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Abstract

Deploying graph neural networks (GNNs) on whole-graph classification or regres-
sion tasks is known to be challenging: it often requires computing node features
that are mindful of both local interactions in their neighbourhood and the global
context of the graph structure. GNN architectures that navigate this space need
to avoid pathological behaviours, such as bottlenecks and oversquashing, while
ideally having linear time and space complexity requirements. In this work, we
propose an elegant approach based on propagating information over expander
graphs. We leverage an efficient method for constructing expander graphs of a
given size, and use this insight to propose the EGP model. We show that EGP is
able to address all of the above concerns, while requiring minimal effort to set
up, and provide evidence of its empirical utility on relevant graph classification
datasets and baselines in the Open Graph Benchmark. Importantly, using expander
graphs as a template for message passing necessarily gives rise to negative cur-
vature. While this appears to be counterintuitive in light of recent related work
on oversquashing, we theoretically demonstrate that negatively curved edges are
likely to be required to obtain scalable message passing without bottlenecks. To
the best of our knowledge, this is a previously unstudied result in the context of
graph representation learning, and we believe our analysis paves the way to a novel
class of scalable methods to counter oversquashing in GNNs.

1 Introduction
Graph neural networks (GNNs) are a flexible class of models for learning representations over
graph-structured data [1]. Their versatility [2–4] and generality [5, 6] has made them a very attractive
approach, leading to considerable application in areas as diverse as virtual drug screening [7], traffic
prediction [8], combinatorial chip design [9] and pure mathematics [10, 11].

Most GNNs rely on repeatedly propagating information between neighbouring nodes in the graph.
This is commonly expressed in the message passing [4] paradigm: nodes send vector-based messages
to each other along the edges of the graph, and nodes update their representations by aggregating
all the messages sent to them, in a permutation-invariant manner. Under many industrially-relevant
tasks, this paradigm is very potent, often allowing for highly scalable model variants [12–14].

However, in many areas of scientific interest, purely local interactions are likely insufficient. Among
the principal graph tasks, graph classification is perhaps most ripe with such situations: to meaning-
fully attach a label to a graph, in many cases it is insufficient to treat graphs as “bags of nodes”. For
example, when classifying a molecule for its potency as a candidate drug [7], the label is driven by
complex substructure interactions in the molecule [15], rather than a naïve sum of atom-level effects.

Accordingly, GNNs deployed in this regime need to update node features in a manner that is mindful
of the global properties of the graph. It quickly became apparent that it is often inadequate to merely
stack more message passing layers over the input graph. In fact, for many graph classification tasks,
such approaches may be weaker than discarding the graph structure altogether [16, 17]. Now, it is
well-understood that stacking many local layers leaves GNNs vulnerable to pathological behaviours
such as oversquashing [18]. Intuitively, oversquashing occurs when nodes need to store quantities of
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Figure 1: Left: The Cayley graph of SLp2,Z3q, constructed using our method. It has |V | “ 24
nodes and it is 4-regular (implying |E| “ 2|V |), hence it is sparse. Despite its sparsity, it is highly
interconnected: any node is reachable from any other node by no more than 4 hops. Hence, it
can serve as a strong “template” for globally propagating node features with a GNN. Right: The
Cayley graph of SLp2,Z5q, constructed in an analogous way (with |V | “ 120 nodes). A 2-hop
neighbourhood of one node (in red) is highlighted, demonstrating its tree-like local structure.

information that are exponentially increasing with model depth [18, Section 5]. Such nodes often arise
in the vicinity of bottlenecks in a graph—small collections of edges which are responsible for carrying
representations between large groups of nodes. One typical example of such a bottleneck can be

found in a barbell graph , where the red edge is under significant representational
pressure to transport information between the two communities.

Within this space, we are interested in proposing a method that satisfies four desirable criteria: (C1) it
is capable of propagating information globally in the graph; (C2) it is resistant to the oversquashing
effect and does not introduce bottlenecks; (C3) its time and space complexity remain subquadratic
(tighter than Op|V |2q for sparse graphs); and (C4) it requires no dedicated preprocessing of the input.
Satisfying all four of these criteria simultaneously is challenging, and we will survey many of the
popular approaches in the next section—demonstrating ways in which they fail to meet some of them.

In this paper, we identify expander graphs as very attractive objects in this regard. Specifically, they
offer a family of graph structures that are fundamentally sparse (|E| “ Op|V |q), while having low
diameter: thus, any two nodes in an expander graph may reach each other in a short number of
hops, eliminating bottlenecks and oversquashing (see Figure 1). Further, we will demonstrate an
efficient way to construct a family of expander graphs (leveraging known theoretical results on the
special linear group, SLp2,Znq). Once an expander graph of appropriate size is constructed, we
can perform a certain number of GNN propagation steps over its structure to globally distribute the
nodes’ features. Accordingly, we name our method expander graph propagation (EGP).

A key contribution of our work extends the implications of prior art on oversquashing via curvature
analysis [19]. According to [19], negatively curved edges are causing the oversquashing effect—yet,
counterintuitively, the edges of the expander graphs we construct will always be negatively curved!
We prove, however, that our expanders can never be sufficiently negatively curved to trigger the
conditions necessary for the results in [19] to be applicable, and show that the existence of negatively
curved edges might in fact be required in order to have sparse communication without bottlenecks.

2 Related work
We begin with a survey of the many prior approaches to handling global context in graph representation
learning, evaluating them carefully against our four desirable criteria (C1–C4; cf. Table 1). This list
is by no means exhaustive, but should be indicative of the most important directions.

Stacking more layers. As already highlighted, one way to achieve global information propagation is
to have a deeper GNN. In this case, we are capable of satisfying (C1) and (C4)—no dedicated prepro-
cessing is needed. However, depending on the graph’s diameter, we may need up to Op|V |q layers to
cover the graph, leading to quadratic complexity (violating (C3)) and introducing a vulnerability to
bottlenecks (C2), as theoretically and empirically demonstrated in [18].
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Table 1: A summary of principal approaches to handling global context in graph representation
learning (Section 2). “(✓)” indicates that a criterion may be satisfied, depending on the method’s
tradeoffs. Our proposal, the expander graph propagation (EGP) method, satisfies all four criteria.

Approach (C1) (C2) (C3) (C4)
(global prop.) (no bottlenecks) (subquadratic) (no dedicated preproc.)

GNNs ✗ ✗ ✓ ✓
Sufficiently deep GNNs ✓ ✗ ✗ ✓
Master node [4, 20] ✓ ✗ ✓ ✓
Fully connected [18, 21–25] ✓ ✓ ✗ ✓
Feature aug. [26–31] ✓ (✓) (✓) ✗
Graph rewiring [19, 32, 33] ✓ ✓ ✓ ✗
Hierarchical MP [34–39] ✓ ✓ (✓) ✗

EGP (ours) ✓ ✓ ✓ ✓

Master nodes. An attractive approach to introducing global context is to introduce a master node
to the graph, and connect it to all of the graph’s nodes. This can be done either explicitly [4] or
implicitly, by storing a “global” vector [20]. It trivially reduces the graph’s diameter to 2, introduces
Op1q new nodes and Op|V |q new edges, and requires no dedicated preprocessing, hence it satisfies
(C1, C3, C4). However, these benefits come at the expense of introducing a bottleneck in the master
node: it has a very challenging task (especially when graphs get larger) to continually incorporate
information over a very large neighbourhood in a useful way. Hence it fails to satisfy (C2).

Fully connected graphs. The converse approach is to make every node a master node: in this case,
we make all pairs of nodes connected by an edge—this was initially proposed as a powerful method
to alleviate oversquashing by [18]. This strategy proved highly popular in the recent surge of Graph
Transformers [22, 23, 25], and is common for GNNs used in physical simulation [21] or reasoning
[24] tasks. The graph’s diameter is reduced to 1, no bottlenecks remain, and the approach does not
require any dedicated preprocessing. Hence (C1, C2, C4) are trivially satisfied. The main downside
of this approach is the introduction of Op|V |2q edges, which means (C3) can never be satisfied—and
this approach will hence be prohibitive even for modestly-sized graphs.

Feature augmentation. An alternative approach is to provide additional features to the GNN which
directly identify the structural role each node plays in the graph [26]. If done properly (i.e., if the
computed features are relevant to the target), this can drastically improve expressive power. Hence, in
theory, it is possible to satisfy (C1) while not violating (C2, C3). However, computing appropriate
features requires either specific domain knowledge, or appropriate pre-training [27–31], in order to
obtain such embeddings. Hence all of these gains come at the expense of failing to satisfy (C4).

Graph rewiring. Another promising line of research involves modifying the edges of the original
graph to alleviate bottlenecks. Popular examples of this approach involve using diffusion [32]—which
diffuse additional edges through the application of kernels such as the personalised PageRank, and
stochastic discrete Ricci flows [19]—which surgically modify a small quantity of edges to alleviate
the oversquashing effect on the nodes with negative Ricci curvature. Recent concurrent work [33]
also uses constructions inspired by expander graphs to randomly locally rewire a given input graph.
If realised carefully, such approaches will not deviate too far from the original graph, while provably
alleviating oversquashing; hence it is possible to satisfy (C1, C2, C3). However, this comes at a cost
of having to examine the input graph structure, with methods that do not necessarily scale easily with
the number of nodes. As such, dedicated preprocessing is needed, failing to satisfy (C4).

Hierarchical message passing. Lastly, going beyond modifying the edges, it is also possible to
introduce additional nodes in the graph—each of them responsible for a particular substructure in
the graph1. If done carefully, it has the potential to drastically reduce the graph’s diameter while not
introducing bottlenecked nodes (hence, allowing us to satisfy (C1, C2)). However, in prior work,
a cost has to be paid for this, usually in the need for dedicated preprocessing. Prior proposals for
hierarchical GNNs that remain scalable require a dedicated pre-processing step [34–36], sometimes
coupled with domain knowledge [36]—thus failing to satisfy (C4). In addition, such methods may

1Master nodes are a special case: a single node is responsible for a “substructure” spanning the entire graph.
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require adding prohibitively large numbers of substructures [37, 38] or expensive pre-computation,
e.g. computing the graph Laplacian eigenvectors [39]. This might make even (C3) hard to satisfy.

We remark that our work is not the first to study expander graph-related topics in the context of
GNNs. Specifically, the ExpanderGNN [40] leverages expander graphs over neural network weights
to sparsify the update step in GNNs. This is a direct application of Deep Expander Networks [41],
which studied such constructs over CNNs. With respect to our contributions, neither of these cases
discuss expanders in the context of the computational graph for a GNN, nor attempt to propagate
messages over such a structure. Further, neither satisfy all four of our desired criteria (C1–C4).

3 Theoretical background
We now dedicate our attention to the key theoretical results over expander graphs, which will allow
EGP to have favourable properties and be efficiently precomputable.
Definition 1. For a finite connected graph G “ pV pGq, EpGqq, we consider functions f : V pGq Ñ R.
The Laplacian Lf : V pGq Ñ R of such a function is defined to be

Lfpvq “ degpvqfpvq ´
ÿ

vwPEpGq

fpwq,

where degpvq is the degree of the vertex v.

The mapping L : RV pGq Ñ RV pGq sending a function f to its Laplacian Lf is a linear transformation.
It is not hard to show [42] that L is symmetric with respect to the standard basis for RV pGq and
positive semi-definite and hence has non-negative real eigenvalues

0 “ λ0pGq ă λ1pGq ď λ2pGq ď . . . .

The smallest eigenvalue is 0 and its associated eigenspace consists of the constant functions (assuming
G is connected). The smallest positive eigenvalue, λ1pGq, is central to the definition of expander
graphs, as the next definition shows.
Definition 2. An infinite collection tGiu of finite connected graphs is an expander family if there is
a constant c ą 0 such that for all Gi in the collection, λ1pGiq ě c.

Expander families [43–45] have many remarkable and useful properties, particularly when there is a
uniform upper bound on the degree of the vertices of Gi.
Definition 3. Let G be a finite graph. For A Ă V pGq, its boundary BA is the collection of edges
with one endpoint in A and one endpoint not in A. The Cheeger constant hpGq is defined to be

hpGq “ min

"

|BA|

|A|
: A Ă V pGq, 0 ă |A| ď |V pGq|{2

*

.

Thus, having a small Cheeger constant is equivalent to the graph having a ‘bottleneck’, in the sense
that there is a collection of edges BA that, when removed, disconnects the vertices into two sets
(A and its complement, V pGqzA), with the property that the sizes of A and its complement are
significantly larger than the size of BA.

Expander families can be reinterpreted using Cheeger constants, as follows (see, e.g., [46–49]):
Theorem 4. Let tGiu be an infinite collection of finite connected graphs with a uniform upper bound
on their vertex degrees. Then the following are equivalent:

1. tGiu is an expander family;

2. there is a constant ϵ ą 0 such that for all graphs in the collection, hpGiq ě ϵ.

Hence, expander graphs have higher Cheeger constants and will hence experience less severe problems
arising due to bottleneck edges. The following result is one of the many useful properties of expander
families, and it concerns their diameter. It was proved by Mohar [50, Theorem 2.3]. See also [47].
Theorem 5. The diameter diampGq of a graph G satisfies

diampGq ď 2

R

∆pGq ` λ1pGq

4λ1pGq
logp|V pGq| ´ 1q

V

,
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where ∆pGq is the maximal degree of any vertex of G. Hence, if tGiu is an expander family of finite
graphs with a uniform upper bound on their vertex degrees, then there is a constant k ą 0 such that
for all graphs in the family,

diampGiq ď k log V pGiq.

Therefore, if we want to globally propagate information over an expander graph which has |V | nodes,
we only need Oplog |V |q propagation steps to do so—yielding subquadratic complexity.

We showed that expanders will experience less severe problems arising due to bottleneck edges, with
favourable propagation qualities. What is missing is an efficient method of constructing an expander
of (roughly) |V | nodes. To demonstrate such a method, we leverage known results from group theory.
Definition 6. A group pΓ, ˝q is a set Γ equipped with a composition operation ˝ : ΓˆΓ Ñ Γ (written
concisely by omitting ˝, i.e. g ˝ h “ gh, for g, h P Γ), satisfying the following axioms:

• (Associativity) pghql “ gphlq, for g, h, l P Γ.

• (Identity) There exists a unique e P Γ satisfying eg “ ge “ g for all g P Γ.

• (Inverse) For every g P Γ there exists a unique g´1 P Γ such that gg´1 “ g´1g “ e.

A group is hence a natural construct for reasoning about transformations that leave an object invariant
(unchanged). Further, we define a relevant notion of a group’s generating set:
Definition 7. Let Γ be a group. A subset S Ď Γ is a generating set for Γ if it can be used to “generate”
all of Γ via composition. Concretely, any element g P Γ can be expressed by composing elements in
the generating set, or their inverses; that is, we can express g “ s˘1

1 s˘1
2 s˘1

3 ¨ ¨ ¨ s˘1
n´1s

˘1
n for si P S.

Now we are ready to define a Cayley graph of a group w.r.t. its generating set.
Definition 8. Let Γ be a group with a finite generating set S. Then the associated Cayley graph
CaypΓ;Sq has vertex set Γ and it has an edge g Ñ gs for each g P Γ and each s P S. We say that
s is the label on this edge. This is a potentially non-simple graph, as it may have edges with both
endpoints on the same vertex and it may have multiple edges between a pair of vertices. In particular,
when s has order 2, then we view the edge g Ñ gs and the edge gs Ñ gs2 “ g as distinct edges.

Note that the degree of each vertex of a Cayley graph CaypΓ;Sq is 2|S|. This is because each vertex
g is joined by edges to gs and gs´1 for each s P S. Thus, we shall be particularly interested in the
case where there is a uniform upper bound on |S|. The specific group we use for EGP is as follows.

For each positive integer n, the special linear group SLp2,Znq denotes the group of 2 ˆ 2 matrices
with entries that are integers modulo n and with determinant 1. One of its generating sets is:

Sn “

"ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙*

.

Central to our constructions is the following important result.
Theorem 9. The family of Cayley graph CaypSLp2,Znq;Snq forms an expander family.

The proof uses a result of Selberg [51] who showed that the smallest positive eigenvalue of the
Laplacian of certain hyperbolic surfaces is at least 3{16. One can use this to a produce a lower bound
on the first eigenvalue of the Laplacian on CaypSLp2,Znq;Snq. Full proofs are given in [44, 45].

Lastly, it is useful to state a known result: the number of nodes of CaypSLp2,Znq;Snq is:

|V pCaypSLp2,Znq;Snqq| “ n3
ź

prime p|n

ˆ

1 ´
1

p2

˙

, (10)

hence, it is of the order of Opn3q. We now study the local properties of Cayley graphs in detail.

4 Local structure of the Cayley graphs, and the utility of negative curvature
Recent work [19] has suggested that the local structure of the graph G underlying a GNN may play
an important role in the way that information propagates around G. In particular, various notions of
‘Ricci curvature’ such as Forman curvature [52], Ollivier curvature [53, 54] and balanced Forman
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curvature [19] have been examined. These are all local quantities, in the sense that they depend on the
structure of the graph within a small neighbourhood of each edge. In this section, we will therefore
examine the local structure of the Cayley graphs Gn “ CaypSLp2,Znq;Snq.

The various notions of curvature given above are defined for each e of the graph G. Since, as defined
by [19], the balanced Forman curvature of an edge depends only on local structures (i.e. triangles
and squares) around that edge, they can be determined by only observing the immediate 2-hop
surrounding of that edge. Formally, for an edge e of a graph G, let N2peq be the induced subgraph
with vertices that are at most two hops away from at least one endpoint of e. Then the curvature of e
only depends on the isomorphism type of N2peq. More specifically, if e and e1 are edges in possibly
distinct graphs, and there is a graph isomorphism between N2peq and N2pe1q that sends e to e1, then
this guarantees that the curvatures of e and e1 are equal.

This situation arises prominently in the Cayley graphs that we are considering, as follows.
Proposition 11. Let s be one of

ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙

.

Let n, n1 ą 18 and let e and e1 be s-labelled edges in Gn and Gn1 . Then there is a graph isomorphism
between N2peq and N2pe1q taking e to e1.

We prove Proposition 11 in Appendix A. This immediately allows us to characterise the balanced
Forman curvature and Ollivier curvature for all of the Cayley graphs we generate:
Proposition 12. The balanced Forman curvatures Ricpnq, and the Ollivier curvatures κpnq of all
edges of Cayley graphs Gn are given by:

Ricpnq “

$

’

’

&

’

’

%

0 if n “ 2

´1{4 if n “ 3

´1{2 if n “ 4

´1 if n ě 5,

κpnq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if n “ 2

´1{8 if n “ 3

´1{4 if n “ 4

´3{8 if n “ 5

´1{2 if n ě 6.

Proof. Proposition 11 implies that the balanced Forman and Ollivier curvatures are all equal for
n ą 18. Their values for 2 ď n ď 19 can all be empirically computed, and are given as above.

Prior work [19] suggests it is preferable for GNNs to operate on graphs with positive Ricci curvature,
whereas our graphs Gn pn ą 2q all have negative Ricci curvature. However, we contend that negative
Ricci curvature is not in itself an impediment to efficient propagation around a GNN. Indeed, it was
shown in [19, Theorem 4] that poor propagation arises when the balanced Forman curvature is close
to ´2, specifically if it is at most ´2 ` δ for some δ ą 0. Here, δ is required to satisfy certain
inequalities. But, with certainty, δ “ 1 can never be satisfied in the hypotheses of [19, Theorem 4].

Furthermore, positive Ricci curvature may have downsides when used for GNNs. One significant
downside can be derived using the main result of [55], which says that the three properties of
expansion, sparsity and non-negative Ollivier curvature are incompatible, in the following sense.
Theorem 13. For any δ ą 0 and ∆ ą 0, there are only finitely many graphs with maximum vertex
degree ∆, Cheeger constant at least δ and non-negative Ollivier curvature.

We prove Theorem 13 in Appendix B. Furthermore, quoting directly from [55]:

“The high-level message is that on large sparse graphs, non-negative curvature (in an even weak sense)
induces extremely poor spectral expansion. This stands in stark contrast with the traditional idea
– quantified by a broad variety of functional inequalities over the past decade – that non-negative
curvature is associated with good mixing behavior.”

In our view, it is highly desirable that the graphs used for GNNs have high Cheeger constants, in
the sense of globally lacking bottlenecks. Having bounded vertex degree is certainly useful too,
since it implies that the graphs will be sparse, and the nodes will not have to handle ever-increasing
neighbourhoods for message passing as graphs grow larger in size.

However, by proving Theorem 13, we showed non-negative Ollivier curvature is incompatible with
these properties for sufficiently large graphs. Specifically, given the finite supply of non-negatively
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curved sparse graphs, we can define N 1 as the largest number of nodes of such graphs. Then, for
all graphs G where |V pGq| ą N 1, we will be unable to produce a computational graph for a GNN
which is non-negatively curved everywhere. It remains an interesting challenge to provide an bound
on N 1 (as a function of δ and ∆). It is possible that a careful analysis of [55] may provide this.

Further, while the expander graphs we generate are negatively-curved at ´1 everywhere, and we
will empirically show this helps alleviate oversquashing, we also believe that it is worthy of further
investigation to theoretically examine whether performance of GNNs decreases significantly when
the curvature is less than ´1.

The negative curvature of each edge in Gn implies that they are locally ‘tree-like’. In Appendix C,
we make this statement precise by showing that Gn is ‘tree-like’ up to scale c logpnq about each node,
for c » p1{2qplogpp1 `

?
5q{2qq´1 (see Figure 1 (Right) for a schematic view).

This tree-like structure might seem, at first, to be counter-productive for good propagation across
the graphs Gn. Indeed, GNNs based on trees have been shown to have provably poor performance
[18]. The reason for this seems to be two-fold. On the one hand, trees have small Cheeger constant.
Indeed, any tree G on n vertices has a Cheeger constant 1{tn{2u, since we may find an edge that,
when removed, decomposes the graph into subgraphs with tn{2u and rn{2s vertices. As discussed
in Section 3 and in [19], when a graph has small Cheeger constant, its performance when used as
a template for a GNN is likely to become poor. Secondly, GNNs based on trees are susceptible
to oversquashing. For a k-regular infinite tree, there are kpk ´ 1qr´1 vertices at distance r from a
given vertex. Hence, if information is to be propagated at least distance r from a given vertex, then
seemingly an exponential amount of information is required to be stored.

However, neither of these issues are problematic for a GNN based on the Cayley graph Gn. By
Theorem 9, their Cheeger constants are bounded away from 0. Secondly, although they are tree-like
locally, this is only true up to scale Oplog nq. In fact, the r-neighbourhood of any vertex is the whole
graph Gn as soon as r ą C log n, for some constant C, by Theorem 5. Being tree-like up to distance
Oplog nq does not lead to a requirement to store too much information as the message propagates.
This is because kpk ´ 1qr´1 is polynomial in n when r ď Oplog nq. Beyond this scale, there exist
many additional connections, which lead to many possible paths joining any pair of vertices. The
perspective of information transfer also gives rise to another perspective in which expanders fare very
favourably: the mixing time of their corresponding Markov chain (see Appendix D for details).

5 Expander graph propagation

Let an input to a graph neural network be a node feature matrix X P R|V |ˆd, and an adjacency matrix
A P R|V |ˆ|V |. This setup is such that the feature vector of node u, xu P Rd, can be recovered by
taking an appropriate row from X. Note that the adjacency information can also be fed in an edge-list
manner, which is desirable from a scalability perspective. Further, each edge in the graph may be
endowed with additional features rather than a single real scalar. None of the above modifications
would change the essence of our findings; we use a matrix formalism here purely for simplicity.

There exist many ways in which the computed Cayley graph CaypSLp2,Znq;Snq can be leveraged
for message propagation, and exploring these variations could be very useful for future work. Here,
we opt for a simple construction: interleave running a standard GNN over the given input structure,
followed by running another GNN layer over the relevant Cayley graph. If we let ACaypnq be an
adjacency matrix derived from CaypSLp2,Znq;Snq, this implies:

H “ GNNpGNNpX,Aq,ACaypnqq (14)

Here, GNN refers to any preferred GNN layer, such as the graph isomorphism network [56, GIN]:

hu “ ϕ

˜

p1 ` ϵqxu `
ÿ

vPNu

xv

¸

(15)

where Nu is the neighbourhood of node u, i.e. in our setup, the set of all nodes v such that avu ‰ 0.
ϵ P R is a learnable scalar, and ϕ : Rd Ñ Rd1

is a two-layer MLP.

This procedure is iterated for a certain number of steps, after which the computed node embeddings
in H can be used for any downstream task of interest—such as node classification, link prediction
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or graph classification. Note that, unlike [18], who apply their custom layer only at the tail of the
architecture, we apply the expander graph immediately after each layer over the input graph. We find
that if the input graph given by A contains bottlenecks, applying the GNN over ACaypnq only at the
end may result in oversquashing occurring before any expander graph propagation can take place.

The setup so far assumed the number of nodes in our input graph to line up with the Cayley graph,
that is, ACaypnq P R|V |ˆ|V |. However, there is no guarantee that we can find an appropriate n such
that CaypSLp2,Znq;Snq would have |V | nodes. What we can do in practice, as an approximation, is
choose the smallest n such that the number of nodes of CaypSLp2,Znq;Snq is ě |V |, then consider
A

Caypnq

1:|V |,1:|V |
—i.e. only the subgraph containing the first |V | nodes in the Cayley graph.

There is a slight misalignment to our theory in this slicing choice—if the |V | vertices in this subgraph
are chosen completely arbitrarily, we risk disconnecting the graph. However, in all our experiments
we construct the Cayley graph in a breadth-first manner, starting from the identity element as “node
zero”. Hence, the node at index i is always guaranteed to be reachable from the nodes at lower indices
(j ă i), and the graph cannot be disconnected under this construction. More interesting strategies for
this step can also be considered in the future. Note that, much like the fully connected graph used by
[18], we interpret the Cayley graph mainly as a template for global information propagation, in order
to relieve bottlenecks in a scalable way. Our interpretation, hence, assumes that the efficient diffusion
of information over the whole graph is of benefit to the learning task we perform. When this is not
the case, it might be worthwhile to construct expanders that somehow align with the input graph, but
no such expander constructions are currently known, to the best of our knowledge. There is also a
possible effect of stochasticity due to arbitrarily having to align the Cayley graph’s nodes to the input
graph—which would not appear when using master nodes or fully-connected graphs—though our
preliminary experiments did not observe any such negative effects.

Algorithm 1 summarises the steps of our proposed EGP model. As direct corollaries of results we
proved or demonstrated, we note that EGP satisfies all four of our desirable criteria: (C1) by Theorem
5 (so long as logarithmically many layers are applied), (C2) by Theorem 4 (high Cheeger constant
implies no bottlenecks), (C3) by the fact our Cayley graphs are 4-regular and hence sparse, and
(C4) by the fact we can generate a Cayley graph of appropriate size without detailed analysis of the
input—we may precompute a “bank” of Cayley graphs of various sizes to use in an ad-hoc manner.

Algorithm 1: Expander graph propagation (EGP) forward pass

Inputs :Node features X P R|V |ˆd, Adjacency matrix A P R|V |ˆ|V |

Output :Node embeddings H

// Choose the smallest Cayley graph from our family that has number of nodes equal to, or greater than, |V |

n Ð argminmPN|V pCaypSLp2,Zmq;Smqq| ě |V |; // We can use Equation 10 to determine n

GCaypnq Ð CaypSLp2,Znq;Snq

A
Caypnq
uv Ð

"

1 pu, vq P EpGCaypnqq

0 otherwise
; // Populate adjacency matrix of the Cayley graph

Hp0q Ð X; // Initialise GNN inputs

for t P t1, . . . , T u do
if t mod 2 “ 0 then

Hptq Ð GNNptq
pHpt´1q,Aq ; // GNN layer over input graph; e.g. Equation 15

end
else

Hptq Ð GNNCayptq
´

Hpt´1q,A
Caypnq

1:|V |,1:|V |

¯

; // GNN layer over Cayley graph; e.g. Eq. 15

end

end

return HpT q ; // Return final embeddings for downstream use

8
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Table 2: Comparative evaluation performance on the four datasets studied. Our baseline model is a
GIN [56], using exactly the same implementation as in [57]. See Appendix E for ablations.

Model ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2

GIN 0.7558 ˘ 0.0140 0.2266 ˘ 0.0028 0.6892 ˘ 0.0100 0.1495 ˘ 0.0023
GIN + EGP 0.7934 ˘ 0.0035 0.2329 ˘ 0.0019 0.7027 ˘ 0.0159 0.1497 ˘ 0.0015

6 Empirical evaluation

Our work provides mainly a theoretical contribution: demonstrating a simple, theoretically-grounded
approach to relieving bottlenecks and oversquashing in GNNs without requiring quadratic complexity
or dedicated preprocessing. Further, we prove several additional results which deepen our understand-
ing of curvature-based analysis of GNNs, showing how our expanders can be favourable in spite of
their negatively-curved edges. We now provide results that empirically supplement our claim.

Tree-NeighborsMatch We start by comparing our models on the Tree-NeighborsMatch task
(for more details, see Alon and Yahav [18, Section 4.1]). Tree-NeighborsMatch is a synthetic
benchmark explicitly designed to test a GNN’s ability to counter oversquashing, and therefore it
allows us to empirically verify that EGP is capable of alleviating oversquashing. We augment the
original GIN implementation from the authors [18] with EGP layers, and find that it is capable
of solving the task at depth=5 at 100% accuracy, demonstrating alleviated oversquashing. In
comparison, baseline GIN can only achieve 29% on this same task, and the best-performing GNN
without EGP—i.e. propagating over the input tree only—cannot exceed 60% accuracy.

OGB Datasets For real-world evaluation, we leverage the established Open Graph Benchmark
collection of tasks [57, OGB]. Specifically, we provide results on all of its graph classification
datasets: ogbg-molhiv, ogbg-molpcba, ogbg-ppa and ogbg-code2. The first two are among the
largest molecule property prediction datasets in the MoleculeNet benchmark [58]. The third dataset
is concerned with classifying species into their taxa, from their protein-protein association networks
[59, 60] given as input. The fourth dataset is a code summarisation task: it requires predicting the
tokens in the name of a Python method, given the abstract syntax tree (AST) of its implementation.

We provide a summary of important dataset statistics in Appendix E; please see [57] for detailed
information. These datasets are designed to span a wide variety of domains (virtual drug screening,
molecular activity prediction, protein-protein interactions, code summarisation) and sizes (from small
molecules to very large syntax trees—the largest graph in ogbg-code2 has 36, 123 nodes).

Models In all four datasets, we want to directly evaluate the empirical gain of introducing an EGP
layer and completely rule out any effects from parameter count, or similar architectural decisions.

To enable this, we take inspiration from the experimental setup of [18]. Our baseline model is the
GIN [56], with hyperparameters as given by [57]. We use the official publicly available model
implementation from the OGB authors [57], and modify all even layers of the architecture to operate
over the appropriately-sampled Cayley graph.

Note that our construction leaves both the parameter count and latent dimension of the model
unchanged, hence any benefits coming from optimising those have been diminished.

Results The results of our evaluation are presented in Table 2. It can be observed that, in all four
cases, propagating information over the Cayley graph yields improvements in mean performance—
these improvements are most apparent on ogbg-molhiv, but also present in ogbg-molpcba and
ogbg-ppa. We believe that these results provide encouraging empirical evidence that propagating
information over Cayley graphs is an elegant idea for alleviating bottlenecks. We provide additional
results on OGB, comparing EGP to various other oversquashing-countering methods, in Appendix E.

7 Conclusion

In this paper, we have presented expander graph propagation (EGP), a novel and elegant approach to
alleviating bottlenecks in graph representation learning, which provably supports global communica-
tion while not requiring quadratic complexity or dedicated preprocessing of the input.

9
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To this end, we offered a detailed theoretical overview of Cayley graphs of special linear groups,
CaypSLp2,Znq;Snq. We cite proofs that these graphs have highly favourable properties for infor-
mation propagation in graph neural networks: they are sparse and 4-regular, they have logarithmic
diameter, and they can be efficiently precomputed by a simple procedure that does not rely on the
input structure. We show that, in spite of having negatively curved edges, our findings do not violate
any prior results on understanding oversquashing via curvature. Even under a simple intervention—
interleaving EGP layers inbetween standard GNN layers—we have been able to recover significant
performance returns without changing the parameter count or latent space dimensionality.

We hope that our work serves as a foundation for further work on deploying Cayley graphs—or other
expander families—within the context of GNNs.
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A Proof of Proposition 11
Let s be one of

ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙

.

Let n, n1 ą 18 and let e and e1 be s-labelled edges in Gn and Gn1 . Then there is a graph isomorphism
between N2peq and N2pe1q taking e to e1.

Proof. Note first that, by the homogeneity of the Cayley graphs Gn and Gn1 , we may assume that e
and e1 emanate from the identity vertex of each graph.

Let G8 be the Cayley graph of SLp2,Zq with respect to the generators

S8 “

"ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙*

.

Let e8 be the s-labelled edge emanating from the identity vertex of G8. The quotient homomorphism

SLp2,Zq Ñ SLp2,Znq
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induces a graph homomorphism G8 Ñ Gn sending e8 to e. We will show that it restricts to a graph
isomorphism

N2pe8q Ñ N2peq.

As there is a similar graph isomorphism N2pe8q Ñ N2pe1q, the proposition will follow.

Note that two elements of SLp2,Zq map to the same element of SLp2,Znq if and only if they differ
by multiplication by an element of the kernel Kn. This is

Kn “

"ˆ

a b
c d

˙

P SLp2,Zq : a ” d ” 1 mod n and b ” c ” 0 mod n

*

.

The graph homomorphism sends edges to edges, and so it is distance non-increasing. Hence it
certainly sends N2pe8q to N2peq. It is also clearly surjective, because any element of N2peq is
reached from an endpoint of e by a path of length at most 2, and there is a corresponding path in
N2pe8q.

We just need to show that this is an injection. If not, then two distinct vertices g1 and g2 in N2pe8q

map to the same vertex in N2peq. Note then that as elements of SLp2,Zq, g2 “ g1k for some k P Kn.
There are paths with length at most 3 joining the identity 1 to g1 and g2 respectively. Hence, the
distance in G8 between g1 and g2 is at most 6. Therefore, the distance between 1 and g´1

1 g2 is at
most 6. This element g´1

1 g2 lies in Kn. We will show that when n ą 18, the only element of Kn

that has distance at most 6 from the identity is the identity itself. This will imply that g´1
1 g2 “ 1 and

hence g1 “ g2. But this contradicts the assumption that g1 and g2 are distinct vertices. Our argument
follows that of [61].

The operator norm ||A|| of a matrix A P SLp2,Zq is

||A|| “ supt|Apvq| : v P R2, |v| “ 1u.

This is submultiplicative: ||AB|| ď ||A|| ||B|| for matrices A and B. It can be calculated as the
square root of the largest eigenvalue of AtA. In our case, the operator norms satisfy

›

›

›

›

ˆ

1 1
0 1

˙
›

›

›

›

“

›

›

›

›

ˆ

1 0
1 1

˙
›

›

›

›

“
1 `

?
5

2
.

Consider an element

K “

ˆ

a b
c d

˙

of Kn that is not the identity. Since a ” d ” 1 modulo n and b ” c ” 0 modulo n, we deduce that at
least one |a|, |b|, |c| and |d| is at least n ´ 1. Therefore, this matrix acts on one of the vectors p1, 0qt

or p0, 1qt by scaling its length by at least n ´ 1. Therefore, ||K|| ě n ´ 1. Suppose now that K has
distance at most 6 from the identity. Then K can be written as a word in the generators of SLp2,Zq

with length at most 6. Therefore, we obtain the inequality

||K|| ď

ˆ

1 `
?
5

2

˙6

ă 17.95.

Hence, n ă 18.95 and therefore, as n is integral, n ď 18.

B Proof of Theorem 13
For any δ ą 0 and ∆ ą 0, there are only finitely many graphs with maximum vertex degree ∆,

Cheeger constant at least δ and non-negative Ollivier curvature.

Proof. This is a consequence of the main result of Salez [55, Theorem 3]. This states if Gn “

pVn, Enq is a sequence of graphs with the following properties:

sup
ně1

#

1

|Vn|

ÿ

vPVn

degpvq log degpvq

+

ă 8 (16)

@ϵ ą 0,
1

|En|
|te P En : κpeq ă ´ϵu| Ñ 0 as n Ñ 8, (17)
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then

@ρ ă 1, lim inf
nÑ8

"

1

|Vn|
|ti : µipGnq ě ρu|

*

ą 0.

Here, κpeq is the Ollivier curvature of an edge e and

1 “ µ0pGq ě µ1pGq ě ¨ ¨ ¨ ě 0

are the eigenvalues of the lazy random walk operator. To prove the theorem, we suppose that on the
contrary, there are infinitely many distinct graphs Gn “ pVn, Enq with maximum vertex degree ∆,
Cheeger constant at least δ and non-negative Olliver curvature. Then

ÿ

vPVn

degpvq log degpvq ď |Vn|∆ log∆

and so condition 16 is satsfied. Condition 17 is trivially satisfied because the Ollivier curvature of
each graph is non-negative. Thus, we deduce that the conclusion of Salez’ theorem holds. Setting
ρ “ 1 ´ pδ2{4∆2q, we deduce that a definite proportion of the eigenvalues of the lazy random walk
operator are at least 1 ´ pδ2{4∆2q. In particular, µ1pGnq ě 1 ´ pδ2{4∆2q. Denote the eigenvalues
of the normalised Laplacian by

0 “ λ1
0pGnq ď λ1

1pGnq ď . . .

These are related to the eigenvalues of the lazy random walk operator by λ1
ipGnq “ 2 ´ 2µipGnq.

Hence, λ1
1pGnq ď δ2{p2∆2q. There is a variation of Cheeger’s inequality that relates λ1

1 to the
conductance of the graph. To define this, one considers subsets A of the vertex set, and defines their
volume to be volpAq “

ř

vPA degpvq. The conductance ϕpGq of a graph G is

ϕpGq “ min

"

|BA|

volpAq
: A Ă V pGq, 0 ă volpAq ď volpV pGqq{2

*

.

Then, by Chung [42, Theorem 2.2],

ϕpGq ď

b

2λ1
1pGq

Hence, in our case,
ϕpGnq ď δ{∆.

Consider any subset An of the vertex set that realises ϕpGnq. Thus 0 ă volpAnq ď volpVnq{2 and
|BAn|{volpAnq “ ϕpGnq ď δ{∆. If An is at most half the vertices of Gn, then this implies that the
Cheeger constant hpGnq ď δ. On the other hand, if An is more than half the vertices of Gn, we
consider its complement Ac

n. Its cardinality |Ac
n| satisfies

|Ac
n| ě volpAc

nq{∆.

Hence,

hpGnq ď
|BAc

n|

|Ac
n|

ď
|BAn|∆

volpAc
nq

ď
|BAn|∆

volpAnq
“ ϕpGnq∆ ď δ.

In either case, we deduce that the Cheeger constant of Gn is at most δ, contradicting one of our
hypotheses. Hence, there must have been only finitely many graphs satisfying the conditions of the
theorem.

C Cayley graph at infinity is quasi-isometric to a tree
As all vertices of Gn look the same, we focus attention on Nrp1q, the r-neighbourhood of the identity
vertex. The proof of Proposition 11 immediately gives the following.
Proposition 18. Let r be a positive integer satisfying

r ă
1

2

ˆ

log

ˆ

1 `
?
5

2

˙˙´1

logpn ´ 1q.

Then there is a graph isomorphism between the r-neighbourhood of the identity vertex in Gn and
the r-neighbourhood of the identity vertex in G8. This isomorphism takes the identity vertex to the
identity vertex.
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Proof. As shown in the proof of Proposition 11, there is a graph homomorphsm from Nrp1q in G8

to Nrp1q in Gn that is a surjection. If it fails to be an injection, then there is a non-trivial element K
in the kernel Kn of SLp2,Zq Ñ SLp2,Znq satisfying

||K|| ď

ˆ

1 `
?
5

2

˙2r

.

But any non-trivial element K in Kn satisfies

||K|| ě n ´ 1.

Rearranging gives the required inequality.

This raises the question of the local structure of G8. The answer is well-known: it is ‘tree-like’.
Specifically, it is quasi-isometric to a tree. The formal definition of quasi-isometry is as follows.
Definition 19. A quasi-isometry between two metric spaces pX1, d1q and pX2, d2q is a function
f : X1 Ñ X2 that satisfies the following two conditions:

1. there are constants c, C ą 0 such that, for every x, x1 P X1

c d1px, x1q ´ c ď d2pfpxq, fpx1qq ď C d1px, x1q ` C,

2. there is a constant K ě 0 such that for every y P X2, there is an x P X1 with d2pfpxq, yq ď K.

If there is such a quasi-isometry, we say that pX1, d1q and pX2, d2q are quasi-isometric.

This forms an equivalence relation on metric spaces. When two metric spaces are quasi-isometric,
they are viewed as being ‘essentially the same’ at large scales.

When S and S1 are finite generating sets for a group Γ, the graphs CaypΓ;Sq and CaypΓ;S1q are
quasi-isometric. Hence, the quasi-isometry type of a finitely generated group is well-defined, and this
is the central object of study in geometric group theory.

The group SLp2,Zq has a finite-index subgroup that is a free group F [62]. If S1 denotes a free
generating set for F , then CaypF ;S1q is a tree. As passing to a finite-index subgroup preserves
its quasi-isometry class, we deduce that the Cayley graph G8 “ CaypSLp2,Zq;S8qq is indeed
quasi-isometric to a tree, as claimed above.

D Mixing time properties of expander graphs
Expanders are well known to have small mixing time, in the following sense.

Let G be a graph. We will consider probability distributions π on V pGq. The lazy random walk
operator M acts on probability distributions as follows. We think of πpvq as being the probability of
the random walk being at vertex v. If the current location of the walk is at v, then at the next step
of the walk, either we stay put with probability 1{2 or we move to one of its neighbours with equal
probability. Then Mπ is the new probability distribution.

In the case when G is k-regular, this takes a particular simple form. The operator M is represented by
the matrix p1{2qI ` p1{2kqA, where A is the adjacency matrix. In that case, any initial distribution
π converges under powers of M to the uniform distribution.

This is true for any reasonable notion of convergence, but we will use the } ¨ }1 norm, where for two
probability distributions π and π1,

›

›π ´ π1
›

›

1
“

ÿ

vPV pGq

|πpvq ´ π1pvq|.

Definition 20. The mixing time for a regular graph G is the minimum value of ℓ such that for any
starting probability distribution π on the vertex set of G,

›

›M ℓπ ´ u
›

›

1
ď

1

4
.

Here, u is the uniform probability distribution on the vertex set, and M is the lazy random walk
operator.
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Table 3: Statistics of the three graph classification datasets studied in our evaluation.

Name Number of graphs Avg. nodes/graph Avg. edges/graph Metric
ogbg-molhiv 41, 127 25.5 27.5 ROC-AUC
ogbg-molpcba 437, 929 26.0 28.1 Avg. precision
ogbg-ppa 158, 100 243.4 2, 266.1 Accuracy
ogbg-code2 452, 741 125.2 124.2 F1 score

Expanders have small mixing times in the following very strong sense.
Theorem 21. For any k ą 0 and δ ą 0, there is a constant c ą 0 with the following property. If G is
a connected k-regular graph on n vertices with Cheeger constant at least δ ą 0, then the mixing time
for G is at most c logpnq.

E Additional experimental details and ablations
OGB dataset statistics. We provide additional details on the dataset statistics for the OGB tasks
we used in Table 3. More substantial details can be found in the OGB paper [57].

Ablations on propagation graph. Our work concerns sparse expander graphs, determined using
the Cayley graphs of the special linear group. We acknowledge that this approach, while theoretically
beneficial, is not the only possible way to aid global information propagation in a GNN. Therefore, in
this subsection we compare against other classes of approaches.

Our additional baseline methods include: GINs with a master node, GINs with a fully connected
layer (FA), as done in Alon and Yahav [18], and GINs with applying a recently proposed rewiring
method, G-RLEF [33].

Note that both the FA method and G-RLEF have motivations related to expanders: the fully-connected
graph in the FA method is a trivial dense expander, whereas G-RLEF’s rewiring iterations can converge
to an expander for certain input graph distributions. Therefore, comparing against these methods
allows us to also evaluate the impacts of expander density, as well as proximity to the input graph
(since G-RLEF iteratively modifies the input graph). We run G-RLEF for OpV q steps.

The results of our ablative analysis are summarised in Table 4. We find that, as expected, all of our
added methods outperform the baseline GIN, demonstrating that oversquashing had been alleviated.
When comparing them against each other, however, we find that EGP tends to be highly competitive
on two out of the three datasets considered (having the largest average overall). The fully-adjacent
dense expander method remains strong on both ogbg-molhiv and ogbg-molpcba, but runs out of
memory as graphs increase in size (as is the case with ogbg-ppa).

We find that this collection of ablation studies further supplements the analysis of EGP we have
conducted, and serves as a good starting point for further investigations of expander propagation
templates with various properties.
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Table 4: Comparative ablation performance of various propagation templates on ogbg-molhiv,
ogbg-molpcba and ogbg-ppa. Our baseline model is a GIN [56], using exactly the same imple-
mentation as in [57]. All models have exactly the same number of parameters—we only modify the
connectivity in certain layers depending on the scheme. N.B. The fully-connected graph, used in the
FA approach [18] can be seen as a dense expander graph, i.e. a special case of EGP. ’OOT’ indicates
that the method failed to approach baseline performance within five days of training time (while not
converging within this time), and ’OOM’ indicates out-of-memory (on a V100 GPU).

Model ogbg-molhiv ogbg-molpcba ogbg-ppa

GIN 0.7558 ˘ 0.0140 0.2266 ˘ 0.0028 0.6892 ˘ 0.0100
GIN + master node 0.7668 ˘ 0.0096 0.2527 ˘ 0.0064 0.6916 ˘ 0.0154
GIN + FA [18] 0.7850 ˘ 0.0090 0.2595 ˘ 0.0049 OOM
GIN + G-RLEF [33] 0.7802 ˘ 0.0024 OOT OOM
GIN + EGP (ours) 0.7934 ˘ 0.0035 0.2329 ˘ 0.0019 0.7027 ˘ 0.0159
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