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1. Introduction

One of the most basic invariants of a knot K is its crossing number c(K), which

is the minimal number of crossings in any of its diagrams. However, it remains quite

poorly understood. For example, it is a notorious unsolved conjecture that if K1]K2 is the

connected sum of two knots K1 and K2, then c(K1]K2) = c(K1) + c(K2). Connected sums

are particular cases of satellite knots, which are defined as follows. Let L be a non-trivial

knot in the 3-sphere. Then a knot K is a satellite knot with companion knot L if K lies

in a regular neighbourhood N(L) of L, it does not lie in a 3-ball in N(L) and is not a core

curve of N(L). (See Figure 1.) It is conjectured that the c(K) ≥ c(L) (Problem 1.67 in

Kirby’s problem list [4]). In this paper, we establish that an inequality of this form holds,

up to a universally bounded factor.

Theorem 1.1. Let K be a satellite knot with companion knot L. Then c(K) ≥ c(L)/1013.

satellite knot companion knot

Figure 1

It is possible to formulate stronger conjectures that relate the crossing number of a

satellite knot K with that of its companion knot L. For example, if w is the wrapping

number of the satellite, which is defined to be the minimal number of points of intersection

between K and a meridian disc for N(L), then it is conjectured that c(K) ≥ w2 c(L) (see

[3] for instance, where this conjecture is stated explicitly). One may even speculate that

there is a formula for c(K) in terms of w, c(L) and the crossing number of K inside N(L)

(suitably defined). However, such a formula would need to take account of the writhe of

any diagram for L, and is unlikely to be neat. In any case, the techniques of this paper will

not establish a precise equality of this sort.

Thoerem 1.1 should be compared with the main result of [5], which is as follows.
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Theorem 1.2. Let K1] . . . ]Kn be the connected sum of knots K1, . . . ,Kn. Then

c(K1) + . . .+ c(Kn)

152
≤ c(K1] . . . ]Kn) ≤ c(K1) + . . .+ c(Kn).

Both the statement and the proof of Theorem 1.2 will be crucial for us in this paper.

Aside from this result, there has not been much work before on the crossing number of

satellite knots. In [2], Freedman and He defined the ‘asymptotic crossing number’ of a knot

L in terms of the crossing number of certain satellites of L. They related this invariant to

a physically defined quantity called the ‘energy’ of L, and also showed that the asymptotic

crossing number is bounded below by a linear function of the genus of L. They conjectured

that the asymptotic crossing number is equal to the crossing number, a result which would

follow from various stronger versions of Kirby’s Problem 1.67. It is conceivable that the

methods behind the proof of Theorem 1.1 may be applied to obtain new information about

the asymptotic crossing number of a knot.

Another key input in the proof of Theorem 1.1 is the machinery developed by the

author in [6]. The main goal of that paper was to show that, given any triangulation of

the solid torus, there is a core curve (or, more precisely, a ‘pre-core curve’) that lies in the

2-skeleton and that intersects the interior of each face in at most 10 straight arcs. However,

in this paper, it is more convenient to use handle structures. In order to be able to speak of

‘straight’ arcs in a handle decomposition, we give it an ‘affine’ structure, which is defined

as follows.

Whenever we refer to a handle structure on a 3-manifold, we insist that each handle is

attached to handles of strictly lower index. An affine handle structure on a 3-manifold M

is a handle structure where each 0-handle and 1-handle is identified with a compact (but

possibly non-convex) polyhedron in R3, so that

(i) each face of each polyhedron is convex;

(ii) whenever a 0-handle and 1-handle intersect, each component of intersection is identified

with a convex polygon in R2, in such a way that the inclusion of this intersection into

each handle is an affine map with image equal to a face of the relevant polyhedron;

(iii) for each 0-handle H0, each component of intersection with a 2-handle, 3-handle or ∂M

is a union of faces of the polyhedron associated with H0;

(iv) for each 1-handle, its associated polyhedron is the metric product of a convex 2-

dimensional polygon P and an interval I, where P × ∂I is the intersection with the

0-handles, and the intersection between the 1-handle and any 2-handle is β× I, where

β is a union of disjoint sides of P .

Since each 0-handle and 1-handle is identified with a polyhedron, it makes sense to speak
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of a straight arc in that handle.

The following result was Theorem 4.2 of [6].

Theorem 1.3. Let H be an affine handle structure of the solid torus M . Suppose that

each 0-handle of H has at most 4 components of intersection with the 1-handles, and that

each 1-handle has at most 3 components of intersection with the 2-handles. Then M has

a core curve that intersects only the 0-handles and 1-handles, that respects the product

structure on the 1-handles, that intersects each 1-handle in at most 24 straight arcs, and

that intersects each 0-handle in at most 48 arcs. Moreover, the arcs in each 0-handle

are simultaneously parallel to a collection of arcs α in the boundary of the corresponding

polyhedron, and each component of α intersects each face of the polyhedron in at most 6

straight arcs.

We now give a summary of the proof of Theorem 1.1. It follows a similar route to that

of Theorem 1.2, but it requires some new ideas.

We start with a diagram D for the satellite knot K with minimal crossing number. It

would suffice to construct a diagram for the companion L with crossing number at most

1013 c(D). However, instead, we construct a diagram D′ for a knot L′ which has L as

a connected summand, and with crossing number at most 3 × 1010c(D). Then, applying

Theorem 1.2, we deduce that

c(L) ≤ 152 c(L′) ≤ 152 c(D′) ≤ 152× 3× 1010 c(D) < 1013 c(K),

as required.

This diagram D′ is constructed as follows. We use the diagram D to build a handle

structure HX for the exterior X of K. Let T be the torus ∂N(L) arising from the satellite

construction. Then T is essential in X, and so may be placed in normal form with respect

to HX . Now cut X along T , to give two 3-manifolds, one of which is a copy of the exterior

of L, the other of which is denoted Y and is N(L)− int(N(K)). The aim is to find a handle

structure H′Y ′ for Y which sits nicely in HX . In particular, the 0-handles (respectively,

1-handles) of H′Y ′ lie in the 0-handles (respectively, 1-handles) of HX , and each 0-handle

and 1-handle of HX contains at most 6 such handles of H′Y ′ . Now, Y inherits a handle

structure HY from HX , but it may not have the required properties. This is because the

torus T may intersect a handle H of HX in many normal discs, and these may divide H

into many handles of HY . However, the normal discs come in only finitely many types (at

most 5, in fact, in any handle), and normal discs of the same type are parallel. Between

adjacent parallel normal discs, there is an I-bundle, and these patch together to form the

parallelity bundle for HY . This structure was considered in detail in [5], where it was shown

that this may be enlarged to another I-bundle B called a generalised parallelity bundle.

This has many nice properties. In particular, one may (under certain circumstances) ensure
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that it consists of I-bundles over discs, and other components which have incompressible

vertical boundary, which are annuli properly embedded in Y , with boundary in T . Now,

it would be convenient if there were no embedded essential annuli in Y with boundary in

T , but unfortunately there may be. This happens, for example, if K is also a satellite of a

knot L′ which has L as a connected summand. (An example is shown in Figure 10.) We

hypothesise this situation away, by focusing instead on L′. This is why we aim to find a

diagram for L′ instead of L. Using this line of argument, and others, we arrange that Y

contains no properly embedded essential annuli with boundary in T . Hence, B consists

of I-bundles over discs. We replace each of these by a 2-handle, thereby constructing the

required handle structure H′Y ′ . We now attach the solid torus N(K), forming a handle

structure HV ′ for the solid torus N(L′). Then, using Theorem 1.3, we find a core curve

for N(L′) which lies nicely with respect to HV ′ and hence HX . This is a copy of L′, and

projecting, we obtain the diagram D′ for L′ with the required bound on crossing number.

The factor 1013 is very large, and one may wonder whether there are ways of reducing

it. We have not attempted to optimise this constant. In general, where there was a choice

between two arguments, one shorter and simpler than the other, but with worse constants,

we have opted for the short and simple route. However, we would be surprised if the

constant could be reduced by more than a factor of 108 without a major modification to

the argument. Nevertheless, there are versions of the theorem with significantly improved

constants, but with weakened conclusions. These are as follows.

Theorem 1.4. Let K be a satellite knot with companion knot L. Suppose that there is

no essential torus properly embedded in N(L)− int(N(K)). Then,

c(K) ≥ c(L)

3× 1010
.

Theorem 1.5. Let K be a satellite knot with companion knot L. Suppose that L is prime.

Then, for some knot L̃, which is either L or a cable of L,

c(K) ≥ c(L̃)

152
.

The plan of this paper is as follows. In Section 2, we explain how a handle structure

on the exterior of a link K can be constructed from any connected diagram for K. This is

similar to a construction in [5]. However, we then place an affine structure upon this handle

decomposition, which is new. In Section 3, we recall some of the normal surface theory that

we will need, including the notion of a parallelity bundle and generalised parallelity bundle

from [5]. In Section 4, we give the proof of the main theorem, but with one step excluded.

It turns out that before the main theorem can be proved in full generality, the special case
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of certain 2-cables must be analysed separately. We do this in Section 5. Finally, in Section

6, we explain how the proof of the main theorem can be adapted to give Theorem 1.5.

Note that, although our argument uses and extends the techniques developed in [5],

we have attempted to make this paper as self-contained as possible.

2. An affine handle structure from a diagram

In [5], we introduced a method for creating a handle structure for the exterior of a link

K, starting from a connected diagram D for K. In this section, we give a summary of this

construction.

The diagram is a 4-valent graph embedded in the 2-sphere, and we realise this 2-sphere

as the equator in S3. Let S2 × [−1, 1] be a regular neighbourhood of this 2-sphere, where

S2 × {0} is the equator itself.

The diagram specifies an embedding of K into the 3-sphere, so that away from small

neighbourhoods of the crossings, it lies in the diagram 2-sphere, and at each crossing, two

arcs of K come out of the diagram 2-sphere. One goes vertically upwards to height 1, then

runs horizontally, and then returns to the diagram 2-sphere. The other arc makes a similar

itinerary below the diagram. Thus, K lies in S2 × [−1, 1] and its image under the product

projection map to S2 equals the 4-valent graph specified by D.

The 0-handles and 1-handles of the handle structure are thickenings of a graph that

lies in the equatorial 2-sphere, as follows. There are four 0-handles arranged around each

crossing, as in Figure 2. These are joined by four 1-handles which form a square that

surrounds the crossing. This square is small enough so that K misses these 1-handles,

because it lies above and below the diagram at these points. In addition, there are two

1-handles which follow each edge of the diagram, and lie either side of that edge. (See

Figure 2.)

0-handle

1-handles

K K

Figure 2
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We will not describe in detail here how the 2-handles are attached to the 0-handles

and 1-handles. We merely note that they intersect each 0-handle as shown in the left of

Figure 5.

Finally, there are two 3-handles, one of which lies entirely above the plane of the

diagram, and one of which lies below.

We now make a modification to this handle structure. Two new 0-handles are intro-

duced, which lie either side of an edge of the diagram. The insertion of these handles has

the effect of dividing two 1-handles each into two. The two new 0-handles are known as ex-

ceptional. Two new 1-handles are also introduced, each of which joins the two exceptional

0-handles. These lie above and below the plane of the diagram. They lie in 2-handles of the

old handle structure, and so each 1-handle subdivides the 2-handle into two. (See Figure

3.)

KK subdivide
handles

new 1-handles new 0-handle

Figure 3

We denote the resulting handle structure on the exterior of K by HX .

Note that there is a slight discrepancy between the handle structure here and the one

considered in [5]. There, a further modification was made which removed the two 3-handles,

together with two 2-handles. We will not take this step here.

We want to work in R3 rather than S3. We therefore pick a point in the diagram

2-sphere, distant from the crossings, and declare that it is the point at infinity. We thereby

obtain a knot diagram in R2 which sits inside R3, and we may assume that the diagrammatic

projection map is just the vertical projection from R3 to R2.

We now wish to place an affine structure upon HX . The first step is to realise each

1-handle as a polyhedron. There are two types of 1-handle: those that form part of a

square surrounding a crossing, and those that are parallel to an edge of the diagram. We

give each of these a slightly different polyhedral structure. Each is the metric product of

a convex 2-dimensional polygon and an interval, but the 2-dimensional polygon is a little

different in each of the two cases. The precise polygons are shown in Figure 4.
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=  attaching locus of 2-handles

1-handle adjacent to
an edge of the diagram

1-handle lying in
a square around

a crossing

Figure 4

We now realise each 0-handle as a polyhedron in R3. We focus on the unexceptional

0-handles. Currently, each is of the form shown in the left of Figure 5. We replace this

with the (non-convex) polyhedron shown in the right of Figure 5. Each component of

intersection between the 0-handle and ∂X is realised as a union of 4 triangular faces of the

polyhedron (which are not shown in Figure 5).

Figure 5

Each polyhedral 0-handle is embedded in R3 isometrically. But this might not be

possible for some of the 1-handles. Some 1-handles follow an edge of the diagram and

this edge might not be straight. Nevertheless, there is a way to embed the polyhedron

horizontally into R3, so that it has the following property. If the 1-handle is D1×D2, then

for any two distinct points x1 and x2 in D2, the arcs D1 × {x1} and D1 × {x2} vertically

project to arcs in the diagram that either are equal or do not cross.

3. Generalised parallelity bundles

As in the proof of Theorem 1.2 that is given in [5], a key technical tool in this paper

is the notion of a generalised parallelity bundle. In this section, we will recall this notion,

so that the reader does not need to refer to [5]. We will also extend some of the results in
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[5] so that they can be applied in the context of this paper.

WhenH is a handle structure of a 3-manifold, Hi will denote the union of the i-handles.

Convention 3.1. We will insist throughout this paper that any handle structure H on a

3-manifold satisfies the following conditions:

(i) each i-handle Di ×D3−i intersects
⋃

j≤i−1Hj in ∂Di ×D3−i;

(ii) any two i-handles are disjoint;

(iii) the intersection of any 1-handle D1 × D2 with any 2-handle D2 × D1 is of the form

D1 × α in D1 ×D2, where α is a collection of arcs in ∂D2, and of the form β ×D1 in

D2 ×D1, where β is a collection of arcs in ∂D2;

(iv) each 2-handle of H runs over at least one 1-handle.

The handle structure constructed in Section 2 satisfies these requirements.

Now let X be a compact orientable 3-manifold with a handle structure HX .

Let F be the surface H0
X ∩ (H1

X ∪H2
X), let F0 be H0

X ∩H1
X , and let F1 be H0

X ∩H2
X .

By the above conditions, F is a thickened graph, where the thickened vertices are F0 and

the thickened edges are F1.

Definition 3.2. We say that a surface T properly embedded in X is standard if

(i) it intersects each 0-handle in a collection of properly embedded disjoint discs;

(ii) it intersects each 1-handle D1 × D2 in D1 × β, where β is a collection of properly

embedded disjoint arcs in D2;

(iii) it intersects each 2-handle D2×D1 in D2×P , where P is a collection of points in the

interior of D1;

(iv) it is disjoint from the 3-handles.

See Figure 6.

0-handle 1-handle 2-handle

Figure 6
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Definition 3.3. A disc component D of T ∩H0
X is said to be normal if

(i) ∂D intersects any thickened edge of F in at most one arc;

(ii) ∂D intersects any component of ∂F0 −F1 at most once;

(iii) ∂D intersects each component of ∂H0 − F in at most one arc and no simple closed

curves.

A standard surface that intersects each 0-handle in a disjoint union of normal discs is said

to be normal. (See Figure 7.)

This is a slightly weaker definition of normality than is used by some authors, for

example Definition 3.4.1 in [7]. However, if we had used the definition in [7], Proposition

3.4 (below) would no longer have held true.

These cannot be part of the same
normal disc D, by (ii) or (iii)

These cannot be part of the
same normal disc D, by (i)

F

Figure 7

When T has no boundary and H0 is a 0-handle such that H0 ∩ F is a thickening of

the complete graph on 4 vertices, the above conditions imply that H0 ∩ T is a collection of

triangles and squares, as shown in Figure 8.

 

Triangle

 

Square

Figure 8
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We say that a simple closed curve properly embedded in ∂X is standard if

(i) it is disjoint from the 2-handles;

(ii) it intersects each 1-handle D1×D2 in D1×P , where P is a finite set of points in ∂D2;

(iii) it intersects cl(∂H0
X −F) in a collection of properly embedded arcs.

The following is Proposition 4.4 in [5]. It is a variant of a well-known result in normal

surface theory.

Proposition 3.4. Let HX be a handle structure on a compact irreducible 3-manifold X.

Let T be a properly embedded, incompressible, boundary-incompressible surface in X, with

no 2-sphere components. Suppose that each component of ∂T is standard and intersects

each component of ∂X ∩H0
X and ∂X ∩H1

X in at most one arc and no simple closed curves.

Then there is an ambient isotopy, supported in the interior of X, taking T into normal

form.

In the remainder of this section, M will always be a compact orientable 3-manifold

with a handle structure HM , and S will be a compact subsurface of ∂M such that ∂S is

standard. In this case, we say that HM is a handle structure for the pair (M,S).

Definition 3.5. Let HM be a handle structure for the pair (M,S). A handle H of HM is

a parallelity handle if it admits a product structure D2 × I such that

(i) D2 × ∂I = H ∩ S;

(ii) each component of F0 ∩H and F1 ∩H is β × I, for a subset β of ∂D2.

We will typically view the product structure D2 × I as an I-bundle over D2.

The main example of a parallelity handle arises when M is obtained by cutting a 3-

manifold X along a properly embedded, normal surface T , and where S is the copies of

T in M . Then, if T contains two normal discs in a handle that are normally parallel and

adjacent, the space between them becomes a parallelity handle in (M,S).

The I-bundle structures on the parallelity handles can be chosen so that, when two

parallelity handles are incident, their I-bundle structures coincide along their intersection.

(This is established in the proof of Lemma 5.3 in [5].) So, the union of the parallelity

handles forms an I-bundle over a surface F . This is termed the parallelity bundle B. The

I-bundle over ∂F is termed the vertical boundary ∂vB of B, and the ∂I-bundle over F is

called the horizontal boundary ∂hB.

As in [5], it will be technically convenient to consider enlargements of such structures.

These will still be an I-bundle over a surface F , and near the I-bundle over ∂F , they will

be a union of parallelity handles, but elsewhere need not be. The precise definition is as
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follows.

Definition 3.6. LetHM be a handle structure for the pair (M,S). A generalised parallelity

bundle B is a 3-dimensional submanifold of M such that

(i) B is an I-bundle over a compact surface F ;

(ii) the ∂I-bundle is B ∩ S;

(iii) B is a union of handles of HM ;

(iv) any handle in B that intersects the I-bundle over ∂F is a parallelity handle, where the

I-bundle structure on the parallelity handle agrees with the I-bundle structure of B;

(v) the restriction of HM to cl(M −B) is a handle structure. (In the presence of the other

conditions, this is equivalent to the requirement that whenever an i-handle lies in B,

then so do all the j-handles which are attached to it, where j > i.)

The I-bundle over ∂F is termed the vertical boundary ∂vB of B, and the ∂I-bundle over

F is called the horizontal boundary ∂hB.

We will also need to make some modifications to handle structures, as follows.

Definition 3.7. Let G be an annulus properly embedded in M , with boundary in S.

Suppose that there is an annulus G′ in ∂M such that ∂G = ∂G′. Suppose also that G∪G′

bounds a 3-manifold P such that

(i) either P is a parallelity region between G and G′, or P lies in a 3-ball B such that

B ∩ ∂M is a disc;

(ii) P is a non-empty union of handles;

(iii) the restriction of HM to cl(M − P ) is a handle structure;

(iv) any parallelity handle of HM that intersects P lies in P ;

(v) G is a vertical boundary component of a generalised parallelity bundle lying in P .

Removing the interiors of P and G′ from M is called an annular simplification. Note that

the resulting 3-manifold M ′ is homeomorphic to M , even though P may be homeomorphic

to the exterior of a non-trivial knot when it lies in a 3-ball. (See Figure 9.) The boundary

of M ′ inherits a copy of S, which we denote by S′, by setting S′ = (S∩∂M ′)∪(∂M ′−∂M).

Thus, (M ′, S′) is homeomorphic to (M,S). Moreover, when M is embedded within a bigger

closed 3-manifold, then (M ′, S′) is ambient isotopic to (M,S).
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S

G
P

G'

Figure 9

This definition is similar to that given in [5]. However, there, S was required to be

incompressible. We do not make that assumption here, but as a result, condition (i) has

been modified a little.

The following is Lemma 5.5 in [5].

Lemma 3.8. Let HM be a handle structure for the pair (M,S). Let H′M be a handle

structure obtained from HM by annular simplifications. Then any parallelity handle for

HM that lies in H′M is a parallelity handle for H′M .

The following is Corollary 5.7 in [5].

Theorem 3.9. Let M be a compact orientable irreducible 3-manifold with a handle struc-

ture HM . Let S be an incompressible subsurface of ∂M such that ∂S is standard in ∂M .

Suppose that HM admits no annular simplification. Then HM contains a generalised paral-

lelity bundle that contains every parallelity handle and that has incompressible horizontal

boundary.

From this, we deduce the following.

Theorem 3.10. Let M be a compact connected orientable irreducible 3-manfiold, with

boundary a collection of incompressible tori. Let S be a union of components of ∂M . Let

HM be a handle structure for (M,S) that admits no annular simplification. Suppose that

there is no essential properly embedded annulus in M , with boundary in S, and that lies

entirely in the parallelity handles. Suppose also that M is not an I-bundle over a torus or

Klein bottle. Then M contains a generalised parallelity bundle B such that

(i) B contains every parallelity handle; and

(ii) B is a collection of I-bundles over discs.

This is very close to the statement of Proposition 5.8 in [5]. However, there, S was a

collection of annuli, whereas here it is tori. In addition, a slightly more precise hypothesis

has been made about the annuli properly embedded in M .

Proof. By Theorem 3.9, there is a generalised parallelity bundle B that contains every
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parallelity handle and with incompressible horizontal boundary. Let B′ be the union of

the components of B that are not I-bundles over discs. Its horizontal boundary ∂hB′ is a

subsurface of S, and hence a collection of annuli and tori. However, if there is any toral

component of ∂hB′, then this lies in a component of B′ which is an I-bundle over a Klein

bottle or torus. This then is all of M , which is contrary to hypothesis. Hence, the horizontal

boundary of B′ just consists of annuli. By hypothesis, each component of ∂vB′ is inessential.

But ∂vB′ is incompressible, and so each component of ∂vB′ is boundary parallel.

Since the horizontal boundary of B′ consists of annuli, we deduce that B′ is a collection

of I-bundles over Möbius bands and annuli. We now show that, in fact, no component of B′

is an I-bundle over a Möbius band. Let B be such a component, and let A be its vertical

boundary, which is an annulus. We know that A is boundary-parallel, via a parallelity

region P , say. Now the interior of P is disjoint from B, since B is an I-bundle over a

Möbius band. Hence, P ∪ B is all of M , and we deduce that M is a solid torus, which is

contrary to assumption. This proves the claim.

So, each component of B′ is an I-bundle over an annulus. Let B be such a component,

and let A be one its vertical boundary components. This is boundary-parallel, via a paral-

lelity region P . By choosing A appropriately, we may assume that B lies in P . Therefore,

removing P −A from HM is an annular simplification. But this contradicts the assumption

that HM admits no annular simplifications. We therefore deduce that B′ is empty, and

hence that B is a collection of I-bundles over discs.

4. Proof of the main theorem

Let K be a satellite knot with companion knot L. Let X be the exterior of K.

Claim. There is a companion knot L′ for K with the following properties:

(i) L′ has L as a connected summand (possibly L′ = L);

(ii) L′ is not a non-trivial connected summand for any other companion for K.

Suppose that L fails condition (ii). In other words, suppose that there is another

companion L1 for K, such that L1 is the connected sum of L and some other non-trivial

knot. Then L1 is a satellite of L, and so we have an inclusion K ⊂ N(L1) ⊂ N(L). (See

Figure 10.) This knot L1 may also fail condition (ii), but in this case we get another knot

L2 such that K ⊂ N(L2) ⊂ N(L1) ⊂ N(L), and where L2 has L as a connected summand,

and so on. Each torus ∂N(Li) is essential in X, and they are disjoint and non-parallel. By

Kneser’s theorem, there is an upper bound on the number of such tori. Hence, eventually,

we obtain the required knot L′, as claimed.
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N(L)
K

L

Figure 10

Let D be a diagram of K with minimal crossing number. Our aim is to construct a

diagram D′ for L′ with crossing number at most 3 × 1010 c(D). Then, applying Theorem

1.2, we deduce that

c(L) ≤ 152 c(L′) ≤ 152 c(D′) ≤ 152× 3× 1010 c(D) < 1013 c(K),

thereby proving Theorem 1.1. This will also prove Theorem 1.4, because if there is no

essential torus in N(L)− int(N(K)), then we must have L′ = L.

We may assume thatK does not have L′ as a connected summand, because by Theorem

1.2, this would imply that c(K) ≥ c(L′)/152, which is stronger than the required inequality.

Give X the handle structure described in Section 2, which we denote by HX . Let V

be the solid torus N(L′), and let T be the torus ∂V . Since T is incompressible in X, it

may be placed in normal form with respect to HX . Note that T then inherits a handle

structure where the i-handles are T ∩ Hi
X . Cutting X along T gives two 3-manifolds, one

of which is a copy of the exterior of L′, the other of which is V with the interior of a small

regular neighbourhood of K removed. Let Y be this latter manifold. It inherits a handle

structure HY .

We wish to place an affine structure upon HY . To do this, we start by straightening

T as much as possible, in the following way. In each 1-handle D1 ×D2 of HX , we realise

T ∩ (D1×D2) as D1×α, where α is a collection of straight arcs in the polygonal structure

on D2. Then we make each arc of T ∩ H0
X ∩ H2

X straight. Thus the boundary of each

normal disc of T in each 0-handle is now a concatenation of straight arcs. We then realise

each normal disc of T in H0
X as a union of flat polygons in that 0-handle, as follows.
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Observe first that although the polyhedron P associated with each 0-handle is not

convex, it is star-shaped. In other words, there is a point v in the interior of P , such that

for each point on ∂P , the straight line joining it to v lies within P . Moreover, the interior

of this straight line lies within the interior of P . We may therefore use a dilation about v,

with any positive scale factor less than 1, to create a copy of ∂P lying within the interior of

P . Create a nested collection of such copies of ∂P , the number of copies being equal to the

number of normal discs that we need to insert into P . We now create these normal discs

one at a time, starting with one that has boundary that is innermost in ∂P . The boundary

of this disc has already been specified as some curve C in ∂P . Use the star-shaped nature

of P to create an annulus interpolating between C and a curve on the outermost copy of

∂P . Since C is a union of straight arcs, this annulus is a union of flat quadrilaterals. The

boundary component of this annulus that lies on the dilated copy of ∂P bounds a disc in

this copy of ∂P which is a union of flat polygons. The union of these with the annulus is

the required normal disc bounded by C. We now repeat this procedure for the remaining

curves of T ∩ ∂P , starting with the next innermost curve, and using the next copy of ∂P .

In this way, each normal disc of T has been realised as a union of flat polygons.

We now want to bound the number of flat polygons that comprise each normal disc.

The boundary of each normal triangle is 6 straight arcs, and these give rise to 6 flat polygons

in the annular part of the normal disc, together with 10 flat polygons in the copy of ∂P .

This is 16 in total. Similarly, one can compute that each normal square is composed of 25

flat polygons.

Having realised T in this way, we cut HX along T , and then HY inherits an affine

handle structure. We view this as a handle structure for the pair (Y, T ). Thus, whenever

we consider a parallelity handle in HY , its horizontal boundary lies in the copy of T in Y .

(See Figure 11.)

T
T
T

1-handle of X

2-handles of X

1-handle of Y

parallelity handles of (Y,T)

cut along T

Figure 11

Each 0-handle H0 of HX gives rise to at most 6 handles of HY that are not parallelity

handles. (This number 6 arises when we cut the 0-handle along 4 normal triangles of
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distinct types and a normal square.) Let H ′0 be the non-parallelity 0-handles of H0
Y lying

in H0. We wish to bound the number of faces in the polyhedral structure of H ′0. Clearly,

the maximal number of faces occurs when H0 is an unexceptional 0-handle that is cut along

all 4 triangle types and a square type, and so it is this configuration that we will examine.

The faces of H0 come in the following types: the intersections with H1
X (of which there

are 4), the intersections with H2
X (of which there are 6) and the intersections with ∂X (of

which there are 4 components, forming a total of 16 faces). Each face in H0 ∩ H1
X gives

rise to 5 faces of H ′0 ∩H1
Y . The faces of H0 ∩H2

X become 22 faces of H ′0 ∩H2
Y . The faces

of H0 ∩ ∂X stay as faces of H ′0. Finally, the normal triangles and squares of T give rise to

(16 × 8) + (25 × 2) = 178 faces of H ′0. So, in total, the number of faces of H ′0 is at most

(4× 5) + 22 + (4× 4) + 178 = 236.

Apply as many annular simplifications to HY as possible, creating a handle structure

HY ′ for an isotopic copy of (Y, T ), which we call (Y ′, T ′). By Theorem 3.9, HY ′ contains

a generalised parallelity bundle B that contains every parallelity handle of HY ′ and that

has incompressible horizontal boundary. Note that HY ′ inherits an affine handle structure,

since it is a union of handles of HY .

Since ∂hB is an incompressible subsurface of T ′, it is a collection of discs and annuli.

Thus, B is a collection of I-bundles over discs, annuli and Möbius bands.

The proof now divides into two cases.

Case 1. Some component of B is an I-bundle over a Möbius band.

This component of B is a solid torus, and its horizontal boundary is an annulus that

winds twice around the solid torus Y ′ ∪N(K). Each boundary component of this annulus

is therefore a 2-cable of L′. Recall that a knot C is a 2-cable of a knot L′ if C is the

boundary of an embedded Möbius band, the core of which is a copy of L′. The linking

number between C and this core curve is the twisting number of the 2-cable.

component of B
that is an I-bundle over

a Mobius band

C C

C

K

K

T’

Figure 12
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Let C be one of these 2-cables. We now wish to find an upper bound for the crossing

number of C. We will do this by finding a bound on the number of crossings in the diagram

of C that is obtained by projecting C vertically onto the horizontal plane.

Now, C has the structure of a cell complex, where each 1-cell is a component of in-

tersection between a handle of ∂hB and a handle of T that does not lie in ∂hB. Each

such 1-cell either lies in the boundary of a 0-handle of HX or it lies in a 1-handle of HX

and respects its product structure. When we project C vertically, the images of the latter

1-cells do not intersect each other or the image of any other 1-cell. Thus, the only way

that crossings of the diagram of C arise is from the 1-cells of C that lie in H0
X . Each

such 1-cell lies in the boundary of a normal disc of T that does not lie in B. There

are at most 10 such normal discs, consisting of at most 2 squares and at most 8 trian-

gles. Each square of T has in its boundary 8 1-cells, each of which is straight in the

polyhedral structure on the 0-handle of HX . Each triangle of T has in its boundary 6

straight arcs. Thus, in each 0-handle of HX , C is composed of at most 64 straight arcs.

We may perturb these arcs a little so that, when projected to the horizontal plane, the

images of any two arcs intersect in at most one point. So, the resulting diagram of C

at most 64 × 64/2 crossings arising from each 0-handle of HX . There are (4c(D) + 2)

0-handles of X, which is at most (14/3)c(D). So, the number of crossings of C is at most

9558 c(D).

Almost exactly the same argument gives that the modulus of the twisting of this 2-

cable is at most 9558 c(D). For we may consider a curve C ′ in T parallel to C. Then, the

twisting of the cable is half the linking number of C and C ′. The modulus of this linking

number is at most the number of crossings between C and C ′ when they are vertically

projected. So, we get the same upper bound of 9558 c(D) for the modulus of the twisting

number.

The reason for bounding the crossing number of C and the twisting of the 2-cable is

that these are key quantities in the following theorem, which will be proved in Section 5.

Theorem 5.1. Let C be a knot that is a 2-cable of a knot L′ with twisting number t.

Then, c(L′) ≤ 119024 (c(C) + |t|).

Applying this result to our situation gives that c(L′) ≤ 119024 × 2 × 9558 c(D) <

3× 109 c(D), which is better than the required bound. This proves Theorems 1.1 and 1.4

in this case.

Case 2. No component of B is an I-bundle over a Möbius band.

Our aim is to construct a handle structure HV ′ for an isotopic copy V ′ of the solid

torus V . The proof now divides according to whether the conditions of Theorem 3.10 are

met by HY ′ , viewed as a handle structure for (Y ′, T ′).
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Case 2A. There is no essential annulus properly embedded in Y ′ with boundary in T ′ and

that lies entirely within the union of the parallelity handles of HY ′ .

By Theorem 3.10, we may assume that B is a collection of I-bundles over discs. We

replace each component of B by a 2-handle, forming a handle structure H′Y ′ . This inherits

an affine structure from HY ′ , since according to the definition, we do not need to identify

2-handles with polyhedra.

The next step is to add a 2-handle as a thickened meridian disc for K. This 2-handle is

attached along the exceptional 0-handles and 1-handles. Finally, a 3-handle is added in the

remainder of N(K). The result is a handle structure HV ′ for V ′ = Y ′∪N(K). We can give

it an affine structure as follows. We simply declare that the polyhedra associated with each

unexceptional 0-handle and 1-handle is the same as that in H′Y ′ . The exceptional 0-handles

and 1-handles must be modified slightly to ensure that the new 2-handles intersect each of

these polyhedra in convex polygons. Thus, it is easy to arrange that the conditions in the

definition of an affine handle structure are satisfied by HV ′ .

Case 2B. There is some properly embedded essential annulus A in Y ′ with boundary in T ′,

and that lies in the union of the parallelity handles of HY ′ .

Then A is properly embedded in the solid torus V ′ = Y ′ ∪N(K). Now, any properly

embedded annulus in a solid torus V ′ satisfies at least one of the following:

(i) it is boundary parallel,

(ii) both its boundary curves are meridians and the annulus forms a knotted tube joining

these, or

(iii) at least one of its boundary curves bounds a disc in ∂V ′.

(i) (ii)

(iii)

Figure 13
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We claim that (ii) and (iii) do not arise. For suppose that (ii) holds. Then A cuts V ′

into two pieces, one of which is homeomorphic to the exterior of a non-trivial knot K ′, and

the other of which is a solid torus W . Now, K must lie in W because the former piece

lies within a 3-ball in V ′. Also, K does not lie in a 3-ball in W , since K would then lie

in a 3-ball in V ′. In addition, K is not a core curve of W , because this would imply that

K has L′ as a connected summand, and we are assuming that this does not occur. Thus,

K is a non-trivial satellite of L′]K ′, which is contrary to our assumption about L′. Now

suppose that (iii) holds. Then the disc in ∂V ′ that is bounded by one of the components

of ∂A becomes a compression disc for A in Y ′, which contradicts the assumption that A is

essential in Y ′. This proves the claim.

Thus, A is boundary parallel in V ′. Since A is essential in Y ′, K must lie in the

parallelity region P between A and a sub-annulus of T ′. We take A to be innermost in V ′,

in the sense that any other essential annulus properly embedded in Y ′ with boundary in

T ′ and which lies within the union of the parallelity handles must lie in P . Then A is a

vertical boundary component of B. Moreover, the component of B that is incident to A

lies in P . This is because this component of B cannot be an I-bundle over a Möbius band,

and so it is an I-bundle over an annulus. So, if this component of B did not lie in P , this

would contradict the fact that we have taken A to be innermost in V .

Remove P −A from V ′. (See Figure 14.) The resulting 3-manifold is an isotopic copy

of V ′, which we still call V ′. It inherits an affine handle structure. The intersection B ∩ V ′

is a generalised parallelity bundle, consisting of I-bundles over discs. Replace each of these

I-bundles with a 2-handle, forming the required affine handle structure HV ′ for V ′. Its

only parallelity handles are 2-handles.

A

P

K K

B

B
B

V’

Figure 14

Thus, in each of Cases 2A and 2B, we have created an isotopic copy V ′ of V , and it

has an affine handle structure HV ′ .

We claim that HV ′ satisfies the conditions of Theorem 1.3. Note that HX satisfies
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these conditions, apart from the fact that X is not a solid torus. Then HV ′ was obtained

from HX by the following operations:

(i) cutting along a closed properly embedded normal surface;

(ii) removal of handles (but maintaining a handle structure);

(iii) replacing generalised parallelity bundles by 2-handles;

(iv) adding some handles (when filling in N(K) in Case 2A).

It is clear that the conditions of Theorem 1.3 are preserved under (i), (ii) and (iii). The

addition of handles in (iv) also does not violate the conditions of Theorem 1.3, because the

2-handles that are added are attached to the remnants of the exceptional 0-handles and 1-

handles. The exceptional 1-handles of HX each intersect intersect H2
X in two components,

and so the addition of a further 2-handle does not violate the hypotheses of Theorem 1.3.

This proves the claim.

Each 0-handle and 1-handle of HV ′ is a handle of HY . Thus, each 0-handle of HV ′

lies in a 0-handle of HX . Moreover, each 0-handle of HX contains at most six 0-handles

of HV ′ . This is because each 0-handle of HX can support at most 5 types of triangles and

squares of T that are simultaneously disjoint. These therefore divide the handle into at

most six 0-handles that are not parallelity handles. The remaining 0-handles of HY are

parallelity 0-handles, and are therefore removed in the construction of HV ′ .

We now apply Theorem 1.3 to deduce that V ′ has a core curve C that lies in the

0-handles and 1-handles of HV ′ , that respects the product structure on the 1-handles, and

that intersects each 0-handle of HV ′ in at most 48 arcs. Moreover, these arcs are parallel

to arcs α in the boundary of the 0-handle, and each component of α intersects each face of

the 0-handle in at most 6 straight arcs. We calculated above that each 0-handle of HX gave

rise to at most six non-parallelity 0-handles of HY and hence at most six 0-handles of HV ′ .

We also calculated that these 0-handles of HY have at most 236 faces. Hence, the same is

true of the 0-handles of HV ′ . (The exceptional 0-handles do not exceed this bound.) So,

within each 0-handle of HX , C consists of at most 6× 48× 236 = 67968 straight arcs.

We now project C vertically to form a diagram D′ of L′. Now, C lies in the 0-handles

and 1-handles of HX , and within the 1-handles, it respects their product structure. The

interiors of the 0-handles and the 1-handles have disjoint images under the projection

map. So, the only place that crossings of D′ can occur is within the images of the 0-

handles of HX . We have calculated that within each 0-handle, C consists of at most

67968 straight arcs. These give rise to at most (67968)2 crossings. There are (4c(D) + 2)

0-handles of X, which is at most (14/3)c(D). So, the number of crossings of D′ is at most

(14/3)(67968)2c(D) < 3× 1010c(D), as required.
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Thus, in order to complete the proof of Theorems 1.1 and 1.4, all that remains for us

to do is prove Theorem 5.1. This we do in the next section.

5. The crossing number of 2-cables

In this section, we prove a version of the main theorem in a very special case, where

the satellite knot K is a 2-cable.

Theorem 5.1. Let K be a knot that is a 2-cable of a knot L with twisting number t.

Then, c(L) ≤ 119024 (c(K) + |t|).

We may clearly assume that L is a non-trivial knot, as otherwise, the statement of the

theorem is empty.

Let X be the exterior of K. Since K is a 2-cable, it forms the boundary of an embedded

Möbius band, the core of which is a copy of L. Let F0 be the restriction of this Möbius

band to X.

Let D be a diagram for K with minimal crossing number. We now modify D by

performing Type I Reidemeister moves which introduce kinks. We perform enough of these

moves so that the writhe of the new diagram D′ is equal to twice the twisting of the 2-cable.

Thus, D′ has crossing number at most 2c(K) + 2|t|. Using this diagram, give X the affine

handle structure described in Section 2, but without the introduction of the exceptional

handles. We denote this by HX . Note that the number of 0-handles of HX is 4c(D′), which

is at most 8(c(K) + |t|).

We may pick a simple closed curve on ∂N(K) that winds once along N(K) and that has

blackboard framing with respect to D′. We may arrange that it is standard in the handle

structure and intersects each 0-handle of HX in at most two arcs. Moreover, it intersects

each component of H0
X ∩ ∂X and H1

X ∩ ∂X in at most one arc. Since the writhe of D′ is

equal to twice the twisting of the 2-cable, this simple closed curve is ambient isotopic to

∂F0. Thus, we may arrange F0 so that its boundary is equal to this curve.

Because L is non-trivial, F0 is boundary-incompressible, and it is also incompressible.

So, by Proposition 3.4, there is an ambient isotopy, supported in the interior of X, taking

F0 to a normal surface. This does not move the boundary of F0.

Now let F be a Möbius band properly embedded in X, such that

(i) F is normal;

(ii) ∂F = ∂F0;

(iii) F is ambient isotopic to F0.
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Choose F so that the pair (|F∩H2
X |, |F∩H0

X |) is minimal among all properly embedded

Möbius bands satisfying the above three conditions. Here, we are placing lexicographical

ordering on such pairs. Thus, we first minimise |F ∩H2
X |, and then once this has smallest

possible value, we minimise |F ∩H0
X |.

Let N(F ) be a thin regular neighbourhood of F in X, which is an I-bundle over F ,

in which F lies as a zero section. Let F̃ be the associated ∂I-bundle over F , which is the

annulus cl(∂N(F )− ∂X).

Since F is normal, it inherits a handle structure, where the i-handles of F are the

components of Hi
X ∩ F . Similarly, F̃ inherits a handle structure.

Let M be the result of cutting X along F . Then M inherits a handle structure HM .

Note that F̃ is a subsurface of ∂M and its boundary is standard in HM . Thus, HM is a

handle structure for the pair (M, F̃ ). Let B be its parallelity bundle.

Note that because ∂F runs over each component of H0
X ∩ ∂X and H1

X ∩ ∂X at most

once, no parallelity handle of HM intersects ∂F̃ . Hence, ∂hB lies in the interior of F̃ . Let

Γ̃ be the boundary of ∂hB, which is therefore a collection of simple closed curves in F̃ . We

give Γ̃ a cell structure, where each 1-cell is a component of intersection between adjacent

handles of F̃ . Let Γ be the image of Γ̃ in F under the bundle map F̃ → F . Then Γ is also

a 1-complex. (See Figure 15.)

F
F

B

N(F)

Γ
~

Γ
project

∂X

Figure 15

Case 1. Γ contains a core curve C of F as a subcomplex.

Note that Γ has controlled intersection with each handle of HX , in the following sense.

Each 1-cell of Γ lies in the image of a 1-cell of Γ̃. This is a component of intersection

between two handles of F̃ . One, H1 say, lies in ∂hB, and the other, H2, does not lie in

∂hB. We will now control the possibilities for H2 within each 0-handle of HX . Now in each

0-handle of HX , at most two normal discs of F intersect ∂X. Suppose that there is such

a disc E. Then each 1-cell of E ∩ Γ arises as a component of E ∩ F0 or E ∩ F1. We may

arrange that each such 1-cell is straight in the affine structure on the 0-handle. Now, E
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runs over each component of F1 at most once, and so this gives rise to at most 6 1-cells of

E ∩ Γ. Between these we have at most 5 components of E ∩ F0 which miss ∂X. So, this

gives at most 11 1-cells of Γ arising from E. The remaining normal discs of F are squares

and triangles, and so at most 10 of these can give a handle H2 of F̃ not in ∂hB. At most 2

of these are squares, and at most 8 are triangles. So, this gives at most (2×8)+(8×6) = 64

1-cells of Γ. Again, we may arrange that each of these is straight. So, in each 0-handle of

HX , we have at most 86 straight 1-cells of Γ. Projecting the core curve C, we obtain a

diagram for L. The crossings of this diagram occur only in the projections of the 0-handles

of HX . There are at most 8(c(K) + |t|) such 0-handles. So, we get a diagram for L with at

most 1
2 × (86× 85)× 8(c(K) + |t|) = 29240(c(K) + |t|) crossings, which is better than the

required bound.

Case 2. Γ does not contain a core curve of F as a subcomplex.

We claim that we may find a core curve C of F which avoids Γ. To see this, pick an

ordering on the 1-cells of Γ, and remove an open regular neighbourhood of these 1-cells from

F one at a time. At each stage, we examine the complementary regions. Initially, this is just

a Möbius band. We will show that, at each stage, one complementary region is a Möbius

band with a (possibly empty) collection of open discs removed. We call this a punctured

Möbius band. Moreover, a core curve of this punctured Möbius band is also a core curve of

F . Note this complementary region either contains all of ∂F or is disjoint from ∂F because

Γ is disjoint from ∂F . As each new 1-cell of Γ is removed from F , there are three options.

It may be completely disjoint from the previous cells, in which case this just punctures

one of the complementary regions. It may have just one endpoint incident to the previous

cells, in which case the complementary regions are unchanged up to ambient isotopy. The

main case is where both endpoints of the 1-cell are incident to earlier cells. In this case, we

cut a complementary region along a properly embedded arc α. We are only interested in

the case where this region is the punctured Möbius band. If this joins different punctures,

the result is still a punctured Möbius band. If α joins a puncture to the boundary of the

punctured Möbius band, then cutting along α still results in a punctured Möbius band.

If α joins the boundary to itself, the result is an arc properly embedded in the Möbius

band. If the arc is essential, then we have a core curve of F as a subcomplex of Γ, which

is contrary to hypothesis. So, the arc is inessential, and there remains a complementary

region that is a punctured Möbius band. If the arc joins a puncture to itself, the result

is a simple closed curve embedded within the Möbius band. This is either inessential, in

which case there remains a complementary region that is a punctured Möbius band, or it

is essential, in which case this leads to a core curve of F as a subcomplex of Γ, and again

this is contrary to hypothesis. This proves the claim.

Let C be this core curve. After an isotopy in the complement of Γ, we may assume

that it intersects each handle of F in at most one properly embedded arc. Let M1 be the
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union of the I-fibres in N(F ) over C. This is a Möbius band. Let C̃ be the boundary of

M1. Then C̃ misses Γ̃. It therefore misses ∂hB or lies in the interior of ∂hB. The argument

divides into these two cases.

Case 2A. C̃ misses ∂hB.

Then C lies in the surface F− that is obtained from F by removing the interior of the

image of ∂hB under the bundle map F̃ → F . Note that whenever an i-handle of F̃ lies in

∂hB, so do all the j-handles with j > i that are incident to it. Hence, F− inherits a handle

structure. We may therefore ensure that C misses the 2-handles of F− and respects the

product structure on the 1-handles. We may also isotope C in F− so that it intersects each

handle of F− in at most one properly embedded arc. Because C̃ misses ∂hB, each handle of

F that intersects C is disjoint from B on both sides. There can be at most 7 such normal

discs of F in each 0-handle of X: at most 4 triangles, at most one square and at most two

further normal discs that intersect ∂X. As in Section 4, we may arrange that each triangle

is made up 16 flat polygons and that the square is made up of 25 flat polygons. Similarly,

the normal discs that intersect ∂X consist of at most 84 polygons in total. We may ensure

that C intersects each of the polygons in at most one straight arc. So, in each 0-handle of

HX , C is at most (4 × 16) + 25 + 84 = 173 straight arcs. Therefore, the projection of C

has at most 1
2 (173× 172)× 4 c(D′) ≤ 119024 (c(K) + |t|) crossings, as required.

Case 2B. C̃ lies in ∂hB.

Our aim here is to reach a contradiction. Let B′ be the component of B that contains

C̃. Then ∂hB′ is either connected or disconnected, depending of whether the base surface

of the I-bundle B′ is non-orientable or orientable. We consider these two cases separately.

Case 2B(i). ∂hB′ is connected.

Then the base surface of B′ is non-orientable, and therefore contains a properly em-

bedded, orientation-reversing simple closed curve. The union of the fibres in B′ over this

curve is a Möbius band M2. Its boundary is a simple closed curve in the annulus F̃ . This

cannot bound a disc in F̃ , for then the union of M2 with this disc would be an embedded

projective plane in S3, which is well known to be impossible. Thus, ∂M2 is a core curve

of F̃ and therefore separates F̃ into two annuli. Attach one of these annuli to M2 to form

a properly embedded Möbius band M3 in X. The boundary curves of M3 and F are dis-

joint and therefore cobound an annulus in ∂X. Attach this annulus to M3 ∪ F to form an

embedded Klein bottle in S3. (See Figure 16.) This again is a contradiction.
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Case 2B(ii). ∂hB′ is disconnected.

Then, B′ is a product I-bundle. Let A1 be the union of the I-fibres in B′ that are

incident to C̃. This is an annulus. The boundary curve ∂A1− C̃ is a simple closed curve in

F̃ . It cannot bound a disc in F̃ , for then the union of this disc with A1 ∪M1 would be an

embedded projective plane in S3. So, ∂A1 − C̃ divides F̃ into two annuli. Let A2 be the

annulus that does not contain C̃. Let A3 be the sub-annulus of F̃ lying between the two

components of ∂A1. (See Figure 17.)

Note that F̃ − C̃ consists of two annuli. The restriction of the bundle map F̃ → F to

each of these annuli is an injection. In particular, the restriction of F̃ → F to A2 ∪A3− C̃
is an injection.
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A 2 A3
M1annulus
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A3C~

Figure 17
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We claim that ∂A1− C̃ intersects each handle of F̃ in at most one properly embedded

arc. Now, when a handle of F̃ intersects C̃, it does so in one properly embedded arc. Since

C̃ lies in B, this handle of F̃ runs parallel to another handle of F̃ , with the region between

these two handles lying in B. So, ∂A1− C̃ intersects this other handle of F̃ in just one arc.

Thus, each handle of F̃ is divided into at most two components by ∂A1 − C̃ and at

most one of these lies in A2. So, each i-handle of F gives rise to at most one component of

A2 ∩Hi
X . Hence, for i = 0, 1 and 2, |A2 ∩Hi

X | ≤ |F ∩Hi
X |.

We claim that this inequality is strict for i = 0. Note that whenever an i-handle of

F̃ lies in B, so does every j-handle adjacent to it, provided j > i. So, cl(F̃ − ∂hB) has a

handle structure. In particular, each component of cl(F̃ − ∂hB) contains a 0-handle of F̃ .

So, A3 contains at least one 0-handle of F̃ . Hence, |A2 ∩H0
X | < |F ∩H0

X |, as claimed.

Let F ′0 be the Möbius band M1 ∪ A1 ∪ A2. This is properly embedded in X, and

after a small isotopy, we may arrange that it has the same boundary as F . It has strictly

fewer components of intersection with the 0-handles of X than F , and at most as many

components of intersection with H2
X . We have verified this for A2. But M1 is composed

of I-fibres in N(F ), and A1 is composed of I-fibres in B. Hence, adding these to A2 does

not increase the number of components of intersection with H0
X or H2

X . Now, F ′0 might

not be a normal surface, but when we apply the usual normalisation procedure (leaving the

boundary fixed), the complexity of the pair (|F ′0∩H2
X |, |F ′0∩H0

X |) does not increase. Thus,

we end with a normal Möbius band properly embedded in X, with the same boundary

as F , but with smaller complexity. This is ambient isotopic to F by the following result.

Hence this gives a contradiction.

Lemma 5.2. Let K be a knot in the 3-sphere. Let F and F0 be essential Möbius bands

properly embedded in the exterior of K with equal boundaries. Then F and F0 are ambient

isotopic in the exterior of K.

Proof. We make use of the JSJ decomposition of the exterior X of K. The JSJ tori are

a collection of disjoint properly embedded essential tori, with the property that any other

properly embedded essential torus can be ambient isotoped off them. The JSJ tori divide X

into pieces that are Seifert fibred or atoroidal. Since X is a knot exterior, the possibilities

for the Seifert fibred pieces are very limited (see for example [1]). Each has base surface

that is a planar surface. Moreover, if the Seifert fibered piece has any singular fibres, the

base orbifold is either a disc with two singularities of coprime order, or an annulus with

one singularity.

Let W be a regular neighbourhood of F ∪ ∂N(K) in X. This is a Seifert fibre space.

The boundary component ∂W − ∂N(K) either bounds a solid torus with interior disjoint

from W or is essential in X. In both cases, it can be ambient isotoped off the JSJ tori,

and then W lies in a Seifert fibred piece R of the JSJ decomposition. We can then arrange
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that the W is a union of fibres in R, and that the Möbius band F is also a union of fibres.

Thus, F contains a singular fibre of order 2, and it projects to an embedded arc in the base

orbifold of R. This arc runs from ∂R to the order 2 singularity. Note that there is just

one order 2 singularity in this orbifold, because if there is another, it has coprime order.

Now, removing the singularities from the orbifold gives a pair of pants P , and there is,

up to ambient isotopy, a unique properly embedded arc in P joining any two boundary

components.

Now let W ′ be a regular neighbourhood of F0 ∪ ∂N(K) in X. Then, W ′ also lies in R

after an ambient isotopy, and it too is a union of fibres in R, as is F0. Thus, after removing

the singular fibres, F0 projects to an arc in P that is isotopic to the previous one. Hence,

F0 is ambient isotopic to F .

This completes the proof of Theorem 5.1, and hence Theorems 1.1 and 1.4.

6. A related result

Recall that a knot L̃ is a cable of a knot L if L̃ is a simple closed curve on ∂N(L) that

does not bound a disc in N(L).

Theorem 1.5. Let K be a satellite knot with companion knot L. Suppose that L is prime.

Then, for some knot L̃, which is either L or a cable of L,

c(K) ≥ c(L̃)

152
.

Proof. Let D be a diagram for K with minimal crossing number. Let X be the exterior of

K. Give X the handle structure described in Section 2, but without the introduction of the

exceptional handles. Call this handle structure H′X . We do not give it an affine structure,

but instead, realise the handles as shown in Figure 2 and the left of Figure 5. Let T be the

torus ∂N(L). This may be placed in normal form with respect to H′X . Cutting X along T

gives two 3-manifolds, one of which is a copy of the exterior of L. Call this latter manifold

Z, and let HZ be the handle structure that it inherits. View this as a handle structure for

the pair (Z, T ).

Apply as many annular simplifications to HZ as possible, creating a handle structure

H′Z . According to Theorem 3.9, H′Z has a generalised parallelity bundle B that contains

every parallelity handle of H′Z and which has incompressible horizontal boundary ∂hB.

Now ∂hB cannot be all of ∂Z. Because Z would then be an I-bundle over a torus or

Klein bottle. Hence, ∂hB is a (possibly empty) collection of discs and a (possibly empty)

collection of annuli.
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Claim. If ∂hB contains any annuli, then these do not have meridional slope.

Suppose that, on the contrary, these annuli have meridional slope. The vertical bound-

ary of the corresponding components of B are then incompressible annuli properly embed-

ded in Z, with meridional boundary. They cannot be essential, because L would then be a

composite knot. Hence, they are boundary parallel. Note that, in this case, no component

of B can be an I-bundle over a Möbius band. For then B would contain a properly em-

bedded Möbius band that is a union of I-fibres, and this could be capped off with discs to

form an embedded projective plane in R3, which is known not to exist. Thus, the vertical

boundary components of B with meridional boundary come in pairs which lie in the same

component of B. We may therefore pick one such annulus A, with the property that the

component of B that it lies in is part of the parallelity region between A and ∂Z. Removing

this parallelity region (apart from A itself) is therefore an annular simplification that can

be made to H′Z , which is contrary to hypothesis. This proves the claim.

Let F be the surface ∂Z − int(∂hB). This is either a collection of punctured annuli

or a punctured torus, where the punctures arise from components of B that are I-bundles

over discs. It inherits a handle structure. In the case where it is a collection of punctured

annuli, we may pick a core curve α of one of these annuli, which misses the punctures,

which runs only over the 0-handles and 1-handles, which respects the product structure on

the 1-handles, and which intersects each handle in at most one arc. For we may start with

a core curve α of one of the annuli, slide it off the punctures and the 2-handles, and then

straighten it in the 1-handles. If α intersects some handle in more than one arc, then we

may find an arc β in the handle, joining distinct arcs of α in that handle, and with interior

disjoint from α. One can then cut α at the two points of ∂β, remove one of the resulting

arcs, and replace it by β. The result is still a core curve of the annulus, but which intersects

fewer handles.

The other case is when F is a punctured torus. This time we pick a curve α which

avoids the punctures and the 2-handles, and which respects the product structure on the 1-

handles, and which has longitudinal slope, say, on ∂Z. This time, it may not be possible to

isotope α so that it runs over each handle in at most one arc. The modifications described

above will not necessarily keep α as a longitude. However, they will not change its class

in H1(∂Z;Z/2). So, we may still find a simple closed curve α on F which runs over each

handle in at most one arc, which misses the 2-handles and which respects the product

structure on the 1-handles, which is essential in ∂Z and which is not a meridian.

Let L̃ be this curve α. It is either isotopic to L or is a cable of L.

We now have to be a little more precise about the position of L̃. We first arrange that

each normal disc of T sits within the handle of H′X that contains it as described in Section

6.5 of [5]. Then we arrange that, whenever L̃ runs over one of these normal discs, then it
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does so as described in Section 6.5 of [5]. We then project L̃ vertically, forming a diagram

D̃, and we have to bound its crossing number. The details of the argument are identical to

those in Section 6.6 of [5]. In particular, the argument there gives that c(D̃) ≤ 152 c(D).

This proves the theorem, because

c(L̃) ≤ c(D̃) ≤ 152 c(D) = 152 c(K).

We close with some final remarks about the nature of this proof. The arguments

behind Theorems 1.1 and 1.5 are similar, but in the former case, we focused on Y =

N(L)− int(N(K)), whereas in the latter case, we used Z = S3 − int(N(L)). Although the

use of Z leads to better a better constant, one loses track of where the meridian of Z lies.

It therefore seems very hard to avoid the possibility that the knot L̃ we are considering

might be a cable of L. Only by considering Y and using Theorem 1.3 does it seem feasible

to bypass this issue of cabling.

Nonetheless, Theorem 1.5 reduces the general problem of finding a lower bound on the

crossing number of a satellite knot to the same problem for cables. It is conceivable that it

can be used as part of an alternative proof of Theorem 1.1.
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