Constructing the Cayley Graphs of $F_{d} / D_{n}^{p}\left(F_{d}\right)$

Henry Bradford

2010

1 Introduction

For any group G and any unitary ring R, there is a normal sequence of finite index subgroups $D_{n}(G)$ associated with R, called the dimension subgroups of G. The finite quotients $G / D_{n}(G)$ are important objects of study, arising in a variety of mathematical contexts, but the structure of the corresponding Cayley graphs is not well understood. Here, we outline a method with which to compute these graphs, and apply it to calculate the spectra of their Laplacian operators, in the case for which G is a finitely generated free group, and R is the field \mathbb{F}_{p}, of order p.

2 Dimension Subgroups and the Algebra of Augmentation Ideals

Definition 1. For G a (finitely presented) group, and p prime, the augmentation ideal I of the group ring $\mathbb{F}_{p} G$ is the kernel of the augmentation mapping $\phi: \mathbb{F}_{p} G \rightarrow \mathbb{F}_{p}$ given by $\phi\left(\sum_{g \in G} r_{g} \cdot g\right)=\sum_{g \in G} r_{g}$, where $r_{g} \in \mathbb{F}_{p}$ for each $g \in G$. The nth mod p dimension subgroup $D_{n}^{p}(G)$ of G is the group $\left\{g \in G \mid g-e \in I^{n}\right\} \unlhd G$.

It is immediate from the definition that I is freely generated over \mathbb{F}_{p} by $\{g-e\}_{g \in G \backslash\{e\}}$. Further, $\left|\mathbb{F}_{p} G / I^{n+1}\right|$ is finite, for each n. This is because, if $w=x_{1} \cdots x_{n+1}$ is a word of length $n+1$ in generators x_{i} of G, then $w-\left(x_{1}-e\right) \cdots\left(x_{n+1}-e\right)$ is a linear combination of words of length at most n in the x_{i}, and $\equiv w\left(\bmod I^{n+1}\right)$. The natural (group) homomorphism $\psi: D_{n}^{p}(G) \rightarrow I^{n} / I^{n+1}$, given by $\psi(g)=\overline{g-e}$, induces a monomorphism $\hat{\psi}: D_{n}^{p}(G) / D_{n+1}^{p}(G) \rightarrow$ I^{n} / I^{n+1}, since, for $g, h \in D_{n}^{p}(G)$,
$g \equiv h\left(\bmod D_{n+1}^{p}(G)\right)$ iff $g \cdot h^{-1} \in D_{n+1}^{p}(G)$ iff $g \cdot h^{-1}-e \in I^{n+1}$ iff $\overline{g-e}=\overline{h-e}$ iff $\psi(g)=\psi(h)$
so that $\hat{\psi}$ is well-defined and injective. In particular, $D_{n}^{p}(G) / D_{n+1}^{p}(G)$ is a finite p-group. Indeed, Jennings [1] has established the following result, relating the ranks of the $D_{n}^{p}(G) / D_{n+1}^{p}(G)$ and I^{n} / I^{n+1}.

Theorem 1 (Jennings). Where $\left|I^{n} / I^{n+1}\right|=p^{a_{n}}$ and $\left|D_{n}^{p}(G) / D_{n+1}^{p}(G)\right|=p^{d_{n}}$,

$$
\sum_{r=0}^{\infty} a_{r} \cdot x^{r}=\prod_{s=1}^{\infty}\left(\sum_{t=0}^{p-1} x^{s t}\right)^{d_{s}} .
$$

Since the only contribution made to the coefficient of x^{n} from the right-hand side comes from the terms of the product for which $s \leq n$, we have, for each n,

$$
a_{n}=\operatorname{Coefficient~}_{x^{n}}\left(\prod_{s=1}^{n}\left(\sum_{t=0}^{p-1} x^{s t}\right)^{d_{s}}\right)=d_{n}+\operatorname{Coefficient}_{x^{n}}\left(\prod_{s=1}^{n-1}\left(\sum_{t=0}^{p-1} x^{s t}\right)^{d_{s}}\right),
$$

where Coefficient $x^{n}\left(\prod_{s=1}^{n-1}\left(\sum_{t=0}^{p-1} x^{s t}\right)^{d_{s}}\right)$ is a polynomial in d_{1}, \ldots, d_{n-1} alone, so we may calculate d_{n}, and hence $\left|G / D_{n+1}^{p}(G)\right|=p^{\sum_{i=1}^{n} d_{i}}$, by recursion, provided we can also calculate the a_{i}. For this purpose, we shall require the following results, adapted from [2]:

Lemma 2. If G has a presentation with d generators and r defining relations, then there is an exact sequence of G-modules:

$$
\mathbb{F}_{p} G^{\oplus r} \xrightarrow{\alpha} \mathbb{F}_{p} G^{\oplus d} \xrightarrow{\beta} I \rightarrow 0
$$

Lemma 3. Under the hypothesis of the previous lemma, where for $l \in \mathbb{N}, A_{l}=\alpha^{-1}\left(\left(I^{l} \oplus^{d}\right)\right.$, there is an exact sequence of G-modules:

$$
A_{l} / A_{l+1} \xrightarrow{\alpha_{l}}\left(I^{l} / I^{l+1}\right)^{\oplus d} \xrightarrow{\beta_{l}} I^{l+1} / I^{l+2} \rightarrow 0,
$$

where α_{l} and β_{l} are induced by α and β, respectively.
In the case for which G is free on a finite set $X=\left\{x_{i}\right\}_{i=1}^{d}$, we may take $r=0$, so that $A_{l}=0$ for each l, and $\beta_{l}:\left(I^{l} / I^{l+1}\right) \oplus^{d} \cong I^{l+1} / I^{l+2}$, with the isomorphism given explicitly by $\beta_{l}\left(\gamma_{1}, \ldots, \gamma_{d}\right)=\sum_{i=1}^{d} \gamma_{i} \cdot\left(x_{i}-e\right)$. Now, by Jennings' Theorem, $a_{0}=1$, and by Lemma 3, $a_{l+1}=d \cdot a_{l}$ for each l, hence $a_{n}=d^{n}$.

Furthermore, since $\mathbb{F}_{p} G / I=\left\{\lambda \cdot e+I \mid \lambda \in \mathbb{F}_{p}\right\}$, it follows by induction from Lemma 3 that $\left\{\left(x_{i_{1}}-e\right) \cdots\left(x_{i_{n}}-e\right)+I^{n+1} \mid i_{j} \in\{1, \ldots, d\}\right\}$ is a basis for I^{n} / I^{n+1}, and $B_{n}:=\left\{e+I^{n+1}\right\} \cup\left\{\left(x_{i_{1}}-e\right) \cdots\left(x_{i_{k}}-e\right)+I^{n+1} \mid i_{j} \in\{1, \ldots, d\}, k \in\{1, \ldots, n\}\right\}$ is a basis for $\mathbb{F}_{p} G / I^{n+1}$. This leads us to:

Lemma 4. For $k \in\{1, \ldots, d\}$, let $\pi_{k} \in \operatorname{End}\left(\mathbb{F}_{p} G / I^{n+1}\right)$ be given by $\pi_{k}(\gamma)=\gamma \cdot x_{k}$ (where $\operatorname{End}\left(\mathbb{F}_{p} G / I^{n+1}\right)$ is the set of \mathbb{F}_{p}-vector space endomorphisms of $\left.\mathbb{F}_{p} G / I^{n+1}\right)$. Then the matrix $M_{k}^{(n)} \in \mathbb{M}_{\sum_{i=0}^{n} d^{i}}\left(\mathbb{F}_{p}\right)$ of π_{k} wrt basis B_{n} (the elements of which being ordered first by product length, then lexicographically in the $x_{i}-e$), is given by:

$$
\left(M_{k}^{(n)}\right)_{i, j}= \begin{cases}1 & \text { if } i=j \\ 1 & \text { if } i=d \cdot(j-1)+k+1, \\ 0 & \text { otherwise. }\end{cases}
$$

so that

$$
M_{k}^{(n+1)}=\left(\begin{array}{c|c}
M_{k}^{(n)} & 0 \\
\hline A_{k}^{(n)} & I_{d^{n+1}}
\end{array}\right), \text { where }\left(A_{k}^{(n)}\right)_{i, j}= \begin{cases}1 & \text { if } i=d \cdot\left(j-\sum_{i=0}^{n-1} d^{i}-1\right)+k \\
0 & \text { otherwise. }\end{cases}
$$

Proof. $\pi_{k}(\bar{e})=\overline{x_{k}}=\overline{\left(x_{k}-e\right)}+\bar{e}$.

$$
\begin{aligned}
& \pi_{k}\left(\overline{\left(x_{i_{1}}-e\right) \cdots\left(x_{i_{m}}-e\right)}\right)=\overline{\left(x_{i_{1}}-e\right) \cdots\left(x_{i_{m}}-e\right) \cdot x_{k}} \\
& \quad= \begin{cases}\overline{\left(x_{i_{1}}-e\right) \cdots\left(x_{i_{m}}-e\right) \cdot\left(x_{k}-e\right)}+\overline{\left(x_{i_{1}}-e\right) \cdots\left(x_{i_{m}}-e\right)} & \text { if } 1 \leq m<n, \\
\left(x_{i_{1}}-e\right) \cdots\left(x_{i_{m}}-e\right) & \text { if } m=n\end{cases}
\end{aligned}
$$

$$
\text { as }\left(x_{i_{1}}-e\right) \cdots\left(x_{i_{n}}-e\right) \cdot\left(x_{k}-e\right) \in I^{n+1} \text {. }
$$

Example 1. Letting $d=2$, in the case for which $n=1$ we have an ordered \mathbb{F}_{p}-basis $B_{1}=\left\{e+I^{2}, x_{1}-e+I^{2}, x_{2}-e+I^{2}\right\}$ for $\mathbb{F}_{p} G / I^{2}$, with respect to which the matrices of π_{1} and π_{2} (as defined above) are:

$$
M_{1}^{(1)}=\left(\begin{array}{c|cc}
1 & 0 & 0 \\
\hline 1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), M_{2}^{(1)}=\left(\begin{array}{c|cc}
1 & 0 & 0 \\
\hline 0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

respectively. Likewise, in the case for which $n=2$, we have an \mathbb{F}_{p}-basis $B_{2}=\left\{e+I^{3}\right.$, $\left.x_{1}-e+I^{3}, x_{2}-e+I^{3},\left(x_{1}-e\right)^{2}+I^{3},\left(x_{1}-e\right)\left(x_{2}-e\right)+I^{3},\left(x_{2}-e\right)\left(x_{1}-e\right)+I^{3},\left(x_{2}-e\right)^{2}+I^{3}\right\}$ for $\mathbb{F}_{p} G / I^{3}$, and the corresponding matrices for π_{1} and π_{2} are now:

$$
M_{1}^{(2)}=\left(\begin{array}{c|cc|cccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), M_{2}^{(2)}=\left(\begin{array}{c|cc|cccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Note in particular that the 3×3 upper-left submatrices of $M_{1}^{(2)}$ and $M_{2}^{(2)}$ are precisely $M_{1}^{(1)}$ and $M_{2}^{(1)}$, respectively.

3 A Construction of $\operatorname{Cay}\left(F_{d} / D_{n}^{p}\left(F_{d}\right), X\right)$

Proposition 5. With G and X as above, let Γ be the graph with vertex set $\mathbb{F}_{p} G / I^{n}$ and edge set $\left\{(r, r \cdot x) \mid r \in \mathbb{F}_{p} G / I^{n}, x \in X\right\}$. Then $\operatorname{Cay}\left(G / D_{n}^{p}(G), X\right)$ is graph-isomorphic to Γ_{0}, the path-component of Γ containing the vertex \bar{e}.

Proof. Let $f: V\left(\operatorname{Cay}\left(G / D_{n}^{p}(G), X\right)\right) \rightarrow V\left(\Gamma_{0}\right)$ be given by $f(g)=\bar{g}$. For $g, h \in G$,

$$
g \equiv h\left(\bmod D_{n}^{p}(G)\right) \text { iff } g \cdot h^{-1} \in D_{n}^{p}(G) \text { iff } g \cdot h^{-1}-e \in I^{n} \text { iff } \bar{g}=\bar{h} \text { iff } f(g)=f(h)
$$

so f is well-defined and injective. Clearly, any vertex of Γ_{0} is represented by some \bar{w}, for w a word in X, so f is surjective. Finally,

$$
\begin{aligned}
(g, h) \in E\left(\operatorname{Cay}\left(G / D_{n}^{p}(G), X\right)\right) & \text { iff } \exists k \in\{1, \ldots, d\} \text { s.t. } h \equiv g \cdot x_{k}\left(\bmod D_{n}^{p}(G)\right) \\
& \text { iff } \exists k \in\{1, \ldots, d\} \text { s.t. } h \cdot x_{k}^{-1} \cdot g^{-1} \in D_{n}^{p}(G) \\
& \text { iff } \exists k \in\{1, \ldots, d\} \text { s.t. } h \cdot x_{k}^{-1} \cdot g^{-1}-e \in I^{n} \\
& \text { iff } \exists k \in\{1, \ldots, d\} \text { s.t. } \bar{h}=\bar{g} \cdot x_{k} \\
& \text { iff }(f(g), f(h)) \in E\left(\Gamma_{0}\right)
\end{aligned}
$$

Indeed, we may alternatively regard Γ as the graph with vertex set V comprising the coordinate vectors (drawn from $\mathbb{F}_{p} \sum_{i=0}^{n-1} d^{i}$) of the elements of $\mathbb{F}_{p} G / I^{n}$ wrt B_{n-1}, and edge set $\left\{\left(v, M_{k}^{(n)} \cdot v\right) \mid v \in V, k \in\{1, \ldots, d\}\right\}$, so that Γ_{0} is the path-component of Γ containing the vertex $(1,0, \ldots, 0)$.

This provides us with an explicit method for computing $\operatorname{Cay}\left(G / D_{n}^{p}(G), X\right)$:

1. Set $V=\left\{(1,0, \ldots, 0)^{T}\right\}, E=\emptyset$
2. Repeatedly replace V by $V \cup\left\{M_{k}^{(n)} \cdot v \mid v \in V, k \in\{1, \ldots, d\}\right\}$, until $|V|=p^{\sum_{i=1}^{n-1} d_{i}}$, as in Jennings' Theorem.
3. For each $v \in V$ in turn, replace E by $E \cup\left\{\left(v, M_{k}^{(n)} \cdot v\right) \mid k \in\{1, \ldots, d\}\right\}$.
4. Then $\operatorname{Cay}\left(G / D_{n}^{p}(G), X\right) \cong(V, E)$.

4 An Application to Spectral Theory

Clearly, we could equally regard the above construction as a method for computing the adjacency matrix A of $\operatorname{Cay}\left(G / D_{n}^{p}(G), X\right)$. For A is the $|V| \times|V|$ matrix with (i, j) th entry equal to the number of edges running from v_{i} to v_{j}, for $v_{1}, \ldots, v_{|V|}$ an enumeration of V, and depends only on the choice of enumeration. We would like therefore to be able to apply our method to calculations in spectral graph theory; for instance by computing the spectrum of the Laplacian on $\operatorname{Cay}\left(G / D_{n}^{p}(G), X\right)$. However, for this purpose, we must instead work with $A+A^{T}$, which is the adjacency matrix of $\operatorname{Cay}\left(G / D_{n}^{p}(G), X^{ \pm}\right)$, since the Laplacian operator is defined only on undirected or symmetric graphs. The Laplacian matrix of (V, E) is then $L:=2 d I_{|V|}-\left(A+A^{T}\right)$.

We conclude by exhibiting $\operatorname{Cay}\left(F_{2} / D_{n}^{2}\left(F_{2}\right), X\right)$, together with the spectrum of its Laplacian, for $n=2,3$ and 4 . For the sake of clarity, we also include colour-coded illustrations of the Cayley graphs. These graphs and spectra were calculated using Wolfram Mathematica 7.0, following the above method. The program used (which takes values for n, p and d and returns $\operatorname{Cay}\left(F_{d} / D_{n}^{p}\left(F_{d}\right), X\right)$ and the corresponding spectrum) can be found at [3].

4.1 $F_{2} / D_{2}^{2}\left(F_{2}\right)$:

Figure 1: Author's illustration of $\operatorname{Cay}\left(F_{2} / D_{2}^{2}\left(F_{2}\right), X\right)$.

Figure 2: Spectrum of the Laplacian operator on $\operatorname{Cay}\left(F_{2} / D_{2}^{2}\left(F_{2}\right), X\right)$, as outputted by [3]. The eigenvalues are 0,4 and 8 .

This is just \mathbb{Z}_{2}^{2}. Indeed, since $\hat{\psi}: F_{d} / D_{2}^{p}\left(F_{d}\right) \rightarrow I / I^{2}$, as defined above, is injective, and since $a_{1}=d_{1}=d$ (by Jennings' Theorem and Lemma 3), $F_{d} / D_{2}^{p}\left(F_{d}\right) \cong I / I^{2} \cong \mathbb{Z}_{p}^{d}$, for any p and d.

$4.2 \quad F_{2} / D_{3}^{2}\left(F_{2}\right):$

Figure 3: Diagram of $\operatorname{Cay}\left(F_{2} / D_{3}^{2}\left(F_{2}\right), X\right)$, as outputted by [3], and corresponding author's illustration.

Figure 4: Spectrum of the Laplacian operator on $\operatorname{Cay}\left(F_{2} / D_{3}^{2}\left(F_{2}\right), X\right)$. The eigenvalues are 0, $2,4,6,8$ and $4 \pm 2 \sqrt{2}$.

$4.3 \quad F_{2} / D_{4}^{2}\left(F_{2}\right)$:

Figure 5: Diagram of $\operatorname{Cay}\left(F_{2} / D_{4}^{2}\left(F_{2}\right), X\right)$, as outputted by [3].

Figure 6: Author's illustration of $\operatorname{Cay}\left(F_{2} / D_{4}^{2}\left(F_{2}\right), X\right)$.

Figure 7: Spectrum of the Laplacian operator on $\operatorname{Cay}\left(F_{2} / D_{4}^{2}\left(F_{2}\right), X\right)$. The eigenvalues are 0 , $2,4,6,8,4 \pm 2 \sqrt{2}, 3 \pm \sqrt{5}$ and $5 \pm \sqrt{5}$.

References

[1] Jennings, S. A.: The structure of the group ring of a p-group over a modular field. Trans. Am. Math. Soc. 50 (1941), 175-185.
[2] Johnson D.L.: Presentations of Groups. 2nd edition, Cambridge University Press, 1990.
[3] http://people.maths.ox.ac.uk/lackenby/

