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1 Introduction

For any group G and any unitary ring R, there is a normal sequence of finite index subgroups
D, (G) associated with R, called the dimension subgroups of G. The finite quotients G/ D, (G)
are important objects of study, arising in a variety of mathematical contexts, but the structure of
the corresponding Cayley graphs is not well understood. Here, we outline a method with which
to compute these graphs, and apply it to calculate the spectra of their Laplacian operators, in
the case for which G is a finitely generated free group, and R is the field IF,, of order p.

2 Dimension Subgroups and the Algebra of Augmentation
Ideals

Definition 1. For G a (finitely presented) group, and p prime, the augmentation ideal I
of the group ring F,G is the kernel of the augmentation mapping ¢: F,G — F, given by
qb(zgeG rg-g) = deG rg, where ry € F), for each g € G. The nth mod p dimension subgroup
DH(G) of G is the group {g € G | g —e € I} < G.

It is immediate from the definition that I is freely generated over I, by {g — e}geq\ {e}-
Further, |FPG/I”+1‘ is finite, for each m. This is because, if w = x1---z,41 is a word of
length n + 1 in generators x; of G, then w — (x1 —€) - (xn41 — €) is a linear combination of
words of length at most n in the z;, and = w (mod I"*1). The natural (group) homomorphism
¢: DR(G) — I"/I"*1, given by ¢(g) = g — e, induces a monomorphism ¢: D} (G)/DE_ | (G) —
I" /1" since, for g, h € Dh(G),

g = h(mod D?

ni1 (@) iff g-h™t e Dy (G iff g-h ™! —e e "M iff g —e = h — e iff Y(g) = ¢(h)

so that ¢} is well-defined and injective. In particular, Dy (G)/Dy, ., (G) is a finite p-group. Indeed,
Jennings [1] has established the following result, relating the ranks of the Dy (G)/D? ,,(G) and

/I,

Theorem 1 (Jennings). Where |I"/I"T| = p and |DL(G)/Dh_,(G)| = p,
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Since the only contribution made to the coefficient of 2™ from the right-hand side comes
from the terms of the product for which s < n, we have, for each n,

n p—1 n—1 p—1
a,, = Coefficientn ( H Zx“ dsy = d, + Coefficient n ( H Z xSt
s=1 t=0 s=1 t=0
where Coefficient,» ([]5Z (Zt o #9)%) is a polynomial in dy, ..., d,_1 alone, so we may calcu-
late d,,, and hence ‘G / Dn +1 ‘ = pzw 19 by recursion, provided we can also calculate the a;.

For this purpose, we shall require the following results, adapted from [2]:

Lemma 2. If G has a presentation with d generators and r defining relations, then there is an
exact sequence of G-modules:

F,G®" 4 F,6®1 210

Lemma 3. Under the hypothesis of the previous lemma, where for | € N, 4 = a1 ((IH®D?),
there is an exact sequence of G-modules:

A/ A TN (Il/IlJrl)@d &Il+1/ll+2 -0,
where o and By are induced by o and B, respectively.

In the case for which G is free on a finite set X = {:L’i};-i:l, we may take r = 0, so that
A; = 0 for each I, and §;: (I'/I'"T1)®d = [1+1 /1142 with the isomorphism given explicitly by
Bi(viy - yva) = Z?:l vi - (x; — e). Now, by Jennings’ Theorem, ay = 1, and by Lemma 3,
aj+1 = d - a; for each [, hence a,, = d".

Furthermore, since F,G/I = {A-e+ 1 | X € F,}, it follows by induction from
Lemma 3 that {(z;, —e)---(z;, —e) + 1" | i; € {1,...,d}} is a basis for I"/I"*1 and
By :={e+I"}Yu{(z;y —€) - (zi, —e) + 1" |i; € {1,...,d},k € {1,...,n}} is a basis for
F,G/I" L. This leads us to:

Lemma 4. For k € {1,...,d}, let 7y € End(F,G/I") be given by mi(y) = v - xx (where
End(F,G/I") is the set of Fy-vector space endomorphisms of Fp,G /1™t ). Then the matriz

M(n) € My ai(Fp) of mp wrt basis B, (the elements of which being ordered first by product
length then lezzcogmphzcally in the x; — e), is given by:

1 ifi =7,
(MM =4 1 dfi=d-(G—1)+k+1,
0 otherwise.

so that

(n) . _ el
1t M 0 n 1 ifi=d-(j=>Y "y d —1)+k,
é = ( Akn) I ) » where (AL ))i,j - { 0 oftherwis;7 > )
k qan+1 .



_{ (i, —€) - (x4, —€) (xp—e)+ (i, —€) - (x;,, —e) f1<m<n,
(i, —€) - (x4, —€) ifm=n

O]

Example 1. Letting d = 2, in the case for which n = 1 we have an ordered [F,-basis
By ={e+I? 21 —e+ I? z9 — e+ I*} for F,G/I?, with respect to which the matrices of 7
and my (as defined above) are:

1|0 0 110 0
P =(T[1T o0 |, M"=(0[1 0
00 1 100 1

respectively. Likewise, in the case for which n = 2, we have an F)-basis By = {e + I 3,
r1—e+ I3 20 —e+ I3 (x1—e)? + I3, (z1 —e)(z2 —e) + I3, (29 — ) (w1 — €) + I3, (z2 — €)% + I3}
for F,G/1 3 and the corresponding matrices for 7; and 7o are now:

1/0 0o 00 0 1[0 0o 00 0
11 0/0000 0[1 0(0 0 0 0
0|0 1[0 0 0 0 10 1/0 000
MP =101 0lt0o00 |, M”=|0[00[L 000
0|0 0[0 1 0 0 0[1 0[0 1 0 0
0/0 1[0 0 1 0 0lo 0[0 0 1 0
0/o 0[0 00 1 0jo 1(0 0 0 1

(2)

Note in particular that the 3 x 3 upper-left submatrices of M;™ and M2(2) are precisely Ml(l)

and M2(1), respectively.
3 A Construction of Cay(Fy/DE(Fy), X)
Proposition 5. With G and X as above, let I' be the graph with vertex set F,G/I"™ and edge

set {(r,r-z) | r € FpG/I",x € X}. Then Cay(G/Dy(G),X) is graph-isomorphic to Ty, the
path-component of I' containing the vertex €.

Proof. Let f: V(Cay(G/D%(G), X)) — V(Tg) be given by f(g) =g. For g,h € G,
g =h(mod DE(GQ))iff g-h™t € DP(Q)iff g-h™t —e e I" iff g = hiff f(g) = f(h)

so f is well-defined and injective. Clearly, any vertex of I'g is represented by some w, for w a
word in X, so f is surjective. Finally,



(9,h) € E(Cay(G/Dh(G), X)) iff Ik e {1,...,d} st. h =g - zx(mod DL(G))
iff Ik € {1,...,d} st. h-z;,'-g~' € DL(G)
iff Ik € {1,...,d} s.t. h~a:,;1-g*1—e€1'"
iff 3k {l1,...,d} st. h=7 x1

iff (f(g), f(h)) € E(To) O

Indeed, we may alternatively regard I' as the graph with vertex set V' comprising the co-
n—1 3;
ordinate vectors (drawn from F,2=i=o ) of the elements of F,G/I"™ wrt B, 1, and edge set

{(v, M,gn) -v) |veV,ke{l,...,d}}, so that 'y is the path-component of I" containing the ver-
tex (1,0,...,0).
This provides us with an explicit method for computing Cay(G/Dh(G), X):

1. Set V =1{(1,0,...,007}, E=9

2. Repeatedly replace V by V U {Mlgn) w|veVike{l,...,d}}, until |V| = 102?:711 4 as in
Jennings’ Theorem.

3. For each v € V in turn, replace E by E U {(’U,M,in) -v) | ked{l,...,d}}.
4. Then Cay(G/D5(G),X) = (V,E).

4 An Application to Spectral Theory

Clearly, we could equally regard the above construction as a method for computing the adjacency
matrix A of Cay(G/D5(G),X). For A is the |[V| x |V| matrix with (i, j)th entry equal to the
number of edges running from v; to vj, for v1,..., vy an enumeration of V', and depends only
on the choice of enumeration. We would like therefore to be able to apply our method to
calculations in spectral graph theory; for instance by computing the spectrum of the Laplacian
on Cay(G/Dh(G), X). However, for this purpose, we must instead work with A + AT, which
is the adjacency matrix of Cay(G/Dh(G), X*), since the Laplacian operator is defined only on
undirected or symmetric graphs. The Laplacian matrix of (V, E) is then L := 2d1y/| — (A+AT).

We conclude by exhibiting Cay(Fy/D2(F), X), together with the spectrum of its Laplacian,
for n = 2, 3 and 4. For the sake of clarity, we also include colour-coded illustrations of the
Cayley graphs. These graphs and spectra were calculated using Wolfram Mathematica 7.0,
following the above method. The program used (which takes values for n, p and d and returns
Cay(F,;/D}(Fy), X) and the corresponding spectrum) can be found at [3].



4.1 FQ/D%(FQ):
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Figure 1: Author’s illustration of Cay(Fy/D3(F), X).
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Figure 2: Spectrum of the Laplacian operator on Cay(Fy/D3(F»), X), as outputted by [3]. The
eigenvalues are 0, 4 and 8.

This is just Z3. Indeed, since Vv Fy /DE(Fy) — I/1?%, as defined above, is injective, and since
a1 = dy = d (by Jennings’ Theorem and Lemma 3), F,;/D}(Fy) = I/1* = Zg, for any p and d.



4.2 FQ/D%(FQ):

Figure 3: Diagram of Cay(Fy/D3(F3),X), as outputted by [3], and corresponding author’s
illustration.
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Figure 4: Spectrum of the Laplacian operator on Cay(Fy/D3(Fs), X). The eigenvalues are 0,
2,4, 6, 8 and 4 + 21/2.



4.3 FQ/DZ(FQ):

Figure 5: Diagram of Cay(Fy/D3(F,), X), as outputted by [3].
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Figure 6: Author’s illustration of Cay(Fy/D3(F), X).




40 -

30 -

20 -

10 |-

| 1 | 1 | | 1 | T

2 4 6 8

Figure 7: Spectrum of the Laplacian operator on Cay(Fy/D3(Fs), X). The eigenvalues are 0,
2,4,6,8, 4+2v2, 3415 and 5+ /5.
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