
The Dehn Surgery Problem

Marc Lackenby

19 June 2012



Dehn surgery

This is a method for building
3-manifolds:

Start with a knot or link K in 3-sphere.

Remove an open regular neighbourhood
of K , creating a 3-manifold M with
boundary.

Re-attach solid tori to M, but in a
different way.

The resulting manifold is obtained by
Dehn surgery on K .
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Slopes

The essentially different ways of doing
this are parametrised by the ‘slopes’ on
∂N(K ).

Each solid torus S1 ×D2 has a meridian
disc ∗ × D2.

Its boundary is attached to a simple
closed curve on ∂N(K ).

An isotopy class of essential simple
closed curves on ∂N(K ) is a slope.

The slopes on each component of
∂N(K ) are parametrised by fractions
p/q ∈ Q ∪ {∞}.
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Lickorish’s and Kirby’s theorems

Theorem: [Lickorish, Wallace] Any closed orientable 3-manifold is
obtained by Dehn surgery on some link in S3.

Theorem: [Kirby] Any two surgery descriptions of a 3-manifold
differ by a sequence of ‘Kirby moves’.
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Dehn filling

Let

M = a compact orientable 3-manifold, with
∂M = a collection of tori
s1, . . . , sn = a collection slopes on ∂M, one on each ∂ component.

Then
M(s1, . . . , sn) = the manifold obtained by attaching solid tori to M
along the slopes s1, . . . , sn.

It is obtained from M by Dehn filling.

General theme: Properties of M should be inherited by
M(s1, . . . , sn), for ‘generic’ slopes s1, . . . , sn.



Geometrisation

A major revolution in 3-manifold theory was the formulation (by
Thurston) and proof (by Perelman) of:

Geometrisation Conjecture: ‘Any closed orientable 3-manifold has a
canonical decomposition into geometric pieces.’

Of these geometries, by the far the most important is hyperbolic
geometry.
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Hyperbolic structures

M is hyperbolic if M − ∂M = H3/Γ for some discrete group Γ of
isometries acting freely on H3.

Example: Seifert-Weber dodecahedral space
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We can realise these as (ideal) tetrahedra in H3:

This induces a hyperbolic structure on S3 − K .



Hyperbolic structures on knot complements

Theorem: [Thurston] Let K be a knot in S3. Then S3 − K admits
a hyperbolic structure if and only if K is not a torus knot or a
satellite knot:

satellite knot torus knot



Hyperbolic Dehn surgery

Suppose that M has a hyperbolic structure, and that ∂M is a
single torus.

Theorem: [Thurston] For slopes s on ∂M, with at most finitely
many exceptions, M(s) is also hyperbolic.

The slopes s for which M(s) is not hyperbolic are called
exceptional.

The Dehn Surgery Problem: How many exceptional slopes can
there be?
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The figure-eight knot

Let M = the exterior of the figure-eight knot.

Theorem: [Thurston] M has 10 exceptional slopes:

{−4,−3,−2,−1, 0, 1, 2, 3, 4,∞}.

Conjecture: [Gordon] For any hyperbolic 3-manifold M with ∂M a
single torus, M has at most 10 exceptional slopes. Moreover, the
figure-eight knot exterior is the unique manifold with precisely 10.
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The maximal number

Theorem: [L-Meyerhoff] For any hyperbolic 3-manifold M with ∂M
a single torus, M has at most 10 exceptional slopes.

But we still don’t know whether the figure-eight knot exterior is
the unique such manifold.
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Some approaches

Approach 1: Quantify Thurston’s arguments.

Very difficult.

Theorem: [Hodgson-Kerckhoff, Annals 2006] There are at most 60
exceptional slopes.

This was the first universal bound (ie independent of M) on the
number of exceptional slopes.

They used the theory of cone manifolds.
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Topological methods

Perelman’s proof of geometrisation ⇒

A closed orientable 3-manifold is hyperbolic if and only if it is
irreducible, atoroidal, not Seifert fibred.

Irreducible: any embedded 2-sphere bounds a 3-ball.

Atoroidal: no π1-injective embedded torus.

Seifert fibred: is foliated by circles.
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Topological methods

Approach 2: Bound the intersection number of slopes s1 and s2
where M(s1) and M(s2) are reducible/toroidal/Seifert fibred.

For example . . .

Theorem: [Gordon-Luecke, Topology 1997] If M(s1) and M(s2) are
reducible, then s1 and s2 have intersection number 1. Hence, M(s)
can be reducible for at most 3 slopes s.

But analysing when M(s1) and M(s2) are both Seifert fibred is
hard.
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Negatively curved metrics

Approach 3: Construct a negatively curved metric on M(s).

Theorem: [Gromov-Thurston] For all slopes s on ∂M with at most
48 exceptions, M(s) admits a negatively curved Riemannian metric.

Perelman ⇒ M(s) then admits a hyperbolic structure.



The ends of a hyperbolic 3-manifold
Suppose ∂M is a non-empty collection of tori.

The ends of M − ∂M are of the form ∂M × [1,∞).

Geometrically, they are obtained from {(x , y , z) : z ≥ 1} in
upper-half space, quotiented out by the action of Z× Z acting by
parabolic isometries.

H 3

{(x, y, z) : z ≥ 1}

This is a called a horoball neighbourhood of the end.
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Horoball diagrams

Looking down from infinity in hyperbolic space, one gets a view of
horoballs:

This is actually from the hyperbolic structure on the Borromean
rings.

It was produced by the computer program Snappea.
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The length of a slope

Let N = a maximal horoball neighbourhood of the end.

∂N is a Euclidean torus.

Each slope s on ∂N is realised by a geodesic in ∂N.

The length L(s) of s is the length of this geodesic.

One can visualise this as the translation length of the
corresponding parabolic acting on {(x , y , z) : z = 1}.

H 3

{(x, y, z) : z ≥ 1}
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The 2π theorem

Theorem: [Gromov-Thurston] If L(s) > 2π, then M(s) admits a
negatively curved Riemannian metric.

The proof is very clever, but surprisingly straightforward!

So, to bound the number of exceptional slopes, all we need is . . .

Theorem: [Gromov-Thurston] At most 48 slopes s have L(s) ≤ 2π.
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Bounding slope length

Lemma: [Thurston] Each slope has length ≥ 1.

Proof:

Let Ñ be the inverse image of N in H3.

We may arrange that one component of Ñ is {(x , y , z) : z ≥ 1}.

Since N is maximal, another component of Ñ touches it.

Then parabolic translations much translate by at least one,
otherwise the interior of two components of Ñ would intersect.

H 3

{(x, y, z) : z ≥ 1}



The number of slopes with length at most 2π

From Thurston’s Lemma, it is clear that there is an upper bound
on the number of slopes with length at most 2π.

≥ 1

2π



Intersection numbers

For two slopes s1 and s2, let ∆(s1, s2) denote the modulus of their
intersection number.

Lemma: For two slopes s1 and s2,

∆(s1, s2) ≤ L(s1) L(s2)

Area(∂N)
.

In our case,
∆(s1, s2) ≤ (2π)2√

3/2
< 46.

s1

s2
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The number of slopes with length at most 2π

Lemma: [Agol] Let S be a collection of slopes, such that any two
have intersection number at most ∆. Let p be any prime more
than ∆. Then |S | ≤ p + 1.

Setting p = 47 gives our bound.



How to improve the bound?

Recall

∆(s1, s2) ≤ L(s1) L(s2)

Area(∂N)
.

1. Increase the lower bound on A = Area(∂N).

2. Decrease the critical slope length below 2π.

[Adams, 1987] A ≥
√

3 ∼ 1.732
[Cao-Meyerhoff, 2001] A ≥ 3.35
[Gabai-Meyerhoff-Milley, 2009] A ≥ 3.7 (under some hypotheses)
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The 6 theorem

Theorem: [L, Agol] If L(s) > 6, then M(s) is irreducible, atoroidal,
not Seifert fibred and has infinite, word hyperbolic fundamental
group.

Perelman ⇒ M(s) is then hyperbolic.

So, the critical slope length is reduced from 2π to 6.



Proving the 6 theorem

Suppose that M(s) is reducible, and so contains a 2-sphere S that
doesn’t bound a ball.

We may arrange that S intersects the surgery solid torus in
meridian discs.

Then S ∩M is a planar surface P, with each boundary component
having slope s.

With some pushing and pulling of S , we may ensure that P is
‘essential’ (which means π1-injective and a boundary version of
this).

Then P can isotoped to a minimal surface in M.
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Proving the 6 theorem

For any minimal surface, its intrinsic curvature κ is at most the
curvature of the ambient space. So, κ ≤ −1.

Gauss-Bonnet:

2π χ(P) =

∫
P
κ ≤

∫
P
−1 = −Area(P).

ie.

Area(P) ≤ 2π(|∂P| − 2).

If we can show that each boundary component of P contributes at
least 2π to the area of P, we’ll have a contradiction.
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Proving the 6 theorem

Consider the inverse image of P in H3.

Part of this lies in the horoball {(x , y , z) : z ≥ 1}.

H 3

Area ≥ L(s)

So, each boundary component of P contributes at least L(s) to the
area of P.

So, if L(s) > 2π, we have a contradiction.
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Using that cusp area is at least 3.35 [Cao-Meyerhoff] and that
critical slope length is 6, we proved:

Theorem: [Agol, L 2000] For any hyperbolic 3-manifold M with
∂M a single torus, M has at most 12 exceptional slopes.

But reducing 12 down to 10 is very hard . . .



Down to 12 exceptional slopes

Using that cusp area is at least 3.35 [Cao-Meyerhoff] and that
critical slope length is 6, we proved:

Theorem: [Agol, L 2000] For any hyperbolic 3-manifold M with
∂M a single torus, M has at most 12 exceptional slopes.

But reducing 12 down to 10 is very hard . . .



A difficulty

Unfortunately, there is an example, due to Agol, of a manifold M
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1. It has an exceptional slope s with length 6.

2. It has 12 slopes with length at most 6.
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Work of Gabai, Meyerhoff and Milley

Fortunately, this manifold falls into a well-understood family of
exceptions.

Theorem: [Gabai, Meyerhoff, Milley] The cusp area of M is at least
3.7 unless M is obtained by Dehn filling some of the boundary
components of one of the manifolds

m412 s596 s647 s774 s776 s780 s785 s898 s959

The notation is from the ‘census’ of hyperbolic 3-manifolds.

Using this and the 6 theorem, you can get a bound of 11
exceptional surgeries.
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Work of Cao and Meyerhoff
They consider the horoball diagram of M:

They let e2 ≥ 1 be the (Euclidean diameter)−1/2 of the second
largest horoballs.

If e2 is close to 1, then we get lots of large horoballs and so large
cusp area.

If e2 is large, then the largest horoballs must be well-separated.

A computer calculation, ranging over all values of e2, gives that
A ≥ 3.35.
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They consider the second, third and fourth largest horoballs!

One can deduce that A ≥ 3.7 unless certain configurations of
horoballs arise.

In these cases, one can show that M is obtained by Dehn filling
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How to solve the Dehn surgery problem

Improve the 6 theorem:

Theorem: Suppose that

L(s) >
πe2

arcsin(e2/2)

if e2 ≤
√

2, and that

L(s) >
2π

√
1− e−22

arcsin(
√

1− e−22 )

if e2 >
√

2. Then, M(s) is hyperbolic.

h
1

2

e2
-1

e2
-1

e2
-2

1- h
2 2

2(1/e )  - h

B1

P1 P2

B2

{z=h}
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How to solve the Dehn surgery problem

Repeat the analysis of Gabai, Milley and Meyerhoff, but specifically
search for the number of slopes with length less than the given
bound.

Must also use a range of geometric arguments to rule out certain
horoball configurations.

The computer calculation takes about 2 days.

It only just works!
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Can we trust the computer?

Yes!

The computer code can be checked by hand, much like checking a
proof.

The possibility that errors arise due to the use of floating point
arithmetic can be ruled out. One replaces each real number by an
interval, which is effectively the number with an error bar.

Use is also made of the computer program Snap which is a version
of Snappea that uses exact arithmetic.
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