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1. Introduction

One of the most powerful tools in 3-manifold topology is normal surface theory. Many

topologically relevant surfaces can be placed into normal form (or some variant of this) with

respect to any triangulation T of the manifold M . An important case of this phenomenon

is when M is the solid torus and the surface is a meridian disc. The existence of a meridian

disc in normal form and the fact that this can be algorithmically detected is the key to

Haken’s solution to the problem of recognizing the unknot [1]. However, normal surface

theory suffers from some substantial limitations, possibly the most important of which is

that every normal meridian disc may have ‘exponential complexity’. More precisely, if n is

the number of tetrahedra in T , then normal surface theory only produces a meridian disc D

with at most 2kn normal triangles and squares, where k = 1011 (see [2]). This is more than

just an artifice of the theory, because one can find triangulations of the solid torus where

every normal meridian disc has exponentially many squares and triangles. Indeed, we will

do this explicitly in Section 6. However, in this paper, we show that for a related problem,

there is a solution with linearly bounded complexity. In addition to the meridian disc, the

solid torus contains another important sub-object: the core curve C, which is defined, up

to ambient isotopy, to be {∗} × S1 ⊂ D2 × S1, where ∗ is a point in the interior of D2. In

this paper, we will address the problem of placing C into ‘normal form’. The surprising

conclusion is that this can be achieved with a linear upper bound on the ‘complexity’ of C.

In order to state our main result most cleanly, we say that a curve C embedded in the

solid torus M is a pre-core curve if C is a core curve in the manifold M ∪ (∂M × I) that is

obtained from M by attaching a collar to ∂M . Thus, a pre-core curve need not lie in the

interior of M .

Whenever we refer to a triangulation of a 3-manifold M , we use the more general

definition that is now standard in low-dimensional topology. Thus, it is an expression of

M as a collection of 3-simplices, with some of their faces identified in pairs, via affine

homeomorphisms. Since the gluing maps are affine, it makes sense to speak of a straight

line in a face of the triangulation.

The following is our main result.

Theorem 1.1. Let T be a triangulation of the solid torus M . Then M contains a pre-core

curve C that lies in the 2-skeleton of T , intersects the edges in finitely many points, is

disjoint from the vertices and intersects the interior of each face in at most 10 straight arcs.
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Note that this does not bound the number of intersections points between C and each

edge, face or tetrahedron of T . This is because as C runs from one face to another, the

result is a point of intersection with an edge of T , and this may give rise to isolated points

of intersection with the faces and tetrahedra incident to that edge. If one wants to bound

the total number of points of intersection between a core curve and each tetrahedron, it

seems to be best to make the curve transverse to the 2-skeleton of T , as follows.

Theorem 1.2. Let T be a triangulation of the solid torus M . Then M contains a core

curve C ′ that intersects each tetrahedron ∆ of T in at most 18 arcs. Moreover, each such

arc is properly embedded in ∆, and has endpoints in the interior of the faces of ∆. The

intersection ∆∩C ′ is a trivial tangle in ∆. In fact, ∆∩C ′ is parallel to a collection of arcs

α in ∂∆, with the property that the intersection between each component of α and each

face of ∆ is at most one straight arc.

Thus, the above result asserts that there is a core curve that intersects each tetrahedron

in one of finitely many possible trivial tangles, where this finite list is universal, in the sense

that it is independent of the triangulation T .

In addition, we will prove similar theorems for partially ideal triangulations of the solid

torus, and for ‘affine’ handle structures. (See Theorems 4.1 and 4.2.)

Although Theorem 1.1 is a result about triangulations, it has geometric consequences.

The reason is that a triangulation of a manifold M determines a path metric in which

each tetrahedron is regular and Euclidean, and, conversely, any Riemannian metric can be

approximated (in a suitable sense) by such a piecewise Euclidean metric. By using this

relationship between triangulations and Riemannian metrics, and applying Theorem 1.1,

we obtain the following result.

Theorem 1.3. For each K, I > 0, there is a constant c(K, I) with the following property.

If M is a solid torus with a Riemannian metric having volume at most V , injectivity radius

at least I and all sectional curvatures in the interval (−K,K), then M contains a core

curve with length at most c(K, I) V .

It seems likely that Theorems 1.1 and 1.2 will have many other applications. In fact,

the version of these theorems for affine handle structures is a key step in the proof of

the main theorem in [7]. This asserts that the crossing number of a satellite knot is at

least 10−13 times the crossing number of its companion knot. For more details and an

explanation of this terminology, see [7].

We now give an outline of the proof of Theorems 1.1 and 1.2. We may find a meridian

disc D for the solid torus M that is normal with respect to the triangulation T . If we

cut M along D, the result is a 3-ball X. The parts of D lying between adjacent parallel

normal discs patch up to form an I-bundle in X, which we term the parallelity bundle
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B. (A precise definition is given in Section 2.) Now, in each 3-simplex ∆ of T , at most 6

components of ∆−N(D) do not lie in B. The goal, therefore, is to find a core curve C that

avoids B and that intersects each component of ∆ − N(D) in a bounded number of arcs

with controlled topology. However, this is not completely straightforward. For example, B
may be almost all of X, and so it is not clear that there is even a single core curve disjoint

from B, particularly one with controlled intersection with each tetrahedron. The technique

that we use is to construct a product structure D2× [−1, 1] on X, where D2×{−1, 1} is the

copies of D in X, and with the property that the product structure agrees with the I-bundle

structure on (most components of) B. This product structure determines a homeomorphism

φ:D2×{1} → D2×{−1}. We also have a homeomorphism ψ:D2×{−1} → D2×{1} arising

from the gluing map. Their composition ψφ is a homeomorphism D2×{1} → D2×{1}. By

the Brouwer fixed point theorem, this has a fixed point x ∈ D2×{1}. There are essentially

two cases: either x lies in B or it does not. If it does, then x × [−1, 1] is a vertical curve

in B, which therefore joins adjacent parallel normal discs of D. But the two endpoints of

x × [−1, 1] are identified under the gluing map, because x is a fixed point of ψφ, which

is a contradiction. Thus, x does not lie in B, and with some more work, one can arrange

that (a copy of) x× [−1, 1] avoids B. The endpoints of this arc patch together to form the

required core curve of M .

2. Normal surfaces and parallelity bundles

In this section, we recall some basic normal surface theory, and then go on to define

parallelity bundles.

Recall that a disc properly embedded in a 3-simplex ∆ is normal if it is disjoint from the

vertices, it intersects each edge transversely in at most one point, but it is not disjoint from

the edges. It is then a triangle or square, as shown in Figure 1. A properly embedded surface

in a triangulated 3-manifold is normal if it intersects each 3-simplex of the triangulation in

a collection of normal discs.

Figure 1.
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Any normal surface may be straightened with respect to the triangulation, as follows.

First ambient isotope the arcs of intersection with the faces, so that they become straight.

Each triangle in each 3-simplex may then be ambient isotoped, keeping its boundary fixed,

so that it becomes planar in the affine structure. The same is not necessarily true of the

squares. But we may realise each square as the union of two flat pieces glued along a

straight line. We will henceforth assume that any normal surface has been straightened in

this way.

An arc properly embedded in a 2-simplex is normal if it is disjoint from the vertices

and has endpoints lying in distinct edges. If F is a compact surface with a triangulation,

then a 1-manifold properly embedded in F is normal if it intersects each 2-simplex in a

collection of normal arcs. Define the length of a normal 1-manifold in F to be its number

of intersections with the 1-skeleton.

The following is variant of a well-known fact in normal surface theory. (See Proposition

4.4 in [6] for comparison.)

Proposition 2.1. Let T be a triangulation of a compact irreducible 3-manifold M . Let

S be a properly embedded, oriented, incompressible surface in M , with no components

that are 2-spheres or boundary-parallel discs. Give ∂S the orientation that it inherits from

S. Suppose that ∂S does not intersect any edge of T ∩ ∂M in two points with opposite

orientations. Then, there is an ambient isotopy, keeping ∂S fixed, taking S into normal

form.

Proof. In the usual normalisation procedure, there is one step where ∂S may need to be

moved. This happens as follows. Suppose that there is an arc of intersection between S and

a face of T , with endpoints in the same edge of the face, and suppose that this edge lies in

∂M . The standard way to argue is to assume that S is boundary-incompressible and that

∂M is incompressible, and thence perform an isotopy which removes the arc. However, we

do not follow this line of argument here. Instead, we note that at the endpoints of the arc,

∂S intersects the edge with opposite signs, which is contrary to assumption. Thus, ∂S does

not need to be moved.

Corollary 2.2. Let M be a solid torus with a triangulation T . Let γ be a normal curve

in ∂M that bounds a meridian disc. Suppose that γ has shortest length among all such

curves. Then γ bounds a normal meridian disc.

Proof. Suppose that γ intersects some edge of ∂M in two points of opposite sign. We

may assume that these two points of intersection are adjacent on the edge. Let ρ be the

sub-arc of the edge between then. Then, the interior of ρ lies in the annulus ∂M − γ. By

our assumption about orientations, ρ is inessential in this annulus. Hence, a sub-arc of γ is

parallel in ∂M to ρ. We may isotope this sub-arc onto ρ, and then reduce its length. This

is contrary to hypothesis. So, the conditions of Proposition 2.1 are satisfied, and hence γ
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bounds a normal meridian disc.

We will now give the definition of a parallelity bundle. Let M be a compact orientable

3-manifold with a triangulation T . Let S be a properly embedded normal surface in M ,

and let X be the manifold obtained by cutting M along S. In other words, X is the closure

of M−N(S). Thicken the simplices of T into handles, forming a handle structure Ĥ. Thus,

each i-simplex of T becomes an i-handle. Then S intersects each handle of Ĥ in a collection

of discs. We say that two such discs are of the same type if there is an ambient isotopy of

M , preserving all the handles, that takes one disc to the other. If D1 and D2 are adjacent

discs of the same type in a handle H, then the component of H− int(N(D1∪D2)) that lies

between them is a product region D2× I where D2× ∂I is parallel to D1 ∪D2. The union

of these product regions is the parallelity bundle B in X. (See Figure 2.) The product

structures patch together to form an I-bundle structure on B. Its horizontal boundary ∂hB
is the ∂I-bundle, and it lies in ∂N(S). The vertical boundary ∂vB is cl(∂B − ∂hB). The

vertical boundary ∂vB of B is a collection of annuli. The intersection of ∂vB with ∂M is a

union of fibres in the I-bundle structure. This is because this is true in each product region

D2 × I that makes up B.

normal discs

parallelity
bundle

thicken to
a handle
structure

Figure 2.

3. Proof of the main theorems

In this section, we prove Theorems 1.1 and 1.2.

Proof. Let D be a properly embedded meridian disc, in normal form with respect to T .

Define the weight of D to be the number of points of intersection between D and the 1-

skeleton of T . Define the length of ∂D to be its number of points of intersection with the

1-skeleton. We define the complexity of D to be an ordered pair of non-negative integers,

the first of which is the length of ∂D, the second of which is the weight of D. We order

these pairs lexicographically, which is a well-ordering, and choose D so that it has minimal

complexity. Note that this definition of complexity is a little different from most treatments

of the subject, where the weight of D is given more significance than the length of ∂D. (See

[3] and [8] for example.) However, this alternative definition of complexity is more suited

5



to our purposes.

Note that ∂D is a shortest normal curve in ∂M that bounds a meridian disc. For

suppose that there were a shorter normal meridian curve. By Corollary 2.2, this would

bound a normal meridian disc, which would therefore have smaller complexity than D,

which is a contradiction.

Let N(D) be a thin regular neighbourhood of D consisting of a union of normally

parallel copies of D. Let X be the result of removing int(N(D)) and int(N(D)∩∂M) from

M . Thus, X is a 3-ball, with two copies of D in its boundary, which we denote by D− and

D+. Let A be the annulus ∂X − int(D− ∪D+) = cl(∂M −N(D)).

Thicken each i-simplex of T to an i-handle, forming a handle structure Ĥ for M . Let

B be the parallelity bundle for X, as described in Section 2. Let B′ be the union of those

components of B that intersect A. Some possible configurations for components of B are

shown in Figure 3. Only the top two lie in B′.

D

D

A

+

-

Figure 3.

We are now in a position to give a more detailed overview of the proof of Theorems

1.1 and 1.2. Our main goal in this proof is to construct an unknotted arc in X with one

endpoint in D− and the other in D+, so that these endpoints are identified when D− and

D+ are glued together to form M . In order to gain sufficient control over the arc, it will be

important that it avoids B. We therefore need to understand the topology of X − B. As

indicated in Figure 3, the components of B − B′ can be embedded in X in a topologically

complicated way. However, we will show in Claims 1 - 3 that B′ is in fact a product I-

bundle, and the product structure on X can be chosen so that it restricts to the product
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structure on B′. The product structure on X determines a homeomorphism from D+ to

D−. If we compose this with the gluing map, we obtain a homeomorphism D+ → D+. By

Brouwer’s theorem, this has a fixed point x. In Claim 4, we show that this homeomorphism

may be chosen so that x and its image in D− are disjoint from B − B′. Thus, there are

three possibilities:

1. x ∈ B′;

2. x lies in a component of D+ − B′ that has non-empty intersection with ∂D+;

3. x lies in a component of D+ − B′ that is disjoint from ∂D+.

Case 1 leads to an immediate contradiction. Case 2 forms the most substantial part

of the argument. In this situation, we construct the required arc in X, by running from x

in D+ − B to ∂D+, then along A, and then in D− − B to the image of x under the gluing

map. In Case 3, we focus on the component R+ of cl(D+ − B′) that contains x. If ∂R+

has non-trivial intersection with its image under the homeomorphism D+ → D+, then we

may construct the required arc in a similar way to Case 2. However, instead of running

along A, it runs along a portion of the vertical boundary of B′. On the other hand, if ∂R+

is disjoint from its image, we reach a contradiction, by showing that the initial meridian

disc D did not have minimal complexity.

We now embark upon this proof.

Claim 1. The I-bundle structure on B is in fact a product structure.

Now, B is an I-bundle over a surface F , and to assert that B is a product is equivalent to

asserting that F is orientable, because the total space of B is orientable. Suppose therefore

that some component F ′ of F is non-orientable. Let E be the corresponding component

of B. Then the horizontal boundary of E is connected. Double the 3-ball X along A to

form a copy of S2 × I. Glue the two copies of E in S2 × I together to form a bundle

E+ in S2 × I. Now, E+ need not be connected (because E may be disjoint from A), but

if it is not, discard one of its components. Because E ∩ A is a union of fibres, E+ is an

I-bundle over a surface F+. Note that F+ is non-orientable, since we are assuming that F ′

is non-orientable. Hence, the horizontal boundary of E+ is connected. It is a planar surface

lying in one component of S2 × ∂I. Each of its boundary components therefore bounds a

disc with interior disjoint from E+. We can view F+ as the zero section of the I-bundle

E+. Each of its boundary components is a core curve of an annular component of ∂vE
+. It

is therefore parallel to a boundary component of this annulus, which in turn bounds a disc

in S2 × ∂I. Thus, we may extend F+ to form a closed embedded non-orientable surface in

S2 × I. Then attaching 3-balls, we get such a surface in S3. But it is well known that S3

contains no such surface. This proves the claim.
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Claim 2. Each component of B′ must intersect both D− and D+.

Suppose that, on the contrary, some component E of B′ is disjoint from D− or D+,

as in the top left of Figure 3, for example. Then each fibre of E ∩ A is inessential in A.

So some component of cl(A − E) is a disc P , with boundary consisting of an arc α in ∂A

together with an I-fibre β in ∂vB′. Since β is disjoint from the 1-skeleton of T , it therefore

has zero length. Now, α is parallel to a sub-arc α′ in ∂D. This has positive length, because

the endpoints of β lie in distinct normal discs of D. We can attach P to D, forming a

new meridian disc for the solid torus M . This has the effect of replacing α′ with β, which

reduces the length of ∂D, and this is a contradiction.

It is a consequence of Claim 2 that each fibre of B′ ∩ A is essential in A (and this

is in fact what is proved). For suppose some fibre of B′ ∩ A were inessential in A. Then

the endpoints of this arc would both lie in D− or would both lie in D+. Since this arc

joins the two parts of the horizontal boundary of this component of B′, we deduce that this

component of B′ is disjoint from D− or D+, contradicting Claim 2.

Claim 3. We may pick a product structure D × [−1, 1] on X, so that D− = D × {−1},
D+ = D × {1}, and so that the product structure agrees with that on B′.

Let S+ and S− be the surfaces D+ ∩ B′ and D− ∩ B′. Pick a maximal collection α

of disjoint non-parallel arcs properly embedded in S+, that are each essential in S+ and

that have boundary lying in ∂D+. Because each component of B′ intersects ∂D+, by the

definition of B′, each component of S+ − α is therefore a disc or an annulus. (Note that α

may be empty, if S+ is already a union of discs and annuli.) Let α′ be the arc components

of cl(∂S+ − ∂D+). Using the product structure on B′, which exists by Claim 1, pick a

collection of embedded vertical discs V in B′ such that V ∩ D+ = α ∪ α′, and which are

properly embedded in X. Each such disc has boundary consisting of an arc in D+, an arc

in D− and two arcs in A, by Claim 2. Cut X along these discs, giving a collection of balls.

We will now pick a product structure on these balls, which will patch together to give the

required product structure on X. Each ball B intersects D+ in a single disc and intersects

D− in a single disc. Its intersection with S+ is either empty, a disc or an annulus. In the

former case, we may clearly pick a product structure on B so that it agrees with product

structure on B′ ∩B. When B ∩ S+ is a disc, B lies in B′, and so it already has the desired

product structure. When B ∩S+ is an annulus, one of its boundary components is disjoint

from ∂D+. This bounds a disc in D+. Attached to this is a vertical annulus in B′. Its

other boundary component lies in D−, and therefore bounds a disc in D−. The union of

the discs in D− and D+ with the vertical annulus bounds a ball in B with interior disjoint

from B′. Hence, we may extend the product structure of B′ ∩B over this ball, to give the

required product structure on B. This proves the claim.
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Note that the claim is not obviously true with B′ replaced by B. For example, there

may be components of B − B′ which are disjoint from D− or D+. Alternatively, they may

lie in X in a knotted way. (See the bottom of Figure 3.)

This product structure on X determines a homeomorphism φ0:D+ → D−, by first

including D+ into D × [−1, 1] and then projecting onto D × {−1} = D−. We also have a

homeomorphism ψ:D− → D+ given by the gluing map.

Note that there was some flexibility in the choice of product structure on X − B′ and

we will now vary it a little. In fact, it is somewhat simpler to vary the homeomorphism

φ0 to a new homeomorphism φ:D+ → D−, which agrees with φ0 on D+ ∩ B′ and which is

isotopic to φ0 via an isotopy that is supported away from D+ ∩ B′.

x
EE

R

B-B’

B’ B’

 ψ  (x)

ψ

+

+ +

-1

Figure 4.

Claim 4. We may find such a homeomorphism φ with the following properties. Let R+

be any component of D+ − B′ that intersects ∂D+. Let R− be its image under φ. Let

E+ be the union of the discs in R+ bounded by the curves R+ ∩ ∂v(B − B′). (Possibly,

E+ is empty.) Similarly, let E− be the union of the discs in R− bounded by the curves

R− ∩ ∂v(B − B′). Then, we may ensure that:

1. φ(E+) is disjoint from ψ−1(E+), and

2. φ−1(E−) is disjoint from ψ(E−).

See Figure 4 for an example of R+ and E+.

We first ensure that (1) holds. Now, ψ−1(E+) is a collection of discs in the interior of

D−. Hence, by isotoping the discs φ0(E+) sufficiently close to ∂D−, we may ensure that

they are disjoint from ψ−1(E+). Thus, this gives a homeomorphism φ00:D+ → D− such

that φ00(E+) is disjoint from ψ−1(E+). (See Figure 5.)

9



R

E E
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to avoid ψ   (E )

00

φ 0

φ 00

+
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+
-

+

D+

D-

D-

+

+

-1

isotopy

(not shown)

Figure 5.

We now ensure that (2) can also be achieved, without violating (1). All we did was

isotope φ0 to φ00 so that the discs φ00(E+) were close to ∂D−. Hence, we may also

arrange that the discs φ00(E+) miss the discs E−. Therefore, φ−100 (E−) is disjoint from

E+. Now, there is a 1-parameter family of homeomorphisms D+ → D+, each supported

in R+, starting at the identity, and which takes φ−100 (E−) very close to ∂D+. In particular,

we may ensure that the image of φ−100 (E−) under the final homeomorphism is disjoint from

ψ(E−), because this is a collection of discs in the interior of D+. Since E+ does not

separate φ−100 (E−) from ∂D+, we may assume that these homeomorphisms are the identity

on E+. Thus, pre-composing these homeomorphisms with φ−100 , we obtain a 1-parameter

family of homeomorphisms D− → D+, starting at φ−100 , and which equal φ−100 throughout

when restricted to φ00(E+) and D− − R−. Inverting, we obtain a 1-parameter family

of homeomorphisms D+ → D−, starting at φ00, and which equal φ00 throughout when

restricted to E+ and D+ − R+. Let φ:D+ → D− be the final homeomorphism in this

family. Since φ00|E+ = φ|E+, condition (1) is therefore preserved. But we have ensured

that φ−1(E−) is disjoint from ψ(E−). This gives condition (2), which proves the claim.

Thus, we have picked a homeomorphism φ:D+ → D−. We also have a homeomorphism

ψ:D− → D+ arising from the gluing map. Consider their composition ψφ:D+ → D+. By

the Brouwer fixed-point theorem, ψφ has a fixed point x in D+. After an arbitrarily small

perturbation of φ, we may assume that x lies in the interior of a triangle or square of D+.
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The proof now divides into three cases:

1. x ∈ B′;

2. x lies in a component of D+ − B′ that has non-empty intersection with ∂D+;

3. x lies in a component of D+ − B′ that is disjoint from ∂D+.

Case 1. x ∈ B′.

Then the endpoints of the arc x× [−1, 1] patch together to form a core curve. But this

leads to a contradiction in this case, because the two endpoints of x× [−1, 1] lie in distinct

normal discs of D.

Case 2. x lies in a component of D+ − B′ that has non-empty intersection with ∂D+.

Let R+ be the component of D+ − B′ containing x, and let R− = φ(R+). Define E+

and E− as in Claim 4. An example of such a configuration is shown in Figure 4.

Then x is disjoint from B and lies in the component of R+ − B that has non-empty

intersection with ∂D+. For otherwise, x lies in E+. By (1) in Claim 4, ψφ(E+) is disjoint

from E+. In particular, ψφ(x) 6= x, which is a contradiction.

Similarly, φ(x) is disjoint from B and lies in the component of R− − B that has non-

empty intersection with ∂D−. For otherwise, φ(x) lies in E−. Hence, x lies in φ−1(E−).

Also ψφ(x) lies in ψ(E−). But, by (2) in Claim 4, φ−1(E−) and ψ(E−) are disjoint.

We will shortly construct our pre-core curve C. We will pick an arc in A − B that

runs from ∂R+ to ∂R−. We will then attach arcs in D+ − B and D− − B that run to x

and φ(x) = ψ−1(x) respectively. These three arcs patch together to form an arc with one

endpoint in D+ and one in D−. Gluing the two ends of this arc will form the pre-core curve

C. (See Figure 4.)

We first construct a pre-core curve C0. The curves C and C ′ required by Theorems

1.1 and 1.2 will be minor modifications of this. We wish to arrange that C0 sits well with

respect to T . Now, D+, D− and A clearly inherit cell structures from T . (For example,

each 2-cell of D+ and D− is a normal triangle or square.) Note that whenever a k-cell of A

(respectively, D− ∪D+) lies in B, then every incident j-cell of A (respectively, D− ∪D+),

with j < k, also lies in B. Thus, we may arrange that C0∩A intersects only the 2-cells and

1-cells and that it is transverse to the 1-cells. We ensure that C0 ∩A intersects the 1-cells

in as few points as possible, among all such arcs in A − B joining R+ to R−. Similarly,

we may arrange that C0 ∩ (D− ∪ D+) intersects only the 2-cells and 1-cells of these cell

structures and that it is transverse to the 1-cells. We choose these arcs C0 ∩ (D− − B)

and C0 ∩ (D+−B) to have shortest possible length among all arcs joining the endpoints of

C0 ∩A to x and φ(x) satisfying the above conditions. This has various consequences:
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1. The intersection of C0 with each cell of D+, D− and A is connected whenever it is

non-empty.

2. If C0 intersects a 2-cell of A that has non-empty intersection with R+ or R−, then the

relevant endpoint of C0 ∩A lies in that 2-cell.

3. C0 is disjoint from each 1-cell of A that has an endpoint in R− ∪R+ but does not lie

entirely in R− ∪R+.

Now, C0 is not in the form required by either Theorem 1.1 or 1.2, because when it

lies in ∂M , it lies in the 2-skeleton of T , but when it runs through the interior of M , it is

transverse to the 2-skeleton. We therefore now explain how to modify C0.

Our first aim is to create the core curve C. Let C initially be C0. Now shorten C∩D+ a

little at the x end, so that it terminates in the interior of a 1-cell of D+. We correspondingly

lengthen C ∩ D−. We also modify C ∩ A near its endpoints so that it ends on 0-cells of

A ∩ (∂D− ∪ ∂D+). We now homotope C ∩ (D− ∪ D+) into the 1-skeleton of D− ∪ D+,

keeping the endpoints of these arcs fixed. This may create non-embedded arcs, but if so

there is an obvious way to shorten them. Thus, we may assume that C ∩ (D− ∪D+) is two

embedded arcs. Hence, C is a pre-core curve. Note that C∩(D−∪D+) need not be disjoint

from B. However, each 1-cell that it runs over is adjacent to a 2-cell with interior disjoint

from B. Note that C lies in the 2-skeleton of T , misses the vertices of T and intersects the

edges of T in only finitely many points. Thus, the following claim will prove Theorem 1.1.

Claim 5. C intersects the interior of each face of T in at most 10 straight arcs.

The arcs of C come in two types: parts lying in A, and parts lying in D− ∪D+. By

construction, both types of arc are straight. Thus, we only need to bound the number of

such arcs in any face of T . Consider any such face F . The intersection F ∩D consists of

at most 3 types of normal arcs. If a normal arc type does not arise, we add one in, for the

sake of streamlining the argument. By adding in such an arc very close to a vertex of F ,

we can avoid it intersecting C. Thus, F −N(D) consists of three types of region:

1. triangular regions containing a vertex of F ;

2. a hexagonal region containing all three arc types in its boundary;

3. rectangular regions between parallel arcs of F ∩D, which we call parallelity rectangles.

The parallelity rectangles lie in B, but C need not be disjoint from B. However the

parts of C that lie in B are in D− ∪ D+ and are adjacent to 2-cells of D− ∪ D+ with

interior disjoint from B. Thus, if C intersects a parallelity rectangle, then in one of the

adjacent 3-simplices, the parallelity rectangle lies between a triangle and square of D. This

can happen only once in each of the adjacent 3-simplices. Thus, C intersects at most 2

parallelity rectangles, and when it intersects a parallelity rectangle, it does so in at most
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2 arcs. It intersects each triangular region in at most one arc. It intersects the hexagonal

region in at most 3 arcs. So, the total number of arcs of C ∩F is at most 10, which proves

the claim.

We now explain how to construct the core curve C ′ required by Theorem 1.2. We

simply push C0 ∩A a little into the interior of M . This can be done in such a way that C ′

intersects each 3-simplex of T in a collection of properly embedded arcs.

Claim 6. C ′ intersects each 3-simplex of T in at most 18 arcs.

Let ∆ be a 3-simplex of T , and let P be the closure of a component of ∆ − N(D).

Then, the boundary of P consists of triangles and squares of D− ∪D+, together with bits

lying in ∂∆. The intersection P ∩ C0 is a union of the following pieces:

1. arcs lying in ∂∆, which we call boundary arcs;

2. arcs lying in a copy of a normal triangle or square of D, which we call interior arcs;

3. isolated points in edges of ∂∆ that lie in ∂M .

It is possible for interior arcs and boundary arcs to meet at their endpoints, and for

boundary arcs to be joined together, but otherwise these pieces are disjoint. (See Figure

6.)

Note that isolated points of P ∩C0 arise as follows. When C0 ∩A runs over an edge e

of T , all the adjacent 3-simplices of T pick up a point of intersection with C0. If ∆ is one

of these 3-simplices and neither of the faces of ∆ containing e lies in ∂M , this gives rise to

an isolated point of ∆ ∩ C0.

interior arcs

boundary arc

isolated
point

P

Figure 6.

Let ∆1 be the edges of ∆, with the vertices removed.

In order to bound the number of components of ∆ ∩ C0, the first thing that we do is

disregard all boundary arcs that lie in the same component of ∆ ∩ C0 as an interior arc.

We do not remove these arcs from C0; we simply suppose that there are not there, for the

13



purposes of this counting argument. This has the possible effect of increasing the number

of components of ∆ ∩ C0, but it does not decrease this number. Once this has been done,

every component of ∆∩C0 is either an interior arc or has non-empty intersection with ∆1.

Thus, the number of components of ∆∩C0 is at most the number of interior arcs plus the

number of intersections between C0 and ∆1.

Now, each edge of ∆ is divided into arcs by D. If one of these arcs is disjoint from the

vertices of ∆, then it lies in B. Thus, the only components of ∆1−N(D) that can intersect

C0 are those that are incident to a vertex of ∆. Call such components of ∆1 − N(D)

vertex-incident. There are at most 12 vertex-incident arcs of ∆1 −N(D). By Property (1)

of C0 given above, C0 can intersect each arc of ∆1 −N(D) in at most one point. So there

are at most 12 points of C0 ∩∆1.

Between adjacent normally parallel triangles or squares of ∆ ∩ D lies B. Hence, C0

misses this region. So, each normal disc type of ∆∩D can give rise to at most two interior

arcs. There are at most 5 normal disc types in ∆, and so there at most 10 interior arcs of

C0 ∩∆.

Thus, the total number of components of C0 ∩∆ is at most 12 + 10 = 22. But we can

reduce this bound down to 18 as follows.

Each interior arc of ∆∩C0 lies in a normal disc E of D−∪D+. Then E lies in R−∪R+,

and so the components of ∆1 −N(D) incident to E are disjoint from C0, by condition (3)

above. When such a component of ∆1 − N(D) is also vertex-incident, this reduces the

number of possible points of C0 ∩∆1 below 12. Now, 6 discs of (D− ∪D+) ∩∆ that are

not contained in B may be disjoint from vertex-incident arcs of ∆1 − N(D). But if there

are any more than 6 interior arcs of ∆ ∩C0, then each one reduces the number of possible

points of ∆1 ∩ C0 by at least 3. So, we deduce that the total number of components of

C0 ∩ ∆ is at most 12 + 6 = 18. Each arc of ∆ ∩ C ′ comes from a component of ∆ ∩ C0.

This proves the claim.

Claim 7. C ′ ∩ ∆ is parallel to a collection of arcs α in ∂∆, with the property that the

intersection between each component of α and each face of ∆ is at most one straight arc.

We have already arranged that C ′ intersects each 3-simplex in one of only finitely many

possible configurations. So, one could simply perform a case-by-case check to prove this

claim. However, there are many cases, and so we present a uniform argument.

Let ∆ be a 3-simplex of T , and let P be the closure of a component of ∆−N(D). We

first show that C ′ ∩ P is parallel in P to a collection of arcs α in ∂∆ ∩ P . We will then

show that α can be chosen so that each component intersects each face of ∆ in at most one

straight arc. This will prove the claim.

Now, the boundary arcs and isolated points of C0 ∩ P already lie in ∂∆. These will
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form part of α. Thus, we need only to worry about the parts of C0∩P lying in interior arcs.

There is at most one interior arc lying in each normal triangle or square of D− ∪D+, and

this can be slid, keeping its endpoints fixed, into the boundary of the triangle or square.

There are two possible directions in which this slide can be performed, and we choose a

direction which minimises the number of intersections with ∆1. This creates our choice of

arcs α.

How could a component of α intersect a face of ∆ in more than one component? Each

component of C0 ∩∆ intersects each face of ∆ in at most one component. Thus, the only

possible problem that could arise is when the process of sliding creates a new component of

intersection with a face. This only happens when the interior arc of C0∩∆ lies in a normal

square E and the interior arc joins opposite edges of the square. Then one of the sides of

the square (β, say) becomes a new component of intersection between α and a face of ∆.

Now, each component of ∆−D that does not lie wholly in B contains at most one normal

square of D− ∪ D+. So, the only way that a problem could arise is when the 2-cell of A

containing β has non-empty intersection with C0. But in this case, condition (2) above

implies that the relevant endpoint of C0 ∩ A lies in that 2-cell. This can happen in only

that 2-cell. So, if we slide C0 ∩ E the other way across E, then this problem is avoided.

Finally, note that α intersects each face of P in at most one arc. We may therefore isotope

α so that it is straight in each face. This proves the claim.

Thus, we have proved Theorems 1.1 and 1.2 in this case.

Case 3. x lies in a component of D+ − B′ that is disjoint from ∂D+.

An example of such a configuration is shown in Figure 7.

R

x
y

ψ  (x)
ψ  (y)-1

-1

B’

+

C

Figure 7.

Let R+ be the closure of the component of D+−B′ containing x. This is a disc disjoint

from ∂D+. Since ψφ(x) = x, ψφ(R+) has non-empty intersection with R+. We consider

two cases.
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Case 3A. ψφ(∂R+) ∩ ∂R+ 6= ∅.

Thus, ψφ(∂R+)∩∂R+ contains some point y. If we were to pick an arc in the annulus

∂R+× [−1, 1] running from y to ψ−1(y), then this would patch up to form a core curve for

M . In fact, we will feel free to vary this arc by an ambient isotopy, keeping its endpoints

fixed. The arc first runs from y to φ(y) vertically across ∂vB. It then runs from φ(y) to

ψ−1(y) along 1-cells of D−. Each such 1-cell is adjacent to a 2-cell with interior disjoint

from B. So, as in Case 2, the resulting core curve C lies in the 2-skeleton of T and intersects

the interior of each face of T in at most 10 straight arcs. One may also perturb C to create

a core curve C ′ that is transverse to the 2-skeleton of T . It then intersects each tetrahedron

only in interior arcs, as described in Case 2. So, C ′ intersects each tetrahedron in at most

10 arcs, and these satisfy the conclusions of Theorem 1.2. Thus, the theorems are proved

in this case.

Case 3B. ψφ(∂R+) ∩ ∂R+ = ∅.

Now, ψφ(R+) has non-empty intersection with R+, and yet their boundaries are dis-

joint, and so they must be nested. Say that ψφ(R+) lies in R+.

Recall that Ĥ is the handle structure on M that is obtained from T by thickening each

i-simplex to form an i-handle. Note that D+ inherits a handle structure from Ĥ. Both R+

and ψφ(R+) are a union of handles in this handle structure. However, R+ and ψφ(R+) do

not inherit handle structures. This is because it need not be true that whenever an i-handle

lies in R+ (or ψφ(R+)), then so does every j-handle to which it is attached, with j < i.

In fact, cl(D+ − R+) and cl(D+ − ψφ(R+) inherit handle structures. This is because the

handles of D+ that intersect R+ but do not lie in it are actually part of B. And whenever

an i-handle lies in B, then so is every j-handle to which it is attached, with j < i.

We now consider the weight of R+ and ψφ(R+). Recall that this is just the number

of intersections with the 1-skeleton of the triangulation. Equivalently, it is the number of

0-handles of R+ (or ψφ(R+)).

Claim 8. ψφ(R+) has strictly smaller weight than R+.

Now, ψφ(R+) is a subset of R+ consisting of a union of handles. Thus, if the weight of

ψφ(R+) is not less than that of R+, then only 1-handles and 2-handles are removed when

constructing ψφ(R+) from R+. But ψφ(∂R+) is disjoint from ∂R+, and so every handle

of R+ that contains ∂R+ is removed. Also, if an i-handle is removed, then so is every

j-handle that it is attached to, whenever j < i. Now, if there is no 0-handle of R+ that is

incident to a 1-handle or 2-handle which contains an arc of ∂R+, then R+ consists only of

1-handles and 2-handles. But in this case, every handle of R+ has non-empty intersection

with ∂R+, and so all of R+ is removed when creating ψφ(R+). In other words, ψφ(R+) is

empty, which is a contradiction. This proves the claim.
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So, consider the disc D′ obtained from D by removing the interior of R+, and then

attaching (∂R+×[−1, 1])∪ψφ(R+). Since ∂R+×[−1, 1] is vertical in the parallelity bundle,

it has zero weight. Thus, D′ has the same boundary as D but has smaller weight. This

contradicts our assumption that D has minimal complexity.

4. Partially ideal triangulations and affine handle structures

In this section, we generalise Theorems 1.1 and 1.2 from triangulations to two other

types of representation of a 3-manifold: partially ideal triangulations and affine handle

structures.

A partially ideal triangulation of a 3-manifold M is an expression of M − ∂M as a

collection of 3-simplices with their faces identified in pairs, and then with some of their

vertices removed. We will assume, without loss of generality, that all of the gluing maps

are affine. Hence, as in previous sections, it makes sense to speak of a straight line in a

face of the triangulation.

One can remove a small open product neighbourhood of each end of M −∂M , thereby

truncating the ideal vertices of each tetrahedron. This can be made into a convex polyhe-

dron is by starting with a regular Euclidean tetrahedron and truncating some its vertices.

We call this a truncated partially ideal triangulation.

We will prove the following version of Theorem 1.2 in this context.

Theorem 4.1. Let T be a truncated partially ideal triangulation of the solid torus M .

Then there is a core curve C of M that intersects each truncated tetrahedron ∆ of T in

a collection of at most 48 properly embedded arcs, with endpoints in the interiors of the

faces of ∆. These arcs C ∩∆ are simultaneously parallel to a union of arcs in ∂∆, each of

which intersects each face in at most 6 straight lines.

We will also deal with handle structures. Whenever we refer to a handle structure on

a 3-manifold, we insist that each handle is attached to handles of strictly lower index.

In order to be able to refer to straight curves in a 0-handle or 1-handle, we introduce the

following new concept. An affine handle structure on a 3-manifold M is a handle structure

where each 0-handle and 1-handle is identified with a compact polyhedron in R3, so that

1. each face of each polyhedron is convex (but the polyhedron identified with a 0-handle

need not be convex);

2. whenever a 0-handle and 1-handle intersect, each component of intersection is identified

with a convex polygon in R2, in such a way that the inclusion of this intersection into

each handle is an affine map onto a face of the relevant polyhedron;
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3. for each 0-handle H0, each component of intersection with a 2-handle, 3-handle or ∂M

is a union of faces of the polyhedron associated with H0;

4. the polyhedral structure on each 1-handle is the product of a convex 2-dimensional

polygon and an interval.

Here, we have the following version of Theorem 1.2.

Theorem 4.2. Let H be an affine handle structure of the solid torus M . Suppose that

each 0-handle of H has at most 4 components of intersection with the 1-handles, and that

each 1-handle has at most 3 components of intersection with the 2-handles. Then M has

a core curve that intersects only the 0-handles and 1-handles, that respects the product

structure on the 1-handles, that intersects each 1-handle in at most 24 straight arcs, and

that intersects each 0-handle in at most 48 arcs. Moreover, the arcs in each 0-handle

are simultaneously parallel to a collection of arcs α in the boundary of the corresponding

polyhedron, and each component of α intersects each face of the polyhedron in at most 6

straight arcs.

The definition of an affine handle structure may not seem to be particularly natural.

For example, it is not clear why one only identifies the 0-handles and 1-handles with poly-

hedra. However, to impose a polyhedral structure on the handles with higher index would

be unduly restrictive and also unnecesssary. Similarly, it is necessary for us to insist that

the faces of each polyhedron are convex, but not that the polyhedra themselves are convex.

In Theorem 4.2, the restrictions on the number of components of intersection between

various types of handle may also seem strange. But the conditions are natural. For example,

they are satisfied by the handle structure that is dual to a partially ideal triangulation.

In fact, Theorem 4.2 is a generalisation of Theorem 4.1. For, suppose that we are given a

truncated partially ideal triangulation of a 3-manifold. We then declare that each truncated

tetrahedron is a 0-handle. Each face of the ideal triangulation is made into a 1-handle. Each

edge becomes a 2-handle, and each non-ideal vertex becomes a 3-handle. Theorem 4.2 then

provides a core curve that intersects this handle structure nicely. Translating this back to

the initial ideal triangulation, we obtain the conclusion of Theorem 4.1.

We therefore focus on the proof of Theorem 4.2. Let H be the given handle structure,

and for i = 0, 1, 2, 3, let Hi be the union of the i-handles.

We would like to be able to assume that H0∩∂M is a collection of discs. However, this

need not be the case. But, suppose that, for some 0-handle H0, H0 ∩ ∂M has a non-disc

component. Pick a simple closed curve that is essential in H0 ∩ ∂M . We may find such a

curve that intersects each convex face of H0 ∩ ∂M in at most one straight arc. This curve

bounds a properly embedded disc E in H0. There are two cases to consider: where E is

boundary parallel in M , and where E is a meridian disc for M . If E is boundary parallel,
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then the parallelity region is a 3-ball. Remove from H all the handles that lie in this ball,

except H0. It is clear that if the theorem holds for this new handle structure, then it also

holds for H. Thus, we may assume that this case does not arise. Suppose now that E is

a meridian disc. Then the result of cutting ∂M along ∂E is an annulus. If we pick any

properly embedded arc in this annulus joining its two boundary components, then this can

be closed up to form a pre-core curve C. We may clearly arrange that C intersects only the

0-handles and 1-handles of H, and that it respects the product structure on the 1-handles.

We may also ensure that it runs over each component of H1 ∩ ∂M at most once. Thus, it

runs over each 1-handle of H at most three times. The points where it enters and leaves

any 0-handle lie in H1, and so it intersects each 0-handle in at most 6 arcs. We may ensure

that each such arc intersects each face of ∂H0 in at most one straight arc. Now push C a

little into the interior of M to create the core curve required by Theorem 4.2.

We may therefore assume that H0 ∩ ∂M is a collection of discs. This forces each 2-

handle to run over at least one 1-handle. Therefore, H0 ∩ (H1 ∪ H2) forms a thickened

graph, where H0 ∩H1 is the thickened vertices and H0 ∩H2 is the thickened edges.

In the proof of Theorems 1.1 and 1.2, a handle structure was constructed from the

triangulation of M , and this was used to define the parallelity bundle. We want to do

something similar here. The result will be a handle structure Ĥ which is, in some sense,

dual to the given handle structure H. Handles of Ĥ will arise in two possible ways. Each

i-handle of H will give rise to a (3− i)-handle of Ĥ. But there is a second type of handle of

Ĥ. The handle structure H induces a handle structure for ∂M , and each i-handle of ∂M

gives rise to (2− i)-handle of Ĥ. So, a handle of H that meets ∂M may give rise to several

handles of Ĥ. For instance, consider a 2-handle D2 ×D1 of H such that D2 × ∂D1 ⊂ ∂M .

In Ĥ, this becomes a 1-handle connecting two 0-handles.

One may also form a cell structure for M by collapsing each i-handle of Ĥ to an i-cell.

The first step in the proof of Theorems 1.1 and 1.2 was to find a meridian disc D

in normal form. The complexity of D was defined to be an ordered pair of integers: the

length of ∂D, and the weight of D. Complexities were ordered lexicographically, and D

was chosen to have smallest possible complexity. We perform a similar process in this case.

We start by makingD standard in the handle structureH. This means that it intersects

each handle in a collection of properly embedded discs, misses the 3-handles, and respects

the product structure on each 2-handle and 1-handle. We define the boundary weight of D

to be the number of intersections between D and ∂M ∩H0. We define the interior weight

to be the number of intersections between D and H2. We define the compexity of D to

be the ordered pair, boundary weight then interior weight, and choose D so that it has

minimal complexity.

The resulting disc D need not be normal, in the usual sense of the word (for example, as

19



in [3] or [5]). This is because there may be arcs of intersection between D and a component

of H0∩H1 which run from a component of H0∩∂M to an adjacent component of H0∩H2.

But D satisfies the other conditions of normality:

1. D ∩H0 ∩H1 consists of arcs;

2. D ∩H0 ∩H2 consists of arcs respecting the product structure in H0 ∩H2;

3. D ∩H0 ∩ ∂M consists of arcs;

4. no arc of intersection between D and H0 ∩ H1 has endpoints in the same component

of H0 ∩H1 ∩H2, or in the same component of H0 ∩H1 ∩ ∂M ;

5. no arc of intersection between D and H0 ∩ ∂M has endpoints in the same component

of H0 ∩H1 ∩ ∂M ;

6. each component of D ∩ ∂H0 intersects each component of H0 ∩H2 in at most one arc;

7. each component of D∩∂H0 intersects each component of H0∩∂M in at most one arc.

For any handle H of H, we say that two discs of H ∩D are of the same type if there

is an ambient isotopy, preserving all the handles of H, that takes one disc to the other.

The above conditions imply that D intersects each handle in only finitely many disc types.

By condition (6), each disc E of D ∩H0 intersects each component of H0 ∩H2 in at most

1 arc. By condition (7), E intersects each component of H0 ∩ ∂M in at most 1 arc. By

a combination of conditions (4), (6) and (7) and the assumption that each 1-handle has

at most 3 components of intersection with the 2-handles, E intersects each component of

H0 ∩H1 in at most 3 arcs.

We now make D sit nicely with respect to Ĥ. Each component of intersection between

D and a handle of H or ∂M gives rise to a disc component of intersection between D and a

handle of Ĥ. We define the type of such a disc just as in the case of H. Between adjacent

discs of the same type, there is a product region, and these patch together to form the

parallelity bundle B.

Now, each 0-handleH0 ofH has been identified with a polyhedron, and each component

of H0 ∩ H1, H0 ∩ H2 and H0 ∩ ∂M is a union of convex faces. We may clearly arrange

that D intersects each such convex face in a collection of straight arcs. Moreover, we may

ensure that each component of D∩H0∩H1, D∩H0∩H2 and D∩H0∩∂M intersects each

convex face in at most one such arc.

The rest of the argument proceeds as in the case of triangulations, apart from the

exact specification of the core curve C with respect to H. The symbols D−, D+, A, X

and B′ denote exactly what they did before. A homeomorphism φ:D+ → D− is picked,

and ψ:D− → D+ is the gluing map. The composition ψφ:D+ → D+ has a fixed point x.
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The proof then divides into cases according to the location of x. As before, there are two

cases when a copy of C is constructed (Cases 2 and 3A). We will focus on Case 2, because

this is more complex. Recall that this is when x lies in a component of D+ − B′ that has

non-empty intersection with ∂D+. Let R+ be the closure of the component of D+ − B′

containing x, and let R− = φ(R+). Recall that in this case, we picked a curve C0 in M ,

avoiding B, as follows. The arc C0 ∩ A ran between R− and R+. It was disjoint from

the 0-cells of A and was transverse to the 1-cells. It was chosen to have fewest number of

intersections with the 1-cells. Then C0 ∩ (D+ − B) and C0 ∩ (D− − B) were arcs running

from the endpoints of C0∩A to x and φ(x). These were also chosen to have smallest length

among all curves in D±−B joining these specified endpoints, in the sense of having fewest

number of points of intersection with the 1-cells.

In our situation, we do the same. Once again, A, D− and D+ inherit cell structures.

For example, each component of intersection between D and H0 gives a component of

intersection between D and a 3-handle of Ĥ, and this becomes a 2-cell of D− and D+. The

arc C0 ∩A is chosen to have smallest length among all curves in A− B joining R− to R+.

We then pick shortest arcs in (D− − B) and (D+ − B) joining the endpoints of C0 ∩ A to

x and φ(x). In the proof of Theorem 1.2, we needed to push C0 a little into the interior of

M to form a core curve. We do the same here, and let C be the resulting core curve.

Let H0 be a 0-handle of H. We wish to find an upper bound on the number of arcs

of C0 ∩ H0. To do this, we note that the only places where C0 can enter H0 are in the

discs H0 ∩ H1. So, we will bound the number of points of C0 ∩ H0 ∩ H1. These points

come in two types: those lie that lie on the boundary of the discs H0 ∩H1, and those that

lie in the interior of these discs. The points that lie on the boundary of these discs lie

in ∂M . So consider an arc component of H0 ∩ H1 ∩ ∂M . This is divided up by D, and

between adjacent points of D, there lies B, which C0 avoids. So, C0 can intersect each arc

of H0 ∩H1 ∩ ∂M in at most 2 points. There are at most 3 such arcs in each component of

H0 ∩ H1, and so this gives at most 6 endpoints of C0 ∩H0. The second type of endpoint

of C0 ∩H0 lies in the interior of the discs of H0 ∩H1. These lie on an arc of D ∩H0 ∩H1.

Between two such arcs of the same type, there again lies the parallelity bundle B. So, each

arc type of D ∩H0 ∩H1 gives at most two endpoints of C0 ∩H0. There are at most 9 arc

types in each component of H0 ∩ H1. So, this gives at most 18 endpoints of C0 ∩H0. So,

in total, we have at most 6 + 18 = 24 endpoints of C0 ∩H0 in each component of H0 ∩H1,

and hence at most 48 arcs of C0 ∩H0.

We now need to justify why C0 ∩ H0 is parallel to a collection of arcs in ∂H0 as

described in Theorem 4.2. Some of C0 already lies in ∂H0, but we slide the parts lying in

D ∩ H0 into ∂(D ∩ H0). The result is a collection of arcs α in ∂H0 to which C0 ∩ H0 is

parallel.

We must show that α can be isotoped, keeping ∂α fixed, so that it intersects each face
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of each polyhedron of H0 in a collection of straight arcs, and that each component of α

intersects each such face in at most 6 arcs. Now, ∂H0 is a union of convex faces, and these

have been divided up by ∂D into convex polygons. Thus, we may isotope α so that it

intersects each face in straight arcs. Now, C0 is a concatenation of interior arcs, which run

over a component of D ∩H0 and boundary arcs, which run over a component of ∂M ∩H0.

An interior arc is joined to a boundary arc exactly where C0∩A is joined to C0∩(D−∪D+),

and there are just two of these points. So, in each component of C0 ∩ H0, at most one

boundary arc is used, and at most two interior arcs. Now, each interior arc has been slid

into the boundary of a component of D ∩ H0. Each component of D ∩ H0 intersects each

face of ∂H0 at most 3 times. In fact, if the face lies in ∂M , then the component of D ∩H0

runs over it at most once. Each boundary arc lies in a single component of ∂M ∩H0, and

so runs over each face at most once. Thus, each component of α runs over each face of ∂H0

at most 6 times, as required.

5. Riemannian metrics on solid tori

In this section, we will prove that any Riemannian metric on a solid torus M with

bounded sectional curvature and a lower bound on injectivity radius has a core curve with

length that is linearly bounded by the volume of M .

Theorem 1.3. For each K, I > 0, there is a constant c(K, I) with the following property.

If M is a solid torus with a Riemannian metric having volume at most V , injectivity radius

at least I and all sectional curvatures in the interval (−K,K), then M contains a core

curve with length at most c(K, I) V .

This is proved by approximating (in a certain sense) the Riemannian metric by a

triangulation, as follows.

Proposition 5.1. For each K, I > 0, there is a constant c′(K, I) with the following

property. If M is a compact 3-manifold with a Riemannian metric having injectivity radius

at least I and all sectional curvatures in the interval (−K,K), then M has a triangulation

T such that

1. there is a c′(K, I)-Lipshitz homeomorphism MPL →M , where MPL is the path metric

on M obtained by realising each tetrahedron of T as a standard Euclidean simplex with

side length 1, and

2. the number of tetrahedra in T is at most c′(K, I) V , where V is the volume of M .

Proof. For each point x in M , let expx:TxM → M be the exponential map. If we set

ε > 0 to be small enough (as a function of K and I), then the restriction of expx to the

ball of radius ε about 0 is injective for all x ∈ M . Furthermore, if ε is sufficiently small,

then (1/ε)Bε(x) is nearly isometric to the unit ball in R3, where Bε(x) is the ball of radius
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ε about x, and (1/ε)Bε(x) is obtained from Bε(x) by rescaling by the factor (1/ε). Thus,

if x and x′ are within distance ε of each other, then the set of points in Bε(x) that are

equidistant from x and x′ is a smooth surface, and when it is rescaled by the factor (1/ε),

it is nearly isometric to a subset of the Euclidean plane.

Pick a maximal set of points {x1, . . . , xn} in M , such that no two of these points are

within ε/2 of each other. Then, by maximality, every point of M lies at a distance of at

most ε/2 from at least one xi.

Now consider the cut locus L of these points. More precisely, for each point x in M ,

define N(x) to be the number of {x1, . . . , xn} that are closest to x. Then L is the set of

points x where N(x) ≥ 2. By a small perturbation of the points {x1, . . . , xn}, we may

assume that L is a cell complex, where the set of points x with N(x) = k is the open

(4− k)-cells. A schematic picture of L, reduced by one dimension, is shown on the left in

Figure 8.

x1

x2

x3

x4

x1

x2

x3

x4

L

triangulate

Figure 8.

Subdivide each 1-cell by adding in its midpoint. Each 2-cell, rescaled by (1/ε), is nearly

isometric to a Euclidean polygon. In particular, if ε is sufficiently small, it is star-shaped

about some point in the interior. Subdivide the 2-cell by adding a vertex at this point, and

then coning off the boundary. Now subdivide each 3-cell by coning off from the point in

{x1, . . . , xn} that it contains. The result is the triangulation T .

We now wish to bound the number of tetrahedra in T . Each tetrahedron has a vertex at

one of {x1, . . . , xn}. So our first step is to find an upper bound for n. The points x1, . . . , xn

are more than ε/2 apart, and so the balls of radius ε/4 about these points are all disjoint.

There is a lower bound c1(K, I) on the volume of each such ball. Hence, n ≤ V/c1(K, I),

where V is the volume of M .

So, our next task is to bound the number of tetrahedra incident to some xi. Each

tetrahedron has a vertex in the interior of a 2-cell. This 2-cell is equidistant between xi

and some xj . These are the closest points in {x1, . . . , xn} to that vertex. But every point

of M is at most ε/2 from some point of {x1, . . . , xn}. Hence, xj is at most ε from xi. By

our assumption on the ε, the points xi and xj determine just one 2-cell. The number of
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such xj is at most

Volume(B5ε/4(xi))/min{Volume(Bε/4(xj)) : 1 ≤ j ≤ n},

because the ε/4 balls about these xj are all disjoint, and they fit into the 5ε/4 ball about

xi. Hence, the number of such xj is at most some constant c2(K, I).

The remaining two vertices of any tetrahedron that is incident to xi lie in the boundary

of the 2-cell, at either a corner or the midpoint of an edge. Again, the number of such

vertices is at most some constant c3(K, I). Hence, putting this all together, we deduce that

the number of tetrahedra of T is at most c′(K, I) V , for some constant c′(K, I).

We now construct the Lipschitz homeomorphism MPL →M . Each simplex of MPL is

already realised as a subset of M . So, we only need to specify how the Euclidean simplex

in MPL is mapped into that subset. We start by sending the vertices of MPL to the

corresponding points in M . Then we consider the edges of the triangulation that lie in

1-cells of L. We map these to M so that they have constant speed. Then we consider

faces of the triangulation which lie in 2-cells of L. These have one vertex in the interior of

the 2-cell and two in the 1-skeleton. We view the face as a cone on the former vertex and

map this into M in a way that respects the cone structure. In other words, each point of

the face lies on a unique geodesic in the Euclidean metric on the face that runs from the

coning vertex to the opposite edge. We send this geodesic to the corresponding curve in

the 2-cell of L that is a geodesic in the path metric on L. We then extend the map over

the remainder of each tetrahedron of MPL by viewing it as a cone with cone point being

the vertex in the interior of a 3-cell. It is clear that this map is c′(K, I)-Lipschitz for some

constant c′(K, I). Note that it need not be bi-Lipschitz, because it is possible that some

tetraheda in MPL may be mapped to nearly flat tetrahedra in M .

Proof of Theorem 1.3. Let M be a solid torus with a Riemannian metric as in the statement

of the theorem. Let T be the triangulation given by Proposition 5.1. By Theorem 1.1, there

is a pre-core curve C that lies in the 2-skeleton of T , that intersects the 1-skeleton in only

finitely many points and that intersects the interior of each face in at most 10 straight arcs.

We make an arbitrarily small perturbation of C to make it into a core curve. So the length

of C in MPL is at most 40|T |, where |T | is the number of tetrahedra. By (2) of Proposition

5.1, |T | is at most c′(K, I)V . By (1) of Proposition 5.1, there is a Lipschitz homeomorphism

MPL → M with Lipschitz constant c′(K, I). Thus, the length of the image of C in M is

at most 40(c′(K, I))2V .

6. Examples

In this section, we investigate a family of triangulations of the solid torus. Using them,

we will prove the following.
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Theorem 6.1. There exists a family of triangulations Ti (i ∈ N) of the solid torus M ,

with the following properties:

1. the number of triangles and squares in any normal meridian disc is at least c|Ti|, where

|Ti| is the number of tetrahedra in Ti, and c is the golden ratio (1 +
√

5)/2;

2. each pre-core curve in ∂M intersects the 1-skeleton of Ti in at least c|Ti|−1 points;

3. there is a pre-core curve that lies in the 2-skeleton of Ti and that intersects the 1-

skeleton in just one point. Moreover, when i ≥ 1, this is in fact a core curve.

These examples exhibit the intrinsically exponential nature of normal surface theory.

They also show that it would be impossible to prove Theorem 1.1 by using only pre-core

curves in ∂M .

Proof. Start with a fixed triangulation T0 of the solid torus M . For the sake of being

definite, we use the triangulation with a single tetrahedron. (This is described in [4] for

example.) This restricts to a one-vertex triangulation of the boundary torus. The three

edges on the boundary have slopes (1, 0), (2, 1) and (3, 1). Here, we are using the standard

basis for the first homology of the torus, where (0, 1) is a meridian and (1, 0) is a longitude.

We will construct the triangulations Ti recursively, with each obtained from its prede-

cessor by attaching a tetrahedron onto its boundary, as shown in Figure 9. This has the

effect of performing an elementary move on the boundary triangulation. This removes one

of the three edges of the boundary triangulation, so that the two triangles patch together

to form a square, and then inserts the other diagonal of this square.

Figure 9.

It is well known that the set of one-vertex triangulations of a torus forms the vertices

of a tree. Two vertices are joined by an edge if and only if the corresponding triangulations

differ by an elementary move. See Figure 10. Our initial triangulation T0∩∂M corresponds

to one of these vertices. To obtain T1, we perform the elementary move that removes (1, 0)

and inserts (5, 2). Then, to obtain T2, we remove (2, 1) and insert (8, 3). We repeat in this

way, following the path in this tree that turns left, then turns right, then turns left, and so

on. This gives our sequence of triangulations Ti of M .
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We now compute the slopes of the 1-cells in the boundary torus of Ti. Let si be the

slope of the 1-cell that is removed when passing from Ti to Ti+1. We orient this slope so that

it represents a homology class with non-negative intersection number with the meridian.

Then each si is, in standard homology co-ordinates, (xi, yi). So, s0 = (1, 0), and s1 = (2, 1).

It follows from our construction that, for each i, si+2 = si+si+1. In particular, the integers

yi satisfy the Fibonacci relation yi+2 = yi + yi+1, where y0 = 0 and y1 = 1. Hence,

yi =
1√
5

(
1 +
√

5

2

)i
− 1√

5

(
1−
√

5

2

)i
.

The integers xi also satisfy the Fibonacci relation, and since x0 = 1 = y2 and x1 = 2 = y3,

we deduce that xi = yi+2 for all i.

We want to find a lower bound on the number of triangles and squares of any normal

meridian disc in Ti. Now, Ti contains an edge with slope si+2 and each normal triangle or

square can intersect this edge at most once. Thus, it suffices to find a lower bound on the

intersection number between si+2 and any meridian curve. But this is xi+2, which is at

least ci+1 = c|Ti|. This proves (1).

Proving (2) is slightly more tricky because a curve on the boundary of the solid torus

with slope (1, n), for any integer n, is a pre-core curve. However, the intersection number

between (1, n) and si+2 is

|nxi+2 − yi+2| = |nxi+2 − xi| = xi+2 |n− (xi/xi+2)|.
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Now, as i→∞, xi/xi+2 → c−2 which is not an integer. So, there is a uniform lower bound

to the difference |n − (xi/xi+2)| provided i is sufficiently large, and in fact one can verify

that it is always at least 1/3. So, the intersection number between any pre-core curve on

∂M and si+2 is at least xi+2/3 ≥ ci = c|Ti|−1, as required.

Finally, note that T0 contains a pre-core curve that lies in the 2-skeleton and that

intersects the 1-skeleton in just one point. This point lies in the interior of the edge on

∂M with slope (1, 0). Thus, this curve becomes a core curve in T1 and all subsequent

triangulations.
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