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1. Arithmetic elliptic curves in general position (AECGP): a height inequality in an
ideal case

Let F be a number field, E an elliptic curve over F , and l a rational prime. Assume that E has split
semi-stable reduction at the set S of primes of bad reduction. Thus, for each v ∈ S, there is a Tate
parametrisation

Gm/q
Z
v ' Ev

and a Gv = Gal(F̄v/Fv)−equivariant exact sequence

0 - < q1/l
v > - E[l] - Z/l - 0.

Assume the existence of a cyclic subgroup A ⊂ E[l] of order l defined over F which is equal to the
< q

1/l
v > for all v ∈ S. Let E′ = E/A.

Denote by h(·) and ∆(·) the Faltings height function and the norm of the minimal discriminant
function on elliptic curves. There is a constant C that depends only on ε such that

log ∆ ≤ (12 + ε)h+ C.

By the computations in Faltings’s ‘Finiteness Theorems’ paper, we have

h(E′) ≤ h(E) + 2 log l

and by a more elementary computation, ∆(E′) = ∆(E)l. Thus,

l log ∆(E) = log ∆(E′) ≤ (12 + ε)h(E′) + C ≤ (12 + ε)h(E) + (12 + ε)2 log l + C.

Denote by B =
∏

v∈F∞ Bv a product of compact domains with open interiors in
∏

v∈F∞ A1(Kv),
where F∞ denotes the set of Archimedean places. Denote by CB the set of elliptic curves E as above
whose j-invariants are in B. Then for all E ∈ CB , we have

(12 + ε)h(E) ≤ log ∆(E) + C ′,

with C ′ depending on F and ε. Thus, for E ∈ CB , we get

(12 + ε)lh(E)− lC ′ ≤ (12 + ε)h(E) + (12 + ε)2 log l + C,

or
h(E) ≤ 1

(12 + ε)(l − 1)
(C + lC ′) +

2 log l

l − 1
.

From this, we deduce bounds on the height and log discriminant of the elliptic curves in CB . This is
not quite Szpiro’s inequality, but hints at an approach to it in realistic cases.

In the AECGP paper, it is shown that Szpiro’s inequality for the curves in CB will imply it in
general. It is also shown that it suffices to prove it for E such that E minus the origin e is a curve of
strict Belyi type.

—————–
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Correction (27/12/2015): Mochizuki has pointed out to me that an elliptic curve minus the
origin is automatically strictly of Belyi type. It seems I was rather confused about the definition.
——————

Whatever this means, the anabelian consequence is that the ground field can be algorithmically
constructed from the augmented etale fundamental group

π1(E \ {e}) - Gal(F̄ /F ).

This sort of statement is also true over local fields with the tempered fundamental group in place of
the profinite π1. The precise formulation of ‘algorithmic construction’ appears to be rather delicate.
The model case to keep in mind is the construction of the function field k(X)× of a curve X over a
finite field from its absolute Galois group. Here, one first expresses all the multiplicative groups of
local fields k(X)×v as subgroups of the abelianisation of the decomposition groups. The unit
subroups can also be expressed as inertia subgroups. Then, k(X)× itself can be expressed as the
subgroup of the ideles given as the kernel of the reciprocity map. The difficult part of course is to
recover the additive structure. However, it’s clear that the set k(X) = κ(X)× ∪ {0} itself has a
description purely in terms of the group. What Mochizuki does is express F and Fv similarly using
just the data of the augmented π1. One should think of such results as having the same spirit as the
construction of a field from a projective geometry over it.

We will assume now that E \ {e} is of strict Belyi type.

2. Simulation of the subgroup A.

Let K be the field extension of F generated by E([l]). We have to choose l a bit carefully, so that,
for example, the image of Gal(K/F ) in Aut(E[l]) contains SL2(Fl). Denoting by VK and VF the set
of places of K and F , there is the restriction map VK

r- VF . Denote by V a section of r satisfying
certain conditions. Thus, we are choosing a place of K over each place of F . The main condition has
to do with the set V S of places of V lying above the bad primes S. For each v ∈ V S , we will continue
to use the notation of the previous section for the Tate parametrization. We assume the existence of
a subgroup A ⊂ E[l] such that for v ∈ V S , A does indeed agree with the subgroup < q

1/l
v >. The

existence of such a section V after choosing A first is guaranteed by the condition on the Galois
action: Note that we are insisting on the consistency between the local and global subgroup not at
all primes of bad reduction in K, but only those in V . The main goal of the IUTT papers is to carry
out the ‘ideal’ argument of section 1 using EK and V in place of E and Spec(OF ).

In order to get a feeling for how this might work, recall a formula of Szpiro that says

(1/12) log ∆(EK) = − < e, e >,

where e is the origin on a regular minimal model of E. That is, −h(EK) is essentially the
self-intersection number of the origin. Denote the isogeny from E to E′ by f and the origin of a
regular minimal model of E′ by e′. Then

h(E′) ∼ − < e′, e′ >= − < f∗(e), e
′ >= − < e, f∗(e′) >∼ − < e, Ā > .

(We denote also by f an extension of f to the regular minimal model, which probably exists, even
though I don’t quite remember the relevant theorem.)
Here, I’m being a bit sloppy about the intersection contribution of Ā, the closure of A, since some
contracted divisors may get in the way. In any case to compute this intersection number, one could
first compute the intersection between Ne and A for some multiple N and divide the result by N .
But then, there will be a section θ of O(Ne), a theta function, which doesn’t vanish on any of the
points in A. Hence, we would get something like

− < e, Ā >= (1/N)[
∑

v finite
(
∑
x∈Ā

− log ‖θ(x)‖v) +
∑

v infinite
(
∑
x∈Ā

log ‖θ(x)‖v)].
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Thus, we need to examine the contributions
∑

x∈Ā log ‖θ(x)‖v for each v, which is probably
dominated by the primes of bad reduction. (I’m not sure about how to bound the Archimedean
contributions. This is possibly done by choosing θ having small Archimedean sup norm.) But notice
that this is still a sum over all primes of bad reduction in K. At the v ∈ V S , the equality
A =< q

1/l
v > allows us to identify the values θ(x) with powers

qj
2/(2l)

v , 1 ≤ j ≤ (l − 1)/2

of q1/(2l)
v , at least after normalising θ carefully (and replacing it by an l-th root Θ). If we had this

behaviour at all the bad v, we would end up with a bound for h(EK) similar to that of the previous
section, since we are repeating the same computation over a different field. However, this will be
very rare, if at all possible (maybe for l = 2 and very special curves?).

3. Estimating arithmetic degrees

To proceed from here, I will give one possible approach that is different from the IUTT papers, and
which Mochizuki believes is doomed to failure. This is to try to recover the values log ‖θ(x)‖v at the
‘missing’ v in terms of the values at v ∈ V S . For this, one would need various anabelian
reconstruction theorems, including a π1 description of the theta function. A theory of this sort is
developed in the étale theta function paper. That is, a theta function as a section of a line bundle is
essentially the ‘Frobenioid’ manifestation. (Recall that Frobenioids are categories of line bundles
with sections parametrised by a base category of Galois type.) However, one can also look at a
Kummer class

κ(Θ) ∈ H1(πv, Ẑ(1)),

where πv is the tempered fundamental group of (E \ {e})⊗Kv (or some subscheme, covering
scheme, etc), and Θ is some carefully chosen l-th root of θ−1. This is the étale theta function. One
evaluates this class at the various x ∈ A to get Kummer classes x∗(k(Θ)) ∈ H1(Gv, Ẑ(1)). According
to the paper, these classes will be the Kummer classes of the values Θ(x) ∈ K∗v . One obtains thereby
an anabelian description of these values (up to some harmless ambiguities).

Here is then a possible strategy: The
πw - Gw

for w /∈ V are isomorphic to such a pair
πv - Gv

at v ∈ V . So perhaps the sum ∑
w∈r−1(VF )

(
∑
x∈Ā

log ‖Θ(x)‖w)]

can be expressed in terms of the sum with fewer terms:∑
v∈V S

(
∑
x∈Ā

log ‖Θ(x)‖v)]?

Since the anabelian construction of the Kw for w /∈ V from the πv - Gv for v ∈ V S has no reason
to preserve the powers of q1/(2l) in a coherent manner, getting a bound out of this strategy will not
be straightforward.

————————–
Correction: This is not right. If it’s just a question of computing valuations, this can be done in an
anabelian way. (Or a ‘mono-anabelian’ way.) That is, as Saidi points out to me, just from GKv

, one
can construct the multiplicative group K∗v together with the valuation map K∗v - Z. Of course
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one gets the profinite completion of K∗v and the units O∗Kv
⊂ K̂∗v using class field theory. So one

needs to construct the Frobenius element in

K̂∗v/O
∗
Kv
' Gun

Kv
.

But one does this by constructing the Galois module Ẑ(p)(1) of the inverse limit of roots of 1 prime
to the residue characteristic p (which itself can be read off from the profinite group O∗Kv

) . This is,
for example, the unique Galois module ' Ẑ(p) such that

H2(GKv
, Ẑ(p)(1)) ' Ẑ(p).

Then, the Frobenius element can be characterized by it’s action on the quotients µn for n prime to
p. So the problem must be elsewhere.

Correction (27/12/15): It seems the faliure of this strategy is simply that the Galois conjugation
that takes πw to πv will not preserve the subgroup A.
——————

However, my initial thought was that this is possibly where the ‘controlled distortions’, referred to
often in the IUTT papers, need to be calculated. When this is all done, one might optimistically
hope that a bound emerges rougher than the ‘ideal’ one, but sufficient for a version of Szpiro’s
inequality.

However, Mochizuki assures me that the papers proceed by

completely forgetting about the v /∈ V .

What is developed rather is a version of the intersection theory and arithmetic degree argument
using only the primes in V . This is one of the senses in which scheme theory has been dismantled. It
is not hard to imagine that a version of the ideal argument exists, provided such a degree theory
exists. The IUTT papers develop such a theory. However, Mochizuki has emphasised that the degree
doesn’t apply to a general arithmetic divisor. Rather, it is only the degree of specific arithmetic
divisors of interest, mostly the Σv∈V S

log ‖Θ(x)‖v, that are computed (in a suitable sense).

I lack the understanding to say much more at the moment. However, it might be worthwhile still to
convey my superficial intuition surrounding a few more ingredients, bearing in mind that much of
what I write now is guesswork. From a certain point of view, the main obstruction to developing a
degree theory for divisors supported on V is that the group K∗S of numbers in K that are units
outside of S is not closed under addition1. So one needs to develop some formalism to overcome this.
The key tool here is the log map

logv : K̄∗v - K̄v,

which Mochizuki views as ‘mixing up’ addition and multiplication. The vertical portion of his
‘log-theta lattice’ contains an infinite sequence of such maps (ignoring many subtleties even about
the precise domain and range of the log map, which make up the ‘log shells’ of the IUTT papers)

logv- K̄v
logv- K̄v

logv- K̄v
logv-

on which the log map itself acts as an endomorphism (repreatedly emphasised to be an analogue of
the Frobenius map). In some sense that I don’t understand, one passes then to a quotient of this
sequence modulo the log endomorphism, and thereby ends up with an object where addition and
multiplication are identified. I think the way this is actually carried out is by constructing
log-equivariant versions of the objects of interest, especially arithmetic divisors. That is, we are here

1Incidentally, this kind of non-additive property is also well-known in usual Arakelov theory, whereby the set of
global sections in the Arakelov sense do not form a group.
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employing the stack-theoretic convention that when a group Gr acts on a space Sp, Gr-equivariant
objects on Sp amount to the same kind of objects on the stack Sp/Gr.

The equivariant construction is one of the many sources of the indeterminacies that need to be
estimated. Another main difficulty is to deal with the discrepancy between the image of K inside∏

v∈V Kv and the image after taking the log. After these difficulties are dealt with, my impression is
that one ends up therefore with something like a ‘degree map with indeterminacies,’ (the ‘procession
normalised mono-analytic log volume’) which however can be precisely controlled. The inequality
between the arithmetic degree of

log q = (log(q1/(2l)
v ))v

and the possible arithmetic degrees of the log-equivariant

log Θ(x) = (log ‖Θ(x)‖v)v

is the main concern of IUTT III, and is analysed using the interaction between the vertical log
direction and the horizontal theta direction of the two-dimensional lattice. The theta direction, by
the way, is a sophisticated version of the evaluation map on theta functions.

Mohamed Saidi has stressed to me that the inquality in IUTT III is not Szpiro’s inequality per se.
Rather, what is proved is the slightly curious statement that whenever a constant CΘ satisfies

−| log Θ| ≤ CΘ| log q|,

then CΘ ≥ −1. Then, in IUTT IV, a specific CΘ, involving h(E), the discriminant of the field, and
various other simple numbers, is shown to satisfy this inequality. For that specific choice, CΘ ≥ −1
is Szpiro’s inequality.
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