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Abstract. We establish a characterization of alternating links in terms of definite spanning
surfaces. We apply it to obtain a new proof of Tait’s conjecture that reduced alternating
diagrams of the same link have the same crossing number and writhe. We also deduce a
result of Banks and Hirasawa-Sakuma about Seifert surfaces for special alternating links.
The appendix, written by Juhász and Lackenby, applies the characterization to derive an
exponential time algorithm for alternating knot recognition.
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1. Introduction.

“What is an alternating knot?” – Ralph Fox

A link diagram is alternating if its crossings alternate over and under around each link
component, and a link is alternating if it admits an alternating diagram. The opening question
due to Fox seeks a characterization of alternating links in terms intrinsic to the link complement
[Lic97, p.32]. We establish such a characterization here in terms of definite spanning surfaces.

To describe it, a compact surface in a Z/2Z homology sphere carries a natural pairing on
its ordinary first homology group, mildly generalizing a definition by Gordon and Litherland
[GL78, Section 2]. An alternating diagram of a non-split alternating link in S3 yields an
associated pair of black and white chessboard spanning surfaces for the link, and their pairings
are respectively negative and positive definite. We establish the following converse:

Theorem 1.1. Let L be a link in a Z/2Z homology sphere with irreducible complement, and
suppose that it bounds both a negative definite surface and a positive definite surface. Then
L is a non-split alternating link in S3, and it has an alternating diagram whose associated
chessboard surfaces are isotopic rel boundary to the two given surfaces.

The characterization given in Theorem 1.1 is compelling in that it leads to a geometric
proof of part of Tait’s conjectures, amongst other applications.

Theorem 1.2. Any two connected, reduced, alternating diagrams of the same link have the
same crossing number and writhe.

A diagram is reduced if every crossing touches four distinct regions. Theorem 1.2 was originally
proved independently by Kauffman, Murasugi, and Thistlethwaite (see [Kau87, Theorem 2.10],
[Mur87, Theorem A] [Thi87, Theorem 1(i)]) for the crossing number and by Thistlethwaite
[Thi88, Theorem 1] for the writhe. Their proofs used properties of the Jones and Kauffman
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polynomials, shortly following their discovery. By contrast, the proof we give is based on more
classical topological constructions and some basic facts about flows on planar graphs.

A connected, oriented alternating diagram is special if one of the associated spanning sur-
faces is orientable. Seifert’s algorithm outputs this surface when applied to such a diagram.
An oriented alternating link is special if it has a special alternating diagram. Theorem 1.1 has
the following straightforward consequence. The reverse direction follows from classic works
by Crowell and Murasugi [Cro59, Mur58], while the forward direction was established more
recently by Banks and Hirasawa-Sakuma using more intricate methods [Ban11, HS97].

Corollary 1.3. A Seifert surface for a special alternating link L has minimum genus if and
only if it is obtained by applying Seifert’s algorithm to a special alternating diagram of L.

Lidman (private communication) observed the following quick consequence of Theorem 1.1.

Corollary 1.4. An amphichiral link with a definite spanning surface is alternating.

Proof. If L bounds a definite surface S, then its mirror L bounds a definite surface S of the
opposite sign. Assuming L ' L, the result now follows from Theorem 1.1. �

Corollary 1.4 leads to another quick consequence. An almost-alternating diagram is one which
becomes alternating upon changing one crossing.

Corollary 1.5. An amphichiral knot that admits an almost-alternating diagram is alternating.

Corollary 1.5 generalizes the fact that amphichiral Montesinos knots are alternating, which fol-
lows from the classification of Montesinos links [Bon79], [BZ03, Theorem 12.29 & Proposition
12.41].

Proof. The proof of Proposition 4.1 shows that for an almost-alternating link diagram, either
the pairings on the two chessboard surfaces are singular, semidefinite, and have opposite signs,
or else one of the chessboard surfaces is definite. The former cannot occur for a knot, since
the discriminant of the pairing equals the knot determinant, which is non-zero. The result
now follows from Corollary 1.4. �

András Juhász and Marc Lackenby applied Theorem 1.1 to the algorithmic detection of
prime alternating knots. With their gracious permission, we include their result and proof.

Theorem 1.6. There exists an algorithm that takes, as its input, a diagram of a prime knot
K with c crossings, and determines whether K admits an alternating diagram. The running
time is at most exp(kc2) for some constant k.

The decidability of whether a diagram presents an alternating knot was previously known.
We thank the referee for suggesting the following line of argument. From the given diagram
of K, compute the determinant det(K). By a theorem of Bankwitz [Ban30, Satz], if K has
a reduced alternating diagram, then its crossing number is at most det(K). The algorithm
begins by constructing all possible alternating diagrams with at most det(K) crossings. It
then determines whether any of these is K, using the algorithm to decide whether two knots
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are equivalent, due to Haken [Hak68], Waldhausen [Wal78], Hemion [Hem79], and Matveev
[Mat03]. An alternative method is to use the minimality of reduced alternating diagrams
[Kau87, Mur87, Thi87] along with Coward and Lackenby’s bound on the number of Reide-
meister moves required to convert between two diagrams of a knot [CL14]. Both of these
algorithms appear to take considerably longer than the bound in Theorem 1.6. The bound
on the number of Reidemeister moves given by Coward and Lackenby is, as function of the
initial crossing number c, a tower of exponentials with height κc for some constant κ, and so
the running time for this algorithm is at least this large. There is no known explicit bound on
the running time of the algorithm given by Haken, Waldhausen, Hemion, and Matveev, but
it would seem to be hard to find a bound that was better than a tower of exponentials.

Developments. At the time of writing, Joshua Howie independently obtained a characteriza-
tion of alternating knots in terms of spanning surfaces and applied it towards the decidability
of recognizing an alternating knot exterior [How15]. Using Theorem 2.1, it is easy to deduce
the equivalence of Howie’s condition on spanning surfaces with the one given in Theorem 1.1
in the case the ambient manifold is S3. The recognition algorithm that Howie produces is
quite different, as it works with a pair of spanning surfaces simultaneously, whereas the proof
of Theorem 1.6 tests surfaces for definiteness one by one.

Organization. Section 2 reviews the work of Gordon and Litherland on their eponymous
pairing and its applications to link signatures, and then points out how their definition and
results generalize to the case of a Z/2Z homology sphere. Section 3 defines definite surfaces
and collects their basic properties. Section 4 applies this preparatory material in order to prove
Theorem 1.1 and deduce Corollary 1.3. Section 5 develops the elementary theory of flows on
planar graphs in order to deduce Theorem 1.2 from Theorem 1.1. Finally, the Appendix,
written by Juhász and Lackenby, contains the proof of Theorem 1.6.

Convention. We use integer coefficients for all chain groups and homology groups unless
stated otherwise.

Acknowledgments. My foremost thanks go to András Juhász, Marc Lackenby, and Tye
Lidman for their valuable contributions to this paper. Thanks to the pair of Paolo Lisca and
Brendan Owens, and also to Yi Ni, who independently suggested that Theorem 1.1 should
hold for a broader class of 3-manifolds than integer homology spheres, for which it was initially
proven. Thanks to the referees for many useful and clarifying remarks. Thanks lastly to John
Baldwin, Peter Feller, John Luecke, Morwen Thistlethwaite, and Raphael Zentner for many
enjoyable and stimulating discussions. This work was supported by NSF CAREER Award
DMS-1455132 and an Alfred P. Sloan Research Fellowship.

2. The Gordon-Litherland pairing.

Generalizing earlier work by several researchers [Goe33, KT76, Sei35, Tro62], Gordon and
Litherland defined a symmetric bilinear pairing on the ordinary first homology group of a
compact embedded surface in S3 [GL78]. We recall their definition and their main results,
and then we promote their work to the setting of a Z/2Z homology sphere.
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Let Y = S3 and S ⊂ Y be a compact, connected, embedded surface. The unit normal
bundle to S embeds as a subspace N(S) ⊂ Y \ S and carries a 2-to-1 covering map

pS : N(S)→ S.

Given pair of homology classes a, b ∈ H1(S), represent them by embedded, oriented multi-
curves α, β ⊂ S. Define

〈a, b〉S = lk(α, p−1S (β)),

where lk denotes the linking number. Gordon and Litherland proved that the pairing 〈 , 〉S
establishes a well-defined, symmetric, bilinear pairing

〈 , 〉S : H1(S)×H1(S)→ Z
[GL78, Theorem 3 and Proposition 9]. When S is orientable, the pairing coincides with the
symmetrized Seifert pairing.

They also showed how to use the pairing 〈 , 〉S to determine the signature of a link. Suppose
that S is a spanning surface for a link L, meaning that L = ∂S. The components K1, . . . ,Km

of L define projective homology classes [K1], . . . , [Km] ∈ H1(S)/±. For a projective class
x ∈ H1(S)/±, let |x|S = 〈x, x〉S denote its well-defined self-pairing. The value 1

2 |[Ki]|S equals

the framing that S induces on Ki. Let e(S) denote the Euler number −1
2

∑m
i=1 |[Ki]|S . If

L is oriented, then let e(S,L) = −1
2 |[L]|S . The two quantities are related by the identity

e(S,L) = e(S)− lk(L), where lk(L) denotes the total linking number
∑

i<j lk(Ki,Kj). Lastly,

let σ(S) denote the signature of the pairing 〈 , 〉S .

Gordon and Litherland’s result reads as follows in the case that Y = S3 [GL78, Corollaries
5′ and 5′′]. As we discuss below, it pertains more generally to the case of Z/2Z homology
sphere Y .

Theorem 2.1. If S is a compact spanning surface for an unoriented link L ⊂ Y , then the
quantity

σ(S) +
1

2
e(S)

depends only on L, and it coincides with the Murasugi invariant ξ(L) when Y = S3. If L is
oriented, then

σ(S) +
1

2
e(S,L)

depends only on L, and it coincides with the link signature σ(L) when Y = S3. �

The Murasugi invariant ξ(L) is the average of the signatures of the different oriented links
whose underlying unoriented link is L. Note that if S is a Seifert surface for an oriented link
L, then [L] = 0 ∈ H1(S)/± and 〈 , 〉S coincides with the symmetrized Seifert pairing. We
therefore recover the familiar definition of the link signature in this case.

Now we turn to the case in which Y is an arbitrary Z/2Z homology sphere. The preceding
summary carries over to this setting, and we highlight the necessary alterations. The key
modification is that in an oriented rational homology sphere Y , a pair of disjoint, oriented
curves K1,K2 ⊂ Y have a rational linking number lk(K1,K2). To describe it, take a rational
Seifert surface S1 whose boundary runs q > 0 times around K1 and meets K2 transversely.
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Then set lk(K1,K2) = (S1 ·K2)/q. A standard argument shows that this value is independent
of the choice of rational Seifert surface, it is symmetric in K1 and K2, and it extends by
linearity to a Q-valued function on pairs of disjoint, oriented links in Y .

The Gordon-Litherland pairing in this setting is a pairing

H1(S)×H1(S)→ Q

defined exactly as above with respect to the rational linking number. The proof that it is
well-defined and bilinear is straightforward, and the proof of [GL78, Proposition 9] applies
directly to show that it is symmetric. The remaining definitions that go into the statement
of Theorem 2.1 also apply directly to this setting without change. The proof of Theorem 2.1
given in [GL78, Section 6] applies as well, with two important notes. First, the notion of
S∗-equivalence of spanning surfaces carries over without change, as does the proof of [GL78,
Proposition 10], using the rational linking number. Second, Proof I of [GL78, Theorem 11]
only uses the fact that S3 is a Z/2Z homology sphere. The salient point is that, in the notation
of that proof, V0 ∪ V1 is a (mod 2) 2-cycle, so there exist (mod 2) 3-chains Y0, Y1 ⊂ S3 such
that S3 = Y0 ∪ Y1 and Y0 ∩ Y1 = ∂Y0 = ∂Y1 = V0 ∪ V1. This decomposition is used implicitly
in the assertions made there about the subspaces M and M ′. As the same holds for any Z/2Z
homology sphere Y , the proof adapts simply by substituting Y for S3.

We may take the invariant values ξ(L) and σ(L) appearing in Theorem 2.1 as the natural
generalizations of the Murasugi invariant and the oriented link signature of a link L in a Z/2Z
homology sphere Y such that [L] = 0 ∈ H1(Y ;Z/2Z). We mention in closing that signatures
of oriented links in rational homology spheres were studied in greater generality by Cha and
Ko in [CK02].

3. Definite surfaces.

A compact, connected surface S in a Z/2Z homology sphere is definite (either positive or
negative) if its Gordon-Litherland pairing is.

Proposition 3.1. If S is a definite surface with boundary L, then b1(S) is minimal over all
spanning surfaces for L with the same Euler number as S. Moreover, if S′ is such a surface
with b1(S) = b1(S

′), then S′ is definite and of the same sign as S.

Proof. The Gordon-Litherland formula implies that all such surfaces have the same signature,
whose absolute value therefore bounds from below the first Betti number of any such surface.
By definition, this bound is attained by a definite surface. �

Corollary 3.2. A definite surface is incompressible. �

Following Proposition 4.1 below, Corollary 3.2 generalizes [MT93, Prop 2.3], which treats the
case of a chessboard surface associated with a reduced alternating diagram of a link in S3.

Lemma 3.3. If S is definite and S′ ⊂ S is a compact subsurface with connected boundary,
then S′ is definite.
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Figure 1. A positive and a negative crossing in an oriented link diagram; a
type a and a type b crossing in a colored link diagram; and a type I and a type
II crossing in an oriented, colored link projection.

Proof. Since S is definite, any compact subsurface S′′ is semidefinite: the self-pairings of its
homology classes take only one sign, and the self-pairing vanishes precisely on the kernel
of the inclusion-induced map H1(S

′′) → H1(S). Since S and ∂S′ are connected, S/S′ is a
(possibly empty) connected surface with boundary, so 0 = H2(S/S

′) ≈ H2(S, S
′). The long

exact sequence of the pair (S, S′) now shows that the inclusion-induced map H1(S
′)→ H1(S)

injects. It follows that S′ is definite. �

Lemma 3.4. Suppose that Y is a Z/2Z homology sphere, L ⊂ Y is a link, X = Y \ ◦ν(L) is
irreducible, and S± ⊂ Y are ±-definite spanning surfaces for L. If S+ ∩X and S− ∩X are in
minimal position, then S+ ∩ S− ∩X does not contain a simple closed curve of intersection.

Proof. Suppose that S+∩S−∩X contains a simple closed curve γ. The tubular neighborhood
ν(γ) is a disk bundle over S1, and it is orientable, since Y is a Z/2Z homology sphere. Thus,
∂ν(γ) is a torus, and S+ ∩ ∂ν(γ) and S− ∩ ∂ν(γ) are parallel on ∂ν(γ). Moreover, S± ∩ ∂ν(γ)
is isotopic to p−1S∓

(γ) in Y \ γ. It follows that 0 ≤ |γ|S+ = |γ|S− ≤ 0. Therefore, γ is

null-homologous in both S+ and S−. Let S′± ⊂ S± denote the orientable subsurfaces with
∂S′± = γ. These surfaces are respectively positive and negative definite by Lemma 3.3, and
σ(S′+) = σ(S′−) = σ(γ) because they are Seifert surfaces for the knot γ ⊂ Y . Therefore,
0 ≤ b1(S

′
+) = σ(S′+) = σ(S′−) = −b1(S′−) ≤ 0, so S′+ and S′− are disks. By passing to an

innermost disk, we may assume that S′+ and S′− have disjoint interiors, so their union is a
sphere. Since X is irreducible, the sphere S′+ ∪ S′− bounds a ball in X. This ball guides an
isotopy that reduces the number of components of S+ ∩ S− ∩X, so S+ ∩X and S− ∩X were
not in minimal position. The conclusion of the Lemma now follows. �

4. Proof of the characterization.

The following Proposition characterizes alternating diagrams in terms of the definiteness of
their associated chessboard surfaces. It plays a role in the proof of Theorem 1.1 to follow.

Proposition 4.1. Let D denote a connected diagram of a link L, and let B and W denote
its associated chessboard surfaces. Then D is alternating if and only if B and W are definite
surfaces of opposite signs.

Proof. Orient D. Referring to Figure 1, the value 1
2e(B,L) equals the number of crossings

that are both of type b and type II minus the number of crossings that are both of type a and
type II [GL78, Lemma 7]. Similarly, 1

2e(W,L) equals that number of crossings that are both
of type a and type I minus the number of crossings that are both of type b and type I. Let
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a(D) and b(D) denote the number of type a and type b crossings, respectively. It follows that

b(D)− a(D) =
1

2
e(B,L)− 1

2
e(W,L).

On the other hand, Theorem 2.1 gives

1

2
e(B,L)− 1

2
e(W,L) = σ(W )− σ(B).

Taking the absolute value leads to

|b(D)− a(D)| = |σ(W )− σ(B)| ≤ |σ(W )|+ |σ(B)| ≤ b1(W ) + b1(B) = c(D),

where c(D) denotes the crossing number of D. The last equality follows from an Euler char-
acteristic calculation. Equality holds in the first inequality if and only if σ(W ) and σ(B) have
opposite signs, and equality holds in the second inequality if and only W and B are definite.
Therefore, |b(D) − a(D)| = c(D) if and only if W and B are definite and of opposite signs.
On the other hand, this equality holds if and only if the connected diagram D is alternating.
The statement of the Proposition now follows. �

Proof of Theorem 1.1. As in Lemma 3.4, set X = Y \ ◦ν(L) and put S+ ∩ X and S− ∩ X
in minimal position. Write ∂X = ∂1X ∪ · · · ∪ ∂mX corresponding to L = K1 ∪ · · · ∪ Km.
The number of points of intersection in S+ ∩ S− ∩ ∂iX equals the difference in framings
1
2 |[Ki]|S+ − 1

2 |[Ki]|S− . We stress that this difference is non-negative, due to the signs of the
surfaces. The number of arc components of S+∩S−∩X equals half the sum of these differences,
which is c := 1

2e(S−)− 1
2e(S+).

An orientation on X induces an orientation on ∂X, and an orientation on each link com-
ponent Ki induces orientations on S+ ∩ ∂iX and S− ∩ ∂iX. Every intersection point between
S+ ∩ ∂X and S− ∩ ∂X on ∂X has the same sign with respect to these orientations, since
1
2 |[Ki]|S+ − 1

2 |[Ki]|S− ≥ 0 for all i. An arc component of S+ ∩ S− ∩ X extends to an arc
a ⊂ S+ ∩ S− such that a ∩ L = ∂a. Let A denote the union of these c arcs. It follows
from the consistency of the signs of intersection that a neighborhood ν(a) is modeled on the
neighborhood of a crossing in a link diagram, where the chessboard surfaces meet along an
arc that runs between the over and under crossing. In particular, ν(a) has a product structure
D2× I such that a is contained in {0}× I and the projection to D2 maps (S+∪S−−a)∩ν(a)
homeomorphically to D2 − {0}.

By Lemma 3.4, S+ ∩ S− ∩ X does not contain any simple closed curves. Therefore, the
2-complex S+ ∪ S− is a 2-manifold away from A. From the decomposition of ν(S+ ∪ S−) as
the union ν(A)∪ ν(S+ ∪S−−A), we see that ν(S+ ∪S−) can be identified with ν(S) ≈ S× I
for some closed embedded surface S ⊂ Y . Moreover, the projection ν(S)→ S maps each arc
a ⊂ A to a distinct point in S, and it maps S+∪S−−A homeomorphically to the complement
of these points in S.

The intersection S+∩S− = L∪A has Euler characteristic −c. As in the proof of Proposition
4.1, Theorem 2.1 gives c = σ(S+)− σ(S−) = b1(S+) + b1(S−). Thus,

χ(S+ ∪ S−) = χ(S+) + χ(S−)− χ(S+ ∩ S−) = (1− b1(S+)) + (1− b1(S−)) + c = 2,
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and

χ(S) = χ(ν(S)) = χ(ν(S+ ∪ S−)) = χ(S+ ∪ S−) = 2

in turn. Since Y is orientable and χ(S) > 0, it follows that S contains a sphere component
S0. The neighborhood ν(S0) ⊂ ν(S) meets L in a non-empty sublink L0. Since Y \ L is
irreducible, each boundary component of ν(S0) ≈ S0× I bounds a ball in Y \L. Denoting the
balls by B1 and B2, we obtain Y = B1 ∪ ν(S0) ∪B2 ≈ S3, L = L0, and S = S0 is a sphere.

We now see that the projection ν(S)→ S gives a diagram D of L. The c double points of D
are the images of the components of A, and the chessboard surfaces are isotopic rel boundary
to S+ and S−. Since S+ and S− are definite and of opposite signs, Proposition 4.1 implies
that D is alternating, and the characterization is complete. �

Proof of Corollary 1.3. Let L be a special alternating link, S a minimum genus Seifert surface
for L, D a special alternating diagram of L, and SD the surface obtained by applying Seifert’s
algorithm to D. Then SD is one of the spanning surfaces associated with D, so it is definite by
Proposition 4.1. Since e(S) = e(SD) = 0 and S has minimum genus, Proposition 3.1 implies
that b1(S) = b1(SD) and that S is definite. It follows that SD has minimum genus, and by
Theorem 1.1, that S is a spanning surface associated with some (special) alternating diagram
of L. �

5. Lattices, graphs, and Tait’s conjecture.

Let D denote a connected alternating diagram of a link L. Color its regions according to
the convention that every crossing has type b. Let B and W denote its associated chessboard
surfaces. By the proof of Proposition 4.1, B is negative definite and W is positive definite.
The Gordon-Litherland pairing on either surface admits a natural interpretation as the lattice
of integer-valued flows on a graph, as we now recall.

The surface W deformation retracts onto an undirected graph G that has a vertex in each
white region and an edge through each crossing of D. This is the Tait graph of D. It has a
planar embedding determined up to planar isotopy by D, and c(D) = |E(G)|. By the same
construction, the surface B deformation retracts onto the planar dual G∗. If D is a connected
diagram, then G is connected as well. The diagram D is reduced if and only if both of G and
G∗ are bridgeless.

Orient the edges of G arbitrarily to endow it with the structure of a 1-dimensional CW-
complex. The chain group C1(G) inherits the structure of a standard Euclidean lattice by
declaring the chosen oriented edge set to form a distinguished orthonormal basis. The flow
lattice F (G) is the sublattice ker(∂) ⊂ C1(G), where ∂ : C1(G)→ C0(G) denotes the boundary
operator. Since C2(G) = 0, we can identify the underlying abelian group of F (G) with
H1(G). Observe that F (G) is an invariant of the undirected graph G and does not depend
on the orientation of the edges chosen to construct it. The deformation retraction from W
to G induces an isomorphism H1(W ) ≈ H1(G). Gordon and Litherland showed that this
isomorphism induces an isometry of lattices [GL78, Theorem 1]:
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Theorem 5.1. Let D denote an alternating diagram, W its white chessboard surface, and G
its Tait graph. Then the deformation retraction from W to G induces an isometry between
(H1(W ), 〈 , 〉W ) and F (G). �

Similarly, the deformation retraction fromB toG∗ induces an isometry between (H1(B),−〈 , 〉B)
and F (G∗); we stress the negative sign taken on the intersection pairing on H1(B).

We obtain the following addendum to Theorem 1.1.

Corollary 5.2. The surfaces stipulated in Theorem 1.1 do not contain a homology class of
self-pairing ±1 if and only if the alternating diagram guaranteed by Theorem 1.1 is reduced.

Proof. The elements of self-pairing 1 in F (G) are the loops in G. A loop in G is dual to a
bridge in G∗. Therefore, D is reduced if and only if H1(B) and H1(W ) do not contain elements
of self-pairing ±1. �

An element v in a positive definite lattice L is simple if 〈v, x〉 ≤ 〈x, x〉 for all x ∈ L, and
it is irreducible if it is simple and 〈v, x〉 = 〈x, x〉 if and only if x = 0 or v. Irreducibility and
simplicity are isometry invariants.

A cycle in G is a subgraph homeomorphic to S1. Cyclically orienting its edges gives an
oriented cycle, which we may view as an element in F (G). An Eulerian subgraph of G is an
edge-disjoint union of cycles. Cyclically orienting the edges of the cycles in a decomposition
of an Eulerian subgraph gives an oriented Eulerian subgraph, which we may again view as an
element of F (G).

The following result is elementary. The first assertion appears as [GR01, Theorem 14.14.4],
and the second follows as well from its proof. Again, we stress that its statement holds for an
undirected graph.

Proposition 5.3. The irreducible elements in F (G) are the oriented cycles in G, and the
simple elements in F (G) are the oriented Eulerian subgraphs of G. �

Given Proposition 5.3, the proof of the following Lemma is elementary and left to the reader.

Lemma 5.4. Suppose that Ci and Cj are oriented cycles in a graph. The following are
equivalent:

(1) Ci + Cj is simple;
(2) Ci and Cj induce opposite orientations on every edge in Ci ∩ Cj;
(3) |E(Ci) ∩ E(Cj)| = −〈Ci, Cj〉. �

Theorem 5.5. If G and G′ are connected, bridgeless planar graphs with isometric flow lattices,
then |E(G)| = |E(G′)|.

In fact, more is true: G and G′ are 2-isomorphic, in the terminology of [Whi33]. This stronger
assertion, which holds without assumption on planarity, is sometimes called the discrete Torelli
theorem, and versions of it appear in [Art06, BdlHN97, CV10, Gre13, SW10]. The assumption
on planarity and the weaker conclusion in Theorem 5.5 lead to the simple proof that we present.
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Proof. An orientation on S2 induces an orientation on the faces of G. Since G is connected
and bridgeless, their oriented boundaries form a collection of oriented cycles C1, . . . , Cf ⊂ G.
They generate F (G) subject to the single relation C1 + · · · + Cf = 0. Since G is bridgeless,
each oriented edge occurs once in some Ci, and we have

|E(G)| =
∑
i<j

|E(Ci) ∩ E(Cj)|.

It follows as well from Lemma 5.4 that Ci + Cj is simple for all i 6= j.

Suppose that F (G)
∼−→ F (G′) is an isometry. The elements C1, . . . , Cf are irreducible, so

their images are oriented cycles C ′1, . . . , C
′
f ⊂ G′, and C ′i +C ′j is simple for all i 6= j. It follows

that no three distinct cycles C ′i, C
′
j , C

′
k have an edge in common, since two of them would have

to induce the same orientation on it, in violation of Lemma 5.4. Therefore,∑
i<j

|E(C ′i) ∩ E(C ′j)| ≤ |E(G′)|.

On the other hand, Lemma 5.4 gives∑
i<j

|E(Ci) ∩ E(Cj)| =
∑
i<j

−〈Ci, Cj〉 =
∑
i<j

−〈C ′i, C ′j〉 =
∑
i<j

|E(C ′i) ∩ E(C ′j)|.

Combining the indented equations yields |E(G)| ≤ |E(G′)|. By symmetry, the statement of
the Theorem follows. �

Proof of Theorem 1.2. Let D and D′′ denote two connected, reduced, alternating diagrams
of the same link L. Color them according to the convention that every crossing has type
b. Let W denote the white chessboard surface for D and B′′ the black chessboard surface
for D′′. By Theorem 1.1 and Corollary 5.2, there exists a reduced, alternating diagram D′

whose white chessboard surface W ′ is isotopic to W and whose black chessboard surface B′

is isotopic to B′′. Let G denote the Tait graph of D and G′ the Tait graph of D′. Since
W ' W ′, it follows from Theorem 5.1 that F (G) ≈ F (G′). By Theorem 5.5, it follows that
c(D) = |E(G)| = |E(G′)| = c(D′). Similarly, c(D′) = c(D′′), and the first part of the Theorem
follows.

For the second part, orient the diagrams. Let p(·) and n(·) denote the number of positive
and negative crossings in a diagram, respectively. By Theorem 2.1, [GL78, Lemma 7], and
the fact that every crossing has type b, it follows that σ(L) = σ(W )− p(D) = σ(W ′)− p(D′).
Since W ' W ′, it follows that p(D) = p(D′). Since c(D) = c(D′) by the first part of the
Theorem, it follows that n(D) = n(D′), as well. Therefore, D and D′ have the same writhe
p(D) − n(D) = p(D′) − n(D′). Similarly, D′ and D′′ have the same writhe, and the second
part of the Theorem follows. �

As remarked after the proof of Theorem 5.5, the graphs G and G′ that arise in the proof
of Theorem 1.2 are 2-isomorphic. It follows that Theorem 1.2 can be strengthened to the
statement that two connected, reduced, alternating diagrams of the same link are actually
mutants [Gre13, Proposition 4.4]. This conclusion follows as well from [Gre13, Theorem 1.1]
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under a weaker assumption, yet its proof relies on gauge theory in the guise of Floer homology
or Donaldson’s theorem.

6. Appendix: Algorithmic Detection of Alternating Knots.
By András Juhász and Marc Lackenby

This appendix contains the proof of Theorem 1.6.

We are given a diagram D for a prime knot K with c crossings. If the knot K is alternating,
then it has a reduced alternating diagram having c′ ≤ c crossings, by a theorem of Kauffman,
Murasugi, and Thistlethwaite [Kau87, Mur87, Thi87]. The chessboard surfaces S1 and S2 for
this diagram have the following properties:

(1) χ(S1) + χ(S2) = 2− c′ ≥ 2− c;
(2) the Gordon-Litherland pairings of S1 and S2 are positive definite and negative definite,

respectively;
(3) they are connected and π1-injective, hence incompressible and boundary-incompressible

[Aum56].

Conversely, by Theorem 1.1, the existence of spanning surfaces S1 and S2 satisfying (2) imply
that the knot is alternating. We need to show how to find these surfaces.

We start by using D to construct a triangulation T of X, the exterior of K. The method of
Hass, Lagarias and Pippenger [HLP99, Lemma 7.1] is convenient here. In that lemma, they
construct a triangulated polyhedron in R3. The number of tetrahedra in this triangulation is
bounded above by a linear function of c. Each simplex is straight in R3. A copy of K is a subset
of the 1-skeleton lying in the interior of the polyhedron, and in fact, its vertical projection
onto the x-y plane is a copy of D. According to [HLP99, Lemma 7.1], this triangulation can
be constructed in time bounded above by a linear function of c log c. One can then enlarge
this polyhedron, by attaching simplices, so that its boundary is equal to the boundary of
a tetrahedron. This can be achieved while maintaining a linear bound on the number of
simplices, as a function of c, and keeping the property that each simplex is straight in R3.
The running time for this step is bounded by a polynomial function of c. Then one can attach
a 3-simplex to the boundary of this polyhedron to obtain a triangulation of the 3-sphere. By
taking the second derived subdivision of this triangulation and then removing the interior of
simplices incident to K, we obtain the required triangulation T . Note that its simplices are
also all straight in R3, with the exception of one 3-simplex enclosing the point at infinity. It is
also simple to arrange that the projection of each 2-simplex to the diagram D is an injection.
In addition, a meridian of K can be realised as a subset Γ of the 1-skeleton.

We will consider surfaces that are normal with respect to T . We therefore recall various
terms from normal surface theory. A much more complete survey can be found in the book
of Matveev [Mat03]. A surface is normal if it intersects each tetrahedron in a collection of
triangles and squares, as shown in Figure 3.10 of [Mat03] for example. In each tetrahedron,
there are four possible types of triangle and three types of square. A properly embedded normal
surface S is specified by its vector which simply lists the number of triangles and squares of
each type appearing in S. The number of co-ordinates in this vector is therefore 7 times the



12 JOSHUA EVAN GREENE

number of tetrahedra. A vector with non-negative integral co-ordinates represents a properly
embedded normal surface if and only if it satisfies a collection of linear equations, known as the
matching equations [Mat03, Section 3.3.4], and it satisfies the quadrilateral constraints which
require that no two distinct square types co-exist within the same tetrahedron. A normal
surface S is said to be the sum of two other normal surfaces if the vector of S is the sum of
the vectors of these other surfaces. A normal surface is said to be fundamental if it cannot be
written as a sum of two non-empty normal surfaces.

We will need the following lemma.

Lemma 6.1. The surfaces S1 and S2 can be realised as normal surfaces with respect to T .
Each is a sum of at most c fundamental normal surfaces. The number of normal triangles
and squares in S1 and S2 is at most ek1c for some constant k1.

Proof. This is a fairly well-known application of normal surface theory. Recall that Γ ⊂
∂X is a subset of the 1-skeleton representing a meridian of K. We give the manifold X
the boundary pattern Γ, in the sense of [Mat03, Definition 3.3.9]. Then (X,Γ) is simple
in the sense of [Mat03, Definition 6.3.16], i.e., it is irreducible, boundary irreducible, and
contains no essential tori and annuli (where all these terms are to be interpreted in a suitable
sense in the presence of boundary pattern). This is because of Menasco’s theorem that the
exterior of a prime alternating knot contains no essential torus and the only essential annuli
arise as the obvious annuli for a (2, n) torus knot, but these necessarily intersect Γ [Men84,
Corollary 2]. In [Mat03, Definition 6.3.8], Matveev defines the p-complexity of the normal
surface Si to be −χ(Si)+ |Si∩Γ| = −χ(Si)+1, and this is at most a linear function of c, by (1)
above. By [Mat03, Theorem 6.3.17], one can construct a finite list of normal surfaces with
the property that any 2-sided properly embedded incompressible, boundary-incompressible,
connected surface with at most this p-complexity is strongly equivalent to one in this list.
Here, strongly equivalent just means that there is a homeomorphism of the pair (X,Γ) taking
it to one of these normal surfaces. Now, the surfaces Si need not be 2-sided, but the proof
of [Mat03, Theorem 6.3.17] gives that Si is a sum

∑
λjFj , where each Fj is a fundamental

normal surface with non-negative p-complexity and each λj is a positive integer. In fact,
the only Fj that appear in the sum have positive p-complexity. (No normal tori appear in
the sum, using [Mat03, Proposition 6.3.21].) Hence, the number of summands for Si is at
most the p-complexity, which is at most c by (1). By a result of Hass and Lagarias [HL01,
Lemma 3.2], the number of triangles and squares in a fundamental normal surface is at most
ek2t, where t is the number of tetrahedra and k2 is a constant. Hence, this gives the final part
of the Lemma. �

Proof of Theorem 1.6. The algorithm simply constructs all the normal surfaces in T consisting
of at most ek1c triangles and squares, as in Lemma 6.1. The number of triangle and square
types in T is 7 times the number of tetrahedra, and hence at most a linear function of c.
Therefore, the number of possible normal surfaces we must consider is at most exp(k3c

2) for
some constant k3.

For each surface Si, one has an explicit decomposition of the surface into triangles and
squares, and hence an explicit cell structure. Using this, one can decide whether the surface
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has boundary a single curve with integral slope, and hence whether it extends to a spanning
surface for K. The running time for this is bounded by a polynomial function of the number
of 1-cells in ∂Si and of the number of triangles in the triangulation of ∂X, and therefore by
ek4c for some constant k4. If Si does not extend to a spanning surface, the algorithm discards
this surface. Also, if Si is disconnected or does not satisfy |χ(Si)| ≤ c, then it is discarded.

Using the cell structure, one can find a spanning set for H1(Si) in the 1-skeleton of Si, by
picking a maximal tree in the 1-skeleton, and then using loops that each run in the tree from a
basepoint to the start of an edge not in the tree, then along the edge, and then back along the
tree to the basepoint. The running time for this is bounded above by a polynomial function
of the number of 1-cells in Si. One can then reduce this spanning set of H1(Si) to a basis for
H1(Si) using linear algebra. The running time is bounded by a polynomial function of the
number of elements of the spanning set, the number of 1-cells and 2-cells of Si, and of the
number of digits of each co-ordinate of the vector representing Si. Hence, the running time
is at most ek5c, for some constant k5. The size of this basis is at most a linear function of c,
because of (1). Each basis element is an embedded loop in the 1-skeleton of Si, and hence lies
within the 2-skeleton of the triangulation T .

We build a matrix representing the Gordon-Litherland pairing, with entries constructed as
follows. We consider all pairs of loops α and β in the given basis for H1(Si) and compute
the linking number of α and p−1Si

(β), in the terminology of Section 2. We can compute this

linking number by projecting α and p−1Si
(β) to the diagram D and counting their crossings

with appropriate signs. Each 1-cell of α ∪ p−1Si
(β) projects to a straight arc in the diagram,

and so the number of crossings that we must count is at most the product of the number of
1-cells of α and the number of 1-cells of p−1Si

(β). Hence, ek6c, for a suitable constant k6, is an
upper bound for the modulus of the linking number and for the running time of this part of
the algorithm.

Then we can determine, in time that is at most a polynomial function of c, whether this
matrix representing the Gordon-Litherland pairing is positive or negative definite. By con-
sidering all properly embedded normal surfaces in T satisfying the bound of Lemma 6.1 and
that have boundary a single curve with integral slope, we can therefore determine whether K
has both positive definite and negative definite spanning surfaces. �

We plan to address the case of composite knots in a future paper. There, we will give an
exponential-time algorithm that determines whether a (possibly composite) knot admits an
alternating diagram.
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