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Triangulation Complexity

This work is joint with Jessica Purcell.

The triangulation complexity ∆(M) of a closed orientable
3-manifold M is the minimal number of tetrahedra in any
triangulation of M.

Sometimes called just complexity.

It’s a poorly understood invariant.

My goal today is to convince you that it is a natural invariant that
relates to many other aspects of 3-manifold theory.



What’s known?

Precise values are known only for some fairly small examples
[Matveev, Martelli-Petronio].

Theorem: [Matveev] Let M = M1] . . . ]Mn where each Mi is prime
and no Mi is S3, RP3 or L(3, 1). Then

∆(M) = ∆(M1) + · · ·+ ∆(Mn).

Theorem: [Jaco, Rubinstein, Tillmann] ∆(L(2n, 1)) = 2n − 3.

Theorem: [Gromov, Thurston] If M is hyperbolic then
∆(M) ≥ vol(M)/v3, where v3 is the volume of a regular ideal
3-simplex.



Fibred 3-manifolds

Today, we are mostly going to focus on fibred 3-manifolds with
fibre a closed orientable surface S .

These are determined by their monodromy φ : S → S .

Any φ ∈ MCG (S) acts isometrically on lots of spaces:

I the Teichmüller space of S , with either its Teichmüller metric
or its Weil-Petersson metric;

I the curve complex C(S);

I the pants complex P(S);

I MCG (S) itself (with some word metric).



Translation distance

Let h be an isometry of a metric space (X , d).

The translation distance of h is

d(h) = inf{d(x , h(x)) : x ∈ X}.

The stable translation distance of h is

d(h) = inf{d(x , hn(x))/n : n ∈ Z>0}.

Here, x ∈ X is chosen arbitrarily.



The volume of fibred 3-manifolds

Theorem: [Brock] Let S be a compact orientable surface. Then,
for any 3-manifold M that fibres over the circle with fibre S and
pseudo-anosov monodromy φ, the following are within a bounded
ratio of each other, the bound only depending on χ(S):

I vol(M) [hyperbolic volume]

I dWP(φ) [Weil-Petersson translation distance]

I dWP(φ)

I dP(S)(φ)

I dP(S)(φ)



The triangulation complexity of fibred 3-manifolds

Theorem 1: [L-Purcell] Let S be a closed orientable surface. Then,
for any 3-manifold M that fibres over the circle with fibre S and
pseudo-anosov monodromy φ, the following are within a bounded
ratio of each other, the bound only depending on χ(S):

I ∆(M)

I dMCG(S)(φ) = min{||α−1φα|| : α ∈ MCG(S)}
I dMCG(S)(φ)

I dThickTeich(S)(φ) [the thick part of Teichmüller space]

I dThickTeich(S)(φ)



Computing translation length in MCG(S)

Any pseudo-anosov φ : S → S has stable and
unstable laminations L+ and L− and
dilatation λ.

The stable lamination is carried by a train
track τ with weights µ.

Keep splitting the branches with highest
weight, giving weighted train tracks
(τ, µ) = (τ0, µ0), (τ1, µ1), . . .
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Theorem:[Agol] There are positive integers m and n such that
τm+n = φ(τm) and µm+n = λ−1µm.

Theorem: [Masur-Mosher-Schleimer] The translation distance of φ
in MCG (S) is equal to n (up to a bounded factor).



The spine graph of a surface

Let S be a closed orientable surface.

A spine for S is an embedded graph Γ that has no vertices with
valence 1 or 2, and where S\\Γ is a disc.

The spine graph Sp(S) has:

I a vertex for each spine of S up to isotopy;

I two vertices are joined by an edge if the corresponding spines
differ by an edge contraction or expansion.

Švarc-Milnor lemma ⇒ MCG(S) and Sp(S) are quasi-isometric.



The triangulation graph

The triangulation graph Tr(S) has:

I a vertex for 1-vertex triangulation of S up to isotopy;

I two vertices are joined by an edge if the corresponding
triangulations differ by a 2-2 Pachner move.

Again, MCG(S) and Tr(S) are quasi-isometric.

So it suffices to show that

dSp(S)(φ) � ∆((S × [0, 1])/φ) � dTr(S)(φ).



One direction of the proof

I Let T0, . . . , Tn = φ(T0) be a path in Tr(S) realising the
translation distance of φ.

I Start with a triangulation of S × [0, 1] where S × {0} and
S × {1} have the same triangulation T0.

I Each time we perform a 2-2 Pachner move, attach a
tetrahedron onto S × {1} to perform this move.

I Once we reach Tn, glue bottom to top using φ.

I The result is a triangulation of (S × [0, 1])/φ where the
number of tetrahedra is const + dTr(S)(φ).

So,
∆((S × [0, 1])/φ) ≤ const + dTr(S)(φ).



Brock’s theorem for products

Brock also considered geometrically finite hyperbolic structures on
S × [0, 1]. He related

the volume of its convex core
to

the Weil-Petersson distance
between the points in Teichmüller space

given by S × {0} and S × {1}



Triangulations of products

We prove an analogous statement:

Theorem 2: [L-Purcell] Let S be a closed orientable surface. Let T0
and T1 be 1-vertex triangulations of S × {0} and S × {1}. Then
the following are within a bounded ratio of each other, the bound
only depending on the genus of S :

I the minimal number of tetrahedra in any triangulation of
S × [0, 1] that equals T0 and T1 on S × {0} and S × {1};

I the minimal number of 2-2 Pachner moves relating T0 to T1.

Let’s assume this theorem for the moment.

In fact a version of Theorem 2 is used to prove Theorem 1.



Lens spaces

Theorem 3: [L-Purcell] Let L(p, q) be a lens space where
0 < q < p. Let [a1, . . . , an] be the continued fraction expansion of
p/q, where each ai > 0. Then there is an absoute constant c > 0
such that

c
∑

ai ≤ ∆(L(p, q)) ≤
∑

ai .

The lower bound depends on Theorem 2 and on:
Theorem: [L-Schleimer] In any triangulation T of a lens space
other than RP3, there is a simplicial curve in T (5) that has exterior
either a solid torus or a twisted I -bundle over a Klein bottle.

In turn this relies on:
Theorem: [L] In any triangulation T of a solid torus, there is a
simplicial curve in T (5) that is a core curve.



Triangulations of the torus

Tr(T 2) is the Farey tree.

Corresponding to the points ∞
and q/p, there are infinite lines
A∞ and Aq/p in the tree.

These consist of the edges in the
tree that are dual to the edges in
Farey graph emanating from ∞
and from q/p.

The distance between these lines
is more-or-less

∑
ai .
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Lens space proof

I The upper bound is easy.

I Let T be a triangulation of L(p, q) with ∆(L(p, q))
tetrahedra.

I Suppose L(p, q) does not contain an embedded Klein bottle.

I Using the above theorems, there are core curves C and C ′ of
the solid tori making up L(p, q) that are simplicial in T (12).

I Drill these out and obtain a triangulation of T 2 × [0, 1].

I In ∂N(C ), the meridian µC of N(C ) is ‘short’, and in ∂N(C ′),
the meridian µC ′ of N(C ′) is ‘short’.

I So we can modify the triangulation of T 2 × {0, 1} so that
they are 1-vertex and so that µC and µC ′ are edges.

I Theorem 2 gives a sequence of 2-2 Pachner moves relating
the triangulation of ∂N(C ) to the triangulation of ∂N(C ′).

I The number of moves is � ∆(L(p, q)).

I This a path in Tr(T 2) joining A∞ and Aq/p.

I So ∆(L(p, q)) �
∑

ai .



Triangulations of products

Theorem 2: [L-Purcell] Let S be a closed orientable surface. Let T0
and T1 be 1-vertex triangulations of S × {0} and S × {1}. Then
the following are within a bounded ratio of each other, the bound
only depending on the genus of S :

I the minimal number of tetrahedra in any triangulation of
S × [0, 1] that equals T0 and T1 on S × {0} and S × {1};

I the minimal number of 2-2 Pachner moves relating T0 to T1.

This is proved using almost normal surfaces.



Almost normal surfaces

A surface properly embedded in a triangulated 3-manifold is almost
normal if it intersects each tetrahedron in a union of triangles and
squares, except in precisely one tetrahedron where it is a union of
triangles and squares and exactly one almost normal piece:

Theorem: [Rubinstein, Stocking] Let M be a triangulated
3-manifold. Let S0 and S1 be closed normal surfaces that are
topologically parallel but not normally parallel. Then between them
there is an almost normal surface that is topologically parallel to
each of them.



Overview of Theorem 2

Let T be a triangulation of S × [0, 1].
Let ∆(T ) be its number of tetrahedra.
Suppose that the triangulations T0 and T1 of S × {0} and S × {1}
are 1-vertex.

We start with the spine Γ0 in S × {0} dual to T0.

We want to convert this to the spine that is dual to T1 using edge
contractions and expansions.

The number of these must be � ∆(T ).



Normal and almost normal surfaces

Pick a maximal collection of
disjoint normal fibres in
S × [0, 1], no two of which are
normally parallel.

Between them, we find almost
normal fibres.

[Actually, we don’t exactly do
this, but never mind.]

Almost normal

Almost normal

Almost normal

Normal

Normal

S x [0,1]



Isotoping almost normal surfaces

There is a natural way of
isotoping an almost
normal surface to a
normal one.

One can do this so each
component of intersection
with each tetrahedron is
one of finitely many types.

The resulting surfaces are
nearly normal.

edge or face compression disc D

isotopy

along D

S

edge of T



Transferring a spine from S × {0} to S × {1}

I Let T be a triangulation of S × [0, 1].

I Using nearly normal surfaces, we may interpolate between
S × {0} and S × {1}.

I Each one is obtained from its neighbours using a simple move.

I Suppose that the number of these surfaces is � ∆(T ).

I Then one could keep track of spines in each nearly normal
surface, each spine respecting the cell structure on the
surface, to get a sequence of spines relating Γ0 in S × {0} to
a simplicial spine in S × {1}.

I Unfortunately, there may be many more than ∆(T ) nearly
normal surfaces in our collection.

I But ‘parallelity bundles’ save the day.



Parallelity bundles
Let M be a compact orientable 3-manifold.
Let T be a triangulation of M with ∆(T ) tetrahedra.
Let S be a normal or almost normal surface embedded in M.

Let B be the union of the handles lying between parallel normal
discs of S .

part of B

This is the parallelity bundle for S .

It is an I -bundle over a surface.

All but at most � ∆(T ) handles of M\\S lie in B.



Enlarging the parallelity bundle

The vertical boundary of B forms annuli properly embedded in
M\\S .

[L] ⇒ B may be enlarged to an I -bundle B′ so that each
component

I either is an I -bundle over a disc;

I or has incompressible vertical boundary.



Linearly many isotopies

In our case, S is union of normal
and almost normal fibres in
S × [0, 1].

So, B′ lies in a union of copies of
S × [0, 1].

Each component of B′ is either

I an I -bundle over a disc,

I vertical in S × [0, 1], or

I of the form (annulus)× I ,
where the vertical boundary
is boundary parallel.

B´

S

S x [0,1]

Key idea: Treat an isotopy across a component of B′ as a single
move.

So we only need to consider � ∆(T ) nearly normal surfaces.


