A ⊆ B ⊆ VΓ and all

injections 𝜙 ∶ A → [n] we have X𝜙,J,Γ(i) < L4|VΓ| maxA⊆B⊆VΓ SVΓ
B (i),

(vi) no good variable V = X𝜙,J,Γ in the controllable ensemble has |V(i)| > n−𝛿2 v(t) for any n−1∕4 ≤

t ≤ tV such that SB
A > n𝛿′ for all A ⊊ B ⊆ VΓ,

(vii) Yu(i) = (1 ± 𝛿Y1
(t))y1(t) for every vertex u.

To aid intuition, we make some remarks on the use of the various properties in the definition of

i. The error terms from Q and Yuv are ubiquitous throughout the calculations, and the tighter control

expressed by (i) and (ii) handles some technical difficulties that arise for small t; a similar motivation

applies to (vi). We include (vii) in i as the vertex degrees cannot be treated by the same method used

for the other variables. Combining (i) and (ii) with the martingale estimates for Q and Yuv after their

activation steps, we obtain the following bounds that hold for all n5∕4 ≤ i < I. We emphasize that we

will often use without further comment the facts that the approximation errors 𝛿∗Q and 𝛿∗Y for Q and Yuv

have sublogarithmic decay and 𝛿∗Y = O(𝛿Y ) for all i ≥ n5∕4.

For n5∕4 ≤ i < I we have Q(i) = (1 ± 𝛿∗Q)q(t) and Yuv(i) = (1 ± 𝛿∗Y )y(t) if uv ∉ E(i), (14)

where 𝛿∗Q ≤ 𝛿Q, 𝛿
∗
Q = O(t2), 𝛿∗Y ≤ 2𝛿Y for i ≥ iY and 𝛿∗Y = O(L8t2) + O(t−0.4n−0.2).

The intuition for the codegree variable Zuv in (iii) is that it should scale in expectation like p2n =
2t <

√
log n, so whp will be at most polylogarithmic. An important application is that

For any two open pairs e and e′ at most L4 open pairs can simultaneously close both. (15)

We think of (15) as “destruction fidelity,” as it will allow us to approximate the number of possibilities

for a set of destruction events by a sum over each event. To see that (15) follows from (iii), we can

assume that e and e′ share a vertex (otherwise at most 2 pairs can close both), say e = xu and e′ = xv,

and then the required bound is immediate from Zuv ≤ L4. The bound on Zuv is similar to those in (iv)

and (v), but we state and prove it separately to emphasize its importance and because its proof is much

simpler than those of the general statements.

Conditions (iv) and (v) in i both give the same estimate (under different hypotheses) for gen-

eral extensions. This estimate is quite crude, in that it exceeds by a polylogarithmic factor L4|VΓ| the

“worst-case expectation estimate” maxA⊆B⊆VΓ SVΓ
B (i′) (our union bounds cannot rule out the event that

𝜙 extends to some embedding of (B, J,Γ), which we would then expect to have SVΓ
B extensions). This

polylogarithmic loss makes it ineffective when verifying trend hypotheses, but it is easily absorbed

when verifying boundedness hypotheses. This will be crucial for the controllable ensemble, where we

recall that we imposed the size restriction |VΓ| ≤ M3, so condition (v) enables us to verify the boundary

case |VΓ| = M3 (this idea makes our treatment of extensions significantly simpler than that in [13]).

Now we state our main result on the triangle-free process.
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Theorem 2.13. With high probability I > imax ∶= tmaxn3∕2.

The lower bound in Theorem 1.1 follows from Theorem 2.13. To see this, we note that if I > imax

then IQ > imax, so the process persists until time tmax = 1

2

√
(1∕2 − 𝜀) log n, and Iext > imax, so by

Definition 2.12.vii all vertex degrees at time tmax are (1 ± 𝛿Y1
(tmax))y1(tmax) = (1 + o(1))2tmaxn1∕2.

We will prove Theorem 2.13 over the next four sections, in which we in turn bound the probabil-

ities of the events {I = Iext ≤ imax} (Theorem 3.1), {I = Iglo ≤ imax} (Theorem 4.1), {I = Icon ≤

imax} (Theorem 5.1), and {I = Istk ≤ imax} (Theorem 6.1); in combination these theorems imply

Theorem 2.13.

Note that if I ≤ imax then either G(I) ∉ I or there is some V such that I = IV ≤ imax, that is,|V(I)| is too large and V is good at step I. We emphasize that, since we can restrict our attention to

i < I, we may assume i and |V(i)| ≤ 𝛿V (t)v(t) for all good variables V when verifying the trend and

boundedness hypotheses.

2.6 Some calculations and further notation

We will employ the following useful lemma extensively to estimate sums of products. The proof given

here is due to Patrick Bennett.

Lemma 2.14 (Product lemma). Suppose x, y, (xi)i∈I and (yi)i∈I are real numbers such that |xi−x| ≤ 𝛿

and |yi − y| < 𝜀 for all i ∈ I. Then we have

||||||
∑
i∈I

xiyi −
1|I|

(∑
i∈I

xi

)(∑
i∈I

yi

)|||||| ≤ 2|I|𝛿𝜀.
Proof. The triangle inequality gives

|||||
∑
i∈I

(xi − x)(yi − y)
||||| ≤ |I|𝛿𝜀.

Rearranging this inequality gives∑
i∈I

xiyi = x
∑
i∈I

yi + y
∑
i∈I

xi − |I|xy ± |I|𝛿𝜀
= 1|I|

(∑
i∈I

xi

)(∑
i∈I

yi

)
− |I|( 1|I| ∑i∈I

xi − x

)(
1|I| ∑i∈I

yi − y

)
± |I|𝛿𝜀.

▪

The following notation and conventions that are used throughout the paper.

• We use compact notation for one-step differences, writing Δi(F) = F(i+ 1) −F(i) for any sequence

F(i) and Δi(f ) = f (t + n−3∕2) − f (t) for any function f (t).
• The “O-tilde” notation f = Õ(g) means |f | ≤ (log n)A|g| for some absolute constant A.

• “whp” means “with high probability”; all such statements will have subpolynomial failure proba-

bility, which will justify us taking a polynomial number of them in union bounds.

• We reiterate that we denote the vertex set by [n] = {1,… , n}.
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We conclude this section by estimating the one-step differences for variable scalings v and error

terms v𝛿V (recall Definitions 2.7 and 2.8). To interpret the latter formula, note that in the main term we

have factored out the scaling v𝛿V and the approximate probability 8tn−3∕2 (see (5)) of closing any given

open pair at step t; a crucial feature of the trend hypothesis calculations later will be the self-correction

of open pairs in V that cancels the o(V) term. We let PV denote the power of e in 𝛿V , that is, PV equals

2, 1 or 𝛿 according as V is in the global, stacking or controllable ensembles.

Lemma 2.15. For any variable V in any ensemble and t ≥ n−1∕4 we have

Δi(v) = v′n−3∕2 + O(v)n−5∕2, and

Δi(v𝛿V ) =
(

e(V)
8t2

− o(V)
)
𝛿Vv ⋅ 8tn−3∕2 + 𝛿′Vvn−3∕2 + O(𝛿Vv)n−5∕2, where

𝛿′V ≥ 4tPV𝛿V + (𝜗′∕𝜗 − e(V)t−1)2gV .

Proof. By Taylor’s theorem, for any smooth function h(t) we have

Δi(h) = h′(t)n−3∕2 + O(n−3|h′′(t′)|), where t < t′ < t + n−3∕2.

We apply this first with h = v, which has the form v(t) = a(t)eb(t), where a and b are polynomials in t
and b has degree at most 2, so satisfies v′∕v = O(t + t−1) = O(n1∕4) and v′′∕v = O(t2 + t−2) = O(n1∕2)
for t ≥ n−1∕4; this gives the first estimate. For the second, we recall that v = nn(V)pe(V)q̂o(V), so

v′∕v = e(V)∕t − 8to(V).

Applying Taylor’s theorem to h = v𝛿V , as h′∕h = v′∕v + 𝛿′V∕𝛿V the main term in the second estimate

is equal to h′(t)n−3∕2, so it remains to show |h′′(t′)| = O(n1∕2)𝛿Vv for t ≤ t′ ≤ t + n−3∕2. To see

this, we recall that 𝛿V = fV + 2gV , where vfV and vgV∕𝜗 both have the form a(t)eb(t) as above, so

(vfV )′′ = O(t2 + t−2)vfV = O(n1∕2)v𝛿V , (vgV∕𝜗)′ = O(t + t−1)vgV∕𝜗 = O(n1∕4)v𝛿V , and (vgV∕𝜗)′′ =
O(t2 + t−2)vgV∕𝜗 = O(n1∕2)v𝛿V . Recalling that 𝜗′ and 𝜗′′ are bounded (see Definition 2.8) we deduce

(vgV )′′ = (vgV∕𝜗)′′𝜗 + 2(vgV∕𝜗)′𝜗′ + 𝜗′′ = O(n1∕2)v𝛿V , as required. The bound on 𝛿′V follows from

f ′V∕fV = 4tPV and g′
V∕gV = 4tPV + 𝜗′∕𝜗 − e(V)t−1(1 + te(V))−1. ▪

3 COUPLING AND UNION BOUNDS

In this section we gather two types of estimates that can be made without using dynamic concentration,

namely coupling and union bounds. The two key applications of these arguments are (i) showing that

whp every variable V in each of three ensembles obeys its required estimates at its activation step iV
(see Lemma 3.9), and (ii) showing that whp the stopping time Iext of Definition 2.12 controlling the

good event i does not occur by step imax. We state the latter as the main theorem of this section.

Theorem 3.1. With high probability we do not have I = Iext ≤ imax.

Theorem 3.1 follows by combining various lemmas proved in this section showing that each of

the defining properties of the event i in Definition 2.12 hold whp; specifically, properties (i), (ii),

and (vi) are in Lemma 3.9, (iii) in Lemma 3.10, (iv) in Lemma 3.13, (v) in Lemma 3.12, and (vii) in

Lemma 3.15.
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3.1 Extension variables in Gn,p

Our coupling arguments will compare extension variables in the triangle-free process G(i) with exten-

sion variables in the Erdős-Rényi random graph Gn,p. In this subsection we briefly review some

well-known theory of the latter. Suppose J is a graph and A ⊆ VJ . We refer to (A, J) as an extension.

Given an injective map 𝜙 ∶ A → [n], where [n] is the vertex set of Gn,p, we let XER
𝜙,J be the number

of injective maps f ∶ VJ → [n] such that f restricts to 𝜙 on A and f (e) is an edge of Gn,p for every

e ∈ J ⧵ J[A]. Thus XER
𝜙,J is formally defined in the same way as the extension variable X𝜙,J,J on G(i)

(see Section 2.2.2), but we emphasize that XER
𝜙,J is defined on Gn,p, not on G(i).

The following definition and accompanying lemma describe how a general extension can be nat-

urally decomposed into a series of extensions that are “strictly balanced,” in that they do not have any

“dense subextension.”

Definition 3.2. Given A ⊆ B ⊆ B′ ⊆ VJ we define the scaling

SB′

B = SB′

B (J) = n|B′|−|B|peJ[B′ ]−eJ[B] .

We say that (A, J) is strictly balanced (in Gn,p) if SVJ
B < 1 for all A ⊊ B ⊊ VJ . The extension series (in

Gn,p) for (A, J), denoted (B0,… ,B𝑑), is constructed by the following rule. We let B0 = A. For i ≥ 0,

if (Bi, J) is not strictly balanced then we choose Bi+1 to be a minimal set C with Bi ⊊ C ⊊ VJ that

minimizes SC
Bi

; otherwise we choose Bi+1 = VJ , set 𝑑 = i + 1 and terminate the construction.

Lemma 3.3. Let (A, J) be an extension and (B0,… ,B𝑑) be its extension series in Gn,p. Then

(i) if A ⊆ B ⊆ B′ ⊆ B′′ ⊆ VJ then SB′′

B = SB′

B SB′′

B′ ,
(ii) if A ⊆ B ⊆ VJ and C ⊆ VJ ⧵ B then SB∪C

A∪C ≤ SB
A,

(iii) each extension (Bi, J[Bi+1]) is strictly balanced,
(iv) SBi+1

Bi
≥ 1 for i > 0.

Proof. Statements (i) and (ii) are clear. For (iii), we cannot have SBi+1

B ≥ 1 for some Bi ⊊ B ⊊ Bi+1,

as then SB
Bi
= SBi+1

Bi
∕SBi+1

B ≤ SBi+1

Bi
contradicts minimality of Bi+1. For (iv), suppose for contradiction that

SBi+1

Bi
< 1 for some i > 0. If i + 1 < 𝑑 then SBi+1

Bi−1
< SBi

Bi−1
contradicts the definition of Bi. On the other

hand, if i + 1 = 𝑑 we will obtain a contradiction by showing that (Bi−1, J) is strictly balanced (so the

extension series should have terminated with Bi = VJ).

To see this, consider any Bi−1 ⊊ B ⊊ VJ and write B∪ = B ∪ Bi, B∩ = B ∩ Bi. By strict balance

of (Bi, J) we have SVJ
B∪ ≤ 1, with equality only if B∪ = VJ (as SBi+1

Bi
< 1). By (ii) and strict balance of

(Bi−1, J[Bi]) we have SB∪

B ≤ SBi
B∩ ≤ 1, with equality only if B∩ = Bi. At least one of these inequalities is

strict, so SVJ
B = SB∪

B SVJ
B∪ < 1. This contradiction completes the proof. ▪

Next we quote the following general extension estimate of Kim and Vu [18, Theorem 4.2.4] in a

weakened form that suffices for our purposes.

Lemma 3.4. For any 𝛼 > 0 there is 𝛽 > 0 so that for any extension (A, J) with SB
A > n𝛼 for all

A ⊊ B ⊆ VJ in Gn,p whp XER
𝜙,J = (1 ± n−𝛽)SVJ

A for all injections 𝜙 ∶ A → [n].

We also require a weaker estimate that can be applied to sparse extensions, as given by the following

union bound lemma. We include a brief proof as it illustrates a method we will also use for similar

estimates in the triangle-free process. We recall that L =
√

log n.



BOHMAN AND KEEVASH 239

Lemma 3.5. If (A, J) is strictly balanced in Gn,p then whp XER
𝜙,J < L4|VJ⧵A| max{SVJ

A , 1} for all
injections 𝜙 ∶ A → [n].

Proof. First we note that for any fixed f ∶ VJ → [n] restricting to 𝜙 on A we have P(f ∈ XER
𝜙,J) =

peJ−eJ[A] . Next we estimate the probability that there are s extensions in XER
𝜙,J that are disjoint outside

of 𝜙(A). An upper bound is s!−1(nvJ−|A|)s ⋅ (peJ−eJ[A] )s < (3s−1SVJ
A )s, which is subpolynomial for s =

L4 max{SVJ
A , 1}.

Now we show the statement of the lemma by induction on |VJ⧵A|. The base case |VJ⧵A| = 1 holds

by the bound on disjoint extensions. Now suppose |VJ ⧵ A| > 1. We consider a maximal collection C
of extensions disjoint outside of A. As shown above, whp |C| ≤ s = L4 max{SVJ

A , 1}. By maximality,

any extension 𝜙′ ∈ XER
𝜙,J intersects some extension 𝜙∗ ∈ C outside of A. By strict balance and the

induction hypothesis, for any 𝜙∗ the number of choices for 𝜙′ is at most 2|VJ |L4(|VJ⧵A|−1) < L4|VJ⧵A|−1.

Therefore XER
𝜙,J < L4|VJ⧵A|−1|C| < L4|VJ⧵A| max{SVJ

A , 1}. ▪

We deduce the following estimate on general extensions.

Lemma 3.6. For any extension (A, J) whp XER
𝜙,J < L4|VJ⧵A| maxA⊆B⊆VJ SVJ

B for all 𝜙.

Proof. Let (B0,… ,B𝑑) be the extension series in Gn,p for (A, J). By Lemma 3.3.iii we can apply

Lemma 3.5 bound to each step of the extension series, so whp for each 0 ≤ i < 𝑑 and injection

𝜙i ∶ Bi → [n] we have XER
𝜙i,J[Bi+1]

< L4|Bi+1⧵Bi| max{SBi+1

Bi
, 1}. Thus for any injection 𝜙 ∶ A → [n]

we have XER
𝜙,J <

∏𝑑−1

i=0 L4|Bi+1⧵Bi| max{SBi+1

Bi
, 1}. By Lemma 3.3.iv we have SBi+1

Bi
≥ 1 for i ≥ 1, so

XER
𝜙,J < L4|VJ | max{SB1

B0
, 1}SVJ

B1
= L4|VJ | max{SVJ

B0
, SVJ

B1
}.

It remains to show that this bound is identical to that claimed by the lemma. To see this, consider

any A ⊆ B ⊆ VJ and write B∪ = B∪B1, B∩ = B∩B1 and SVJ
B = SB∪

B SVJ
B∪ . Then SB∪

B ≤ SB1

B∩ ≤ max{SB1

B0
, 1}

and SVJ
B∪ ≤ SVJ

B1
by Lemma 3.3, as required. ▪

3.2 Coupling estimates

In this subsection we estimate our variables for small t by coupling the triangle-free process G(i) inside

the Erdős-Rényi random graph process ER(n, j), which is defined in the same way as G(i) but without

the condition of being triangle-free, that is, we consider a uniform random order of the set of pairs

in [n] and let the edge-set of ER(n, j) consist of the first j pairs in this order. The coupling is defined

by rejecting any pair in ER(n, j) that is closed, in that it forms a triangle with previous (nonrejected)

edges. Thus after j steps the selected edges form the triangle-free process G(i) after i steps, where j− i
edges were rejected. The number of rejected edges is bounded by the number of triangles in ER(n, j);
call this T(j).

The intuition (made precise in Lemma 3.8) is that for small t few edges are rejected, so variables in

G(i) are well-approximated by corresponding variables in ER(n, j). This allows us to side-step technical

difficulties that arise for small t when implementing the main martingale strategy of Section 2.1 (i.e.,

that powers of t in the error functions blow up for small t, and in any case we have to exclude very

small t to obtain concentration). We will see in the calculations below that the coupling gives us the

required bounds up to t = n−1∕4 (and beyond in some cases), which explains our choice of activation

step iV in Definition 2.9.
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A well-known paradigm of random graphs is that the random graph ER(n, j) of fixed size is very

similar to the usual binomial model Gn,pj where edges are chosen independently with probability pj =
j∕
(n

2

)
; the following lemma makes this statement precise.

Lemma 3.7 (Lemma 1.2 in [15]). Let  be any graph property and pj = j∕
(n

2

)
where j = j(n) → ∞

and
(n

2

)
− j → ∞. Then for n sufficiently large

P(ER(n, j) ∈ ) ≤ 10j1∕2
P(Gn,pj ∈ ).

We will view j = j(i) as a random variable on the probability space of the coupling of G(i) and

ER(n, j), which is equal to the number of steps of the Erdős-Rényi process ER(n, j) that are revealed

in order to obtain i edges in the coupled triangle-free process G(i). We can approximate j(i) and so

estimate variables in G(i) by those in Gn,p as follows.

Lemma 3.8. If i = tn3∕2 with t ∈ (n−0.49, 0.01) then whp i ≤ j(i) < (1 + O(t2))i. Thus for any
extension (A, J,Γ) and injection 𝜙 ∶ A → [n] whp X𝜙,J,Γ ≤ XER

𝜙,J in Gn,p′ with p′ = (1 + O(t2))p.

Proof. By definition of the coupling we have 0 ≤ j − i ≤ T(j), where T(j) is the number of triangles

in ER(n, j). As t > n−0.49, by Lemmas 3.4 and 3.7 whp T(j) < 2p3
j n3 < 20(j∕n)3. We deduce j < 2i,

as at step 2i we have seen at least 2i − 20(2i∕n)3 = (1 − 80t2)2i > i edges of the triangle-free process

(using t < 0.01). Thus T(j) = O(t2)i, which gives the first statement.

To see the second, note that X𝜙,J,Γ is bounded deterministically (via the coupling) by XER
𝜙,J in

ER(n, j(i)), and by Chernoff bounds on the number of edges in Gn,p′ we can include Gn,p′ in the coupling

(“tripling”?) so that whp ER(n, j(i)) ⊆ Gn,p′ . ▪

Having established the coupling, we now turn to its application, which is to show that any good

variable V is not in or beyond its critical interval at its activation step iV when we begin its martingale

analysis; this is the final statement of the next lemma (we also include some stronger bounds required

for the event i in Definition 2.12, and a stronger statement for stacking variables). We require these

bounds as earlier steps are not covered by the martingale analysis: we recall from Definition 2.11 that

the stopping time IV is the smallest i with iV < i < JV such that |V(i)| > 𝛿V (t)v(t) (or ∞ if there is no

such time). We can assume V is good by definition of JV (also in Definition 2.11). For convenience,

we recall the estimates on tV = iVn−3∕2 given in Lemma 2.10: if e(V) = 0 or V = S then tV = n−1∕4,

otherwise tV = Θ̃(n−1∕4e(V)) if V is a stacking variable or tV = Θ̃(n−𝛿∕4e(V)) if V is in the controllable

ensemble.

Lemma 3.9. With high probability

(i) V(i) = (1 ± O(t2))v(t) for any good variable V with e(V) = 0 and n−0.49 ≤ t ≤ 0.01,
(ii) Yuv(i)∕y(t) and Yu(i)∕y1(t) are 1 ± O(L8t2) ± O(t−0.4n−0.2) for every vertex u, non-edge uv, and

n−0.49 ≤ t ≤ 0.01,
(iii) no good variable V = X𝜙,J,Γ in the controllable ensemble has |V(i)| > n−𝛿2 v(t) for any n−1∕4 ≤

t ≤ tV such that SB
A > n𝛿′ for all A ⊊ B ⊆ VΓ,

(iv) no good stacking variable V has |V(i)| > (fV (t) + gV (t))v(t) for any n−1∕4 ≤ t ≤ tV ,
(v) no good variable V has |V(iV )| > (fV (tV ) + gV (tV ))v(tV ).

Proof. For (i), we first estimate the maximum degree Δ(i) of G(i). By Lemma 3.8, we can bound Δ(i)
whp by the maximum degree in Gn,p′ with p′ = (1 + O(t2))p = O(p), so whp Δ = O(pn) = O(tn1∕2).
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Thus any vertex is incident to O(pn) edges and O(pn)2 = O(t2)n closed pairs. Now consider any

variable V with e(V) = 0, and recall that v(t) = nn(V)q̂(t)o(V), where q̂(t) = e−4t2 = 1 − O(t2). We have

nn(V) ≥ V(0) ≥ V(i) ≥ v(t)−O(t2)n ⋅nn(V)−1, so V(i) = (1+O(t2))v(t), as required. This also proves (v)

for such variables; indeed, we have tV = n−1∕4, so V(iV ) = O(n−1∕2)v(t) and fV (n−1∕4) + gV (n−1∕4) ≥
fR(n−1∕4) + gR(n−1∕4) = Θ(L40n−1∕2)≫ V(iV )∕v(t).

For (ii), consider any non-edge uv and n−0.49 < t < 0.01. By Lemma 3.8 we can bound Yuv whp

above by the degree 𝑑(v) of v in Gn,p′ with p′ = (1 + O(t2))p. By Chernoff bounds whp 𝑑(v) =
(1 + O(t2))pn ± (pn)0.6, where 𝑑(v)∕y(t) = 1 + O(t2) + O(tn1∕2)−0.4 as y(t) = (1 + O(t2))pn and

pn = 2tn1∕2. We can bound Yuv below whp by 𝑑ER(v) − T(v) − P3(uv), where 𝑑ER(v) is the degree of v
in ER(n, j(i)), and T(v), P2(v) are the numbers of triangles containing v and paths of length 3 from u to

v, both in Gn,p′ (a bound on the same quantities in ER(n, j(i))). By Lemma 3.6, noting that pn > n0.01,

we can bound T(v) and P2(v) by L8 max{p3n2, 1} = O(L8t2)y, which gives the stated estimate for Yuv.

The argument for Yu is the same, except that there is no P3(uv) term.

For (iii), we have already shown the required bounds when e(V) = 0, so we can assume e(V) > 0.

By Lemma 3.8 (which applies as n−1∕4 ≤ t ≤ tV = Θ̃(n−𝛿∕4e(V)) < 0.01) we can bound V(i) whp

above by X𝜙,J in Gn,p′ with p′ = (1 + O(t2))p. As SB
A > n𝛿′ for all A ⊊ B ⊆ VΓ by Lemma 3.4 we

have X𝜙,J = (1 ± n−2𝛿2)v(t), say, as 𝛿 ≪ 𝛿′ ≪ 𝜀 and e(V) < M2 = 9𝜀−2. For a lower bound on

V(i), we consider for each pair xy in VJ not contained in A how it can prevent extensions in X𝜙,J from

being counted in V (we do not need to consider xy ⊆ A, as such edges either make V bad or have

no effect on V). We let J + xy be obtained from J by adding xy as an edge and J ∗ xy be obtained

from J by adding a new vertex z adjacent to both x and y. Then we can bound V(i) whp below by

X𝜙,J −
∑

xy X𝜙,J+xy −
∑

xy X𝜙,J∗xy.

We will bound both X𝜙,J+xy and X𝜙,J∗xy by n−2𝛿2 v. To see this bound for X𝜙,J+xy, note that SVJ
A (J +

xy) = pv and for any A ⊊ B ⊆ VJ that SVJ
B (J + xy) ≤ SVJ

B (J) = v∕SB
A < n−𝛿′v, so X𝜙,J+xy < n−2𝛿2 v

by Lemma 3.6. A similar argument applies to X𝜙,J∗xy (also using t = Õ(n−𝛿∕4e(V))), so V(i) = (1 ±
4n−2𝛿2)v(t). As  V(i) = v(t)(Q∕q)o(V) = (1 + O(t2))v(t) = (1 ± n−2𝛿2)v(t), this gives (iii). As gV (tV ) =
L−1 by definition, this also proves (v) for controllable variables.

For (iv), we may assume e(V) > 0. As 𝛿V (t) = Ω(𝛿V (tV )) for n−1∕4 ≤ t ≤ tV it suffices to show|V(i)|∕v(t) = o(𝛿V (tV )). Applying (i) and (ii) to each step in the stacking order of V , noting that

only O(1) choices are forbidden at each step due to using a vertex already used by a previous step, we

obtain V(i)∕v(t) = 1 ± O(L8t2) ± O(t−0.4n−0.2). Similarly, the tracking variable  V satisfies the same

estimate for  V(i)∕v(t), so |V(i)|∕v(t) < O(L8t2) +O(t−0.4n−0.2). This satisfies the desired bound, as

if e(V) ≠ 1 we have 𝛿V (tV ) = Θ̃(1) and tV = Θ̃(n−1∕4e(V)), so |V(i)|∕v(t) = Õ(n−1∕2e(V) + n−0.1) or if

e(V) = 1 (see Definition 2.9) we have 𝛿V (tV ) = Θ̃(n−0.05) and tV = n−0.24, so |V(i)|∕v(t) = O(n−0.1).
This proves (iv) and (v) for stacking variables.

For (v), the only remaining case is V = S, for which we recall tS = n−1∕4. We have S(n5∕4) ≤

2n5∕4 ⋅ n = 2n9∕4, as each triple counted by S determines an ordered edge and a vertex. We do not

count such triples if the other pairs are closed or edges, so S(n5∕4) ≥ 2n9∕4 − 2P2 − 2P3, where P𝓁

is the number of paths of length 𝓁 in Gn,p′ with p′ = O(n−3∕4) (using Lemma 3.8). As Gn,p′ whp has

degrees O(n1∕4) we have S(n5∕4) = 2n9∕4±O(n7∕4), which is well within the desired bound (fS(n−1∕4)+
gS(n−1∕4))s(n−1∕4) = Θ̃(n2). ▪

3.3 Union bounds

In this subsection we adapt the argument of Lemmas 3.5 and 3.6 to give a crude bound on general exten-

sion variables that holds throughout the triangle-free process. Along the way, we prove Theorem 1.4,
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assuming Theorem 2.13. We start with the simplest instance of this argument, which is bounding the

codegree Zuv(i) of any two vertices u and v in G(i).

Lemma 3.10. Whp for every pair uv, if i′ − 1 < I then Zuv(i′) ≤ L4.

Proof. We may assume uv is a non-edge, otherwise Zuv = 0. At any step i ≤ i′ the edge added at step

i completes a path of length two between u and v with probability (Yuv + Yvu)Q−1. We can bound this

probability by O(y∕q) = O(Ln−3∕2) for t ≥ 1 or by O(y(1)∕q(0)) = O(n−3∕2) for t ≤ 1. Taking a union

bound over all subsets of L4 steps at which we might increment Zuv, the probability that Zuv reaches L4

by step i′ is at most
(imax

L4

)
O
(
Ln−3∕2

)L4

= O
(
L−2

)L4

. ▪

We need some further notation and terminology for general extensions in the triangle-free pro-

cess, which mirrors that used previously for extensions in the Erdős-Rényi process. We say that

(A, J,Γ) is strictly balanced at time t if SVΓ
B < 1 for all A ⊊ B ⊊ VΓ. The extension series

at time t for (A, J,Γ), denoted (B0,… ,B𝑑), is constructed by the following rule. We let B0 = A.

For i ≥ 0, if (Bi, J,Γ) is not strictly balanced then we choose Bi+1 to be a minimal set C with

Bi ⊊ C ⊊ VΓ that minimizes SC
Bi

; otherwise we choose Bi+1 = VΓ, set 𝑑 = i + 1 and terminate the

construction.

In Lemma 3.13 we will give a general estimate for extension variables in the triangle-free process.

First we illustrate the argument in the following lemma, which shows that sparse graph pairs do not

appear; this is the main tool needed for the proof of Theorem 1.4. Here we take A = ∅, write VJ,Γ =
X𝜙,J,Γ, where 𝜙 is the unique map from ∅ to [n], and vJ,Γ = SVΓ

∅ (J,Γ).

Lemma 3.11. Suppose vJ,Γ(t′) < n−c for some c > 0 and time t′. Then the probability that i′ holds,
i′ − 1 < I and VJ,Γ(i′) > 0 is at most 2n−c.

Proof. For t′ ≤ L−1 we appeal to the coupling with the Erdős-Rényi random graph process. By

Lemma 3.8 it suffices to estimate the probability that J appears in Gn,j, where j = (1 + o(1))i′. The

expected number of copies of J is at most 2n−c, so the required bound follows from Markov’s inequality.

Thus it suffices to consider t′ ≥ L−1.

To estimate P(VJ,Γ(i′) > 0), we take a union bound of events, where we specify the injection

f ∶ VΓ → [n], and for e ∈ J we specify the selection step ie at which the process selects the edge f (e).
Fix some choice and let  be the specified event.

For each i ≤ i′ we estimate the probability that the selected edge is compatible with  . At a selection

step i = ie the selected edge is specified, so the probability is 2∕Q(ie) = (1 + o(1))2q(te)−1, where

te = n−3∕2ie (the approximation of Q by q holds on i′ and i′ − 1 < I).

For other i, the required probability is 1−Ni∕Q, where Ni is the number of ordered open pairs that

cannot be selected at step i on  . If i is a selection step we write Ni = 0. Therefore

P( ∧ i′ ) ≤
∏
e∈J

(1 + o(1))2q(te)−1 ⋅
i′∏

i=1

(1 − Ni∕Q). (16)

Now we estimate Ni when i is not a selection step. For i < L−1n3∕2 we use the trivial estimate

Ni ≥ 0, so suppose i ≥ L−1n3∕2. Suppose there are ki choices of e ∈ J with ie > i. Then there are|Γ ⧵ J| + ki open pairs that must not become closed, namely the open pairs of f (Γ ⧵ J) and the ki
pairs of f (J) that have yet to be selected as edges. We recall from (15) that by property (iii) of i′ only

O(L4) = o(y) choices of ei can close more than one such open pair.
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As i′ holds and i′ −1 < I, by (14) all Y-variables are (1+o(1))y, so we obtain Ni = (1+o(1))(|Γ⧵
J| + ki) ⋅ 4y. Thus for i ≥ L−1n3∕2 we can write 1 − Ni∕Q ≤ 1 − (1 + o(1))(Ai + Bi), where

Ai = |Γ ⧵ J| ⋅ 8tn−3∕2 = |Γ ⧵ J| ⋅ 8in−3 and Bi = ki ⋅ 8in−3.

This holds for all i if we set Ai = Bi = 0 for i < L−1n3∕2.

We estimate each factor by 1 − (1 + o(1))(Ai + Bi) ≤ exp{−(1 + o(1))Ai} exp{−(1 + o(1))Bi} and

bound separately the contributions from all Ai and from all Bi. The contribution from all Ai is

exp

{
−

i′∑
i=1

(1 + o(1))Ai

}
= exp

{
−(1 + o(1))|Γ ⧵ J| i′∑

i=L−1n3∕2

8in−3

}
= (1 + o(1)) exp

{
−|Γ ⧵ J| ⋅ 4(i′)2n−3

}
= (1 + o(1))e−4(t′)2|Γ⧵J| = (1 + o(1))q̂(t′)|Γ⧵J|,

since
∑L−1n3∕2

i=1 in−3 < L−2 = o(1). The contribution from all Bi is

exp

{
−

i′∑
i=1

(1 + o(1))Bi

}
= exp

{
−(1 + o(1))

∑
e∈J

ie∑
i=L−1n3∕2

8in−3

}
=

∏
e∈J

(1 + o(1))q̂(te).

Substituting in (16) we obtain

P( ∧ i′ ) ≤ (1 + o(1))q̂(t′)|Γ⧵J| ∏
e∈J

2q̂(te)∕q(te) = (1 + o(1))q̂(t′)|Γ⧵J|(2n−2)|J|.

Summing over at most n|VΓ| choices for f and (i′)|J| choices for the selection steps, we estimate

P
({

VJ,Γ(i′) > 0
}
∧ i′

)
< (1 + o(1))v(t′) < 2n−c. ▪

Proof of Theorem 1.4. Statement (i) is immediate from [8, Theorem 1.6(iii)]. For (ii), fix H′ ⊆ H
with 𝑑(H′) > 2. By choosing the global parameter 𝜀 > 0 sufficiently small we can assume |EH′ |(1∕2−
𝜀) > |VH′ | + 𝜀. Note that if H ⊆ G then VJ,H′ (imax) > 0 for some spanning subgraph J of H′, that is,

there is some potential embedding 𝜙 of H′ that survives until step imax, in that some subgraph 𝜙(J) is

selected by the triangle-free process, and the remaining subgraph 𝜙(H′ ⧵ J) remains open, so that it is

available for the remainder of the process (which we do not analyze). We have

vJ,H′ (tmax) = n|VH′ |p|EJ |q̂(tmax)|EH′ |−|EJ | = n|VH′ |−|EJ |∕2−(1∕2−𝜀)(|EH′ |−|EJ |) < n−𝜀.

Thus the result follows from Theorem 2.13 and Lemma 3.11. ▪

We now turn to a key lemma which includes the union bound arguments that are most significant

for the whole proof: it implies property (v) of Definition 2.12 and will also be used in the proof of

Lemma 3.13, which implies property (iv) of Definition 2.12.

Lemma 3.12. For any extension (A, J,Γ) with |VΓ| = O(1), if SVΓ
B < y∕L7 for all A ⊆ B ⊆ VΓ at step

i′ then whp we do not have I = Iext = i′ due to some 𝜙 with X𝜙,J,Γ(i′) ≥ L4|VΓ⧵A| maxA⊆B⊆VΓ SVΓ
B .
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Proof. As in the proof of Lemma 3.11, it suffices to consider t′ ≥ L−1∕2, as for smaller t′ we can

simply appeal to the coupling with the Erdős-Rényi random graph process (Lemma 3.8) and apply the

bound from Lemma 3.6. Furthermore, the general case of the lemma follows from the case that (A, J,Γ)
is strictly balanced, by applying it to each step of the extension series (in the same way that Lemma 3.6

followed from Lemma 3.5). We will therefore only consider the case that (A, J,Γ) is strictly balanced.

We argue by induction on |VΓ ⧵ A|. Similarly to the proof of Lemma 3.5, we first estimate the

probability that there is a set of s extensions {f1,… , fs} in V(i′) ∶= X𝜙,J,Γ(i′) that are disjoint outside

of 𝜙(A), where s = max{L4, 6 maxA⊆B⊆VΓ SVΓ
B }.

Our method for estimating this probability is similar to the argument of Lemma 3.11, but now we

consider s embeddings simultaneously. We take a union bound of events in which we specify f1,… , fs,
and for each 1 ≤ j ≤ s and e ∈ J ⧵ J[A] we specify the selection step ij,e at which the process selects

the edge fj(e). Fix some choice and let  be the specified event.

For each i ≤ i′ we estimate the probability that the selected edge ei is compatible with  . At a

selection step i = ij,e the selected edge is specified, so the probability is 2∕Q(ij,e) = (1+o(1))2q(tj,e)−1,

where tj,e = n−3∕2ij,e. For other i, the required probability is 1 − Ni∕Q, where Ni is the number of

ordered open pairs that cannot be selected at step i on  . If i is a selection step we write Ni = 0. Then

we estimate

P( ∧ i′ ) ≤
s∏

j=1

∏
e∈J⧵J[A]

(1 + o(1))2q(tj,e)−1 ⋅
i′∏

i=1

(1 − Ni∕Q).

Now we estimate Ni when i is not a selection step, assuming that we are in the event i and i < I.

For i < L−1∕2n3∕2 we use the trivial estimate Ni ≥ 0, so suppose i ≥ L−1∕2n3∕2. Suppose there are ki
choices of (j, e) with ij,e > i. Then there are o(V)s+ ki open pairs that must not become closed, namely

the o(V) open pairs specified by each f1,… , fs and the ki pairs that have yet to be selected as edges

(these pairs are distinct by disjointness of f1,… , fs outside 𝜙(A)). By (15) the number of choices of the

selected edge ei that close more than one such open pair is O(s2L4) = o(syL−2), as by assumption on

maxB SVΓ
B and choice of s we have s < y(t′)L−7 < y(t)L−6.5.

As i < I, by (14) all Y-variables are (1 + o(1))y, so Ni = (1 + o(1))(o(V)s + ki) ⋅ 4y. Similarly to

the proof of Lemma 3.11, we write

1 − Ni∕Q ≤ 1 − (1 + o(1))(Ai + Bi) ≤ exp{−(1 + o(1))Ai} exp{−(1 + o(1))Bi},

where Ai = Bi = 0 for i < L−1∕2n3∕2 and otherwise Ai = o(V)s ⋅ 8tn−3∕2 and Bi = ki ⋅ 8tn−3∕2. As

before, we estimate separately all Ai terms and all Bi terms to obtain

exp
{
−
∑

(1 + o(1))Ai

}
≤

[
(1 + o(1))q̂(t′)o(V)]s

, and

exp
{
−
∑

(1 + o(1))Bi

}
≤

s∏
j=1

∏
e∈J⧵J[A]

(1 + o(1))q̂(tj,e), so

P( ∧ i′ ) ≤ q̂(t′)o(V)s
s∏

j=1

(
(1 + o(1))

∏
e∈J⧵J[A]

2n−2

)
.
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Summing over at most s!−1nn(V)s choices for f1,… , fs and (i′)e(V)s choices for the selection steps,

the probability that such f1,… , fs exist is at most s!−1[(1 + o(1))v(t′)]s < (3s−1v(t′))s, which is

subpolynomial.

The required bound on X𝜙,J,Γ(i′) follows from this estimate by induction as in the proof of Lemma

3.5. (The base case |VJ ⧵ A| = 1 holds by the bound on disjoint extensions, and for |VJ ⧵ A| > 1 the

bound follows by considering a maximal collection C of extensions disjoint outside of A—we have

just shown whp |C| ≤ s—noting by strict balance and the induction hypothesis that at most L4|VJ⧵A|−1

embeddings intersect some embedding in C outside of 𝜙(A).) This completes the proof when (A, J,Γ)
is strictly balanced, and as noted above, the general case follows by applying this to each step of the

extension series. ▪

Lemma 3.13. For any extension (A, J,Γ) with |VΓ| ≤ M3, whp we do not have I = Iext = i due to
some 𝜙 with X𝜙,J,Γ ≥ L4|VΓ⧵A| maxA⊆B⊆VΓ SVΓ

B .

Proof. By bounding each step of the extension series we can assume that (A, J,Γ) is strictly balanced.

If SVΓ
A (t) < n𝛿′ then the required bound follows from Lemma 3.12. On the other hand, if SVΓ

A (t) ≥ n𝛿′

then X𝜙,J,Γ is controllable at time t, so the required bound follows from i < Icon. ▪

Remark 3.14. We emphasize here a subtlety in the analysis of the controllable ensemble in the pre-

vious two lemmas that may not be immediately apparent. Consider for example the variable V in the

controllable ensemble that for three fixed vertices a, b, c counts vertices v with av and bv open and cv an

edge. Before time L−1 we control V by coupling. Throughout the interval of times t from tV = Θ̃(n−𝛿∕4)
to t′ ≈ 1

4

√
log n where q̂(t′)2p(t′)n = n𝛿′ we control V via the stopping time Icon. At later times t∗,

we bound V via Iext, using the union bound argument in Lemma 3.12, which operates throughout the

interval from L−1 to t∗, including the times t in the interval when V is controllable and is much larger.

The point is that this union bound argument only considers sets of s extensions where s ≪ y(t) for all

t in the interval and shows that whp no such set survives until time t∗.

3.4 Vertex degrees

Recall that we cannot apply our general strategy to vertex degree variables, as gY1
(t)y1(t) is not approx-

imately nonincreasing. We conclude this section with a separate (much simpler) argument for these

variables, which establishes property (vii) of i in Definition 2.12.

Lemma 3.15. whp we do not have Iext = i′ due to some uv with |Yu(i′) − y1(t′)| ≥ 𝛿Y1
(t′)y1(t′).

Proof. For each 1 ≤ i ≤ i′, the probability that we choose an edge incident to u is

2Xu(i)
Q(i)

=
(1 ± 𝛿X1

)2x1

(1 ± 𝛿Q)q
=

(
1 ± (1 + o(1))𝛿X1

)
2

n
.

By coupling, we can bound Yu(i′) by sums Σ± of independent Bernoulli random variables with proba-

bilities (1 ± 2𝛿X1
)2∕n. Now we recall from Definition 2.8 that cY1

= 2.2cX1
, and note that fY1

= 2.2fX1

and gY1
∕gX1

= 2.2(1 + t−1)∕2 > 1.1, so 𝛿Y1
> 1.1𝛿X1

. Thus on the event |Yu(i′) − y1| ≥ 𝛿Y1
y1 one of

Σ± deviates from its mean (1 + o(1))2tn1∕2 by more than 𝛿Y1
y1∕100 > L13n1∕4. By Chernoff bounds,

whp this does not occur for any vertex u. ▪
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4 GLOBAL ENSEMBLE

In this section we prove that the global variables have the desired concentration, assuming that this

is the case for all ensembles at earlier times. Recall that the global variables are the number Q(i) of

ordered open pairs in G(i), the number of ordered triples R(i) where all the pairs within the triple are

open, and the number S(i) of ordered triples abc such that ab is an edge while bc and ac are open pairs.

The global variables have scalings q = q̂n2, r = q̂3n3, and s = 2tq̂2n5∕2. Recall that we track each

variable V relative to a tracking random variable  V to isolate variations in V from variations in other

variables that might have an impact on V . We use the tracking variables

 Q = q,  R = Q3n−3, and  S = 2tn−3∕2Q2.

(Note that the tracking variable for Q is a deterministic function.)

We show that the difference random variables

V = V −  V

for V ∈ {Q,R, S} are all small throughout the process. Recall that Iglo is the minimum of the stopping

times IV over all variables V in the global ensemble, that is, the first time at which some global variable

V (is good and) fails to satisfy |V| ≤ 𝛿Vv. (Global variables are automatically good, so we can

ignore that part of the definition.) The following theorem bounds the probability that we reach the

universal stopping time I before step imax because a global variable V fails to satisfy the required bounds|V| ≤ 𝛿Vv.

Theorem 4.1. With high probability we do not have I = Iglo ≤ imax.

We prove Theorem 4.1 using the strategy described in Section 2.1. We divide the argument into

three parts, in which we respectively bound the one-step expected changes in the difference variables,

determine variation equations that suffice to establish the trend hypothesis, and verify the boundedness

hypothesis.

4.1 One-step changes in the difference variables

In this subsection, for each variable V in the global ensemble, we give an upper bound on the one-step

expected change in the difference variable, conditional on the history of the process, that is,

E[ΔiV ∣ i] = E[V(i + 1) −V(i) ∣ i],

under the assumption that V is in its upper critical window, that is,

(fV + gV )v < V < (fV + 2gV )v.

Recall that we can assume n5∕4 ≤ i < I, so we can apply the estimates from i in Definition 2.12 and

the bounds V =  V ± 𝛿Vv for any variable V if iV ≤ i ≤ JV (i.e., if V is good and activated). To

illustrate later calculations, which are often more complicated than those in this section, as we proceed

we will indicate how certain specific calculation are instances of a more general framework.
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We will consider the effect of each open pair and edge in the structure counted by V separately;

the final expression is then obtained by linearity of expectation. When an open pair in a copy of the

structure counted by V is chosen or closed, we say that the copy is destroyed. We balance the change

in V due to destructions with the change in  V due to the change in Q. (The case V = Q is handled

differently as Q is tracked relative to the deterministic function q.) Adding the edge ei+1 can also create

new copies of the structure counted by V in which ei+1 plays the role of one of the edges in the structure;

then we say that a copy of V is created (for global variables this only applies to V = S). The change in

V that comes from creations is balanced with the change in t in  V .

We begin with destructions. The main point to note in these calculations is that the assumption

that V is in its critical window gives a self-correction term of −8tfVvn−3∕2 for each open pair, which

will cancel with a corresponding 8tfVvn−3∕2 term from the change in 𝛿Vv; this arises from the critical

window excess of fVv in V relative to  V , recalling from (4) that in each such “excess copy” of V the

corresponding open pair becomes closed with probability about 8tn−3∕2.

4.1.1 Q: simple destructions
We will show the following estimate for the expected one-step change in Q.

Lemma 4.2. If n5∕4 ≤ i < I and Q ≥ (1 + fQ + gQ)q then

E[Δi(Q) ∣ i] ≤ −(fQ + gQ − (1 + o(1))𝛿S)8tqn−3∕2.

For the variable Q there is another variable S in our ensemble that counts situations when some

open pair counted by Q is closed. We call destructions of this form simple destructions. (We will see

examples of this type again in Section 6 where we treat the stacking variables.)

Proof. Each triple in S contains 4 ordered open pairs, each of which would decrease Q by 2 ordered

pairs if selected as the edge at step i, and by symmetry in S we count each of these possibilities twice.

The selected edge itself also removes 2 ordered open pairs, so

E[ΔiQ ∣ i] = −2 − 4S∕Q. (17)

Recalling from Lemma 2.15 that Δi(q) = −8tqn−3∕2 + O(qn−5∕2), we calculate

E[Δi(Q) ∣ i] = E[Δi(Q) − Δi(q) ∣ i]
= −(2 + 4S∕Q) + 8tqn−3∕2 ± O(qn−5∕2)
= −8tQn−3∕2 ± (8 + O(𝛿Q))𝛿Stn1∕2q̂ + 8tqn−3∕2 ± O(1)
≤ −(fQ + gQ − (1 + o(1))𝛿S)8tqn−3∕2.

In the third estimate we used S = (1 ± 𝛿S) S = (1 ± 𝛿S)2tn−3∕2Q2 and Q = (1 ± 𝛿Q)q, which are

valid as n5∕4 = iS = iQ ≤ i < I. In the last line we used Q = Q − q ≥ (fQ + gQ)q when Q is

in its upper critical window, and 𝛿S ≥ gS ≥ cSL−1e2t−1, where cS = 2L40 (see Definition 2.8), so

t𝛿Sqn−3∕2 ≥ L−1cSe2qn−3∕2 = L−1cS ≫ 1. ▪

4.1.2 R: product destructions
We will show the following estimate for the expected one-step change in R.
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Lemma 4.3. If n5∕4 ≤ i < I and R ≥ (1 + fR + gR) R then

E[Δi(R) ∣ i] ≤
[
−(3 + o(1))(fR + gR) + O(𝛿Y𝛿X) + O(t−1e2) + O(L16t2n−1∕2)

]
8trn−3∕2.

The destructions for R are not simple destructions, as no variable in our ensembles counts ways

in which triples counted by R are destroyed. Instead, we will apply the product lemma (Lemma 2.14).

For clarity we will write out the calculation separately for R and S (in later sections we will be more

efficient by introducing extra notation that unifies all cases).

Proof. To estimate the expected change, we first recall from (4) that any pair 𝛼𝛽 ∈ Q(i) becomes

closed with probability 2(1 + Y𝛼𝛽 + Y𝛽𝛼)∕Q. Noting that closing 𝛼𝛽 reduces R by 3X𝛼𝛽 , we write

E[Δi(R) ∣ i] = −
∑
𝛼𝛽∈Q

2Q−1(1 + Y𝛼𝛽 + Y𝛽𝛼) ⋅ 3X𝛼𝛽 + E[Fi(R) ∣ i],

where Fi(R) is a “destruction fidelity” correction term to remove overcounting of triples in R for which

the selected edge closes two open pairs in the triple. Thus E[Fi(R) ∣ i] = F∗∕Q, where F∗ is the

number of ordered quadruples where two adjacent pairs are edges and the other four pairs are open.

As i < Iext, by property (iv) of i in Definition 2.12 we have F∗ < L16n4p2q̂4 = 4L16t2q̂r, so

E[Fi(R) ∣ i] = O(L16t2r∕n2). (18)

Next, noting that ∑
𝛼𝛽∈Q

Y𝛼𝛽 = S and
∑
𝛼𝛽∈Q

X𝛼𝛽 = R,

we estimate the main term using the product lemma as

−
∑
𝛼𝛽∈Q

6Q−1(1 + Y𝛼𝛽 + Y𝛽𝛼)X𝛼𝛽 = −12SRQ−2 ± O(𝛿Yy𝛿Xx) ± O(x), (19)

whereas n5∕4 ≤ i < I we have the estimates X = (1 + O(𝛿X))x and all Y-variables are (1 ± 𝛿∗Y )y =
(1 + O(𝛿Y ))y from (14). The important point to observe regarding the product error term is that 𝛿X
and t𝛿Y are Õ(e), whereas 𝛿R is Õ(e2), so the error term is negligible for appropriate choices of the

polylogarithmic constants cX , cY and cR (see Definition 2.8).

Next we consider the expected change in the tracking variable  R = Q3n−3. We have

Δi( R) = Q(i + 1)3n−3 − Q(i)3n−3 = 3Δi(Q)Q2n−3 + Hi(R), (20)

where Hi(R) is a “higher order” term correcting for the linear approximation of the difference in Q3,

and as Δi(Q) = O(y) we have Hi(R) = (3Δi(Q)2Q + Δi(Q)3)n−3 = O(t2rn−3). By (17) we have

E[Δi( R) ∣ i] = −12SQ−2 R + O(t2rn−3). (21)

Combining (18), (19), and (21) gives

E[Δi(R) ∣ i] = E
[
Δi(R) − Δi( R) ∣ i

]
= −

∑
𝛼𝛽∈Q

6Q−1(1 + Y𝛼𝛽 + Y𝛽𝛼)X𝛼𝛽 − 3Q2n−3
E[Δi(Q) ∣ i] + E[Fi(R) − Hi(R) ∣ i]
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= −12SQ−2R ± O(𝛿Yy𝛿Xx) + O(x) + 12SQ−2 R + O(L16t2r∕n2)
= −(1 ± (3 + o(1))𝛿S)8tn−3∕2R ± O(𝛿Y𝛿X)trn−3∕2 ± O(r∕q) + O(L16t2r∕n2)
≤

[
−(3 + o(1))(fR + gR) + O(𝛿Y𝛿X) + O(t−1e2) + O(L16t2n−1∕2)

]
8trn−3∕2.

▪

An important point to note in the above calculation is that the same factor 12SQ−2 appears with

R and  R, and that we approximate S by (1 ± 𝛿S) S only after using the critical window bound

R = R−  R ≥ (fR + gR)r; thus the fact that our approximation of S is weaker than that of R does not

cause any difficulty in this calculation for R.

4.1.3 S: product destructions and creations
For S we have both creations and destructions, so we will now elaborate on how we group the calcu-

lations for each edge of a structure (we could gloss over this for R, as it has 3 indistinguishable edges,

but it will be important for most other variables, including S). Recall that S is the number of ordered

triples abc where ab is an edge and ac, bc are open pairs. We write

Δi(S) = Δi(S12) + Δi(S13) + Δi(S23),

where we think of 123 as labeling each such abc, and each Δi(Se) is the change in S due to e, that is,

Δi(S12) is the number of triples abc in S created due to ab being the edge selected at step i, −Δi(S13)
is the number of triples abc in S destroyed due to ac being selected or closed at step i, and similarly

for −Δi(S23).
Usually, we would also include a “fidelity” term Fi(S) in this decomposition of changes by edges,

reflecting the fact that the selected edge might affect more than one pair in a triple counted by S, but in

fact this is not possible, so we can set Fi(S) = 0. Indeed, if selecting the edge ab creates a triple abc in

S then by definition of S it does not close ac or bc, and a triple abc cannot be destroyed by some edge

ei that simultaneously closes ac and bc, as this would require ei = c𝑑 such that a𝑑 and b𝑑 are edges,

but then ab𝑑 would be a triangle, which is impossible.

We also decompose the change in the tracking variable  S into terms that we assign to the different

parts of the calculation corresponding to each of the edges in S. Recalling that  S = 2tn−3∕2Q2, we

have Δi( S) = 2(t + n−3∕2)n−3∕2(Q + Δi(Q))2 − 2tn−3∕2Q2, which we write as

Δi( S) = Δi( S12) + Δi( S13) + Δi( S23) + Hi(S),

where Δi( S12) = 2n−3Q2 =  S∕tn3∕2 and Δi( S13) = Δi( S23) = 2tn−3∕2Δi(Q)Q = ΔiQ
Q
 S, with

the higher-order correction term Hi(S) = 2n−3(2Δi(Q)Q + Δi(Q)2) + 2tn−3∕2Δi(Q)2 = O(yqn−3) +
O(tn−3∕2y2) = O(sn−3) + O(t2sn−3).

Now we show the calculations for the change Δi(S13) ∶= Δi(S13) − Δi( S13) (the one with 23

instead of 13 is the same); these are product destructions very similar to those for R.

Lemma 4.4. If n5∕4 ≤ i < I and S ≥  S + (fS + gS)s then

E[Δi(S13) ∣ i] ≤
[
−(1 + o(1))(fS + gS) + O(𝛿2

Y ) + O(t−1e2)
]

8tsn−3∕2.

Proof. Similarly to the proof of Lemma 4.3, we calculate

E[Δi(S13) ∣ i] = E

[
Δi(S13) − Δi(Q)

Q
 S ∣ i

]
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= −
∑
𝛼𝛽∈Q

2Q−1(1 + Y𝛼𝛽 + Y𝛽𝛼)Y𝛼𝛽 + (2 + 4SQ−1)Q−1 S

= −4SQ−2S ± O(𝛿Yy)2 + O(y) + 4SQ−2 S ± O(s∕q)
= (1 ± (1 + o(1))𝛿S)8tn−3∕2S ± O(𝛿2

Y )tsn−3∕2 ± O(s∕q)
≤

[
−(1 + o(1))(fS + gS) + O(𝛿2

Y ) + O(t−1e2)
]

8tsn−3∕2.

▪

Finally, we turn to creations, which among the global variables occur only for S.

Lemma 4.5. If n5∕4 ≤ i < I then E[Δi(S12) ∣ i] ≤ (1 + o(1)) 𝛿R
8t2

8tsn−3∕2.

Proof. We have E[Δi(S12) ∣ i] = 2R∕Q, as for each triple abc in R, with probability 2∕Q the edge

ei+1 selected at step i + 1 falls in position ab and turns abc into a triple in S. Thus

E[Δi(S12) ∣ i] = E[Δi(S12) − t−1n−3∕2 S ∣ i]
= 2Q−1( R ± 𝛿Rr) − t−1n−3∕2 S
= ±2𝛿RrQ−1 = ±(1 + o(1))t−1𝛿Rsn−3∕2.

▪

Note that there is no self-correction in creation, but this term will be negligible as our approxima-

tion of R is better than that of S.

4.2 Trend hypothesis and variation equations

For each variable V in the global ensemble we consider the sequence of random variables

V(i) = V − v𝛿V .

The following lemma establishes the trend hypothesis, that is, that this sequence is a supermartingale

when V is in its upper critical window. During the proof we will derive the variation equations, which

give conditions on the constants cV under which the trend hypothesis holds; we will see that these

conditions are satisfied by the choices in Definition 2.8.

Lemma 4.6. For each V ∈ {Q,R, S}, if n5∕4 ≤ i < I and V > (fV + gV )v then E[ΔiV ∣ i] ≤ 0.

Proof. We begin by gathering together the relevant creation and destruction calculations from the

previous subsections; these are obtained by combining Lemmas 4.2, 4.3, 4.4, and 4.5.

E[ΔiQ ∣ i] ≤ −
(
fQ + gQ − (1 + o(1))𝛿S)

)
8tqn−3∕2,

E[ΔiR ∣ i] ≤ −(1 + o(1))
[
3(fR + gR) − O(𝛿Y𝛿X) − O(t−1e2)

]
8trn−3∕2,

E[ΔiS ∣ i] ≤ −(1 + o(1))
[
2(fS + gS) −

𝛿R
8t2

− O(𝛿2
Y ) − O(t−1e2)

]
8tsn−3∕2.

For R we have omitted the fidelity term in (18); this is valid as Fi(R) = O(L16t2rn−2) = o(gR)trn−3∕2,

where we recall from Definition 2.8 that

cR = L40 ≫ L20 (say). (22)
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Next we consider the change in v𝛿V . From Lemma 2.15 we have

Δi(v𝛿V ) =
(

e(V)
8t2

− o(V)
)
𝛿Vv ⋅ 8tn−3∕2 + 𝛿′Vvn−3∕2 + O(𝛿Vv)n−5∕2.

Recalling that 𝛿V = fV + 2gV , we see that we can cancel the 8to(V)fVvn−3∕2 term that occurs both in

Δi(𝛿Vv) and in E[ΔiV ∣ i]; this is the self-correction that is fundamental to the analysis.

Thus we obtain

E[ΔiQ ∣ i] ≤ −

(
𝛿′Q

8t
+ o(fQ) − (1 + o(1))(gQ + 𝛿S)

)
8tqn−3∕2,

E[ΔiR ∣ i] ≤ −
(
𝛿′R
8t

+ o(fR) − (1 + o(1))3gR + O(𝛿Y𝛿X) − O(t−1e2)
)

8trn−3∕2,

E[ΔiS ∣ i] ≤ −
(
𝛿′S
8t

+ 𝛿S

8t2
+ o(fS) − (1 + o(1))(2gS +

𝛿R
8t2
) + O(𝛿2

Y ) − O(t−1e2)
)

8tsn−3∕2.

Recall that our error functions have the form 𝛿V = fV + 2gV , where

fV = cVe2 and gV = cV𝜗L−1(1 + t−e(V))e2 if V ∈ {Q,R, S}.

We now show that these error functions grow quickly enough for each of these sequences to be super-

martingales (i.e., the 𝛿′V term will be dominant in each case). We stress that the t ≪ 1 regime behaves

a bit differently from the rest of the process in the estimates that follow. For each global variable in

turn we apply the bound on 𝛿′V from Lemma 2.15, that is,

𝛿′V ≥ 8t𝛿V + (𝜗′∕𝜗 − e(V)t−1)2gV .

For Q we have

E[ΔiQ ∣ i] ≤ −(1 + o(1))
[
(fQ + ( 2𝜗′

8t𝜗
+ 2)gQ) − (gQ + 𝛿S)

]
8tqn−3∕2

≤ −(1 + o(1))
[
(fQ − fS) + ( 𝜗

′

4t𝜗
gQ + gQ − 2gS)

]
8tqn−3∕2.

Then the sequence Q forms a supermartingale provided

cQ ≥ 2cS. (23)

Indeed, then the dominant terms are −fQ for t ≥ 1 and/or − 𝜗′

4t𝜗
gQ for t ≤ 1 (for t ≤ 1 we recall that

𝜗′∕𝜗 = (3∕𝜀)6 and note that the t−1 in
𝜗′

4t𝜗
gQ matches the t−1 in gS).

Next consider R, where we have

E[ΔiR ∣ i] ≤ −(1 + o(1))
[
fR + ( 2𝜗′

8t𝜗
+ 2) ⋅ gR − 3gR − O(𝛿Y𝛿X) − O(t−1e2)

]
8trn−3∕2

≤ −(1 + o(1))
[
fR + ( 𝜗

′

4t𝜗
− 1)gR − O(fY fX) − O(gYfX)

]
8trn−3∕2,

as t−1e2 ≪ t−1gR. Then R forms a supermartingale provided

cR ≥ LcYcX , (24)



252 BOHMAN AND KEEVASH

for this implies that the gR𝜗
′∕(4t𝜗) term dominates for fR < gR∕t and that the fR term dominates

otherwise. As noted earlier, we chose powers of e in the error functions so that 𝛿R and the product

error t𝛿Y𝛿X are comparable up to log factors (i.e., e in 𝛿X and 𝛿Y and e2 in 𝛿R); then the choice of

polylogarithmic constants cV in Definition 2.8 was such that (24) holds.

The final global variable is S, where we have

E[ΔiS ∣ i] ≤ −(1 + o(1))
[
(1 + 1

8t2
)fS + ( 2𝜗′

8t𝜗
+ 2) ⋅ gS

]
8tsn−3∕2

+ (1 + o(1))
[
2gS +

𝛿R
8t2

+ O(𝛿Y𝛿Y ) + O(t−1e2)
]

8tsn−3∕2

≤ −(1 + o(1))
[
fS +

fS−fR
8t2

+ 𝜗′tgS∕𝜗−gR

4t2
− O(f 2

Y ) − O(g2
Y ) + o(gS)

]
8tsn−3∕2.

Then S forms a supermartingale provided

cS ≥ 2cR and cS ≥ Lc2
Y , (25)

for this implies that the fS∕t2 term dominates for t ≪ 1 and the fS term dominates otherwise. ▪

4.3 Boundedness hypothesis

For the boundedness hypothesis, for each V in the global ensemble we estimate VarV = Var(V(i) ∣
i−1) and NV = |ΔiV|. Recall that it suffices to establish (2) and (3); that is, it suffices to show the

following lemma.

Lemma 4.7. For each V ∈ {Q,R, S}, if n5∕4 ≤ i < I then VarV = o
(

(gV v)2

L3n3∕2

)
and NV = o

(
gV v
L2

)
.

Proof. For convenience we replace V by V in our calculations, as this does not change VarV and

only changes NV by an additive term which we can bound by O(n−5∕4v𝛿V ).
For one-step variances we use the simple estimate VarV ≤ N2

V (so for the global variables we do not

need the full power of Freedman’s inequality: it suffices to apply the Hoeffding-Azuma inequality).

For Q we have gQq ≥ cQL−1n3∕2, so it suffices to show VarQ = o(c2
QL−5n3∕2) and NQ =

o(cQL−3n3∕2). The change in Q when the process chooses the edge ei+1 = uv is

ΔiQ = 2(Yuv + Yvu + 1) − Δi(q) = 4(y ± y𝛿Y ) − 4y + O(1) = O(y𝛿Y ) = O(cYLn1∕4).

Then NQ = Õ(n1∕4), VarQ = Õ(n1∕2), and the required bounds hold easily.

For R we have gRr ≥ cRL−1q̂2n5∕2, so it suffices to show VarR = o
(
c2

RL−5q̂4n7∕2
)

and NR =
o
(
cRL−3q̂2n5∕2

)
. Recall from (20) that Δi( R) = 3Δi(Q)Q2n−3 + Hi(R), where Hi(R) = O(t2rn−3) =

Õ(1). On choosing ei+1 = uv we have

ΔiR = Fi(R) −
∑

ab∈Yuv∪Yvu∪{uv}
6Xab,

where, as in the proof of Lemma 4.3, Fi(R) is a “destruction fidelity” correction term to remove

overcounting of triples in R for which the selected edge closes two open pairs in the triple. We

can bound Fi(R) by the number of triples uab counted by R such that va and vb are edges (and



BOHMAN AND KEEVASH 253

similarly interchanging u and v). As n5∕4 ≤ i < I, by property (iv) of i in Definition 2.12 we have

Fi(R) = Õ(1 + nq̂3). Combining these estimates gives

ΔiR = ΔiR − 3
Δi(Q)

Q
 R + Õ(1)

= −
∑

ab∈Yuv∪Yvu∪{uv}
6Xab − 2(Yuv + Yvu + 1) ⋅ 3Q2n−3 + Õ(1 + nq̂3)

= −6

[ ∑
ab∈Yuv∪Yvu∪{uv}

(Xab − Q2n−3)

]
+ Õ(y + nq̂3)

= O(yx𝛿X) + Õ(y + nq̂3) = Õ(q̂5∕2n5∕4).

Then NR = Õ(q̂5∕2n5∕4), VarR = Õ(q̂5n5∕2), and the required bounds hold easily.

For S we have gSs ≥ cSL−1q̂n2, so it suffices to showVarS = o(c2
SL−5q̂2n5∕2) and NS = o(cSL−3q̂n2).

We bound the impact of creations and destructions separately, recalling the decompositions of the

change in S as Δi(S) = Δi(S12)+Δi(S13)+Δi(S23), where Δi(S12) counts creations and Δi(S13), Δi(S13)
count destructions. We also recall the corresponding decomposition of the change in the tracking vari-

able as Δi( S) = Δi( S12) + Δi( S13) + Δi( S23) + Hi(S), where Δi( S12) = 2n−3Q2 =  S∕tn3∕2,

Δi( S13) = Δi( S23) = 2tn−3∕2Δi(Q)Q = ΔiQ
Q
 S, and Hi(S) = O((1 + t2)sn−3).

On choosing ei+1 = uv, we estimate the destruction terms (e.g., that for S13) by

ΔiS13 = ΔiS13 − 2
Δi(Q)

Q
 S + O((1 + t2)sn−3)

= −
∑

ab∈Yuv∪Yvu∪{uv}
(Yab + Yba − 2 ⋅ 2tQn−3∕2) + O((1 + t2)sn−3)

= O(y ⋅ 𝛿Yy) = Õ(q̂3∕2n3∕4).

For the creation term we have

ΔiS12 = ΔiS12 −  S∕(tn3∕2) = 2Xuv − 2Q2n−3 = O(𝛿Xx) = Õ(q̂3∕2n3∕4).

The required bounds on NS and VarS hold easily. ▪

Having verified the trend and boundedness hypotheses in Lemmas 4.6 and 4.7, Theorem 4.1 now

follows from Lemmas 2.2 and 3.9.

5 THE CONTROLLABLE ENSEMBLE

In this section we prove that all variables V = X𝜙,J,Γ in the controllable ensemble have the desired

concentration, assuming that all variables in all ensembles are well-behaved at earlier times. Recall

that Icon is the minimum of the stopping times IV over all variables V in the controllable ensemble.

The following theorem bounds the probability that we reach the universal stopping time I before step

imax because some controllable variable V is good (see Definition 2.11) but fails to satisfy the required

bound |V| ≤ 𝛿Vv.

Theorem 5.1. With high probability we do not have I = Icon ≤ imax.
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As with the other ensembles, we prove this theorem by applying the strategy set forth in Section 2.1.

In particular, we apply Lemma 2.2.

Recall our convention that the phrase “controllable variable” is in reference to controllability at

a particular time t. Thus, we reach the stopping time Icon at time t ≥ 1 only if we violate the bound|V| ≤ 𝛿Vv for some variable V in the controllable ensemble that is controllable at time t. Throughout

this section, and without further comment, we restrict our attention to times t such that t ≤ 1 or t ≥ 1

and the controllable variable V is controllable at time t.

5.1 Preliminaries

We start by recalling the definition of the ensemble. We say V = X𝜙,J,Γ is controllable at time t′ if

o(V) > 0 and for any 1 ≤ t ≤ t′ we have

SB
A(J,Γ) ≥ n𝛿′ for all A ⊊ B ⊆ VΓ. (26)

The controllable ensemble consists of all such V with |VΓ| ≤ M3 that are controllable at time 1.

Next we record some preliminary observations.

Lemma 5.2. Let V be controllable at time t′. Then v(t) ≥ n𝛿′ for 1 ≤ t ≤ t′ and SB
A(J,Γ) ≥ n𝛿′ for

all A ⊊ B ⊆ VΓ and tV ≤ t ≤ t′. Furthermore, if V+ is obtained from V by changing some edge to an
open pair then V+ is controllable at time t′.

Proof. The first inequality is immediate from the definition with B = VΓ. The final statement holds

as for any A ⊊ B ⊆ VΓ we have SB
A(V

+) = SB
A(V) or SB

A(V
+) = q̂p−1SB

A(V) ≥ SB
A(V), using (12). For the

remaining inequality, consider any A ⊊ B ⊆ VΓ. By (26) at t = 1 we have

n|B|−|A|(2n−1∕2)|J[B]|−|J[A]| ≥ n𝛿′ ,

so |J[B]| − |J[A]| < 2(|B| − |A|). This gives the much stronger bound

n|B|−|A|(n−1∕2)|J[B]|−|J[A]| ≥ n1∕2,

so for tV ≤ t ≤ 1, recalling from Lemma 2.10 that tV = Θ̃(n−𝛿∕4e(V)), we have SB
A(J,Γ) =

Ω
(
n|B|−|A|(tVn−1∕2)|J[B]|−|J[A]|) = Ω̃

(
n1∕2−𝛿∕4

)
> n1∕4. ▪

It will be convenient to approximation V by the following modified variable V∗ which has better

behavior for the martingale arguments.

Definition 5.3. Consider V = X𝜙,J,Γ in the controllable ensemble. Given an injective map f ∶ VΓ →
[n], we say that a pair ab in f (VΓ) is f -open if there is no vertex c such that ac, bc are edges and

c ∉ f (VΓ); note that it is the last condition that distinguishes the definition from that of “open.’ Let

V∗ = X∗
𝜙,J,Γ(i) be defined in the same way as X𝜙,J,Γ(i), except that pairs that are required to be open in

X𝜙,J,Γ(i) are only required to be f -open in X∗
𝜙,J,Γ(i).

We will apply our usual martingale strategy to show whp V∗ = (1 ± 𝛿V∗ )v for iV ≤ i < I, where

𝛿V∗ = 𝛿V − gV∕2 = fV + 3gV∕2; we recall

e = q̂−1∕2n−1∕4, fV = e𝛿 and gV = 𝜗L−1(1 + t−e(V))e𝛿.

This will suffice in combination with the following straightforward approximation of V by V∗.
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Lemma 5.4. If iV ≤ i < I then V = V∗ ± gVv∕2.

Proof. Fix e ∈
(VΓ

2

)
⧵ Γ with e not contained in the base A. Let Je = J ∪ {e} and Γe = Γ ∪ {e}.

We bound |V − V∗| by the sum over all such e of X𝜙,Je,Γe . As i < I, by property (iv) of Definition

2.12 we have X𝜙,Je,Γe ≤ L4|VΓ|SVΓ
A (Je,Γe)∕SB

A(J
e,Γe), where B is chosen to minimize SB

A(J
e,Γe). For any

A ⊆ B ⊆ VΓ, if B = A then SB
A(J

e,Γe) = 1; otherwise, by controllability SB
A(J

e,Γe) ≥ pSB
A(J,Γ) ≥ pn𝛿′ .

As SVΓ
A (Je,Γe) = pv, it follows that X𝜙,Je,Γe ≤ L4|VΓ|vn−𝛿 ≪ gVv, as e𝛿 > n−𝛿∕4. ▪

5.2 Decomposition by pairs

We decompose the one-step change in V∗ as

Δi(V∗) =
∑

e∈Γ⧵Γ[A]
Δi(Ve) ± Fi(V∗),

where each Δi(Ve) accounts for the change in V due to e, as follows. If e ∈ J then, letting V+ be

obtained from V by changing e from an edge to an open pair, Δi(Ve) is the number of embeddings

f ∈ (V+)∗ such that f (e) is the edge ei+1 selected at step i + 1. If e ∈ Γ ⧵ J then −Δi(Ve) is the

number of embeddings f ∈ V∗ which are destroyed at step i + 1 by f (e) not remaining f -open. The

fidelity term Fi(V∗) is to correct for embeddings f ∈ V∗ where f (e) is affected for more than one e
simultaneously. Note that by definition of “f -open” this cannot occur for creation, that is, if f (e) = ei+1

for some e ∈ J ⧵ J[A]; thus Fi(V∗) accounts for embeddings f ∈ V∗ where f (e) becomes not f -open

for more than one e ∈ Γ ⧵ Γ[A]. This requires the selected edge ei+1 to be xy for some x ∈ f (VΓ) such

that y is a common neighbor of some pair u, v in f (VΓ). As i < I, by property (iii) of Definition 2.12

all codegrees are O(L4), so

E[Fi(V∗) ∣ i] = O(L4)v∕q. (27)

We also decompose the one step change in the tracking variable as

Δi( V∗) =
∑

e∈Γ⧵Γ[A]
Δi( Ve) ± Hi(V∗),

where Δi( Ve) is  V∕(tn3∕2) if e is an edge or −ΔiQ
Q
 V if e ∈ Γ ⧵ J if e is open, and the higher-order

correction term is

Hi(V∗) = O((tn3∕2)−1 + Q−1ΔiQ)2 V = O(t2 + t−2)n−3v. (28)

Our calculations for the trend and boundedness hypotheses will consider separately each Δi(Ve) ∶=
Δi(Ve) − Δi( Ve).

5.3 One-step expected changes

Here we estimate the one-step expected change in V∗ when it is in its upper critical window.

Lemma 5.5. If iV ≤ i < I and V∗ > (fV + gV )v then

E[Δi(V∗) ∣ i] ≤ (1 + o(1))
[

e(V)
8t2

𝛿(V+)∗ − o(V)(fV + gV − 2gY )
]

8tvn−3∕2.
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Proof. We estimate the one-step expected changes E[Δi(Ve) ∣ i] for each e ∈ Γ ⧵ Γ[A].
We start with creation, that is, the case that e ∈ J is an edge. As for the global variables, we do

not use the critical window assumption or obtain any self-correction term in this calculation. Writing

V+ = X∗
𝜙,J⧵e,Γ, we have

E[Δi(Ve) ∣ i] = E[Δi(Ve) − Δi( Ve) ∣ i]
= 2Q−1(V+)∗ −  V∕(tn3∕2)
= 2Q−1(V+)∗

≤ (1 + o(1))t−1𝛿(V+)∗vn−3∕2.

In the third equality we used  V∕(2tn3∕2) =  V+∕Q and in the last inequality we estimated (V+)∗
using iV ≤ i < I and iV+ ≤ iV (see Lemma 2.10).

Now we consider destruction, that is, the case that ab = e ∈ Γ ⧵ J is open. We have E[Δi(Ve) ∣
i] = 2Q−1

∑
f∈V∗ (Yf (a)f (b) + Yf (b)f (a) ± O(1)), where the O(1) term corrects for the difference between

“open” and “f -open” and also for the possibility that f (ab) may become selected rather than closed.

Then, recalling (17), we have

E[Δi(Ve) ∣ i] = −2Q−1
∑
f∈V

(1 + Yf (a)f (b) + Yf (b)f (a) ± O(1)) − E

[
Δi(Q) V

Q
∣ i

]
= −4Q−1V( Y ± 𝛿Yy) ± O(q−1v) + Q−1 V(2 + 4S∕Q)
= −(1 ± (1 + o(1))𝛿Y )8tn−3∕2V ± O(q−1v) + (1 ± O(𝛿S))8tn−3∕2 V
= −8tn−3∕2V ± (1 + o(1))8tn−3∕2𝛿YV ± O(𝛿S8tn−3∕2v) ± O(q−1v)
≤ −

[
(1 + o(1))(fV + gV ) − 2gY

]
8tvn−3∕2.

In the above calculation we note that we can afford to approximate the multipliers of V and  V
independently as our approximations for controllable variables are weaker than those in the other

ensembles. The approximations of Y and S hold for all n5∕4 ≤ i < I; we also used fY + fS = o(fV ) and

gS = Õ(1 + t−1)e2 = o(gV ), which holds as

(1 + t−1)e2 = O(e) for t ≥ n−1∕4. (29)

The lemma follows by summing the creation estimate over e(V) edges and the destruction estimate

over o(V) open pairs. The o(1) terms absorb the corrections of O(L4)v∕q for fidelity (see (27)) and

O(t2 + t−2)n−3v for higher-order terms (see (28)), ▪

5.4 Trend hypothesis and variation equation

The following lemma establishes the trend hypothesis, that is, that V∗ = V∗ − (fV + 3gV∕2)v is a

supermartingale when V∗ is in its upper critical window; we will see that this is valid under the choice

cV = 1 made in Definition 2.8.

Lemma 5.6. If iV ≤ i < I and V∗ > (fV + gV )v then E[ΔiV∗ ∣ i] ≤ 0.

Proof. By Lemma 2.15 (replacing 2gV by
3

2
gV to adjust for V∗) we have

Δi(v𝛿V∗ ) =
(

e(V)
8t2

− o(V)
)
𝛿V∗v ⋅ 8tn−3∕2 + 𝛿′V∗vn−3∕2 + O(𝛿V∗v)n−5∕2, where

𝛿′V∗ ≥ 4𝛿t𝛿V∗ + (𝜗′∕𝜗 − e(V)t−1) 3

2
gV .
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Since

cV = 1 (30)

for all V in the controllable ensemble, we have fV+∗ = fV∗ , so 𝛿V+∗ − 𝛿V∗ = (3∕2)(gV+ − gV ).
There is no V+ term if e(V) = 0, and otherwise

gV+

gV
= te(V)+t

te(V)+1
< 2t, so by Lemma 5.5

E[Δi(V) ∣ i]
8tvn−3∕2

≤ (1 + o(1)) e(V)
8t2
𝛿V+∗ − (1 + o(1))o(V)(fV + gV − 2gY )

−
[
( e(V)

8t2
− o(V))𝛿V∗ + 𝛿′V∗

8t

]
+ Õ(𝛿V∗ t−1n−1)

≤
e(V)
8t2

⋅ 3

2
(gV+ − gV ) + o(V)

2
gV − 1

2
𝛿fV

− ( 𝜗
′

8t𝜗
− e(V)

8t2
+ 𝛿

2
) ⋅ 3gV

2
+ O(gY ) + o(𝛿V+∕t2) + o(𝛿V )

≤
gV

2
(o(V) − 3𝛿

2
+ 3e(V)

4t
− 3𝜗′

8t𝜗
+ o(1)) − 1

4
𝛿fV + O(gY ) + o(𝛿V+∕t2).

For the last inequality, we have cancelation of two terms
e(V)gV

8t2
with opposite signs, and we used

gV+ ≤ 2tgV . Finally, E[Δi(V) ∣ i] ≤ 0, as the dominant terms are − 3𝜗′

16t𝜗
gV and/or − 1

4
𝛿fV . ▪

5.5 Boundedness hypothesis

For the boundedness hypothesis, we fix any controllable V = X𝜙,J,Γ and estimateVarV∗ = Var(V∗(i) ∣
i−1) and NV∗ = |ΔiV∗|. Recall that it suffices to establish (2) and (3), as in the following lemma.

We remark that the proof of the “boundary case” |VΓ| = M3 is quite delicate, and it is here that the

details of property (v) in Definition 2.12 are important.

Lemma 5.7. If iV ≤ i < I and V is good and controllable (at time t) then VarV∗ = o
(

(t−e(V)e𝛿v)2

L3n3∕2

)
and

NV∗ = o
(

t−e(V)e𝛿v
L2

)
.

Proof. Recalling that we restrict our attention to t ≥ tV , we can bound the one-step change in  V∗ +
(fV + 3gV∕2)v by O((t + t−1)vn−3∕2) = Õ(vn−5∕4), which is negligible in comparison with the required

estimates. It therefore suffices to consider changes in V∗ rather than V∗. As in the trend hypothesis,

we can obtain these estimates as a sum over all e ∈ Γ ⧵ Γ[A]. (Here we use |VΓ| ≤ M3 = O(1) and

the simple observation that if random variables A and B each have variance at most 𝜎2 then A + B has

variance at most 4𝜎2.)

Thus for each e = 𝛼𝛽 ∈ Γ ⧵Γ[A] we estimate Ne = |ΔiVe| and Vare = Var(ΔiVe ∣ i−1). (We drop

the stars in the superscripts in an attempt to reduce notational clutter.)

We start with the creation calculation, that is, the case e ∈ J. All scalings here will be with respect

to the extension (𝜙, J ⧵ e,Γ) obtained by changing e to an open pair: for example, SVΓ
A = vq̂p−1. Let

A′ = A ∪ {𝛼, 𝛽}, where A ⊆ VΓ is the base of the extension. We note that if ΔiVe ≠ 0 then for any

B with A′ ⊆ B ⊆ VΓ the edge ei+1 selected at step i + 1 must fall in some extension in X𝜙,(J⧵e)[B],Γ[B].

We consider the “hardest” such extension: let Sm = minA′⊆B⊆VΓ SB
A. Let Bm be some set B achieving the

minimum in this definition. We note that

(B1) maxA′⊆C⊆Bm
SBm

C = 1,

(B2) maxBm⊆C⊆VΓ SVΓ
C = SVΓ

A ∕Sm,
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(B3) Sm ≥ n𝛿′ (q̂∕p),
(B4) maxA⊆C⊆Bm

SBm

C = Sm.

Indeed, (B1) and (B2) follow from the definition of Bm, and (B3) and (B4) from controllability of

V . By property (iv) of Definition 2.12 applied to the extension from A to Bm (and (B4)) we estimate

pe ∶= P[ΔiVe ≠ 0] < L4|VΓ|Sm∕q.

Also, applying property (iv) of Definition 2.12 to the extensions from A′ to Bm (using (B1)) and from

Bm to VΓ (using (B2)), we estimate

Ne < L4|VΓ| ⋅ L4|VΓ|SVΓ
A ∕Sm ≤ L8|VΓ|n−𝛿′v,

using (B3) for the second inequality. Then

Vare < peN2
e < L20|VΓ|(Sm∕q)(SVΓ

A ∕Sm)2 = L20|VΓ|(q̂∕p)2v2∕(qSm) < L20|VΓ|(2tn3∕2)−1n−𝛿′v2.

Noting that creation only occurs when e(V) ≥ 1, these estimates are well within the required bounds,

as e𝛿 > n−𝛿∕4 and 𝛿 ≪ 𝛿′.

It remains to consider destruction, that is, the case e = 𝛼𝛽 ∈ Γ⧵J. Let (A′, J′,Γ′) be obtained from

(A, J,Γ) by “gluing a Y-variable on 𝛼𝛽” as follows. Let 𝛾 be a new vertex, V ′ = VΓ∪{𝛾}, A′ = A∪{𝛼, 𝛾},

J′ = J ∪ {𝛽𝛾} and Γ′ = Γ ∪ {𝛼𝛾, 𝛽𝛾} (so this definition depends on the order of 𝛼 and 𝛽). To analyze

destruction of extensions f ∈ V∗ due to closures of e by selecting the edge corresponding to 𝛼𝛾 , we

consider extensions in X𝜙′,J′,Γ where 𝜙′ ∶ A′ → [n] restricts to 𝜙 on A and 𝜙′(𝛼𝛾) is the edge ei+1 added

at step i + 1. In only considering the case that 𝛾 is a new vertex we make crucial use of the distinction

between V∗ and V .

As in the creation calculation, we consider the “hardest” extension that includes the 𝛼𝛾 . We set

Sm = SBm

A = minA′⊆B⊆V ′ SB
A, where all scalings are with respect to the pair (J′,Γ′), and note that

conditions (B1) and (B4) hold. Also note that in place of the condition (B2) we have

(B2′) vy∕Sm = SV ′

A ∕Sm = maxBm⊆C⊆V ′ SV ′

C .

If |Bm| = M3 + 1 then we have the simple bound pe ∶= P[ΔiVe ≠ 0] ≤ 2yv∕q. If |Bm| ≤ M3, applying

property (iv) of Definition 2.12 and (B4) we have pe < L4|VΓ|Sm∕q. Thus, in either case we have

pe ∶= P[ΔiVe ≠ 0] < L4|VΓ|Sm∕q.

We claim that

Sm ≥ yn𝛿′ . (31)

To see this, note that if Bm = A ∪ {𝛾} then Sm = q̂n ≥ yn𝛿′ . Otherwise, we write SBm

A = SBm

Bm⧵𝛾
SBm⧵𝛾

A .

We have SBm

Bm⧵𝛾
≥ y by construction of (J′,Γ′) and SBm⧵𝛾

A ≥ n𝛿′ , since V is controllable. This proves the

claim.

Now we claim that the magnitude of the change due to e is bounded as

Ne < 2L12|V ′|+7vy∕Sm. (32)
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The lemma follows from this bound; indeed, substituting (31) gives Ne = Õ(n−𝛿′v) and

Vare < peN2
e = Õ(Sm∕q)(yv∕Sm)2 = Õ(y2v2∕qSm) = Õ(n−𝛿′v2n−3∕2).

Thus it remains to prove (32).

First we note that the argument we used for creation establishes (32) if we are not at the boundary

of the ensemble, that is, if |VΓ| < M3, so |V ′| ≤ M3. Indeed, applying property (iv) of Definition 2.12

to the extensions from A′ to Bm (using (B1)) and from Bm to V ′ (using (B2′)), we estimate

Ne < L4|V ′| ⋅ L4|V ′|SV ′

A ∕Sm = L8|V ′|yv∕Sm,

as desired.

It remains to establish (32) in the boundary case |VΓ| = M3. Note that we still have at most L4|V ′|
extensions from A′ to Bm, using property (v) of Definition 2.12 if Bm = V ′. As this observation estab-

lishes (32) in the case Bm = V ′, we henceforth assume Bm ⊊ V ′. Next we consider the extension series

from Bm to V ′ and let C ⊊ V ′ be the set preceding V ′. We claim that if 𝛽 ∈ C then we can still imple-

ment the above bound using extensions on at most M3 vertices, so that property (iv) of Definition 2.12

still applies. Indeed, writing C− = C ⧵ {𝛾} we have

yv∕Sm = SV ′

A ∕Sm = SV ′

Bm
= SC

Bm
SV ′

C = SC
Bm

SVΓ
C− ,

so considering extensions from C− to VΓ we still have at most L4|V ′|SV ′

A ∕Sm extensions from Bm to V ′,

and (32) follows.

Now we may assume 𝛽 ∉ C. We can also assume SV ′

C ≥ y∕L7, otherwise we can still implement

the previous calculation using property (v) of Definition 2.12. On the other hand, by definition of the

extension series we have SV ′

C ≤ SC∪𝛽
C ≤ y, as the extension from C to C ∪ 𝛽 contains the edge 𝛽𝛾 and

the open pair 𝛼𝛽. Thus SV ′

C ≤ SC∪𝛽
C ≤ L7SV ′

C and we give up a factor of at most L7 if we can count

extensions from C to V ′ by first bounding the number of extensions from C to C ∪ 𝛽 with a Y variable

and then counting extensions from C ∪ 𝛽 to V ′. Furthermore, SV ′

C∪𝛽 ≤ 1 by definition of C, and we can

estimate extensions from C ∪ 𝛽 to V ′ using extensions from C to VΓ, since SV ′

C∪𝛽 = SVΓ
C . This gives

Ne < L4|Bm| ⋅ L4|C|SC
Bm

⋅ 2y ⋅ L4|VΓ| < 2L12|V ′|+7SV ′

A ∕Sm,

which completes the proof of the claim (32), and so of the lemma. ▪

Now that we have verified the trend and boundedness hypotheses for V∗—these are Lemmas 5.6

and 5.7, respectively—we can apply Lemma 2.2 and show whp V∗ = (1± 𝛿V∗ )v for iV ≤ i < I. (Recall

that Lemma 3.9 establishes this condition at step iV .) In combination with Lemma 5.4 this proves

Theorem 5.1.

6 STACKING ENSEMBLE

In this section we prove that all variables in the stacking ensemble have the desired concentration,

assuming that all variables in all ensembles are well-behaved at earlier times. Recall that Istk is the min-

imum of the stopping times IV over all variables V in the stacking ensemble. The following theorem

bounds the probability that we reach the universal stopping time I before step imax because some

stacking variable V is good (see Definition 2.11) but fails to satisfy the required bound |V| ≤ 𝛿Vv.
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Theorem 6.1. With high probability we do not have I = Istk ≤ imax.

As for the other ensembles, we will prove this theorem by verifying the trend and boundedness

hypotheses and applying Lemma 2.2.

Throughout the section we consider some stacking variable V = S𝜋uv = X𝜙,J,Γ, for some non-edge

uv, where we recall that V(Γ) = V(S𝜋uv) = {𝛼u, 𝛼v, 𝛼1,… , 𝛼|𝜋|}, A = {𝛼u, 𝛼v}, 𝜙(𝛼u) = u, 𝜙(𝛼v) = v
and (J,Γ) is defined so that edges specified by the extension are mapped to edges of G(i), and likewise

for open pairs. Recalling that we gave a separate argument for vertex degree variables in Lemma 3.15,

we can assume V is not such a variable. Similarly to the analysis of controllable variables (except that

here we do not approximate V by V∗), we decompose the one-step change in V as

Δi(V) =
∑

e∈Γ⧵Γ[A]
Δi(Ve) ± Fi(V),

where each Δi(Ve) accounts for the change in V due to e, as follows. If e ∈ J then, letting V+ be

obtained from V by changing e from an edge to an open pair, Δi(Ve) is the number of embeddings

f ∈ V+ such that f (e) is the edge ei+1 selected at step i + 1. If e ∈ Γ ⧵ J then −Δi(Ve) is the number

of embeddings f ∈ V which are destroyed at step i + 1 by f (e) being selected or closed. The fidelity

term Fi(V) corrects for embeddings f ∈ V where f (e) is affected for more than one e simultaneously

(see Section 6.4).

6.1 Subextensions of stacking variables

This subsection concerns certain subextensions of stacking variables that will be particularly important

throughout this section. For the following two special structures we will appeal to the controllable

ensemble for our estimates, and so we need to show that these extensions are indeed controllable at

time tmax (so that we can apply our bounds on controllable variables throughout the process).

• Let (uv, J,Γ) be the extension corresponding to some stacking sequence 𝜋 ∈ M at the boundary of

the ensemble, that is, with w(𝜋) = 2M. Let y = |𝜋| and let 𝛼x𝛼y ∈ Γ⧵ J (so 𝛼x𝛼y is an open pair that

contains the final vertex in stacking order). The backward extension B𝜋 is the extension (A′, J′,Γ′)
with A′ = {𝛼u, 𝛼v, 𝛼x, 𝛼y}, J′ = J and Γ′ = Γ ⧵ 𝛼x𝛼y.

• An h-fan at the triple A = abc is any extension of the form (A, J,Γ), where the base is A = abc,

there are h additional vertices v1,… , vh in VΓ, the sequence bv1 … vhc is a path of length h+ 1 in Γ,

and avi ∈ Γ ⧵ J is open for i ∈ [h]. We emphasize that the pairs in the path bv1 … vhc can be either

edges or open pairs.

Both of these extensions arise from the boundary conditions in our choice to restrict the stacking

ensemble to M-bounded variables. Recalling Definition 2.5, we need to consider backward extensions

due to condition (i) that w(𝜋) ≤ 2M and fans due to condition (ii) forbidding a subsequence of length

M using only {XI ,YI}: in both cases there is at least one direction in which we cannot stack Y on the

last rung.

Now we show that these two extensions are controllable. We recall that M = 3∕𝜀 and q̂(tmax) =
n−1∕2+𝜀.

Lemma 6.2. All M-fans and backward extension variables are controllable at time tmax.

Proof. We start by considering an M-fan (A, J,Γ). Among all such extensions, the minimum scaling

is (q̂n)MpM+1 > n𝜀M−1∕2 = n5∕2, which is achieved when the path bv1 … vMc belongs entirely to J. Fix
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B with A ⊊ B ⊆ V that minimizes SB
A = SB

A(J,Γ). We need to show that SB
A ≥ n𝛿′ . As SVΓ

A > n5∕2 we can

assume that B ≠ VΓ, so we can find vi in B such that not both vi−1 and vi+1 are in B. (Here v0 = c and

vM+1 = b.) Now removing vi from B reduces the scaling by at least y > q̂n1∕2 = n𝜀, so by minimality

we have |B| = |A| + 1, so SB
A ≥ y > n𝜀 > n𝛿′ (recalling (8)).

Now consider (with notation as above) a backward extension B𝜋 = (A′, J′,Γ′) with w(𝜋) = 2M. We

fix B with A′ ⊊ B ⊆ V and estimate SB
A′ as a sequence of single-vertex extensions. First we consider the

case that there is some T ⊆ V disjoint from B such that some component C of Γ′ ⧵T contains {𝛼x, 𝛼y},

but not 𝛼u or 𝛼v. Then we consider vertices of B ⧵ C in stacking order and vertices of B ∩ C in reverse

stacking order. Each step contributes a factor of at least y > n𝜀 to the scaling, so SB
A′ > n𝜀 > n𝛿′ .

Now we can assume there is no such T , which implies that B intersects every rung and contains

all 𝛼i such that 𝜋(i + 1) = O. We claim that |B| ≥ M + 2. We note that this will imply the lemma, as

estimating SB
uv by a sequence of single-vertex extensions gives

SB
A′ = SB

uv∕(n2q̂) > (n𝜀)|B|−2∕n2 ≥ (n𝜀)|M|∕n2 = n > n𝛿′ .

It remains to show the claim. We bound the intersection of B with the set of 2M vertices that contribute

to w(𝜋). Suppose 𝜋 has i occurrences of the symbol O in the sequence 𝜋(2),… , 𝜋(|𝜋| − 1) and j
occurrences of O or E in {𝜋(1), 𝜋(|𝜋|)}. Then there are at most i + 1 triangular ladders and 𝜋 has

2M − i − j turning points (recall that the positions with the symbols XO or YO give turning points), of

which at most 2− j are in A′ (namely 𝛼u and 𝛼|𝜋|−1). Let T be the set of turning points not in A′, so that|T| ≥ 2M − i − 2. For each triangular ladder there is a path of rungs spanned by T ∩ L, so we must

have |B ∩ T ∩ L| ≥ ⌊|T ∩ L|∕2⌋. We deduce |B ⧵ A′| ≥ i + 2M−2−i
2

− i+1

2
≥ M − 2, which proves the

claim, and so the lemma. ▪

Remark 6.3. The proof of Lemma 6.2 shows moreover that to show that a fan of any size is control-

lable at any time t it suffices to show that it has scaling at least n𝛿′ , as then this will also be true for all

subextensions needed for controllability.

6.2 Boundedness hypothesis

Here we verify the boundedness hypothesis, for which the arguments are somewhat similar to those

given above for the controllable ensemble, and are relatively short (the bulk of the section will then be

occupied with verifying the trend hypothesis). Recalling (2) and (3), and that cV ≥ L15 for all V in the

stacking ensemble (see Definition 2.8), it suffices to prove the following lemma.

Lemma 6.4. If iV ≤ i < min{I, JV} then

NV = O
(
(1 + t−e(V))ev

)
and VarV = O

(
n−3∕2((1 + t−e(V))ev)2

)
.

Proof. As in the proof of Lemma 5.7, it suffices to establish the stated bounds for each e ∈ Γ ⧵Γ[A]
on Ne = |ΔiVe| and Vare = Var(ΔiVe ∣ i−1) (we do not need to take advantage of better bounds

available on the change in the difference between these variables and their tracking variables). There

are two cases, according to whether e is an open pair or an edge.

We start by considering the case that e ∈ J is an edge. Let e = 𝛼x𝛼y where x < y. Let A′ =
A ∪ {𝛼x, 𝛼y} and Sm = minA′⊆B⊆V SB

A = SBm

A , where all scalings are with respect to (J ⧵ e,Γ). As in the

proof of Lemma 5.7, the extension to Bm is the “hardest” extension that contains the pair 𝛼x𝛼y. We have
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(C1) maxA′⊆C⊆Bm
SBm

C = 1,

(C2) maxBm⊆C⊆VΓ SVΓ
C = SVΓ

A ∕Sm,

(C3) maxA⊆C⊆Bm
SBm

C = Sm.

Applying part (iv) of Definition 2.12, noting that SVΓ
A = q̂p−1v, we have

pe ∶= P[ΔiVe ≠ 0] < L4|VΓ|Sm∕q and Ne < L8|VΓ|q̂p−1v∕Sm,

Note that we use (C3) to establish the bound on pe, and we use (C1) and (C2) to establish the bound

on Ne. We have

Vare < peN2
e < L20|VΓ|(q̂p−1v)2∕(qSm).

We calculate the scaling Sm one vertex at a time, proceeding in stacking order. Each vertex contributes

a factor of at least pq̂n = y, and 𝛼y contributes at least q̂2n = x, since the edge 𝛼x𝛼y was switched to an

open pair in (J ⧵ e,Γ). If |Bm ⧵ A| ≥ 2 we have Sm ≥ xy, so

Ne < L8|VΓ|vp−1q̂∕(xy) = t−1ev ⋅ L8|VΓ|(4t)−1e3 ≪ t−1ev and

Vare < L20|VΓ|(q̂p−1v)2∕(qxy) = n−3∕2((2t)−1ev)2 ⋅ y−1L20|VΓ| ≪ n−3∕2(t−1ev)2,

which are sufficient, as e ∈ J implies e(V) ≥ 1.

On the other hand, if |Bm⧵A| = 1, then Bm = A′, and this corresponds to the edge ei+1 = u′v′ added

at step i + 1 playing the role of an edge that intersects A = 𝛼u𝛼v. There are two possibilities for such

an edge. If 𝜋(1) = YI or 𝜋(1) = YO then this edge could create this first Y-extension of 𝜋 or this edge

could be the edge of 𝜋(j) = YO where j > 1 and 𝜋(1),… , 𝜋(j− 1) ∈ {YI ,XI}. In the first case, writing

𝜋′ for the stacking sequence obtained from 𝜋 by removing 𝜋(1), and V ′ = S𝜋′u′v′ for the corresponding

stacking variable based at u′v′ (which is open before we add ei+1), we can improve the above bounds

to pe ≤ 2x∕q and Ne ≤ V ′ ≤ 2v∕y, so Vare ≤ 8q−1(t−1v)2, which again suffices. In the second case, we

have pe ≤ 2x∕q = 2∕n and we claim that Ne ≤ L4Mv∕(np), which will also be sufficient. We obtain the

claimed bound for Ne as the product of bounds for the fan extension from {𝛼u, 𝛼v, 𝛼j} to {𝛼1,… , 𝛼j−1}
and the forward extension from u′v′ to the remainder of the stacking variable. The fan extension has

scaling at least 1 by definition of Bm, and we include the logarithmic factor in the bound on Ne because

we need to apply (iv) of Definition 2.12.iv if the extension to the fan is not controllable. The claim

follows.

It remains to consider the changes due to closing some open pair 𝛼x𝛼y = e ∈ Γ ⧵ J (which may

be a rung or a stringer). This is described by a structure where for some vertex 𝛾 we already have

the edge 𝛼y𝛾 and then we add the edge 𝛼x𝛾 . There are two subcases according to whether 𝛾 belongs

to VΓ or is a new vertex. In both subcases, we consider J′ = J ∪ {𝛼y𝛾} and Γ′ = Γ ∪ {𝛼x𝛾, 𝛼y𝛾} on

the vertex set V ′ = VΓ ∪ {𝛾} (which is VΓ if 𝛾 ∈ VΓ), we let A = {𝛼u, 𝛼v}, A′ = A ∪ {𝛼x, 𝛾} and

Sm = minA′⊆B⊆V ′ SB
A = SBm

A , where all scalings are with respect to (J′,Γ′).
We begin with the subcase 𝛾 ∉ VΓ. Then Γ′ is obtained from Γ by adding a Y extension on 𝛼x𝛼y,

so SV ′

A = vy. The analogues of (C1)-(C3) hold, so, as above, we have

pe ∶= P[ΔiVe ≠ 0] < L4|V ′|Sm∕q and Ne < L8|V ′|SV ′

A ∕Sm,

so Vare < peN2
e < L20|V ′|(SV ′

A )2∕(qSm).
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If Sm > L40|VΓ|y2 (say) then these bounds are easily sufficient. Estimating Sm vertex by vertex in the

stacking order we see that this holds if |Bm ⧵ A| ≥ 3 (when Sm ≥ y3 ≫ y2) or if |Bm ⧵ A| = 2 and not

both steps from A to Bm are Y extensions (this gives Sm ≥ xy ≫ y2).

The remaining possibilities in the subcase 𝛾 ∉ VΓ need more precise estimates on Ne and Vare that

avoid the polylogarithmic loss in these crude estimates. Consider the case that |Bm ⧵ A| = 2 and Bm is

obtained by two Y extensions, so Sm = y2. Here we can use stacking variables to estimate pe and Ne,

as (A,Bm) induces the extension S𝜋(1)Y
I

uv , and Ne ≤ S𝜋′𝛼y𝛼x
, where 𝜋 = 𝜋(1)𝜋′. We have the better bounds

pe < 2Sm∕q = 2y2∕q and Ne < 2SV ′

A ∕Sm = 2v∕y, so Vare < 8v2∕q = 8n−3∕2(ev)2, which suffices.

Now consider |Bm ⧵ A| = 1, so 𝛼x ∈ {𝛼u, 𝛼v} and Bm = {𝛼u, 𝛼v, 𝛾}. The extension from A to Bm

is an open degree, with scaling Sm = x1 = q̂n, so we estimate pe ≤ 2x1∕q = 2∕n. To estimate Ne we

consider the extension (A′, J′,Γ′) in two steps, where in the first step we add all vertices in the stacking

order up to 𝛼y, and in the second step we add the remaining vertices. Thus we bound Ne ≤
∑

f∈V1 V2
f ,

where V1 is a fan extension with base A′, and V2
f is a stacking variable with base f (𝛼x𝛼y). The scalings

v1 and v2 satisfy v1v2 = SV ′

A′ = vy∕x1. If V1 is controllable at time t we obtain the required bounds from

Ne < 2v1 ⋅ 2v2 = 4vy∕x1 = 8tn−1∕2v and Vare < 2n−1(4vy∕x1)2 = 32t2n−2v2. Now suppose V1 is not

controllable at time t, so v1 < n𝛿′ by Remark 6.3. Note further that (4t)2q̂ < 1 for all t. This implies

that the fan extension in question is not comprised of a single vertex with two edges and a single open

pair. The condition v1 < n𝛿′ then implies q̂ < t−3∕2n𝛿′∕2−1∕4, so Sm = q̂n > L40|VΓ|y2, and we have

already completed the proof when this holds.

Now consider the final subcase, namely 𝛾 ∈ VΓ. Here we write SV ′

A = vp𝛼 q̂𝛽 where 𝛼, 𝛽 ∈ {0, 1}.

Note that the analogues of (C1) and (C2) hold, but the analogue of (C3) does not necessarily hold. As

Sm ≥ yp𝛼 q̂𝛽 we deduce

Ne < L8|VΓ|vp𝛼 q̂𝛽∕Sm ≤ evt−1 ⋅ L8|VΓ|e∕2,

which is sufficient, noting that we can improve the bound on Sm to Sm ≥ xp𝛼 q̂𝛽 in the case e(V) = 0.

It remains to bound Vare in the case 𝛾 ∈ VΓ. If we have SC
A ≥ 1 for all A ⊆ C ⊆ Bm then the

analogue of (C3) holds, so pe < L4|VΓ|Sm∕q and

Vare < L20|VΓ|v2∕qy = n−3∕2(ev)2t−1 ⋅ L20|VΓ|e2∕2.

This bound suffices (again appealing to the improvement in the bound on Sm if e(V) = 0). If Sm < 1

and SC
A ≥ Sm for all proper subsets C of Bm we have pe < L4|VΓ|∕q and Vare < L20|VΓ|v2∕(qy2), which

is sufficient. Finally, suppose there is a proper subset C of Bm such that SC
A < 1, Sm. Note that we

have 𝛼 = 1, corresponding to an extra edge in J′ ⧵ J, and C must contain this extra edge. Writing

S′
m = maxA⊊C⊊Bm

SBm

C , we have pe < L8|VΓ|S′
m∕q and

Vare < L8|VΓ|S′
m∕q ⋅ L16|VΓ|(SV ′

A ∕Sm)2 < L|24|VΓ|S′
m∕q ⋅ (SV ′

A ∕(ypS′
m))2 < L|24|VΓv2∕(y2q),

which again suffices. ▪

6.3 Tracking variables

Here we will recall and explain in more detail the definition of the tracking variables  V in Section 2.3.

We also describe the pair decomposition of their one step changes. There will be two cases for V = S𝜋uv
depending on the form of 𝜋.
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6.3.1 Standard tracking variables
The first case, which we call standard, is that 𝜋(|𝜋|−1) ≠ O or 𝜋(|𝜋|) ∈ {O,E}. We write 𝜋 = 𝜋−◦U,

where U is the last element of 𝜋, and let

 V = V− U, where V− = S𝜋−uv .

Note that this choice of  V isolates variations that are not caused by variations in V−.

We say that a pair e is terminal if it belongs to U, that is, it contains the final vertex of V; otherwise

we say that e is internal. We write

Δi( V) = Δi(V−) U + V−Δi( U) =
∑

e∈Γ⧵Γ[A]
Δi( Ve) + Hi(V), (33)

where similarly to (28) the higher-order correction term is

Hi(V) = O(t2 + t−2)n−3v, (34)

and Δi( Ve) is defined as follows.

(i) If e is a terminal edge then Δi( Ve) =  V
tn3∕2

,

(ii) If e is a terminal open pair then Δi( Ve) = Δi(Q)
Q

 V ,

(iii) If e is internal then Δi( Ve) = Δi((V−)e) U.

Note that (iii) uses the definition of Δi(Ve) above with V− in place of V .

6.3.2 Partner tracking variables
The other case, which we call partner, is that 𝜋(|𝜋| − 1) = O and 𝜋(|𝜋|) ∉ {O,E}. We must have|𝜋| ≥ 2, and the vertices {𝛼|𝜋|−2, 𝛼|𝜋|−1, 𝛼|𝜋|} form a triangle in V = S𝜋uv, in which at most one pair

is an edge and the other pairs are open. We say that the open pair 𝛼|𝜋|−2𝛼|𝜋|−1 and the pair 𝛼|𝜋|−2𝛼|𝜋|
(which can be an edge or an open pair) are partner pairs; it is natural to treat them together because

of the “symmetry” interchanging 𝛼|𝜋|−1 and 𝛼|𝜋| (although it can be that one is an edge and the other

is open). The pair 𝛼|𝜋|−1𝛼|𝜋| is still called terminal; its treatment is exactly as in (i) and (ii) above.

We emphasize that we do not consider partner pairs to be terminal, even though one of them uses

the last vertex of V . We also do not consider partner pairs to be internal.

We write 𝜋 = 𝜋−OU, V− = S𝜋−uv , 𝛽 = 𝛼|𝜋|−2 and let  V =
∑

f∈V− Xf (𝛽)Ûf , where

Ûf =
⎧⎪⎨⎪⎩

Xf (𝛽) ⋅ Qn−2 if U ∈ {XI ,XO}
Xf (𝛽) ⋅ 2tn−1∕2 if U = YI

Yf (𝛽) ⋅ Qn−2 if U = YO.

To interpret this formula, note that for each f ∈ V− we are approximating the number of choices for

the three remaining edges as if they were independent events: for the partner pairs we include a degree

or open degree factor Yf (𝛽) for an edge or Xf (𝛽) for an open pair, and for the terminal pair we include a

probability factor of Qn−2 for an open pair or 2tn−1∕2 for an edge.

We unify the two definitions of  V by writing

 V =
∑

f∈V−

f V , where f V =  U if 𝜋 = 𝜋−U or f V = Xf (𝛽)Ûf if 𝜋 = 𝜋−OU. (35)
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We keep the same definition as in points (i) and (ii) above of Δi( Ve) for terminal pairs, and extend it

to internal pairs (consistently with (iii) above) and partner pairs as follows.

(iii) If e is an internal edge then Δi( Ve) =
∑

f∈V−+ Ie
f f V , where V−+ is obtained from V− by chang-

ing e to an open pair and Ie
f is the indicator of the event that ei+1 = f (e).

If e is an internal open pair then Δi( Ve) =
∑

f∈V− Ie
f f V , where Ie

f is the indicator of the event

that ei+1 closes f (e).
(iv) If e is a partner edge then Δi( Ve) =

∑
f∈V− Δi(Yf (𝛽)) ⋅ Xf (𝛽) ⋅ Qn−2.

If e is a partner open pair then Δi( Ve) =
∑

f∈V− Δi(Xf (𝛽))Ûf .

6.3.3 Classification of pairs
As in the controllable ensemble, we will verify the trend and boundedness hypotheses by considering

separately Δi(Ve) ∶= Δi(Ve) − Δi( Ve) for each e ∈ Γ ⧵ Γ[A]. We will organize the trend hypoth-

esis by grouping together terms that use the same method of calculation, so here we introduce some

terminology to classify these terms. We have met special cases of some of these terms earlier when we

considered the global variables: again “simple” terms are those described by another variable in our

ensemble, and the “product” terms in the global variables are analogous to the “internal” terms here.

We use the following notation:

• For any y ≤ |𝜋| we let 𝜋|y denote the prefix of 𝜋 of length y.

• If the final symbol 𝜋(|𝜋|) ∈ {XI ,XO,YI ,YO} we let 𝜋o (the “opposite” variable) be obtained from

𝜋 by interchanging superscripts I and O in 𝜋(|𝜋|).
For our classification we use the same terms internal, terminal and partner as above, but we must pay

special attention to the terminal open pairs, which we divide into the following three subtypes (recall

that if a pair is not a rung we call it a stringer):

(a) If e is a rung and 𝜋YI and 𝜋YO are both M-bounded we say that e is simple.

If e is a stringer and 𝜋oYI and 𝜋oYO are both M-bounded we say that e is simple.

(b) If w(𝜋) = 2M and e is the terminal rung we say that e is outer.

If w(𝜋) = 2M − 1, 𝜋(|𝜋|) = XI and e is the terminal stringer then we say that e is outer.

(c) If e is not simple or outer we say that e is a fan end pair.

To explain this classification, we note the following:

• Outer pairs are not simple, as adding YO to any 𝜋′ with w(𝜋′) = 2M gives a variable not in M
(consider 𝜋′ = 𝜋 if e is the terminal rung or 𝜋′ = 𝜋o if e is the terminal stringer).

• Fan end pairs are aptly named, as if there is a fan end pair it follows from the definition of the

M-bounded stacking ensemble M (see Definition 2.5) that 𝜋 must end with an (M − 1)-fan.

6.4 Correction terms

Before starting on the main calculations for the trend hypothesis, here we will summarize various cor-

rection terms which are negligible by comparison with the terms appearing in the variation equations.

Besides the higher-order corrections (34) to changes in the tracking variable mentioned above, we also

have the following “injectivity” and “fidelity” corrections.

Lemma 6.5 (Injectivity). Suppose i < I and V = X𝜙,J,Γ is a stacking variable or fan extension with
v ≥ y. Then for any vertex x ∉ A (the base) there are Õ(t−1e2)v choices of f ∈ V with x ∈ Im(f ).
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Proof. Fix a ∈ VΓ ⧵ A, let A′ = A ∪ {a} and extend 𝜙 to 𝜙′ on A by 𝜙′(a) = x. It suffices to show

that the stated bound holds for X𝜙′,J,Γ. Fix A′ ⊆ B ⊆ VΓ minimizing SB
A. If V is a stacking variable,

then considering vertices one by one in the stacking order we have SB
A ≥ y. If V is a fan then either

B = VΓ, when SB
A = v ≥ y, or B = A′ (as in the proof of Lemma 6.2), so again SB

A ≥ y. As i < I, by

property (iv) of Definition 2.12 the number of choices for f is at most L4|VΓ|v∕SB
A. The lemma follows as

y = 2te−2. ▪

Lemma 6.6 (Fidelity). Suppose i < I and V = S𝜋uv is good.

(i) There are O(L4v) pairs (f , xy) where f ∈ V such that if xy were the edge ei+1 selected at step i+ 1

then at least two open pairs in f would become closed.
(ii) Let V+ be a stacking variable obtained from V by changing some edge e to an open pair. There

are Õ(e2v+) choices of f ∈ V+ such that if f (e) were the edge ei+1 selected at step i+ 1 then some
open pair in f would become closed.

Proof. Let (uv, J,Γ) be the extension corresponding to V .

For (i), we first note that for each f ∈ V there are only O(1) choices of xy ⊆ Im(f ). Any other xy
with the stated property must have one of its vertices in Im(f ), say y, and the open pairs in f closed

by xy are of the form ya, yb with a, b in Im(f ) where xa, xb are edges. As i < I, by property (iii) of

Definition 2.12 the number of choices for x given f is at most Zab < L4. This proves (i).

For (ii), note first that for such a configuration to exist we must have |𝜋| ≥ 2, so V has scaling

v ≥ y2. We consider the extension (uv, J⧵e,Γ) corresponding to V+ and any variable V∗ corresponding

to an extension (uv, J∗,Γ) with J∗ = (J⧵e)∪e′ for some e′ ∈
(VΓ

2

)
⧵Γ. It suffices to show V∗ = Õ(e2v+).

Note that v+ = q̂p−1v = (2te2)−1v, so e2v+ = (2t)−1v > 1, and v∗ = pv+ = q̂v. Fix uv ⊆ B ⊆ VΓ
minimizing SB

uv, taking scalings with respect to (uv, J∗,Γ). If e′ ⊈ B or B = uv then SB
uv ≥ 1, as the

scaling is the same as in V+, so by property (iv) of Definition 2.12 we have V∗ = Õ(v∗) = Õ(e2v+). If|B| ≥ 4 we have SB
uv ≥ y2, so V∗ = Õ(v+∕y2) = Õ(e2v+).

The remaining case is that |B| = 3 and B = uv ∪ e′. Write B = {u, v, 𝛼j}. We cannot have j = 1,

as e′ ∉ Γ would then imply 𝜋(1) ∈ {O,E}, so the assumption of the lemma could not hold: selecting

f (e′) as an edge for such e′ cannot close any other pair in f . Thus 𝛼j is adjacent in Γ to at most one of

u, v, so SB
uv ≥ pn, giving V∗ = Õ(v∗∕pn) = Õ(e2v+). ▪

6.5 Creation

Now we will estimate the one-step expected changes E[Δi(Ve) ∣ i] for each e ∈ J ⧵ J[A], according

to the classification of pairs described above. As for the other ensembles, the error terms for creation

are not as significant as those for destruction, and the calculations do not require self-correction or use

the fact that V is in its critical window. We do use iV ≤ i < I. Note that we do not include in these

calculations the fidelity corrections (see Lemma 6.6.ii).

6.5.1 Terminal creation
Suppose that e is the terminal edge of 𝜋. Then 𝜋(|𝜋|) is E, YI , or YO, and if 𝜋(|𝜋|) = YO then 𝜋(|𝜋|−
1) ≠ O (otherwise e would be partner). Let V+ be the variable obtained by changing e to an open pair,

that is, replacing Y by X in U = 𝜋(|𝜋|). Then E[Δi(Ve) ∣ i] = 2Q−1V+. For the tracking variable,

we note that Δi( Ve) =  V
tn3∕2

= 2Q−1 V+ (whether V is standard or partner). As v+ = v ⋅ q̂n1∕2

2t
and

Q = (1 + o(e))q for iV ≤ i < I we have

E[Δi(Ve) ∣ i] = E[Δi(Ve) − Δi( Ve) ∣ i] = 2Q−1V+ = ±(1 + o(e))t−1𝛿V+vn−3∕2.
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6.5.2 Partner creation
Suppose that e = 𝛼x𝛼y with x < y = |𝜋| is the partner edge of 𝜋. We must have x = |𝜋|−2, y = |𝜋|−1

and 𝜋 = 𝜋−OYO. In this case, we recall that the tracking variable is  V =
∑

f∈V− Xf (𝛼x)Yf (𝛼x)Qn−2,

where V− = S𝜋−uv . We let V+ be obtained from V by changing e to an open pair. Then E[Δi(Ve) ∣
i] = 2Q−1V+. We also recall that  V+ =

∑
f∈V− X2

f (𝛼x)
Qn−2 and Δi( Ve) =

∑
f∈V− Δi(Yf (𝛼x)) ⋅ Xf (𝛼x) ⋅

Qn−2, so E[Δi( Ve) ∣ i] = 2Q−1 V+. Thus we obtain the same estimate as in terminal creation for

E[Δi(Ve) ∣ i].
Note that the definition of the tracking variables isolates variations in V from those in V−, which

is crucial in this calculation: we cannot afford the larger error term 𝛿V− .

6.5.3 Internal creation
Suppose that e = 𝛼x𝛼y with x < y < |𝜋| is an internal edge of 𝜋 (which must be a stringer). Let V+

be obtained from V by changing e to an open pair. Then E[Δi(Ve) ∣ i] = 2Q−1V+. For the tracking

variable, we recall from (35) that  V =
∑

f∈V− f V and Δi( Ve) =
∑

f∈V−+ Ie
f f V , where V−+ is

obtained from V− by changing e to an open pair and Ie
f is the indicator of the event that ei+1 = f (e). Thus

E[Δi( Ve) ∣ i] =
∑

f∈V−+ f V = 2Q−1 V+, so we obtain the same estimate for E[Δi(Ve) ∣ i] as

in terminal and partner creation.

As for partner creation, it is crucial that  V isolates variations in V− from this calculation.

6.6 Destruction

Now we will estimate the one-step expected changes E[Δi(Ve) ∣ i] for each e ∈ Γ ⧵ Γ[A], according

to the classification of pairs described above, assuming that V = S𝜋uv is in its upper critical window, so

that V > (fV + gV )v. As usual, the key point is that every open pair yields a self-correcting term of

the form (fV + gV )8tvn−3∕2. We remark that the calculations for terminal open pairs will be the source

of the most significant error terms in the variation equations.

6.6.1 Simple destruction
Let e = 𝛼x𝛼y be a simple rung, that is, the last rung of 𝜋 such that 𝜋YI and 𝜋YO both belong to M .

Write VI = S𝜋YI
uv and VO = S𝜋YO

uv . We have

E[Δi(Ve) ∣ i] = 2Q−1
∑
f∈V

(Yf (𝛼x𝛼y) + Yf (𝛼y𝛼x) ± O(1)) = 2Q−1(VI + VO ± O(v)).

Note that  VI =  VO = 2tQn−3∕2V and vI = vO = 2tq̂n1∕2v. Since Δi( Ve) = Δi(Q)
Q

 V , recalling

(17) we have

E[Δi(Ve) ∣ i] = E
[
Δi(Ve) − Δi( Ve) ∣ i

]
= −2Q−1(VI + VO ± O(V)) + (2 + 4SQ−1)Q−1 V
= −2Q−1( VI +  VO ± vI𝛿VI ± vO𝛿VO) + (8tn−3∕2 ± 4𝛿Ssq−2) V ± O(v∕q)
= −8tn−3∕2V ± (1 + o(1))8t(𝛿VI∕2 + 𝛿VO∕2 + 𝛿S)vn−3∕2 ± O(v∕q)
≤ −(1 + o(1))(fV + gV − 𝛿VI∕2 − 𝛿VO∕2 − 𝛿S − O(t−1e2))8tvn−3∕2.

The same calculation applies if e is a simple stringer (using 𝜋o in place of 𝜋). Note that the estimates

for VI and VO are valid even before their activation steps by Lemma 3.9.iv. The appearance of their
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approximation errors 𝛿VI and 𝛿VO in this calculation indicates why we need these errors to decrease as

we increase the length of the stacking extensions (see Definition 2.8).

6.6.2 Internal destruction
Suppose that e = 𝛼x𝛼y with x < y < |𝜋| is an internal open pair (note that we do not include partners

here). We let W = S𝜋′uv , where 𝜋′ = 𝜋|y if e is a rung or 𝜋′ = 𝜋|oy if e is a stringer.

For each f ∈ W let Ff ,𝜋 count forward extensions from f to copies of V , that is, Ff ,𝜋 = Xf ,J,Γ with

f ∶ A → [n], where A = {𝛼u, 𝛼v,… , 𝛼y}.

We note that Ff ,𝜋 is closely approximated, up to the injectivity correction from Lemma 6.5, by

another variable Vf
1
= S𝜋1

f (e′) in the stacking variable, where e′ is the active rung at step y and 𝜋|y◦𝜋1 = 𝜋:

we have Ff ,𝜋 = Vf
1
+ Õ(t−1e2)v1, so

V =
∑
f∈W

Ff ,𝜋 =
∑
f∈W

(
Vf

1
+ Õ(t−1e2)v1

)
.

For the tracking variable, we recall from (35) that  V =
∑

f ′∈V− f ′V . Similarly to above, we define

the forward extension Ff ,𝜋− from f ∈ W to copies of V− and approximate it by Ff ,𝜋− = Vf
2
+Õ(t−1e2)v2,

where Vf
2
= S𝜋2

f (e′) and 𝜋|y◦𝜋2 = 𝜋−. Then

 V =
∑
f∈W

∑
f ′∈Ff ,𝜋−

f ′V =
∑
f∈W

(
 Vf

1
+ Õ(t−1e2)v1

)
, so

V = V −  V =
∑
f∈W

(
Vf

1
+ Õ(t−1e2)v1

)
. (36)

Similarly, writing Ie
f for the indicator of the event that ei+1 closes f (e), noting that Δi(Ve) =

∑
f ′∈V Ie

f ′ =∑
f∈W Ie

f Ff ,𝜋 and Δi( Ve) =
∑

f ′∈V ′ f ′VIe
f ′ =

∑
f∈W Ie

f
∑

f ′∈Ff ,𝜋−
f ′V , we have

Δi(Ve) = Δi(Ve) − Δi( Ve) = −
∑
f∈W

(
Vf

1
+ Õ(t−1e2)v1

)
Ie
f . (37)

We also note from iV ≤ i < I and (14) that

W∗ ∶=
∑
f∈W

(Yf (xy) + Yf (yx)) = (1 ± 𝛿Y )2Wy. (38)

Taking expectations of (37) and applying Lemma 2.14 (the product lemma) we have

E[Δi(Ve) ∣ i] = −2Q−1
∑
f∈W

(Yf (xy) + Yf (yx) ± O(1))(Vf
1
+ Õ(t−1e2)v1)

= −2W∗V
QW

± O(Q−1W ⋅ y𝛿Y ⋅ v1𝛿V1
) ± Õ(t−1e2)vtn−3∕2

≤ −(1 + o(1))(fV + gV − O(𝛿V1
𝛿Y ) − Õ(t−1e2))8tvn−3∕2

≤ −(1 + o(1))(fV + gV − Õ(t−1e2))8tvn−3∕2.

We used the scaling identities v = wv1 and v− = wv2. In the application of the product lemma on the

third line we used (36) and (38).
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The last line exhibits the same crucial feature that we saw earlier in product destruction for global

variables: the O(𝛿V1
𝛿Y ) term is negligible, as for small t the t−e(V) factor in gV dominates the t−e(V1)

factor in 𝛿V1
, and the 𝛿Y factor compensates for the larger polylogarithmic factor in 𝛿V1

.

6.6.3 Partner destruction
Here we consider a partner open pair e = 𝛼x𝛼y with x < y. Recall that this means 𝜋(|𝜋| − 1) = O,

𝜋(|𝜋|) ∉ {O,E}, x = |𝜋| − 2, and y ∈ {|𝜋| − 1, |𝜋|}. Let 𝜋 = 𝜋−OU and V− = S𝜋−uv . Recall from

Section 6.3.2 that  V =
∑

f∈V− Xf (𝛼x)Ûf , where

Ûf =
⎧⎪⎨⎪⎩

Xf (𝛽) ⋅ Qn−2 if U ∈ {XI ,XO}
Xf (𝛽) ⋅ 2tn−1∕2 if U = YI

Yf (𝛽) ⋅ Qn−2 if U = YO.

Note that if both partner pairs are open then the definitions of V and  V are symmetric under swapping

the labels of 𝛼|𝜋|−1 and 𝛼|𝜋|, so we can assume y = |𝜋|−1. This would not have been true with our usual

practice of using the tracking variable  U instead of Ûf ; the point is that we want the self-correction

in this section to apply to both partner pairs. (This property of  V for partners is also essential for our

treatment of fan extensions in Section 6.6.5.) On the other hand, we can think of Ûf as a proxy for  U
as it is a reasonable approximation to U: as i < I we have

̂Uf (𝛼x)z ∶= Uf (𝛼x)z − Ûf = O((𝛿U + 𝛿Û)u),

where 𝛿Û = 𝛿Y1
if U = YO, otherwise 𝛿Û = 𝛿X1

. Writing u for the scaling of U, we have

V =
∑

f∈V−

∑
z∈Xf (𝛼x )⧵Im(f )

(Uf (𝛼x)z + O(1)), so

V = V −  V =
∑

f∈V−

(
O(u + x1) +

∑
z∈Xf (𝛼x )

̂Uf (𝛼x)z

)
. (39)

Recalling Δi( Ve) =
∑

f∈V− Δi(Xf (𝛼x))Ûf and writing Ifz for the indicator of the event that ei+1 closes

f (𝛼x)z, we have

Δi(Ve) = −
∑

f∈V−

( ∑
z∈Xf (𝛼x )

(̂Uf (𝛼x)z ± O(1))Ifz −
∑

z∈Im(f)

O(u)Ifz

)
. (40)

Also, writing W =
∑

f∈V− Xf (𝛼x), from i < I and (14) we have

W∗ ∶=
∑
f∈W

(Yf (xy) + Yf (yx)) = (1 ± 𝛿Y )2Wy. (41)

Taking expectations of (40) and applying Lemma 2.14 (the product lemma) we have

E[Δi(Ve) ∣ i] = E[Δi(Ve) − Δi( Ve) ∣ i]

= −2Q−1
[ ∑

f∈V−

∑
z∈Xf (𝛼x )

(Yf (𝛼x)z + Yzf (𝛼x) ± O(1))̂Uf (𝛼x)z

]
± O(x1 + u)v−y∕q
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= −2W∗V
QW

± O(wq−1 ⋅ y𝛿Y ⋅ u(𝛿U + 𝛿Û)) ± Õ(e2)vn−3∕2

= −(1 + o(1))V ⋅ 8tn−3∕2 ± (O(𝛿Y𝛿U) + O(𝛿Y𝛿Û) + Õ(t−1e2))tvn−3∕2

≤ −(1 + o(1))(fV + gV − Õ(t−1e2))8tvn−3∕2.

In the application of the product lemma on the third line we used (39) and (41). The last line is valid

because the product errors 𝛿Y𝛿U and 𝛿Y𝛿Û are o(𝛿V ); this holds as 𝛿Y has sublogarithmic decay and the

power of t−1 in gV is at least those in each of gU and gÛ .

6.6.4 Outer destruction
Let e = 𝛼x𝛼y be an outer rung, that is, e is terminal and w(𝜋) = 2M. We cannot apply the same

analysis as for simple destructions, as 𝜋YO ∉ M , so instead we use backward extensions, which are

controllable by Lemma 6.2.

We let Q′ be the set of ab ∈ Q such that {a, b} ∩ {u, v} = ∅, and for each ab ∈ Q′ let Buvab count

backward extensions that map the last rung of S𝜋uv to the open pair ab; thus V =
∑

ab∈Q′ Buvab.

Let b and 𝛿B be the scaling and error function for the backward extension. Then b = v∕q and

𝛿B = O(1 + t−e(V))e𝛿 . Note also that Q − Q′ = O(x1) and S =
∑

ab∈Q Yab = O(x1y) +
∑

ab∈Q′ Yab.

Recalling (17) and Δi( Ve) = ΔiQ
Q
 V , by the product lemma (Lemma 2.14) we have

E[Δi(Ve) ∣ i] = E[Δi(Ve) − Δi( Ve) ∣ i]

= −2Q−1
∑

ab∈Q′

Xuvab(Yab + Yba ± O(1)) + 4S + 2Q
Q2

 V

= − 2V
QQ′

(
2S − O(yx1)

)
± 4Q′

Q
⋅ y𝛿Y ⋅ b𝛿B + 4S + 2Q

Q2
 V ± O(v∕q)

= − 4S
Q2

V ± O(𝛿Y𝛿B + t−1e2)tvn−3∕2

≤ −(1 + o(1))(fV + gV − O(1e(V)=0𝛿Ye𝛿) − O(t−1e2))8tvn−3∕2.

The last line used 𝛿Y𝛿B = o(gV ) when e(V) ≥ 1, which holds as 𝛿B has sublogarithmic decay (using

i < I) and the power of t−1 in V is at least that in Y . Thus this term is negligible unless e(V) = 0, in

which case we can substitute 𝛿B = O(e𝛿).
Note that the same estimate applies if e is an outer stringer (using 𝜋o in place of 𝜋).

6.6.5 Fan end destruction
For destruction, it remains to consider the case when e = 𝛼x𝛼y is a fan end, that is, 𝜋 ends with an

(M − 1)-fan and e is the terminal rung. We cannot apply the analysis from simple destructions, as

𝜋YI ∉ M , so instead we use controllability of fan extensions (see Lemma 6.2).

Let V∗ = S𝜋∗uv , where 𝜋∗ = 𝜋|xO, that is, V∗ is obtained from V by deleting all of the fan except its

first pair 𝛼x−1𝛼x and last pair e = 𝛼x𝛼y. Then V =
∑

f∈V∗ Ff ,𝜋 , where Ff ,𝜋 denotes the forward extension,

which is closely approximated by the (M − 1)-fan extension V1 from f (𝛼x−1𝛼x𝛼y); by Lemma 6.5 we

have Ff ,𝜋 = V1 + O(t−1e2)v1. We recall that V1 is controllable by Lemma 6.2.

In the calculation below for E[Δi(Ve) ∣ i] we require the following estimate for the expected

closures of the terminal open pair 𝛼x𝛼y in copies of V∗, which are described by

V∗
close

∶= 2Q−1
∑
f∈V∗

(Yf (𝛼x𝛼y) + Yf (𝛼x𝛼y)).
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Lemma 6.7. Let 𝜋• = 𝜋|xE, Vx = S𝜋|xuv , V• = S𝜋•uv , V∗I = S𝜋∗YI
uv and V∗O = S𝜋∗YO

uv . Then

V∗
close = 8tn−3∕2

[
V∗ ± (1 + o(1))

(
𝛿V∗ + 𝛿V• + 𝛿V∗I + 𝛿V∗O + O(𝛿X1

+ 𝛿Y1
)𝛿X1

)
v∗∕2

]
.

Proof. First we emphasize that all variables defined in the statement of the lemma are in the stacking

ensemble, and this fact makes crucial use of Definitions 2.4 and 2.5. The point is that as non-terminal

OXI and OYI are forbidden, the fan must start with 𝜋(x + 1) ∈ {XO,YO}, and also w(𝜋) ≤ 2M − 1 as

we do not allow a strict subsequence of weight 2M, so w(𝜋|x) ≤ w(𝜋) − 1 ≤ 2M − 2. Now∑
f∈V∗

(Yf (𝛼x𝛼y) + Yf (𝛼x𝛼y) ± O(1)) = V∗I + V∗O ± O(v∗)

=  V∗I +  V∗O ± (𝛿VI∗y + 𝛿V∗I y + O(1))v∗,

where, as V∗I and V∗O are both partner variables, by Lemma 2.14 we have

 V∗I =
∑
f∈Vx

X2
f (𝛼x)

⋅ 2tn−1∕2 = 2tn−1∕2 ⋅ V∗V∗∕Vx ± O
(
tn−1∕2vx(x1𝛿X1

)2
)

and

 V∗O =
∑
f∈Vx

Xf (𝛼x)Yf (𝛼x) ⋅ Qn−2 = Qn−2 ⋅ V∗V•∕Vx ± O
(
q̂vx(x1𝛿X1

)(y1𝛿Y1
)
)
.

The lemma now follows from V∗ =  V∗ ± 𝛿V∗v∗ and V• =  V• ± 𝛿V•v•, where  V∗ = Qn−1Vx and

 V• = 2tn1∕2Vx, so Vx cancels (this is crucial to avoid a larger 𝛿Vx error term). ▪

Now recalling Ff ,𝜋 = V1 + O(t−1e2)v1, using Δi( Ve) = ΔiQ
Q
 V and (17), by Lemma 2.14

E[Δi(Ve) ∣ i] = −2Q−1
∑
f∈V∗

(Yf (𝛼x𝛼y) + Yf (𝛼x𝛼y) ± O(1))Ff ,𝜋 +
4S + 2Q

Q2
 V

= −V∗
close

V∕V∗ ± O(t−1e2)v∗v1y∕q ± O(v∗q−1 ⋅ y𝛿Y ⋅ v1𝛿V1
) + 4S

Q2
 V ± O(v∕q)

= −8tn−3∕2V + (1 + (1 + o(1))𝛿S)8tn−3∕2 V

± (1 + o(1)) 1

2

(
𝛿V∗ + 𝛿V• + 𝛿V∗I + 𝛿V∗O + O(𝛿Y𝛿V1

+ t−1e2 + (𝛿X1
+ 𝛿Y1

)𝛿X1
)
)
8tvn−3∕2

≤ −(1 + o(1))
(

fV + gV − 1

2
(𝛿V∗ + 𝛿V• + 𝛿V∗I + 𝛿V∗O) − 𝛿S − O(t−1e2) − O(𝛿Ye𝛿)

)
8tvn−3∕2.

In the third line we applied Lemma 6.7. In the last line, similarly to the case of outer destruction, we

note that (𝛿X1
+ 𝛿Y1

)𝛿X1
= o(𝛿V ), as 𝛿X1

= Õ(𝛿V ) and 𝛿X1
+ 𝛿Y1

has sublogarithmic decay. Similarly, if

e(V) ≥ 1 then 𝛿Y = Õ(𝛿V ) and 𝛿V1
has sublogarithmic decay, so 𝛿Y𝛿V1

= o(𝛿V ). Thus the only product

error is O(𝛿Y𝛿V1
) = O(𝛿Ye𝛿) when e(V) = 0.

6.7 Trend hypothesis and variation equations

Now we combine all the estimates in this section to verify the trend hypothesis, that is, that if V is in

its upper critical window then V = V −𝛿Vv forms a supermartingale, given the choice of constants

cV made in Definition 2.8.

Lemma 6.8. If iV ≤ i < I and V > (fV + gV )v then E[ΔiV ∣ i] ≤ 0.
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Proof. Throughout the proof we will measure expected changes using the “yard stick” 8tvn−3∕2,

which is an approximation for the expected change in V due to destruction by some fixed open pair.

Recall that we decompose the one-step change in V = X𝜙,J,Γ by its pairs e as

Δi(V) =
∑

e∈Γ⧵Γ[A]
Δi(Ve) ± Fi(V),

where Fi(V) is a fidelity correction, which by Lemma 6.6 satisfies

E[Fi(V) ∣ i] = O(L4v∕q) + Õ(e2v+∕q) = (t−1 + t−21e(V)>0)Õ(e2) ⋅ tvn−3∕2.

Recall also that we decompose the one-step change in the tracking variable as

Δi( V) =
∑

e∈Γ⧵Γ[A]
Δi( Ve) + Hi(V),

where the higher-order correction term is

Hi(V) = O(t2 + t−2)n−3v = O(n−5∕4) ⋅ tvn−3∕2 for n−1∕4 ≤ t = O(L).

Besides the fidelity and higher-order terms, the remaining contributions to E[Δi(V) ∣ i] =
E[Δi(V) − Δi( V) ∣ i] are obtained by summing E[Δi(Ve) ∣ i] = E[Δi(Ve) − Δi( Ve) ∣ i] over

all e ∈ Γ ⧵ Γ[A].
There are e(V) edges each giving a creation term of

±(1 + o(e))t−1𝛿V+vn−3∕2 = (1 + o(e)) 𝛿V+

8t2
⋅ 8tvn−3∕2.

There are o(V) open pairs each giving a destruction term in which the main term is a self-correction

term of

−(1 + o(1)(fV + gV )8tvn−3∕2.

For open pairs that are partner or internal the only other error term is Õ(t−1e2) ⋅ tvn−3∕2, which we can

absorb into the fidelity term. The terminal open pairs (of which there are one or two) contribute an

additional error term, depending on the form of 𝜋, which we denote by 𝛿add ⋅ 8tvn−3∕2.

We claim the following bound:

|𝛿add| ≤ 0.49𝛿V + O(𝛿Ye𝛿).

To see this, we first suppose 𝜋 ≠ O and consider each of the three types of terminal open pair.

• The only contribution to 𝛿add from an outer open pair is O(𝛿Ye𝛿).
• The contribution to 𝛿add from a simple open pair is (1 + o(1))(𝛿VI∕2 + 𝛿VO∕2 + 𝛿S). We can

absorb 𝛿S into the O(𝛿Ye𝛿) term. From Definition 2.8 we have

cVO = cVI = cV∕9, (42)

so 𝛿VI∕2 + 𝛿VO∕2 ≤ 𝛿V∕9, and we can bound this contribution to 𝛿add by 𝛿V∕8 + O(𝛿Ye𝛿).



BOHMAN AND KEEVASH 273

• The contribution to 𝛿add from a fan end open pair is

(1 + o(1))( 1

2
(𝛿V∗ + 𝛿V• + 𝛿V∗I + 𝛿V∗O) + 𝛿S) + O(𝛿Ye𝛿).

Again 𝛿S = O(𝛿Ye𝛿). The sequences defining V∗ and V• each have M−1 fewer symbols than

𝜋, but this is compensated for by an additional “O” or “E.” Thus Definition 2.8 gives

cV∗ = cV• = cV∕9, and (43)

cV∗I = cV∗O = cV∕81. (44)

Thus
1

2
(𝛿V∗ + 𝛿V• + 𝛿V∗I + 𝛿V∗O) ≤ 𝛿V∕9 + 𝛿V∕81, so we can bound this contribution to 𝛿add

by 𝛿V∕8 + O(𝛿Ye𝛿).

As V can have at most two terminal open pairs, this proves the claim when 𝜋 ≠ O. If 𝜋 = O then

the only contribution is from the simple open pair; recalling the adjustment in Definition 2.8 we have

cVO = cVI = 2.2cV∕9, so the claim also holds in this case.

Combining all the estimates so far gives

E[Δi(V) ∣ i]
8tvn3∕2

≤ −(1 + o(1))o(V)(fV + gV ) + (1 + o(e))e(V)𝛿V+

8t2

+ 0.49𝛿V + O(𝛿Ye𝛿) + (t−1 + t−21e(V)>0)Õ(e2).

By Lemma 2.15 we have

Δi(v𝛿V )
8tvn3∕2

≥

(
e(V)
8t2

− o(V) + O(t−1n−1)
)
𝛿V +

(
4t𝛿V + (𝜗′∕𝜗 − e(V)t−1)2gV

)
∕8t.

By Definition 2.8, as V is not a vertex degree we have cV = cV+ , so as in the proof of Lemma 5.6 we

have 𝛿V+ − 𝛿V = 2(gV+ − gV ) and gV+ ≤ 2tgV (with no V+ term if e(V) = 0). Thus

E[Δi(V) ∣ i]
8tvn−3∕2

= E[Δi(V) ∣ i]
8tvn3∕2

− Δi(v𝛿V )
8tvn3∕2

≤
e(V)
8t2

⋅ 2(gV+ − gV ) + o(V)gV + 0.49(fV + 2gV ) − fV∕2 − ( 𝜗
′∕𝜗
8t

− e(V)
8t2

+ 1

2
) ⋅ 2gV

+ O(𝛿Ye𝛿) + (t−1 + t−21e(V)>0)Õ(e2) + o(𝛿V+et−2) + o(𝛿V )

≤ gV

[
o(V) + e(V)

2t
− 𝜗′∕𝜗

4t
− 1

50

]
− fV

100
+ O(𝛿Ye𝛿) + (t−1 + t−21e(V)>0)Õ(e2) + o(𝛿V+et−2) + o(𝛿V ).

To conclude the proof, it remains to check that this final expression is negative. This holds as

−gV𝜗
′∕(4t𝜗) dominates when gV∕t > fV and −fV∕100 dominates otherwise. Here we recall that

𝜗′∕𝜗 = K > M6 for t < 1, and also use the later activation step (see Definition 2.9) for the case

e(V) = 1 to see that the t−21e(V)>0Õ(e2) term is negligible. ▪

Having verified the trend and boundedness hypotheses—these are Lemmas 6.8 and 6.4,

respectively—we can apply Lemma 2.2 and show whp for all stacking variables V we have V =
(1 ± 𝛿V )v for iV ≤ i < I. (Recall that Lemma 3.9 establishes this condition at step iV .) This proves

Theorem 6.1.
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7 INDEPENDENCE NUMBER AND UPPER BOUND

In this section we prove Theorem 1.2 on the independence number and establish the upper bound that

completes the proof of Theorem 1.1 on the size of the final graph in the process. We will use union

bound arguments that take advantage of our tight control of the evolution of key parameters until the

process is very near its end.

We start by giving an intuitive overview of these arguments as applied to the independence number.

Suppose we wish to estimate the probability that some set K of Θ(
√

n log n) vertices is independent.

At any step i, with corresponding time t = in−3∕2, we would expect that K contains ≈ q̂(t)|K|2 open

ordered pairs. The total number of open pairs at step i is Q(i) ≈ q(t) = q̂(t)n2, so the probability

that K remains independent throughout the period in which we track the process should be roughly

(1 − |K|2∕n2)imax . If this were true, we could estimate Pr(𝛼(G) > k) by(n
k

) (
1 − k2∕n2

)imax < exp(k log
en
k
− imaxk2∕n2),

which is o(1) for k > (1 + o(1))
√

2n log n, as required to prove Theorem 1.2.

However, it is not true that every such K has ≈ q̂|K|2 open ordered pairs; indeed, if K has a large

intersection with the neighborhood of some vertex then K contains significantly fewer open pairs. Thus

we require a much more delicate union bound calculation that takes into account the way in which

vertex neighborhoods intersect K.

We stress that throughout this section we assume I > imax. Under this assumption, if i ≤ imax the

good event i holds and every good V in the three ensembles satisfies |V− V| ≤ 𝛿Vv. This assumption

is valid as the events in the union we define are all intersected with the event I > imax. Formally

speaking, in Section 7.2 we bound the probability of the event that I > imax and the independence

number of G(imax) is large, and in Section 7.3 we bound the probability that I > imax and the maximum

degree has the potential to become large in the steps that follow imax.

We also stress that throughout the section “neighbor” means “neighbor in G(imax)”’ and “N(x)”
means “NG(imax)(x).”

To lighten notation in our calculations, we introduce the following notation for the number of steps

in which we track the process and the deterministic prediction for the vertex degrees:

m = imax = 1

2

√
1∕2 − 𝜀 n3∕2(log n)1∕2 and 𝑑 = 2tmax

√
n = 2m∕n =

√
(1∕2 − 𝜀)n log n. (45)

In the course of the proof, we will control various polylogarithmic factors using absolute constants

0 < 𝛼 < 𝛾 < 𝛽.

To clarify the role of these constants we will not substitute actual values, but for concreteness we note

that we could let 𝛼 = 25, 𝛾 = 50, 𝛽 = 600. When these polylog factors are unimportant we will use

“tilde” notation as before: recall that f (n) = Õ(g(n)) and g(n) = Ω̃(f (n)) mean that f (n) ≤ (log n)Ag(n)
for some absolute constant A.

Our proofs require some preliminary facts established in Section 7.1 (these are mostly density

estimates for edges and open pairs). We prove Theorem 1.2 in Section 7.2, and then apply a similar

(and easier) argument in Section 7.3 to prove Theorem 1.1.

7.1 Preliminaries

This subsection contains some density estimates for edges and open pairs, and also some more intricate

configurations that will play a crucial role in the argument in Section 7.2. These estimates will be
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obtained from the critical interval method as described in Section 2.1. We start with an observation that

will be used many times in this section to estimate the one-step variances in some extension variable

V = X𝜙,J,Γ due to destruction. This will be applied as in Section 5.2 to bound the one-step conditional

variance VarV (i) = Var(V(i) ∣ i−1) via a sum over pairs e in the configuration of the change in V
due to the change of status of f (e). Thus if e = uv is an open pair in this configuration we want to

estimate the one-step variance Vare due to closing f (e).

Lemma 7.1. Consider any extension variable V = X𝜙,J,Γ and open pair e ∈ Γ ⧵ J of Γ. Suppose
at step i that the number NV

e (i) of injections f counted by V destroyed by closing f (e) is bounded as
NV

e (i) ≤ N, for some constant N. Then

Vare ∶= Var(NV
e (i) ∣ i−1) ≤ (1 + o(1))8tn−3∕2NV .

Proof. Consider the bipartite graph H with parts (A,B), where A is the set of injections counted by

V , B = Q is the set of ordered open pairs, and f ∈ A is adjacent to b ∈ B if selecting b as an edge

closes f (e). By assumption 𝑑H(b) ≤ N for all b ∈ B. We also have e(H) = 2
∑

f∈V (Yf (uv) + Yf (vu)) =
(1 + o(1))4yV . Then Vare ≤ Q−1

∑
b∈B 𝑑H(b)2 ≤ (1 + o(1))q−1e(H)N = (1 + o(1))8tn−3∕2NV . ▪

With this observation in hand, we turn next to some lemmas on counting open pairs.

Definition 7.2. For any set S let QS(i) be the number of ordered open pairs in S at step i. For any sets

A,B let QAB(i) be the number of open pairs ab with a ∈ A, b ∈ B at step i.

Lemma 7.3. Whp for any set S of size s, step i ≤ imax and 𝜓 ≥ n−𝜀∕5,

(i) if s ≥ n1∕4 and any vertex x has |N(x) ∩ S| ≤ L−10𝜓2q̂s then QS = (1 ± 𝜓)q̂s2,
(ii) if s ≥ L11𝜓−2

√
n then QS = (1 ± 𝜓)q̂s2,

(iii) if s < 2L12
√

n then QS < L13sq̂
√

n.

Proof. First consider statements (i) and (ii). We use critical window analysis for t ≥ n−0.4 to prove

the bound QS = (1 ± 𝛿O)q̂s2, where 𝛿O = (1 + t∕L)𝜓∕2. This suffices as 𝛿O ≤ 𝜓 . We use the window

[(1 + 𝛿O − gO)q̂s2, (1 + 𝛿O)q̂s2], where gO = 𝜓∕(40L2).
First we use coupling to the Erdős-Rényi process to show that whp QS does not enter the critical

window at t = n−0.4. This follows from the trivial upper bound QS ≤ s2, and the lower bound QS ≥

s2 − 5n0.2s, obtained by subtracting the number of paths of length 2 starting in S in the random graph.

Next we establish the trend hypothesis that QS = QS − q̂s2 − 𝛿Oq̂s2 is a supermartingale while

QS is in its critical window. (Note that our tracking variable in this case is the deterministic function

q̂s2.) The expected change in QS is

E[ΔiQS ∣ i] = −2Q−1
∑

ab∈QS

(Yab + Yba + 1) = −8tn−3∕2(1 ± O(𝛿Y ))QS.

We also note that Δi(q̂s2) = (−8tn−3∕2 + O(L2n−3))q̂s2 and Δi(𝛿Oq̂s2) = (1 + o(1))((L + t)−1 −
8t)n−3∕2𝛿Oq̂s2. When QS is in the critical interval we have

E[ΔiQS ∣ i] ≤ −8tn−3∕2q̂s2(1 + 𝛿O − gO − O(𝛿Y ))
+ q̂s2

(
8tn−3∕2 − O(L2n−3) − (1 + o(1))((L + t)−1 − 8t)n−3∕2𝛿O

)
.

≤ −8tn−3∕2q̂s2 ⋅ (𝛿O − gO − O(𝛿Y ) + ( 1

8t(L+t)
− 1)𝛿O)
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Using
𝛿O

8t(L+t)
≥ 2gO and 𝛿Y ≤ n−𝜀∕4 = o(gO) by (14), when QS is in the critical interval we have

E[ΔiQS ∣ i] ≤ 0, so the trend hypothesis holds.

To complete the proof of statements (i) and (ii) we will apply Freedman’s inequality and take a

union bound over S. To account for the number
(n

s

)
of events in the union, it suffices to establish the

following strengthened form of the bounded hypothesis (2) and (3), where we write NO and VarO for

the maximum one-step change and conditional variance of QS.

gO(t)2(q̂(t)s2)2 = 𝜔
(
VarO(i)(n log n)3∕2s

)
, (46)

gO(t)q̂(t)s2 = 𝜔 (NO(i)(log n)s) . (47)

Since gO = 𝜓∕(40L2), it suffices to show NO ≤ 2L−10𝜓2q̂s, as by Lemma 7.1 this also implies VarO ≤

L−4n−3∕2s−1(2L−2𝜓 q̂s2)2. To see this bound on NO we use NO = O(y) for statement (ii), or NO ≤|N(x) ∩ S| + |N(y) ∩ S| and our assumption on neighborhoods in S for statement (i).

It remains to prove (iii), which is a one-sided bound rather than a dynamic concentration state-

ment, but we can still apply a modified form of the critical interval method. Writing FO = (1 +
t∕L)L13sq̂

√
n∕2, it suffices to show QS ≤ FO for all S with high probability. Note that the bound is

trivial for t ≤ 1, as s < 2L12
√

n implies QS ≤ s2 < FO. For t ≥ 1 we use critical window analysis with

the window [FO − GO,FO], where GO = FO∕(40L2). (Here we use capital letters F, G to distinguish

our notation for absolute errors from our usual notation f , g for relative errors.)

When QS is in the critical window we estimate E[ΔiQS ∣ i] ≤ −(1 + o(1))8tn−3∕2(FO − GO). We

write QS = QS − FO and note that F′
O = ((L + t)−1 − 8t)FO. Again using

FO

8t(L+t)
≥ 2GO, we obtain

the trend hypothesis

E[ΔiQS ∣ i] ≤ −(1 + o(1))8tn−3∕2 ⋅ (FO − GO + ( 1

8t(L+t)
− 1)FO) ≤ 0.

For the boundedness hypothesis, accounting for the union bound as in (i) and (ii), and noting that

QS(i) < −GO(t) at the step before this variable enters the critical interval, it suffices to show

GO(t)2 = 𝜔
(
VarO(i)(n log n)3∕2s

)
and GO(t) = 𝜔 (NO(i)(log n)s) . (48)

We use the bound NO ≤ 2y ≤ L−9s−1GO. By Lemma 7.1 this implies

VarO = O
(
tn−3∕2 ⋅ FO ⋅ L−9s−1GO

)
= O

(
L−6s−1G2

On−3∕2
)
,

and the desired inequalities follow. ▪

Lemma 7.4. Suppose r, s ≥ n1∕4, 𝜓 ≥ n−𝜀∕5, and h ≤ L−10𝜓2q̂ min{r, s}. Then whp we have
QRS = (1 ± 𝜓)q̂rs for any sets R, S of respective sizes r, s such that any vertex that has a neighbor in
one of these sets has at most h neighbors in the other.

Note that Lemma 7.4 is simply a bipartite version of Lemma 7.3(i). The proof is essentially the same,

so we omit it, noting that the condition on h is needed for the boundedness hypothesis.

Next we establish some density estimates.

Definition 7.5. For a set S, let 𝜂S denote the number of edges of G(imax) in S.
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Lemma 7.6. Whp for any set S of size s

(i) if s ≥ L12
√

n then 𝜂S < L2n−1∕2s2,
(ii) if s < 2L12

√
n then 𝜂S < L15s.

Proof. For (i), we estimate the probability that some such S spans M ∶= L2n−1∕2s2 edges, taking a

union bound over S and the steps at which the edges are chosen, for which there are
(n

s

)(m
M

)
choices.

For a specified step at time t, the probability of choosing an edge in S is QS(t)∕Q(t) = (1+ o(1))s2∕n2,

using Lemma 7.3(ii) with 𝜓 = L−1∕2. Thus the failure probability p0 satisfies

p0 ≤

(
n
s

)(
m
M

)
((1 + o(1))s2∕n2)M .

Noting that M ≥ L14s, the required estimate p0 = o(1) follows from

log p0 ≤ O(s log n)+M log
em
M
+M log((1+o(1))s2∕n2) = O(s log n)+M(O(1)− log L) ≤ −sL14.

For (ii), we estimate the probability of choosing an edge in S as QS(t)∕Q(t) < 2L13sn−3∕2 by Lemma

7.3(iii). Then the failure probability p0 satisfies

p0 ≤

(
n
s

)(
m

L15s

)
(2L13sn−3∕2)L15s,

so s−1 log p0 ≤ O(log n) + L15 log
2em

L2n3∕2
≤ −L15, giving p0 = o(1). ▪

Next we deduce a bound on the number of vertices of large degree in a given set. For the following

definition we emphasize that vertices in S can belong to D𝑑(S).

Definition 7.7. Let D𝑑(S) be the set of vertices that have degree at least 𝑑 in S.

Lemma 7.8. Whp for any set S of size s

(i) if s ≥ L12
√

n and 𝑑 > 8L2n−1∕2s then |D𝑑(S)| < 8L2n−1∕2s2∕𝑑,
(ii) if s < L12

√
n and 𝑑 > 4L15 then |D𝑑(S)| < 4L15s∕𝑑.

Proof. For (i), suppose on the contrary that there is T ⊆ D𝑑(S) of size 8L2n−1∕2s2∕𝑑. Then S ∪ T
is a set of size at most 2s that spans at least 𝑑|T|∕2 > L2n−1∕2(2s)2 edges, which contradicts Lemma

7.6(i). Similarly, for (ii), if there is T ⊆ D𝑑(S) of size 4L15s∕𝑑 then |S ∪ T| ≤ 2s ≤ 2L12
√

n and

𝜂S∪T ≥ 𝑑|T|∕2 > 2L15s ≥ L15|S ∪ T|, which contradicts Lemma 7.6(ii). ▪

We conclude this preliminary subsection with an estimate for a more involved configuration

required for the proof of Lemma 7.12, using the constants 0 < 𝛼 < 𝛾 < 𝛽 declared in (7). To motivate

the following definition, we remark that it will be applied with H ⊆ N(x), that is, the neighborhood of

x in G(imax), which will justify the assumed bounds on degrees and open degrees into H for a ≠ x, and

also that H contains no edges. Furthermore, it will be applied at a step i < imax at which H only contains

vertices y such that xy is open and yet to be chosen as an edge, so there will be no edges between x and H.

Definition 7.9. Let H ⊆ V and x ∈ V ⧵H. We say (x,H) is neighborly at step i < imax if G(i) has no

edges within H ∪ {x} and for any vertex a ≠ x at most L4 edges ab with b ∈ H and at most 2x = 2q̂2n
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open pairs ab with b ∈ H. We let WxH denote the number of ordered triples (a, b, c) of vertices such

that ax is open, {b, c} ⊆ H and ab, ac are edges.

Lemma 7.10. Whp for every neighborly (x,H) with |H| = h where L𝛼 < h < L−𝛽
√

n we have
WxH < 4L−𝛼hq̂

√
n.

Proof. We will apply the critical interval method, although we cannot do so directly for WxH as the

boundedness hypothesis may fail due to vertices with large open degree into H; thus we will make

some subtle alterations to the structures that we count.

We start with some definitions. We say that a vertex a is obese with respect to H at time t if at least

q̂
√

nL𝛾 pairs ab with b ∈ H are open. (Our extravagant nomenclature here is explained by reference

to the definition of “heavy” below.) For any obese vertex a we declare some subset of the open pairs

ab with b ∈ H inactive so that the active open degree into H is ⌊q̂
√

nL𝛾⌋.

We stress that the status of an open pair as active or inactive can change back and forth in the course

of the process, but once a pair is chosen as an edge its status as active or inactive remains the same for

the rest of the process.

For j ∈ {0, 1, 2} let Wj
xH denote the number of ordered triples (a, b, c) of vertices such that ax is

open, {b, c} ⊆ H, the pairs ab and ac are both active, and their status depends on j: if j = 0 then both

are open, if j = 2 then both are edges, and if j = 1 then ab is open and ac is an edge. Thus W2
xH has

the same definition as WxH , with the additional condition that ab and ac are active at the steps they are

chosen as edges.

First we show that there is a negligible difference between WxH and W2
xH , and so it will suffice to

bound the latter. Let O be the set of vertices that are obese with respect to H at time t. We claim that

whp for any H we have |O| < 2hL13−𝛾 = o(h). (49)

To see this, suppose on the contrary there is O′ ⊆ O of size 2hL13−𝛾 . Then |H ∪ O′| < 2h and

QH∪O′ ≥ L13hq̂
√

n. However, this contradicts Lemma 7.3(iii), so (49) holds.

Applying Lemma 7.3(iii) again, we bound the number of open pairs in H∪O by QH∪O < L13q̂
√

n ⋅
3h∕2. Thus the probability at any given step that we choose an edge between an obese vertex and

H is at most 2hL13n−3∕2. For each set H let H be the event that the process chooses at least hL15

edges between H and obese vertices (recalling that the set of obese vertices may change as the process

evolves). By the union bound, the probability that any H holds is at most

n1∕2L−𝛽∑
h=L𝛼

(
n
h

)(
m

hL15

)
(2hL13n−3∕2)hL15

≤

n1∕2L−𝛽∑
h=L𝛼

(
n
h

)(
O(1)

L

)hL15

= o(1).

Thus we can assume that no event H holds. Then the degree bound for neighborly (x,H) implies

WxH − W2
xH < hL19, which is negligible by comparison with the desired bound on WxH .

For the remainder of the proof, we will show Wj ≤ Fj ∶= (1 + t∕L)wj∕2 for j = 0, 1, 2, where

w0 ∶= L−𝛼−4hxq̂
√

n, w1 ∶= L−𝛼−2hyq̂
√

n and w2 ∶= 4L−𝛼hq̂
√

n.

This will suffice to prove the lemma, as we will have WxH < W2
xH+hL19 < F2+hL19 < w2. Similarly to

the proof of Lemma 7.3(iii), these are one-sided bounds rather than dynamic concentration statements,

but we can still use a modified form of the critical interval method. For Wj
xH we use the critical windows

[Fj − Gj,Fj], where Gj = wj∕(40L2).
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First we claim that our variables do not enter their critical windows for n−1∕4 ≤ t ≤ 1 (assuming

I > imax). For j = 0 this follows from the trivial bound W0
xH ≤ nh2 ≪ w0(1), recalling that 𝛽 is large

compared with 𝛼. For j = 1 we can bound W1
xH by picking {b, c} ⊆ H then a vertex counted by Ybc(i), so

by (14) we obtain W1
xH ≤ O(y)h2 ≪ w1. For j = 2 we bound W2

xH by picking {b, c} ⊆ H then a common

neighbor, for which there are at most O(L4) choices by Definition 2.12(iii), so W2
xH = O(L4h2) ≪ w2.

Thus the claim holds.

Next we will prove the trend hypothesis, that is, that Wj
xH = Wj

xH −Fj is a supermartingale while

Wj
xH is in its critical window. Below we will analyze the contributions to E[ΔiWj

xH ∣ i] separately

according to each of the pairs ax, ab, ac. When we calculate the expected change due to closing of ab
or ac we will ignore correction terms due to changes that do not actually occur when a is obese and

these closures simply change the status of some other open pair from inactive to active. To justify this,

we first give upper bounds on these correction terms, which we will later see are negligible compared

with the main terms.

For a ∈ O let Aa denote the set of b ∈ H such that ab is open and active. By (49), the contribution

to E[ΔiW0
xH] due to closing a pair ab or ac where a is obese is at most

2Q−1
∑
a∈O

∑
b∈Aa

(Yab + Yba)|Aa| ≤ 5yq−1 ⋅ 2hL13−𝛾 ⋅ (q̂n1∕2L𝛾 )2 ≪ 8tn−3∕2F0L−2. (50)

Similarly, the contributions to E[ΔiW1
xH] due to closing a pair ac where a is obese is at most

2Q−1
∑
a∈O

∑
b∈Aa

(Yab + Yba)L4 ≤ 5yq−1L4 ⋅ 2hL13−𝛾 ⋅ q̂n1∕2L𝛾 ≪ 8tn−3∕2F1L−2. (51)

In the calculation of the expected change in Wj
xH = Wj

xH − Fj we write

Δi(Fj) = (1 + o(1))F′
j n

−3∕2 and F′
j ≥ ((L + t)−1 − (3 − j)8t)Fj.

For each open pair 𝛼𝛽 we have a destruction term of

2Q−1
∑

f∈Wj
xH

(Yf (𝛼𝛽) + Yf (𝛽𝛼) + 1) ≥ (1 + o(1))8tn−3∕2(Fj − Gj),

when Wj
xH is in the critical interval. This gives self-correction against a corresponding 8tn−3∕2Fj term

in Δi(Fj). For each edge we have a creation term of

2Q−1Wj−1

xH ≤ (1 + o(1))2q−1Fj−1,

where 2q−1F0 = L−2t−1n−3∕2F1 and 2q−1F1 = tL−2n−3∕2F2.

Next we account for fidelity corrections. As there are no edges within H ∪ {x} there is no creation

fidelity term (it is not possible to add an edge and simultaneously close an open pair in the configura-

tion). For destruction fidelity, we first consider configurations for j = 0, 1 in which selecting an edge

az simultaneously closes the open pairs ab and ax. There are at most h choices for c, then 2v choices for

a where v = x for j = 0 or v = y for j = 1, then L4 choices for z in the common neighborhood of b and

x, then 2y choices for b ∈ Yaz. This gives a correction term O(q−1hvL4y) ≪ 8tn−3∕2FjL−2. For j = 0

we also need to consider configurations in which selecting az simultaneously closes ab and ac. There

are at most h choices of b, then 2y choices of z in Yxb, then 2x choices of a in Xab, then L4 choices of a
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neighbor c of z in H (as (x,H) is neighborly). This gives a correction term O(hyxL4)≪ 8tn−3∕2F0L−2.

Using
Fj

8t(L+t)
≥ 4Gj, we obtain

E[ΔiW0
xH ∣ i] ≤ −(1 + o(1))8tn−3∕2 ⋅ (3(F0 − G0) + ( 1

8t(L+t)
− 3)F0) ≤ 0.

E[ΔiW1
xH ∣ i] ≤ −(1 + o(1))8tn−3∕2 ⋅ (2(F1 − G1) − 1

8L2t2
F1 + ( 1

8t(L+t)
− 2)F1) ≤ 0.

E[ΔiW2
xH ∣ i] ≤ −(1 + o(1))8tn−3∕2 ⋅ (F2 − G2 − 1

8L2
F2 + ( 1

8t(L+t)
− 1)F2) ≤ 0.

Note that the correction terms (50) and (51) for inactive edges and the fidelity terms are indeed

negligible in this calculation, so the trend hypothesis holds.

It remains to establish the boundedness hypothesis. Note that since we can restrict our attention to

t ≥ 1, the functions Gj are approximately nonincreasing. As we are proving one-sided bounds with

a union bound over the choice of x and H, it suffices to establish the boundedness hypothesis as set

forth in (48) with h playing the role of s. We add an additional wrinkle here. Recall that Freedman’s

inequality (Lemma 2.1) only requires a bound on the positive change in the random variable in question.

For each pair e in the collection ax, ab, ac let N+
e bound the positive one-step change in Wj

xH due to

the change in the status of e and let Vare denote the one-step variance of Wj
xH that can be attributed

to the change in status of e. To apply Freedman’s inequality, since Gj = wj∕(40L2), it suffices to show

N+
e ≤ wj∕(hL5) and Vare ≤ w2

j ∕(hL8n3∕2). (52)

In some cases we will show the stronger statement

Ne < wj∕(hL10), (53)

where Ne is the absolute value of the one-step change in Wj
xH . Note that (53) clearly implies (52): the

bound on N+
e is immediate and the bound for Vare follows by Lemma 7.1.

First we note that the required bounds for creation are straightforward. Indeed, for W1
xH the bound

on active open degrees gives Ne ≤ q̂
√

nL𝛾 ≪ w1∕(hL10), and for W2
xH the assumption that (x,H) is

neighborly gives Ne ≤ L4 ≪ w2∕(hL10).
For destruction we obtain negative changes in Wj

xH , so we only need to bound Vare. First we

introduce some additional definitions. We say that a vertex a is heavy with respect to H at time t if at

least q̂
√

nL−𝛾 pairs ab with b ∈ H are open. Let T = TxH be the set of heavy vertices a such that xa is

open. As |T|q̂√nL−𝛾 ≤
∑

u∈H Xux < 2xh, we have

|T| < 2hx∕(q̂
√

nL−𝛾 ) = 2hL𝛾 q̂
√

n.

Let U be the set of vertices z such that zx is open and z has at least q̂
√

nL−3𝛾 neighbors in T . By

Lemma 7.8 we have

|U| <{
8hL4𝛾+15 if |T| < L12

√
n,

32h2L5𝛾+2q̂ otherwise.

Here we used q̂
√

nL−3𝛾 > 4L15 and q̂
√

nL−3𝛾 > 8L2n−1∕2 ⋅ 2hL𝛾 q̂
√

n, which follows from our choice

of 𝛽 to be large relative to 𝛾 , to get the lower bounds on 𝑑 required for Lemma 7.8.

Now consider destruction for the variables Wj
xH for j = 0, 1. We write ΔiWj

xH = ΔiV1+ΔiV2, where

ΔiV1 accounts for the change in V = Wj
xH that comes from the choice of an edge xz where z ∈ U, and
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ΔiV2 accounts for the rest. For ΔiV2 we will obtain the required bound on Vare by establishing the

bound (53) on Ne. The contribution to Ne from closing ab or ac is bounded by 2yq̂n1∕2L𝛾 < w0∕(hL10)
for W0

xH (using the bound on active open degrees) and by 2yL4 < w1∕(hL10) for W1
xH (as (x,H) is

neighborly). Next we consider the contribution from closing xa where a is not heavy. For j = 0 this is

at most

(2y)(q̂
√

nL−𝛾 )2 < 2q̂
√

nL1−2𝛾x < L−𝛼−12xq̂
√

n = w0∕(hL10),

as 𝛾 is large relative to 𝛼. For j = 1, as (x,H) is neighborly, the contribution is at most

(2y)(q̂
√

nL−𝛾 )L4 < L−𝛼−12yq̂
√

n = w1∕(hL10), again as 𝛾 is large relative to 𝛼. Now we consider the

contribution from closing of pairs xa where a is heavy. Note that we do not select xz with z ∈ U, as

this case will be analyzed in ΔiV1, so this contribution is at most

q̂
√

nL−3𝛾 (q̂
√

nL𝛾 )2 = L−𝛾xq̂
√

n ≪ w0∕(hL10)

for j = 0 (by the bound on active open degrees), or q̂
√

nL−3𝛾 (q̂
√

nL𝛾 )L4 ≪ w1∕(hL10) for j = 1 (as

(x,H) is neighborly and t ≥ 1). Thus we have the required bound on Ne for ΔiV2.

For j = 0, 1 it remains to bound Vare for ΔiV1. The probability that an edge xz with z ∈ U is chosen

is at most 2|U|∕q, and the resulting change in Wj
xH is at most (2y)(q̂

√
nL𝛾 )2 for j = 0, or (2y)(q̂

√
nL𝛾 )L4

for j = 1. Suppose first that |T| < L12
√

n, so that |U| < 8hL4𝛾+15. Then for j = 0 we have

Vare ≤ 16hL4𝛾+15q−1(2y)2(q̂
√

nL𝛾 )4 = Õ(hq̂5n),

which suffices to establish (52) as w2
0
∕(hL8n3∕2) = Ω̃(hq̂6n3∕2). Also, for j = 1 we have

Vare ≤ 16hL4𝛾+15q−1(2y)2(q̂
√

nL𝛾 )2L8 = Õ(hq̂3),

which suffices as w2
1
∕(hL8n3∕2) = Ω̃(hq̂4n1∕2), recalling that t ≥ 1. Now suppose |T| ≥ L12

√
n, so that|U| < 32h2L5𝛾+2q̂. Then for j = 0 we have

Vare ≤ 64h2L5𝛾+2n−2(2y)2(q̂
√

nL𝛾 )4 < 256h2L9𝛾+4q̂6n,

and for j = 1 we have

Vare ≤ 64h2L5𝛾+2n−2(2y)2(q̂
√

nL𝛾 )2L8 < 256h2L7𝛾+12q̂4.

As h < L−𝛽
√

n and 𝛽 is large relative to 𝛼, 𝛾 these bounds suffice to establish (52).

It remains to bound Vare for destruction of W2
xH . Let W be the set of vertices that are open to x and

have at least two neighbors in H. Then |W| ≤ ∑
a∈H Yxa < 2yh. Let U′ be the set of vertices that are

open to x and have at least yL−𝛾 neighbors in W. By Lemma 7.8 we have

|U′| <{
8hL𝛾+15 if |W| < L12

√
n

32h2yn−1∕2L𝛾+2 otherwise.

Here we used yL−𝛾 > 4L15 and yL−𝛾 > 8L2n−1∕2 ⋅ 2yh (as 𝛽 is large relative to 𝛾) to get the lower

bound on 𝑑 required for Lemma 7.8. We write the destruction of W2
xH at step i as ΔiV1 + ΔiV2, where
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ΔiV1 accounts for the change in W2
xH that comes from the choice of an edge xz where z ∈ U′, and ΔiV2

accounts for the rest.

ForΔiV2 we can obtain the required bound onVare from the bound (53) on Ne; indeed, by definition

of U′ and as (x,H) is neighborly, Ne < yL−𝛾 ⋅ L4 < w2∕(hL10). For ΔiV1, suppose first that |W| <
L12

√
n, so that |U′| < 8hL𝛾+15. We choose an edge xz with z ∈ U′ with probability at most 2|U|∕q,

and as (x,H) is neighborly the resulting change in W2
xH is at most 2y ⋅ L4, so

Vare < 8hL𝛾+15q−1(2y)2L16 = Õ(hyn−3∕2),

which suffices as w2
2
∕(hL8n3∕2) = Ω̃(hy2n−3∕2). On the other hand, if |W| ≥ L12

√
n then

Vare < 32h2yn−1∕2L𝛾+2q−1(2y)2L16 < 128h2n−1∕2L𝛾+19y2n−3∕2,

which also suffices to establish (52) as 𝛽 is large relative to 𝛼, 𝛾 . ▪

7.2 Proof of Theorem 1.2

We will show whp

𝛼(G) < k ∶= (1 + 3𝜀)
√

2n log n.

As 𝛼(G) ≤ 𝛼(G(imax)), it suffices to bound 𝛼(G(imax)). We need to estimate the probability that there

is an independent set K of size k. As discussed above, we will take a union bound over all such sets K
together with certain information about how neighborhoods in G(imax) intersect K.

Let K be a potential independent set of size k. We define a sequence of vertices x1,… , xz, where

each x𝓁 is chosen to maximize the number of neighbors in K that are not also neighbors of some xj for

j < 𝓁. More precisely, the 𝓁th hole is H𝓁 = (N(x𝓁)⧵∪𝓁′<𝓁N(x𝓁′ ))∩K, where x𝓁 is chosen to maximize

h𝓁 = |H𝓁|, and we recall our convention that all neighborhoods are defined with respect to G(imax).
We stop the sequence if there are no vertices that give more than L2𝛼 new neighbors in K. Note that

x𝓁 ∉ K for 𝓁 ∈ [z], as K is independent. We say that a hole is large if it has size more than L−𝛽
√

n.

We let ZA be the set of 𝓁 such that H𝓁 is large,

ZB = [z] ⧵ ZA, A = ∪𝓁∈ZA H𝓁 , B = ∪𝓁∈ZB H𝓁 , C = K ⧵ (A ∪ B).

For 𝓁 ∈ ZB we specify the steps of the process at which the edges between x𝓁 and H𝓁 appear. We write

H𝓁 = {v𝓁j ∶ j ∈ [h𝓁]}, where x𝓁v𝓁j is selected at step i𝓁j, and i𝓁j is increasing in j. For 𝓁 ∈ ZA we

specify the entire neighborhood of x𝓁 in G(imax): we write 𝑑𝓁 = |N(x𝓁)| and N(x𝓁) = {v𝓁j ∶ j ∈ [𝑑𝓁]},

where x𝓁v𝓁j is selected at step i𝓁j, and i𝓁j is increasing in j. We will estimate P(), where  is the

event that there is an independent set K with some fixed choices of z; x𝓁 and h𝓁 for 𝓁 ∈ [z]; and 𝑑𝓁
for 𝓁 ∈ ZA. We will refer to these choices of hole sizes, vertices with large neighborhoods in K and

vertex degrees as the initial data that defines  . Note that by Lemma 7.8(ii) we can assume

|ZA| < 8L16+𝛽 and z < 4L15−2𝛼k. (54)

For 𝓁 ∈ ZA, j ∈ [𝑑𝓁] we claim that

i𝓁j = jn∕2 ± n3∕2−𝜀∕3 and 𝑑𝓁 = 𝑑 ± n1∕2−𝜀∕3, (55)

where we recall 𝑑 = 2tmax

√
n = 2m∕n =

√
(1∕2 − 𝜀)n log n. To see (55), note that if, for example, we

had i = i𝓁j < jn∕2 − n3∕2−𝜀∕3 then we would have Yx𝓁 (i) ≥ j > 2n−1(i + n3∕2−𝜀∕3) = y1(t) + 2n1∕2−𝜀∕3,

which contradicts the degree bounds Yu(i) = (1 ± 𝛿Y1
(t))y1(t) in the event i (see Definition 2.12).
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Now, in addition to the initial data, we fix the independent set K, the specific edges x𝓁v𝓁j and

appearance times i𝓁j for 𝓁 ∈ ZA, j ∈ [𝑑𝓁], and likewise for 𝓁 ∈ ZB, j ∈ [h𝓁]. We let K be the event

that K is independent and all the specified edges appear at the specified steps of the process. Thus 

is a union of events of the form K .

To estimate the probability of any given event K , for each step i we need to estimate the probability

that the selected edge is compatible with K , conditional on the history of the process. We say i is a

selection step if i is one of i𝓁j for 𝓁 ∈ ZA, j ∈ [𝑑𝓁] or 𝓁 ∈ ZB, j ∈ [h𝓁]; then the selected edge is

specified by K , so the required probability is simply 2∕Q = (1 ± 2𝛿Q)2q−1. For other i, the required

probability is 1 − Ni∕Q, where Ni is the number of ordered open pairs that cannot be selected at step i
when K occurs. If i = i𝓁j is a selection step write Ni = 0. Then we estimate

P(K) ≤
∏
𝓁∈ZA

𝑑𝓁∏
j=1

(1 ± 2𝛿Q)2q(t𝓁j)−1 ⋅
∏
𝓁∈ZB

h𝓁∏
j=1

(1 ± 2𝛿Q)2q(t𝓁j)−1 ⋅
m∏

i=1

(1 − Ni∕Q). (56)

To estimate Ni, we classify open pairs that cannot be selected at step i as follows.

• Let NiAi be the number of ordered open pairs of the form v𝓁jv𝓁j′ for some 𝓁 ∈ ZA, j, j′ ∈ [𝑑𝓁].
• Let NiAo be the number of ordered open pairs of the form x𝓁y or yx𝓁 where 𝓁 ∈ ZA and y ∉

N(x𝓁) ∪ K ∪ {x1,… , xz}.

• Let NiBi be the number of ordered open pairs ab such that B ∩ ab ≠ ∅ and selecting ei = ab would

close an open pair of the form x𝓁v𝓁j for 𝓁 ∈ ZB, j ∈ [h𝓁].
• Let NiBo be the number of ordered open pairs ab such that B ∩ ab = ∅ and selecting ei = ab would

close an open pair of the form x𝓁v𝓁j for 𝓁 ∈ ZB, j ∈ [h𝓁].
• Let NiK be the number of ordered open pairs in K that are not contained within any hole.

We refer to pairs counted by NiAo or NiBo as outer and those counted by NiAi or NiBi as inner (which is

indicated by one of the i′s in the notation; the other refers to the step i, which we hope will not cause

confusion). For 𝓁 ∈ ZA we stress that by naming the v𝓁j’s we have specified all neighbors of x𝓁 (not

only those in K), so we cannot select a pair yx𝓁 with y ∉ N(x𝓁); we also exclude y ∈ K ∪ {x1,… , xz}
in the definition of NiAo to facilitate the estimate for overcounting in Lemma 7.15. For NiK we note that

all open pairs within K are forbidden (as K is independent) but again to avoid overcounting we only

include those not contained within any hole. We write

Ni ≥ NiAi + NiAo + NiB + NiK − NiO,

where NiB = NiBi + NiBo and NiO corrects for any open pairs that appear in more than one of the above

collections. (We will see that the most significant source of overcounting comes from pairs counted

by both NiK and NiBi.) We substitute

1 − Ni∕Q ≤ exp
{
−(1 − 2𝛿Q)q−1(NiAi + NiAo + NiB + NiK − NiO)

}
(57)

in (56), recalling that 𝛿Q = O(n−𝜀∕5), to obtain

− log P(K) ≥ SAi − TA + SB − TB + SAo + SK − SO (58)

+ log
n2

2

(∑
𝓁∈ZA

𝑑𝓁 + |B|) − O(n1∕2−𝜀∕5), where
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S𝜇 =
m∑

i=1

Ni𝜇q−1 for 𝜇 ∈ {Ai,Ao,B,K,O},

TA =
∑
𝓁∈ZA

𝑑𝓁∑
j=1

4t2
𝓁j and TB =

∑
𝓁∈ZB

h𝓁∑
j=1

4t2
𝓁j.

To estimate the terms in (58), we start by showing in the next two lemmas that SAi − TA and SB − TB
are negligible. (The remaining terms will be used to balance the number of events in our union bound

calculation.)

Lemma 7.11. TA − SAi < O(n1∕2−𝜀∕5).

Proof. We start by giving a lower bound on NiAi for any i that is not a selection step. For 𝓁 ∈ ZA
let j𝓁 = j𝓁(i) be the value of j ∈ [𝑑𝓁] such that i𝓁(j−1) ≤ i < i𝓁j, where i𝓁0 ∶= 0, that is, j𝓁 − 1 edges

have been selected at x𝓁 . Let S𝓁 = {v𝓁j}
𝑑𝓁
j=j𝓁+1

and s𝓁 = |S𝓁| = 𝑑𝓁 + 1 − j𝓁; thus {x𝓁v ∶ v ∈ S𝓁} is

the set of open pairs at x𝓁 that will later be selected as edges. As we consider the whole neighborhood

of x𝓁 (not just the neighborhood in K), the number of ordered open pairs v𝓁jv𝓁j′ with j > j𝓁 , j′ ≤ j𝓁 is∑
v∈S𝓁

2Yvx𝓁 = (1 ± 𝛿Y )2ys𝓁 .

We also note that any vertex has at most L4 neighbors in S𝓁 by the codegree bound in G(imax),
which is valid as we assume I < imax. Then by Lemma 7.3(i) whp QS𝓁 = (1 ± n−𝜀∕5)q̂s2

𝓁 if s𝓁 > n1∕4

and q̂s𝓁 ≥ n2𝜀∕5L14. Since q̂ ≥ n−1∕2+𝜀 this holds for s𝓁 > n1∕2−𝜀∕2, so we can write QS𝓁 ≥ (1 −
n−𝜀∕5)q̂s𝓁(s𝓁−n1∕2−𝜀∕2), as this bound is trivial for s𝓁 ≤ n1∕2−𝜀∕2. The bound on codegrees also implies

that the number of open pairs that can be counted by more than one 𝓁 ∈ ZA is at most (|ZA|L4)2 = Õ(1)
by (54), which is negligible. Thus

NiAi ≥ (1 − n−𝜀∕5)
∑
𝓁∈ZA

(
2ys𝓁 + q̂s𝓁(s𝓁 − n1∕2−𝜀∕2)

)
− O(q̂n1−𝜀∕5)

=
∑
𝓁∈ZA

(
2ys𝓁 + q̂s2

𝓁

)
− O(q̂n1−𝜀∕5). (59)

To estimate SAi =
∑m

i=1 NiAiq−1, it is convenient to use the bound (59) for all i, even selection steps

(where Ni = 0); this is valid as the resulting correction is Õ(n−1∕2), which is negligible. We write

SAi = SAi1+SAi2+Õ(n1∕2−𝜀∕5) according to the contributions of the first and second terms in (59). Then

SAi1 =
m∑

i=1

∑
𝓁∈ZA

2ys𝓁q−1 =
∑
𝓁∈ZA

𝑑𝓁∑
j=1

i𝓁j−1∑
i=i𝓁(j−1)

4tn−3∕2(𝑑𝓁 + 1 − j) =
∑
𝓁∈ZA

𝑑𝓁∑
j=1

i𝓁j∑
i=1

4in−3

=
∑
𝓁∈ZA

𝑑𝓁∑
j=1

2t2
𝓁j −

∑
𝓁∈ZA

𝑑𝓁∑
j=1

2t𝓁jn−3∕2 = TA

2
− Õ(n−1).

Recalling (55), we note that

TA

2
=

∑
𝓁∈ZA

𝑑𝓁∑
j=1

2t2
𝓁j < |ZA| 𝑑+n1∕2−𝜀∕3∑

j=1

2
(
jn−1∕2∕2 + n−𝜀∕3

)2

< |ZA| 𝑑∑
j=1

j2(2n)−1 + Õ(n1∕2−𝜀∕3). (60)
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We also have

SAi2 =
m∑

i=1

∑
𝓁∈ZA

q̂s2
𝓁q−1 =

∑
𝓁∈ZA

𝑑𝓁∑
j=1

i𝓁j∑
i=i𝓁(j−1)

n−2(𝑑𝓁 − j)2,

which is minimized when each 𝑑𝓁 is as small as possible, and then each i𝓁j occurs as early as possible,

so SAi2 ≥ |ZA|∑𝑑
j=1(2n)−1j2 − Õ(n1∕2−𝜀∕3) ≥ TA∕2 − Õ(n1∕2−𝜀∕3) by (60). The lemma follows. ▪

Lemma 7.12. TB − SB ≤ O(L−2n1∕2).

Proof. Similarly to the proof of Lemma 7.11, we start by giving a lower bound on NiB for any i that is

not a selection step. For 𝓁 ∈ ZB let S𝓁 = S𝓁(i) be the set of v𝓁j with j ∈ [h𝓁] such that x𝓁v𝓁j is still open.

We write s𝓁 = |S𝓁|. Each v𝓁j in S𝓁 contributes 2Yv𝓁jx𝓁 = (1 ± 𝛿Y )2y to NiBi and 2Yx𝓁v𝓁j = (1 ± 𝛿Y )2y to

NiBo; however, we need to account for open pairs that may be counted by more than one pair x𝓁v𝓁j.

We claim that there is no overcounting for inner pairs. To see this, note that if v𝓁jv𝓁′j′ is counted for

x𝓁v𝓁j and for x𝓁′v𝓁′j′ then x𝓁v𝓁′j′ and x𝓁′v𝓁j are both edges, but this cannot occur by the hole construction

procedure. Furthermore, there is no overcounting between NiBi and NiBo, as inner pairs intersect K but

outer pairs do not (as K is independent).

Thus the claim holds, and it remains to consider overcounting for outer pairs. This may occur for

x𝓁v𝓁j and x𝓁v𝓁j′ with 𝓁 ∈ ZB and j, j′ ∈ S𝓁 . The number of such overcounted pairs is at most Wx𝓁S𝓁 ,

which we will estimate by Lemma 7.10. To see that this lemma applies, we note that s𝓁 ≤ h𝓁 < L−𝛽
√

n
as holes H𝓁 with 𝓁 ∈ ZB are not large. We also note that (x𝓁 , S𝓁) is neighborly, as S𝓁 ⊆ N(x𝓁) and all

pairs x𝓁y with y ∈ S𝓁 are open, so G(i) has no edges within H𝓁∪{x𝓁} and for any vertex a ≠ x𝓁 at most

L4 edges ab with b ∈ H𝓁 and at most 2x open pairs ab with b ∈ H𝓁 . If s𝓁 ≥ L𝛼 then Lemma 7.10 gives

Wx𝓁S𝓁 < L−𝛼s𝓁 q̂
√

n. Summing over 𝓁 ∈ ZB, using |ZB| ≤ z ≤ 4L15−2𝛼k from (54) and
∑

𝓁∈ZB
s𝓁 ≤ k

we obtain

NiBo ≥ (1 − 𝛿Y )2y
∑
𝓁∈ZB

(s𝓁 − L𝛼) −
∑
𝓁∈ZB

L−𝛼s𝓁 q̂
√

n ≥ 2y
∑
𝓁∈ZB

s𝓁 − L17−𝛼kq̂
√

n.

Including NiBi, we deduce

NiB ≥ (1 − 𝛿Y )4y
∑
𝓁∈ZB

s𝓁 − L17−𝛼kq̂
√

n = 4y
∑
𝓁∈ZB

s𝓁 − O(L−3q̂n), (61)

as 𝛼 is large. As SB =
∑m

i=1 NiBq−1, we have

SB + O(L−2n1∕2) =
m∑

i=1

∑
𝓁∈ZB

4ys𝓁q−1 ≥
∑
𝓁∈ZB

h𝓁∑
j=1

i𝓁j∑
i=i𝓁(j−1)

8tn−3∕2s𝓁

=
∑
𝓁∈ZB

h𝓁∑
j=1

i𝓁j∑
i=1

8in−3 = TB − Õ(n−1).

Similarly to Lemma 7.11, there is a negligible correction due to using the bound (61) at selection steps.

The lemma follows. ▪
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Lemmas 7.11 and 7.12 reduce (58) to

− log P(K) ≥ SAo + SK − SO + log
n2

2

(∑
𝓁∈ZA

𝑑𝓁 + |B|) − O(n1∕2L−2), (62)

We continue to estimate the terms in (62) over the next three lemmas.

Lemma 7.13. SAo ≥ 2|ZA|m∕n − Õ(n1∕2−𝜀∕5).

Proof. If i is not a selection step then by control of open degrees

NiAo ≥ 2
∑
𝓁∈ZA

(Xx𝓁 − 𝑑𝓁 − k − z) ≥ 2|ZA|q̂n − Õ(q̂n1−𝜀∕5).

As SAo =
∑m

i=1 NiAoq−1 the lemma follows. ▪

For NiK we will require more precise estimates for the contribution from open pairs with one ver-

tex in the smaller holes, and so we need to account for this contribution further into the process.

Accordingly, we define the following thresholds for hole sizes. We write

h∗ = h∗(i) = min{n2∕5,L−50q̂
√

n},

and let 𝓁∗ = 𝓁∗(i) ∈ [z + 1] be such that h𝓁 ≥ h∗ for 1 ≤ 𝓁 < 𝓁∗ and h𝓁 < h∗ for 𝓁∗ ≤ 𝓁 ≤ z.

We also let z′ be such that h𝓁 ≥ n2∕5 for 𝓁 ≤ z′ and h𝓁 < n2∕5 otherwise. Thus 𝓁∗ ≥ z′ and equality

holds at the beginning of the process. By Lemma 7.8(ii) we have

z′ < 4L15k∕n2∕5 = Õ(n1∕10). (63)

We let J1 = J1(i) = ∪𝓁≤𝓁∗H𝓁 and J2 = J2(i) = ∪𝓁>𝓁∗H𝓁; thus (J1, J2) is a partition of A ∪ B.

We write NiK ≥
∑z′

𝓁=1 NiKH𝓁
+ NiKJ2

+ NiKC, where each NiKX counts ordered open pairs counted

by NiK with first vertex in X.

Lemma 7.14. If i is not a selection step then NiK ≥
∑z′

𝓁=1 NiKH𝓁
+ NiKJ2

+ NiKC, where

(i) NiKX ≥ q̂k|X| for X ∈ {J2,C}, and
(ii) NiKH𝓁

> (1 − L−5)q̂h𝓁k∕2 if 𝓁 ≤ z′ and q̂ ≥ n−1∕6.

Proof. We write NiKJ2
= Q′

J2
+ QJ1J2

+ QJ2C, where Q′
J2

counts ordered open pairs in J2 that are not

contained within any hole. To estimate QJ2
we note that any vertex has degree at most h∗ in J2 by the

hole construction procedure. By Lemma 7.3(i) whp QJ2
= (1 ± L−5)q̂|J2|2 if q̂|J2| ≥ L20h∗, so we can

write QJ2
≥ (1 − L−5)q̂|J2|(|J2| − L−30

√
n). Then

Q′
J2
≥ QJ2

− h∗|J2| ≥ (1 − L−5)q̂|J2|(|J2| − 2L−30
√

n).

For the second term we consider QJ1J2
≥ QJ1J′

2
where J′

2
= J2 ⧵ N(T) and T is the set of vertices with

at least L20h∗ neighbors in J1. We can assume |T| < 4L−5|J1|∕h∗ < 6L−4
√

n∕h∗ by Lemma 7.8, so|N(T)∩J2| < 6L−4
√

n. We apply Lemma 7.4 with R = J1 and S = J′
2
= J2⧵N(T), noting that if a vertex
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x has a neighbor in S then x ∉ T , so x has at most L20h∗ neighbors in J1. If q̂ min{|J1|, |J′2|} ≥ L40h∗

this gives whp QJ1J′
2
= (1 ± L−5)q̂|J1||J′2|, so as h∗ ≤ L−50q̂

√
n we have

QJ1J′
2
≥ (1 − L−5)q̂(|J1| − L−4

√
n)(|J2| − 7L−4

√
n).

We can apply the same argument to estimate QJ2C ≥ QJ2C′ where C′ = C ⧵ N(T ′) and T ′ is the set

of vertices with at least L20+2𝛼 neighbors in J2. We can assume |T ′| < 4L−5−2𝛼|J2| < 6L−4−2𝛼
√

n by

Lemma 7.8, so |N(T ′) ∩C| < 6L−4
√

n as any vertex has at most L2𝛼 neighbors in C. Applying Lemma

7.4 with R = J2 and S = C′ = C⧵N(T ′), whp QJ2C′ = (1±L−5)q̂|J2||C′| if q̂ min{|J2|, |C′|} ≥ L40+2𝛼 ,

so we can write QJ2C′ ≥ (1 − L−5)q̂(|J2| − L−4
√

n)(|C| − 7L−4
√

n). In total, as |J1| + |J2| + |C| = k
and q̂kL−4

√
n = O(L−3q̂n) we obtain

NiKJ2
≥ Q′

J2
+ QJ1J′

2
+ QJ2C′ ≥ q̂k|J2| − O(L−3q̂n).

We now turn to NiKC ≥ QC+QA∪B,C. As any vertex has at most L2𝛼 neighbors in C, by Lemma 7.3(i)

whp QC ≥ (1 − L−5)q̂|C|(|C| − L−4
√

n). Next we estimate QA∪B,C ≥ QA∪B,C′′ where C′′ = C ⧵ N(T ′′)
and T ′′ is the set of vertices with at least L20+2𝛼 neighbors in A ∪ B. As in the argument for QJ2C′ , we

have QA∪B,C′′ = (1 ± L−5)q̂|A ∪ B||C′′| if q̂ min{|A ∪ B|, |C′′|} ≥ L40+2𝛼 , so

NiKC ≥ QA∪B,C′′ + QC ≥ q̂k|C| − O(L−3q̂n).

This completes the proof of (i). For (ii) we need to estimate NiKH𝓁
when q̂ ≥ n−1∕6 and 𝓁 ≤ z′

(i.e., h𝓁 ≥ n2∕5). We write X = {𝓁′ ≠ 𝓁 ∶ h𝓁′ ≥ 2n1∕4} and NiKH𝓁
=

∑
𝓁′∈X QH𝓁H𝓁′ + QH𝓁K′ , where

K′ = K⧵
⋃

𝓁′∈X H𝓁′ . We first apply Lemma 7.4 for each 𝓁′ ∈ X to R = H𝓁⧵N(x𝓁′ ) and S = H𝓁′ ⧵N(x𝓁).
This is valid by the codegree bound, which implies |R|, |S| ≥ n1∕4 and also that any vertex with a

neighbor in one of R or S has at most L4 < L−20q̂(2n1∕4) neighbors in the other, as q̂ ≥ n−1∕6. Thus

QH𝓁H𝓁′ = (1 ± L−5)q̂h𝓁h𝓁′ .

Now we estimate QH𝓁K′ ≥ QRK′ where R = H𝓁 ⧵ N(U) and U is the set of x ≠ x𝓁 with at least n1∕5

neighbors in K. We have |U| < 8L16n3∕10 by Lemma 7.8(ii), so |N(U)∩H𝓁| < L21n3∕10 by the codegree

bound. Next we note that if a vertex x has a neighbor in K′ then x ≠ x𝓁 by the hole construction

procedure, so by the codegree bound x has at most L4 < n1∕5 neighbors in R ⊆ H𝓁 . On the other hand,

if x has a neighbor in R then x ∉ U, so x has at most n1∕5 neighbors in K′ ⊆ K. By Lemma 7.4, as

q̂ ≥ n−1∕6 we have QH𝓁K′ ≥ (1 − L−5)q̂(h𝓁 − L21n3∕10)(|K′|− n2∕5). As h𝓁 ≤ 𝑑𝓁 < (1 − 𝜀)k∕2 we have

k − h𝓁 − n2∕5 > k∕2, and (ii) follows. ▪

Lemma 7.15. The overcount at step i is NiO = O(L−3q̂n), so SO =
∑

i NiOq−1 = O(L−2n−1∕2).

Proof. Let us consider the possible pairwise overcounting between NiAo, NiAi, NiBo, NiBi, and NiK .

Note that by excluding y ∈ K∪{x1,… , xz} in the definition of NiAo we ensured that it does not intersect

any of the other collections. There is no overcounting between NiBo and NiBi +NiK , as pairs counted by

the former do not intersect K while pairs counted by the latter do intersect K. There is no overcounting

between NiBi and NiAi, as the hole construction procedure ensures that no vertex in a hole H𝓁 with

𝓁 ∈ ZB is also a neighbor of some vertex x𝓁′ such that 𝓁′ ∈ ZA. It remains to consider the following

possible overcounting of pairs:

(i) NiAi with NiK ,

(ii) NiAi with NiBo,

(iii) NiK with NiBi.
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For (i), we note that a pair counted by NiAi and NiK has the form yy′ where y, y′ are both neighbors

of some x𝓁 with 𝓁 ∈ ZA, and are both in K but not in the same hole. By the hole construction procedure

at least one is also adjacent to some other x𝓁′ , so by the codegree bound there are Õ(k) = Õ(n1∕2) such

pairs. For (ii), the overcount between NiAi and NiBo is determined by naming a vertex b ∈ B, a vertex x𝓁
such that 𝓁 ∈ ZA, and a vertex c that is in the (final) common neighborhood of x𝓁 and b; this overcount

is at most k|ZA|L4 = Õ(n1∕2).
To bound the most significant overcount (iii), namely that between NiK and NiBi, we introduce

the following definition. We say that a hole H𝓁 with 𝓁 ∈ ZB is black if x𝓁 has more than L30h𝓁

neighbors in K. We let XH be the set of such x𝓁 and BH be the set of vertices that belong to black

holes. By Lemma 7.6(ii) applied to S = K ∪ XH we have L15|S| > 𝜂S ≥
∑

x𝓁∈XH L30h𝓁 = L30|BH|, so|BH| ≤ L−14k. The contribution to NiBi of pairs that would close pairs x𝓁v𝓁j with v𝓁j ∈ BH is at most

3y|BH| ≤ 3L−14yk ≤ 3L−13q̂kn1∕2.

Now consider overcounted pairs that would close pairs that are not incident to black holes. Such

a pair has the form v𝓁jv𝓁′j′ where x𝓁v𝓁′j′ is an edge, so 𝓁′ < 𝓁 by the hole construction procedure. It

suffices to show for any fixed x𝓁 that at most L−10h𝓁 q̂
√

n such pairs are also counted by NiBi. Suppose

first that h𝓁 ≥ n2∕5, so that 𝓁′ < 𝓁 ≤ z′ = Õ(n1∕10) by (63). By the codegree bound there are at most

z′ ⋅ L4 < n1∕5 such edges x𝓁v𝓁′j′ , which are only counted in our estimate for NiK in Lemma 7.14 while

q̂ > n−1∕6, so the overcount for such a hole is at most h𝓁n1∕5 < h𝓁 q̂n2∕5. Now suppose h𝓁 < n2∕5. We

recall that open pairs between H𝓁 and H𝓁′ are only counted in our estimate for NiK in Lemma 7.14 if

H𝓁 ⊆ J2, that is, if h𝓁 < h∗ ≤ L−50q̂
√

n. Since H𝓁 is not black, the number of choices for v𝓁′j′ is at

most L30h𝓁 < L−10q̂
√

n, so such pairs contribute at most L−10h𝓁 q̂
√

n. Summing over all holes gives

the desired bound. ▪

We are now ready for the union bound calculation that bounds P(). Recall that we have fixed the

initial data that defines the event  ; that is, we have specified z, the vertices x1, x2,… , xz, the hole sizes

h1,… , hz and the degrees 𝑑𝓁 of vertices x𝓁 for 𝓁 ∈ ZA. We then partition  into events K as analyzed

above, defined by choices of neighborhoods of x𝓁 for 𝓁 ∈ ZA, vertices in A ∪ B (which are named by

specifying the vertices in holes), selection steps i𝓁j, and vertices in C. The number of choices for the

data that defines K is at most(∏
𝓁∈ZA

(
n
𝑑𝓁

)(
𝑑𝓁
h𝓁

)
m𝑑𝓁

)(∏
𝓁∈ZB

(
n
h𝓁

)
mh𝓁

)(
n|C|
)
.

To estimate P() we apply (62) to each such choice of K , substituting SO = O(L−2n−1∕2) from Lemma

7.15 and SAo ≥ 2|ZA|m∕n − Õ(n1∕2−𝜀∕5) from Lemma 7.13 (the latter accounts for the exp(−2m∕n)
term in the calculation below). Recalling |B| = ∑

𝓁∈ZB
h𝓁 and 𝑑𝓁 = 2m∕n ± n1∕2−𝜀∕3, using

(𝑑𝓁
h𝓁

)
<

exp{O(log log n)h𝓁} for 𝓁 ∈ ZA and log
( n|C|) < |C| log n∕2 + O(log log n)k, we have

P() ≤
∏
𝓁∈ZA

[(
ne
𝑑𝓁

⋅ 2m
n2

)𝑑𝓁
exp {−2m∕n + O(log log n)h𝓁}

]

⋅

(∏
𝓁∈ZB

(
ne
h𝓁

⋅ 2m
n2

)h𝓁
)(

n|C|
)

e−SK+O(L−2n1∕2)

≤ exp

{∑
𝓁∈ZB

h𝓁 log(
√

n∕h𝓁) + |C| log n∕2 − SK + O(log log n)k

}
. (64)
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It remains to show that SK is sufficiently large to make the above probability expression small

enough for the union bound over the initial data defining  . We first note for ZA that the counting terms(
ne
𝑑𝓁
⋅ 2m

n2

)𝑑𝓁
= (e±O(n−𝜀∕5))𝑑𝓁 are canceled to highest order by the probability term exp(−2m∕n) from

Lemma 7.13, so we require SK to dominate the counting terms from the choice of B and C. For B we

consider the contributions from each hole as follows.

The contributions corresponding to the hole H𝓁 depends on time when the hole moves out of the

set J1 defined before Lemma 7.14. If h𝓁 ≥ n2∕5 (i.e., 𝓁 ≤ z′) we obtain a term q̂kh𝓁∕2 in the bound

from Lemma 7.14 while q̂ > n−1∕6, that is, up to time
1

2

√
1

6
log n. If h𝓁 < n2∕5 we obtain a term q̂kh𝓁

from Lemma 7.14 while q̂ > L50h𝓁∕
√

n, that is, up to time t𝓁 = 1

2

√
log

√
n

L50h𝓁
if this time is less than

imax and up to time imax otherwise. Let z′′ be the smallest index 𝓁 such that t𝓁 < tmax (this corresponds

to a threshold for hole sizes that is about L−50n𝜀). As SK =
∑

i NiKq−1, we have

SK ≥ |C|mk
n2

+

( z′∑
𝓁=1

h𝓁
2

)
n3∕2 ⋅ 1

2

√
1

6
log n ⋅

k
n2

+

( z′′∑
𝓁=z′+1

h𝓁 ⋅ n3∕2 ⋅ 1

2

√
log

√
n

L50h𝓁

)
⋅

k
n2

+

( z∑
𝓁=z′′

h𝓁

)
mk
n2

− O(L−2n1∕2). (65)

Finally we substitute (65) in (64), grouping terms according to the contribution of each h𝓁 , orga-

nized into the same summation ranges as in (65). For each hole H𝓁 with 𝓁 ∈ ZB included in one of

these ranges we have a counting term log
(

ne
h𝓁

⋅ 2m
n2

)h𝓁
= h𝓁(log

√
n

h𝓁
+O(log log n)) from (64) which we

pair with a probability term from (65). In the calculations below we also use (i) log

√
n

h𝓁
≤

1

10
log n for

𝓁 ≤ z′, (ii)

√
( 1

2
log n) ⋅ log(

√
n

L50h𝓁
) > log

√
n

h𝓁
for z′ < 𝓁 ≤ z′′, and (iii) mk∕n2 > (1 + 𝜀) 1

2
log n, which

holds (for small 𝜀) as k = (1 + 3𝜀)
√

2n log n and m =
√
(1∕2 − 𝜀) log n ⋅ n3∕2∕2. We have

log P() ≤ −
z′∑

𝓁=1

h𝓁

(
1

4
√

3
− 1

10

)
log n −

z′′∑
𝓁=z′+1

3𝜀h𝓁 log

√
n

h𝓁

−
z∑

𝓁=z′′+1

𝜀h𝓁
1

2
log n − 𝜀|C| 1

2
log n + O(log log n)k

≤ − 𝜀

4
k log n + O(log log n)k.

As the number of choices of the initial data that defines  is O(n2z) and z ≤ 4kL15−2𝛼 , where 𝛼 is large,

the probability that any such event  holds is o(1), which completes the proof.

7.3 Proof of the upper bound in Theorem 1.1.

This proof is very similar to that of Theorem 1.2, but much simpler. The lower bound on degrees in G
follows from Theorem 2.13, so it remains to show the upper bound. We take a union bound over every

vertex x, potential neighborhood A, and set C such that

|C| = 5𝜀
√

n log n

of the event that
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1. A is the neighborhood of x in G(imax),
2. A ∪ C spans no edge in G(imax), and

3. vx is open in G(imax) for all v ∈ C.

We view C as vertices that might be added to the neighborhood of v between time tmax and the end of

the process. We show that whp there is no triple (x,A,C) with these properties.

We fix x,A,C, write A = {v1,… , v𝑑′ } for some 𝑑′ and specify the appearance time ij for every

edge xvj, where j < j′ implies ij < ij′ . As in (55), I < imax implies

ij = jn∕2 ± n3∕2−𝜀∕3 and 𝑑′ = 𝑑 ± n1∕2−𝜀∕3,

where we recall 𝑑 = 2tmax

√
n = 2m∕n =

√
(1∕2 − 𝜀)n log n.

Let  be the event that A ∪ C is an independent set in G(imax), all pairs joining x and C are open

in G(imax), and all the specified edges appear at the specified steps of the process. To estimate the

probability of the event  , for each step i we need to estimate the probability that the selected edge is

compatible with this event, conditional on the history of the process. We say i is a selection step if i
is one of ij for j ∈ [𝑑′]; then the selected edge is specified by  , so the required probability is simply

2∕Q = (1 ± 2𝛿Q)2q−1. For other i, the required probability is 1 − Ni∕Q, where Ni is the number of

ordered open pairs that cannot be selected at step i when  occurs. If i = ij is a selection step write

Ni = 0. Then we estimate

P( ) ≤
𝑑′∏

j=1

(1 ± 2𝛿Q)2q(tj)−1 ⋅
m∏

i=1

(1 − Ni∕Q),

where tj = ij∕n3∕2. We write Ni = NiA + NiC, where NiA counts the ordered open pairs within A and

NiC counts those in A ∪ C with at least one vertex in C. We have

− log P( ) ≥ SA − TA + SC + 𝑑′ log
n2

2
− O(n1∕2), (66)

where S𝜇 =
∑m

i=1 Ni𝜇q−1 for 𝜇 ∈ {A,C} and TA =
∑𝑑′

j=1 4t2
j .

Following the argument in the previous section for estimating SAi − TA, we have the following

estimate on SA−TA. We include a proof here in the interest of presenting a complete and self-contained

proof of the upper bound in Theorem 1.1.

Lemma 7.16. SA − TA = Õ(n1∕2−𝜀∕3).

Proof. We first estimate NiA when i is not a selection step. Let S = S(i) = {vj ∈ A ∶ ij > i} and

s = |S|; thus S(i) is the set of vertices y in A such that yx is open and is yet to be joined to x. The number

of ordered open pairs vjvj′ with j > i, j′ ≤ i is
∑

v∈s 2Yvx = (1 ± 𝛿Y )2ys. Next note that any vertex has

at most L4 neighbors in S, by the bound on codegrees in G(imax), which applies as I > imax. Then by

Lemma 7.3(i) whp Qs = (1 ± n−𝜀∕5)q̂s2 if s > n1∕4 and q̂s ≥ n2𝜀∕5L14. Since q̂ ≥ n−1∕2+𝜀 this holds for

s > n1∕2−𝜀∕2, so we can write Qs ≥ (1 − n−𝜀∕5)q̂s(s − n1∕2−𝜀∕2). Thus

NiA ≥ (1 − n−𝜀∕5)
(
2ys + q̂s(s − n1∕2−𝜀∕2)

)
= 2ys + q̂s2 − Õ(q̂n1−𝜀∕5).

Now we estimate SA =
∑m

i=1 NiAq−1, which we write as SA = SA1 + SA2 + Õ(n1∕2−𝜀∕5) according

to the contributions of the first and second terms in the estimate for NiA, and as before we incur a
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negligible error by using this bound even at selection steps. Thus

SA1 =
m∑

i=1

2ysq−1 =
𝑑′∑

j=1

ij−1∑
i=ij−1

4tn−3∕2(𝑑′ + 1 − j) =
𝑑′∑

j=1

ij∑
i=1

4in−3

=
𝑑′∑

j=1

2t2
j −

𝑑′∑
j=1

2tjn−3∕2 = TA

2
− Õ(n−1), and

SA2 =
m∑

i=1

q̂s2q−1 =
𝑑′∑

j=1

ij−1∑
i=ij−1

n−2(𝑑′ + 1 − j)2

≥

𝑑∑
j=1

(2n)−1j2 − Õ(n1∕2−𝜀∕3) ≥ TA∕2 − Õ(n1∕2−𝜀∕3).

The lemma follows. ▪

To estimate SC we require the crucial claim that

|N(u) ∩ C| < L2n𝜀 (67)

for any vertex u. Indeed, if this failed for some u then at time tmax we have Yxu > 2y. However, this

would contradict our estimate on Y-variables. (We can assume xu is a non-edge as x is open to C, and

we recall that we track Yxu whether xu is open or closed.) Thus the claim holds.

While q̂|C| > L15n𝜀, which as |C| = Θ̃(
√

n) holds up to time (1+o(1))tmax, we can apply Lemmas

7.3(i) and 7.4 to obtain QC ≥ (1 − L−1)q̂|C|2 and QAC ≥ (1 − L−1)q̂|A||C|. When i is not a selection

step this gives NiC = 2QAC + QC ≥ (1 − L−1)q̂(2|A||C| + |C|2), so

SC =
m∑

i=1

NiCq−1 > (1 − o(1))(2|A| + |C|)|C|m∕n2 = (1 − o(1))

(
1 − 2𝜀 + 5𝜀

√
1

2
− 𝜀

)|C| 1

2
log n.

Now we substitute Lemma 7.16 in (66), and take the union over all possible choices of the data that

specifies an event  , namely the choices of x, 𝑑′, A, C and the collection of times at which the edges

joining x to A appear. Thus we bound the probability p0 that any triple (x,A,C) as above exists by

p0 < n
∑
𝑑′

(
n
𝑑′

)(
n|C|
)

m𝑑′
(

2

n2

)𝑑′
exp

{
−(1 − o(1))

(
1 − 2𝜀 + 5𝜀

√
1

2
− 𝜀

)|C| 1

2
log n + O(n1∕2)

}
.

Here we note that the counting term
( n
𝑑′

)
m𝑑′

(
2

n2

)𝑑′
= exp[(1 + o(1))𝑑] is of lower order than the

main counting term
( n|C|) = exp[(1 + o(1))|C| 1

2
log n], and this is more than compensated for by the

probability term: assuming 𝜀 < 1∕4, we obtain

p0 < n
∑
𝑑′

exp
{
−𝜀|C| 1

5
log n

}
.

Thus the required bound on degrees holds with high probability.
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8 CONCLUDING REMARKS

We have determined R(3, t) to within a factor of 4 + o(1), so we should perhaps hazard a guess for its

asymptotics: we are tempted to believe the construction rather than the bound, that is, that R(3, t) ∼
t2∕4 log t. We only proved an upper bound on the independence number of the graph G produced by

the triangle-free process, so in principle it might give a better lower bound on R(3, t). However, we

believe that this is not the case: we conjecture that the bound on the independence number in Theorem

1.2 is asymptotically best possible.

Another natural direction for future research is to provide an asymptotically optimal analysis in

greater generality for the H-free process. No doubt the technical challenges will be formidable, given

the difficulties that arise in the case of triangles. But on an optimistic note, it is encouraging that one

can build on two different proofs of this case.
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