Galois Theory and Diophantine geometry

Minhyong Kim

July, 2009

Cambridge
Diophantine geometry

- theory of motives
- anabelian geometry
I. Preliminary Remarks

Points of a motive M:

$$\text{Ext}^1(\mathbb{Q}(0), M).$$

Problematic for direct Diophantine applications, except in the case of $M = H_1(A)$, A an abelian variety. Consequence of abelian nature of the theory of motives.
When

$$(X, b)$$

is a compact smooth pointed curve of genus ≥ 2 defined over \mathbb{Q}, anabelian geometry proposes to study instead non-abelian (continuous) cohomology

$$H^1(G, \pi^e_t(\bar{X}, b)),$$

the classifying space for $\pi^e_t(\bar{X}, b)$ torsors over $\text{Spec}(\mathbb{Q})$.

($G = \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$)
Equipped with natural non-abelian Albanese map:

\[\kappa^{na} : X(\mathbb{Q}) \longrightarrow H^1(G, \pi^e_1(\bar{X}, b)); \]

\[x \mapsto [\pi^e_1(\bar{X}; b, x)]. \]

The map does not extend to cycles.

From this point of view, \(H^1(G, \pi^e_1(\bar{X}, b)) \) should be viewed as an étale, non-abelian Jacobian.
It has distinct advantages over other non-abelian Jacobians, e.g., moduli spaces of vector bundles considered by Weil. (‘Généralisation des fonctions abéliennes.’)

These moduli spaces were also supposed to provide a ‘theory of non-abelian π_1’ defined over \mathbb{Q}, but could not be applied to Diophantine geometry.
Grothendieck’s section conjecture: κ^{na} induces a bijection

$$X(\mathbb{Q}) \simeq H^1(G, \pi^e_1(\overline{X}, b)).$$

Remarks:
- Injectivity is a consequence of Mordell-Weil theorem.
- Difficulty is surjectivity:

 Every $\pi^e_1(\overline{X}, b)$-torsor is supposed to be a path torsor.
- Instructive to compare with the conjecture

\[\hat{E}(\mathbb{Q}) \cong H_f^1(G, \pi_1(\bar{E}, e)) \]

for an elliptic curve \((E, e)\).

- Grothendieck’s conjecture implies that the set of rational points on a curve of higher genus has a natural categorical interpretation, \textit{purely in terms of the fundamental group}.
Interlude/Remark

Note that one can study the variation of

$$\pi_1(X; b, x)$$

as a function of x in any theory of π_1 with flexible base-points, each time obtaining a classifying map

$$X \to H^1(\pi_1(X, b))$$

of sorts.
II. Unipotent Albanese maps

The *motivic fundamental group*

\[\pi^M_1(\bar{X}, b) \]

lies between the pro-finite fundamental group and homology:

\[\hat{\pi}_1(\bar{X}, b) \]

\[\pi^M_1(\bar{X}, b) \]

\[H_1(\bar{X}) \]
Correspondingly, we have the classifying space of motivic torsors

\[H^1(G, \pi_1^M(\overline{X}, b)), \]

substantially more informative than \(\text{Ext}^1(\mathbb{Q}, h_1(X)) \), but much more tractable than \(H^1(G, \hat{\pi}_1(\overline{X}, b)) \).

Note: We will be discussing motives only at the level of certain realizations, so the classifying space is also a compatible system of classifying spaces.
The most important is the \mathbb{Q}_p-étale realization

$$U = U^{et} = \pi_{1,\mathbb{Q}_p}(\bar{X}, b),$$

for a prime p of good reduction, where we have a tower of diagrams:

\[
\begin{array}{c}
\vdots \\
\vdots \\
H_f^1(G, U_4) \downarrow \\
H_f^1(G, U_3) \downarrow \\
H_f^1(G, U_2) \downarrow \\
H_f^1(G, U_1) = H_f^1(G, T_p \otimes \mathbb{Q}_p)
\end{array}
\]
Brief description of the constructions.

1. The étale site of \bar{X} defines a category

$$\text{Un}(\bar{X}, \mathbb{Q}_p)$$

of locally constant unipotent \mathbb{Q}_p-sheaves on \bar{X}. A sheaf \mathcal{V} is unipotent if it can be constructed using successive extensions by the constant sheaf $[\mathbb{Q}_p]_{\bar{X}}$.

2. We have a fiber functor

$$F_b : \text{Un}(\bar{X}, \mathbb{Q}_p) \rightarrow \text{Vect}_{\mathbb{Q}_p}$$

that associates to a sheaf \mathcal{V} its stalk \mathcal{V}_b. Then

$$U := \text{Aut}^\otimes(F_b),$$

the tensor-compatible automorphisms of the functor. U is a pro-algebraic pro-unipotent group over \mathbb{Q}_p.
3.

\[U = U^1 \supset U^2 \supset U^3 \supset \cdots \]

is the descending central series of \(U \), and

\[U_n = U^{n+1} \backslash U \]

are the associated quotients. There is an identification

\[U_1 = H_1^{et}(\bar{X}, \mathbb{Q}_p) = V_p(J) := T_pJ \otimes \mathbb{Q}_p \]

at the bottom level and exact sequences

\[0 \to U^{n+1} \backslash U^n \to U_n \to U_{n-1} \to 0 \]

for each \(n \).
4. U has a natural action of G lifting the action on V_p, and $H^1(G, U_n)$ denotes continuous Galois cohomology with values in the points of U_n. For $n \geq 2$, this is *non-abelian cohomology*, and hence, does not have the structure of a group.

5. $H^1_f(G, U_n) \subset H^1(G, U_n)$ denotes a subset defined by local ‘Selmer’ conditions that require the classes to be

(a) unramified outside the set $T = S \cup \{p\}$, where S is the set of primes of bad reduction;

(b) and *crystalline* at p, a condition coming from p-adic Hodge theory.
6. The system

\[\cdots \rightarrow H^1_f(G, U_{n+1}) \rightarrow H^1_f(G, U_n) \rightarrow H^1_f(G, U_{n-1}) \rightarrow \cdots \]

is a pro-algebraic variety, the *Selmer variety* of X. That is, each $H^1_f(G, U_n)$ is an algebraic variety over \mathbb{Q}_p and the transition maps are algebraic.

\[H^1_f(G, U) = \{ H^1_f(G, U_n) \} \]

is the moduli space of principal bundles for U in the étale topology of $\text{Spec}(\mathbb{Z}[1/S])$ that are crystalline at p.

If \mathbb{Q}_T denotes the maximal extension of \mathbb{Q} unramified outside T and $G_T := \text{Gal}(\mathbb{Q}_T/\mathbb{Q})$, then $H^1_f(G, U_n)$ is naturally realized as a closed subvariety of $H^1(G_T, U_n)$.
For the latter, there are sequences

\[0 \to H^1(G_T, U^{n+1 \setminus U^n}) \to H^1(G_T, U_n) \to H^1(G_T, U_{n-1}) \xrightarrow{\delta} H^2(G_T, U^{n+1 \setminus U^n}) \]

exact in a natural sense, and the algebraic structures are built up iteratively from the \(\mathbb{Q}_p \)-vector space structure on the

\[H^i(G_T, U^{n+1 \setminus U^n}) \]

using the fact that the boundary maps \(\delta \) are algebraic. (It is non-linear in general.)
7. The map

\[\kappa^u = \{\kappa_n^u\} : X(\mathbb{Q}) \rightarrow H^1_f(G, U) \]

is defined by associating to a point \(x \) the principal \(U \)-bundle

\[P(x) = \pi_{1,\mathbb{Q}_p}(\bar{X}; b, x) := \text{Isom}^\otimes(F_b, F_x) \]

of tensor-compatible isomorphisms from \(F_b \) to \(F_x \), that is, the \(\mathbb{Q}_p \)-pro-unipotent étale paths from \(b \) to \(x \).

For \(n = 1 \),

\[\kappa_1^u : X(\mathbb{Q}) \rightarrow H^1_f(G, U_1) = H^1_f(G, T_p J \otimes \mathbb{Q}_p) \]

reduces to the map from Kummer theory. But the map \(\kappa_n^u \) for \(n \geq 2 \) does not factor through the Jacobian. Hence, suggests the possibility of separating the structure of \(X(\mathbb{Q}) \) from that of \(J(\mathbb{Q}) \).
8. If one restricts U to the étale site of \mathbb{Q}_p, there are local analogues

$$\kappa_{p,n}^u : X(\mathbb{Q}_p) \to H^1_f(G_p, U_n)$$

that can be explicitly described using non-abelian p-adic Hodge theory. More precisely, there is a compatible family of isomorphisms

$$D : H^1_f(G_p, U_n) \simeq U^{DR}_n / F^0$$

to homogeneous spaces for the \textit{De Rham fundamental group}

$$U^{DR} = \pi_1^{DR}(X \otimes \mathbb{Q}_p, b)$$

of $X \otimes \mathbb{Q}_p$.

U^{DR} classifies unipotent vector bundles with flat connections on $X \otimes \mathbb{Q}_p$, and U^{DR} / F^0 classifies principal bundles for U^{DR} with compatible Hodge filtrations and crystalline structures.
Given a crystalline principal bundle $P = \text{Spec}(\mathcal{P})$ for U,

$$D(P) = \text{Spec}(\mathcal{P} \otimes B_{cr}^G)^p),$$

where B_{cr} is Fontaine’s ring of p-adic periods. This is a principal U^{DR} bundle.

The two constructions fit into a diagram

$$
\begin{array}{ccc}
X(\mathbb{Q}_p) & \xrightarrow{\kappa_p^{na}} & H^1_f(G_p, U) \\
& \downarrow{\kappa_{\text{tr/cr}}} & D \\
& \downarrow{D} & U^{DR}/F^0 \\
& \downarrow{\kappa_{\text{tr/cr}}} & \\
& U^{DR}/F^0 &
\end{array}
$$

whose commutativity reduces to the assertion that

$$\pi^{DR}_1(X \otimes \mathbb{Q}_p; b, x) \otimes B_{cr} \simeq \pi^{u, \mathbb{Q}_p}_1(\bar{X}; b, x) \otimes B_{cr}.$$
9. The map

\[\kappa_{dr/cr}^u : X(\mathbb{Q}_p) \rightarrow U^{DR}/F^0 \]

is described using \(p \)-adic iterated integrals

\[\int \alpha_1 \alpha_2 \cdots \alpha_n \]

of differential forms on \(X \), and has a highly transcendental natural:

For any residue disk \(\overline{y} \subset X(\mathbb{Q}_p) \),

\[\kappa_{dr/cr,n}^u(\overline{y}) \subset U^{DR}_n/F^0 \]

is Zariski dense for each \(n \) and its coordinates can be described as convergent power series on the disk.
10. The local and global constructions fit into a family of commutative diagrams

\[
\begin{array}{ccc}
X(\mathbb{Q}) & \xrightarrow{} & X(\mathbb{Q}_p) \\
\downarrow & & \downarrow \\
H^1_f(G, U_n) & \xrightarrow{\text{loc}_p} & H^1_f(G_p, U_n) \\
& & \xrightarrow{D} U^{DR}_n/F^0
\end{array}
\]

where the bottom horizontal maps are algebraic, while the vertical maps are transcendental. Thus, the difficult inclusion \(X(\mathbb{Q}) \subset X(\mathbb{Q}_p)\) has been replaced by the algebraic map \(\log_p := D \circ \text{loc}_p\).
III. Diophantine Finiteness

Theorem 1 Suppose

$$\log_p(H_f^1(G, U_n)) \subset U_n^{DR}/F^0$$

is not Zariski dense for some n. Then $X(\mathbb{Q})$ is finite.
Idea of proof: There is a non-zero algebraic function ϕ

$$
\begin{align*}
X(\mathbb{Q}) & \overset{\kappa_n^u}{\hookrightarrow} X(\mathbb{Q}_p) \\
H^1_f(G, U_n) & \overset{\log_p}{\longrightarrow} U^{DR}/F^0 \\
\end{align*}
$$

vanishing on $\log_p(H^1_f(G, U_n))$. Hence, $\phi \circ \kappa_{dr/cr,n}^u$ vanishes on $X(\mathbb{Q})$. But using the comparison with the De Rham realization, we see that this function is a non-vanishing convergent power series on each residue disk. \square
Hypothesis of the theorem expected to always hold for \(n \) sufficiently large, but difficult to prove. Key necessary (unproven) lemma is

\[H_f^1(G, M) = 0 \]

for a motivic Galois representation \(M \) of weight > 0.

Note that Grothendieck expected

Non-abelian ‘finiteness of III’ (= \textit{section conjecture}) \(\Rightarrow\) finiteness of \(X(\mathbb{Q}) \).

Instead we have:

‘Higher abelian finiteness of III’ \(\Rightarrow\) finiteness of \(X(\mathbb{Q}) \).
Can prove the hypothesis (and hence, finiteness of points) in cases where the image of G inside $\text{Aut}(H_1(\bar{X}, \mathbb{Z}_p))$ is essentially abelian. That is, when

- X is affine hyperbolic of genus zero;
- $X = E \setminus \{e\}$ where E is an elliptic curve with complex multiplication;
- (with John Coates) X compact of genus ≥ 2 and J_X factors into abelian varieties with potential complex multiplication.

In the CM cases, need to choose p to split inside the CM fields.
Idea: Construct the quotient

\[U \longrightarrow W := U / [[U, U], [U, U]] \]

and a diagram

\[
\begin{array}{cccccc}
X(\mathbb{Z}_S) & \subset & X(\mathbb{Z}_p) & \quad & \quad & \quad & \quad \\
\kappa^u_n & & \kappa^u_{p,n} & \quad & \kappa_{\text{dr/cr},n} & \\
H^1_f(G, U_n) & \xrightarrow{\text{loc}_p} & H^1_f(G_p, U_n) & \xrightarrow{D} & U_n^{DR}/F^0 \\
& & & & \downarrow & \\
& & & & \downarrow & \\
H^1_f(G, W_n) & \xrightarrow{\text{loc}_p} & H^1_f(G_p, W_n) & \xrightarrow{D} & W_n^{DR}/F^0 & \\
\end{array}
\]
Theorem 2 (with John Coates) Suppose J is isogenous to a product of abelian varieties having potential complex multiplication. Choose the prime p to split in all the CM fields that occur. Then

$$\dim H_f^1(G, W_n) < \dim W_n^{DR} / F^0$$

for n sufficiently large.
Outline of proof when J_X is simple:

Via the exact sequences

$$0 \rightarrow H^1(G_T, W^{n+1} \setminus W^n) \rightarrow H^1(G_T, W_n) \rightarrow H^1(G_T, W_{n-1})$$

we get

$$\dim H^1_f(G, W_n) \leq \dim H^1(G_T, W_n) \leq \sum_{i=1}^{n} \dim H^1(G_T, W^{i+1} \setminus W^i).$$

reducing the problem to the study of the vector spaces $W^{i+1} \setminus W^i$ for which there are Euler characteristic formulas:

$$\dim H^0(G_T, W^{i+1} \setminus W^i) - \dim H^1(G_T, W^{i+1} \setminus W^i) + \dim H^2(G_T, W^{i+1} \setminus W^i) = -\dim [W^{i+1} \setminus W^i]^-.$$
But the H^0 term always, vanishes:

$$\dim H^1(G_T, W^{i+1 \setminus W^i}) = \dim [W^{i+1 \setminus W^i}]^- + \dim H^2(G_T, W^{i+1 \setminus W^i}).$$

A simple combinatorial count of elements in a Hall basis shows that

$$\sum_{i=1}^{n} \dim [W^{i+1 \setminus W^i}]^- \leq \frac{(2g-1)}{2} \frac{n^{2g}}{(2g)!} + O(n^{2g-1})$$
Similarly, on the De Rham side:

\[
\dim W_n^{DR}/F^0 = W_2/F^0 + \sum_{i=3}^{n} \dim [W^{DR,i+1}\setminus W^{DR,i}]
\]

\[
\geq (2g - 2) \frac{n^{2g}}{(2g)!} + O(n^{2g-1}).
\]

Hence, since \(g \geq 2\), we have

\[
\sum_{i=1}^{n} \dim [W^{i+1}\setminus W^{i}] < \dim W_n^{DR}/F^0.
\]

Therefore, it suffices to show that

\[
\sum_{i=1}^{n} \dim H^2(G_T, W^{i+1}\setminus W^{i}) = O(n^{2g-1}).
\]
Poitou-Tate duality eventually reduces this to the study of

$$\text{Hom}_\Gamma(M(-1), \sum_{i=1}^n [W^{i+1}\backslash W^i]^*),}$$

where

- F is a field of definition for all CM and containing $\mathbb{Q}(J[p])$,
- $\Gamma = \text{Gal}(F_\infty/F)$ for the field $F_\infty = F(J[p^\infty])$ generated by the p-power torsion of J
- and

$$M = \text{Gal}(H/F_\infty)$$

is the Galois group of the p-Hilbert class field H of F_∞.
Choosing an annihilator

\[\mathcal{L} \in \Lambda := \mathbb{Z}_p[[\Gamma]] \cong \mathbb{Z}_p[[T_1, T_2, \ldots, T_{2g}]] \]

for \(M(-1) \), we need to count its zeros among the characters that appear in

\[\sum_{i=1}^{n} [W^{i+1}\backslash W^i]^*. \]

If we denote by \(\{\psi_i\}_{i=1}^{2g} \) the characters in \(H^1(\bar{X}, \mathbb{Q}_p) \), the characters in \([W^{i+1}\backslash W^i]^* \) are a subset of

\[\psi_{j_1} \psi_{j_2} \psi_{j_3} \cdots \psi_{j_i}, \]

where \(j_1 < j_2 \geq j_3 \geq \cdots \geq j_i \).
A lemma of Greenberg allows us to reduce to the case where

\[\mathcal{L} = a_0(T_1, \ldots, T_{2g-1}) + a_1(T_1, \ldots, T_{2g-1})T_{2g} + \cdots \]

\[+ a_{l-1}(T_1, \ldots, T_{2g-1})T_{2g}^{l-1} + T_{2g}^l, \]

a polynomial in the last variable.

Since \(M(-1) \) is \(\Lambda \)-finite-generated, another elementary estimate gives us the bound

\[\text{Hom}_\Gamma(M(-1), \sum_{i=1}^n [W^{i+1}\setminus W^i]^*) = O(n^{2g-1}) \]

desired.
Remarks:

-In some sense, the finiteness of $X(\mathbb{Q})$ is accounted for by the ‘sparseness of zeros of \mathcal{L},’ an algebraic p-adic L-function of sorts.

-Contained in the proof is a rather obvious suggestion of a non-abelian analogue that would give finiteness over \mathbb{Q} for any curve of higher genus.
IV. Explicit annihilation of points: an example

A reasonable short term goal is to exhibit explicitly the ϕ in the proof of finiteness:

$$X(\mathbb{Q}) \subset X(\mathbb{Q}_p)$$

$$H^1_f(G, U_n) \xrightarrow{\log_p} U^{DR}/F^0$$

$$\exists \phi \neq 0$$

$$\mathbb{Q}_p$$
using the *cohomological construction* of a function \(\psi \) as below that vanishes on global classes

\[
\begin{align*}
X(\mathbb{Q}) & \to X(\mathbb{Q}_p) \\
\downarrow & \downarrow \\
H^1_f(G, U_n) & \xrightarrow{\text{loc}_p} H^1_f(G_p, U_n) \\
\downarrow & \downarrow \\
\mathbb{Q}_p & \to \mathbb{Q}_p
\end{align*}
\]

where the vanishing should be explained by a reciprocity law.
Example:

Let $X = E \setminus \{e\}$, where E is an elliptic curve of rank 1 with $\Sha(E)[p^\infty] = 0$. Hence, we get

$$loc_p : E(\mathbb{Q}) \otimes \mathbb{Q}_p \simeq H^1_f(G_p, V_p(E))$$

and

$$H^2(G_T, V_p(E)) = 0.$$
We will construct a diagram:

\[
\begin{array}{c}
X(\mathbb{Z}) \xrightarrow{\text{loc}_p} X(\mathbb{Z}_p) \\
\downarrow \quad \quad \downarrow \\
H^1_{f,\mathbb{Z}}(G, U_2) \xrightarrow{\text{loc}_p} H^1_f(G_p, U_2) \xrightarrow{D} U_2^{DR}/F^0 \\
\downarrow \quad \downarrow \quad \downarrow \\
\mathbb{Q}_p.
\end{array}
\]

Here, $H^1_{f,\mathbb{Z}}(G, U_2)$ refers to the classes that are trivial at all places $l \neq p$.
The Galois action on the Lie algebra of U_2 can be expressed as

$$L_2 = V \oplus \mathbb{Q}_p(1)$$

if we take a tangential base-point at e. The cocycle condition for

$$\xi : G_p \longrightarrow U_2 = L_2$$

can be expressed terms of components $\xi = (\xi_1, \xi_2)$ as

$$d\xi_1 = 0, \quad d\xi_2 = (-1/2)[\xi_1, \xi_1].$$
Define

$$\psi(\xi) := [\text{loc}_p(x), \xi_1] + \log \chi_p \cup (-2\xi_2) \in H^2(G_p, \mathbb{Q}_p(1)) \simeq \mathbb{Q}_p,$$

where

$$\log \chi_p : G_p \to \mathbb{Q}_p$$

is the logarithm of the \mathbb{Q}_p-cyclotomic character and x is a global solution, that is,

$$x : G_T \to V_p,$$

to the equation

$$dx = \log \chi_p \cup \xi_1.$$
Theorem 3 ψ vanishes on the image of

$$loc_p : H^1_{f,Z}(G, U_2) \to H^1_{f}(G_p, U_2).$$

Proof is a simple consequence of

$$0 \to H^2(G_T, \mathbb{Q}_p(1)) \to \bigoplus_{v \in T} H^2(G_v, \mathbb{Q}_p(1)) \to \mathbb{Q}_p \to 0.$$
Explicit formula on De Rham side:

Choose a Weierstrass equation for E and let

$$\alpha = dx/y, \quad \beta = xdx/y.$$

Define

$$\log_\alpha(z) := \int_b^z \alpha, \quad \log_\beta(z) := \int_b^z \beta,$$

$$D_2(z) := \int_b^z \alpha \beta,$$

via (iterated) Coleman integration.
Corollary 4 For any two points \(y, z \in X(\mathbb{Z}) \subset X(\mathbb{Z}_p) \), we have
\[
\log_2^2(y)(D_2(z) - \log_\alpha(z) \log_\beta(z)) = \log_2^2(z)(D_2(y) - \log_\alpha(y) \log_\beta(y)).
\]

Uses action of the multiplicative monoid \(\mathbb{Q}_p \) on \(H^1_f(G, U_2) \) covering the scalar multiplication on \(E(\mathbb{Q}) \otimes \mathbb{Q}_p \). Evaluate \(\psi \) on
\[
\log_\alpha(x) \kappa_2^u(y) - \log_\alpha(y) \kappa_2^u(x) \in H^1_f(G_p, U^3 \setminus U^2).
\]
V. Preliminary Remark

Galois theory according to Galois:

Groups encode structural properties of Diophantine geometry in dimension zero. (Polynomials in one variable.)
Consequently, Galois theory for polynomials of two-variables should propose a unified categorical framework relevant to Diophantine geometry in dimension one incorporating the known ingredients:

L-functions, arithmetic fundamental groups, groupoids of torsors and their moduli spaces, ...?