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Abstract. We have developed a reinforcement learning agent that often finds
a minimal sequence of unknotting crossing changes for a knot diagram with

up to 200 crossings, hence giving an upper bound on the unknotting number.
We have used this to determine the unknotting number of 57k knots. We took

diagrams of connected sums of such knots with oppositely signed signatures,

where the summands were overlaid. The agent has found examples where
several of the crossing changes in an unknotting collection of crossings result

in hyperbolic knots. Based on this, we have shown that, given knots K and

K′ that satisfy some mild assumptions, there is a diagram of their connected
sum and u(K) + u(K′) unknotting crossings such that changing any one of

them results in a prime knot. As a by-product, we have obtained a dataset of

2.6 million distinct hard unknot diagrams; most of them under 35 crossings.
Assuming the additivity of the unknotting number, we have determined the

unknotting number of 43 at most 12-crossing knots for which the unknotting

number is unknown.

1. Introduction

Knot theory plays a fundamental role in low-dimensional topology. A knot is a
smooth embedding K : S1 ↪→ S3. We say that the knots K and K ′ are equivalent if
there is an orientation-preserving automorphism φ of S3 such that φ◦K = K ′. We
can represent a knot using a projection onto S2 with only transverse double point
singularities, together with information at each double point about which strand is
higher. This is called a knot diagram. Two knot diagrams represent the same knot
if and only if they are related by a sequence of Reidemeister moves R1–R3. For
textbooks on knot theory, see Burde–Zieschang [6], Lickorish [23], and Rolfsen [33].

1.1. The unknotting number. The unknotting number is one of the oldest and
most natural, yet most elusive knot invariants. The unknotting number u(D) of a
knot diagram D is the minimal number of crossing changes required to obtain a
diagram of the unknot U . The unknotting number u(K) of a knot K is defined as

u(K) := min{u(D) : D is a diagram of K}.
Taniyama [36] has shown that, given any knot K and n ∈ N, there is a diagram D
of K with u(D) ≥ n.

A more intrinsic definition of the unknotting number is obtained using crossing
arcs. A crossing arc a for a knot K is a framed, oriented arc smoothly embedded
in S3 such that K ∩ a = ∂a. A crossing change along a is obtained by performing
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a finger move on K along a. Then u(K) is the minimal number of such crossing
changes that result in U . If a1, . . . , an is a collection of crossing arcs, then we
can always isotope them and the knot K so that the crossing arcs become short,
vertical line segments, in which case the crossing changes along them correspond
to crossing changes in the respective diagram. This shows the equivalence between
the two definitions. Yet another description of the unknotting number is given
by taking the minimal number of double points that appear in a generic regular
homotopy from K to U ; see Lickorish [23, p. 7].

Another classical knot invariant that can be defined in an analogous manner is
the crossing number. The crossing number c(D) of a knot diagram D is the number
of double points of D. The crossing number c(K) of a knot K in S3 is defined as

c(K) := min{c(D) : D is a diagram of K}.
If c(D) = c(K), we say that D is a minimal crossing number diagram of K. Note
that a knot can have several minimal crossing number diagrams. There are finitely
many knots for each crossing number, so knots are usually tabulated by crossing
number. See Rolfsen [33] for a table of knots up to ten crossings and KnotInfo [24]
for knots up to 13 crossings. For example, the only crossing number zero knot is
the unknot U and there are no knots of crossing number one or two. There are two
knots of crossing number three, the right-handed trefoil 31 (often denoted by T2,3,
as it is the (2, 3)-torus knot) and its mirror, the left-handed trefoil −31. There is
only one knot of crossing number four, the figure eight knot 41, which is equivalent
to its mirror. The number of knots grows exponentially as the crossing number
increases. For an integer c ∈ [3, 10], the notation cn refers to knot number n of
crossing number c in Rolfsen’s table.

There is no algorithm known to compute u(K). The main difficulty is that there
are knots K such that u(K) < u(D) for any minimal crossing number diagram D
of K. For example, the knot 108 has a unique minimal crossing number diagram D
with u(D) = 3, but u(108) = 2. If one changes a suitable crossing of D, one obtains
a 10-crossing diagram of 62, and u(62) = 1. By applying random Reidemeister
moves to D, it is easy to find a diagram D′ of 108 with u(D′) = 2.

Of the 2978 knots with at most 12 crossings, 660 have unknown unknotting
number, including 9 knots with crossing number 10. Of the remaining 2318 knots,
only 25 have u(D) > u(K) for their minimal crossing number diagram D in Knot-
Info [24].

A conjecture of Bernhard [3] and Jablan [17] stated that every knot K has a
minimal crossing number diagram D and a crossing c such that changing c results
in a knot K ′ with u(K ′) = u(K)−1. If true, this would yield an algorithm for com-
puting u(K). However, Brittenham and Hermiller [5] have shown this to be false:
at least one of 12n288, 12n491, 12n501, and 13n3370 violates the conjecture. One
can obtain each of 12n288, 12n491, and 12n501 from 13n3370 via a single crossing
change. The knot 13n3370 is the closure of a 20-crossing braid, where changing a
single crossing gives 11n21 that has unknotting number one. So u(13n3370) ≤ 2,
but it is hard to find a diagram D of 13n3370 with u(D) = 2 by applying random
Reidemeister moves to a minimal crossing number diagram.

The Gordian graph G has vertices knots, and an edge connects two knots if they
are related by a crossing change. The Gordian distance d(K,K ′) of the knots K
and K ′ is the distance of K and K ′ in G. Using this notion, u(K) = d(K,U).
Baader [2] has shown that, if d(K,K ′) = 2, then there are infinitely many knots
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K ′′ such that

d(K,K ′′) = d(K ′,K ′′) = 1.

Hence, the number of minimal unknotting trajectories for a knot is typically infinite.
In practice, one can often get a good upper bound on u(K) by simplifying the

diagram, changing a crossing such that the crossing number is minimal after sim-
plifying, and repeating this process.

The 4-ball genus g4(K) of K is the minimal genus of a compact, connected,
and oriented surface smoothly embedded in the 4-dimensional unit ball D4 with
boundary K. It satisfies g4(K) ≤ u(K). Indeed, the trace of a generic regular
homotopy of K to the unknot with u(K) transverse double points gives rise to an
immersed disc in D4 with u(K) transverse double points and boundary K. If we
smooth these double points, we obtain a compact, connected, and oriented surface
of genus u(K) in D4 with boundary K.

Most known lower bounds on u(K) are also lower bounds on g4(K). Among
these, |σ(K)|/2, |τ(K)|, |ν(±K)|, and |s(K)|/2 are efficiently computable, where σ
is the signature [18, Proposition 4.28], the invariants τ and ν were defined and shown
to bound g4(K) by Ozsváth and Szabó [28] using knot Floer homology [29][32],
and s was defined and shown to bound g4(K) by Rasmussen [31] via Khovanov
homology [19]. We obtain u(K) if the upper and lower bounds agree. For example,
Kronheimer and Mrowka [20] have shown that, for the torus knot Tp,q, we have

u(Tp,q) =
(p− 1)(q − 1)

2
.

In general, there are few classes of knots for which the unknotting number is known.
See [21] for a survey of results on the unknotting number.

1.2. Additivity of unknotting number. An old open question is whether the
unknotting number is additive under connected sum.

Conjecture 1.1. For knots K and K ′, we have u(K#K ′) = u(K) + u(K ′).

There is very little theoretical evidence to support this conjecture. Scharle-
mann [35] has shown that u(K#K ′) ≥ 2 if K, K ′ ̸= U . More recently, Alishahi
and Eftekhary [1] have proven using knot Floer homology that

u(K#Tp,q) ≥ p− 1

for integers 0 < p < q. However, these results leave open the possible existence of
knots K, K ′ for which u(K) and u(K ′) are both large but where u(K#K ′) = 2.

We therefore endeavoured to find counterexamples to Conjecture 1.1. Although
we were not successful, we discovered a large amount of new and interesting infor-
mation about unknotting number and about knot diagrams.

To find counterexamples to the conjecture, one needs to start with knots K and
K ′ with known unknotting numbers, and then to find efficient ways of unknotting
K#K ′. One significant source of knots K with known unknotting number is those
for which u(K) = |σ(K)|/2. Given two such knots K and K ′, then of course
u(K#K ′) = u(K) + u(K ′) if σ(K) and σ(K ′) have the same signs. However,
if they have opposite signs, then there is no obvious reason why K#K ′ cannot
be a counterexample to the conjecture. A further source of knots with known
unknotting number are torus knots, and again there seems to be no known reason
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why u(K#K ′) = u(K) + u(K ′) for torus knots of signature with opposite signs.
Indeed, it is currently unknown whether

u(T2,3# − T2,5) = u(T2,3) + u(T2,5).

One other reason to doubt Conjecture 1.1 is the apparent absence of any plausible
potential method for proving it. One possible approach might be to establish the
following stronger conjecture.

Conjecture 1.2. In any collection of unknotting crossing arcs for K#K ′, there
is one arc that can be isotoped to be disjoint from the 2-sphere specifying the
connected sum.

This implies Conjecture 1.1 by a simple induction on u(K#K ′). (See Section 4.1
for this implication.) However, we were able to find counterexamples to this conjec-
ture, which we will describe below. Note that it is also open whether the crossing
number is additive under connected sum, though this is widely believed to be true.

1.3. Finding efficient unknotting sequences. A crucial part of the strategy
for disproving Conjecture 1.1 is to be able to find short unknotting sequences. In
particular, in the case of K#K ′, the number of crossing changes needs to be less
than u(K) + u(K ′). Even when one is presented with a diagram D for a knot K,
it is not straightforward to compute u(D) when the crossing number of D is large.
For a knot diagram D with n crossings, u(D) ≤ n/2, hence there are at least 2n−1

possibilities for the subset of crossings that yield a diagram of the unknot. This
makes computing u(D) practically impossible when n is large.

In order to find out which knot invariants to use for our reinforcement learning
experiments, we first trained a supervised learning model on brute-forced unknot-
ting sets that predicts the probability a given crossing lies in a minimal unknotting
set. This is an instance of behavioural cloning, the simplest form of imitation learn-
ing. This performed well above baseline, and the most useful feature was the Jones
polynomial.

We then trained a reinforcement learning agent that can efficiently find an un-
knotting sequence of crossing changes in a diagram with as many as 200 crossings.
Given the small amount of initial training data, this was initially evaluated on a
brute-forced dataset of diagrams. Thereafter, we used unknotting sets provided by
the agent to evaluate progress.

We have used various features to aid the reinforcement learning agent, and again
found the Jones polynomial to be by far the most useful. This suggests that the
Jones polynomial contains yet unobserved information about the unknotting num-
ber.

By combining the agent with lower bounds coming from invariants such as the
signature, τ , ν, and s, we have obtained a dataset of about 57k knot diagrams with
known unknotting numbers. We have then taken connected sums of such diagrams,
which were overlaid and, in some cases, then randomly mixed using Reidemeister
moves. We have also run it on connected sums of braid closures that were mixed
by inserting subwords representing the trivial braid. The agent found unknotting
sequences that involved several crossing changes that resulted in hyperbolic knots,
and were hence not connected sums. This has led us to diagrams of connected
sums of knots K and K ′ that admit an unknotting subset of crossings of size
u(K) + u(K ′), such that any single crossing change from the unknotting subset
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results in a hyperbolic knot, hence disproving Conjecture 1.2. In fact, we will prove
the following:

Theorem 1.3. Suppose that the prime knots K1 and K2 in S3 are not 2-bridge.
Suppose that, for i ∈ {1, 2}, there is a set of u(Ki) crossing changes to Ki taking
it to the unknot, with the property that changing any one of these crossings does
not produce the connected sum of Ki and a non-trivial knot. Furthermore, assume
that u(K1) > 1 or u(K2) > 1. Then there is a diagram of K1#K2 and a set C of
unknotting crossings of size u(K1) + u(K2) such that changing any crossing in C
results in a prime knot.

We suspect that, in the above theorem, it is not necessary to assume that the
summands are not 2-bridge. Note that it is very reasonable to make the hypothesis
about the existence of u(Ki) crossing changes as in the statement of the theorem.
Certainly, Ki has a sequence of u(Ki) crossing changes taking it to the unknot, and
if we change any of these crossings, the result is a knot K ′ with u(K ′) = u(Ki)− 1.
So if K ′ had Ki as a summand, then this would contradict Conjecture 1.1 and
hence Conjecture 1.2.

However, even after running the agent on millions of connected sums, we have
not found a counterexample to the additivity of the unknotting number.

1.4. New unknotting numbers, assuming additivity. Conjecture 1.1 has in-
teresting consequences for the unknotting number of some prime knots. Suppose
that we have a sequence of unknotting crossing changes of length u(J) for a knot J .
Then, if we change n of these crossings, the resulting knot must have unknotting
number u(J) − n. Hence, if we start with a knot K#K ′ and find a sequence of
u(K) + u(K ′) crossing changes that takes it to the unknot, then, assuming Con-
jecture 1.1, we can determine the unknotting number of all the intermediate knots
in the sequence. Using this approach, we have obtained 43 at most 12-crossing
prime knots with unknown unknotting numbers. This provides a method for com-
puting the unknotting numbers of these 43 knots, assuming Conjecture 1.1. These
43 values all coincide with the largest possible unknotting number given in the
KnotInfo database. Conversely, if one of these at most 12-crossing prime knots
had smaller unknotting number than the KnotInfo upper bound, we would obtain
a counterexample to the additivity of the unknotting number.

1.5. Hard unknot diagrams. It is a major open problem in knot theory whether
there is a polynomial-time unknot detection algorithm. We say that a diagram of
the unknot is hard if, in any sequence of Reidemeister moves to the trivial diagram,
the crossing number has to first increase before it decreases. They are of particular
interest because they might provide counterexamples to potential unknot detec-
tion algorithms. Hard unknot diagrams are difficult to construct, and previously
no extensive dataset existed. Burton, Chang, Löffler, Mesmay, Maria, Schleimer,
Sedgwick, and Spreer [7] have recently collected 21 hard unknot diagrams and 2
special infinite families from the literature, 10 of which are not actually hard ac-
cording to our definition, as they can be simplified without increasing the crossing
number (though a monotonically decreasing simplification might not exist).

Initially, we tried to construct hard unknot diagrams using reinforcement learn-
ing, where a setter performs complicating Reidemeister moves to prevent a solver
from unknotting via simplifying Reidemeister moves, with little success.
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During our unknotting experiments, we have found approximately 5.9 million
knot diagrams between 9 and 75 crossings that SnapPy could not simplify even
after 25 attempts. We have shown that 2.46 million of these are indeed hard and
are not related by a sequence of R3 moves. Some of these have thousands of R3-
equivalent diagrams; see Figure 17. Our dataset includes the first four hard unknot
diagrams H, J, Culprit, and Goeritz from [7] of crossing numbers 9, 9, 10, and
11, respectively. The next previously known hard unknot diagram, the reduced
Ochiai II, has 35 crossings. The vast majority of the hard unknot diagrams that
we have found have less than 35 crossings.

2. Some background on Machine Learning

There are three major Machine Learning paradigms, namely, supervised learning
(SL), reinforcement learning (RL), and unsupervised learning. In this paper, we
will focus on the first two.

In SL, we are given a labelled dataset. In other words, we know the values of
a function at certain points. We split our dataset into a training set, which is
typically about 80%, and a test set. We would like to learn, or approximate the
function only using the training set such that the error (e.g., L2-norm) is small on
the whole dataset.

The most classical example is linear regression. More generally, Hornik, Stinch-
combe, and White [15] have shown that neural networks (NNs) are universal func-
tion approximators, if one is allowed to vary the architecture. A neural network
is a composition of a sequence of affine maps and some simple non-linearities in
between, such as max(0, x) applied coordinate-wise. The network is trained using
some variant of stochastic gradient descent. One initialises the affine maps, for ex-
ample, randomly, then computes an approximate of the gradient of the error on a
subset of the training set (whose cardinality is called the batch size), and changes
the affine maps in the direction of the gradient according to some step size (or
learning rate). This is repeated a number of times, and a pass through the whole
training set is called an epoch.

There have been several of applications of SL to knot theory in recent years,
mostly aimed at finding connections between knot invariants. See, for example,
Hughes [16] and Davies et al. [9].

RL is a machine learning paradigm where an agent (in our case, a computer
software) learns to perform actions to maximise a cumulative reward while inter-
acting with some environment. Typical examples are provided by the games of
chess and Go, self-driving cars, and humanoid robots that learn to walk. Training
a SL model is often much simpler than RL. There have been only two applications
of RL to topology so far. Gukov, Halverson, Ruehle, and Su lkowski [13] focused on
unknot recognition. Furthermore, Gukov, Halverson, Manolescu, and Ruehle [12]
have developed RL agents that search for ribbon disks for a knot. In this rest of
this section, we give an overview of RL and imitation learning.

2.1. Markov decision processes. Mathematically, RL can be phrased as a Mar-
kov decision process, which is a tuple (S,A, Pa, Ra), where

• S is a set of states,
• As is the set of actions available from state s ∈ S,
• Pa(s, s′) is the probability that a ∈ As leads to state s′ ∈ S, and

6



• Ra(s, s′) is the immediate reward after transitioning from state s to s′ via
action a.

In our case, S consists of certain invariants of diagrams that can be obtained by
crossing changes from a fixed knot diagram D. An action is changing a crossing of
D. A crossing change is deterministic, so Pa(s, s′) is 1 if a crossing change a ∈ As

results in s′ and is 0 otherwise. If a ∈ As leads to s′, then the reward Ra(s, s′) is 1
if s′ is a diagram of the unknot U and is 0 otherwise.

The policy π is a potentially probabilistic mapping from S to A. In state s ∈ S,
the agent performs action π(s) ∈ As. The objective of training an RL agent is to
choose π to maximise the state value function

V π(s) := E

( ∞∑
t=0

γtRπ(st)(st, st+1)

)
,

where s0 = s, st+1 ∼ Pπ(st)(st, st+1), and γ ∈ [0, 1] is called the discount factor.
This is the expected value of the total discounted reward the agent obtains using
the policy π. The discount factor γ determines how much weight is given to future
rewards.

2.2. Q-learning. A classical approach to solving Markov decision process is Q-
learning, where ‘Q’ stands for ‘quality’. Its goal is to learn the state-action value
Q(s, a), which is the expected discounted total reward if action a ∈ As is taken in
state s ∈ S. At time t, the agent selects action at, observes a reward rt, and enters
state st+1. We initialise Q randomly and updated it via the Bellman equation

Qnew(st, at) := Q(st, at) + α

(
rt + γ max

a∈Ast+1

Q(st+1, a) −Q(st, at)

)
,

where α ∈ (0, 1] is the learning rate or step size.
When selecting an action, we face the dilemma of exploration versus exploitation;

i.e., whether we explore the environment to potentially obtain a higher cumulative
reward, or rely on the Q-values that we have learned so far. The ε-greedy policy
blends the two approaches by performing a random action with probability ε and
an action at ∈ Ast that maximises Q(st, at) with probability 1 − ε.

A modern version of Q-learning is deep Q-learning. Here, an artificial neural
network f : RS → RA learns the Q-values, where

f(es) · ea = Q(s, a)

for the basis vector es of RS corresponding to the state s ∈ S and the basis vector ea
of RA corresponding to the action a ∈ A. The weights of the network are updated
using the Bellman equation.

2.3. Importance weighted actor-learner architecture (IMPALA). For the
majority of our experiments, we used the IMPALA [10] reinforcement learning
architecture, which is a distributed agent developed for parallelisation. It learns
the policy π and the state value function V π via stochastic gradient ascent. Acting
and learning are decoupled. A set of actors repeatedly generate trajectories of
experience. One or more synchronous learners use this experience to learn the
policy π. The policy the actors use lags behind the learners’, which is corrected
using a method called V-trace.
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Figure 1. For each crossing, the percentage of the training set
for which it appears in a minimal unknotting set.

2.4. Imitation learning. During imitation learning, an agent tries to learn a pol-
icy that mimics expert behaviour. It does not rely on a reward function. The
simplest approach is behavioural cloning, where a supervised learning model, usu-
ally a neural network, learns to map environment observations to (optimal) actions
taken by an expert.

We mention two other, more sophisticated approaches to Imitation Learning.
Adversarial imitation, due to Ho and Ermon [14], is a minimax game between two
AI models (Generative Adversarial Nets): the agent policy model produces actions
using RL to attain the highest rewards from a reward model that indicates how
expert-like an action is, while the reward model attempts to distinguish the agent
policy behaviour from expert behaviour. In the case of inverse Q-learning, due to
Garg et al. [11], a single Q-function is learned. The policy is obtained by choosing
the action with the highest Q value, and one can recover the reward from Q.

3. Learning to unknot

3.1. Imitation learning and unknotting. We used behavioural cloning based on
a NN to predict for each crossing the probability that it lies in a minimal unknotting
set. If the predicted probability for a crossing c is larger than 0.5, then we interpret
this such that c does lie in a minimal unknotting set. Expert data was obtained
from brute-forced minimal unknotting sets of knots up to 30 crossings.

See Figure 1 for the percentage of the training set for which a given crossing
appears in a minimal unknotting set. The distribution of the percentage of crossings
that lie in a minimal unknotting set for diagrams in the dataset is shown in Figure 2.
The unknotting numbers of the diagrams ranges between 1 and 8.

Since knot diagrams are hard to feed into a neural network, the main features
we used were invariants of the diagram, together with invariants of all diagrams
obtained by changing one crossing. We call this one step lookahead, which we also
used in our RL agent. We computed invariants using SnapPy [8].

8



0.0 0.2 0.4 0.6 0.8 1.0
Percentage of valid crossings

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

Figure 2. The distribution of the percentage of crossings that lie
in a minimal unknotting set for diagrams in the dataset.

We experimented with several collections of invariants of knot diagrams. These
included the following:

(1) signature, determinant, writhe, and whether the diagram is alternating,
(2) number and lengths of twist regions, together with crossing signs,
(3) Alexander polynomial ∆K(t) and Jones polynomial VK(t) (coefficients,

minimal and maximal degrees, and certain evaluations, including at some
roots of unity, of the polynomial and its first three derivatives),

(4) invariants computed by the knot_floer_homology function of SnapPy,
written by Ozsváth and Szabó (τ , ν, ϵ, Seifert genus, is fibred, is L-space
knot, rank in each homological grading, modulus, rank in each Alexander
grading, total rank),

(5) whether the knot is hyperbolic, in which case we considered the volume,
longitudinal translation, and natural slope.

Many invariants either failed to compute for a significant percentage of diagrams
(≥ 20%), such as the hyperbolic invariants in (5), or were slow to compute for large
diagrams (≥ 100 crossings), such as the knot Floer homology invariants in (4). For
RL, it is important that the environment is fast. Hence, we focused on the simple
invariants in (1) and the polynomial features in (3).

To find out which subset of invariants to use, we set up a Supervised Learning
experiment to predict whether a crossing lies in a minimal unknotting sequence.
We considered neural networks with hidden layers of size [256, 256], [1024, 1024,
1024], and [2048, 2048, 2048], respectively. Learning was done in 10k steps, with
learning rate 0.01 or 0.005, momentum 0.9, and batch size 2048. Accuracy ranged
between 84.6% and 88.1%, with baseline 50.1% when predicting the most commonly
occurring crossing in unknotting sets; see Figure 1 (crossing 2 is in a minimal
unknotting set for 50.1% of diagrams in the dataset). Highest accuracy was achieved
by hidden layers of size [1024,1024,1024] and learning rate 0.01 using all features.
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Invariants of current knot

Invariants of knots after switching i-th crossing
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Policy Network

Policy Network

Policy Network

Policy Network

Policy Network

Action Probabilities

EnvironmentAgent

Crossing Index
 to switch

Invariants of current knot, 
Reward

Figure 3. The architecture of the RL agent. Input features are
invariants of the current diagram, together with invariants of all
neighbouring diagrams.

When only using the features in (3) on the same architecture, we obtained almost
identical, 87.97% accuracy.

Including the sum of the absolute values of the coefficients of the Alexander poly-
nomial further improved the performance. Using both the Jones and the Alexander
polynomials gave higher accuracy than the Alexander polynomial only. This was
also the case for the RL agent discussed in Section 3.2, and was particularly pro-
nounced when it was forced to switch some inter-component crossings for connected
sums (see Definition 4.1 for the definition of an inter-component crossing). Saliency
analysis of the Alexander and Jones polynomial features revealed that the evalua-
tions of VK(t) and V ′

K(t) near 1 were most important in making the prediction.
One potential explanation of why the Jones polynomial works better than the

Alexander polynomial is that the Jones polynomial is conjectured to detect the
unknot, while the Alexander polynomial does not. The algebraic unknotting number
ua(K) of a knot K, due to Murakami [27], is the minimal number of crossing changes
required to reach a knot with vanishing Alexander polynomial. Clearly, ua(K) ≤
u(K). Borodzik and Friedl [4] have shown that ua(K) agrees with an invariant n(K)
that they defined using the Blanchfield form of K, and which can be computed in
many examples. However, this in itself does not seem to completely explain why
the Jones polynomial is the most useful feature for guiding the Imitation Learning
and RL agents. Hence, it seems the Jones polynomial contains yet unobserved
unknotting information.

3.2. Reinforcement learning and unknotting. Our goal was to train an RL
agent that performs crossing changes in a fixed diagram D to unknot it, giving an
upper bound on u(D). We used the IMPALA architecture. The resulting trained
agent can determine u(D) even when c(D) ≈ 200, in which case brute-forcing is not
possible.

The agent architecture is shown in Figure 3. As for imitation learning, the
features we tried were invariants of the diagram (typically the Alexander and Jones
polynomial features from (3) of Section 3.1), together with invariants of all diagrams
one can obtain via a single crossing change (one step lookahead). For each invariant,
an additional boolean feature showed whether the invariant calculation had failed.
Some invariants had a large range, especially Jones polynomial evaluations, which
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were clipped to lie in a fixed range. The agent was allowed to try a fixed number of
crossing changes. It was trained on the dataset explained in Section 4 consisting of
knots with known unknotting numbers from KnotInfo, torus knots, quasipositive
knots, and random knots with large signatures, and connected sums of these. We
sampled randomly from these classes.

At the beginning of each episode, the environment samples a new knot and
returns its invariants described above to the agent as a vector. Then, at each
step, the agent computes an action; i.e. the crossing index that should be switched,
by feeding the invariant vector through a neural network. The environment then
performs the action by switching the crossing and returns the new invariant vector.
An episode terminates if either the knot was unknotted successfully or if a maximum
number of steps has been reached. If the unknot has been reached, a reward of +1
is returned, otherwise a reward of 0.

Initially, we observed that the agent frequently revisited the same diagram. If a
crossing appeared multiple times in an unknotting sequence, we counted it modulo
2. Furthermore, we experimented with disallowing revisiting the same Alexan-
der or Jones polynomial, which decreased the percentage of unsolved diagrams
for 50–100-crossing knots from 0.49% to 0.05%. There was also a small increase
in performance when disallowing Jones revisits. When using an agent based on
Alexander polynomial features only, disallowing Alexander polynomial revisits sub-
stantially improved performance, except when solving connected sums with forced
inter-component crossings. When we allowed revisits, the agent sometimes found
shorter unknotting sequences (after counting the number of times each crossing
change was made modulo 2). The Alexander only policy was 10 times faster than
the one using the Jones polynomial. Running the agent 10 times on each diagram
substantially increased performance.

When comparing the performance of the Alexander and the Jones polynomials on
a dataset of random knots, the RL agent using the Jones polynomial both as features
and for disallowing revisits found shorter unknotting sequences, though sometimes
the agent based on the Alexander polynomial worked better; see Figure 5. The
percentage of knots that the RL agent could not unknot was much lower when
using the Jones polynomial.

We also compared the Jones unknotting agent to various baselines. A naive base-
line of randomly switching crossings is fast and simple to implement, but unlikely
to find minimal unknotting sequences for diagrams with many crossings. Similarly
to [12], we developed a Bayesian Optimisation (BO) based random agent. The
agent chooses randomly from the following action categories: Reidemeister I move,
reverse Reidemeister I move, Reidemeister II move, reverse Reidemeister II move,
Reidemeister III move, and crossing switch. The random agent chooses one of
these action categories by randomly sampling according to certain weights. The
concrete action is then sampled uniformly from all valid moves from that category,
e.g. from all valid crossing indices. We optimised the sampling weights using BO
using the average reward on a heldout validation set as the fitness metric. We
limited the weights to be integers between 1 and 100. The best fitness was achieved
by weight vectors where weights for simplifying moves (Reidemeister I or II) as
well as neutral moves (Reidemeister III) were near 100, while weights for moves
which increase the crossing count (reverse Reidemeister I and II) or which incur a
reward penalty (crossing switch) were assigned a weight near 1. Intuitively, this
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Figure 4. Comparison of the performance of different unknotting
strategies. (A) shows the mean diagram unknotting number esti-
mated by the different strategies for solved knots. (B) shows the
percentage of knots each strategy was unable to unknot.
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Figure 5. Comparison of the performance of the Alexander and
the Jones RL agents on a dataset of random knot diagrams.

means the optimisation procedure converged to a solution which always attempts
to maximally simplify the knot diagram before making a crossing switch. We then
implemented further baselines which follow this insight of first simplifying then
switching a crossing. Simplify (random) utilizes SnapPy to first simplify the knot
diagram before a random crossing is switched. Simplify (min. crossing) always
switches the crossing after which the resulting diagram has the least crossings after
simplification. Figure 4 shows how different unknotting strategies compare on a test
set of 100, 000 diagrams. The RL agent utilizing the Jones polynomial manages to
unknot more knots than the other strategies and is also capable of producing more
efficient unknotting sequences.
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Figure 6. One can mix a diagram of a connected sum of two braid
closures by inserting identity braid words. The inter-component
crossings that yield hyperbolic knots are shown in red.

3.3. Braids. An alternative way to represent knots is as braid closures. This has
a number of advantages. The Jones polynomial computation is exponential time.
However, a polynomial-time algorithm exists for braid closures if we bound the
braid index [26]. However, even this gets too slow for RL when the braid index
is over 6–8. Hence, we considered braids of at most 8 strands. Furthermore, the
slice–Bennequin inequality, due to Rudolph [34], building on work of Kronheimer
and Mrowka, provides easy-to-compute bounds on the unknotting number:

|w(β)| − n(β) + 1 ≤ 2u
(
β̂
)
≤ c
(
β̂
)

+ 1 − n(β),

where w(β) is the writhe and n(β) is the number of strands of the braid word

β, and c(β̂) is the crossing number of the braid closure β̂. We verified that our
RL agent obtained statistically better bounds on the unknotting number than the
slice–Bennequin bounds.

When considering diagrams of connected sums, one can obtain potentially better
mixing of the components by inserting up to 7 braid words equivalent to the identity,
and which mixes strands between the two components, compared to overlaying. See,
for example, Figure 6.

We furthermore trained an RL agent which operated directly on braid words
rather than using invariants. In this case, we used a transformer architecture [37],
a ML architecture designed to work on sequences. The input to the model is a
sequence of integers representing the braid word, and the output is – akin to the
invariant-based agent – a probability distribution over which crossing to switch.
This had the big advantage of being invariant-free and hence very fast. It performed
well on smaller braids (≤ 60 crossings, 3–8 strands), but struggled to unknot larger
braids efficiently. Future work could investigate invariant-free unknotting agents
further.

A potential direction that we have not explored is to do Imitation Learning on
the unknotting trajectories from the braid agent. One would filter trajectories that
are close to minimal, and augment the dataset by rotating and mirroring the braid
words, and by inserting braid identities.

4. Additivity of the unknotting number

We set out to search for a counterexample to the additivity of the unknotting
number using our IMPALA agent. Our strategy was to first find a large dataset
S of knots with known unknotting numbers. We can assume that σ(K) ≥ 0 for
every K ∈ S by mirroring it if σ(K) < 0. We then construct non-trivial diagrams
of connected sums K# −K ′ for K, K ′ ∈ S. If the RL agent can unknot K# −K ′

using u(K) + u(K ′) − 1 crossing changes, then we are done.
13
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Figure 7. The distribution of random knots K in our dataset by
SnapPy simplified crossing number and by u(K).

To construct S, we obtained u(K) for 31k random knots between 10 and 60
crossings and 26k quasipositive knots betwen 10 and 50 crossings in their SnapPy
simplified diagram with large |σ(K)|, and where the upper bounds given by the
RL agent and the lower bounds from knot Floer homology coincided. We found
it difficult to generate random knots K with |σ(K)| large. See Figure 7 for the
distribution of the crossing number of a SnapPy simplified diagram and u(K) for
the random knots in our dataset. For the lower bounds, we used the signature, the
Ozsváth–Szabó τ invariant, and |ν(±K)|, which is sometimes 1 bigger than |τ(K)|.
We also added torus knots and at most 12-crossing knots with known unknotting
number from KnotInfo.

In order to construct a non-trivial diagram of K#K ′, we overlaid the diagrams
of K and K ′; see Figure 8. Note that, in an overlay sum, every crossing arc only
intersects the connected sum sphere at most once. Hence, in approximately 100k
cases, we also performed random Reidemeister moves to further mix the compo-
nents. We did not always do this as the limit of our RL agent was around 200
crossings. For some experiments, we also considered connected overlay sums of 3
at most 12-crossing knots, with crossing number up to 120. In addition, we also
searched among connected sums obtained from braids by inserting identity braid
words, as explained in Section 3.3. See Figure 9 for the performance of the RL
agent based on the Jones polynomial on connected sums, where the x-axis shows
the sum of the unknotting numbers of the summands.

Instead of this stochastic approach to searching for a counterexample, one could
train a different RL agent that searches for non-trivial unknotting crossing arcs in
a fixed diagram, analogously to the approach of Gukov, Halverson, Manolescu, and
Ruehle [12] to finding ribbon disks. Note that a Bayesian random walker outper-
formed all their RL architectures, supporting the power of a stochastic approach.

Despite an extensive search, we have not found a counterexample to the additiv-
ity of the unknotting number. There are several potential interpretations of this.
We could view it as some evidence supporting that the conjecture is true. Alterna-
tively, a stochastic search might not be sufficient to come across a counterexample,
if one exists. This is supported by the fact that it seems difficult to find an un-
knotting number 2 diagram of the knot 13n3370 featuring in the counterexample
to the Bernhard–Jablan conjecture due to Brittenham and Hermiller [5]. A third
explanation might be that, even though we have produced diagrams of connected
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Figure 8. An overlaid diagram of a connected sum that can be
unknotted by the inter-component crossings 13, 14, 48, and 50.

sums with unknotting number at most u(K) + u(K ′) − 1, our RL agent was not
good enough to find a minimal unknotting set. In the vast majority of cases, it
did produce unknotting sets of size u(K) + u(K ′), many of which even included
inter-component crossings; see Figure 8. We will discuss this in more detail in the
next section.

If there is a counterexample, some crossings must be between the two compo-
nents. Hence, we performed experiments where, in a dataset of 60 million knots,
we forced the agent to change 2–5 inter-component crossings. For each knot, we
applied the RL agent 10 times. In 25% of the cases, it found unknotting sets of
size u(K) +u(K ′) containing the specified inter-component crossings. However, for
2% of the diagrams, it did not find any unknotting set in the prescribed number of
steps. This is not surprising, as the forced crossing changes might not be part of a
minimal unknotting set. The above indicates that the RL agent is actually rather
good at finding (close to) minimal unknotting sets in a given diagram.

4.1. Strong conjecture. While we have not found a counterexample to the addi-
tivity of the unknotting number, we have obtained counterexamples to the stronger
form, Conjecture 1.2. Recall that this states that, in every collection of unknotting
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Figure 9. The performance of the RL agent based on the Jones
polynomial on connected sums and no forced inter-component
crossing changes.

crossing arcs for K#K ′, there is one that can be isotoped to be disjoint from the
connected sum sphere.

We now explain why Conjecture 1.2 implies the additivity of unknotting number
(Conjecture 1.1). We must show that u(K#K ′) = u(K) + u(K ′) for knots K and
K ′. We use induction on u(K#K ′). Let α1, . . . , αn be a collection of crossing arcs
for K#K ′ with n = u(K#K ′) and such that changing these crossings gives the
unknot. Assuming Conjecture 1.2, we can isotope these arcs so that one, α1 say, is
disjoint from the 2-sphere specifying the connected sum. Say that it lies on the side
of the 2-sphere corresponding to K ′. Making the crossing change corresponding to
α1 gives a connected sum K#K ′′. Since n was minimal, the remaining crossing
arcs form a minimal unknotting sequence for K#K ′′. So, u(K#K ′′) = n− 1, and
therefore inductively, u(K#K ′′) = u(K) + u(K ′′). Now, K ′′ is obtained from K ′
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by changing a crossing, and therefore u(K ′′) ≥ u(K ′) − 1. So,

u(K#K ′) = u(K#K ′′) + 1 = u(K) + u(K ′′) + 1 ≥ u(K) + u(K ′).

The inequality u(K#K ′) ≤ u(K) + u(K ′) holds trivially. Thus, we have shown
that u(K#K ′) = u(K) + u(K ′), as required.

Definition 4.1. We say that a crossing change in a diagram of a connected sum is
inter-component if it results in a knot that is not a connected sum (e.g., hyperbolic)
and is in-component otherwise.

The motivation for this definition is as follows. As a result of Conjecture 1.2,
we are interested in crossing arcs that cannot be isotoped to be disjoint from the
2-sphere specifying the connected sum. However, this condition can be difficult to
verify in practice. But, if a crossing arc for K#K ′ is inter-component in the above
sense and u(K), u(K ′) > 1, then it certainly cannot be isotoped to be disjoint from
the connected sum 2-sphere.

We have found 20 counterexamples to Conjecture 1.2 by starting from diagrams
where the RL agent found unknotting sets with several hyperbolic inter-component
crossings and performing all in-component crossing changes from the unknotting
set. These produce connected sums where the inter-component crossing changes
result in a diagram of the unknot. One such example is shown in Figure 8, where
the inter-component crossings 13, 14, 48, and 50 are unknotting.

In many of our examples, changing the in-component crossings results in sub-
stantial simplification of the summands. By understanding the crossing arcs dur-
ing this simplification led us to a more general method for constructing diagrams
of connected sums that admit unknotting sets consisting of only inter-component
crossings, which we recall from the introduction.

Theorem 1.3. Suppose that the prime knots K1 and K2 in S3 are not 2-bridge.
Suppose that, for i ∈ {1, 2}, there is a set of u(Ki) crossing changes to Ki taking
it to the unknot, with the property that changing any one of these crossings does
not produce the connected sum of Ki and a non-trivial knot. Furthermore, assume
that u(K1) > 1 or u(K2) > 1. Then there is a diagram of K1#K2 and a set C of
unknotting crossings of size u(K1) + u(K2) such that changing any crossing in C
results in a prime knot.

The proof of this result will rely on Lickorish’s work on prime tangles [22]. In
fact, we will need to use a slight extension of his work, as follows.

Definition 4.2. A generalised tangle is a pair (B, t), where B is a 3-ball and t is
1-manifold properly embedded in B that intersects ∂B in 4 points. So a generalised
tangle consists of 2 arcs plus possibly some simple closed curves. When t has no
simple closed curve components, it is a tangle. A tangle is trivial when there is a
homeomorphism from B to D2 × I taking t to {p1, p2} × I, where p1 and p2 are
two points in the interior of D2.

The following definition is due to Lickorish [22] in the case of tangles; we translate
it verbatim to the setting of generalised tangles.

Definition 4.3. A generalised tangle (B, t) is prime if the following conditions
both hold:

(1) any 2-sphere in B which meets t transversely in 2 points bounds a 3-ball
intersecting t in an unknotted arc;
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c1
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c′1c′2c2a+

a−

Figure 10. Upper left: the diagram D of the connected sum
K1#K2. Upper right: the diagram D′ after performing finger
moves on the crossings c1 and c2. Bottom left: the diagram near
the connected sum sphere after changing one of the crossings in
C ′

2. Bottom right: after changing one of the crossings in C ′
1. In

the bottom row, there might be additional under-arcs across a+
that are not shown.

(2) it is not a trivial tangle.

The following result was proved by Lickorish for tangles. His proof extends
immediately to generalised tangles, and is therefore omitted.

Theorem 4.4. If two prime generalised tangles are glued via a homeomorphism
between their boundary spheres that identifies the intersections with 1-manifolds,
the result is a prime link.

Proof of Theorem 1.3. For i ∈ {1, 2}, isotope a sub-arc ai of Ki such that it be-
comes straight and parallel to the y-axis in R3. Furthermore, let Ci be a set of
disjoint unknotting framed crossing arcs of Ki such that |Ci| = u(Ki), and such
that they are disjoint from ai. Isotope the initial point c(0) of each arc c ∈ Ci into
ai. Then contract c to a straight line segment via an ambient isotopy of R3 fixing
ai such that z(c(0)) > z(c(1)), where z : R3 → R is the z-coordinate function (this
can be achieved by performing a finger move on Ki by moving c(1) ∈ Ki along
c). We finally shorten and move the vertical arcs in Ci so close to each other such
that the corresponding crossings in the diagram Di obtained by perturbing Ki and
projecting it onto the (x, y)-plane are consecutive along the projection of ai. Let
pi ∈ ai be a point such that y(pi) < y(c(0)) for every c ∈ Ci. We take the connected
sum of K1 and K2 at p1 and p2. We denote the resulting diagram of K1#K2 by
D. See the upper left of Figure 10. In K1#K2, the arcs a1 and a2 will become arcs
a+ and a−, where a+ is the upper and a− the lower horizontal strand in the upper
left of Figure 10. Note that a+ contains the crossings C1 ∪ C2.

First, suppose that u(K1) > 1 and u(K2) > 1. Let ci ∈ Ci be the crossing closest
to pi. Then perform a finger move on the lower strand at c1 along a+, isotoping it
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c

L′
2

A

Figure 11. The left shows the link L′
2 obtained from T2 by adding

a trivial tangle. The right shows the tangle A.

across the crossings in C2. Next, isotope the lower strand at c2 along a+, isotoping
it across the crossings in C1. The resulting diagram D′ is shown in the upper right
of Figure 10. We write c′i for the crossing of D′ corresponding to ci. Changing all
the crossings of D and D′ along a+ lead to equivalent diagrams, so, to the unknot.
Let us write

(1) C ′
i := Ci \ {ci} ∪ {c′i}.

If we change a single crossing in C ′
2, after an isotopy, the diagram looks like the

bottom left of Figure 10 near the connected sum sphere. Analogously, changing a
crossing in C ′

1 leads to the diagram in the bottom right of Figure 10.
We claim that if we change any crossing c ∈ C ′

1 ∪ C ′
2, the resulting knot K is

prime. Without loss of generality, suppose that c ∈ C ′
2, so we have the situation

shown in the lower left of Figure 10. The knot K is split as a sum of two tangles
T1 and T2 by the connected sum sphere S of K1#K2, where Ti lies on the same
side of S as Ki, for i ∈ {1, 2}.

We now show that both T1 and T2 are prime. This will imply, by Lickorish’s
theorem [22] (see Theorem 4.4), that their union K is prime, as required.

We can glue a trivial tangle to T1 to obtain K1, which is prime by assumption.
Hence, if T1 were a trivial tangle, then K1 would be a 2-bridge knot, which we have
excluded by assumption.

We claim that T1 contains no non-trivial ball-arc pair. Suppose that it did.
We have already observed that we can attach a trivial tangle to the outside of T1

to obtain K1. Hence, if T1 did contain a non-trivial ball-arc pair, this would be
knotted like K1 as K1 is prime. Let K ′

1 be the result of changing the crossing c1 of
K1. As c1 is part of a minimal unknotting set for K1, we have u(K ′

1) = u(K1)− 1,
so K ′

1 ̸= K1. We note that we can attach a trivial tangle to the outside of T1 and
obtain the knot K ′

1. The non-trivial ball-arc pair in T1 then forms a summand for
K ′

1. Hence, K ′
1 = K1#J for some knot J , where J ̸= U since K ′

1 ̸= K1. This
contradicts the assumption that K ′

1 is not the connected sum of K1 and a non-
trivial knot. Thus, we have shown that T1 is a non-trivial tangle that contains no
non-trivial ball-arc pair, and is hence prime.

Let K ′
2 be the knot obtained from K2 by changing the crossing c. We can glue

a trivial tangle to T2 to obtain a link L′
2, which is K ′

2 with an unknot linking the
crossing c non-trivially; see the left of Figure 11. If T2 were trivial, then L′

2 would
be a 2-bridge link. Hence, K ′

2 would be a 1-bridge knot; i.e., trivial, contradicting
the assumption that u(K2) > 1.

Our goal now is to show that T2 has no non-trivial ball-arc pair. The link L′
2 is

the union of two tangles A and B, where A is shown on the right of Figure 11.
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We claim that A is prime. It is certainly not a trivial tangle, since it has a simple
closed curve component. Suppose that there is a 2-sphere S intersecting the tangle
A transversely in two points that does not bound an unknotted arc. Form A ∪ A,
glued with a rotation through π/2. This has a prime non-split alternating diagram,
and hence, by a theorem of Menasco [25], it is a prime non-split link. But S would
force this link either to be split or not prime, which is a contradiction, proving the
claim.

We claim that B is prime. Let E′ be the trivial tangle obtained from A by
deleting the unknot component. We obtain the trivial tangle E from E′ by changing
its only crossing c. Then E∪B = K2. So, if B were a trivial tangle, then K2 would
be a 2-bridge knot, which is contrary to our assumptions. Furthermore, if B had
a non-trivial ball-arc pair, then the arc would have to be knotted like K2. But
E′ ∪ B = K ′

2, so K ′
2 = K2#J for some knot J . Since c is part of a minimal

unknotting set, u(K ′
2) = u(K2) − 1, so K ′

2 ̸= K2, and hence J ̸= U . However, we
are assuming that this is not case. This proves that B is indeed prime.

Since we have proved that A and B are both prime generalised tangles, Theo-
rem 4.4 implies that L′

2 = A ∪B is a prime link.
We are now in a position to show that T2 has no non-trivial ball-arc pair. Suppose

that, on the contrary, there is a sphere S′ in T2 such that |S′ ⋔ T2| = 2 and which
bounds a non-trivial arc. This arc is therefore knotted like a non-trivial knot K ′.
Then |S′ ⋔ L′

2| = 2, since L′
2 is the union of T2 and a trivial tangle. On one side, S′

bounds an arc knotted like K ′. On the other side, it also does not bound a trivial
arc, since L′

2 is a link of two components. Hence, L′
2 is not prime, contrary to what

we proved above.
Thus, we have shown that T1 and T2 are both prime tangles, and therefore K is

prime, as required.
Now suppose that u(K1) = 1 and u(K2) > 1. The case u(K2) = 1 and u(K1) > 1

is analogous. Let c1 be the only crossing in C1, and let c2 be the crossing in C2

furthest from p2; see the left of Figure 12. As before, perform a finger move on
the lower strand at c1 across the crossings in C2. We denote by c′1 the crossing
corresponding to c1; see the middle of Figure 12. Now perform a finger move on
the lower strand at c2 along a+, moving it across c′1, and resulting in the new
crossing c′2; see the right of Figure 12. Call this diagram D′, and let C ′

i be as in
equation (1) for i ∈ {1, 2}. A proof similar to the above shows that, if we change
any crossing c ∈ C ′

1 ∪ C ′
2, we obtain a prime knot K. The only difference happens

when c = c′1, which we now discuss.
As before, we split K into tangles T1 and T2. The same argument shows that

T1 is prime. To see that T2 is non-trivial, note that we can glue a trivial tangle to
it to obtain a link L2, which is isotopic to K2 with an unknot linking the crossing
c2 non-trivially; see Figure 13. If T2 were trivial, then L2 would be a 2-bridge link.
Hence, K2 would be a trivial knot, contradicting the assumption that it is prime.

We can again write L2 as a sum of tangles A and B, where A is shown in
Figure 11. We have already proved that A is prime. Let E be the trivial tangle
obtained from A by deleting the unknot component, and E′ the trivial tangle
obtained by changing the crossing c′2 of E. With this notation, the same argument
as before shows that B is also prime, and so L2 = A ∪ B is prime. It follows that
T2 is prime and hence that K = T1 ∪ T2 is prime. □
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c1
c′1

c2 c′2

Figure 12. In the proof of Theorem 1.3, when the summand K1

has u(K1) = 1, we perform the isotopies shown to obtain a diagram
where every crossing change results in a prime knot.

c′2

Figure 13. The left shows the link L2 obtained from the tangle
T2 by adding a trivial tangle. The right shows L2 after the isotopy
of the unknot component into a neighbourhood of the crossing c2
of K2.

Remark 4.5. We conjecture that Theorem 1.3 also holds without the extra as-
sumption that K1 and K2 are not 2-bridge.

4.2. New unknotting numbers assuming additivity of u. If we assume that
u is additive and consider knots that appear along length u(K)+u(K ′) unknotting
trajectories of connected sums K#K ′ where u(K) and u(K ′) are both known, we
obtain the unknotting number of 43 knots K with c(K) ≤ 12 that are unknown;
see Table 1. More specifically, we considered knots that appear along minimal
unknotting trajectories of counterexamples D to Conjecture 1.2 by changing u(D)−
4 or u(D) − 5 crossings in a pre-computed unknotting set of D, then simplifying,
obtaining a diagram D′, and then brute-forcing all unknotting trajectories from D′.

12a824 12a835 12a878 12a898 12a916 12a981 12a999 12n80 12n71
12n82 12n87 12n106 12n113 12n115 12n132 12n154 12n159 12n170
12n190 12n192 12n195 12n210 12n214 12n233 12n235 12n238 12n241
12n246 12n309 12n315 12n346 12n437 12n500 12n548 12n670 12n673
12n675 12n678 12n681 12n690 12n695 12n721 12n723

Table 1. At most 12-crossings knots with unknown unknotting
numbers that we found on minimal unknotting trajectories of con-
nected sums K#K ′ where u(K) and u(K ′) are known.

In all these examples, u(K) was equal to the KnotInfo upper bound. If one of
these knots had lower unknotting number than the upper bound, it would imply
that the unknotting number is not additive.

Except for 12a898, 12a916, 12a981, and 12a999, all of these knots K have a cross-
ing change in their KnotInfo diagram D that results in a connected sum K0#K1
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Figure 14. A 14-crossing diagram of the knot 12a981. We can
obtain T2,5# − T2,7 by changing the two encircled crossings.

with u(K0) and u(K1) known and

u(D) = u(K0) + u(K1) − 1.

Hence, for these knots, their unknotting number can be computed without the as-
sistance of machine learning, assuming Conjecture 1.1. See Appendix B for conjec-
turally minimal unknotting sets of connected sums of knots with known unknotting
numbers yielding 12a898, 12a916, and 12a999.

We have found by hand a 14-crossing diagram D for 12a981 where two crossing
changes yield a diagram of T2,5# − T2,7; see Figure 14. According to KnotInfo,
u(12a981) ∈ {2, 3}. Assuming additivity of the unknotting number,

u(T2,3# − T2,7) = u(T2,5) + u(T2,7) = 2 + 3 = 5,

which implies that u(12a981) = 3. The diagram D was obtained from T2,5#− T2,7

by pushing a finger from one of the crossings of T2,5 next to the connected sum
point into T2,7, then pushing a finger from the crossing of T2,7 next to the connected
sum away from the previous finger into T2,5, and changing the other two crossings
adjacent to the connected sum. This is the same procedure as in Section 4.1 that we
used to change in-component to inter-component crossings; see Figure 10. Changing
the top left encircled crossing in Figure 14 gives the hyperbolic knot 14n20178, while
changing the lower right crossing results in the hyperbolic knot 14n20981.

5. Hard unknot diagrams

While the RL agent was running, it found 5,873,958 knot diagrams that had
trivial Jones polynomial but which SnapPy could not simplify using the ‘level’
algorithm. This performs random sequences of R3 moves, and simplifies using R1
and R2 moves whenever possible. As the algorithm is not deterministic, the check
was repeated 25 times for each diagram. The knots were verified to be unknots by
computing their Seifert genus via the knot_floer_homology function of SnapPy,
written by Ozsváth and Szabó. See Figure 15 for the distribution of the crossing
number in the dataset.

Note that SnapPy has a more sophisticated unknotting heuristic called ‘global’,
which, before performing ‘level’ simplification, also attempts to perform pass moves
that decrease the number of crossings. These consist of picking up a strand that
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Figure 15. The crossing number distribution of the hard unknot
candidates.
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Figure 16. The dataset of hard unknot candidates.

runs over or under the rest of the diagram (corresponding to a sequence of consec-
utive over- or under-crossings) and putting it down somewhere else. It is possible,
however, that a diagram can be simplified using R1 and R2 moves following a
sequence of pass moves that do not change the crossing number, and the ‘global’
heuristic would not find such a simplification. Petronio and Zanellati [30] have given
an example of a 120-crossing hard unknot diagram that cannot be monotonically
simplified using Reidemeister moves and pass moves.

We verified that 5,364,424 of these diagrams are hard; see Figure 16. We did
this by listing all possible diagrams that can be obtained using R3 moves, and
showing that none of these can be simplified using R1 and R2 moves. Typically,
the number of R3-equivalent diagrams is small, but in some cases there are more
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than 104. Hence, we set a 2-minute timeout. Our algorithm only timed out in
101,339 cases, and showed that the diagram was not hard in 408,195 cases. By
comparing the Gauss codes of the remaining 5,364,424 hard diagrams, we obtained
2,623,203 distinct hard unknot diagrams. These fall into 2,464,461 R3-equivalence
classes, where no two diagrams are related by a sequence of R3 moves. We are
making these diagrams publicy available alongside this paper, see Appendix A.

We attempted to find ‘really hard’ unknot diagrams which SnapPy fails to sim-
plify completely even with its ‘global’ heuristic. We checked for each of the above
hard unknot diagram whether it can be reduced to the trivial diagram by either
106 independent or 105 subsequent simplification attempts. We identified 382 hard
unknot diagram that could not be simplified with either of these two methods.
These diagrams are being made available; see Appendix A.

An example of a hard unknot diagram with 6225 R3-equivalent diagrams is
shown in Figure 17, which survived 104 subsequent simplification attempts. Its PD
code is

[[62, 25, 63, 26], [59, 4, 60, 5], [66, 17, 67, 18], [63, 11, 64, 10], [73, 19, 74, 18], [83, 33, 84,

32], [78, 41, 79, 42], [38, 31, 39, 32], [52, 46, 53, 45], [75, 46, 76, 47], [44, 52, 45, 51], [65,

55, 66, 54], [79, 48, 80, 49], [74, 53, 75, 54], [40, 57, 41, 58], [70, 61, 71, 62], [60, 69, 61,

70], [49, 76, 50, 77], [68, 71, 69, 72], [47, 80, 48, 81], [81, 57, 82, 56], [42, 77, 43, 78], [50,

44, 51, 43], [11, 16, 12, 17], [5, 26, 6, 27], [7, 28, 8, 29], [34, 29, 35, 30], [8, 36, 9, 35], [30,

37, 31, 38], [27, 6, 28, 7], [36, 10, 37, 9], [15, 12, 16, 13], [23, 15, 24, 14], [3, 21, 4, 20], [67,

23, 68, 22], [72, 21, 73, 22], [13, 25, 14, 24], [55, 65, 56, 64], [33, 1, 34, 84], [58, 2, 59, 1],

[39, 82, 40, 83], [19, 3, 20, 2]]
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Appendix A. Data Availability

We are making the following datasets available alongside this paper at gs://gdm-
unknotting.

(1) Knots and their unknotting numbers: 31,380 random knots and 26,473
quasipositive knots.

(2) 2,464,461 hard unknot diagrams.
(3) 382 ‘really hard’ unknot diagrams.
(4) 20 counterexamples to Conjecture 1.2.

Appendix B. Unknotting trajectories

Here, we give unkotting trajectories of length u(K1) + u(K2) of diagrams of
connected sums K1#K2, where K1 and K2 have known unknotting numbers, and
the trajectories pass through the knots 12a898, 12a916, and 12a999 with currently
unknown unknotting numbers, respectively. Note that, for 12a916 and 12a999,
we switched 5 crossings of an unknotting set of size 9 found using RL, then sim-
plified the resulting diagram, and switched one further crossing along a minimal
unknotting set found using brute force.

B.1. 12a898. Initial PD code of K1#K2:
[[135, 86, 136, 87], [133, 11, 134, 10], [128, 78, 129, 77], [131, 70, 132, 71], [129, 65,
130, 64], [132, 57, 133, 58], [125, 76, 126, 77], [124, 76, 125, 75], [122, 186, 123, 185],
[117, 43, 118, 42], [119, 21, 120, 20], [121, 18, 122, 19], [116, 191, 117, 192], [112,
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47, 113, 48], [114, 23, 115, 24], [111, 17, 112, 16], [107, 62, 108, 63], [105, 61, 106,
60], [103, 8, 104, 9], [101, 183, 102, 182], [99, 3, 100, 2], [98, 38, 99, 37], [97, 28, 98,
29], [172, 188, 173, 187], [94, 89, 95, 90], [175, 81, 176, 80], [180, 55, 181, 56], [176,
50, 177, 49], [173, 46, 174, 47], [170, 20, 171, 19], [96, 193, 97, 0], [168, 189, 169,
190], [165, 52, 166, 53], [167, 45, 168, 44], [163, 84, 164, 85], [164, 25, 165, 26], [161,
68, 162, 69], [158, 84, 159, 83], [160, 68, 161, 67], [146, 184, 147, 183], [157, 82, 158,
83], [152, 74, 153, 73], [155, 66, 156, 67], [150, 62, 151, 61], [154, 14, 155, 13], [148,
9, 149, 10], [144, 36, 145, 35], [143, 30, 144, 31], [141, 88, 142, 89], [138, 33, 139,
34], [139, 33, 140, 32], [136, 88, 137, 87], [153, 130, 154, 131], [110, 127, 111, 128],
[108, 123, 109, 124], [171, 120, 172, 121], [166, 115, 167, 116], [126, 109, 127, 110],
[149, 104, 150, 105], [145, 100, 146, 101], [140, 93, 141, 94], [134, 181, 135, 182],
[162, 179, 163, 180], [156, 177, 157, 178], [113, 174, 114, 175], [118, 169, 119, 170],
[178, 159, 179, 160], [106, 151, 107, 152], [102, 147, 103, 148], [95, 142, 96, 143], [92,
137, 93, 138], [43, 191, 44, 190], [21, 189, 22, 188], [7, 185, 8, 184], [31, 91, 32, 90],
[54, 86, 55, 85], [48, 80, 49, 79], [15, 78, 16, 79], [63, 75, 64, 74], [58, 72, 59, 71],
[12, 70, 13, 69], [72, 60, 73, 59], [26, 53, 27, 54], [81, 51, 82, 50], [6, 42, 7, 41], [4,
40, 5, 39], [1, 37, 2, 36], [91, 35, 92, 34], [192, 28, 193, 27], [51, 24, 52, 25], [45, 23,
46, 22], [186, 18, 187, 17], [65, 15, 66, 14], [56, 11, 57, 12], [40, 6, 41, 5], [38, 4, 39,
3], [29, 1, 30, 0]]
PD code of first summand K1:
[(3, 18, 4, 19), (29, 10, 30, 11), (31, 12, 32, 13), (33, 14, 34, 15), (24, 17, 25, 18),
(6, 37, 7, 0), (7, 26, 8, 27), (16, 23, 17, 24), (1, 20, 2, 21), (21, 2, 22, 3), (27, 8, 28,
9), (22, 15, 23, 16), (25, 34, 26, 35), (13, 32, 14, 33), (11, 30, 12, 31), (36, 5, 37, 6),
(4, 35, 5, 36), (9, 28, 10, 29), (19, 0, 20, 1)]
τ(k1) = −8 ⇒ u(k1) ≥ 8
PD code of second summand K2:
[(9, 25, 10, 24), (26, 42, 27, 41), (23, 38, 24, 39), (6, 34, 7, 33), (3, 41, 4, 40), (16,
44, 17, 43), (51, 33, 0, 32), (17, 13, 18, 12), (31, 51, 32, 50), (21, 9, 22, 8), (49, 5,
50, 4), (20, 45, 21, 46), (19, 15, 20, 14), (46, 28, 47, 27), (1, 37, 2, 36), (42, 11, 43,
12), (39, 3, 40, 2), (37, 22, 38, 23), (13, 19, 14, 18), (28, 48, 29, 47), (30, 6, 31, 5),
(48, 30, 49, 29), (25, 11, 26, 10), (44, 16, 45, 15), (34, 8, 35, 7), (35, 1, 36, 0)]
τ(K2) = 7 ⇒ u(K2) ≥ 7
u(K1 + K2) ≥ 15 assuming additivity of unknotting number.
Minimal unknotting sequence:
[49, 0, 20, 1, 57, 76, 66, 85, 84, 79, 56, 96, 67, 65, 69]
Crossing switches to reach 12a898:
[49, 0, 1, 57, 76, 66, 85, 84, 79, 56, 96, 67]

B.2. 12a916. Initial PD code of K1#K2:
[(55, 22, 56, 23), (58, 34, 59, 33), (57, 36, 58, 37), (59, 19, 60, 18), (63, 14, 64, 15),
(61, 30, 62, 31), (64, 40, 65, 39), (65, 27, 66, 26), (69, 44, 70, 45), (67, 49, 68, 48),
(71, 11, 72, 10), (73, 108, 74, 109), (80, 16, 81, 15), (76, 21, 77, 22), (82, 32, 83,
31), (79, 38, 80, 39), (85, 12, 86, 13), (86, 42, 87, 41), (88, 3, 89, 4), (89, 47, 90,
46), (92, 43, 93, 44), (90, 2, 91, 1), (94, 10, 95, 9), (95, 110, 96, 111), (98, 6, 99, 5),
(96, 7, 97, 8), (97, 24, 98, 25), (100, 37, 101, 38), (101, 17, 102, 16), (104, 30, 105,
29), (106, 108, 107, 107), (52, 109, 53, 110), (77, 57, 78, 56), (87, 67, 88, 66), (93,
71, 94, 70), (51, 73, 52, 72), (54, 76, 55, 75), (102, 82, 103, 81), (60, 84, 61, 83),
(68, 92, 69, 91), (78, 100, 79, 99), (62, 104, 63, 103), (84, 106, 85, 105), (74, 54, 75,
53), (23, 6, 24, 7), (111, 8, 0, 9), (32, 17, 33, 18), (35, 20, 36, 21), (4, 25, 5, 26),
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(13, 28, 14, 29), (19, 34, 20, 35), (27, 40, 28, 41), (49, 42, 50, 43), (2, 47, 3, 48),
(11, 50, 12, 51), (45, 0, 46, 1)]
PD code of first summand K1:
[(11, 4, 12, 5), (1, 8, 2, 9), (18, 13, 19, 14), (16, 21, 17, 22), (12, 19, 13, 20), (20,
23, 21, 0), (9, 2, 10, 3), (15, 6, 16, 7), (3, 10, 4, 11), (22, 17, 23, 18), (7, 14, 8, 15),
(5, 0, 6, 1)]
τ(K1) = −4 ⇒ u(K1) ≥ 4
PD code of second summand K2:
[(2, 10, 3, 9), (19, 11, 20, 10), (16, 6, 17, 5), (4, 16, 5, 15), (1, 19, 2, 18), (11, 21,
12, 20), (14, 4, 15, 3), (13, 23, 14, 22), (23, 7, 0, 6), (21, 13, 22, 12), (8, 18, 9, 17),
(7, 1, 8, 0)]
τ(K2) = 5 ⇒ u(K2) ≥ 5
u(K1 + K2) ≥ 9 assuming additivity of unknotting number.
Minimal unknotting sequence:
[10, 44, 46, 47, 53, 33, 42, 7, 36]
Initial crossing switches:
[10, 46, 53, 42, 36]
PD code after initial switches and simplification:
[(5, 22, 6, 23), (9, 27, 10, 26), (19, 8, 20, 9), (14, 23, 15, 24), (11, 3, 12, 2), (13, 5,
14, 4), (16, 8, 17, 7), (1, 11, 2, 10), (3, 13, 4, 12), (6, 16, 7, 15), (24, 17, 25, 18),
(27, 20, 0, 21), (18, 25, 19, 26), (21, 0, 22, 1)]
Crossing switch after simplification: [3]
Final PD code (12a916):
[(6, 23, 7, 24), (8, 26, 9, 25), (18, 9, 19, 10), (22, 16, 23, 15), (11, 3, 12, 2), (13, 5,
14, 4), (16, 8, 17, 7), (1, 11, 2, 10), (3, 13, 4, 12), (5, 15, 6, 14), (24, 17, 25, 18),
(27, 20, 0, 21), (19, 26, 20, 27), (21, 0, 22, 1)]

B.3. 12a999. Initial PD code of K1#K2:
[(55, 22, 56, 23), (58, 34, 59, 33), (57, 36, 58, 37), (59, 19, 60, 18), (63, 14, 64, 15),
(61, 30, 62, 31), (64, 40, 65, 39), (65, 27, 66, 26), (69, 44, 70, 45), (67, 49, 68, 48),
(71, 11, 72, 10), (73, 108, 74, 109), (80, 16, 81, 15), (76, 21, 77, 22), (82, 32, 83,
31), (79, 38, 80, 39), (85, 12, 86, 13), (86, 42, 87, 41), (88, 3, 89, 4), (89, 47, 90,
46), (92, 43, 93, 44), (90, 2, 91, 1), (94, 10, 95, 9), (95, 110, 96, 111), (98, 6, 99, 5),
(96, 7, 97, 8), (97, 24, 98, 25), (100, 37, 101, 38), (101, 17, 102, 16), (104, 30, 105,
29), (106, 108, 107, 107), (52, 109, 53, 110), (77, 57, 78, 56), (87, 67, 88, 66), (93,
71, 94, 70), (51, 73, 52, 72), (54, 76, 55, 75), (102, 82, 103, 81), (60, 84, 61, 83),
(68, 92, 69, 91), (78, 100, 79, 99), (62, 104, 63, 103), (84, 106, 85, 105), (74, 54, 75,
53), (23, 6, 24, 7), (111, 8, 0, 9), (32, 17, 33, 18), (35, 20, 36, 21), (4, 25, 5, 26),
(13, 28, 14, 29), (19, 34, 20, 35), (27, 40, 28, 41), (49, 42, 50, 43), (2, 47, 3, 48),
(11, 50, 12, 51), (45, 0, 46, 1)]
PD code of first summand K1:
[(11, 4, 12, 5), (1, 8, 2, 9), (18, 13, 19, 14), (16, 21, 17, 22), (12, 19, 13, 20), (20,
23, 21, 0), (9, 2, 10, 3), (15, 6, 16, 7), (3, 10, 4, 11), (22, 17, 23, 18), (7, 14, 8, 15),
(5, 0, 6, 1)]
τ(K1) = −4 ⇒ u(K1) ≥ 4
PD code of second summand K2:
[(2, 10, 3, 9), (19, 11, 20, 10), (16, 6, 17, 5), (4, 16, 5, 15), (1, 19, 2, 18), (11, 21,
12, 20), (14, 4, 15, 3), (13, 23, 14, 22), (23, 7, 0, 6), (21, 13, 22, 12), (8, 18, 9, 17),
(7, 1, 8, 0)]
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τ(K2) = 5 ⇒ u(K2) ≥ 5
u(K1 + K2) ≥ 9 assuming additivity of unknotting number.
Minimal unknotting sequence:
[10, 44, 46, 47, 53, 33, 42, 7, 36]
Initial crossing switches:
[10, 46, 53, 42, 36]
PD code after initial switches and simplification:
[(5, 26, 6, 27), (6, 30, 7, 29), (21, 10, 22, 11), (15, 22, 16, 23), (14, 2, 15, 1), (12, 4,
13, 3), (16, 8, 17, 7), (18, 10, 19, 9), (2, 12, 3, 11), (4, 14, 5, 13), (8, 18, 9, 17), (27,
20, 28, 21), (31, 24, 0, 25), (19, 28, 20, 29), (23, 30, 24, 31), (25, 0, 26, 1)]
Crossing switch after simplification: [0]
Final PD code (12a999):
[(5, 26, 6, 27), (6, 30, 7, 29), (21, 10, 22, 11), (15, 22, 16, 23), (14, 2, 15, 1), (12, 4,
13, 3), (16, 8, 17, 7), (18, 10, 19, 9), (2, 12, 3, 11), (4, 14, 5, 13), (8, 18, 9, 17), (27,
20, 28, 21), (31, 24, 0, 25), (19, 28, 20, 29), (23, 30, 24, 31), (25, 0, 26, 1)]
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