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X: smooth variety over Q. So X defined by

polynomial equations with rational coefficients.

Arithmetic of X
↗ ↖

Topology Geometry
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From 50’s to 80’s applications of topology to

arithmetic came primarily from homology:

-Basic language of homological algebra;

-Arithmetic cohomology theories.
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These days, immediately associate to X at

least four different cohomology groups:

-Hi(X(C),Q): Singular cohomology of topo-

logical space given by the complex points of

X.

-Hi(X̄,Qp): Étale cohomology with p-adic co-

efficients.

-Hi
DR(X) = Hi(X,Ω•X): The algebraic De Rham

cohomology of X.

-Hi
cr(X mod p,Qp): The crystalline cohomol-

ogy of X mod p.

4



All have ‘formally similar’ linear structures. Also,

‘compatible’ in many ways, e.g.

Hi(X̄,Qp) ' Hi(X(C),Q)⊗Qp

Supposedly accounted for by a theory of ‘mo-

tives’:

Varieties −→ Motives
↘ ↓

Vector Spaces
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A focal point of this lecture: In the homolog-

ical approach, main ideas and techniques are

linear.
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Important contrast:

Linear ↔ Non-linear

In topology,

Homology ↔ Homotopy

But also, the linear theory provides input into
the non-linear theory via linearization.

Topological version,

π1/[π1, π1] = H1

However, one expects a fully non-linear theory,
when fully understood, to be more powerful
than a linearized version.

The techniques of homotopy as applied to arith-
metic should yield information not accessible
to homology.
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Homology −→ study of L-functions.

Homotopy −→ study of Diophantine sets.

Note: L-functions also yield information about

Diophantine sets. But actually, linearized Dio-

phantine sets. For example, might be inter-

ested in

X(Q)

the set of rational points. But L-functions give

information on something like Z[X(Q)].

Cannot yield, in any obvious way, Faltings’ the-

orem (Mordell conjecture), for example.
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Classically, a basic ‘homological’ construction

used in Diophantine geometry of a hyperbolic

curve X is the Jacobian JX. A very linear-

object:

JX :=

(Free abelian group generated by X)/(eq. rel.)

Itself an abelian group variety.

Homological nature: Over C

JX = H1(X,Z)\H1(X,C)/F0
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If we fix a base-point x ∈ X, can map the curve

into the Jacobian using the Albanese map:

X→JX

y 7→ [x− y]

Can also express this map using abelian inte-

grals

y 7→ [ω 7→
∫ y
x
ω]

Jacobian can also be thought of as a parameter

space for line bundles of degree zero on X.

Thereby, we can view X as parametrizing line

bundles on itself.

Ends up being a key idea: parametrize other

geometric objects using points of X to some-

how enlarge the information in the point.
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Weil tried to use this parametrization to prove

the Mordell conjecture. Doesn’t quite work

because J has too many points: also related

to linearity.
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The eventual proof of Mordell conjecture in-

volves a non-linear parametrization. A family

of curves (Kodaira-Parshin construction):

Z
↓
X

y 7→ Zy

( 7→ H1
et(Z̄))

Similar parametrization occurs in Wiles’ theo-

rem (Frey-Hellegouarch correspondence).
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Somewhat ad hoc. Desirable to have a non-

linear version of Weil’s construction.

The idea of using homotopy in this regard stems

in part from Grothendieck’s ‘anabelian’ philos-

ophy. Specifically, the section conjecture.

Relates X(Q) to the pro-finite fundamental group.

General idea is that for a class of schemes maps

between pro-finite fundamental group should

be induced by a map of schemes.

However, very difficult!
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Another approach: There is a non-linear Al-

banese map

X→classifying space

y 7→ [π1(X;x, y)]
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Actual object involved is the De Rham funda-

mental group (Chen, Hain, Morgan,. . . ).

πDR1 (X,x)

Unipotent completion of usual fundamental group.

Obtained by taking complex linear combina-

tions Σcl[l] of paths and regarding two such as

equivalent if they have the same ‘parallel trans-

port’ action on vector bundles with unipotent

connection.
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Actually a pro-algebraic group. Each quotient

Zn+1\πDR1 (X, x)

by a subgroup in the descending central se-

ries is a finite-dimensional unipotent algebraic

group.
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Can also construct De Rham path spaces

πDR1 (X;x, y)

which are torsors for πDR1 (X,x).

These groups and path spaces have a Hodge

filtration

πDR1 (X;x, y) · · · ⊃ F−2 ⊃ F−1 ⊃ F0

and an integral lattice Ly ⊂ πDR1 (X;x, y) com-

ing from the image of the topological paths.

The torsor structure is compatible with the

extra structures. These torsors end up being

classified by

L\πDR1 (X,x)/F0
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Non-linear Albanese map (Hain)

X −→ L\πDR1 (X,x)/F0

is given by

y 7→ [πDR1 (X;x, y)]

Note: The ‘abelianization’ gives us the usual

Albanese map:

y 7→ [Z2\πDR1 (X;x, y)]
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The most important point for Diophantine ap-
plications is that one can use this map to pull
natural functions back from the classifying space
to X.

For example, when X = P1\{0,1,∞}, the alge-
braic functions on πDR1 (X,x)/F0 form a vector
space

C[αw]

spanned by functions αw, indexed by words w

in a two letter alphabet {A,B}. The function
αw corresponding to the word

w = Ak1−1BAk2−1B · · ·Akm−1B

gives rise to the function

Lw(z) = Σn1>n2>···>nm
zn1

n
k1
1 · · ·nkmm

,

a multiple polylogarithm. Ubiquitous in arith-
metic, geometry, and physics.

More generally, the non-linear Albanese map
can be expressed using iterated integrals.
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For arithmetic applications, need a p-adic ver-

sion of the construction above: Theory of the

crystalline fundamental group and p-adic Hodge

theory. Leads to p-adic multiple polylogarithms

and p-adic iterated integrals. Important dis-

tinction from the archimedean theory is that

the functions we end up with are single-valued.
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In the case of X = P1\{0,1,∞}, applies to the

finiteness of X(Z[1/S]) the set of S-integers.

(Theorem of Siegel.)

Theorem: On X(Zp) there exists a non-trivial

linear combination

ΣwcwPw

of p-adic multiple polylogarithms that vanishes

on

X(Z[1/S]) ⊂ X(Zp).
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For compact curves of higher genus, reduces

Faltings theorem to conjectures of Beilinson.

These results come from the theory of the mo-

tivic fundamental group, motivic non-linear Al-

banese map, (Deligne) and ‘linearization’.

Linearization:

0→Zn/Zn+1→πM1 /Zn+1→πM1 /Zn→0
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Use of the motivic fundamental group and mo-

tivic Albanese map:

X(Z[1/S]) → πDR1 (X ⊗Qp, x)
↓ ↑

H1
f (ΓS, π

et
1 (X̄, x)⊗Qp) → H1

f (Gp, πet1 (X̄, x)⊗Qp)
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Perhaps can view as a partial vindication of

Grothendieck’s ‘anabelian’ vision. Especially

mysterious in that the anabelian philosophy

gets connected in the process to the theory

of (mixed) motives.
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