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Ever since Thurston’s work on hyperbolic 3-manifolds [31, 32], the two fields of
hyperbolic geometry and Dehn surgery have been very closely related. On the one
hand, the ‘thick-thin’ decomposition of hyperbolic 3-manifolds due to Margulis [18]
demonstrates the fundamental role that Dehn filling plays in the subject. In the
other direction, hyperbolic techniques have proved to be an extremely powerful way
of solving some of the hardest questions about Dehn surgery.

These notes are based on lectures given at ICERM in July 2019. Their aim is
to provide a quick introduction to the use of hyperbolic methods in the theory of
Dehn surgery.

The author would like to thank the referees for their really helpful suggestions
which have undoubtedly improved this article.

1. Hyperbolic structures

The theory of hyperbolic 3-manifolds is a vast subject. We can only give a very
rapid sketch of the parts of the field that are most relevant to Dehn surgery. We
refer the reader to [4, 29, 31] for more details.

Hyperbolic 3-manifolds are, by definition, Riemannian manifolds locally modelled
on hyperbolic 3-space H3. Recall that H3 is defined to be either of the following
Riemannian manifolds:

(1) upper half-space model {(x, y, z) ∈ R3 : z > 0} with Riemannian metric
ds2Eucl/z

2; here ds2Eucl is the normal Euclidean metric;
(2) the Poincaré ball model, which is the open unit ball in R3 with Riemannian

metric at a point p given by

ds2Eucl

(
2

1− dEucl(p, 0)2

)2

;

here dEucl is Euclidean distance and 0 is the origin.

These two Riemannian manifolds are isometric.

Figure 1. Two models of hyperbolic 3-space, with some geodesics.
Left: Upper half-space. Right: The Poincaré ball.

We mention three simple facts about the geometry of hyperbolic space:
1
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(1) Angles in both models of hyperbolic space are the same as in Euclidean
space. This is because at each point, the hyperbolic metric is just a multiple
of the Euclidean metric.

(2) All points and all directions in hyperbolic space ‘look the same’. More specif-
ically, given any two points p1 and p2 and any orthogonal transformation
between their tangent spaces, there is a hyperbolic isometry taking p1 to p2
and that acts on the tangent spaces in the specified way. This is proved by
a direct construction. For example, in the special case where both p1 and
p2 are the origin in the Poincaré ball model, the required isometry is just an
orthogonal transformation of Euclidean space. When p1 and p2 are distinct
points in the upper-half space model, there is an isometry taking p1 to p2
that is a composition of a Euclidean dilation about the origin followed by a
Euclidean translation preserving the z coordinate.

(3) In both models, geodesics are Euclidean lines and circles that hit the
boundary orthogonally. This is proved as follows. Geodesics are uniquely
determined by a starting point p and a tangent vector v at that point.
So, one starts with any specific geodesic that is a line or circle hitting the
boundary orthogonally and uses the isometry established in (2) to take this
geodesic to the one starting at p and with tangent vector v. The isometries
constructed in (2) preserve Euclidean lines and circles hitting the boundary
orthogonally, as does an isometry between the upper half-space model and
the Poincaré ball model. So the geodesic through p with tangent vector v is
also of this form.

Definition 1.1. A compact 3-manifold M has a complete hyperbolic structure if it
satisfies any of the following equivalent conditions:

(1) M − ∂M has a complete Riemannian metric where all sectional curvatures
are −1;

(2) M − ∂M has a complete Riemannian metric that is locally isometric to H3;
(3) M −∂M is the quotient of H3 by a discrete group of isometries acting freely.

The manifold M is then called a complete hyperbolic manifold.

The equivalence of the three definitions is a fundamental fact [4, 29]. In the proof,
one shows that, with any of these definitions of a complete hyperbolic 3-manifold M ,
the universal cover of M − ∂M , with its induced Riemannian metric, is isometric to
H3.

From now onwards, we will follow a common convention in the literature by
dropping the word ‘complete’. So, whenever we refer to a ‘hyperbolic structure’ or
a ‘hyperbolic manifold’, we are referring to the above definition.

The following result is the central part of Thurston’s Geometrisation Conjecture
[32]. It was proved by Perelman [25, 27, 26] although Thurston had already proved
it in the important case when M is a Haken manifold.

Theorem 1.2 (Perelman 2002-03). Let M be a compact orientable 3-manifold other
than S1 ×D2 or T 2 × I. Then M has a hyperbolic structure if and only if M is
irreducible, atoroidal and not Seifert fibred.

We recall the definitions of the above terms.
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Definition 1.3. Let M be a compact orientable 3-manifold.

(1) We say that M is irreducible if any properly embedded 2-sphere bounds a
3-ball.

(2) We say that M is atoroidal if any properly embedded torus is compressible
or parallel to a component of ∂M .

(3) We say that M is Seifert fibred if it admits a foliation by circles.1

Theorem 1.2 is useful in the particular case where M is the exterior of a knot in
the 3-sphere. The theorem in this case was proved by Thurston [32].

Theorem 1.4 (Thurston 1982). Let M be the exterior of a knot K in the 3-sphere.
Then M has a hyperbolic structure if and only if K is neither a satellite knot nor a
torus knot.

We will focus on hyperbolic manifolds with finite volume. There is a very nice
characterisation of such manifolds [32, 4].

Theorem 1.5. A compact orientable hyperbolic 3-manifold M has finite volume if
and only if the following all hold:

(1) ∂M is empty or consists of finitely many tori;
(2) M is neither S1 ×D2 nor T 2 × I.

Thus, in the case where M is the exterior of a non-trivial knot in S3, then a
hyperbolic structure on M must have finite volume. We say that a knot in the
3-sphere is hyperbolic if its exterior admits a finite-volume hyperbolic structure.

A crucial result is the following [23, 28].

Theorem 1.6 (Mostow-Prasad rigidity 1968, 1973). Any finite-volume hyperbolic
structure on a manifold with dimension at least 3 is unique up to isometry.

Therefore, hyperbolic invariants of finite-volume hyperbolic 3-manifolds are
actually topological invariants. This applies, in particular, to the exterior of any
hyperbolic knot in the 3-sphere.

Example 1.7. One of the most important examples of a hyperbolic structure is
that on the figure-eight knot complement, which we now describe.

We start with two tetrahedra and we glue their faces in pairs according to the
recipe shown in Figure 2. It is not hard to see that every point in this space, apart
from the image of the vertices, has a neighbourhood homeomorphic to an open ball
in R3. However, the eight vertices are all identified to a single point and a regular
neighbourhood of this point is not homeomorphic to an open ball in R3. But if we
remove this point, the resulting space is an open 3-manifold. It is a remarkable fact
that this manifold is in fact homeomorphic to the complement of the figure-eight
knot. Assuming this, we can impose a complete finite-volume hyperbolic structure
on the figure-eight knot complement as follows.

Start with two copies of H3 with its Poincaré ball model. On each sphere at
infinity, consider four points that are the vertices of a regular Euclidean tetrahedron
centred at the origin. We now form an ‘ideal tetrahedron’ with these four vertices

1This definition of a Seifert fibred manifold is very short but not immediately useful. It was

actually proved by Epstein [10] that a manifold that is Seifert fibred in the above sense in fact
admits a foliation by circles, where each circle has a nice local model. This was Seifert’s original
definition [30].
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Figure 2. Instructions on how to glue two tetrahedra: each face
in one tetrahedron is glued to a face in the other tetrahedron in the
only way that is compatible with the edge identifications. Removing
the point that is the image of the vertices gives the complement of
the figure-eight knot (shown on the right)

at infinity. This is like a hyperbolic polyhedron, in that its edges are geodesics
and its faces are totally geodesic, but its vertices are at infinity (see Figure 4). So,
topologically, an ideal tetrahedron is a tetrahedron with its vertices removed. Each
of the two ideal tetrahedra used here is regular, in the sense that any permutation
of its four points at infinity is realised by a hyperbolic isometry that preserves the
ideal tetrahedron. Now glue these two regular ideal tetrahedra using hyperbolic
isometries, again using the recipe specified in Figure 2. One can check that the
resulting manifold is hyperbolic by finding a neighbourhood of each point that is
isometric to a ball in H3. The proof that this Riemannian manifold is complete
requires a little more work [31].

2. Cusps

When M is a finite-volume orientable hyperbolic 3-manifold, each end of M−∂M
has an embedded neighbourhood of the form T 2×[1,∞). This has a specific geometry,
which we investigate in this section.

Definition 2.1. The subset {(x, y, z) : z ≥ 1} of upper half-space is known as a
horoball. More generally, the image of this subset under any hyperbolic isometry is
known as a horoball. In the upper half-space model, these are either subsets of the
form {(x, y, z) : z ≥ c} for some c > 0 or Euclidean balls tangent to the boundary
plane. In the Poincaré ball model, they are Euclidean balls tangent to the boundary
sphere. The boundary of a horoball is a horosphere.

Each end of M − ∂M has the following geometric model. It is obtained from
the horoball {(x, y, z) : z ≥ 1}, by taking the quotient modulo a discrete group of
Euclidean translations isomorphic to Z× Z that preserve the z co-ordinate. (See
Figure 3.) This is known as a cusp or horoball neighbourhood of the end.

Given a horoball neighbourhood of an end of M − ∂M , its inverse image under
the covering map H3 → M − ∂M is a union of disjoint horoballs. By performing
an isometry to H3, we may assume that one of these horoballs is {(x, y, z) : z ≥ 1}.
For every real number c > 0, the image of {(x, y, z) : z = c} in M is an immersed
torus that inherits a Euclidean metric. For c ≥ 1, this torus is embedded in M . As
we decrease c below 1, it initially remains embedded, until at some value c = cmin,
it becomes non-embedded. The image of {(x, y, z) : z ≥ cmin} is a maximal cusp.
The boundary of a maximal cusp is an immersed torus, which we call a maximal
cusp torus.
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{(x, y, z) : z =1}

Figure 3. A fundamental domain in upper-half space for a cusp
of a hyperbolic 3-manifold. Its four vertical faces are glued in pairs
to form a copy of T 2 × [1,∞).

When ∂M is a single torus, this maximal cusp is uniquely determined. This
is because there is only the single parameter c that can be varied and so there
is a unique infimal value of c for the interval of z co-ordinates where the torus is
embedded. When ∂M consists of more than one torus, then again each end has a
well-defined maximal cusp, but these need not be disjoint from each other. They
might need to be shrunk to make them disjoint.

Example 2.2. In Example 1.7, we described the hyperbolic structure on the figure-
eight knot complement that was obtained by gluing two regular ideal tetrahedra
together. Place a horoball about each of the ideal vertices of each ideal tetrahedron.
This is a Euclidean ball in the Poincaré ball model; we choose these balls to be
disjoint and all to have the same Euclidean size. The intersection of these horoballs
with the ideal tetrahedra patches together to form a cusp. The boundary of the
cusp consists of eight Euclidean triangles that are glued together as shown in Figure
5, forming a Euclidean torus. The inverse image of the cusp in hyperbolic 3-space is
a union of horoballs with disjoint interiors. These horoballs, viewed from ∞ in the
upper half-space model, are shown in Figure 6. That figure was produced using the
program SnapPy [9].

1
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Figure 4. A cusp for the figure-eight knot complement.
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1 23 4
5 678μ μ

Figure 5. The arrangement of Euclidean equilateral triangles that
glue together to form the toral boundary of the cusp

Figure 6. A view from ∞ of the horoballs in upper half-space
for the figure-knot exterior, as produced by the program SnapPy.
A rectangle showing a fundamental domain for the action of the
fundamental group of the boundary torus is also shown.

3. The thick-thin decomposition

A crucial tool is the decomposition of any hyperbolic manifold into the following
pieces.

Definition 3.1. Let M be a hyperbolic 3-manifold and let ε > 0. The ε-thin and
ε-thick parts of M are as follows:

M(0,ε] = {x ∈M − ∂M : there is a geodesic loop based at x with length ≤ ε},
M[ε,∞) = cl(M − (M(0,ε] ∪ ∂M)).

An alternative definition is that M(0,ε] consists of those points in M − ∂M with
injectivity radius at most ε/2. One reason why this definition is so important is
that, provided ε is sufficiently small, the topology and geometry of the ε-thin part
are very simple, as follows.

Theorem 3.2 (Margulis). There is a universal ε > 0 such that, for any finite-volume
hyperbolic 3-manifold, each component of M(0,ε] is one of

(1) a cusp;
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(2) a solid torus regular neighbourhood of a closed geodesic with length less than
ε;

(3) a closed geodesic of length ε.

In fact, Margulis’s result [18] is considerably more general and applies to any
discrete subgroup of any semi-simple Lie group. But in the case of a finite-volume
hyperbolic 3-manifold M , this theorem implies that, topologically, M is obtained
from its ε-thick part by attaching solid tori, or in other words, by Dehn filling.

An ε > 0 satisfying the conclusion of Theorem 3.2 for all finite-volume hyperbolic
3-manifolds is known as a Margulis constant.

The thick part of a finite-volume hyperbolic 3-manifold also has some useful
structure.

Theorem 3.3 (Jørgensen). Let ε be a Margulis constant. Then there is a universal
constant k > 0 such that for any finite-volume hyperbolic 3-manifold M , its ε-thick
part may be triangulated using at most kVol(M) tetrahedra.

Proof outline. The proof of this is sketched in [31] and is carefully presented in [19].
We give a brief summary in the case where M(0,ε] is empty for simplicity.

We pick a maximal collection P of points in M[ε,∞) such that no two of these
points are closer than ε/4. The open balls of radius ε/8 about P are therefore
disjoint, and hence we obtain the inequality

|P |Vol(B(ε/8)) ≤ Vol(M),

where B(ε/8) is a ball in H3 of radius ε/8. By the maximality of P , every point in
M[ε,∞) lies within ε/4 of some point in P . Moreover, the number of points in P that
lie within ε/2 of a specific point of P is bounded above by Vol(B(5ε/8))/Vol(B(ε/8)).
This is because the open ball of radius ε/2 about this point lifts to a ball in H3,
because it lies in M[ε,∞). The inverse image of P in this ball is well-spaced: the
balls of radius ε/8 about these points are all disjoint. These balls of radius ε/8 all
lie within B(5ε/8), and so we obtain the required bound.

This set of points P has an associated Voronoi domain. This is a cell structure,
where the interior of each 3-cell consists of the set of points in M[ε,∞) that are closer
to a specific point of P than to any other point of P . We can subdivide this cell
structure into a triangulation, by subdividing each 2-cell into triangles (without
introducing any new vertices) and then subdividing each 3-cell into tetrahedra by
coning from the point of P within it. This forms a triangulation of M[ε,∞).

One can easily find an upper bound on the number of tetrahedra in this triangula-
tion that is a linear function of |P |, as follows. Each tetrahedron has one vertex that
is a point in P and its opposite face is a subset of a 2-cell of the Voronoi domain.
Thus, to obtain the required upper bound on the number of tetrahedra, it suffices to
find a universal upper bound on the number of triangles in the boundary 2-sphere of
each 3-cell. Fix a 3-cell centred at a point v in P , and consider the triangulation on
the boundary 2-sphere. The vertices of this triangulation are 0-cells in the Voronoi
domain, which are isolated points that are equidistant from at least four points of P ,
one of which is v. So, a vertex in the 2-sphere is specified by choosing 3 other points
in P , each of which is at most ε/2 from v. Thus, there is a universal upper bound
for the number of vertices in the 2-sphere and hence for the number of triangles.
Thus, the number of tetrahedra in this triangulation of M[ε,∞) is at most kVol(M)
for some universal constant k > 0. �
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Another useful observation is the following.

Theorem 3.4. Let M be a finite-volume orientable hyperbolic 3-manifold. Let
ε > 0 be a Margulis constant. Then M[ε,∞) also admits a finite-volume hyperbolic
structure.

Proof outline. It is fairly straightforward to verify that M[ε,∞) satisfies the hypothe-
ses of Theorem 1.2. For example, suppose that it were reducible with a reducing
sphere S2. Then S2 lies in M , which is irreducible, and it therefore bounds a ball
in M − ∂M . No component of M(0,ε] can lie in this ball. This is because any
cusp is non-compact, and because no closed geodesic lies within a 3-ball, as closed
geodesics in a hyperbolic 3-manifold are homotopically non-trivial. Hence, the
2-sphere bounds a ball in M[ε,∞), contradicting the assumption that it is a reducing
sphere. The verification that M[ε,∞) is atoroidal is similar but more complicated.
The reason that M[ε,∞) is not Seifert fibred follows from the fact that any Dehn
filling of a Seifert fibred space is either also Seifert fibred or reducible. Since M is
hyperbolic and obtained by Dehn filling M[ε,∞), it could not be the case that M[ε,∞)

is Seifert fibred. �

4. Hyperbolic Dehn surgery

We start with some terminology.

Definition 4.1. Let M be a 3-manifold, and let s1, . . . , sn be slopes on distinct
toral components of ∂M . Then M(s1, . . . , sn) denotes the manifold obtained by
Dehn filling along s1, . . . , sn.

Thurston’s work on Dehn surgery is the motivation for much of the work in this
article. His ‘hyperbolic Dehn surgery theorem’ [32, 31] is as follows.

Theorem 4.2 (Thurston 1979). Let M be a finite-volume orientable hyperbolic
3-manifold. Then there is a finite set E of slopes on ∂M such that M(s1, . . . , sn)
admits a finite-volume hyperbolic structure provided each si 6∈ E. Moreover, if E is
chosen appropriately, the cores of the attached solid tori form a union of disjoint
geodesics in M(s1, . . . , sn) with arbitrarily small length and these are the shortest
geodesics in the manifold.

We are therefore led to the following definition.

Definition 4.3. A slope s on ∂M is exceptional if M(s) is not hyperbolic.

Thurston examined the case of the figure-eight knot exterior, and showed that it
has exactly 10 exceptional slopes [31]. This led Gordon [15] to ask the following.

Question 4.4. Does a toral boundary component of a finite-volume orientable
hyperbolic manifold have at most 10 exceptional slopes? Is the figure-eight knot
exterior the unique such manifold with exactly 10 exceptional slopes?

The author and Meyerhoff [21] answered the first of these questions.

Theorem 4.5 (L-Meyerhoff 2015). Let M be a finite-volume orientable hyperbolic 3-
manifold with a single toral boundary component. Then M has at most 10 exceptional
slopes.

Very recently, the second question has also been answered [13].
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Theorem 4.6 (Gabai, Haraway, Meyerhoff, N. Thurston, Yarmola 2021). The
figure-eight knot exterior is the unique one-cusped orientable finite-volume hyperbolic
3-manifold with 9 or more exceptional slopes.

The above results focus on the case of hyperbolic 3-manifolds with a single toral
boundary component. In fact, the exceptional slopes for hyperbolic 3-manifolds
with more than one toral boundary component are well-understood, primarily using
topological rather than geometric methods. This is because the filled-in manifold still
has non-empty boundary, and for such manifolds, there is an alternative to Theorem
1.2. It was proved by Thurston [32] that a compact orientable 3-manifold with
non-empty toral boundary has a hyperbolic structure if and only if it is irreducible,
atoroidal, and has no essential properly embedded annulus or disc. Thus, when M
is a hyperbolic 3-manifold with more than one toral boundary component, each
exceptional slope s on ∂M gives rise to an essential surface properly embedded in
M with some boundary components having slope s. When there are two exceptional
slopes on the same component of ∂M , one can analyse the intersection between two
such surfaces, using the methods described by Gordon in his chapter. A striking
conclusion, due to many mathematicians but completed by Gordon and Wu [16], is
that unless M is one of finitely many explicit examples, any two exceptional slopes
on ∂M have distance at most 3 (see Definition 5.1).

5. Slope distance

Definition 5.1. The distance ∆(s1, s2) between slopes s1 and s2 on a torus T is
the minimal number of intersection points between curves with these slopes.

If we fix a basis for H1(T ) and represent slopes s1 and s2 as ±(p1, q1) and ±(p2, q2)
with respect to this basis, then we have the formula

∆(s1, s2) =

∣∣∣∣det

(
p1 p2
q1 q2

)∣∣∣∣ .
The exceptional slopes for the figure-eight knot are (using the standard meridian

and longitude basis) as follows:

(1, 0), (−4, 1), (−3, 1), (−2, 1), (−1, 1),
(0, 1), (1, 1), (2, 1), (3, 1), (4, 1).

The biggest distance between any two of these slopes is 8, which is the distance
between (−4, 1) and (4, 1). Gordon [15] conjectured that the maximal distance
between any two exceptional slopes on the boundary of a finite-volume orientable
hyperbolic manifold is always at most 8. This was also proved by the author and
Meyerhoff [21].

Theorem 5.2 (L-Meyerhoff 2015). The distance between any two exceptional slopes
on a one-cusped finite-volume orientable hyperbolic 3-manifold is always at most 8.

Once we have an upper bound on the distance between exceptional slopes, we
have an upper bound on the number of such slopes. A particularly nice argument
for this was given by Agol [2].

Lemma 5.3 (Agol 2000). Let S be a collection of slopes on a torus T , where any
two of these have distance at most some integer ∆. Let p be any prime greater than
∆. Then |S| ≤ p+ 1.
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Proof. Fix a basis for H1(T ), so that each slope corresponds to a pair (a, b) of
integers, up to sign. Each slope ±(a, b) determines a point in the projective line
PF1

p over the field Fp via

±(a, b) 7→ [a : b] mod p.

For distinct (a1, b1) and (a2, b2) in S, we know, by assumption, that

0 <

∣∣∣∣det

(
a1 a2
b1 b2

)∣∣∣∣ < p,

and so they must map to distinct points in PF1
p. So, |S| ≤ |PF1

p| = p+ 1. �

This lemma is remarkably close to being optimal. For example, the following
table provides, for each integer ∆ between 0 and 10, the maximal size of a collection
of slopes with the property that any two slopes in the collection have distance
at most ∆. We can see that Agol’s bound is sharp in each of these cases except
∆ = 0, 7.

Maximal intersection number ∆ 0 1 2 3 4 5 6 7 8 9 10
Maximal number of slopes 1 3 4 6 6 8 8 10 12 12 12

Agol proved the following remarkable theorem [3].

Theorem 5.4 (Agol 2010). For all but finitely many finite-volume orientable
hyperbolic 3-manifolds with a single toral boundary component, the distance between
any two exceptional slopes is at most 5.

This implies that there are only finitely many one-cusped finite-volume orientable
hyperbolic 3-manifolds with 9 or more exceptional slopes. But Theorem 4.6 in fact
states that the figure-eight knot exterior is the unique such manifold.

6. Slope length

Definition 6.1. Let M be a compact orientable finite-volume hyperbolic 3-manifold.
Fix a horoball neighbourhood N of ∂M . Let s be a slope on ∂M . The length L(s) of
this slope, with respect to N , is the length of any Euclidean geodesic representative
of s on ∂N . When we do not refer to N , we take it to be some maximal horoball
neighbourhood of the ends of M − ∂M .

Example 6.2. The slope µ in Figure 5 (which is actually the meridian slope
of the figure-eight knot) has length 1. To see this, we take a maximal horoball
neighbourhood of the end, as described in Example 2.2. This was obtained by taking
four identically-sized horoballs in the two copies of H3, forming their intersection
with the two regular ideal tetrahedra and then gluing them together. When the
horoball neighbourhood is maximal, these four horoballs in each copy of H3 are
tangent. We now consider a face of these ideal tetrahedra containing a geodesic
representative of µ. Realise this ideal triangle in the upper half-space model, as
shown in Figure 7, with one vertex at ∞, another vertex at the origin and the
final vertex at (1, 0, 0). This face intersects the boundary of the maximal cusp in
three arcs, two of which are parts of Euclidean circles and the remaining one is
{(x, y, z) : 0 ≤ x ≤ 1, y = 0, z = 1}. Since this arc lies in {z = 1}, its hyperbolic
length is equal to its Euclidean length, which is 1. (Recall that the metric on upper
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half-space is ds2Eucl/z
2.) Thus, we see that the length of each side of each Euclidean

triangle that forms the boundary of the maximal cusp is 1.

{z = 1}

μ

A face of one of the ideal tetrahedra

Figure 7. The length of the meridian slope on the figure-eight
knot is 1.

The following lemma, due to Meyerhoff [22], gives that 1 is a universal lower
bound on slope length.

Lemma 6.3. For any finite-volume orientable hyperbolic 3-manifold M , the length
of each slope on the boundary of a maximal cusp is at least 1.

Proof. The universal cover of M − ∂M is H3. The inverse image of the maximal
cusp is a union of horoballs in H3. Use the upper half space model for H3 and
by performing an isometry if necessary, we may arrange that one of the horoballs,
denoted B∞, is {(x, y, z) : z ≥ 1}. Note that the Riemannian metric on ∂B∞ is then
the ordinary Euclidean metric on a plane. Since the cusp is maximal, some other
horoball in the inverse-image of the cusp is tangent to B∞. Denote this horoball
by B1. In the maximal cusp torus, pick a geodesic representative for s through the
point of tangency and lift it to a geodesic arc s̃ in ∂B∞ starting at B∞ ∩B1. This
has the same length as s. There is a covering transformation taking the start of s̃
to its end. This preserves B∞, but it takes B1 to another horoball B2. (See Figure
8.) Since B1 and B2 both have Euclidean diameter 1 and their interiors are disjoint,
the length of s̃ is at least 1. �

{z = 1}

Euclidean
diameter 1

Lifts of a
maximal cusp

Euclidean distance ≥ 1

s~

B

1 B2

∞

B

Figure 8. The length of each slope on the boundary of a maximal
cusp is at least 1

One of the most important results about slope length is the following theorem,
known as the 2π-theorem [5] (see also [17, Section 2]). In some sense, this is an
effective version of Theorem 4.2.
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Theorem 6.4 (Gromov-Thurston). Let M be a compact orientable finite-volume
hyperbolic 3-manifold. Let N be a horoball neighbourhood of ∂M . Let s1, . . . , sn
be slopes on distinct components of ∂M . Suppose that L(si) > 2π with respect to
N for each i. Then M(s1, . . . , sn) has a complete negatively curved Riemannian
metric. Hence, by Theorem 1.2, M(s1, . . . , sn) also admits a complete finite-volume
hyperbolic structure.

The proof is surprisingly direct. One removes N from M − ∂M and then one
attaches a collection of solid tori, as specified by the filling. Each solid torus is
assigned a Riemannian metric that is negatively curved and that, near the boundary,
agrees with that of N near ∂N . This metric is highly symmetric: it is invariant
under the translational and rotational symmetry of the solid torus. Hence, it is
specified by a relatively small amount of data: just three real-valued functions.
These functions can be chosen more or less explicitly, so that all the sectional
curvatures are negative, provided that the length of each si is more than 2π.

The explicit nature of the metric actually provides more information. In particular,
if the lengths of all the si tend to infinity, then the sectional curvatures can be
arranged to be arbitrarily close to −1 and the volumes of the solid tori tend to the
volume of the removed cusps. One can compare the volume of this metric with the
volume of a hyperbolic metric on M(s1, . . . , sn), using the Gromov norm [31]. A
careful analysis gives the following result [8, 12].

Theorem 6.5 (Futer-Kalfagianni-Purcell 2008, Cooper-L 1998, Thurston 1980).
If L(si) ≥ `min > 2π for each i, then the hyperbolic volume of M(s1, . . . , sn) is
bounded as follows:(

1−
(

2π

`min

)2
)3/2

Vol(M) ≤ Vol(M(s1, . . . , sn)) < Vol(M).

The upper bound on Vol(M(s1, . . . , sn)) is due to Thurston [31]. The lower
bound is due to Futer-Kalfagianni-Purcell [12], and relies on work of Cooper and the
author [8]. The first inequality can be viewed as an upper bound on the volume of
M . This is important, due to the following result, that relates volume and surgery.

Theorem 6.6 (Jørgensen). Let V > 0. Then there is a finite list of finite-volume
orientable hyperbolic 3-manifolds {M1, . . . ,Mn} such that any orientable hyperbolic
3-manifold with volume at most V is obtained by Dehn filling some Mi.

Proof. We saw in Theorem 3.2 that when M is a finite-volume orientable hyperbolic
3-manifold, it is obtained by Dehn filling M[ε,∞) where ε is a Margulis constant.
Theorem 3.4 states that M[ε,∞) admits a finite-volume hyperbolic structure. We
also saw in Theorem 3.3 that M[ε,∞) admits a triangulation where the number of
tetrahedra is bounded above by a linear function of Vol(M). Hence, in our case,
there is an upper bound on the number of tetrahedra, and so there is a finite list
{M1, . . . ,Mn} of possibilities for M[ε,∞). �

This theorem implies that if we have a sequence of orientable hyperbolic 3-
manifolds Mi with bounded volume, then we may pass to a subsequence where each
Mi is obtained by Dehn filling some fixed finite-volume hyperbolic 3-manifold. In
fact, we can deduce a little more from the proof.
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Proposition 6.7. Let Mi be a sequence of distinct orientable hyperbolic 3-manifolds
with bounded volume. Then, there is a finite-volume orientable hyperbolic 3-manifold

M , a subsequence Mi(j) and slopes σ
i(j)
1 , . . . , σ

i(j)
k on ∂M such that Mi(j) is homeo-

morphic to M(σ
i(j)
1 , . . . , σ

i(j)
k ). Moreover, these slopes are pairwise distinct, in the

sense that σ
i(j)
t 6= σ

i(j′)
t if j 6= j′.

Proof. Only the final claim remains to be proved. As argued above, we may pass
to a subsequence Mi(j) where the thick part of Mi(j) is some fixed manifold M ′.
We may also assume that the number of components of ∂Mi(j) is constant. Thus,

Mi(j) is homeomorphic to M ′(σ
i(j)
1 , . . . , σ

i(j)
l ) for slopes σ

i(j)
1 , . . . , σ

i(j)
l on ∂M ′. If

σ
i(j)
1 has a constant subsequence, pass to this. Otherwise pass to a subsequence

where the slopes σ
i(j)
1 are pairwise distinct. Repeat with σ

i(j)
2 , and so on. If any

slope σ
i(j)
m is constant, then perform this Dehn filling. Thus, we reattach some

components of the thin part of Mi(j). Let M be the resulting manifold. Then Mi(j)

is M(σ
i(j)
1 , . . . , σ

i(j)
k ) but now the filling slopes are pairwise distinct. Note that M is

obtained from Mi(j) by removing some components of its thin part. As in the proof
of Theorem 3.4, we can again verify that this satisfies the topological conditions for
the existence of a finite-volume hyperbolic structure. �

7. Surgical finiteness

We saw in Theorem 6.4 that when we Dehn fill a hyperbolic 3-manifold along a
slope with length more than 2π, the resulting manifold M is hyperbolic. It is natural
to wonder whether a given manifold M can be obtained in more than one way by
this procedure. The following theorem [8] is a finiteness result that showcases some
of the geometric methods that we have discussed.

Theorem 7.1 (Cooper-L 1998). Let M be a compact orientable 3-manifold and
let ε > 0. Then there are only finitely many finite-volume hyperbolic 3-manifolds
X and slopes s1, . . . , sn on ∂X with L(si) ≥ 2π + ε for each i, with respect to some
horoball neighbourhood of the cusps, and with X(s1, . . . , sn) homeomorphic to M .

Corollary 7.2. A 3-manifold can be obtained by p/q surgery on a hyperbolic knot
K in S3 with |q| > 11 for only finitely many K and p/q.

Proof. We will see in Section 8 that a slope p/q on the exterior of a hyperbolic knot
in S3 satisfies L(p/q) > (0.558)|q|. Hence if |q| ≥ 12, then L(p/q) > 6.96 > 2π+0.41.
Now apply Theorem 7.1. �

It was shown by Osoinach [24] that there exists a 3-manifold that has infinitely
many descriptions as surgery on a knot in the 3-sphere. In his examples, |q| = 1.
They demonstrate that some restriction on q is necessary in Corollary 7.2.

Proof of Theorem 7.1. Suppose that, on the contrary, M is homeomorphic to
Xi(s

i
1, . . . , s

i
n(i)) for finite-volume hyperbolic 3-manifolds Xi and slopes si1, . . . , s

i
n(i)

with L(sij) ≥ 2π+ ε and where for each i 6= i′, either Xi is not homeomorphic to Xi′

or sij 6= si
′

j for some j. By Theorem 6.4, M has a hyperbolic structure. By Theorem
6.5, the volume of Xi is at most a constant times the volume of M , where the
constant depends only on ε. Thus, the Xi have bounded volume. So, by Proposition
6.7, we may pass to a subsequence where every Xi is obtained by Dehn filling some
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fixed hyperbolic manifold Y . Moreover, the filling slopes are pairwise distinct. So,
M is homeomorphic to Y (σi1, . . . , σ

i
m), for slopes σi1, . . . , σ

i
m on ∂Y . These slopes

all have length more than 2π with respect to some horoball neighbourhood N i

of the cusps. The reason for this is that the slopes si1, . . . , s
i
n(i) were assumed to

have length at least 2π + ε with respect to some horoball neighbourhood of ∂Xi. It
is a consequence of the proof of the hyperbolic Dehn surgery theorem (Theorem
4.2) that this horoball neighbourhood of ∂Xi is closely approximated by a horoball
neighbourhood of the relevant cusps of Y . So the lengths of the corresponding slopes
on ∂Y are also more than 2π. The extra slopes on ∂Y that are filled to form Xi are
pairwise distinct. Hence, their lengths are all eventually more than 2π as well. We
may pass to a subsequence and re-order the slopes so that σi1, . . . , σ

i
k are independent

of i and σik+1, . . . , σ
i
m are pairwise distinct. Note that k < m, as otherwise Xi and

the filling slopes si1, . . . , s
i
n(i) are independent of i. Let Z = Y (σi1, . . . , σ

i
k), which

is a fixed hyperbolic manifold, by the 2π-theorem (Theorem 6.4). Thus, M is
homeomorphic to Z(σik+1, . . . , σ

i
m). So, by hyperbolic Dehn surgery (Theorem 4.2),

the manifold Z(σik+1, . . . , σ
i
m) is hyperbolic for all sufficiently large i. Moreover, as

i tends to infinity, the length of the shortest geodesic in Z(σik+1, . . . , σ
i
m) tends to

zero. Hence, this length is eventually less than the length of the shortest geodesic
in M . This is a contradiction. �

8. Slope length and distance

In this section, we establish the following simple but important relationship
between slope length, slope distance and the area of a cusp torus.

Lemma 8.1. Let s1 and s2 be slopes on a Euclidean torus T . Then

∆(s1, s2) ≤ L(s1)L(s2)

Area(T )
.

Proof. Pick an orientation on s1, making it a primitive element of H1(T ) and extend
it to a basis {s1, s3} for H1(T ). We can visualise these slopes by lifting to the
universal cover of T , which is the Euclidean plane R2. The inverse image of some
basepoint in T is a lattice in R2. We may assume that one of the lattice points is
the origin O. If we lift s1, s2, s3 to paths starting at O, the endpoints of these paths
are lattice points, which we shall also label s1, s2, s3. (See Figure 9.)

Let P be the parallelogram with corners O, s1, s3 and s1+s3. Since {s1, s3} forms
a basis for H1(T ), this parallelogram P forms a fundamental domain and hence has
area equal to the area of T . There are integers p and q such that s2 = ps1 + qs3.
Taking intersection numbers with s1, we obtain

〈s1, s2〉 = p〈s1, s1〉+ q〈s1, s3〉 = ±q.

Let P ′ be the parallelogram with sides s1 and s2. Then its area satisfies

Area(P ′) = |q|Area(P ) = ∆(s1, s2)Area(P ).

But the area of P ′ is at most the product of two adjacent sides. We deduce that
L(s1)L(s2) ≥ ∆(s1, s2)Area(T ), as required. �

This inequality is used to establish the lower bound on L(p/q) that appeared in
the proof of Corollary 7.2. By Lemma 8.1 applied to the slope p/q and the meridian
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O s1

s

s

P'

P

3

2

Figure 9. The picture that leads to the inequality relating slope
distance, slope length and cusp area

slope 1/0,

L(p/q) ≥ ∆(1/0, p/q) Area(T )

L(1/0)
=
|q|Area(T )

L(1/0)
,

where T is boundary of a maximal cusp. We will see in Theorem 9.3 that T has area
at least 3.35. Also, the meridian slope 1/0 on the exterior of a knot in the 3-sphere
has length at most 6. An upper bound of 2π is a consequence of Theorem 6.4, since
the 3-sphere does not admit a hyperbolic structure. But as we will see in Theorem
11.1, this upper bound on the length of the meridian slope can be improved to 6.
Hence,

L(p/q) ≥ |q|3.35

6
≥ (0.558)|q|.

9. The area of the boundary of the maximal cusp

The inequality in Lemma 8.1 is a key method for producing an upper bound on
the distance between exceptional slopes. The area of T is the denominator. Thus, if
one can get good lower bounds on the area of T , we can obtain good upper bounds
on the distance between exceptional slopes. Indeed, much of the main progress in
the hyperbolic approach to Dehn surgery has been made by finding increasingly
good lower bounds on the area of a maximal cusp torus. The following sequence of
theorems provides, in chronological order, some of the known lower bounds on cusp
torus area [5, 1, 7, 14].

Theorem 9.1 (Thurston 1980). The area of a maximal cusp torus is at least
√

3/2.

Theorem 9.2 (Adams 1987). The area of a maximal cusp torus is at least
√

3.

Theorem 9.3 (Cao-Meyerhoff 2001). The area of a maximal cusp torus is at least
3.35.

Theorem 9.4 (Gabai-Meyerhoff-Milley 2009). The area of a maximal cusp torus
is at least 3.7 unless M is a member of one of finitely many explicit families.

We will explain some of the ideas behind these theorems later, and will make
Theorem 9.4 a little more precise. But first we give the proof of Thurston’s result,
which is quite elementary.
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Proof of Theorem 9.1. The boundary ∂N of a maximal cusp lifts to a horosphere
in H3, which is isometric to a Euclidean plane. If we pick a basepoint in ∂N , its
inverse image in the plane is a lattice. Lemma 6.3 gives that the length of each
slope is at least 1 and hence these lattice points are all at least distance 1 from each
other. A theorem of Thue gives that the densest possible disc packing in the plane
is the hexagonal lattice. When the distance between adjacent lattice points of a
hexagonal lattice Λ is exactly 1, R2/Λ has area

√
3/2. Hence, the area of ∂N is at

least
√

3/2. �

These lower bounds on area give the following upper bounds on the distance
between exceptional slopes. Then, applying Lemma 5.3 with a suitably chosen
prime, we also get the following upper bounds on the number of exceptional slopes.

Area(∂N) Upper bound on ∆(s1, s2) Prime p Upper bound on number
using 2π-theorem of exceptional slopes√

3/2 45 47 48√
3 22 23 24

3.35 11 13 14
3.7 10 11 12

Table 1. Lower bounds on cusp torus area and the resulting upper
bounds on the number of exceptional slopes

We can see that the final upper bound on the number of exceptional slopes is 12,
which is not far off the desired bound of 10. To get to this bound, we will use an
improved version of the 2π-theorem. In addition, we will use not just the statement
of Theorem 9.4 but also the underlying techniques developed by Gabai, Meyerhoff
and Milley.

10. The Epstein-Penner decomposition and its dual spine

Let M be a finite-volume hyperbolic 3-manifold with non-empty boundary. Asso-
ciated with a horoball neighbourhood N of the cusps, there is a decomposition of
M − ∂M into ideal polyhedra, which we now describe. This is the Epstein-Penner
decomposition [11]. It is important for many reasons. Dual to the Epstein-Penner
decomposition, there is a spine of M , which is composed of totally geodesic cells.
This will play a significant role in the proof of the 6-theorem and its extensions.

Henceforth, we will fix a horoball neighbourhood N of ∂M . We will choose the
covering map H3 →M − ∂M so that B∞ = {(x, y, z) : z ≥ 1} is one component of
the inverse image of N in the upper half-space model.

The spine is defined as follows:

S = {x ∈M − ∂M : x does not have a unique closest point in N}.

In the case of the figure-eight knot, the spine S is shown in Figure 10. To see that
S is a spine for M , we will exhibit a retraction r of M − S onto N . Each point
x in M − S has, by definition, a unique closest point in N . We define r(x) to be
this point. It is not hard to see that r is a homotopy equivalence and hence each
component of M − S is homotopy equivalent to T 2 × [1,∞). In fact, this implies
that it is homeomorphic to T 2 × [1,∞).
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Geodesic spine S

Boundary of N

Figure 10. The geodesic spine for the figure-eight knot complement.

It also useful to consider the inverse image S̃ of S in H3. This consists of the set
of points in H3 that do not have a unique closest point in the inverse image Ñ of N .
Note that Ñ is a union of horoballs. Hence, H3 − S̃ consists of the points closer to
one horoball than any of the others. For example, consider the set of points closer
to B∞ than any other horoball in Ñ . For each other horoball B in Ñ , the set of
points equidistant between B∞ and B is a totally geodesic plane. The points lying
above all these planes is the component of H3 − S̃ containing B∞. It projects to a
component of M − S.

Dual to the spine S is the Epstein-Penner decomposition. For each 2-cell of S,
there is an edge of the Epstein-Penner decomposition. Each point x in the interior
of the 2-cell has two closest points in ∂N , and so there are two shortest geodesics
from x to N . Pick a point x̃ in the inverse image of x in H3. The two geodesics
emanating from this point lift to geodesics starting at x̃ and ending on distinct
components of Ñ . Thus, the concatenation of the two geodesics is a piecewise
geodesic. If we straighten this to a geodesic and extend it so that it is infinite
in both directions, the result is a geodesic in H3 that projects to the edge of the
Epstein-Penner decomposition dual to the 2-cell.

Similarly, dual to any 1-cell of S, there is a face of the Epstein-Penner decompo-
sition, that is an ideal polygon. Dual to any 0-cell of S, there is an ideal polyhedron.
In the case of the figure-eight knot complement, the Epstein-Penner decomposition
is the ideal triangulation given in Example 1.7.

This decomposition is extremely useful. For example, if we choose N in a
reasonably canonical way (for example by making all the components of N have
equal volumes), then any symmetry of M induces a symmetry of the Epstein-Penner
decomposition. Conversely, any automorphism of the Epstein-Penner decomposition
gives a symmetry of M . This gives a practical way of computing the symmetry group
of any finite-volume hyperbolic 3-manifold. This is used by SnapPy for instance.

11. The 6-theorem

We saw in the previous section that good lower bounds on cusp torus area lead
to good upper bounds on the distance between exceptional slopes. There is another
way of improving the utility of Lemma 8.1, which is to reduce the upper bound
on the length of an exceptional slope. The following result [20, 2] improves the



DEHN SURGERY FROM A HYPERBOLIC PERSPECTIVE 18

2π-theorem, by reducing the critical slope length from 2π to 6. It is known as the
6-theorem.

Theorem 11.1 (Agol, L 2000). Let M be a compact orientable finite-volume
hyperbolic 3-manifold. Let N be a horoball neighbourhood of ∂M . Let s1, . . . , sn be
slopes on distinct components of ∂M . Suppose that, for each slope si, L(si) > 6 with
respect to N . Then M(s1, . . . , sn) is irreducible and atoroidal and has infinite, word
hyperbolic fundamental group. Hence, by Theorem 1.2, M(s1, . . . , sn) is hyperbolic.

Proof outline. We will focus on the conclusion that M(s1, . . . , sn) is irreducible,
because this illustrates the main ideas.

Let L ⊂ M(s1, . . . , sn) be the cores of the attached solid tori. Suppose that
M(s1, . . . , sn) is reducible, and pick a reducing sphere S2 in M(s1, . . . , sn) that
is transverse to L and that intersects L as few times as possible. Let F ⊂ M be
S2 − int(N(L)).

We claim that F is essential in M . In other words, it is incompressible and
boundary-incompressible. For suppose that it were compressible. Then this would
also give a compression disc for S2, which would then compress S2 to two 2-spheres.
At least one of these would have to be a reducing sphere. Since the disc was a
compression disc for the planar surface F , it has to separate the components of ∂F .
Hence, each of these spheres intersects L fewer times than the original S2. This
contradicts our minimality assumption.

The proof that F is boundary-incompressible also uses the fact that |S2 ∩ L| is
minimal. Consider a potential boundary-compression disc D. This intersects ∂M in
an arc, which lies in an annulus A that is the closure of a component of ∂M −∂F . If
this arc is inessential in A, then D can be easily be modified to form a compression
disc for F , which we have shown to be impossible above. On the other hand, if
the arc is essential in A, then it joins distinct components ∂F , which correspond
to points of S2 ∩ L with opposite sign. This disc can then be used to perform an
isotopy of S2 that reduces |S2 ∩ L| by two, as shown in Figure 11. This is again a
contradiction.

D

FL

∂M

isotopy

isotopy

Figure 11. A boundary-compression disc D for F joining distinct
components of ∂F leads to an isotopy that reduces |S2 ∩ L|.

We note that |∂F | ≥ 3, since otherwise F is a disc or an annulus. But any
properly embedded annulus in a finite-volume hyperbolic 3-manifold is boundary-
parallel. Hence, it is boundary-compressible, which we have shown not to be the
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case. Furthermore, if F were a disc, then it would form a compression disc for ∂M .
But each cusp of a hyperbolic manifold M is π1-injective.

As |∂F | ≥ 3, F admits an ideal triangulation, which is just an expression of
F − ∂F as a union of triangles glued along their edges and with their vertices all
removed.

We homotope each edge of the ideal triangulation to a geodesic. The only
obstruction to performing this is if the edge is homotopic into a cusp, but this
implies that the surface is boundary-compressible or compressible, which we have
shown not to be the case. We may then homotope each ideal triangle so that it is
totally geodesic. The result is a (possibly non-embedded) surface F that is said
to be pleated. Since it is a union of hyperbolic ideal triangles glued along their
boundary geodesics, F inherits a hyperbolic metric. So, applying Gauss-Bonnet and
using the fact that F is a planar surface,

Area(F ) = −2πχ(F ) = 2π(|∂F | − 2) < 2π|∂F |.

We will show that each component of ∂F contributes at least 2π to the area of F .
This will lead to a contradiction.

Consider any component of N , which is of the form T 2 × [1,∞). For any t ≥ 1,
let Tt be the torus T 2 × {t}. We will examine how F intersects these tori. Consider
any component X of F ∩N . Far out towards T 2 × {∞}, X looks like a collection
of half-open annuli, each one corresponding to a component of ∂F . In fact, X
can contain at most one of these half-open annuli, since otherwise the topology of
T 2× [1,∞) could be used to build a boundary-compression disc for F . Suppose that
X has exactly one such half-open annulus, corresponding to a single component of
∂F . When t is very large, X intersects the level Tt in a curve of slope si, where
si is the filling slope on the relevant component of ∂M . This need not be true for
every level Tt, since X need not respect the product structure on T 2 × [1,∞). But
nevertheless, we will show that X ∩ Tt contains a curve of slope si for every t ≥ 1.
Note that X ∩ (T 2 × [t,∞)) forms a homology between a component of ∂F and the
curves X ∩ Tt. Hence, X ∩ Tt is homologous to a curve with slope si, and therefore
X ∩ Tt must contain a curve of slope si. Therefore, the length of X ∩ Tt is at least
L(si)/t.

We wish to find a lower bound for the area of X. The co-area formula gives such
a lower bound, in terms of the length of curves X ∩ Tt. Specifically,

Area(X) ≥
∫ ∞
t=1

Length(X ∩ Tt)
t

dt ≥
∫ ∞
t=1

L(si)

t2
dt = L(si).

Thus, we deduce that each component of ∂F contributes at least L(si) to the area
of F . This is a contradiction if L(si) ≥ 2π.

Of course, we would like to find a contradiction if L(si) > 6. To achieve this, we
use the parts of F in M −N . As described in the previous section, associated to N ,
there is a spine S for M made up of totally geodesic cells. Each component of M−S
is a neighbourhood of a component of ∂M . We are focused on the ith component
of ∂M , which intersects ∂F in curves of slope si. Let S̃ be the inverse image of
S in H3. Here, we are working with the upper half-space model for H3 and have
arranged for a component of the inverse image of N to be B∞ = {(x, y, z) : z ≥ 1}
and where B∞ maps to a neighbourhood of the ith component of ∂M . Let Ẽ be
the component of H3 − S̃ containing B∞. Let Ẽt be Ẽ ∩ {(x, y, z) : z = t}. For
t ≥ 1, this is a horosphere, but as t decreases below 1, discs are removed from the
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horosphere, where these discs lie below S̃. These discs, which are not necessarily
disjoint, arise as equidistant planes between B∞ and other components of the inverse
image of N .

P1
P2

E
~

t
{z=t }

1

2

B

B
B

Figure 12. The set Ẽt is obtained from a horosphere by removing
(not necessarily disjoint) discs.

We claim that these discs are closest to each other in the case of the figure-eight
knot and also that these discs are largest in the case of the figure-eight knot. To
see this, consider two such discs that are removed from {(x, y, z) : z = t} to form

Ẽt. These discs lie below two totally geodesic planes P1 and P2 that are equidistant
between B∞ and a horoball B1, and between B∞ and a horoball B2. We now
perform a sequence of modifications to B1 and B2. Each modification will only
make the discs bigger and will bring them closer. At the end of these modifications,
we will reach the arrangement of horoballs as shown in Figures 7 and 13. These
modifications are: slide B1 and B2, without changing their size, until they are
tangent; scale them both by the same Euclidean factor until one (B2, say) is tangent
to B∞; then enlarge B1, keeping it tangent to B2, until it also just touches B∞.
The resulting arrangement of horoballs is the same as the horoballs in the case of
the figure-eight knot, which proves the claim.

Since the construction of Ẽt is invariant under the covering transformations
preserving B∞, we obtain a well-defined surface Et in M − ∂M , which is the image
of Ẽt under the covering map. These sets Et fill up the entirety of the ith component
of M − (S ∪ ∂M).

Consider any component X of F ∩ (M − S) that is incident to a component of
∂F with slope si. The co-area formula again gives a lower bound on the area of X
in terms of the lengths of X ∩ Et as t varies:

Area(X) ≥
∫

Length(X ∩ Et)
t

dt.

So, we need to find a lower bound on the length of X ∩ Et. Now, Et is a torus Tt
with some discs removed. The 1-manifold X ∩ Et can be extended to a 1-manifold
in Tt by inserting arcs into these discs, so that the resulting curves are homologous
to the slope si. Hence, the resulting curves have length at least L(si)/t. We care
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Figure 13. Moving horoballs into the figure-eight knot configuration

about the part of these curves lying in Et. It is possible to show that the length of
X ∩ Et is minimised when the discs removed from Tt are as large as possible and
when the curves are a concatenation of arcs, each one running between discs that
are closest. In other words, these lengths are minimised in the case where M is the
figure-eight knot and X is a totally geodesic surface that is a union of pieces as in
Figure 14. So,

Length(X ∩ Et)
L(si)/t

≥ f(t),

where f(t) is this ratio in the case of the figure-eight knot. So,

Area(X) ≥
∫

Length(X ∩ Et)
t

dt ≥
∫
L(si)

t2
f(t) dt = L(si)

∫
t

f(t)

t2
dt.

This final integral is easily computed: it is the ratio of the area of X to the slope
length in Figure 14. In other words, it is the ratio of (π/3) to 1. Thus, we deduce
that

Area(X) ≥ (π/3)L(si).

This is a contradiction if L(si) > 6 for each i.
The above argument only established the irreducibility of M(s1, . . . , sn), but the

argument can be readily adapted to establish the remaining topological conclusions.
To show that M(s1, . . . , sn) is atoroidal, one considers a punctured torus in M rather
than a punctured sphere. To show that π1(M(s1, . . . , sn)) has infinite fundamental
group, one actually shows that each of the cores of the attached solid tori has
infinite order. Otherwise, there is an immersed disc in M(s1, . . . , sn) with boundary
mapping to a multiple of the core curve. This restricts to a planar surface in M . One
boundary component is not a meridian, but the remaining boundary components
all have slopes in the set {s1, . . . , sn}. The above argument was robust enough that
we can ignore the area contribution from the boundary component that does not
have slope in the set {s1, . . . , sn}.
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{z=t}

Figure 14. The grey region has area π/3. Its intersection with
{(x, y, z) : z = 1} has length 1.

The final claim in the theorem, which is technically the hardest part to prove, is
that π1(M(s1, . . . , sn)) is word hyperbolic. In other words, loops in M(s1, . . . , sn)
satisfy a linear isoperimetric inequality. More precisely, any homotopically trivial
loop ` in M(s1, . . . , sn) bounds a disc with area at most a constant times the length
of `. Here, area is measured using any Riemannian metric on M(s1, . . . , sn). It is
convenient to use a metric that is obtained from the hyperbolic metric on M − ∂M
by removing cusps and attaching some Riemannian solid tori.

We perturb ` a little so that it misses the core curves in M(s1, . . . , sn) and there-
fore corresponds to a loop in M , which we will also call `. Since ` is homotopically
trivial in M(s1, . . . , sn), it bounds a disc D in M(s1, . . . , sn). We suppose that D
intersects L as few times as possible. Its restriction to M is a planar surface F . One
of its boundary components is ` and the others have slopes in {s1, . . . , sn}. The
aim is to find a linear upper bound on the area of F in terms of the length of `.
Then, filling in the Riemannian solid tori to form M(s1, . . . , sn), we will obtain a
disc in M(s1, . . . , sn) with area that is linearly bounded above by the length of `.

The first thing to do is homotope ` to a geodesic ` in M . This homotopy is
realised by a mapped-in annulus. Its area can be bounded above linearly in terms
of the length of `. We now homotope F to a pleated surface F . Unlike in the above
argument, it is no longer the case that each component of ∂F ∩ ∂M contributes
at least 2π to the area of F . We would be able to deduce this conclusion if each
component of ∂F gave rise to a half-open annulus X running from infinity in a cusp
to S. But this cannot be the case for every component of ∂F , as this would imply
that F had too much area. Instead, X must contain parts of ` in its boundary.
Thus, we deduce that for each component of ∂F , we get a definite contribution to
the length of `. So, the length of ` is at least a constant times |∂F |. Thus, the area
of F is bounded above by a constant times the length of ` as required.

Once M(s1, . . . , sn) is shown to be irreducible and to have infinite word-hyperbolic
fundamental group, it is a rapid consequence that M(s1, . . . , sn) is not Seifert fibred.
This is because the fundamental group of any irreducible Seifert fibre space is either
finite or contains a Z × Z subgroup. As discussed above, M(s1, . . . , sn) is also
atoroidal. Hence, by Theorem 1.2, it is hyperbolic. �
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12. The Adams horoballs

In order to improve Theorem 11.1, it will be necessary to have a better picture
of the arrangement of horoballs in H3. Suppose that N is a maximal horoball
neighbourhood of a single end of M − ∂M . As previously, we choose the covering
map H3 → M − ∂M so that B∞ = {(x, y, z) : z ≥ 1} is one component of the
inverse image of N in the upper half-space model.

Consider any other component B1 of the inverse image ofN . The group of covering
transformations of the cusp can be realised as a group of Euclidean translations of
H3 that preserve B∞. This group acts on the inverse image of N , and so sends B1

to a lattice of horoballs in H3, all of which have the same Euclidean diameter. But
it is a key observation of Adams [1] that there is always another horoball in the
inverse image of N that has the same Euclidean size as B1 but that is not in this
lattice.

Since N cannot be expanded any further, there is a horoball B1 in the inverse
image of N that is tangent to B∞. Between B∞ and B1, there is a totally geodesic
2-cell of the spine S described in Section 10. (When ∂M has more than one
component, we have to extend N to a maximal horoball neighbourhood of all of
∂M in order for this spine to be defined.) Dual to this 2-cell is an edge of the
Epstein-Penner decomposition. Pick an orientation on this edge. Then this edge
intersects the cusp torus at two points, one point entering N and one point leaving
it. Thus, incident to B∞, there are two full-sized horoballs that do not differ by the
covering transformations of B∞. These are called the Adams horoballs. (See Figure
15.)

If we consider their vertical projection onto ∂B∞ and thence onto ∂N , we see
two discs with disjoint interiors. So, the argument establishing Theorem 9.1 can be
improved. Again, Thue’s theorem gives that the densest possible packing of discs of
diameter 1 in the plane is given by the hexagonal packing. But we now have an
arrangement of discs in ∂B∞ that projects to two discs in ∂N with disjoint interiors
and so the area of ∂N is at least

√
3. This proves Theorem 9.2.

{z = 1}

B 

B 1

∞

S S

These project to the same geodesic in M

Adams horoballs

Figure 15. The Adams horoballs are two full-sized horoballs that
do not differ by a covering transformation preserving B∞
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13. Cusp area due to Cao and Meyerhoff

The above argument of Adams used the two Adams horoballs, both of which
have Euclidean diameter 1. But how close can these horoballs be? If we could argue
that they are not too close, then we would obtain an improvement to Adams’s lower
bound on the area of the maximal cusp torus.

So consider two Adams horoballs B1 and B2 that are as close as possible to each
other. We have two bi-infinite geodesics γ1 and γ2 running from B1 to B∞, and
from B2 to B∞. These two geodesics map to the same geodesic in M (but with
opposite orientations). We also have a geodesic γ3 joining the points at infinity of
B1 and B2. Cao and Meyerhoff showed that γ3 maps to a different geodesic in M .
In particular, the intersection points between γ3 and ∂B1 ∪ ∂B2 map to points in
∂N that are different from the images of γ1 ∩ ∂B∞ and γ2 ∩ ∂B∞. Thus, about
these points in ∂N , we actually get discs in ∂N arising from four horoballs.

If B1 and B2 were to touch, then γ3 would have zero length outside of N , and
so these four horoballs would all have maximal size. Hence, in this case, the area
of ∂N would be at least 2

√
3. On the other hand, if B1 and B2 were to be some

positive distance apart, then we would obtain an improvement to our application
of Thue’s theorem. Cao and Meyerhoff [7] formalised this into a computer-assisted
analysis, thereby proving Theorem 9.3.

14. Orthoclasses

It is obvious from the above discussion that it is important to understand how
close two horoballs in the inverse image of N can be. We can always perform a
covering transformation taking one of these to B∞. So, equivalently, we need to
understand how close a horoball B can be to B∞. The orthodistance of B is just the
hyperbolic distance between B and B∞. If a horoball has orthodistance d, then a
simple calculation in hyperbolic geometry gives that its Euclidean diameter is e−d.

Joining B to B∞, there is a geodesic (that is not necessarily an edge of the
Epstein-Penner decomposition). But if we pick an orientation on this geodesic, then
we see that its image in M intersects ∂N in two points, one point where the geodesic
goes perpendicularly into N and one point where the geodesic leaves N . Thus, we
see that, just as in the case of the Adams horoballs, they come in pairs. The formal
definition is as follows.

Definition 14.1. Let B1 and B2 be two horoballs in the inverse image of N . We say
that they are in the same orthoclass if either they differ by a covering transformation
preserving B∞ or there is a covering transformation g such that g(B1) = B∞ and
g(B∞) = B2.

Thus, we see that when two horoballs are in the same orthoclass, they have the
same orthodistance to B∞ and the same Euclidean diameter.

We order the orthodistances of the orthoclasses into increasing order: 0 = o(1) ≤
o(2) ≤ . . . . We let en = eo(n)/2. Thus, the Euclidean diameter of the horoballs in
this orthoclass is e−2n .

15. Improving the 6-theorem

A particularly important quantity is e2. This corresponds to the second orthoclass.
Thus, e−22 is the diameter of the second-largest horoballs, or more specifically, the
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largest horoballs that are not the Adams horoballs. We have the following extension
of the 6-theorem [21].

Theorem 15.1 (L-Meyerhoff 2015). Let M be a compact orientable 3-manifold,
with boundary a torus and with interior admitting a complete finite-volume hyperbolic
structure. Let s be a slope on ∂M with length more than

πe2
arcsin(e2/2)

if e2 ≤
√

2,

2πe2

2 arcsin(
√

1− e−22 ) + e22 − 2
√
e22 − 1

if e2 >
√

2.

Then, M(s) is hyperbolic.

This improves Theorem 11.1 in the following sense. We denote by L(e2) the
critical slope length that is given in the above result. A graph of L(e2) is shown in
Figure 16. When e2 = 1, Theorem 15.1 gives the same critical slope length as the
6-theorem. But as e2 increases, the critical slope length decreases, tending to zero.

1.2 1.4 1.6 1.8 2.0
e2

5.0

5.2

5.4

5.6

5.8

6.0

Critical Slope Length LIe2M

Figure 16. A plot of the function given in Theorem 15.1.

Note that there is a slight discrepancy between the statement of Theorem 15.1
and the version given in [21]. Theorem 15.1 requires the length of s to be more than
the given function, whereas the version in [21] only required the length of s to be at
least this function. However, the version in [21] is incorrect.

The idea behind the proof is as follows. When e2 = 1, it gives no improvement
over the 6-theorem. But for larger values of e2, we have the following two effects:

(1) the Euclidean distance between the centres of the Adams horoballs is at
least e2 > 1;

(2) apart from the two Adams horoballs and their translates under the group
of covering transformations that preserve B∞, all other horoballs in the
inverse image of N have Euclidean diameter at most e−22 < 1.

These two observations allow us to get better estimates than in the proof of the
6-theorem. Specifically, in that proof, we considered a planar surface F properly
embedded in M , with boundary curves having slope s. We homotoped F to a
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pleated surface F . We considered the spine S and the submanifold M − S which is
topologically just T 2 × [1,∞). This is a union of the surfaces Et, each of which is
the torus Tt minus some (not necessarily disjoint) discs. The key part of the proof
was to find a lower bound on the area of each component X of F − S that runs up
to infinity in the cusp. The point is that if we could show that the area of each such
component X is more than 2π, then we would obtain the desired contradiction to
the existence of F . Using the co-area formula, we obtain that this area is least

Area(X) ≥
∫

Length(X ∩ Et)
t

dt.

In the current setting, we can find better lower bounds on the length of X ∩Et than
in the proof of the 6-theorem. We obtain that

Length(X ∩ Et)
L(s)/t

≥


1 if t ≥ 1;

max
{

0, 1− 2
e2

√
1− t2

}
if min{1/

√
2, 1/e2} ≤ t ≤ 1;

0 otherwise.

Geometrically, this is the ratio between the length of X ∩ Et and the slope length
in the case shown in Figure 17, at least when e2 ≤

√
2. This arrangement in Figure

17 is where two full-sized horoballs are exactly e2 apart (which is as close as they
can be).

t 1 1

1- t 2

2e

{z=t }

B

P1 P2
B1 B2

arcsin(e  /2)2

∞

Figure 17. Two full-sized horoballs B1 and B2 that are close as
they can be. Equidistant between B1 and B∞ is a totally geodesic
plane P1, and P2 is defined similarly. The shaded surface above P1

and P2 has area 2 arcsin(e2/2) and contributes e2 to slope length.

Applying the co-area formula gives a strict lower bound of 2π on the area of X,
in the situation where the length of the slope s is more than the quantity in the
theorem. This proves Theorem 15.1.

What good does this do us? Well, we already know that when e2 = 1, the
second-largest horoballs have diameter 1 and so the area of ∂N is at least 2

√
3. This
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constitutes an improvement to Theorem 9.3. On other hand, when e2 > 1, then we
get an improvement to the 6-theorem.

But to fully exploit these observations, we need to use the following theory
developed by Gabai, Meyerhoff and Milley [14].

16. Triples and Mom manifolds

Definition 16.1. A (p, q, r)-triple is a triple of horoballs {B1, B2, B3} in the inverse
image of N such that

(1) B1 and B2 lie in the rth orthoclass;
(2) B1 and B3 lie in the qth orthoclass;
(3) B2 and B3 lie in the pth orthoclass.

One useful way to think of triples is when considering the Epstein-Penner decom-
position. Suppose that a face of this is an ideal triangle. Then the three geodesics
in its boundary give rise to three orthoclasses, o(p), o(r) and o(q), say and hence a
(p, q, r)-triple. The key idea of Gabai, Meyerhoff and Milley is that when there are
enough different triples, then this actually forces the Epstein-Penner decomposition
to be of a certain form, enough to be able to determine a lot of information about
the topology of M .

A fairly elementary but important fact about triples is as follows.

Lemma 16.2. There are no (n, n, n)-triples for any positive integer n.

We have already seen this in the case n = 1. This is because a (1, 1, 1)-triple
would give rise to three horoballs, one of which is B∞ say, and the other two are
full-sized horoballs B1 and B2. The three geodesics joining the points at infinity
of these horoballs would then project to the same geodesic in M . But we already
mentioned in Section 13 that this could not be the case.

Definition 16.3. A geometric Mom-n structure is a collection of n triples

(p1, q1, r1), . . . , (pn, qn, rn),

no two of which are equivalent under the action of π1(M) and with the property
that p1, q1, r1, . . . , pn, qn, rn all lie in the same n-element subset of Z.

The rationale for this definition is as follows. We saw above that the edges
of the Epstein-Penner decomposition determine orthoclasses, and when the faces
of the Epstein-Penner decomposition are triangles, then these faces correspond
to triples. Conversely, each orthoclass determines a geodesic running from the
cusp to the cusp. Each triple determines a mapped-in triangle attached to them.
Gabai, Meyerhoff and Milley show that, under certain geometric hypotheses, these
geodesics and triangles can actually be used to form a cell complex embedded in M .
More specifically, one starts with the horoball neighbourhood N , and attaches to it
1-cells that run along the geodesics in the orthoclasses and 2-cells corresponding
to the triples. Since in a geometric Mom-n structure, there are as many triples as
orthoclasses, this space has Euler characteristic zero. Hence, when we thicken it up,
it forms a 3-manifold M ′ with zero Euler characteristic embedded within M . As is
true of any compact 3-manifold, χ(∂M ′) = 2χ(M ′). Hence, as long as we know that
M ′ has no 2-sphere boundary components, we deduce that ∂M ′ is a collection of
tori. Gabai-Meyerhoff-Milley show that, again under certain geometric hypotheses,
each component of ∂M ′ either bounds a solid torus disjoint from M ′ or is parallel
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to a component of ∂M . In other words, M is obtained by Dehn filling M ′. But M ′

is built in a very specific way, and so they can prove the following result.

Theorem 16.4 (Gabai-Meyerhoff-Milley 2009). Let M be a cusped finite-volume
orientable hyperbolic 3-manifold. If M contains a geometric Mom-2 involving the
o(1) and o(n) orthoclasses, then either en ≥ 1.5152 or M is obtained by Dehn filling
one of the manifolds m125, m129 or m203.

Here, the manifold notation is from the census [6]. They also prove a result about
Mom-3 manifolds. To state it, we need the following terminology. A geometric
Mom-3 is torus-friendly if it does not possess exactly two triples of type (p, q, r) for
any set of distinct positive indices p, q and r.

Theorem 16.5 (Gabai-Meyerhoff-Milley 2009). Let M be a cusped finite-volume
orientable hyperbolic 3-manifold. If M contains a torus-friendly geometric Mom-3
involving the orthoclasses o(1), o(2) and o(3), then either e3 ≥ 1.5152 or M is
obtained by Dehn filling one of the manifolds m412, s596, s647, s774, s776, s780,
s785, s898 or s959.

17. The lower bound on cusp area due to Gabai-Meyerhoff-Milley

The lower bound on cusp torus area in Theorem 9.4 was proved using Mom
technology, together with a computer assisted proof. In fact, we can now describe
the families of manifolds mentioned in the theorem’s statement. They are just the
manifolds obtained by Dehn filling one of m412, s596, s647, s774, s776, s780, s785,
s898 or s959. So, if we assume that M is not of this form, then we deduce that
either e3 ≥ 1.5152 or M does not contain a torus-friendly geometric Mom-3.

To get the improved lower bound on area, we look at the first three orthoclasses.
Corresponding to them, there are three geodesics in M , that intersect the cusp torus
∂N at 6 points. The idea is to place discs in the cusp torus of certain sizes at these
6 points. The exact sizes of these discs are a little complicated. For example, at
each of the two points of intersection between ∂N and the o(2) geodesic, a disc of
radius (e4/e2)− (e4/2) is placed. These sizes are chosen so that if there is an overlap
between two of these discs, then we deduce the existence of a triple involving some
of the first three orthoclasses. Thus, assuming that there is no geometric Mom-2
or torus-friendly geometric Mom-3, then the set of overlaps between these discs is
restricted. Hence, one can get an explicit lower bound on the area of ∂N , in terms
of e2, e3 and e4, by adding up the area of these discs and then subtracting the area
of possible overlaps.

The computer-assisted part of the proof is an analysis of the set of possible values
of e2, e3 and e4. The first step is to reduce to a bounded set of values. By definition,
e2, e3 and e4 are all at least 1. It is also not too difficult to show that if they are
large then the area of ∂N is large. For example, we may place discs of radius e2/2
about the two o(1) points in ∂N . These discs cannot overlap and so we deduce that

the area of ∂N is at least
√

3(e2)2, by Thue’s theorem. So if e2 ≥ 1.462, then the
area of ∂N is more than 3.7, as required.

Once we have restricted to a bounded set of possible values of e2, e3 and e4 to
consider, we divide this set up into little boxes. For each box, we have an explicit
lower bound on the area of ∂N . One can think each box as specifying values of
e2, e3 and e4, but with small error bars. The lower bound on the area of ∂N is a
function of e2, e3 and e4 and so one gets a lower bound on the area, with explicit
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error, and hence an absolute lower bound. Since a computer is being used, the
errors arising from floating point arithmetic must also be taken into account. But
they can too can be bounded explicitly.

By running over the parameter space of possible values of e2, e3 and e4, an
explicit lower bound of 3.7 for the area of the maximal cusp torus is established.

18. The maximal number of exceptional Dehn surgeries

The proof of Theorems 4.5 and 5.2 builds on the above analysis. One of the
key points is that when e2 is close to 1, then the area lower bounds established by
Gabai, Meyerhoff and Milley are good enough to prove Theorems 4.5 and 5.2. As e2
increases, the area lower bounds due to Gabai, Meyerhoff and Milley become worse,
but then the improvement to the 6-theorem given by Theorem 15.1 becomes useful.

In fact, the parameter space that is used in [21] is 6-dimensional. Three of the
parameters are e2, e3 and e4, as above. The other three are used to specify the size
and shape of the cusp torus. The advantage of this approach is that, having an
explicit cusp shape, we can compute directly the number of slopes less than the
critical slope length provided by Theorem 15.1.

For each point in the parameter space, we obtain a lower bound on the cusp area.
If this is definitely more than the area as specified by the cusp shape parameters,
then we know that this cannot correspond to a manifold. We can also exclude some
other points in the parameter space, using various tests. For example, one of these
tests determines whether there is a possible location for the two Adams horoballs
that does not force the existence of a geometric Mom-2.

Thus, the computer-assisted part of the proof is somewhat similar to that used
by Gabai, Meyerhoff and Milley. One firsts bounds the parameters to a compact
set. Then one divides this set into little boxes. For each box, we determine whether
it can be excluded by one of the above tests. If a box cannot be excluded, then the
set of slopes with length at most the bound in Theorem 15.1 is computed. For each
box, the computer finds that the maximal number of slopes is 10 and the maximal
distance between any two such slopes is 8, thereby nearly completing the proof of
Theorems 4.5 and 5.2.

All that remains is to consider the manifolds M that are obtained by Dehn
filling one of m412, s596, s647, s774, s776, s780, s785, s898 or s959. For any given
manifold M , it is not hard to determine its exceptional Dehn fillings. The filling
slopes with length more than 6 are not exceptional, and so all that one needs to
do is to enumerate all the slopes with length at most 6, perform the Dehn filling
and determine whether the resulting manifold is hyperbolic. This is not particularly
hard to do in practice. Of course, there are actually infinitely many 3-manifolds M
that are obtained by Dehn filling one of m412, s596, s647, s774, s776, s780, s785,
s898 or s959, because they all have at least two cusps. But it is possible to determine
the exceptional fillings on any such manifold, essentially by filling one boundary
torus of the relevant census manifold at a time. We refer the reader to [21] for more
details.

19. Exercises

(1) Download SnapPy [9]. Familiarise yourself with it, so that you can form
a picture of the cusp neighbourhood of the knots 41 and 61. This gives a
view of upper half-space from infinity. The inverse image of the cusp is a
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collection of horoballs, including {(x, y, z) : z ≥ 1}. A horoball is full-sized
if its Euclidean diameter is 1. Up to the action of the fundamental group of
the cusp, how many full-sized horoballs does 41 have? What about 61?

You will not need SnapPy to answer the remaining questions, but it is a
very useful tool.

(2) Show that S1 ×D2 admits a hyperbolic structure (with infinite volume). In
fact, prove that there are uncountably many such structures that can be
distinguished by the complex length of their unique simple closed geodesic.
(The complex length measures not just the length of the geodesic but also
the amount of twisting as one travels along the geodesic.)

(3) What is the area of the maximal cusp torus for the figure-eight knot com-
plement?

(4) Determine the length of the second shortest slope on the figure-eight knot
exterior.

(5) Let p/q and p′/q′ be slopes on the boundary of the figure-eight knot exterior.
Show that there is a homeomorphism of the figure-eight knot exterior taking
p/q to p′/q′ if and only if p′/q′ = ±p/q. (A version of Mostow-Prasad
rigidity implies that any homeomorphism of a finite-volume hyperbolic
3-manifold to itself is homotopic to an isometry. You may assume this.)

(6) (a) Let s be a Euclidean geodesic on the boundary of a cuspN = T 2×[1,∞).
Let s × [1,∞) be the vertical annulus over it. Compute the area of
s× [1,∞) in terms of the length of s.

(b) What is the relationship between the volume of N and the area of ∂N?
(7) Let S be a collection of distinct slopes on the torus.

(a) Show that if ∆(s, s′) ≤ 1 for each s, s′ ∈ S, then |S| ≤ 3.
(b) Show that if ∆(s, s′) ≤ 2 for each s, s′ ∈ S, then |S| ≤ 4.

(8) Show that for any finite-volume orientable hyperbolic 3-manifold M , there
is a choice of horoball neighbourhood of ∂M where all the cusps have the
same volume. Show that any two such horoball neighbourhoods determine
the same geodesic spine and hence the same Epstein-Penner decomposition.

(9) (Harder) Complete the proof of Theorem 3.4 by showing that M[ε,∞) is
atoroidal, where M is a finite-volume orientable hyperbolic 3-manifold and
ε is a Margulis constant.

(10) (Harder) Let M be the exterior of the figure-eight knot. Show that provided
p/q avoids a finite set of slopes, M(p/q) is homeomorphic to M(p′/q′) if
and only if p′/q′ = ±p/q.
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