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1 Introduction

For any group G and any unitary ring R, there is a normal sequence of finite index subgroups
Dn(G) associated with R, called the dimension subgroups of G. The finite quotients G/Dn(G)
are important objects of study, arising in a variety of mathematical contexts, but the structure of
the corresponding Cayley graphs is not well understood. Here, we outline a method with which
to compute these graphs, and apply it to calculate the spectra of their Laplacian operators, in
the case for which G is a finitely generated free group, and R is the field Fp, of order p.

2 Dimension Subgroups and the Algebra of Augmentation
Ideals

Definition 1. For G a (finitely presented) group, and p prime, the augmentation ideal I
of the group ring FpG is the kernel of the augmentation mapping φ : FpG → Fp given by
φ(
∑

g∈G rg · g) =
∑

g∈G rg, where rg ∈ Fp for each g ∈ G. The nth mod p dimension subgroup
Dp
n(G) of G is the group {g ∈ G | g − e ∈ In} E G.

It is immediate from the definition that I is freely generated over Fp by {g − e}g∈G\{e}.
Further,

∣∣FpG/In+1
∣∣ is finite, for each n. This is because, if w = x1 · · ·xn+1 is a word of

length n + 1 in generators xi of G, then w − (x1 − e) · · · (xn+1 − e) is a linear combination of
words of length at most n in the xi, and ≡ w (mod In+1). The natural (group) homomorphism
ψ : Dp

n(G)→ In/In+1, given by ψ(g) = g − e, induces a monomorphism ψ̂ : Dp
n(G)/Dp

n+1(G)→
In/In+1, since, for g, h ∈ Dp

n(G),

g ≡ h(mod Dp
n+1(G)) iff g ·h−1 ∈ Dp

n+1(G) iff g ·h−1−e ∈ In+1 iff g − e = h− e iff ψ(g) = ψ(h)

so that ψ̂ is well-defined and injective. In particular, Dp
n(G)/Dp

n+1(G) is a finite p-group. Indeed,
Jennings [1] has established the following result, relating the ranks of the Dp

n(G)/Dp
n+1(G) and

In/In+1.

Theorem 1 (Jennings). Where
∣∣In/In+1

∣∣ = pan and
∣∣Dp

n(G)/Dp
n+1(G)

∣∣ = pdn,

∞∑
r=0

ar · xr =

∞∏
s=1

(

p−1∑
t=0

xst)ds .
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Since the only contribution made to the coefficient of xn from the right-hand side comes
from the terms of the product for which s ≤ n, we have, for each n,

an = Coefficientxn(
n∏
s=1

(

p−1∑
t=0

xst)ds) = dn + Coefficientxn(
n−1∏
s=1

(

p−1∑
t=0

xst)ds),

where Coefficientxn(
∏n−1
s=1 (

∑p−1
t=0 x

st)ds) is a polynomial in d1, . . . , dn−1 alone, so we may calcu-
late dn, and hence

∣∣G/Dp
n+1(G)

∣∣ = p
∑n

i=1 di , by recursion, provided we can also calculate the ai.
For this purpose, we shall require the following results, adapted from [2]:

Lemma 2. If G has a presentation with d generators and r defining relations, then there is an
exact sequence of G-modules:

FpG
⊕
r α−→ FpG

⊕
d β−→ I → 0

Lemma 3. Under the hypothesis of the previous lemma, where for l ∈ N, Al = α−1((I l)
⊕
d),

there is an exact sequence of G-modules:

Al/Al+1
αl−→ (I l/I l+1)

⊕
d βl−→ I l+1/I l+2 → 0,

where αl and βl are induced by α and β, respectively.

In the case for which G is free on a finite set X = {xi}di=1, we may take r = 0, so that
Al = 0 for each l, and βl : (I l/I l+1)

⊕
d ∼= I l+1/I l+2, with the isomorphism given explicitly by

βl(γ1, . . . , γd) =
∑d

i=1 γi · (xi − e). Now, by Jennings’ Theorem, a0 = 1, and by Lemma 3,
al+1 = d · al for each l, hence an = dn.

Furthermore, since FpG/I = {λ · e + I | λ ∈ Fp}, it follows by induction from
Lemma 3 that {(xi1 − e) · · · (xin − e) + In+1 | ij ∈ {1, . . . , d}} is a basis for In/In+1, and
Bn := {e+ In+1} ∪ {(xi1 − e) · · · (xik − e) + In+1 | ij ∈ {1, . . . , d}, k ∈ {1, . . . , n}} is a basis for
FpG/In+1. This leads us to:

Lemma 4. For k ∈ {1, . . . , d}, let πk ∈ End(FpG/In+1) be given by πk(γ) = γ · xk (where
End(FpG/In+1) is the set of Fp-vector space endomorphisms of FpG/In+1). Then the matrix

M
(n)
k ∈M∑n

i=0 d
i(Fp) of πk wrt basis Bn (the elements of which being ordered first by product

length, then lexicographically in the xi − e), is given by:

(M
(n)
k )i,j =


1 if i = j,
1 if i = d · (j − 1) + k + 1,
0 otherwise.

so that

M
(n+1)
k =

(
M

(n)
k 0

A
(n)
k Idn+1

)
, where (A

(n)
k )i,j =

{
1 if i = d · (j −

∑n−1
i=0 d

i − 1) + k,
0 otherwise.
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Proof. πk(e) = xk = (xk − e) + e.

πk((xi1 − e) · · · (xim − e)) = (xi1 − e) · · · (xim − e) · xk

=

{
(xi1 − e) · · · (xim − e) · (xk − e) + (xi1 − e) · · · (xim − e) if 1 ≤ m < n,

(xi1 − e) · · · (xim − e) if m = n

as (xi1 − e) · · · (xin − e) · (xk − e) ∈ In+1.

Example 1. Letting d = 2, in the case for which n = 1 we have an ordered Fp-basis
B1 = {e+ I2, x1 − e+ I2, x2 − e+ I2} for FpG/I2, with respect to which the matrices of π1
and π2 (as defined above) are:

M
(1)
1 =

 1 0 0

1 1 0
0 0 1

 , M
(1)
2 =

 1 0 0

0 1 0
1 0 1


respectively. Likewise, in the case for which n = 2, we have an Fp-basis B2 = {e+ I3,
x1− e+ I3, x2− e+ I3, (x1− e)2 + I3, (x1− e)(x2− e) + I3, (x2− e)(x1− e) + I3, (x2− e)2 + I3}
for FpG/I3, and the corresponding matrices for π1 and π2 are now:

M
(2)
1 =



1 0 0 0 0 0 0

1 1 0 0 0 0 0
0 0 1 0 0 0 0

0 1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1


, M

(2)
2 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0
1 0 1 0 0 0 0

0 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 1


.

Note in particular that the 3× 3 upper-left submatrices of M
(2)
1 and M

(2)
2 are precisely M

(1)
1

and M
(1)
2 , respectively.

3 A Construction of Cay(Fd/D
p
n(Fd), X)

Proposition 5. With G and X as above, let Γ be the graph with vertex set FpG/In and edge
set {(r, r · x) | r ∈ FpG/In, x ∈ X}. Then Cay(G/Dp

n(G), X) is graph-isomorphic to Γ0, the
path-component of Γ containing the vertex e.

Proof. Let f : V (Cay(G/Dp
n(G), X))→ V (Γ0) be given by f(g) = g. For g, h ∈ G,

g ≡ h(mod Dp
n(G)) iff g · h−1 ∈ Dp

n(G) iff g · h−1 − e ∈ In iff g = h iff f(g) = f(h)

so f is well-defined and injective. Clearly, any vertex of Γ0 is represented by some w, for w a
word in X, so f is surjective. Finally,
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(g, h) ∈ E(Cay(G/Dp
n(G), X)) iff ∃k ∈ {1, . . . , d} s.t. h ≡ g · xk(mod Dp

n(G))

iff ∃k ∈ {1, . . . , d} s.t. h · x−1k · g
−1 ∈ Dp

n(G)

iff ∃k ∈ {1, . . . , d} s.t. h · x−1k · g
−1 − e ∈ In

iff ∃k ∈ {1, . . . , d} s.t. h = g · xk
iff (f(g), f(h)) ∈ E(Γ0)

Indeed, we may alternatively regard Γ as the graph with vertex set V comprising the co-

ordinate vectors (drawn from Fp
∑n−1

i=0 d
i
) of the elements of FpG/In wrt Bn−1, and edge set

{(v,M (n)
k · v) | v ∈ V, k ∈ {1, . . . , d}}, so that Γ0 is the path-component of Γ containing the ver-

tex (1, 0, . . . , 0).
This provides us with an explicit method for computing Cay(G/Dp

n(G), X):

1. Set V = {(1, 0, . . . , 0)T }, E = ∅

2. Repeatedly replace V by V ∪ {M (n)
k · v | v ∈ V, k ∈ {1, . . . , d}}, until |V | = p

∑n−1
i=1 di , as in

Jennings’ Theorem.

3. For each v ∈ V in turn, replace E by E ∪ {(v,M (n)
k · v) | k ∈ {1, . . . , d}}.

4. Then Cay(G/Dp
n(G), X) ∼= (V,E).

4 An Application to Spectral Theory

Clearly, we could equally regard the above construction as a method for computing the adjacency
matrix A of Cay(G/Dp

n(G), X). For A is the |V | × |V | matrix with (i, j)th entry equal to the
number of edges running from vi to vj , for v1, . . . , v|V | an enumeration of V , and depends only
on the choice of enumeration. We would like therefore to be able to apply our method to
calculations in spectral graph theory; for instance by computing the spectrum of the Laplacian
on Cay(G/Dp

n(G), X). However, for this purpose, we must instead work with A + AT , which
is the adjacency matrix of Cay(G/Dp

n(G), X±), since the Laplacian operator is defined only on
undirected or symmetric graphs. The Laplacian matrix of (V,E) is then L := 2dI|V |− (A+AT ).

We conclude by exhibiting Cay(F2/D
2
n(F2), X), together with the spectrum of its Laplacian,

for n = 2, 3 and 4. For the sake of clarity, we also include colour-coded illustrations of the
Cayley graphs. These graphs and spectra were calculated using Wolfram Mathematica 7.0,
following the above method. The program used (which takes values for n, p and d and returns
Cay(Fd/D

p
n(Fd), X) and the corresponding spectrum) can be found at [3].
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4.1 F2/D
2
2(F2):

Figure 1: Author’s illustration of Cay(F2/D
2
2(F2), X).
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Figure 2: Spectrum of the Laplacian operator on Cay(F2/D
2
2(F2), X), as outputted by [3]. The

eigenvalues are 0, 4 and 8.

This is just Z2
2. Indeed, since ψ̂ : Fd/D

p
2(Fd)→ I/I2, as defined above, is injective, and since

a1 = d1 = d (by Jennings’ Theorem and Lemma 3), Fd/D
p
2(Fd) ∼= I/I2 ∼= Zdp, for any p and d.
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4.2 F2/D
2
3(F2):

Figure 3: Diagram of Cay(F2/D
2
3(F2), X), as outputted by [3], and corresponding author’s

illustration.
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Figure 4: Spectrum of the Laplacian operator on Cay(F2/D
2
3(F2), X). The eigenvalues are 0,

2, 4, 6, 8 and 4± 2
√

2.
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4.3 F2/D
2
4(F2):

Figure 5: Diagram of Cay(F2/D
2
4(F2), X), as outputted by [3].
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Figure 6: Author’s illustration of Cay(F2/D
2
4(F2), X).
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Figure 7: Spectrum of the Laplacian operator on Cay(F2/D
2
4(F2), X). The eigenvalues are 0,

2, 4, 6, 8, 4± 2
√

2, 3±
√

5 and 5±
√

5.
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