Galois Theory and Diophantine geometry \(\pm 12 \)

Minhyong Kim

Heidelberg, February, 2010
Notation and Review

F: Number field.

S: finite set of primes of F.

$R := \mathcal{O}_F[1/S]$, the ring of S integers in F.

p: odd prime not divisible by primes in S and v a prime of F above p with $F_v = \mathbb{Q}_p$.

$T := S \cup \{w|p\}$.

$G := \text{Gal}(\bar{F}/F)$. $G_T := \text{Gal}(F_T/T)$.

\mathcal{X}: smooth curve over $\text{Spec}(R)$ with good compactification. (Itself might be compact.)

X: generic fiber of \mathcal{X}, assumed to be hyperbolic.

$b \in \mathcal{X}(R)$, possibly tangential.
$U := \pi_{1, \mathbb{Q}_p}^{et}(\bar{X}, b)$, the \mathbb{Q}_p-pro-unipotent étale fundamental group of $\bar{X} = X \otimes \bar{\mathbb{Q}}$.

$U^i \subset U$, lower central series, normalized so that $U^1 = U$.

$U_i = U^{i+1}\setminus U$.

$U_i^j = U^{i+1}\setminus U^j$ for $j \leq i$.

$U^{DR} := \pi_1^{DR}(X \otimes \mathbb{Q}_p, b)$, with corresponding notation for the characteristic subquotients.

$P(x) := \pi_{1, \mathbb{Q}_p}^{et}(\bar{X}; b, x)$, $P_n(x) = P(x) \times_U U_n$.

$P^{DR}(x) := \pi_1^{DR}(X \otimes \mathbb{Q}_p; b, x)$, etc.
Unipotent descent tower:

\[\vdots \]

\[\vdots \]

\[H^1_f(G, U_4) \]
\[\downarrow \]
\[H^1_f(G, U_3) \]
\[\downarrow \]
\[H^1_f(G, U_2) \]
\[\downarrow \]
\[H^1_f(G, U_1) \]

\[x \in \mathcal{X}(R) \mapsto [P(x)] \in H^1_f(G, U). \]
$H^1_f(G_v, U_n)$: moduli space of crystalline U-torsors on $\text{Spec}(F_v)$.

The subgroup $F^0 \subset U^{DR}$ is the zeroth level of the Hodge filtration, so that U/F^0 classifies U^{DR} torsors with compatible action of Frobenius and reduction of structure group to F^0.

$H^1_f(G, U)$: moduli space of U-torsors on $\text{Spec}(R[1/p])$ that are crystalline at all $w|p$.

$H^1_f(G_v, U_n) \xrightarrow{\text{loc}_v} H^1_f(G_v, U_n) \sim U^{DR}_n/F^0$
The map

\[H^1_f(G_v, U_n) \longrightarrow U^{DR}_n/F^0 \]

sends a \(U \)-torsor \(Y = \text{Spec}(A) \) to

\[D(Y) := \text{Spec}([A \otimes B_{cr}]^{G_v}) \],

and diagram commutes by comparison isomorphism of non-abelian \(p \)-adic Hodge theory.

The focus of the study then is the localization map

\[H^1_f(G, U_n) \overset{\text{loc}_v}{\longrightarrow} H^1_f(G_v, U_n) \]

and its image.
Current status:

1. Whenever the image is not Zariski dense, $\mathcal{X}(R)$ is finite.

$$\mathcal{X}(R) = \mathcal{X}(R_v) \cap \text{loc}_v(H^1_f(G,U_n)).$$

Difficult to prove non-denseness in any situation where the corresponding Galois theory is genuinely non-abelian.
2. Suppose $F = \mathbb{Q}$ and

$$Im(G) \subset Aut(H_1(\bar{X}, \mathbb{Q}_p))$$

is essentially abelian. Then loc_v is not dominant for $n >> 0$.

Basic application of Euler characteristic formula

$$\dim H^0(G_T, U^n_n) - \dim H^1(G_T, U^n_n) + \dim H^2(G_T, U^n_n)$$

$$= \sum_{w | \infty} (H^0(G_w, U^n_n) - [F_w : \mathbb{R}] \dim U^n_n)$$

and control of H^2. In non-abelian situations, leads to difficult questions about Galois cohomology.
3. One expects greater precision coming from some version of duality for Galois cohomology.

Example:

E/\mathbb{Q} elliptic curve with

$$\text{rank} E(\mathbb{Q}) = 1,$$

integral j-invariant, and

$$|\Sha(E)[p^\infty]| < \infty$$

for a prime p of good reduction.

$X = E \setminus \{0\}$ given as a minimal Weierstrass model:

$$y^2 = x^3 + ax + b.$$

So

$$X(\mathbb{Z}) \subset E(\mathbb{Z}) = E(\mathbb{Q}).$$
Let $\alpha = dx/y$, $\beta = xdx/y$. Get analytic functions on $X(\mathbb{Q}_p)$,

$$\log_\alpha(z) = \int_b^z \alpha; \quad \log_\beta(z) = \int_b^z \beta;$$

$$\omega(z) = \int_b^z \alpha \beta.$$

Here, b is a tangential base-point at 0, and the integral is (iterated)

Coleman integration.

Locally, the integrals are just anti-derivatives of the forms, while
for the iteration,

$$d\omega = (\int_b^z \beta)\alpha.$$
Suppose there is a point $y \in X(\mathbb{Z})$ of infinite order in $E(\mathbb{Q})$. Then the subset
\[X(\mathbb{Z}) \subset X(\mathbb{Q}_p) \]
lies in the zero set of the analytic function
\[\psi(z) := \omega(z) - \frac{1}{2} \log_\alpha(z) \log_\beta(z) \]
\[- \frac{\omega(y) - \frac{1}{2} \log_\alpha(y) \log_\beta(y)}{(\log_\alpha(y))^2} \left(\log_\alpha(z) \right)^2. \]

A fragment of non-abelian duality and explicit reciprocity.
Linearization

Study the tangential localization map:

\[d\text{loc}_v(c) : T_c H^1_f(G, U) \to T_{\text{loc}_v(c)} H^1_f(G_v, U) \]

at a point \(c \in H^1_f(G, U) \).

Formulae:

\[T_c H^1_f(G, U) \simeq H^1_f(G, L(c)); \]
\[T_{\text{loc}_v(c)} H^1_f(G_v, U) \simeq H^1_f(G_v, L(c)); \]

where \(L \) is the Lie algebra of \(U \) with Galois action twisted by the cocycle \(c \).
For non-denseness, suffices to show that $d\text{loc}_v(c)$ is not surjective at generic points c.

Can formulate a criterion in terms of the cotangent space:

$$T^*_{\text{loc}_v(c)} H^1_f(G_v, U) \simeq H^1(G_v, (L(c))^*(1))/H^1_f(G_v, (L(c))^*(1))$$

coming from local Tate duality.
Theorem 0.1 Assume that for generic c there is a class $z \in H^1(G_T, (L_n(c))^*(1))$

such that $\text{loc}_w(z) = 0$ for $w \neq v$ and

\[\text{loc}_v(z) \notin H^1_f(G_v, (L_n(c))^*(1)). \]

Then

\[\text{loc}_v : H^1_f(G, U_n) \rightarrow H^1_f(G_v, U_n) \]

is not dominant.
Proof.

By Poitou-Tate duality, we know that the images of the localization maps
\[\text{loc}_T : H^1(G_T, L_n(c)) \to \bigoplus_{w \in T} H^1(G_w, L_n(c)) \]
and
\[\text{loc}_T : H^1(G_T, (L_n(c))^*(1)) \to \bigoplus_{w \in T} H^1(G_w, (L_n(c))^*(1)) \]
are exact annihilators under the natural pairing
\[< \cdot, \cdot > : \bigoplus_{w \in T} H^1(G_w, L_n(c)) \times \bigoplus_{w \in T} H^1(G_w, (L_n(c))^*(1)) \to \mathbb{Q}_p. \]

With respect to the pairing \(< \cdot, \cdot >_v\) at \(v\), \(H^1_f(G_v, L_n(c))\) and \(H^1_f(G_v, (L_n(c))^*(1))\) are mutual annihilators.
Given any element \((a_w) \in \bigoplus_{w \in T} H^1(G_w, L_n(c))\), we have

\[
< \text{loc}_T(z), (a_w) > = < \text{loc}_v(z), a_v >_v .
\]

Hence, for any \(a \in H^1_f(G, L_n(c))\), we get

\[
< \text{loc}_v(a), \text{loc}_v(z) >_v = < \text{loc}_T(a), \text{loc}_T(z) >= 0 .
\]

Since \(< \cdot, \text{loc}_v(z) >\) defines a non-trivial linear functional on \(H^1_f(G_v, L_n(c))\), this implies the desired results. \(\square\)
Duality in families

In the following, Γ is G_T or G_v.

Given a point c of $H^1(\Gamma, U)$ in a \mathbb{Q}_p-algebra R, compose it with a section s of the projection

$$Z^1(\Gamma, U) \to H^1(\Gamma, U)$$

to get an element of $Z^1(\Gamma, U)(R) = Z^1(\Gamma, U(R))$.

Given representation

$$\rho : U \to \text{Aut}(E)$$

doctor U, twist it with the cocycle c to get ρ_c acting on $E(R) = E \otimes_{\mathbb{Q}_p} R$ defined by

$$\rho_c(g)x = \text{Ad}(c(g))\rho(g)x.$$
The cocycles $Z^i(\Gamma, E(c)(R))$ and the cohomology $H^i(\Gamma, E(c)(R))$, acquire structures of R modules, defining a sheaf $H^i(\Gamma, \mathcal{L})$ of modules on $H^i(\Gamma, U)$.

Carry this out for the Lie algebra L to get the sheaf $H^i(\Gamma, \mathcal{L})$, as well as for the dual $L^*(1)$ to get the Tate dual sheaf $H^i(\Gamma, \mathcal{L}^*(1))$.

Similarly, for each term L^i_j occurring in the descending central series:

$$H^i(\Gamma, \mathcal{L}^i_j), \quad H^i(\Gamma, (\mathcal{L}^i_j)^*(1)).$$
We have exact sequences,

\[0 \to H^1(\Gamma, \mathcal{L}^n_n)(R) \to H^1(\Gamma, \mathcal{L}^i_n)(R) \to H^1(\Gamma, \mathcal{L}^i_{n-1})(R) \]
\[\delta \to H^2(\Gamma, \mathcal{L}^n_n)(R) \]

and

\[H^0(\Gamma, (\mathcal{L}^n_n)^*(1)) \]
\[\to H^1(\Gamma, (\mathcal{L}^i_{n-1})^*(1))(R) \to H^1(\Gamma, (\mathcal{L}^i_n)^*(1))(R) \to H^1(\Gamma, (\mathcal{L}^n_n)^*(1))(R) \]
\[\delta \to H^2(\Gamma, (\mathcal{L}^i_{n-1})^*(1))(R) \]
Furthermore,

\[H^i(\Gamma, (L^*_n)^*(1))(R) \simeq H^i(\Gamma, (L^*_n)^*(1)) \otimes R; \]

\[H^i(\Gamma, L_n^*)(R) \simeq H^i(\Gamma, L_n^*) \otimes R. \]

By induction on \(n \), we see that both \(H^1(\Gamma, L_n^i) \) and \(H^1(\Gamma, (L^*_n)^*(1)) \) are coherent sheaves.
Now consider the case where $\Gamma = G_v$.

The sheaves

$$H^1(G_v, (\mathcal{L}_n^i)^*(1))$$

and

$$H^1(G_v, \mathcal{L}_n^i)$$

are locally free for $i \geq 2$, and we have arbitrary base-change

$$H^1(G_v, (\mathcal{L}_n^i)^*(1))(R) \otimes A = H^1(G_v, (\mathcal{L}_n^i)^*(1))(A);$$

$$H^1(G_v, \mathcal{L}_n^i)(R) \otimes A = H^1(G_v, \mathcal{L}_n^i)(A);$$

Global sheaves are more complicated in general.
The cup product pairings

\[H^2(G_v, \mathcal{L}_n^i)(R) \times H^0(G_v, (\mathcal{L}_n^i)^*(1))(R) \rightarrow H^2(G_v, \mathbb{Q}_p(1)) \otimes R \simeq R; \]

\[H^1(G_v, \mathcal{L}_n^i)(R) \times H^1(G_v, (\mathcal{L}_n^i)^*(1))(R) \rightarrow H^2(G_v, \mathbb{Q}_p(1)) \otimes R \simeq R. \]

define maps

\[H^0(G_v, (\mathcal{L}_n^i)^*(1))(R) \rightarrow H^2(G_v, \mathcal{L}_n^i)(R)^*; \]

\[H^1(G_v, (\mathcal{L}_n^i)^*(1))(R) \rightarrow H^1(G_v, \mathcal{L}_n^i)(R)^*, \]

which are isomorphisms for \(i \geq 2 \).
Back to $\mathbb{P}^1 \setminus \{0, 1, \infty\}$

$X = \mathbb{P}^1 \setminus \{0, 1, \infty\}$.

U is freely generated by two elements e and f lifting generators of $U_1 = \mathbb{Q}_p(1) \oplus \mathbb{Q}_p(1)$.

However, using tangential basepoint, can make f stable under the Galois action:

$$gf = \chi(g)f.$$

$I \subset \text{Lie}(U)$: ideal generated by Lie monomials in e and f degree at least two in f.

$N = \text{Lie}(U)/I$ and M corresponding quotient group of U.
\[N_1 = \text{Lie}(U)_1 = H_1(\bar{X}, \mathbb{Q}_p). \]

\[N^k_k = N^{k+1}_k \backslash N^k_k \text{ is one-dimensional, generated by } ad(e)^{k-1}(f). \]

We have a decomposition of Galois representations

\[N^2 = \bigoplus_{i=2}^{\infty} N^{i+1}_i \backslash N^i_i \]

with \(N^{i+1}_i \backslash N^i_i \cong \mathbb{Q}_p(i). \)

Structure of \(N(c) \) for \(c \) non-trivial can be more complicated.
However,
\[H^2(\Gamma, N^m_n) = H^2(\Gamma, \mathbb{Q}_p(n)) = 0 \]
for \(n \geq 2 \). Furthermore, there exists a \(K \geq 2 \) such that
\[H^2(\Gamma, (N^m_n)^*(1)) = 0 \]
for \(n \geq K \).

As a consequence, global cohomology variety is smooth, and
\[\dim H^2(\Gamma, N_n(c)), \quad \dim H^2(\Gamma, (N_n(c))^*(1)) \]
are bounded independently of \(n \) and \(c \).
Short exact sequences:

\[0 \to H^1(\Gamma, \mathcal{N}^n_n) \to H^1(\Gamma, \mathcal{N}^i_n) \to H^1(\Gamma, \mathcal{N}^i_{n-1}) \to 0 \]

\[0 \to H^1(\Gamma, (\mathcal{N}^n_n)^*(1)) \to H^1(\Gamma, (\mathcal{N}^i_n)^*(1)) \to H^1(\Gamma, (\mathcal{N}^i_{n-1})^*(1)) \to 0 \]

of locally-free sheaves and arbitrary base-change

\[H^1(\Gamma, \mathcal{N}_n^i)(R) \otimes A \simeq H^1(\Gamma, \mathcal{N}_n^i)(A), \]

\[H^1(\Gamma, (\mathcal{N}_n^i)^*(1))(R) \otimes A \simeq H^1(\Gamma, (\mathcal{N}_n^i)^*(1))(A) \]

locally and globally, for \(i \geq K \).
Some consequences:
- We have an embedding

$$H^1(G_T, (\mathcal{N}_n^i)^*(1)) \hookrightarrow \prod_{w \mid p} \text{loc}_w^* H^1(G_v, (\mathcal{N}_n^i)^*(1))$$

as a local direct factor for $i \geq K$.

- After base change to any smooth curve mapping to $H^1(G_T, M_n)$, the image of the map

$$H^1(G_T, (\mathcal{N}_n^i)^*(1)) \rightarrow \prod_{w \mid p, w \neq v} \text{loc}_w^* H^1(G_v, (\mathcal{N}_n^i)^*(1))$$

is a local direct factor for $i \geq K$.

- The kernel Ker_n^i of the the above map is a local direct factor that commutes with base-change for $i \geq K$.

Now we analyze all these objects at the tangential base-point.
Define

\[N_n^+ := \bigoplus_{K \leq i \leq n, \text{even}} N_i / N_i^1. \]

Proposition 0.2 Let \(F \) be totally real. There is a subspace \(Z_n^K \subset H^1(G_T, [N_n^K]^*(1)) \) such that \(\text{loc}_w(Z_n^K) = 0 \) for \(w \neq v \) and

\[\text{loc}_v : Z_n \simeq H^1(G_v, [N_n^+]^*(1)). \]
Key point is that
\[N^K_n = \bigoplus_{i=K}^n N^i_n. \]

and
\[H^1(G_T, \mathbb{Q}_p(1 - i)) \simeq \bigoplus_{w|p} H^1(G_w, \mathbb{Q}_p(1 - i)) \]
for \(i \geq K \) even, while
\[H^1(G_T, \mathbb{Q}_p(1 - i)) = 0 \]
for \(i \geq K \) odd.
By deforming this subspace to the nearby fibers, we get

Proposition 0.3 Let F be totally real. At a generic point c, there is a subspace $Z^K_n(c) \subset H^1(G_T, (N^K_n(c))^*(1))$ of dimension

$$\geq \lfloor (n - K)/2 \rfloor$$

such that

$$\text{loc}_w(Z^K_n(c)) = 0$$

for $w \neq v$ and

$$\text{loc}_v : Z^K_n(c) \hookrightarrow H^1(G_v, (N^K_n(c))^*(1)).$$
Proposition 0.4 Let F be totally real. Then for n sufficiently large, and generic c there is an element $z \in H^1(G_T, N^*_n(1)(c))$ such that $\text{loc}_w(z) = 0$ for $w \neq v$ and

$$\text{loc}_v(z) \notin H^1_f(G_v, N^*_n(1)(c)).$$
Proof.

Note that \(\dim Z^K_n(c) \geq \lfloor (n - K)/2 \rfloor \). From the exact sequence

\[
0 \to [N_{K-1}(c)]^*(1) \to [N_n(c)]^*(1) \to [N^K_n(c)]^*(1) \to 0,
\]

we get

\[
0 \to H^1(G_T, [N_{K-1}(c)]^*(1)) \to H^1(G_T, [N_n(c)]^*(1)) \to \]

\[
\to H^1(G_T, [N^K_n(c)]^*(1)) \to H^2(G_T, [N_{K-1}(c)]^*(1)),
\]

and an exact sequence

\[
0 \to H^1(G_T, [N_{K-1}(c)]^*(1)) \to H^1(G_T, [N_n(c)]^*(1)) \to Im_n \to 0,
\]

for a subspace

\[
Im_n \subset H^1(G_T, [N^K_n(c)]^*(1))
\]

of codimension at most \(\dim H^2(G_T, [N_{K-1}(c)]^*(1)) \).
Now we consider
\[
0 \to H^1(G_T, [N_{K-1}(c)]^*(1)) \to H^1(G_T, [N_n(c)]^*(1))
\]
\[
\downarrow \quad \downarrow
\]
\[
0 \to \bigoplus_{w \in T, w \neq v} H^1(G_w, [N_{K-1}(c)]^*(1)) \to \bigoplus_{w \mid p, w \neq v} H^1(G_w, [N_n(c)]^*(1))
\]
\[
\quad \quad \downarrow
\]
\[
\to \quad Im_n \quad \to 0
\]
\[
\downarrow
\]
\[
\to \quad \bigoplus_{w \mid p, w \neq v} H^1(G_w, [N_n^K(c)]^*(1)) \to 0
\]
Clearly,

\[\dim Z^K_n(c) \cap \text{Im}_n \to \infty \]

as \(n \to \infty \). But the cokernel of

\[H^1(G_T, [N_{K-1}(c)]^*(1)) \to \bigoplus_{w \mid p, w \neq v} H^1(G_w, [N_{K-1}(c)]^*(1)) \]

has of course dimension bounded independently of \(n \).
So we see from the snake lemma that there is an element

\[z \in H^1(G_T, [N_n(c)]^*(1)) \]

lifting an element of \(Z_n(c) \cap Im_n \), such that

\[\text{loc}_w(z) = 0 \]

for \(w \in T, w \neq v \) and

\[\text{loc}_v(z) \neq 0. \]

In fact, since \(z \) is being chosen to map to a non-zero element of \(\dim Z_n(c) \cap Im_n \) and \(H^1_f(G_v, [N^K_n(c)]^*(1)) = 0 \), we see that

\[\text{loc}_v(z) \notin H^1_f(G_v, [N_n(c)]^*(1)). \]
Corollary 0.5 For n sufficiently large,

$$T_c H^1_f(G_T, M_n) \rightarrow T_{loc_v(c)} H^1_f(G_v, M_n)$$

is not surjective.