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Abstract

This thesis looks at the following question: If G is a finitely presented

group and

G > G1 > G2 > . . .

is a descending sequence of finite index subgroups, then how fast does the

rank of H1(Gi; Fp) grow compared with the index |G : Gi|?
One of our preliminary theorems gives a lower bound on the rank of the

first mod-p homology of a normal subgroup H of index a power of p, in

terms of the mod-p homology of the containing group G and the structure

of the quotient p-group G/H . This bound generalizes a similar result of

Lackenby in [Lac09b], and we use it to strengthen a result of that paper

from the case p = 2 to all primes.

The main result of the thesis concerns the case where G is the fundamen-

tal group of a finite-volume hyperbolic 3-manifold, and the subgroups in

the descending sequence {Gi} are congruence subgroups in G. We study

the structure of the profinite group SL(2, RP), where RP is the P-adic

completion of a ring of integers in a number field, identifying subgroups

of SL(2, RP) which are uniformly powerful. We show that if G is the fun-

damental group of a finite-volume hyperbolic 3-manifold then it can be

approximated by SL(2, RP) for some choices of R and P. More precisely,

there is a correspondence between certain congruence subgroups of G and

congruence subgroups of SL(2, RP). We use this to prove our most gen-

eral theorem, Theorem 5.3.1. A simple corollary of Theorem 5.3.1 is that

for any ǫ > 0 the group G has a finite index subgroup G′ with congruence

subgroups {G′i} such that the rank of H1(G′i; Fp) grows at least as fast as

|G′ : G′i|
5
6
−ǫ.
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Chapter 1

Introduction

1.1 Why Study Homology Growth?

This thesis is concerned with homology growth in finite index subgroups of hyperbolic

3-manifold groups. To begin with, we look at what homology growth is, and why it’s

worth studying.

Let G = π1(M) where M is a finite-volume hyperbolic 3-manifold. A well-known

conjecture is the following:

Conjecture 1.1.1. G is large. That is, G has a finite index subgroup H < G such

that H admits a surjective homomorphism to a non-abelian free group.

One way to investigate this conjecture is to study the homology growth of G. Let

G be any finitely presented group.

Definition 1.1.2. Let F be a field. The betti numbers of G are

bm(G; F) = rank(Hm(G; F)).

Two questions one might ask are:

1. Given

G = G1 > G2 > . . . (1.1)

where |G : Gi| is finite and strictly increasing with i, and a finite field Fp, how

fast does b1(Gi; Fp) grow compared with |G : Gi|?

1



2. Which such descending sequence has the fastest growth?

These questions are relevant because if a group is large then it has descending se-

quences with very fast homology growth. As an example consider F—the non-abelian

free group on m generators. There are normal subgroups of any index, and if F ′ is

index n then b1(F ′; Fp) = n(m− 1) + 1. In this case, for any descending sequence of

finite index subgroups

F = F1 > F2 > . . . (1.2)

b1(Fi; Fp) grows linearly with |F : Fi|. Suppose the group G is large and H < G is

of finite index and f : H → F is a surjective homomorphism to a non-abelian free

group. Let Gi = f−1(Fi) for some descending sequence of finite index subgroups as

in (1.2). Then |G : Gi| = |G : H||F : Fi| and b1(Gi; Fp) ≥ b1(Fi; Fp), hence

b1(Gi; Fp) ≥ |G : Gi|
(m− 1)

|G : H| + 1.

In particular, b1(Gi; Fp) grows linearly with |G : Gi|.
For a large group question 2 can easily be answered. We have seen that a large

group has a descending sequence of finite index subgroups with linear growth of Fp-

homology. In fact linear growth is the fastest one could hope for: Let G be generated

by the finite set X, let F be the free group on X, and let f : F → G be the induced

homomorphism. Given a descending sequence of finite index subgroups as in (1.1) let

Fi = f−1(Gi), then b1(Fi; Fp) grows linearly with |F : Fi|, but also |G : Gi| = |F : Fi|
and b1(Gi; Fp) ≤ b1(Fi; Fp).

If G does not have a descending sequence (1.1) where b1(Gi; Fp) grows linearly

with |G : Gi| then G is not large. The interesting thing is that there are partial

converses to this.

A descending series as in (1.1) is called an abelian p-series for G if each Gi+1 is

normal in Gi and Gi/Gi+1 is an elementary abelian p-group for all i ≥ 1. An abelian

p-series {Gi} has rapid decent if

inf
i

rank(Gi/Gi+1)

|G : Gi|
> 0.

The following is Theorem 1.14 in [Lac].
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Theorem 1.1.3 (Lackenby, [Lac]). Let G be a finitely presented group, and let p be

a prime. Then the following are equivalent:

1. G is large; and

2. some finite index subgroup of G has an abelian p-series with rapid decent.

If {Gi} is an abelian p-series for G then rank(Gi/Gi+1) ≤ b1(Gi; Fp), so the second

item of the above theorem immediately implies that G has a sequence (1.1) with

linear growth of Fp-homology. However, it is unknown whether a group G which has

a descending sequence with linear growth of Fp-homology must have a finite index

subgroup with an abelian p-series of rapid decent. The following theorem of Lackenby

(Theorem 1.1, [Lac09a]) gives a partial answer.

Theorem 1.1.4 (Lackenby, [Lac09a]). Let G be a finitely presented group, let p be

a prime and suppose that G ≥ G1 � G2 � . . . is a nested sequence of finite index

subgroups, such that each Gi+1 is normal in Gi and has index a power of p. Suppose

that {Gi} has linear growth of Fp-homology. Then, at least one of the following much

hold:

1. Some Gi admits a surjective homomorphism onto (Z/pZ) ∗ (Z/pZ) and some

normal subgroup of Gi with index a power of p admits a surjective homomor-

phism onto a non-abelian free group; in particular, G is large; or

2. G has Property (τ) with respect to {Gi}.

Property (τ) will not be considered in this thesis, so we don’t define it, but a

definition can be found in [Lac09a].

In summary, finding any of the following inside a hyperbolic 3-manifold group

would be significant:

1. Abelian p-series (such as the derived p-series) with rapid decent;

2. descending subgroups with linear homology growth; or

3. descending subgroups without Property (τ).
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1.2 Summary of Results and Related Work

A first step to proving results about homology growth is to address the following

question: If G is group and H is a finite index normal subgroup, and we know the

Fp-homology of G and the structure of G/H what can be said about the Fp-homology

of H?

There are many previous results in this area. In [SW92] Shalen and Wagreich

prove a result for a specific case.

Definition 1.2.1. If p is a prime and G is a group then Pi(G) is the ith term of the

lower p-central series. That is, Pi(G) is defined inductively by

Pi(G) = [G, Pi−1(G)]Pi−1(G)(p),

where P1(G) = G and for any H < G, [G, H ] = 〈ghg−1h−1 : g ∈ G, h ∈ H〉 and

H(p) = 〈hp : h ∈ H〉.

Lemma 1.2.2 (Shalen and Wagreich). Let p be a prime and M a closed 3-manifold—

orientable if p is odd. Let Γ = π1(M) and Γ′ = P2(Γ) then

b1(Γ′; Fp) ≥
(

b1(Γ; Fp)

2

)
.

In [Lac09b] Lackenby proves the following theorem:

Theorem 1.2.3 (Lackenby [Lac09b]). Let G be a group such that b1(G; Fp) and

b2(G; Fp) are finite, for some prime p. Let H be a finite index normal subgroup such

that G/H is an elementary Abelian p-group of rank n. Then, for any integer l between

0 and n,

b1(H ; Fp) ≥
l+1∑

r=2

(
n

r

)
(r − 1) + (b1(G; Fp)− n)

l∑

r=0

(
n

r

)
− b2(G; Fp)

l−1∑

r=0

(
n

r

)
.

Moreover, if p = 2,

b1(H ; Fp) ≥ b1(G; Fp)

l∑

r=0

(
n

r

)
− b2(G; Fp)

l−1∑

r=0

(
n

r

)
−

l+1∑

r=1

(
n

r

)
.
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In chapter 2 we prove:

Theorem 2.3.1. Let G be a finitely generated group and H a normal subgroup such

that G/H is a finite p-group. Let M be the group ring Fp(G/H) and J the augmen-

tation ideal in M . For each integer l ≥ 1 the following inequality holds,

b1(H ; Fp) ≥ b1(G; Fp) · dim(M/J l)− b2(G; Fp) · dim(M/J l−1)

− dim(J/J l+1).

This is stronger than previous results as G/H need not be abelian. Moreover, in

the abelian case it provides stronger bounds for p > 2. Chapter 2 is broken into three

parts: In section 2.1 some background on Fox derivatives is set out. In section 2.2 we

describe a particular presentation for the group G which has certain nice properties.

This presentation was used in [Lac09b], but works just as well for our purposes.

Section 2.3 is devoted to proving Theorem 2.3.1.

The first application of Theorem 2.3.1 is in chapter 3. Before stating the theorem

of chapter 3 we need two definitions.

Definition 1.2.4. A group G has the b2 − b1 property with respect to the prime p if

there exists a positive number N such that for all finite index subgroups H < G we

have b2(H ; Fp)− b1(H ; Fp) ≤ N .

Definition 1.2.5. Let (xi)
∞
i=1 and (yi)

∞
i=1 be positive real sequences. We write xi =

Ω(yi) if xi

yi
is bounded away from zero.

Theorem 3.2.2. Let G be a finitely generated group that has the b2−b1 property with

respect to the prime p. Suppose that

sup{b1(Gi; Fp) : Gi is a finite index subgroup of G} =∞.

Then G has a nested sequence of finite index normal subgroups {Gi} such that

b1(Gi; Fp) = Ω

(
[G : Gi]√

log[G : Gi]log log[G : Gi]

)
.
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This was proved in [Lac09b] for the case p = 2. It is proved for all primes using the

stronger bounds of Theorem 2.3.1. In order to estimate the dimensions of J l−1/J l we

use Jennings’ Theorem and the Central Limit Theorem from probability. Jennings’

Theorem and dimension subgroups are described in section 3.1. In section 3.2 we do

the work of estimating the dimension of J l−1/J l. After making this estimation the

proof given in [Lac09b] carries over, so we only provide a summary of it.

In Chapter 4 we present some background on number theory, quaternion algebras,

profinite groups, and hyperbolic space. None of this is original work, but it is all used

in Chapter 5.

Chapter 5 looks at the congruence subgroups of a hyperbolic 3-manifold group.

We start in section 5.1 by studying the structure of SL(n, RP), proving the following:

Theorem 5.1.1. Let R be the ring of integers in a number field, and let P be a prime

ideal lying over the rational prime p, with ramification index e. For m ≥ 0 let Gm be

the principal congruence subgroup

Gm = Ker (SL(n, RP)→ SL(n, R/Pm)) .

Let l ≥ 2 if p = 2 and l ≥ 1 if p > 2. Then Gel is a uniformly powerful pro-p group

with |Gel : P2(Gel)| = (n2 − 1) · rank(R/Pe). Moreover Pi(Gel) = Ge(l+i−1).

The proof of this theorem is adapted from the proof of Theorem 5.2 in [DdSMS99],

and the lemmas preceding the proof draw heavily on ideas from that same book.

In section 5.2 we prove:

Theorem 5.2.1. Let Γ be the fundamental group of a finite-volume hyperbolic 3-

manifold. Let k be the trace field of Γ, and suppose k coincides with the invariant

trace field of Γ. Let R be the ring of integers in k and let P be a prime ideal in R.

As long as P is not in some finite list of ideals there is an injection

Γ →֒ SL(2, RP)

such that the image of Γ is dense in SL(2, RP) (where SL(2, RP) has the profinite

topology).
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The condition that the trace field and the invariant trace field of Γ should coincide

is not a strong one. The invariant trace field of Γ equals the invariant trace field of

Γ(2), and the invariant trace field of Γ(2) coincides with the trace field of Γ(2). So, to

satisfy to satisfy the hypothesis, at worst we need to pass to Γ′ = Γ(2).

Theorem 5.2.1 is a kind of strong approximation theorem for hyperbolic 3-manifold

groups. There are many versions of the strong approximation theorem in the lit-

erature (e.g. [MVW84], [Pin00], [Wei84]). Typically the hypothesis of a strong

approximation-type theorem is that Γ is a Zariski-dense subgroup in an algebraic

group G(k); the conclusion is that Γ (or some finite index subgroup of Γ) is dense

(in the congruence topology) in
∏

G(RP). (The product is taken over all but finitely

many prime ideals P in R.) However the strong approximation theorems in the lit-

erature seem to split in to two cases: those which restrict to k = Q; or those which

require the machinery of group schemes to apply. In all cases the proofs of these

theorems are long and use a lot of technology, so it seemed worthwhile to have a

simple statement and proof of an approximation theorem for hyperbolic 3-manifold

groups.

In section 5.3 we use the knowledge of the structure of SL(2, RP), the approxi-

mation theorem, and Theorem 2.3.1 to prove Theorem 5.3.1—our main theorem on

the homology growth of congruence subgroups in hyperbolic 3-manifold groups.

Theorem 5.3.1. Let Γ be the fundamental group of a finite-volume hyperbolic 3-

manifold, and let R be the ring of integers in the invariant trace field of Γ. For all but

finitely many prime ideals P in R the following holds: Γ has a finite index subgroup

Γ′ with the following properties.

1. Γ′ embeds in SL(2, RP), where RP is the P-adic completion of R. Moreover Γ′

is dense in SL(2, RP).

2. Let r = rank(R/P) and let ǫ > 0. Let p be the characteristic of R/P. Let

Γ′n = Ker(Γ′ → SL(2, R/Pn)) (the congruence subgroups), then

b1(Γ′ni
; Fp) > |Γ′n1

: Γ′ni
| 3r−1

3r
−ǫb1(Γ′n1

; Fp),

7



for some integers n1 < n2 < . . ..

As we see, the larger r is, the closer this is to linear growth.

Finally, we provide a simple corollary to the main theorem, which also demon-

strates how it would be applied to specific examples.

Corollary 5.3.7. Let Γ be the fundamental group of a finite-volume hyperbolic 3-

manifold. Then, for infinitely many prime integers p, and for any ǫ > 0, Γ has a

finite index subgroup Γ′ with a sequence of congruence subgroups

Γ′ = Γ′n1
> Γ′n2

> . . .

such that b1(Γ′ni
; Fp) > |Γ′n1

: Γ′ni
| 56−ǫb1(Γ′n1

; Fp).

8



Chapter 2

Finding Homology in Index pn

Normal Subgroups

The aim of this chapter is to prove Theorem 2.3.1. Given a finitely generated group

G and a normal subgroup H of index a power of p, Theorem 2.3.1 gives a lower bound

for the first mod-p homology of H , in terms of the mod-p homology of G and the

structure of G/H .

In Section 2.1 we describe some background on Fox derivatives and how they are

used. In Section 2.2 we describe a group presentation that was used by Lackenby in

[Lac09b] and that we will use here. Finally in section 2.3 we prove Theorem 2.3.1.

2.1 2-Complexes and Fox Derivatives

Let 〈X|R〉 be a presentation of a group G.

We can make a 2-complex K which has fundamental group G in the following way.

Take a single vertex v. For each x ∈ X add a directed edge ex which has v as its start

and end point. This will be the 1-skeleton K(1) of K. For each r ∈ R take a 2-cell Fr.

The word r spells a closed path in K(1), where x corresponds to crossing the edge ex

in the forward direction and x−1 corresponds to crossing the edge ex in the reverse

direction. Attach the 2-cell Fr to K(1) such that ∂Rr is the loop spelled by r. This

2-complex then has fundamental group π1(K, v) ∼= G.

Let H be a subgroup of G, and let K̃ be the covering space of K corresponding

to H . The cover p : K̃ → K is |G/H|-sheeted. In particular, after choosing a base

9



vertex b in K̃ to be labeled by the identity in G/H , the 1-skeleton of K̃ is a Cayley

graph for G/H . Then there is a natural bijection from K̃(0) to G/H such that b is

mapped to the identity.

We are interested in the homology of H . Consider the cellular 1-chains of H with

coefficients in Fp. These can be described as elements of M |X|, where M is the group

ring Fp(G/H), in the following way: Fix some order on X, so X = {x1, x2, . . .}. If

γ ∈ G/H then the element

(0, . . . , 0, γ, 0 . . . , 0) ∈M |X|,

where γ appears in the ith place, corresponds to the cellular 1-chain 1 · e, where e is

the xi labeled edge emanating from the vertex in K̃ labeled by γ.

Fox derivatives can be used to convert paths in K̃ to cellular 1-chains.

Definition 2.1.1. Let F be the free group on X and let x be an element of X. The

Fox derivative is a map
∂

∂x
: F → ZF

defined by:

1. ∂
∂x

x = 1 and ∂
∂x

x−1 = −x−1;

2. for all y ∈ X\{x}, ∂
∂x

y±1 = 0; and

3. if u, v ∈ F then ∂
∂x

(uv) = ∂
∂x

u + u ∂
∂x

v.

It is easy to see that if w ∈ F then the number of terms in ∂w
∂x

equals the number

of occurrences of x and x−1 in a reduced word representing w. (Reduced means the

word does not contain uu−1 anywhere as a subword.) For example, if X = {x, y, x}
then ∂

∂x
(yx2zx−1yz2) = y + yx− yx2zx−1.

Consider again the situation where G = 〈X|R〉 with H ≤ G, and K is a standard

2-complex with π1(K) = G, and K̃ is the covering space corresponding to H . There

is a natural map φ : ZF → M , where M is the group ring Fp(G/H). Recall that the

1-chains on K̃ can be identified with M |X|. Consider elements of F , the free group

10



on X, as paths in K̃ based at the vertex labeled by the identity of G/H . Then the

map F →M |X| given by

w 7→
(

φ

(
∂w

∂x1

)
, . . . , φ

(
∂w

∂x|X|

))

takes a path based at b and written as a word in elements of X and gives the corre-

sponding 1-chain.

For example, let X = {x, y}, let G = F , let H = [G, G]G(2), and let w = xyx−1y−1.

Then w 7→ (1 − y, x− 1), where G/H = {1, x, y, xy}. This example is shown in the

following picture. The path xyx−1y−1 based at the vertex labeled 1 is shown in bold.

x y
x x

x

x x

1 yy

y

y
y xy

K̃

K

xyx−1y−1

2.2 Choosing a Presentation

Let G be a finitely generated group with a normal subgroup H such that G/H is

a finite p-group. In this section we describe a group presentation that comes from

[Lac09b].

As we have seen, given a presentation G = 〈X|R〉 there is a 2-complex, whose

fundamental group is G, with |X| 1-cells and |R| 2-cells. The presentation given here

will allow us to only “worry” about b1(G; Fp) 1-cells and b2(G; Fp) 2-cells.

Let X1 be a subset of G such that its image is a basis in H1(G; Fp). Let X3 be a

generating set for H ∩ P2(G). Then X1 ∪X3 is a generating set for G, since X1 is a

generating set for the finite p-group G/ (H ∩ P2(G)). (We do not use X2, in order to

maintain some consistency with [Lac09b].)

11



Lackenby’s arguments in [Lac09b] apply in this case, and so G has a presentation

G = 〈X1, X3|R1, R2, R3〉

with the following properties:

i. X1 forms a basis for H1(G; Fp), and for any x ∈ X1 and for any r ∈ Ri the total

weight of x in r is a multiple of p;

ii. every element of X3 is contained in H and is trivial in H1(G; Fp);

iii. every element of R2 lies in P2(F ), where F is free on X1 ∪X3;

iv. |R3| = |X3| and for each element x3 in X3 there is a relation in R3 of the form

x3 = f(x3) where f(x3) is the product of an element of P2(F−) and an element

of Pm(F ), where F− is free on X1 and m can be chosen as large as we wish;

v. R1 is a basis for H2(G; Fp), where we are using the Hopf formula for H2; and

vi. every element of R1 lies in P2(F−)Pm(F ).

Let R(1) = 〈〈R1 ∪ R2 ∪R3〉〉, then inductively define

R(j+1) = [F, R(j)]R
p
(j).

The following is Lemma 2.2 in [Lac09b].

Lemma 2.2.1. Let S = 〈〈R1 ∪R3〉〉. Then for each j ≥ 1, R(1) = SR(j).

2.3 Finding Homology

We work with the presentation G = 〈X1, X3|R1, R2, R3〉 described above. Let K be

2-complex corresponding to this presentation, and let K̃ be the regular cover of K

corresponding to the subgroup H .

Fix a base vertex b of K̃. Then each vertex of K̃ corresponds to an element of

G/H , where b corresponds to the identity element.

12



First we consider the mod-p cellular 1-chains supported on edges labeled by X1.

Let M be the group ring Fp(G/H), then the mod-p cellular 1-chains supported on

X1 can be identified with M |X1|. The mod-p 1-cochains supported on edges labeled

by elements of X1 can be identified with (M |X1|)∗. (Where V ∗ = Hom(V, Fp).)

An element w ∈ F is a word in the generating set X1 ∪ X3, and is a path in K̃

based at the identity vertex b. Suppose we have a 1-cochain φ ∈ (M |X1|)∗. The value

of this cochain evaluated on the path w is

φ

((
∂w

∂x1
,
∂w

∂x2
, . . .

))
,

where X1 = {x1, x2, . . .}, and

∂

∂xi
: FpF −→ M

is the Fox derivative, taken as a map from FpF to M .

Let J ⊂ M be the augmentation ideal. That is, the kernel of the augmentation

map

ǫ : M −→ Fp,

given by
∑

γ∈G/H

λγγ 7−→
∑

γ∈Γ
λγ .

It is well known that whenever G/H is a finite p-group, powers of J form a filtration

of M ,

{0} = Jm ⊂ . . . ⊂ J2 ⊂ J ⊂ M .

There is a corresponding filtration of M∗,

M∗ ⊃ (M/Jm−1)∗ ⊃ . . . ⊃ (M/J)∗ ⊃ {0}∗.

The following theorem relates the first betti number of H to the first two betti

numbers of G, and the quotient group G/H .
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Theorem 2.3.1. Let G be a finitely generated group and H a normal subgroup such

that G/H is a finite p-group. Let M be the group ring Fp(G/H) and J the augmen-

tation ideal in M . For each integer l ≥ 1 the following inequality holds,

b1(H ; Fp) ≥ b1(G; Fp) · dim(M/J l)− b2(G; Fp) · dim(M/J l−1)

− dim(J/J l+1).

The rest of this section is devoted to proving this theorem.

The space of cochains on K̃ supported on X1 labeled edges can be identified with

(M b1(G;Fp))∗ ∼= (M∗)b1(G;Fp).

Consider the subspace

((M/J l)∗)b1(G;Fp),

where l ∈ {1, . . . , m− 1}. This has dimension b1(G; Fp) · dim(M/J l). Each 2-cell on

K̃ imposes a linear constraint that must be satisfied by any cocycle. The first task is

to show that after modifying the cochains slightly, the codimension of the subspace

of cocycles is at most b2(G; Fp) · dim(M/J l−1).

Let β1, . . . , βn be elements of M whose image is an Fp-basis of M/J l−1.

Claim 2.3.2. Let (φ1, . . . , φb1(G;Fp)) ∈ ((M/J l)∗)b1(G;Fp), and let r ∈ 〈〈R1, R2, R3〉〉.
Suppose that

∑

j

φj

(
βi

∂r

∂xj

)
= 0

for each i = 1, . . . , n. Then for any z ∈ M

∑

j

φj

(
z

∂r

∂xj

)
= 0.

Proof. Fix z ∈M , then we can write

z = x +
∑

i

λiβi,

where x ∈ J l−1 and λi ∈ Fp. Then

∑

j

φj(z
∂r

∂xj
) =

∑

j

φj(x
∂r

∂xj
) +

∑

i

[
λi

∑

j

φj

(
βi

∂r

∂xj

)]
.
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Since r is in 〈〈R1, R2, R3〉〉, the weight in r of any letter from X1 is a multiple of p,

hence ∂r
∂xj

is in J for all j. Since x is in J l−1 and each φj is in (M/J l)∗, the first

summation is zero. The second summation is zero by hypothesis.

Let U be the subspace of ((M/J l)∗)b1(G;Fp) consisting of cochains which evaluate

to zero on the boundary of any 2-cell labeled by an element of R1. By the claim U

has dimension at least

b1(G; Fp) · dim(M/J l)− b2(G; Fp) · dim(M/J l−1).

This is because |R1| = b2(G; Fp), and by the claim, for each r ∈ R1 the subspace of

cochains evaluating to zero on the boundary of all r labeled 2-cells has codimension

at most dim(M/J l−1).

We can extend these cochains to cochains supported on X1 and X3 labeled edges

in the following way. If φ is a cochain supported only on X1 labeled edges, let ϕ(φ)

agree with φ on X1 labeled edges. For each edge e labeled by an element of X3 let

ϕ(φ)(e) be determined as follows: Suppose e is labeled by x ∈ X3, and is based at the

vertex i(e). One of the relations in R3 is of the form xf(x)−1. Let ϕ(φ)(e) = φ(f(x)),

where the path f(x) is based at i(e). The map ϕ is linear and injective, hence

dim(ϕ(U)) = dim(U).

Every element of R1 and R3 is a product of an element of P2(F−) and an element

of Pm(F ) where m can be chosen arbitrarily large. Choose m such that the image of

Pm(F ) in G is contained in P2(H). Then, for any cochain φ the value of φ evaluated

on the boundary of a 2-cell labeled by an element of R1 or R3 depends only on the

P2(F−) part. Hence, every cochain in ϕ(U) evaluates to zero on the boundary of all

2-cells labeled by elements of R1 and R3. Applying Lemma 2.2.1 with j = m gives

〈〈R1, R2, R3〉〉 = 〈〈R1, R3〉〉R(m),

where R(m) is contained in Pm(F ). Hence every element of ϕ(U) is a cocycle. We

have thus proved:
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Claim 2.3.3. The space of cellular 1-cocycles on K̃ with coefficients in Fp has dimen-

sion at least

b1(G; Fp) · dim(M/J l)− b2(G; Fp) · dim(M/J l−1).

The following claim will complete the proof of Theorem 2.3.1.

Claim 2.3.4. The subspace of coboundaries in ϕ(U) has dimension dim(J/J l+1).

Proof. Any 1-coboundary is the coboundary of some 0-cochain. Let f be a 0-cochain

on K̃, so f is a linear map f : M −→ Fp. Let ∂∗ be the coboundary map, then we

look for conditions on f such that ∂∗f is in ϕ(U).

Recall that ϕ is a map from the space of cochains supported on only X1-labeled

edges, to cochains supported on all edges. It has a left inverse ϕ−1 given by projection.

The coboundary ∂∗f is in ϕ(U) if and only if ϕ−1(∂∗f) is in U . Since ϕ−1(∂∗f)

is supported only on X1-labeled edges we can take it as an element of (M∗)b1(G;Fp). The

construction of ∂∗f ensures that ϕ−1∂∗f will be in U as long as it is in ((M/J l)∗)b1(G;Fp).

We can describe ϕ−1∂∗f as follows: If w is a word in X1∪X3, representing a path

in K̃ based at the identity vertex, then

(ϕ−1∂∗f)(w) =
∑

i

φi

(
∂w

∂xi

)
,

where for each g ∈ Γ, φi(g) = f(gxi)− f(g).

Suppose (φ1, . . .) ∈ ((M/J l)∗)b1(G;Fp). Let zi ∈ J l, then

0 =
∑

i

φi(zi) =
∑

i

(f(zixi)− f(zi))

=
∑

i

f(zi(xi − 1))

= f

(
∑

i

zi(xi − 1)

)
.

Hence, f is in (M/J l+1)∗. Finally, if f and f ′ are maps from G/H to Fp then f and f ′

determine the same coboundary if and only if f − f ′ is a constant function on G/H .

Thus the space of coboundaries in ϕ(U) had dimension

dim((M/J l+1)∗)− 1 = dim(J/J l+1).
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Chapter 3

Lower Bounds on Homology
Growth

In this chapter we use Theorem 2.3.1 to strengthen a result of Lackenby in [Lac09b].

Before proving this result in Section 3.2, we introduce dimension subgroups and give

Jennings’ Theorem in Section 3.1. This is used to calculate dimensions of quotients

of the augmentation ideal in group ring.

3.1 Dimension Subgroups and Jennings’ Theorem

Let P be a finite p-group for some prime p. Let J be the augmentation ideal in FpP .

The main result of the previous chapter raises the question, how do we determine the

order of the quotients J l/J l+1? The answer is that we use Jennings’ Theorem.

Definition 3.1.1. The mod-p dimension subgroups of an arbitrary group G are de-

fined inductively by D1(G) = G and

Dm(G) = D
(p)

⌈m
p ⌉(G)

∏

i+j=m

[Di(G), Dj(G)],

where
⌈

m
p

⌉
is the smallest integer greater than or equal to m

p
.

Two things are immediate from this definition: The dimension subgroups are

characteristic; and D2(G) = P2(G). The following theorem is 12.9 in [DdSMS99].

Theorem 3.1.2. Dm(G) = {γ ∈ G : γ − 1 ∈ Jm}.

17



This shows that Dm+1(G) ⊆ Dm(G), since Jm+1 ⊆ Jm. The inclusions

Dm+1(G) ⊇ [Dm(G), G] ⊇ [Dm(G), Dm(G)] and

Dm+1(G) ⊇ D
(p)

⌈m+1
p
⌉ ⊇ D(p)

m (G)

show that Dm(G)/Dm+1(G) is an elementary abelian p-group.

Theorem 3.1.3 (Jennings [Jen41]). Let P be a finite p-group and F a field of char-

acteristic p. Let J be the augmentation ideal in FP . Then

∑

r≥0

xr · dim(Jr/Jr+1) =
∏

s≥1

(1 + xs + x2s + · · ·+ x(p−1)s)ds,

where ds is the rank of Ds(P )/Ds+1(P ).

3.2 Strengthening [Lac09b]

An interesting application of Theorem 2.3.1 is the case where G/H is an elementary

Abelian p-group. In [Lac09b] Lackenby proves the following theorem:

Theorem 3.2.1 (Lackenby [Lac09b]). Let G be a group such that b1(G; Fp) and

b2(G; Fp) are finite, for some prime p. Let H be a finite index normal subgroup such

that G/H is an elementary Abelian p-group of rank n. Then, for any integer l between

0 and n,

b1(H ; Fp) ≥
l+1∑

r=2

(
n

r

)
(r − 1) + (b1(G; Fp)− n)

l∑

r=0

(
n

r

)
− b2(G; Fp)

l−1∑

r=0

(
n

r

)
.

Moreover, if p = 2,

b1(H ; Fp) ≥ b1(G; Fp)

l∑

r=0

(
n

r

)
− b2(G; Fp)

l−1∑

r=0

(
n

r

)
−

l+1∑

r=1

(
n

r

)
.

Theorem 2.3.1 recovers the case for p = 2 exactly, but gives stronger bounds

for odd primes. The following theorem was proved in [Lac09b] for the case p = 2

(Theorem 1.7). It is proved for all primes using the stronger bounds of Theorem

2.3.1.
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Theorem 3.2.2. Let G be a finitely generated group that has the b2−b1 property with

respect to the prime p. Suppose that

sup{b1(Gi; Fp) : Gi is a finite index subgroup of G} =∞.

Then G has a nested sequence of finite index normal subgroups {Gi} such that

b1(Gi; Fp) = Ω

(
[G : Gi]√

log[G : Gi]log log[G : Gi]

)
.

To calculate dimensions of quotients of powers of the augmentation ideal we use

Jennings’ Theorem. Let P be an elementary Abelian p-group of rank n, and let di

be the dimension of the quotient Di(P )/Di+1(P ). Then d1 = n, and di = 0 for i ≥ 2

since D2(P ) = [P, P ]P (p) = 1. Hence for p = 2 Jennings’ Theorem gives

dim(Jr/Jr+1) =

(
n

r

)
.

Combining this formula with Theorem 2.3.1 recovers the 2nd part of 3.2.1. For other

primes p the Jennings polynomial is

f(x) =
(
1 + x + . . . + x(p−1)

)n
.

The strongest bound from Theorem 2.3.1 is obtained by looking at the largest coef-

ficient in this polynomial.

Claim 3.2.3. For sufficiently large n, at least one of the coefficients in f(x) is greater

than or equal to pnk√
n

, where k is a fixed positive constant depending only on p.

Proof. Let Xi, where i = 1, . . . , n be discrete independent identically distributed

random variables, taking values in {0, . . . , p− 1} with uniform probability. Let

Sn =

n∑

i=1

Xi,

then the probability generating function for Sn is

1

pn
f(x).
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Expectation and variance are

E(Sn) =
(p− 1)n

2
,

Var(Sn) =
(p2 − 1)n

12
.

By the Central Limit Theorem

Sn − (p−1)n
2√

(p2−1)n
12

→ N(0, 1)

in distribution, as n → ∞, where N(0, 1) is the standard normal distribution. Let

k be any number greater than zero and less than P

(
−
√

3
p2−1

< N(0, 1) <
√

3
p2−1

)
,

then

P

(
(p− 1)n

2
−
√

n

2
< Sn <

(p− 1)n

2
+

√
n

2

)

= P

(
−
√

3

p2 − 1
<

Sn − (p−1)n
2√

(p2−1)n
12

<

√
3

p2 − 1

)
> k

for n sufficiently large.

Let ai be the coefficient of xi in f(x), then

ai = pn · P(Sn = i).

Hence,
l

(p−1)n
2

+
√

n

2

m

−1∑

i=
l

(
(p−1)n

2
−

√
n

2

m

ai ≥ pnk,

and so for some i,

ai ≥
pnk√

n
.

The proof of Theorem 3.2.2 now proceeds along the same lines as in section 6 of

[Lac09b]. Given a group G which satisfies the b2 − b1 condition for the prime p, and

such that

sup{b1(Gi; Fp) : Gi is a finite index subgroup of G} =∞,
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pick a finite index subgroup G1 of G such that b1(G1, Fp) is suitably large. By results

from [Lac09b], G1 may be taken to be normal. Let Gi be the derived p-series of G1,

let Mi be the group ring Fp(Gi/Gi+1), let Ji be the augmentation ideal in Mi, and let

xi = b1(Gi; Fp). By Theorem 2.3.1,

xi+1 ≥ xi · dim(Mi/J
l
i)− b2(Gi; Fp) · dim(Mi/J

l−1
i )− dim(Ji/J

l+1
i ). (3.1)

Substituting the following

dim(Ji/J
l+1
i ) ≤ pxi, and

dim(Mi/J
l
i) = dim(Mi/J

l−1
i ) + dim(J l−1

i /J l
i),

in to (3.1) we can obtain

xi+1 ≥ xi · dim(J l−1
i /J l

i)− pximax{1, 1 + b2(Gi; Fp)− xi}.

By Claim 3.2.3 and Jennings’ Theorem, if xi is sufficiently large then

xi+1 ≥ xi
pxik√

xi
− pximax{1, 1 + b2(Gi; Fp)− xi}.

The following three claims are exactly analogous to claims 1, 2, and 3 of section 6 of

[Lac09b], so we do not present the proofs.

Claim 3.2.4. Let λ be any positive real number less than k. Provided x1 is sufficiently

big, then for all i ≥ 1,

xi+1 ≥ λpxi
√

xi.

Claim 3.2.5. Provided x1 is sufficiently big, then for all i ≥ 1,

|G1 : Gi+1| ≤ λpxixi(logxi)
2/3.

Claim 3.2.6. As i→∞,

xi = Ω

(
[G1 : Gi]√

log([G1 : Gi])log log([G1 : Gi])

)
.

This final claim completes the proof of Theorem 3.2.2.
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Chapter 4

Preliminaries

This chapter provides some background material that will be used in Chapter 5. None

of this is original work.

4.1 Number Theory

In this section we present some basic number theory. Proofs of the claims can be

found in almost any introductory algebraic number theory textbook. In preparing

this section we used [MR03], [Mar77], and [Nar04].

4.1.1 Number Fields

Definition 4.1.1. A number field is a field extension of Q which is finite dimensional

as a vector space over Q. If k is a number field the dimension of k over Q is called

the degree and is denoted |k : Q|.

If k is a number field then k can be embedded in C. There are exactly |k : Q|
distinct embeddings k →֒ C.

Definition 4.1.2. A complex number α is called algebraic if there is a non-zero

polynomial f(X) ∈ Z[X] such that f(α) = 0.

Let k be a number field. Every element of k is algebraic: If |k : Q| = n then for any

α ∈ k the set {1, α, . . . , αn−1} is linearly dependent, and so there exist λ0, . . . , λn−1 ∈
Q, not all zero, such that

λ0 + λ1α + . . . + λn−1α
n−1 = 0.
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If the N is the product of the denominators of the λi then f(X) = N(λ0 + λ1X +

. . . + λn−1X
n−1) is the required polynomial.

Definition 4.1.3. A complex number α is called an algebraic integer if there is a

non-zero monic polynomial f(X) ∈ Z[X] such that f(α) = 0.

Fix a number field k. Let R be the set of algebraic integers in k.

Lemma 4.1.4. R is a ring.

Definition 4.1.5. The set of algebraic integers inside a number field k is called the

ring of integers in k.

Lemma 4.1.6. If |k : Q| = n then, as an additive group, R ∼= Zn.

This lemma means that it always possible to choose a Q-basis of k consisting or

algebraic integers. Moreover, every element of k can be written as a fraction x
y

where

x and y are in R.

Lemma 4.1.7. 1. For any non-zero ideal I ≤ R the ring R/I is finite.

2. Every non-zero prime ideal of R is maximal.

The simple corollary of the above lemma is that for any non-zero prime ideal

P ≤ R the ring R/P is a finite field. The set P ∩ Z is a prime ideal of Z, and so

P ∩ Z = (p) for some prime integer p. It is clear that the characteristic of the field

R/P is p.

Unlike in Z, in a general number field an element cannot be uniquely expressed as

a product of primes. However, ideals do have unique factorisation in to prime ideals.

Theorem 4.1.8. Let I be an ideal in R. Then

I = P1 . . .Pm,

where, for all i, the ideal Pi is prime. Moreover, if (Pi)
m
i=1 and (Qi)

n
i=1 are finite

sequences of prime ideals and

P1 . . .Pm = Q1 . . .Qn,

then m = n and for some permutation π ∈ Σn, Pi = Qπi for all i.
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A lemma that is often used in the proof of the above theorem, and which we will

make use of is:

Lemma 4.1.9. If I and J are ideals in R then I ⊇ J if and only if there is an ideal

I ′ such that II ′ = J .

Given a prime integer p the ideal pZ in Z is prime, but the ideal pR in R may not

be prime. By Theorem 4.1.8, we may factor pR in a unique way into prime ideals:

pR = Pe1
1 . . .Pem

m , ei ∈ Z≥1, (4.1)

where each Pi is prime and Pi = Pj if and only i = j.

We have already noted that for any prime ideal P in R, P ∩Z is a prime ideal pZ

of Z. In this case p ∈ P, and so P divides pR. This shows that every prime ideal of

R divides a unique ideal for the form pR.

Definition 4.1.10. Where the ideal pR factors as in equation 4.1, we say:

1. P lies over p and p lies under P;

2. ei is the ramification index of Pi; and

3. p is ramified in k if some ei is greater than 1, and unramified otherwise.

Theorem 4.1.11. Let k be a number field, then only finitely many primes integers

are ramified in k.

Definition 4.1.12. If the prime ideal P ⊂ R lies over the rational prime p then R/P
is finite field of characteristic p. The dimension of R/P over Fp is called the inertial

degree of P.

In order to apply the main theorem of this thesis (Theorem 5.3.1) to actual exam-

ples it’s necessary to know what inertial degrees can occur for a given number field

k. The following few results help us to do this.
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Theorem 4.1.13. Let R be the ring of integers in a number field k. If

pR = Pe1
1 . . .Pem

m

and the inertial degree of Pi is fi, then

e1f1 + . . . + emfm = |k : Q|.

As we have remarked, if k is a finite dimensional extension of Q then there are

multiple embeddings of k in to C. For example, the field Q(2
1
3 ) is isomorphic to

Q[X]/(X3 − 2), and there are three embeddings of Q[X]/(X3 − 2) in to C—one for

each root of the polynomial X3 − 2.

Definition 4.1.14. The extension k of Q is called normal if all the embeddings of k

in to C have the same image.

The following is the corollary to Theorem 4 , Appendix 2 of [Mar77].

Proposition 4.1.15. Any finite degree extension k of Q has a normal closure. That

is, there exists a field k ≥ k such that k/Q is a normal finite extension, and k is

minimal (with respect to inclusion) among normal extensions of Q containing k.

The following is the corollary to Theorem 23 , Chapter 3 of [Mar77].

Proposition 4.1.16. If k/Q is normal, and R is the ring of integers in k, and p is

a prime integer, then there exists prime ideals Pi and integers e and f such that

pR = (P1 . . .Pm)e,

where Pi = Pj if and only if i = j, and the inertial degree of each Pi is f .

In the case of the above theorem, this gives efm = |k : Q|, by Theorem 4.1.13.

By Theorem 4.1.11, there are only finitely many prime integers p with are ramified,

so for “most” p we have e = 1. Exactly which m and f can occur for a given normal

extension k is given by Čebotarev’s Theorem. The theorem we present here is a

corollary to Čebotarev’s Theorem, and is Proposition 7.36 of [Nar04]. First, some

definitions:
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Definition 4.1.17. Given a field extension k/Q the Galois group Gal(k/Q) is the

group of field automorphisms of k (which fix Q).

Note that for a normal extension we have |Gal(k/Q)| = |k : Q|. (Appendix 2,

[Mar77].)

Definition 4.1.18. Let A be a possibly infinite set of prime integers. Then the

Dirichlet density of A is the limit (if it exists) of

∑
p∈A p−s

log
(

1
s−1

)

as s tends to 1 from above.

Crucially, if A is a finite set then the Dirichlet density of A is 0.

Let k/Q be a finite field extension of degree n. Let φ1, . . . , φn be the embeddings of

k into C, and let G = Gal(k/Q). Then G acts on the set {φ1, . . . , φn}, by composition

of maps.

Theorem 4.1.19 (Čebotarev). Let R be the ring of integers in k. The set of all

prime integers p which are unramified in k and satisfy

pR = P1 . . .Pr,

for some Pi with given inertial degrees rank(R/Pi) = fi has a Dirichlet density, which

equals the proportion of G consisting of permutations of {φ1, . . . , φn} which have r

disjoint cycles of orders fi respectively.

4.1.2 P-adic Completions

Fix a prime ideal P in R. This gives a filtration of R:

R ⊃ P ⊃ P2 ⊃ P3 ⊃ . . . .

The intersection of this descending sequence is the zero ideal {0}: For any non-

zero x in R we can form the ideal (x), and by Theorem 4.1.8 there is some positive
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integer m such that Pm does not divide (x). By Lemma 4.1.9 this gives (x) 6⊆ Pm,

and in particular x 6∈ Pm.

Following the notation of [MR03], for each x ∈ R\{0} let nP(x) be the largest

integer such that x ∈ PnP (x). Fix some c ∈ R such that 0 < c < 1, then for all

x ∈ R\{0} let vP(x) = cnP (x). Set vP(0) = 0, then we can extend vP to all of k by

setting vP(x
y
) = vP(x)/vP(y), where x ∈ R and y ∈ R\{0}. (It is easy to check that

this is well defined.)

The map vP : k → R≥0 satisfies:

1. vP(x) ≥ 0 for all x ∈ k, and vP(x) = 0 if and only if x = 0;

2. vP(xy) = vP(x)vP(y) for all x, y ∈ k; and

3. vP(x + y) ≤ max{vP(x), vP(y)} for all x, y ∈ k.

Definition 4.1.20. A map k → R≥0 satisfying the above three properties is called a

non-Archimedean valuation on k.

Using this valuation we can define a metric on k by d(x, y) = vP(x − y), and

then set about forming the field completion in the usual way. Let C be the set of

Cauchy sequences in k. Under pointwise addition and multiplication C is a ring with

a unit. Let N be the subset of sequences which converge to zero. Then N is an ideal

in C and C/N is a field. There is a natural embedding of k as a subfield given by

x 7→ (xi = x)∞i=1 +N .

Definition 4.1.21. Given a number field k and a prime ideal P in its ring of integers,

we denote the field C/N constructed above by kP . We call kP the completion of k at

P.

The valuation vP can be extended to all of kP in the following way: Let x ∈ kP

and let x be represented by the Cauchy sequence (xi)
∞
i=1 in k, then (vP(xi))

∞
i=1 is a

Cauchy sequence of real numbers. Let

vP(x) = lim
i→∞

vP(xi).

This is well defined: If (xi)
∞
i=1 ∈ N then limi→∞ vP(xi) = 0.
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Definition 4.1.22. The valuation ring of kP is RP = {x ∈ kP : vP(x) ≤ 1}.

The valuation ring RP is indeed a ring. This is because the extension of vP to

kP has the properties of a non-Archimedean valuation. Since vP(ab) = vP(a)vP(b)

and vP(a + b) ≤ max{vP(a), vP(b)} for all a, b ∈ kP , RP is closed under addition,

multiplication, and taking additive inverse.

The definitions of kP and RP given above are the definitions found in [MR03],

from which we will later quote many results. However we now describe a different

construction of RP which is used in section 5.1.

Consider the sequence of ring homomorphisms:

R/P φ1←− R/P2 φ2←− R/P3 φ3←− . . . . (4.2)

Let

R̂ =

{
(x1, x2, . . .) ∈

∞∏

i=1

R/P i : xi = φi+1(xi+1) for all i ≥ 1

}
.

Definition 4.1.23. R̂ is called the inverse limit of the system of ring homomorphisms

in equation 4.2.

Again, it is easy to check that R̂ is ring.

There are natural embedding of R as a subring of R̂ given by

r 7→ (r + P, r + P2, . . .).

Moreover, there are obvious maps R̂→ R/P i given by

(x1, x2, . . .) 7→ xi.

With these maps the following diagram commutes:

R ⊂ - R̂

R/P i

?
?

-
-

The crucial point about this construction is:

Lemma 4.1.24. R̂ ∼= RP .
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4.2 Quaternion Algebras

Again, the background material presented in this section can be found in more detail

in [MR03].

Let F be a field.

Definition 4.2.1. A quaternion algebra A over F is a four-dimensional algebra over

F with basis {1, i, j, k}, such that 1 is a multiplicative identity and

i2 = a · 1, j2 = b · 1, and ij = −ji = k,

where a and b are some fixed elements of F− {0}.

We write

A =

(
a, b

F

)
,

where the symbol on the right is called a Hilbert symbol for A.

Definition 4.2.2. An F-basis of A is called a standard basis if it satisfies the condi-

tions in Definition 4.2.1

Notice that there is not a unique Hilbert symbol for a given quaternion algebra

as it depends on the choice of standard basis.

A familiar example is the two-by-two matrix algebra M(2, F). We have

M(2, F) ∼=
(

1, 1

F

)
,

where

1 =

(
1 0
0 1

)
, i =

(
1 0
0 −1

)
, and j =

(
0 1
1 0

)
. (4.3)

Another standard basis of M(2, F) is

{(
1 0
0 1

)
,

(
2 0
0 −2

)
,

(
0 3
3 0

)
,

(
0 6
−6 0

)}
.

(Assuming the characteristic of F is not 2 or 3.) This basis shows the isomorphism

M(2, F) ∼=
(

4, 9

F

)
.
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As an example of of an F-basis which is not standard, consider

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
.

This is not a standard basis as every element squares to zero.

Definition 4.2.3. Let A =
(

a,b
F

)
have a standard basis {1, i, j, k}. Let A0 be the

F-span of {i, j, k}. Then elements of A0 are the pure quaternions in A.

This definition does not depend on the choice of standard basis. Note that

(λ01 + λ1i + λ2j + λ3k)2 = (λ2
0 + aλ2

1 + bλ2
2 − abλ3

3)1 + 2λ0(λ1i + λ2j + λ3k),

and so x ∈ A0\{0} if and only if x 6∈ F · 1 and x2 ∈ F · 1.

Definition 4.2.4. Given any x ∈ A we can express x in a unique way as x = λ1 + x0

where x0 ∈ A0. The conjugate of x is

x = λ1− x0.

The trace of x is

tr(x) = x + x.

The norm of x is

n(x) = xx.

Both norm and the trace are maps from A to F · 1, but we typically treat them

as maps to F.

For the quaternion algebra M(2, F) the trace and norm coincide with the usual

trace and determinant maps.

If F is a subfield of K then

(
a, b

F

)
⊗F K ∼=

(
a, b

K

)
.

The following result will be crucial in Section 5.2. It is Theorem 2.7.3 of [MR03],

combined with Corollary 2.6.4 and Definition 2.7.1 of the same work.
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Theorem 4.2.5 ([MR03]). Let A be a quaternion algebra over the number field k.

Let R be the ring of integers in k. There is a finite list of prime ideals in R such that

if P is a prime ideal of R not in the list, then

A⊗k kP ∼= M(2, kP).

There is one more technical result about quaternion algebras that we record for

later use. Let k be a number field, let R be its ring of integers, and let P be a prime

ideal in R. Let A be a quaternion algebra over kP .

Definition 4.2.6. An order O in A is a finitely-generated RP -submodule of A such

that 1 ∈ O and O⊗RP kP = A. An order is maximal if it is maximal with respect to

inclusion.

For example, if A =
(

a,b
kP

)
, where a and b are in RP , then RP [1, i, j, k] is an order

in A.

The following is Theorem 6.5.3 in [MR03].

Theorem 4.2.7 ([MR03]). All maximal orders in M(2, kP) are conjugate to the max-

imal order M(2, RP).

4.3 Finite Groups

Recall that if G is a finite group then a composition series for G is a strictly descending

sequence

G = G1 � G2 � . . . � Gm = 1

such that every Gi/Gi+1 is a simple group. Every finite group has a composition series,

and the resulting simple quotients are called composition factors. The Jordan-Hölder

Theorem says that if

G = G′1 � G′2 � . . . � G′n = 1

is another composition series for G then the composition factors are the same. More

precisely, m = n and there is a permutation π ∈ Σm−1 such that Gi/Gi+1
∼=

G′πi/G
′
πi+1.
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The following lemma will be used in a later section and is a simple application

of the Jordan-Hölder Theorem. It is reminiscent of a theorem of P. Hall [Hal36],

for which the clearest statement and proof is Lemma 3.7 in Dunfield and Thurston’s

paper [DT06]. Our version is slightly different, and is certainly easier to prove.

Lemma 4.3.1. Let G be a group. Let {Hi}mi=1 be a finite collection of finite groups

such that if i 6= j then Hi and Hj have no composition factors in common. If φ :

G → H1 × . . . × Hm is a homomorphism such that every induced map G → Hi is

surjective then φ is surjective.

Proof. For every i the homomorphism Im(φ) → Hi is surjective, hence for every i,

every composition factor of Hi is a composition factor of Im(φ). Since distinct Hi

and Hj have no composition factors in common, | Im(φ)| ≥ |H1| × . . .× |Hm|, and so

Im(φ) = H1 × . . .×Hm.

4.4 Profinite and Pro-p Groups

This is a very brief introduction to profinite and pro-p groups. A more extensive

treatment of this material can be found in Chapter 1 of [DdSMS99].

Profinite (and pro-p) groups are constructed in a similar way to the P-adic com-

pletion of a number field R that we saw in section 4.1.

Let I be a directed set. That is, I has a partial order such that whenever i, j ∈ I

there is some k ∈ I such that i ≤ k and j ≤ k. Let {Gi : i ∈ I} be a collection of

finite groups indexed by I with a homomorphism φij : Gi → Gj for each i ≥ j, such

that for all i ≥ j ≥ k we have φik = φjk · φij . The collection of groups Gi together

with the homomorphisms φij form an inverse system.

The inverse limit of this system is a subgroup of
∏

i∈I Gi. Specifically,

lim
←

Gi =

{
(xi : i ∈ I) ∈

∏

i∈I

Gi : for all i and j with i ≥ j, φij(xi) = xj

}
.

The group lim←Gi can be topologised in the following way: Put the discrete

topology on each Gi, and put the product topology on
∏

i∈I Gi. Then give lim←Gi

the subspace topology.
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Definition 4.4.1. The group lim←Gi constructed above, together with the given

topology, is called a profinite group. If each Gi is a p-group for some prime p then

the group is called a pro-p group.

Starting with a fixed group G it is possible to construct profinite groups from G.

Let {Ni : i ∈ I} be a collection of finite index normal subgroups in G such that for all

i, j ∈ I there exists k ∈ I such that Ni∩Nj ⊇ Nk. Then the collection {G/Ni : i ∈ I}
naturally forms an inverse system and lim←G/Ni is a profinite group.

Definition 4.4.2. If {Ni} is taken to be the collection of all finite index normal

subgroups of G, or the collection of all normal subgroups of index a power of p, where

p is a fixed prime integer, then the inverse limit of the system {G/Ni} is called the

profinite completion or the pro-p completion of G.

The main example that we will consider is SL(2, RP). This is a profinite group:

Lemma 4.4.3. If R is the ring of integers in a number field and P is a prime ideal

in R, then SL(2, RP) is a profinite group. In particular, SL(2, RP) is isomorphic to

the inverse limit of

SL(2, R/P)← SL(2, R/P2)← SL(2, R/P3)← . . . .

Proof. The maps RP → R/P i induce group homomorphisms SL(2, RP)→ SL(2, R/P i).

Form the product homomorphism

SL(2, RP)→
∏

i≥1

SL(2, R/P i).

It is clear that this is a map to the inverse limit of {SL(2, R/P i)}i, and injectivity

and surjectivity are also clear.

Here are a few facts about profinite groups, taken from [DdSMS99].

Proposition 4.4.4. Let G be a profinite (or pro-p) group.

1. As a topological space G is Hausdorff and compact.
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2. G is a topological group. That is, the maps G → G and G × G → G given by

g 7→ g−1 and (g, h) 7→ gh are continuous.

3. Any open neighborhood around the identity is a union of open subgroups.

4. An open subgroup of G is closed, has finite index in G, and contains an open

normal subgroup of G.

5. A closed subgroup of G is open if and only if it has finite index in G.

6. The intersection of all open subgroups of G is the trivial subgroup.

7. A sequence (gi)
∞
i=1 is convergent in G if and only if it is Cauchy. (The sequence

is Cauchy if for each open normal subgroup N in G there exists an integer m

such that if i, j ≥ m then gig
−1
j ∈ N .)

Definition 4.4.5. If G is a topological group and X ⊆ G then X topologically gen-

erates G if G = 〈X〉, where 〈X〉 is the topological closure of the subgroup generated

(in the usual group-theoretic way) by X.

Given a prime p we have previously defined the lower p-central series of a group,

denoted by Pi(·). The definition must be changed slightly to accommodate profinite

groups. Note that if a finite group is given the discrete topology then it becomes a

profinite group, in which case the following two definitions coincide with the usual

versions from pure group theory.

Definition 4.4.6. Let G be a profinite group, and p a prime integer. Let P1(G) = G

and define the lower p-central series for G inductively by

Pi+1(G) = [G, Pi(G)]Pi(G)(p).

Definition 4.4.7. Let G be a profinite group. The Frattini subgroup of G, denoted

Φ(G), is the intersection of all maximal open subgroups of G.

Proposition 4.4.8. Let G be a profinite group.
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1. A subset X ⊆ G generates G topologically if and only if the image of X in

G/Φ(G) is a topological generating set for G/Φ(G).

2. If G is a pro-p group for some prime p then Φ(G) = P2(G).

Definition 4.4.9. A pro-p group G is called powerful if p > 2 and G/G(p) is abelian,

or if p = 2 and G/G(4) is abelian.

Definition 4.4.10. A pro-p group G is uniformly powerful if G is powerful and for

all m, |Pm(G) : Pm+1(G)| = |G : P2(G)|.

Powerful pro-p groups were defined and studied by Lubotzky and Mann in [LM87].

Uniformly powerful pro-p groups were defined and studied by Dixon, Du Sautoy,

Mann, and Segal in [DdSMS99]. The following lemma is set as Exercise 11.4 in

[DdSMS99].

Lemma 4.4.11. If G is a powerful pro-p group then Pn+1(G) = Dm(G) where pn−1 <

m ≤ pn.

Proof. We will prove the result by induction on m. For m = 2 the equation pn−1 <

m ≤ pn is satisfied by n = 1, and then Pn+1(G) = Dm(G) as required. (See section

3.1.)

Suppose the result holds for all positive integers up to and including m. We

consider two cases.

Case One: pn−1 < m < pn. In this case Dm(G) = Pn+1(G), and we need to show

that Dm+1(G) = Pn+1(G) also. By definition 3.1.1,

Dm+1(G) = D⌈m+1
p
⌉(G)(p)

∏

i+j=m+1

[Di(G), Dj(G)]. (4.4)

Now, pn−2 < ⌈m+1
p
⌉ ≤ pn−1, so, by induction, D⌈m+1

p
⌉ = Pn(G). Theorem 3.6 of

[DdSMS99] says that as G is a powerful pro-p group we have Pn(G)(p) = Pn+1(G) for

all n ≥ 1. Hence

Dm+1(G) = Pn+1(G)
∏

i+j=m+1

[Di(G), Dj(G)].
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If i and j are positive integers with i + j = m + 1 then at least one of i or j is

greater than m
2

. Since m
2

> pn−2 at least on of i or j is greater than pn−2. Suppose

i > pn−2, then by induction Di(G) ⊆ Pn(G), hence [Di(G), Dj(G)] ⊆ Pn+1(G). This

gives Dm+1(G) = Pn+1(G), which completes Case One.

Case Two: m = pn. In this case Dm(G) = Pn+1(G) as before, but now we

need to show Dm+1(G) = Pn+2(G). We use the equation 4.4 again. By induction

D⌈m+1
p
⌉(G) = Pn+1(G), since ⌈m+1

p
⌉ = pn−1 + 1. By Theorem 3.6 of [DdSMS99],

Pn+1(G)(p) = Pn+2(G), and so

Dm+1(G) = Pn+2(G)
∏

i+j=m+1

[Di(G), Dj(G)].

As before, if i + j = m + 1 then at least one of i or j must be greater than m
2

. Since

m
2
≥ pn−1, at least one of i of j must be greater than pn−1. If i > pn−1 then by

induction Di(G) ⊆ Pn+1(G), so [Di(G), Dj(G)] ⊆ Pn+2(G). This gives Dm+1(G) =

Pn+2(G), as required.

4.5 Groups of Isometries of Hyperbolic 3-Space

In this section we give a few definitions and assorted facts related to groups of isome-

tries of hyperbolic 3-space. This material can be found in [MR03] and [Thu80].

Let U = {(x1, x2, x3) ∈ R3 : x3 > 0}. At each point x ∈ U there is a standard

Euclidean inner product 〈·, ·〉E on TxU , the tangent space to U at x. For all points

x = (x1, x2, x3) in U and for all vectors u and v in TxU , define

〈u, v〉H =
〈u, v〉E

x2
3

.

Then 〈·, ·〉H is a Riemannian metric on U , and the space U together with this

Riemannian metric is called the upper half-space model of hyperbolic 3-space. It will

be denoted by H3.

Let Isom+(H3) be the group of orientation preserving isometries of H3.

Theorem 4.5.1. Isom+(H3) ∼= PSL(2, C).
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Figure 4.1: Some geodesics in H3.

The nature of this isomorphism is easy to explain. Let p∞ be the extra point

in the one-point compactification of U (where U is the closure of U in R3). Then

S = ∂U ∪ {p∞} is called the sphere at infinity of H3. It is topologically a 2-sphere.

The isometry group Isom+(H3) extends in a unique way to act by homeomorphism

on H3 ∪ S. Moreover, an element of Isom+(H3) is determined by its action on S.

Identify ∂U = {(x1, x2, 0) : x1, x2 ∈ R} with C and p∞ with ∞, then the action of

Isom+(H3) on S corresponds to the action of PSL(2, C) on C ∪ {∞} given by

±
(

a b
c d

)
: z 7→ az + b

cz + d
.

The geodesics in H3 are the Euclidean straight lines and half circles which meet

∂U at right angles (see figure 4.1).

The orientation preserving isometries of H3 split in to three types:

1. Elliptic isometries rotate H3 around a geodesic. In particular an elliptic isom-

etry has fixed points in H3. For example, the map (x1, x2, x3) 7→ (x1 cos(θ) −
x2 sin(θ), x1 sin(θ) + x2 cos(θ), x3), where θ ∈ R, is an isometry, and is a rota-

tion around the geodesic {(0, 0, x3) : x3 > 0}. Its action on S = C ∪ {∞} is

z 7→ e−iθz, and so it fixes 0 and ∞, but no other points of S.

2. Loxodromic isometries translate along a geodesic (possibly combined with rotat-

ing around the same geodesic). A loxodromic isometry has no fixed points in H3.

For example, the map (x1, x2, x3) 7→ (λx1, λx2, λx3), where λ > 0 and λ 6= 1, is

37



an isometry, and is a translation along the the geodesic {(0, 0, x3) : x3 > 0}. Its

action on S is given by z 7→ λz, and so it fixes 0 and ∞, but no other points of

S.

3. Parabolic isometries fix a single point in S, and no points of H3. For example,

the map (x1, x2, x3) 7→ (x1 +a, x2 + b, x3), where a, b ∈ R and are not both zero,

is an isometry. Its action on S is z 7→ z + (a + bi), and so the only point of S

which is fixed is ∞.

Lemma 4.5.2. Let A ∈ PSL(2, C)\{±12}. Then A is parabolic if and only if tr(A) =

±2, (Note that trace is defined on PSL(2, C) up to sign.)

Proof. Every isometry of H3 fixes a point in S. Since PSL(2, C) acts transitively on

S, by conjugating if necessary we can assume that A fixes∞. (Note that conjugation

does not change the type of isometry, nor the trace.)

Since A fixes ∞ it has the form

A = ±
(

a b
0 a−1

)

This corresponds to the map z 7→ a2z + ab.

We must show that A fixes a single point in S if and only if tr(A) = ±2. The

map z 7→ a2z + ab has no fixed points in C if and only if a2 = 1. That is, if and only

if tr(A) = a + a−1 = ±2.

Definition 4.5.3. Let Γ be a discrete group of orientation preserving isometries of

H3. Let p ∈ H3. Then the limit set of Γ, denoted Λ(Γ), is defined to be the set of

accumulation points of Γp in S ∪H3, where Γp = {γ(p) : γ ∈ Γ}.

Two points to note: Λ(Γ) does not depend on the choice of p; and Λ(Γ) ⊆ S.

Definition 4.5.4. A discrete group Γ of orientation preserving isometries of H3 is

called elementary if |Λ(Γ)| = 0, 1, or 2. Otherwise it is called non-elementary.

Here are a few facts related to limit sets and (non-)elementary groups.
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Proposition 4.5.5. 1. Γ is elementary if and only if it is virtually abelian.

2. If Γ is a non-elementary group and Γ′ � Γ is a normal subgroup with Γ′ 6= 1

then Λ(Γ′) = Λ(Γ).

3. If Γ is a non-elementary group then Γ contains a loxodromic element.

Part 1 is Proposition 8.1.1 and part 2 is Corollary 8.1.3 in [Thu80]. Part 3 is from

Theorem 1.2.2 in [MR03].

A standard application of parts 1 and 2 of the above proposition is:

Proposition 4.5.6. Let Γ be non-elementary. Then every term in the derived series

of Γ is non-elementary. (In particular Γ is not soluble.)

Proof. Let Γ1 = Γ and for i ≥ 2 let Γi = [Γi−1, Γi−1], so Γi is the derived series of Γ.

By induction assume Γi−1 is non-elementary. By part 2 of Proposition 4.5.5 either

Λ(Γi) = Λ(Γi−1) and so Γi is non-elementary, or Γi = 1. However, by part 1 of 4.5.5,

the later case cannot occur because Γi−1 is non-elementary.

Definition 4.5.7. A 3-manifold (possibly with boundary) is called hyperbolic if its

interior is homeomorphic to H3/Γ, where Γ is a group of orientation preserving isome-

tries of H3 which acts freely and properly discontinuously on H3.

In this case H3 → H3/Γ is a covering map, and so Γ = π1(H3/Γ) since H3 is

simply connected.

Proposition 4.5.8. If Γ is the fundamental group of a finite-volume hyperbolic 3-

manifold then Γ is non-elementary.

Since PSL(2, C) = SL(2, C)/{±12} it is clear that SL(2, C) also has an action by

isometries on H3. We prefer to work with SL(2, C), and so make use of the following

theorem:

Proposition 4.5.9. Let Γ be the fundamental group of a complete finite-volume hy-

perbolic 3-manifold M . Then there is a representation φ : Γ → SL(2, C) such that

M = H3/φ(Γ).
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Chapter 5

Congruence Subgroups of
Hyperbolic 3-Manifold Groups

In this chapter we prove the main result of this thesis, Theorem 5.3.1, on the homology

growth of congruence subgroups in hyperbolic 3-manifold groups. We start in Section

5.1 by studying the group SL(n, RP). In Section 5.2 we show that a hyperbolic 3-

manifold group virtually embeds as a dense subgroup in SL(2, RP), for a particular R

and good choices of P. In Section 5.3 we prove Theorem 5.3.1 and a simple corollary.

5.1 The Structure of SL(n, RP)

The aim of this section is to prove the following theorem.

Theorem 5.1.1. Let R be the ring of integers in a number field, and let P be a prime

ideal lying over the rational prime p, with ramification index e. For m ≥ 0 let Gm be

the principal congruence subgroup

Gm = Ker (SL(n, RP)→ SL(n, R/Pm)) .

Let l ≥ 2 if p = 2 and l ≥ 1 if p > 2. Then Gel is a uniformly powerful pro-p group

with |Gel : P2(Gel)| = (n2 − 1) · rank(R/Pe). Moreover Pi(Gel) = Ge(l+i−1).

This theorem is analogous to Theorem 5.2 of [DdSMS99] where the group GL(n, Ẑp)

is considered. The proofs of all lemmas in this section use the methods of that book,

and in some cases closely follow proofs given there.

Fix R and P for the rest of this section.
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Lemma 5.1.2. For any m the map SL(n, RP)→ SL(n, R/Pm) is surjective.

Proof. Let A be an n× n matrix with entries in R such that det(A) = 1 + x, where

x is in Pm. (That is, the image of A is in SL(n, R/Pm).) Let r be the element of RP

given by the series

r = 1− x + x2 − x3 + . . . .

The matrix 


r 0
1

. . .

0 1


A

is in SL(n, RP) and has the same image in SL(n, R/Pm) as A.

Lemma 5.1.3. Let e be the ramification index of P. For all m ≥ 1 the map x 7→ px

induces an additive group isomorphism Pe(m−1)/Pem → Pem/Pe(m+1). (Note that

P0 = R.)

Proof. Let φ : Pe(m−1) → Pem/Pe(m+1) be the map induced by x 7→ px. This is

clearly a group homomorphism. Let y ∈ Pem. Since Pem = (p)m + Pe(m+1) there

exist y′ ∈ (p)m and z ∈ Pe(m+1) such that y = y′ + z. For some r ∈ R, y′ = pmr. Set

x = pm−1r, then x ∈ Pe(m−1) and φ(x) = y + Pe(m+1). Hence φ is surjective. Finally,

x ∈ ker(φ)⇔ px ∈ Pe(m+1) ⇔ Pe(m+1)|(p)(x)

⇔ Pem|(x)⇔ x ∈ Pem,

hence φ induces a group isomorphism Pe(m−1)/Pem → Pem/Pe(m+1).

Notice that R/Pe is a quotient of R/(p), and hence is an elementary abelian p-

group. Thus every Pem/Pe(m+1) is an elementary abelian p-group, and they all have

the same rank.

Theorem 5.1.4. For all m ≥ 1 the quotient Gem/Ge(m+1) is an elementary abelian

p-group of rank (n2 − 1) · rank(R/Pe).
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Proof. Viewing Gem/Ge(m+1) as a subgroup of SL(n, R/Pe(m+1)), elements of Gem/Ge(m+1)

are n × n matrices A with entries in R/Pe(m+1), such that A ≡ 1n mod Pem and

det(A) = 1. By Lemma 5.1.2, Gem/Ge(m+1) consists of all such matrices. Every

element of Gem/Ge(m+1) can be written as1n + X,

where X is an n× n matrix with entries in Pem/Pe(m+1).

Conversely, any such matrix is in SL(n, R/Pe(m+1)) as long it has determinant 1.

Since the product of any two elements of Pem/Pe(m+1) is zero,

det(1n + X) = 1 + tr(X).

Let M0
(
n,Pem/Pe(m+1)

)
be the additive group of n×n matrices over Pem/Pe(m+1)

with trace 0.

Define φ : M0
(
n,Pem/Pe(m+1)

)
→ Gem/Ge(m+1) by X 7→ 1n + X. Then φ is a

bijection and for all X, Y ∈M0
(
n,Pem/Pe(m+1)

)
,

φ(X)φ(Y ) = (1n + X)(1n + Y ) = 1n + X + Y = φ(X + Y ).

Notice that (1n + X)−1 = (1n −X), and so

φ(−X) = 1n −X = φ(X)−1.

Hence,

M0
(
n,Pem/Pe(m+1)

) ∼= Gem/Ge(m+1).

We have already noted that Pem/Pe(m+1) is an elementary abelian p-group of rank

rank(R/Pe), and so the proof is complete.

Corollary 5.1.5. For all m ≥ 1, Gem is a pro-p group.

Proof. Recall (Lemma 4.4.3) that SL(2, RP) is isomorphic to the inverse limit of

SL(2, R/P)← SL(R/P2)← . . . .
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By Lemma 5.1.2 this is the same as

SL(2, RP)/G1 ← SL(RP)/G2 ← . . . .

Thus the subgroup Gem corresponds to the inverse limit of

Gem/Gem+1 ← Gem/Gem+2 ← . . . .

By Theorem 5.1.4 these are all finite p-groups, and so Gem is a pro-p group.

Lemma 5.1.6. Let m ≥ 2, then the map x 7→ xp induces an isomorphism Ge(m−1)/Gem →
Gem/Ge(m+1).

Proof. We can string together the following natural isomorphisms:

Ge(m−1)/Gem → M0(n,Pe(m−1)/Pem)→M0(n,Pem/Pe(m+1))→ Gem/Ge(m+1).

Let 1n + X, where X is an n× n matrix over Pe(m−1), be an element of Ge(m−1). Its

image in Ge(m−1)/Gem is mapped by the above isomorphisms in the following way,1n + X 7→ X 7→ pX 7→ 1n + pX.

Now,

(1n + X)p = 1n + pX + X2(. . .)

∼= 1n + pX mod Ge(m+1).

Proposition 5.1.7. For m ≥ 2 and s ≥ 1 the map x 7→ xps

induces an isomorphism

Ge(m−1)/Gem → Ge(m+s−1)/Ge(m+s).

Proof. By induction.

Lemma 5.1.8.

[Gl, Gm] ≤ Gl+m.
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Proof. Let 1n + A ∈ Gl and 1n + B ∈ Gm. Note that

(1n + A)−1 ≡ 1n −A + A2 − A3 + . . . , and

(1n + B)−1 ≡ 1n −B + B2 − B3 + . . . .

The following calculation shows the result,

[1n + A,1n + B]

=(1n + A)(1n + B)(1n −A + A2 − . . .)(1n −B + B2 − . . .)

=(1n + (A + B) + AB)((1n − (A + B) + (A2 + B2)− (A3 + B3) + . . .) + AB(. . .))

=1 + AB(. . .) ∈ Gl+m.

Lemma 5.1.9. If p > 2 and if A ∈ Gel and B ∈ Gem where l ≥ 1 and m ≥ 1 then

(AB)p ≡ ApBp modulo Ge(l+m+1).

Proof. Since [B−1, A−1] is in Ge(l+m) it commutes with A and B modulo Ge(l+m+1).

Hence

(AB)p ≡ ApBp[B−1, A−1]
p(p−1)

2 mod Ge(l+m+1).

Since p divides p(p−1)
2

and Ge(l+m)/Ge(l+m+1) is an elementary abelian p-group,

[B−1, A−1]
p(p−1)

2 ≡ 1n mod Ge(l+m+1).

The proof of the next proposition follows the proof of Lemma 5.1 of [DdSMS99]

where the same result is proved in the case of GL(n, Ẑp)

Proposition 5.1.10. Let l ≥ 2 if p = 2 and l ≥ 1 if p > 2. Then every element of

Ge(l+1) is a pth power of some element of Gel.
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Proof. The proof is by successive approximation.

Let Y be an element of Ge(l+1). Choose any X1 in Gel, then Xp
1 ≡ Y mod Ge(l+1),

since Gel/Ge(l+1) is an elementary abelian p-group.

For the inductive step, suppose Xm is in Gel and Xp
m ≡ Y mod Ge(l+m). Then

X−p
m Y ∈ Ge(l+m), and by Proposition 5.1.7 there exists A in Gel such that Apm ≡

X−p
m Y mod Ge(l+m+1). Rearranging gives Xp

mApm ≡ Y mod Ge(l+m+1). The element

Apm−1
is in Ge(l+m−1), so by Lemma 5.1.8 if l > 1 and by Lemma 5.1.9 if l = 1,

(XmApm−1

)p ≡ Xp
mApm

mod Ge(l+m+1).

Let Xm+1 = XmApm−1
. In this way we construct a sequence X1, X2, . . . such that

Xp
m ≡ Y mod Ge(l+m) for all m ≥ 1. For all m, X−1

m Xm+1 is in Ge(l+m−1), hence the

sequence {Xm}∞m=1 is convergent to some X such that Xp = Y .

We are now in a position to prove Theorem 5.1.1. Again, now that all the appro-

priate lemmas are in place the proof is the same as that of Theorem 5.2 in [DdSMS99],

where the equivalent result is proved for GL(n, Ẑp).

Proof of Theorem 5.1.1. By definition P1(Gel) = Gel. Suppose that Pi(Gel) = Ge(l+i−1)

for some fixed i. Then by Lemma 5.1.8 and Theorem 5.1.4

[Pi(Gel), Gel]Pi(Gel)
p ≤ Ge(l+i).

But by the previous proposition Ge(l+i) ≤ (Pi(Gel))
p, hence Pi+1(Gel) = Ge(l+i). By

induction Pi(Gel) = Ge(l+i−1) for all i.

This also shows that Pi+1(Gel) = Pi(Gel)
p, in particular P2(Gel) = (Gel)

p, hence

Gel is powerful for p > 2. For p = 2 we have (Gel)
22

= Ge(l+2) ≥ [Gel, Gel] since l ≥ 2,

hence Gel/G
4
el is abelian and again Gel is powerful.

By Theorem 5.1.4 Gel is uniformly powerful, and Pi(Gel)/Pi+1(Gel) is of rank

(n2 − 1) · rank(R/Ie) for all i ≥ 1.
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5.2 Approximation for Hyperbolic 3-Manifold Groups

In this chapter Γ is the fundamental group of a complete finite-volume hyperbolic

3-manifold M . Fix an injective homomorphism

Γ→ SL(2, C)

such that H3/Γ = M .

Let k be the trace field of Γ. That is,

k = Q({tr(γ) : γ ∈ Γ}).

The invariant trace field of Γ is defined to be the trace field of Γ(2). Theorem 3.1.2

of [MR03] says that k is a number field. Let R be the ring of integers in k. The aim

of this section is to prove the following theorem.

Theorem 5.2.1. Let Γ be the fundamental group of a complete finite-volume hy-

perbolic 3-manifold. Let k be the trace field of Γ, and suppose k coincides with the

invariant trace field of Γ. Let R be the ring of integers in k and let P be a prime ideal

in R. As long as P is not in some finite list of ideals there is an injection

Γ →֒ SL(2, RP)

such that the image of Γ is dense in SL(2, RP) (where SL(2, RP) has the profinite

topology).

The hypothesis that the trace field and the invariant trace field should coincide is

not a strong one. For any Γ the subgroup Γ(2) has this property. (See the proof of

Theorem 3.3.4 of [MR03].)

Theorem 5.2.1 follows easily from the following two propositions. Note that in

Proposition 5.2.2 only finitely many prime ideals are excluded since only finitely

many rational primes p ramify in k ([MR03], Theorem 0.3.8), and only finitely many

primes ideals lie above 2 or 3.
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Proposition 5.2.2. Suppose P has exponent 1 in the ideal (p), and p 6= 2 and p 6= 3.

Let X ⊂ SL(2, RP) be such that X generates the quotient SL(2, R/P). Then X

topologically generates SL(2, RP).

Proposition 5.2.3. Suppose the trace field of Γ equals the invariant trace field of Γ.

As long as P is not in some finite list of prime ideals then there exists an injective

homomorphism

Γ →֒ SL(2, RP)

such that the composition

Γ →֒ SL(2, RP)→ SL(2, R/P)

is surjective.

Before proving Proposition 5.2.2 we need a few lemmas. Consider the short exact

sequence

1→ K → SL(2, R/P2)→ SL(2, R/P)→ 1.

Assume that P lies over the rational prime p and has exponent 1 in (p), then R/P is a

finite field of order pm for some m ≥ 1. From the previous chapter K = {12 +X : X ∈
M0(2,P/P2)}.

Lemma 5.2.4. If p 6= 2 then K is generated by pth powers of elements of SL(2, R/P2).

Proof. We will prove this directly by taking a general element of K and expressing it

as a product of pth powers. Let x1, x2, x3 ∈ P/P2, then
(

1 + x1 x2

x3 1− x1

)
=

(
1 0

(1− x1)x3 1

)(
1 + x1 0

0 1− x1

)(
1 (1− x1)x2

0 1

)
.

Since P2 + (p) = hcf(P2, (p)) = P, for each i we have xi = pyi for some yi ∈ R/P2.

This gives
(

1 0
(1− x1)x3 1

)
=

(
1 0

(1− x1)y3 1

)p

, and

(
1 (1− x1)x2

0 1

)
=

(
1 (1− x1)y2

0 1

)p

.
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It remains to show that the diagonal matrix is a product of pth powers.

Since p 6= 2 the matrix

(
1 1
1 −1

)
is invertible, and

(
1 1
1 −1

)(
1 + x1 0

0 1− x1

)(
1 1
1 −1

)−1

=

(
1 1
1 −1

)(
1 + x1 0

0 1− x1

)(
1
2

1
2

1
2
−1

2

)

=

(
1 x1

x1 1

)
=

(
1 0
x1 1

)(
1 x1

0 1

)

=

(
1 0
y1 1

)p(
1 y1

0 1

)p

,

hence

(
1 + x1 0

0 1− x1

)
is a product of pth powers.

Lemma 5.2.5. Suppose p 6= 2 and p 6= 3. If x, y ∈ SL(2, R/P2) with xy−1 ∈ K and

xp ∈ K then xp = yp.

Proof. The subgroup

S =

{(
1 a
0 1

)
: a ∈ R/P

}

of SL(2, R/P) has order pm, and |SL(2, R/P)| = pm(p2m − 1), hence S is a Sylow

p-subgroup. Assume x 6∈ K, otherwise the result is trivial: If x is in K then y is also

in K and so xp = yp = 12. Since x 6∈ K and xp ∈ K the image x of x in SL(2, R/P)

has order p, and so is contained in some Sylow p-subgroup of SL(2, R/P). Since all

Sylow p-subgroups are conjugate there exists z ∈ SL(2, R/P) and a ∈ R/P such that

z x z−1 =

(
1 a
0 1

)
.

Pick preimages z and a of z and a in SL(2, R/P2) and R/P2 respectively, then

zxz−1 =

(
1 a
0 1

)
+ X,
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for some X ∈M(2,P/P2). Now,

zxpz−1 =

((
1 a
0 1

)
+ X

)p

=

(
1 a
0 1

)p

+

p−1∑

i=0

(
1 a
0 1

)i

X

(
1 a
0 1

)p−1−i

=

(
1 ap
0 1

)
+

p−1∑

i=0

(
1 ai
0 1

)
X

(
1 a(p− 1− i)
0 1

)

=

(
1 ap
0 1

)
+

p−1∑

i=0

(
X1 + iX2 + i2X3

)
(for some Xi ∈M(2,P/P2))

=

(
1 ap
0 1

)
.

The second equality holds because any term in the expansion in which X occurs more

that once is zero. The final equality holds because p 6= 2 and p 6= 3 so p divides each

of

p−1∑

i=0

1 = p,

p−1∑

i=0

i = p
p− 1

2
, and

p−1∑

i=0

i2 = p
(p− 1)(2p− 1)

6
.

Finally, if x ≡ y mod K then x and y have the same image in SL(2, R/P), hence

zyz−1 =

(
1 a
0 1

)
+ Y

for some Y ∈M(2,P/P2). As above

zypz−1 =

(
1 ap
0 1

)
,

so zypz−1 = zxpz−1, and xp = yp.

With these two lemmas Proposition 5.2.2 can be proved. The proof follows that

of Lemma 5, Window 9 in [LS03].
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Proof of Proposition 5.2.2. Recall that for a group G the Frattini Subgroup Φ(G) of

G is the intersection of all the maximal subgroups of G.

We start by showing that the Frattini Subgroup Φ(SL(2, R/P2)) of SL(2, R/P2)

contains K. Let M be any maximal subgroup of SL(2, R/P2). We must show that

K ⊆ M . Suppose, for a contradiction, that K is not contained in M . Let x ∈
SL(2, R/P2) with xp ∈ K. Since K 6⊆ M and M is maximal, KM = SL(2, R/P2),

hence there exists y ∈ M with y ≡ x mod K. By Lemma 5.2.5 xp = yp and so xp is

contained in M . But by Lemma 5.2.4 K is generated by such elements as xp, thus

K ⊆M .

As in section 5.1 let

Gi = Ker(SL(2, RP)→ SL(2, R/P i)).

Note that SL(2, RP)/G2
∼= SL(2, R/P2) and G1/G2 corresponds to the subgroup

K. Hence, by the previous paragraph, Φ(SL(2, RP)/G2) ⊇ G1/G2. By hypothe-

sis the image of X in SL(2, RP)/G1 is a generating set, and so X also generates

(SL(2, RP)/G2)/Φ(SL(2, RP)/G2). For any group, a subset which generates the

group modulo its Frattini subgroup generates the entire group, thus X generates

SL(2, RP)/G2.

By Theorem 5.1.1, G1 is a pro-p group and so the Frattini subgroup of G1 is

P2(G1) = G2. Hence any generating set for G1/G2 topologically generates G1. Since

every element of G1/G2 can be written in terms of X,

G1 ⊂ 〈X〉.

So, X generates SL(2, RP)/G1 and 〈X〉 ⊃ G1, thus 〈X〉 = SL(2, RP).

Next we turn our attention to proving Proposition 5.2.3. We use the classification

of finite subgroups of special linear groups. The classification was given first by Dick-

son [Dic58], but the statement of the theorem that we use is adapted from Theorem

6.17 of Chapter 3 in [Suz82]:
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Theorem 5.2.6. Let V be the two-dimensional vector space over an algebraically

closed field F of characteristic p (p ≥ 0). Let L = SL(V ). Any finite subgroup G of

L satisfies one of the following:

1. The second derived subgroup of G is trivial.

2. G is isomorphic to one of SL(2, 3), SL(2, 5), or Σ4 the representation group of

symmetric group Σ4 in which the transpositions correspond to elements of order

4.

3. G is isomorphic to SL(2, K) where K is a finite subfield of F.

4. G is isomorphic to 〈
SL(2, K),

(
π 0
0 π−1

)〉
,

where K is as above and |K(π) : K| = 2 and π2 is a generator of the multiplica-

tive group K∗.

Assume p > 2, and let E be a finite subfield of F. The following is Lemma 6.18 of

chapter 3 of [Suz82].

Lemma 5.2.7. Suppose G is a subgroup of L such that |G| = iq(q2 − 1) (i = 1, 2)

where q is a power of p. Furthermore suppose that G ⊆ SL(2, E). Then the field

K = GF (q) is contained in E. If i = 1 then G is conjugate to the standard SL(2, K) by

some element of GL(2, E). If i = 2 then E contains GF (q2) and G can be conjugated

by some element of GL(2, E) to

〈
SL(2, K),

(
π 0
0 π−1

)〉
,

where π ∈ GF (q2)−K and π2 ∈ K.

We can now proceed to the proof of Proposition 5.2.3. This proof is an extension

of the methods used in Section 2 and Section 3 of [LR98].
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Proof of Proposition 5.2.3. Let

A =

{
∑

γ∈Γ
λγγ : λγ ∈ k, and λγ = 0 for all but finitely many γ

}
,

then A, with the usual matrix addition and multiplication, is k-algebra. By Theorem

3.2.1 of [MR03] it is a quaternion algebra over k. Recall that an element of A is a

pure quaternion if and only if it is non-central, but its square is central. As such, the

conjugation on A is just the restriction of the conjugation in the quaternion algebra

M(2, C), and the trace and norm on A are induced from the trace and determinant

on M(2, C).

Suppose that

A =

(
a, b

k

)

where a, b ∈ R. Fix a standard basis B = {1, i, j, k} of A, and a finite generating set

X of Γ, such that if x ∈ X then x−1 ∈ X. Each element of X is in the k-span of B:

xn = x1n1 + x2ni + x3nj + x4nk.

For each mn there are ymn, zmn ∈ R such that xmn = ymn/zmn. Choose the prime

ideal P in R such that P does not contain any zmn. (This excludes finitely many

prime ideals.) If we treat k as a subfield of kP then each xmn is contained in the

valuation ring RP ,

By Theorem 4.2.5 excluding finitely many more prime ideals gives

A⊗k kP ∼= M(2, kP).

The image of Γ in A ⊗k kP is contained in RP [1, i, j, k], since Γ is generated by X

and X ⊂ RP [1, i, j, k]. Since RP [1, i, j, k] is an order in A ⊗k kP it lives inside some

maximal order. Any maximal order in M(2, kP) can be conjugated to M(2, RP)

(Theorem 4.2.7), so the isomorphism A⊗k kP ∼= M(2, kP) can be chosen such that Γ

lies inside M(2, RP).

All the maps

Γ →֒ A →֒ A⊗k kP
∼=−→M(2, kP)
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preserve norm, so the image of Γ in M(2, kP) is contained in SL(2, RP). Moreover

all these maps preserve trace.

It remains to show that by excluding finitely many more ideals the induced map

Γ→ SL(2, R/P) is surjective.

Let f : RP → R/P be the standard map and let F : Γ → M(2, R/P) be the

composition of the injection from Γ to M(2, RP) with f . (f is applied to M(2, RP)

by applying f in each entry.) Then tr(F (γ)) = f(tr(γ)) for all γ ∈ Γ.

Let N be the lowest common multiple of |SL(2, 3)|, |SL(2, 5)|, and |Σ4|, and let

γ ∈ Γ be a non-trivial loxodromic element in the second derived subgroup of Γ.

Such an element γ exists because Γ is non-elementary (Proposition 4.5.8), and so the

second derived subgroup of Γ is non-elementary (Proposition 4.5.6) and contains a

loxodromic element (Proposition 4.5.5). Since γ is loxodromic γN is loxodromic also,

and by Lemma 4.5.2 the trace of γN is not 2. Hence tr(γN ) − 2 is an element of k

and is non-zero. Write tr(γN) − 2 = y/z where y, z ∈ R. Suppose both y and z are

not in P, then f(tr(γN)− 2) 6= 0. (This excludes finitely many prime ideals.)

Now,

0 6= f(tr(γN)− 2) = f(tr(γN)− tr(12))

= tr(F (γN))− tr(F (1))

= tr(F (γN))− 2.

In particular F (γN) is not the identity matrix.

The second derived subgroup of F (Γ) contains F (γN) and so is non-trivial. More-

over F (γ)N is non-trivial, and so F (Γ) and is not isomorphic to any of SL(2, 3),

SL(2, 5) or Σ4.

By Theorem 5.2.6 and Lemma 5.2.7 the image F (Γ) is conjugate (by an element

of GL(2, R/P)) to either SL(2, K) or

〈
SL(2, K),

(
π 0
0 π−1

)〉
where K is a subfield
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of R/P. It is easy to see that SL(2, K) is normal in

〈
SL(2, K),

(
π 0
0 π−1

)〉
and that

〈
SL(2, K),

(
π 0
0 π−1

)〉
/SL(2, K) ∼= Z/2Z,

hence in either case F (Γ(2)) is contained in a conjugate of SL(2, K).

By hypothesis the trace field of Γ(2) equals k, and by Lemma 3.5.1 of [MR03]

there is a finite collection {γi}mi=1 ⊂ Γ(2) such that k = Q({tr(γi)}). Let {qj}nj=1 be a

Z-basis of R. Each qj is a polynomial in the elements of {tr(γi)}, with coefficients in

Q. Choose P such that for each j the denominators of the coefficients of qj are not

in P. (Again, this excludes finitely many prime ideals.) If P lies over the rational

prime p then each qj is a polynomial in the elements {tr(γi)} with coefficients in Z(p),

and the image of qj in R/P is a polynomial in {f(tr(γi))} with coefficients in Z/pZ.

In particular the image of each qj in R/P is in the ring generated by {f(tr(γi))},
hence the ring generated by {f(tr(γi))} is the entire of R/P. On the other hand,

f(tr(γi)) = tr(F (γi)), and tr(F (γi)) is contained in K since F (γi) is contained in a

conjugate of SL(2, K) and trace is invariant under conjugation. Hence K = R/P and

F (Γ) = SL(2, R/P).

5.3 A Lower Bound on Homology Growth of Con-

gruence Subgroups

The aim of this section is to prove the following theorem.

Theorem 5.3.1. Let Γ be the fundamental group of a finite-volume hyperbolic 3-

manifold, and let R be the ring of integers in the invariant trace field of Γ. For all but

finitely many prime ideals P in R the following holds: Γ has a finite index subgroup

Γ′ with the following properties.

1. Γ′ embeds in SL(2, RP), where RP is the P-adic completion of R. Moreover Γ′

is dense in SL(2, RP).
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2. Let r = rank(R/P) and let ǫ > 0. Let p be the characteristic of R/P. Let

Γ′n = Ker(Γ′ → SL(2, R/Pn)) (the congruence subgroups), then

b1(Γ′ni
; Fp) > |Γ′n1

: Γ′ni
| 3r−1

3r
−ǫb1(Γ′n1

; Fp),

for some integers n1 < n2 < . . ..

For the rest of this section fix Γ as in the hypothesis of the theorem. Fix a

representation Γ →֒ SL(2, C) such that Γ acts as a covering group on H3.

We assume that the trace field of Γ is also the invariant trace field of Γ, otherwise

replace Γ by Γ(2). Using Theorem 5.2.1, let P be a prime ideal in R such that there

is an injection f : Γ →֒ SL(2, RP) and f(Γ) is dense in SL(2, RP). Theorem 5.2.1

ensures that P can be any prime except for some finite list. Let p be the characteristic

of the finite field R/P.

As before the congruence subgroups of Γ and SL(2, RP) are

Gi = ker(SL(2, RP)→ SL(2, R/P)), and

Γi = Γ ∩Gi.

The following lemma is proved using a technique that many authors have used.

Lemma 5.3.2. For any M ≥ 1 there is a finite index subgroup Γ′ in Γ such that

f(Γ′) is dense in SL(2, RP) and b1(Γ′; Fp) ≥M .

Proof. By Dirichlet’s Theorem there are infinitely many primes congruent to 1 modulo

p. Using Theorem 5.2.1 choose M prime ideals P1, . . . ,PM in R such that for every

i = 1, . . . , M there is a surjective homomorphism Γ → SL(2, R/Pi), and such that

each Pi lies over a distinct prime qi and qi is congruent to 1 modulo p.

Now form the product homomorphism

φ : Γ→ SL(2, R/P)× PSL(2, R/P1)× . . .× PSL(2, R/PM),

where the map to SL(2, R/P) is induced from f : Γ → SL(2, RP). By Lemma 4.3.1

this map is surjective, since the projection of Γ to each factor is surjective, and no

two factors share a common composition factor.
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For each i there is an element of order p in PSL(2, R/Pi), since |PSL(2, R/Pi)| =
1
2
qm
i (qm

i − 1)(qm
i + 1) (where |R/Pi| = qm

i ) and p divides (qm
i − 1). Let Ci be a cyclic

subgroup of order p in PSL(2, R/Pi), and let

Γ′ = φ−1(SL(2, R/P)× C1 × . . .× CM).

Now, Γ′ has a surjective homomorphism to C1 × . . . × CM thus b1(Γ
′; Fp) ≥ M .

Moreover, f(Γ′) is dense in SL(2, RP) by Proposition 5.2.2, since the map from f(Γ′)

to SL(2, R/P) is surjective.

Let Γ′ be a finite index subgroup of Γ such that f(Γ′) is dense in SL(2, RP) and

b1(Γ′; Fp) is very large—exactly how large it needs to be will be seen later in the

chapter.

Lemma 5.3.3. b1(Γ′1; Fp) ≥ b1(Γ′; Fp).

Proof. Since Γ′ is dense in SL(2, RP), Γ′/Γ′1
∼= SL(2, R/P)—a perfect group. (We

assume |R/P| is not 2 or 3.) Hence P2(Γ
′)Γ′1 = Γ′, and so the homomorphism

Γ′1 → Γ′/P2(Γ
′) is surjective.

Lemma 5.3.4. If b1(Γ′1; Fp) is sufficiently large then the sequence

b1(Γ′1; Fp), b1(Γ′2; Fp), b1(Γ′3, Fp), . . .

is strictly increasing.

Proof. Since b1(H ; Fp) = b2(H ; Fp) for all finite index subgroups H of Γ′, Theorem

2.3.1 gives

b1(Γ
′
(m+1); Fp) ≥ dim(J/J2)b1(Γ

′
m; Fp)− dim(J/J3).

Since Γ′m/Γ′(m+1) is an elementary abelian p-group of rank 3r the dimension subgroups

Di(Γ
′
m/Γ′(m+1)) are trivial for all i ≥ 2. By Jennings’ Theorem (3.1.3), dim(J/J2) = 3r

and

dim(J/J3) =

(
3r

2

)
+ 6r.
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Then b1(Γ′(m+1); Fp) > b1(Γ
′
m; Fp) if

b1(Γ′m; Fp) >
9r(r + 1)

2(3r − 1)
.

By induction this holds if

b1(Γ′1; Fp) >
9r(r + 1)

2(3r − 1)
.

Lemma 5.3.5. Let N be a fixed positive integer, and for all positive integers M let

fM(x) = (1 + x + . . . + xM)N .

Then there exists λ > 0 (depending only on N) such that fM (x) has a coefficient

greater than or equal to λ (fM(1))
N−1

N .

Proof. We will try to estimate the middle coefficient in fM(x). That is, the coefficient

of x
MN

2 or x
MN+1

2 depending on whether MN is odd or even.

For α ∈ R let L(α) be the plane in RN given by

x1 + . . . + xN = α.

For β ∈ R+ let C(β) be the cube

{(x1, . . . , xN ) ∈ RN : 0 ≤ xi ≤ β for all i = 1, . . . , N}.

Then, if α is a positive integer, the coefficient of xα in fM(x) is equal to the

number of lattice points on L(α) contained in C(M).

Let α(M) be MN
2

when MN is even and MN+1
2

otherwise. As M increases the

number of lattice points in L(α(M))∩C(M) grows linearly with the area of L(α(M))∩
C(M). This is because for all M the plane L(α(M)) is a translation of the plane

x1 + . . . + xn = 0, so as long as L(α(M)) contains a lattice point, which it does, the

distribution of lattice points does not change with M .

Let λ1 > 0 be such that the number of lattice points in L(α(M))∩C(M) is greater

than or equal to λ1 × Area(L(α(M)) ∩ C(M)), for all M .
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Since the plane L(·) has dimension N − 1, scaling down by M gives

Area(L(α(M)) ∩ C(M)) = MN−1 ×Area

(
L

(
α(M)

M

)
∩ C(1)

)
.

The area on the right hand side does depend on M (when MN is odd), however it

converges to Area
(
L
(

N
2

)
∩ C(1)

)
as M goes to ∞. In particular there exists λ2 > 0

such that

Area(L(α(M)) ∩ C(M)) ≥MN−1λ2,

for all M .

Finally, letting λ = λ1λ2, the coefficient of xα(M), which is the number of lattice

points in L(α(M)) ∩ C(M), is greater than or equal to

λMN−1 = λ (fM(1))
N−1

N .

Lemma 5.3.6. Let 1 ≤ l < m. Let r = rank(R/P). Then there exists λ > 0,

depending only on P, such that

b1(Γ′m; Fp) > λ|Γ′l : Γ′m|
3r−1
3r b1(Γ′l; Fp)− |Γ′l : Γ′m|.

Proof. By Theorem 5.1.1 Gl/Gm is powerful and

Pi(Gl/Gm) = G(l+i−1)/Gm,

where i ranges from 1 to m− l + 1. By Lemma 4.4.11, since Gl/Gm is powerful

Dj(Gl/Gm) = Pi+1(Gl/Gm)

where pi−1 < j ≤ pi. Since Γ′ is dense in SL(2, RP),

Gl/Gm
∼= Γ′l/Γ′m.

Then

Dj(Γ
′
l/Γ′m)/Dj+1(Γ

′
l/Γ′m) = 0
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when j is not a pth power, and

Dj(Γ
′
l/Γ′m)/Dj+1(Γ

′
l/Γ′m) = Z3r

p

when j = p0, p1, . . . , pm−l−1. Let J be the augmentation ideal in Fp(Γ
′
l/Γ′m). By

Jennings’ Theorem (3.1.3)

∑

s≥0

xs · dimJs/Js+1 =
i=m−l−1∏

i=0

(
1 + xpi

+ x2pi

+ . . . x(p−1)pi
)3r

.

The right hand side of this equation can be expanded to

f(x) =
(

1 + x + x2 + x3 + . . . + xpm−l−1
)3r

.

Using Lemma 5.3.5 we see that there exists λ > 0, depending only on r, which in

turn depends only on P, such that f(x) has a coefficient greater than or equal to

λ (f(1))
3r−1
3r .

Note that f(1) = |Γ′l : Γ′m|, and so Jennings’ Theorem says that for some s,

dim(Js/Js+1) ≥ λ|Γ′l : Γ′m|
3r−1
3r . (5.1)

A complete finite-volume hyperbolic manifold is a K(π, 1) for its fundamental

group, and so by Poincaré duality b1(Γ′′; Fp) = b2(Γ′′; Fp) for all finite index subgroups

Γ′′ of Γ′. Hence by Theorem 2.3.1

b1(Γ′m; Fp) ≥ dim(Js/Js+1)b1(Γ′l; Fp)− dim(J/Js+2).

The bound from equation 5.1 and the inequality dim(J/Js+2) < dim(FpΓ
′
l/Γ′m) gives

the final result

b1(Γ′m; Fp) ≥ λ|Γ′l : Γ′m|
3r−1
3r b1(Γ′l; Fp)− |Γ′l : Γ′m|.

We are now in a position to prove Theorem 5.3.1.

59



Proof of Theorem 5.3.1. The result will be proved by induction. Suppose n1, . . . , nm

have been found. Let nm+1 be determined by the inequality

|Γ′nm
: Γ′nm+1

| 1
3r

b1(Γ′nm
; Fp)

≤ 1

2
λ <
|Γ′nm

: Γ′(n(m+1)+1)|
1
3r

b1(Γ′nm
; Fp)

, (5.2)

where λ is as in Lemma 5.3.6.

In the following calculation the first inequality is obtained by rearranging Lemma

5.3.6, the second is by equation 5.2, and the third can be ensured by choosing

b1(Γ′1; Fp) large enough.

log
(

b1(Γ′
nm+1

;Fp)

b1(Γ′
nm

;Fp)

)

log
∣∣Γ′nm

: Γ′nm+1

∣∣ ≥
3r − 1

3r
+

log

(
λ− |Γ

′
nm

:Γ′
nm+1 |

1
3r

b1(Γ′
nm

;Fp)

)

log
∣∣Γ′nm

: Γ′nm+1

∣∣

≥ 3r − 1

3r
+

log
(

1
2
λ
)

log
∣∣Γ′nm

: Γ′nm+1

∣∣ ≥
3r − 1

3r
− ǫ.

Rearranging and applying induction completes the proof:

b1(Γ
′
nm+1

; Fp) ≥
∣∣Γ′nm

: Γ′nm+1

∣∣ 3r−1
3r
−ǫ

b1(Γ′nm
; Fp)

≥
∣∣Γ′nm

: Γ′nm+1

∣∣ 3r−1
3r
−ǫ ∣∣Γ′n1

: Γ′nm

∣∣ 3r−1
3r
−ǫ

b1(Γ′n1
; Fp)

=
∣∣Γ′n1

: Γ′nm+1

∣∣ 3r−1
3r
−ǫ

b1(Γ′n1
; Fp).

To use Theorem 5.3.1 in actual examples we need to know what inertial degrees can

occur in the ring of integers of a given number field. Čebotarev’s Theorem (Theorem

4.1.19) gives us this information. We present a basic corollary as an example.

Corollary 5.3.7. Let Γ be the fundamental group of a finite-volume hyperbolic 3-

manifold. Then, for infinitely many prime integers p, and for any ǫ > 0, Γ has a

finite index subgroup Γ′ with a sequence of congruence subgroups

Γ′ = Γ′n1
> Γ′n2

> . . .

such that b1(Γ′ni
; Fp) > |Γ′n1

: Γ′ni
| 56−ǫb1(Γ′n1

; Fp).

60



Proof. Let k be the invariant trace field of Γ. By Theorem 3.3.7 of [MR03] we

have |k : Q| ≥ 2, hence Gal(k/Q) is non-trivial and acts non-trivially on the set of

embeddings of k in C. Hence, by Čebotarev’s Theorem (Theorem 4.1.19) the set of

unramified (in k) prime integers p which have a prime divisor P of inertial degree at

least 2 has non-zero Dirichlet density. In particular, the set of primes ideals P with

inertial degree at least 2 has infinite order. By Theorem 5.3.1 for all but finitely many

of these P the desired conclusion holds.
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