Chapter 8

Godel numbering and the
construction of Def

(Throughout, if we say “F : Uy x -+ x U, — V is a AZF term” we mean
that the classes Uy,...,U, are AZF (ie. defined by AZF formulas) and that
“F(z1,...,2,) = y” can be expressed by a 3; formula. This clearly guarantees
that the extension F' : V" — V of F defined by F'(z1,...,z,) = F(z1,...,2,)
if z; € Uy, ...,z , € U, and = @ otherwise, is AZ in the sense given.)

To give numbers to formulas we first define F : w® — w by F(n,m,l) =
2n3"5!. Then F is injective and easily seen to be AZ¥. Write [n,m,] for
F(n,m,l). We now define "¢ by induction on ¢:

T, :vj—l [Oala.]]v
My, e'Uj—I = []‘,iaj];
Tovy? = [2,7¢7,7yT;
|—_|¢1 — [3’ |—¢—|’ |—¢—|];
Vv = [4,i,7¢7].

Of course this definition does not take place in ZF and is not actually used in
the following definition of Def. However it should be borne in mind in order to
see what’s going on.

Now defined the class term Sub : V* — V by Sub(a, f,i,c) = f(c/i) if
f € <¥a,c € aandiec wand = J otherwise; where if f € <“a, ¢ € a and
i € w, f(e/i) € <¥a is defined by dom(f(c/7)) = domf, and for j € domf,
F(e/i)(G) = £(j) i j # 4, and ¢ if j = i.

It’s easy to check that Subis AZF.

We now define a class term Sat : w X V. — V. The idea is that if m €
w and m = "¢(vg,...,Tpn,)", for some formula ¢ of LST, and a € V, then
(*) Sat(m,a) = {f € <“a : domf > n A (a,€) F #(f(0),...,f(n —1))}. We
simply mimic the definition of satisfaction from predicate logic. (This definition
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uses a version of the recursion theorem which is slightly different from the usual
one, and which I give later.)

Definition 8.1 Firstly ifa € V, m € w but m is not of the form [i, j, k], for any
i,j,k € w with © < 5, then Sat(m,a) = &. Otherwise, if a € V and m = [i, j, k]
with © < 5, then

Sat([0,5,k],a) = {f€~“a:jkedomf A f(j)=f(k)}.

Sat([l,j,K,a) = {f€ <“a:jkedomfA f(j) € f(k)}.

Sat([2,j,k],a) = Sat(j,a)U Sat(k,a).

Sat([3,j,kl,a) = (“¥a\ Sat(j,a))N{g € <“a:3f € Sat(j,a),domf < domg}.
Sat([4, j, k], a) {f € <“a:j € domf AVz € a,Sub(a, f,j,z) € Sat(k,a)}.

The generalized version of the recursion theorem (on w) required here is:

Lemma 8.2 Suppose that 71,7, 73 : w — w are AZF class terms and H :
Vixw—V isaAZF class term. Suppose further that Vn € w\ {0} m(n) <n
fori=1,2,3. Then there is a A?T class term F : w x V — V such that

1. F(0,a) =0
2. and ¥Yn € w\ {0}
F(n,a) = H(F(m(n), (a)), F(72(n), (a)), F (73(n), (a)), a,n).

(Thus instead of defining F(n,a) in terms of F(n—1,a), we are defining F(n,a)
in terms of three specified previous values.)

Proof. Similar to the proof of the usual recursion theorem on w. U

Thus the definition of Sat in 8.1 is an application of 8.2 with m(n) = 7 if for
some j, k < n, [i,],k] = n, = 0 otherwise; and 72 and 73 are defined similarly,
picking out j and k respectively from [i, j, k], and with H : V4 x w — V defined
so that

{f € ““a:ma(n),3(n) € domf A f(m2(n)) =
{f € <“a:ma(n),m3(n) € domf A f(ma(n)) €
yUz

(<“a\y)N{g € <¥a:3f € ydomf < domg}
{f € <“a:m2(n) € domf AVz € aSub(a, f, m2(n),z) € 2}
0

f(m3(n))}
f(m3(n))}

H(z,y,2,a,n) =

(The F got from this H, 7w, 72,73 (in 8.2) is Sat.)

It is completely routine to show that Sat so defined satisfies the required
statement (*) (just before 8.1)—by induction on ¢.

Before defining G we must introduce a term that picks out the largest m € w
such that “v,, occurs free” in the “formula coded by n”. We denote this n by

otherwise.
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6(n). We first define Fr(m) (“the set of i such that v; occurs free in the formula
coded by m”) as follows (again using 8.2):

Fr(0,4,4]) = {i,j}s
Fr(lL,4,j]) = {ij}
Fr(2,4,j]) = Fr@)UFrQ);
Fr(3,4,j]) = Fr();
FT([4 i) = Fr(j)\i
Fr(z) = @, if  not of the above form.

(8.1)

Clearly one can prove in ZF that Fr(z) is a finite set of natural numbers for
any set x, and we defined

0(z) = max(Fr(x)).

6 is AZF,

It is easy to show that if ¢ is any formula of LST and m = "¢7, then 6(m) is
the largest n such that v, occurs as a free variable in ¢, and that if f € Sat(m,a),
for any a € V, then domf > 14+6(m) (ie. 0,1,...,0(m) € domf). This is proved
by induction on ¢ and it is for this reason that we defined Sat([3, 7, k], a) as we
did (rather than just as <“a \ Sat(j,a)).

We can now define G by

G(m,a,s) = { {be€a:(sU{{f(m),b)}) € Sat(m,a)} if s € <“a and doms = 8(m)(= {0,...,0(m) —1}),

%] otherwise.

Then G is easily seen to be A% (since §, Sat are), and has the required prop-
erties mentioned at the beginning of chapter 6, because of (*) (just before 8.1).



