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Abstract. We consider hyperbolic structures on the compression body C with genus 2
positive boundary and genus 1 negative boundary. Note that C deformation retracts to
the union of the torus boundary and a single arc with its endpoints on the torus. We call
this arc the core tunnel of C. We conjecture that, in any geometrically finite structure
on C, the core tunnel is isotopic to a geodesic. By considering Ford domains, we show
this conjecture holds for many geometrically finite structures. Additionally, we give an
algorithm to compute the Ford domain of such a manifold, and a procedure which has been
implemented to visualize many of these Ford domains. Our computer implementation gives
further evidence for the conjecture.

1. Introduction

For a hyperbolic manifold M with torus boundary component ∂M0, every homotopically
nontrivial arc in M with endpoints on ∂M0 is homotopic to a geodesic. However, it seems
to be a difficult problem to identify arcs in M which are isotopic to a geodesic, given only a
topological description of M .

One place this problem arises is in the study of unknotting tunnels. An unknotting tunnel
for a 3–manifold M with torus boundary components is defined to be an arc τ from ∂M to
∂M such that M \ N(τ) is a handlebody. Manifolds (other than a solid torus) that admit
unknotting tunnels are tunnel number one manifolds. Adams asked whether the unknotting
tunnel of a hyperbolic tunnel number one manifold is always isotopic to a geodesic [1]. This
has been shown to be the case for many classes of hyperbolic tunnel number one manifolds
([2], [19]). Recently, Cooper, Futer, and Purcell showed that the conjecture is true for a
generic manifold, in an appropriate sense of generic [9]. The original question still remains
open, however.

The purpose of this paper is to present and motivate a related question. Any tunnel
number one manifold is built by attaching a compression body C to a handlebody, and the
unknotting tunnel corresponds to an arc τ in the compression body. We call τ the core tunnel
of C. Given Adams’ question on whether an unknotting tunnel is isotopic to a geodesic, it
seems natural to ask whether the arc τ is isotopic to a geodesic under a complete hyperbolic
structure on C.

The compression body C admits many complete hyperbolic structures. Here, we examine
those that are geometrically finite, and show that for many such structures, the core tunnel is
isotopic to a geodesic. In order to investigate such structures, we develop algorithms to find
the Ford domains for geometrically finite structures on C. We present one algorithm that is
guaranteed to find the Ford domain in finite time and terminate, but which is impractical in
practice, and a procedure which has been implemented for the computer, which will find the
Ford domain and terminate for large families of geometrically finite structures, and which
we conjecture will always find the Ford domain.

Computer investigation and the theorems proven for families of geometrically finite hy-
perbolic structures lead us to the following conjecture.
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Conjecture 1.1. Let C be a compression body with ∂−C a torus, and ∂+C a genus two
surface. Suppose C is given a geometrically finite hyperbolic structure. Then the core tunnel
of C is isotopic to a geodesic.

The techniques of this paper can be seen as an extension of work of Jørgensen [16], who
found Ford domains of geometrically finite structures on S×R, where S is a once–punctured
torus. Jørgensen’s work was extended and expanded by others, including Akiyoshi, Sakuma,
Wada, and Yamashita [3, 4]. Wada implemented an algorithm to determine Ford domains
of these manifolds [21].

A complete understanding of the geometry of compression bodies, for example through a
study of Ford domains, could lead to many interesting applications, since compression bodies
are building blocks of more complicated manifolds via Heegaard splitting techniques. With
Cooper, we have already applied some of the ideas in this paper to build tunnel number one
manifolds with arbitrarily long unknotting tunnels [10].

1.1. Acknowledgements. Both authors were supported by the Leverhulme trust. Lack-
enby was supported by an EPSRC Advanced Research Fellowship. Purcell was supported
by NSF grants and the Alfred P. Sloan foundation.

2. Background and preliminary material

In this section we review terminology and results used throughout the paper. Our intent
is to make this paper as self–contained as possible, and also to emphasize relations between
the geometry and topology of compression bodies.

First, we review definitions and results on compression bodies, which are the manifolds
we study. Next, we review what it means for these manifolds to admit a geometrically
finite hyperbolic structure. We then recall the definition of a Ford domain, since we will
be using Ford domains to examine geometrically finite hyperbolic structures on compression
bodies. We also give a few definitions relevant to Ford domains, such as visible isometric
spheres, Ford spines, and complexes dual to Ford spines. Ford domains of geometrically
finite manifolds are finite sided polyhedra; thus we can often identify a Ford domain using
the Poincaré polyhedron theorem. Finally, we review this theorem and some of its relevant
consequences.

2.1. Compression bodies. The manifolds we study in this paper are compression bodies
with negative boundary a single torus, and positive boundary a genus 2 surface.

Recall that a compression body C is either a handlebody, or the result of taking the product
S × I of a closed, oriented (possibly disconnected) surface S and the interval I = [0, 1], and
attaching 1–handles to S×{1}. The negative boundary is S×{0} and is denoted ∂−C. When
C is a handlebody, ∂−C = ∅. The positive boundary is ∂C \ ∂−C, and is denoted ∂+C.

Let C be the compression body for which ∂−C is a torus and ∂+C is a genus 2 surface.
We will call this the (1; 2)–compression body, where the numbers (1; 2) refer to the genus of
the boundary components. Note the (1; 2)–compression body is formed by taking a torus T 2

crossed with [0, 1] and attaching a single 1–handle to T 2 × {1}. The 1–handle retracts to a
single arc, the core of the 1–handle.

Let τ be the union of the core of the 1–handle with two vertical arcs in S × [0, 1] attached
to its endpoints. Thus, τ is a properly embedded arc in C, and C is a regular neighborhood
of ∂−C ∪ τ . We refer to τ as the core tunnel of C. See Figure 1, which first appeared in [10].
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Figure 1. The (1; 2)–compression body. The core tunnel is the thick line
shown, with endpoints on the torus boundary.

The fundamental group of a (1; 2)–compression body C is isomorphic to (Z × Z) ∗ Z. We
will denote the generators of the Z × Z factor by α, β, and we will denote the generator of
the second factor by γ.

2.2. Hyperbolic structures. We are interested in the isotopy class of the arc τ when we
put a complete hyperbolic structure on the interior of the (1; 2)–compression body C. We
obtain such a structure by taking a discrete, faithful representation ρ : π1(C) → PSL(2, C)
and considering the manifold H

3/ρ(π1(C)).

Definition 2.1. A discrete subgroup Γ < PSL(2, C) is geometrically finite if H
3/Γ admits

a finite–sided, convex fundamental domain. In this case, we will also say that the manifold
H

3/Γ is geometrically finite.

The following gives a useful fact about geometrically finite groups in PSL(2, C).

Theorem 2.2 (Bowditch, Proposition 5.7 [6]). If a subgroup Γ < PSL(2, C) is geometrically
finite, then every convex fundamental domain for GH

3/Γ has finitely many faces.

Definition 2.3. A discrete subgroup Γ < PSL(2, C) is minimally parabolic if it has no rank
one parabolic subgroups.

Thus for a discrete, faithful representation ρ : π1(M) → PSL(2, C), the image ρ(π1(M))
will be minimally parabolic if for all g ∈ π1(C), the element ρ(g) is parabolic if and only if g
is conjugate to an element of the fundamental group of a torus boundary component of M .

Definition 2.4. A discrete, faithful representation ρ : π1(M) → PSL(2, C) is a minimally
parabolic geometrically finite uniformization of M if ρ(π1(M)) is minimally parabolic and
geometrically finite, and H

3/ρ(π1(M)) is homeomorphic to the interior of M .

2.3. Isometric spheres and Ford domains. To examine structures on C, we examine
paths of Ford domains. This is similar to the technique of Jørgensen [16], developed and
expanded by Akiyoshi, Sakuma, Wada, and Yamashita [4], to study hyperbolic structures
on punctured torus bundles. Much of the basic material on Ford domains which we review
here can also be found in [4].

Throughout this subsection, let M = H
3/Γ be a hyperbolic manifold with a single rank

2 cusp, for example, the (1; 2)–compression body. In the upper half space model for H
3,

assume the point at infinity in H
3 projects to the cusp. Let H be any horosphere about

infinity. Let Γ∞ < Γ denote the subgroup that fixes H. By assumption, Γ∞
∼= Z × Z.

Definition 2.5. For any g ∈ Γ \ Γ∞, g−1(H) will be a horosphere centered at a point of C,
where we view the boundary at infinity of H

3 to be C ∪ {∞}. Define the set I(g) to be the
set of points in H

3 equidistant from H and g−1(H). Then I(g) is the isometric sphere of g.
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Note that I(g) is well–defined even if H and g−1(H) overlap. It will be a Euclidean
hemisphere orthogonal to the boundary C of H

3.
The following is well known, and follows from standard calculations. We include a proof

for completeness.

Lemma 2.6. If

g =

(
a b
c d

)
∈ PSL(2, C),

then the center of the Euclidean hemisphere I(g−1) is g(∞) = a/c. Its Euclidean radius is
1/|c|.
Proof. The fact that the center is g(∞) = a/c is clear.

Consider the geodesic running from ∞ to g(∞). It consists of points of the form (a/c, t)
in C × R

+ ∼= H
3. It will meet the horosphere H about infinity at some height t = h1, and

the horosphere g(H) at some height t = h0. The radius of the isometric sphere I(g−1) is the
height of the point equidistant from points (a/c, h0) and (a/c, h1).

Note that g−1(g(H)) = H, and hence h1 is given by the height of g−1(a/c, h0), which can
be computed to be (−d/c, 1/(|c|2h0)). Thus h1 = 1/(|c|2h0). Then the point equidistant
from (a/c, h0) and (a/c, 1/(|c|2h0)) is the point of height h = 1/|c|. �

Definition 2.7. Let B(g) denote the open half ball bounded by I(g), and define F to be
the set

F = H
3 \

⋃

g∈Γ\Γ∞

B(g).

Note F is invariant under Γ∞, which acts by Euclidean translations on H
3. We call F the

equivariant Ford domain.

When H bounds a horoball H∞ that projects to an embedded horoball neighborhood
about the rank 2 cusp of M , F is the set of points in H

3 which are at least as close to H∞

as to any of its translates under Γ \ Γ∞. Provided Γ is discrete, such an embedded horoball
neighborhood of the cusp always exists, by the Margulis lemma.

Definition 2.8. A vertical fundamental domain for Γ∞ is a fundamental domain for the
action of Γ∞ cut out by finitely many vertical geodesic planes in H

3.

Definition 2.9. A Ford domain of M is the intersection of F with a vertical fundamental
domain for the action of Γ∞.

A Ford domain is not canonical because the choice of fundamental domain for Γ∞ is not
canonical. However, the equivariant Ford domain F in H

3 is canonical, and for purposes of
this paper, F is often more useful than the actual Ford domain.

Note that Ford domains are convex fundamental domains (cf. [4, Proposition A.1.2]).
Thus we have the following corollary of Bowditch’s Theorem 2.2.

Corollary 2.10. M = H
3/Γ is geometrically finite if and only if a Ford domain for M has

a finite number of faces.

Example 2.11. Let c ∈ C be any complex number such that |c| > 2, and let a and b in
C be linearly independent with |a| > 2|c|, |b| > 2|c|. Let ρ : π1(C) → PSL(2, C) be the
representation defined by

ρ(α) =

(
1 a
0 1

)
, ρ(β) =

(
1 b
0 1

)
, ρ(γ) =

(
c −1
1 0

)
.
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γ
γ−1

Figure 2. Left: Schematic picture of the Ford domain of Example 2.11.
Right: Three dimensional view of F in H

3, for c = 2 + i, a = 6 + 2i, and
b = 4.5i.

(Recall that α and β denote the generators of the Z × Z factor of π1(C), and γ denotes an
additional generator of π1(C).)

By Lemma 2.6, I(ρ(γ)) has center 0, radius 1, and I(ρ(γ−1)) has center c ∈ C, radius
1. Since |c| > 2, I(ρ(γ)) will not meet I(ρ(γ−1)). By choice of ρ(α), ρ(β), all translates of
I(ρ(γ)) and I(ρ(γ−1)) under Γ∞ are disjoint.

We will see in Lemma 2.27 that ρ gives a minimally parabolic geometrically finite uni-
formization of C, and that for this example, F consists of the exterior of (open) half–spaces
B(ρ(γ)) and B(ρ(γ−1)), bounded by I(ρ(γ)) and I(ρ(γ−1)), respectively, as well as translates
of these two isometric spheres under Γ∞. Thus we will show that the Ford domain for this
example is as shown in Figure 2. Before proving this fact, we need additional definitions and
lemmas. We use this example to illustrate these definitions and lemmas.

2.4. Visible faces and Ford domains. Let M = H
3/Γ be a hyperbolic manifold with a

single rank two cusp, and let Γ∞ < Γ denote a maximal rank two parabolic subgroup, which
we may assume fixes the point at infinity in H

3. Notice that F , the equivariant Ford domain
of M , has a natural cell structure.

Definition 2.12. Let g ∈ Γ \ Γ∞. We say I(g) is visible if there exists a 2–dimensional cell
of the cell structure on F contained in I(g).

Similarly, we say the intersection of isometric spheres I(g1) ∩ · · · ∩ I(gn) is visible if there
exists a cell of F contained in I(g1)∩ · · · ∩ I(gn) of the same dimension as I(g1)∩ · · · ∩ I(gn).

Thus in Example 2.11, we claim that the only visible isometric spheres are I(ρ(γ)),
I(ρ(γ−1)), and the translates of these under Γ∞. There are no visible edges for this ex-
ample.

There is an alternate definition of visible, Lemma 2.13. Let H be a horosphere about
infinity that bounds a horoball which is embedded under the projection to M .

Lemma 2.13. For g ∈ Γ \ Γ∞, I(g) is visible if and only if there exists an open set U ⊂ H
3

such that U ∩ I(g) is not empty, and for every x ∈ U ∩ I(g) and every h ∈ Γ \ Γ∞, the
hyperbolic distances satisfy

d(x, h−1(H)) ≥ d(x,H) = d(x, g−1H).

Similarly, if I(g) ∩ I(h) is not empty, then it is visible if and only if there exists an open
U ⊂ H

3 such that U ∩ I(g) ∩ I(h) is not empty, and for every x ∈ U ∩ I(g) ∩ I(h) and every
k ∈ Γ \ Γ∞,

d(x, k−1H) ≥ d(x,H) = d(x, g−1H) = d(x, h−1H).
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Proof. An isometric sphere, or interesction of isometric spheres, is visible if and only if it
contains a cell of F of the same dimension. This will happen if and only if there is some
open set U in H

3 which intersects the isometric sphere, or intersections of isometric spheres,
in the cell of F in H

3. The result follows now by definition of F : a point x is in F if
and only if it is not contained in any open half space B(k), k ∈ Γ \ Γ∞, if and only if
d(x,H) ≤ d(x, k−1H). �

We can say something even stronger for isometric spheres:

Lemma 2.14. For Γ discrete, the following are equivalent.

(1) The isometric sphere I(g) is visible.
(2) There exists an open set U ⊂ H

3 such that U ∩ I(g) is not empty and for any
x ∈ U ∩ I(g) and any h ∈ Γ \ (Γ∞ ∪ Γ∞g),

d(x, h−1H) > d(x,H) = d(x, g−1H).

(3) I(g) is not contained in
⋃

h∈Γ\(Γ∞∪Γ∞g) B(h).

Proof. If (2) holds, then Lemma 2.13 implies I(g) is visible. Conversely, suppose I(g) is
visible. Let U be as in Lemma 2.13, so that for all x ∈ U ∩ I(g), and all h ∈ Γ \ Γ∞,
d(x, h−1H) ≥ d(x,H) = d(x, g−1H). Suppose there is some h ∈ Γ \ Γ∞ such that for all
x ∈ U ∩ I(g) we have equality: d(x, h−1H) = d(x,H) = d(x, g−1H). Then the isometric
spheres I(h) and I(g) must agree on an open subset, hence they must agree everywhere. In
particular, their centers must agree: g−1(∞) = h−1(∞).

Now, notice that g−1Γ∞g is the subgroup of Γ fixing g−1(∞), since α fixes g−1(∞) if
and only if gαg−1 fixes infinity, so lies in Γ∞. Next note that since I(g) = I(h), g−1h fixes
g−1(∞). So g−1h ∈ g−1Γ∞g. Thus h ∈ Γ∞g. We have shown (1) if and only if (2).

Finally, (2) clearly implies (3). If I(g) is not visible, then for any x ∈ I(g), either x/∈F ,

which implies x ∈ ⋃
h∈Γ\(Γ∞∪Γ∞g) B(h), or x is in a cell of F with dimension at most 1. In

this case, x ∈ I(h) for some h ∈ Γ \ (Γ∞ ∪ Γ∞g). Thus (3) implies (1). �

Notice that in the above proof, we showed that if two isometric spheres I(g) and I(h)
agree, then h ∈ Γ∞g. It is clear that if h ∈ Γ∞g, then I(g) = I(h).

We now present two results on visible faces of the Ford domain. Again these are well
known, but we include proofs for completeness.

Lemma 2.15. Let Γ be a discrete, torsion free subgroup of PSL(2, C) with a rank two
parabolic subgroup Γ∞ fixing the point at infinity, and let g ∈ Γ \ Γ∞. Then I(g) is visible
if and only if I(g−1) is visible. Moreover, g takes I(g) isometrically to I(g−1), sending the
half space B(g) bounded by I(g) to the exterior of the half space B(g−1).

Proof. Let H be a horosphere about infinity in H
3 that bounds a horoball which projects to

an embedded neighborhood of the cusp of M .
First, note that under g, I(g) is mapped isometrically to I(g−1), since g takes H to g(H),

and g−1(H) to H, and hence takes I(g) to the set of points equidistant from these two
horospheres. This is the isometric sphere I(g−1). Note the half space B(g), which contains
g−1(H), must be mapped to the exterior of B(g−1), which contains H, as claimed.

Suppose I(g) is visible. Then there exists an open set U ⊂ H
3, with U ∩I(g) not empty, so

that for every x in I(g)∩U , and for every h ∈ Γ\Γ∞, d(x, h−1(H)) ≥ d(x,H) = d(x, g−1(H)).
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Now consider the action of g on this picture. The set g(U) is open in H
3, and for all

y ∈ g(U) ∩ I(g−1), we have y = g(x), for some x ∈ U ∩ I(g), so the distance d(y,H) =
d(g(x), gg−1(H)) ≤ d(g(x), gh−1(H)) = d(y, gh−1(H)), for all h ∈ Γ \ Γ∞. So I(g−1) is
visible.

To finish, apply the same proof to g−1. �

Lemma 2.16. Gluing isometric spheres corresponding to ρ(γ) and ρ(γ−1) of Example 2.11
gives a manifold homeomorphic to the interior of the (1; 2)–compression body C.

Proof. In the example, first glue sides of the vertical fundamental domain via the parabolic
transformations fixing infinity. The result is homeomorphic to the cross product of a torus
and an open interval (0, 1). Next glue the face I(ρ(γ)) to I(ρ(γ−1)) via γ. The result
is topologically equivalent to attaching a 1–handle, yielding a manifold homeomorphic to
C. �

Lemma 2.17. Let Γ be a discrete, torsion free subgroup of PSL(2, C) with a rank two
parabolic subgroup Γ∞ fixing the point at infinity. Suppose g, h ∈ Γ \ Γ∞, with I(g) and
I(h) visible, and suppose I(g)∩ I(h) is visible. Then I(gh−1)∩ I(h−1) is visible, and h maps
the visible portion of I(g) ∩ I(h) isometrically to the visible portion of I(gh−1) ∩ I(h−1). In
addition, there must be some visible isometric sphere I(k), not equal to I(h−1), such that
I(k) ∩ I(h−1) = I(gh−1) ∩ I(h−1).

Notice that in Lemma 2.17, I(k) may be equal to I(gh−1), but is not necessarily so. In
fact, I(gh−1) may not be visible, such as in the case that there is a quadrilateral dual to
I(g) ∩ I(h). We discuss dual faces later.

Proof. Let H be a horosphere about infinity which bounds a horoball that projects to an
embedded neighborhood of the cusp of M . Suppose I(g) ∩ I(h) is visible. By Lemma 2.13,
there exists an open set U ⊂ H

3 such that for all x ∈ U ∩ (I(g) ∩ I(h)), and all k ∈ Γ \ Γ∞,
the hyperbolic distance d(x,H) is less than or equal to the hyperbolic distance d(x, k−1(H)).
Since x ∈ I(g) ∩ I(h), we also have d(x, g−1H) = d(x, h−1H) = d(x,H).

Apply h to this picture. We obtain:

d(h(x), hg−1H) = d(h(x),H) = d(h(x), hH) ≤ d(h(x), hk−1H)

for all k ∈ Γ\Γ∞. Thus for all y in the intersection of the open set h(U) and I(gh−1)∩I(h−1),
y = h(x) satisfies the inequality of Lemma 2.13, and so I(gh−1)∩I(h−1) is visible. Since this
works for any such open set U , and the 1–cell of F contained in I(g) ∩ I(h) may be covered
with such open sets, h maps visible portions isometrically.

Finally, since I(gh−1) ∩ I(h−1) is visible, it contains a 1–dimensional cell of F . There
must be two 2–dimensional cells of F bordering I(gh−1)∩ I(h−1). One of these is contained
in I(h−1), using the fact that I(h) is visible and Lemma 2.15. The other must be contained
in some I(k) (possibly, but not necessarily I(gh−1)), and so this I(k) is visible. �

The first part of Lemma 2.17 is a portion of what Akiyoshi, Sakuma, Wada, and Yamashita
call the chain rule for isometric circles [4, Lemma 4.1.2].

Additionally, we present a result that allows us to identify geometrically finite uniformiza-
tions that are minimally parabolic.

Lemma 2.18. Suppose ρ : π1(C) → PSL(2, C) is a geometrically finite uniformization. Sup-
pose none of the visible isometric spheres of the Ford domain of H

3/ρ(π1(C)) are visibly
tangent on their boundaries. Then ρ(π1(C)) is minimally parabolic.
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By visibly tangent, we mean the following. Set Γ = ρ(π1(C)), and assume a neighborhood
of infinity in H

3 projects to the rank two cusp of H
3/Γ, with Γ∞ < Γ fixing infinity in H

3.
For any g ∈ Γ \Γ∞, the isometric sphere I(g) has boundary that is a circle on the boundary
C at infinity of H

3. This circle bounds an open disk D(g) in C. Two isometric spheres I(g)
and I(h) are visibly tangent if their corresponding disks D(g) and D(h) are tangent on C,
and for any other k ∈ Γ \ Γ∞, the point of tangency is not contained in the open disk D(k).

Proof. Suppose ρ(π1(C)) is not minimally parabolic. Then it must have a rank 1 cusp.
Apply an isometry to H

3 so that the point at infinity projects to this rank 1 cusp. The Ford
domain becomes a region P meeting this cusp, with finitely many faces. Take a horosphere
about infinity sufficiently small that the intersection of the horosphere with P gives a subset
of Euclidean space with sides identified by elements of ρ(π1(C)), conjugated appropriately.

The side identifications of this subset of Euclidean space, given by the side identifications
of P , generate the fundamental group of the cusp. But this is a rank 1 cusp, hence its
fundamental group is Z. Therefore, the side identification is given by a single Euclidean
translation. The Ford domain P intersects this horosphere in an infinite strip, and the side
identification glues the strip into an annulus. Note this implies two faces of P are tangent
at infinity.

Now apply an isometry, taking us back to our usual view of H
3, with the point at infinity

projecting to the rank 2 cusp of the (1; 2)–compression body H
3/ρ(π1(C)). The two faces

of P tangent at infinity are taken to two isometric spheres of the Ford domain, tangent at a
visible point on the boundary at infinity. �

We will see that the converse to Lemma 2.18 is not true. There exist examples of geomet-
rically finite representations for which two visible isometric spheres are visibly tangent, and
yet the representation is still minimally parabolic. Such an example is given, for example,
in Example 4.1, with t =

√
3.

Remark 2.19. In Example 2.11, we claimed that the only visible isometric spheres are
those of I(ρ(γ)), I(ρ(γ−1)), and their translates under Γ∞. Since none of these isometric
spheres are visibly tangent, provided the claim is true, Lemma 2.18 will imply that this
representation is minimally parabolic.

2.5. The Ford spine. Let Γ be discrete and geometrically finite. When we glue the Ford
domain into the manifold M = H

3/Γ, the faces of the Ford domain will be glued together in
pairs to form M .

Definition 2.20. The Ford spine of M is defined to be the image of the faces, edges, and
0–cells of F under the covering H

3 → M .

A spine usually refers to a subset of the manifold for which there is a retraction of the
manifold. Using that definition, the Ford spine is not strictly a spine. However, the union
of the Ford spine and the non-toroidal boundary components will be a spine for a manifold
M with a single rank 2 cusp.

To make that last sentence precise, recall that given a geometrically finite uniformization
ρ, the domain of discontinuity Ω is the complement of the limit set of ρ(π1(M)) in the
boundary at infinity ∂∞H

3. See, for example, Marden [17, section 2.4].

Lemma 2.21. Let ρ be a minimally parabolic geometrically finite uniformization of a 3–
manifold M with a single rank 2 cusp. Then the manifold (H3 ∪ Ω)/ρ(π1(M)) retracts onto
the union of the Ford spine and the boundary at infinity (F ∩ C)/Γ∞.
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Proof. Let H be a horosphere about infinity in H
3 that bounds a horoball which projects

to an embedded horoball neighborhood of the cusp of H
3/ρ(π1(M)). Let x be any point in

F ∩H
3. The nearest point on H to x lies on a vertical line running from x to infinity. These

vertical lines give a foliation of F . All such lines have one endpoint on infinity, and the other
endpoint on F ∩ C or an isometric sphere of F . We obtain our retraction by mapping the
point x to the endpoint of its associated vertical line, then quotienting out by the action of
ρ(π1(M)). �

To any face F0 of the Ford spine, we obtain an associated collection of visible elements of
Γ: those whose isometric sphere projects to F0 (or more carefully, a subset of their isometric
sphere projects to the face F0).

Definition 2.22. We will say that an element g of Γ corresponds to a face F0 of the Ford
spine of M if I(g) is visible and (the visible subset of) I(g) projects to F0. In this case, we
also say F0 corresponds to g. Notice the correspondence is not unique: if g corresponds to
F0, then so does g−1 and w0g

±1w1 for any words w0, w1 ∈ Γ∞.

Remark 2.23. Consider again the unifomization of C given in Example 2.11. We will see
that the Ford domain of this example has faces coming from a vertical fundamental domain
and the two isometric spheres I(ρ(γ)) and I(ρ(γ−1)). Hence the Ford spine of this manifold
consists of a single face, corresponding to ρ(γ).

2.6. Poincaré polyhedron theorem. We need a tool to identify the Ford domain of a
hyperbolic manifold. This tool will be Lemma 2.26. The proof of that lemma uses the
Poincaré polyhedron theorem, which we use repeatedly in this paper. Those results we
use most frequently are presented in this subsection. Our primary reference is Epstein and
Petronio [13], which contains a version of the Poincaré theorem that does not require finite
polyhedra.

The setup for the following theorems is the same. We begin with a finite number of
elements of PSL(2, C), g1, g2, . . . , gn, as well as a parabolic subgroup Γ∞

∼= Z×Z of PSL(2, C),
fixing the point at infinity. Let P be a polyhedron cut out by isometric spheres corresponding
to {g1, . . . , gn} and {g−1

1 , . . . , g−1
n }, as well as either:

(1) all isometric spheres given by translations of gi and g−1
i under Γ∞, or

(2) a vertical fundamental domain for the action of Γ∞.

An example of the former would be an equivariant Ford domain, F . An example of the
latter would be a Ford domain. Note that in both cases, we allow P to contain an open
neighborhood of a point on the boundary at infinity of H

3, so it will not necessarily have
finite volume.

Let M be the object obtained from P by gluing isometric spheres corresponding to gj

and g−1
j via the isometry gj , for all j, and then, if applicable, gluing faces of the vertical

fundamental domain by parabolic isometries in Γ∞.

Theorem 2.24 (Poincaré polyhedron theorem, weaker version). For P , M as above, if M
is a smooth hyperbolic manifold, then

• the group Γ generated by face pairings is discrete,
• π1(M) ∼= Γ.

Proof. The result will follow essentially from [13, Theorem 5.5]. First we check the conditions
of this theorem. Since M is a smooth hyperbolic manifold, the condition Pairing, requiring
faces to meet isometrically, will hold. Similarly, the condition Cyclic must hold, requiring
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the monodromy around an edge in the identification to be the identity, and sums of dihedral
angles to be 2π. Condition Connected is automatically true for P a single polyhedron
(rather than a collection of polyhedra). Finally, note that since we have a finite number of
original isometric spheres corresponding to g1, . . . , gn and their inverses, and translation by
an element in Γ∞ moves an isometric sphere a fixed positive distance, any isometric sphere of
P can meet only finitely many other isometric spheres. This is sufficient to imply condition
Locally finite.

We need to show the universal cover M̃ of M is complete. Since M is a smooth hyperbolic
manifold and P is complete, M will be complete if and only if the link of its ideal vertex
inherits a Euclidean structure coming from horospherical cross sections to P , by [20, Theorem
3.4.23]. In the case that P is cut out only by isometric spheres and their translates under
Γ∞, there is nothing to show. In the case that P is cut out by a vertical fundamental domain,
we know the holonomy of the link of this vertex is given by the group Γ∞, which is a rank 2
subgroup of PSL(2, C) fixing the point at infinity. Thus it acts on a horosphere about infinity

by Euclidean isometries, and so M is indeed complete. It follows that M̃ is complete.

Thus all the conditions for [13, Theorem 5.5] hold, and the developing map M̃ → H
3 is

a covering map, with covering transformations generated by Γ. It follows that Γ is discrete,
and π1(M) ∼= Γ. �

Theorem 2.25 (Poincaré polyhedron theorem). For P , M , Γ as above, suppose each face
pairing maps a face of P isometrically to another face of P , and that for each edge e of
M , i.e. for each equivalence class of intersections of isometric spheres under the equivalence
given by the gluing, the sum of dihedral angles about e is 2π, and the monodromy around the
edge is the identity. Then

• M is a smooth hyperbolic manifold with π1(M) ∼= Γ, and
• Γ is discrete.

Proof. Again this follows from various results in [13]. Because faces of P are mapped iso-
metrically, we have the condition Pairing. The fact that dihedral angles sum to 2π and
the monodromy is the identity implies condition Cyclic. Again because isometric spheres
can meet only finitely many others in P , we have condition Locally finite, and because we
have a single polyhedron, we have condition Connected. When we send P to H

3 via the
developing map, we may find a horosphere about infinity disjoint from the isometric spheres
forming faces of P . In the case that P is cut out by a vertical fundamental domain, since Γ∞

preserves this horosphere and acts on it by Euclidean transformations, in the terminology of
Epstein and Petronio, the universal cover of the boundary of M has a consistent horosphere.
This is true automatically if P is not cut out by a vertical fundamental domain. Then by

[13, Theorem 6.3], the universal cover M̃ of M is complete. Now Poincaré’s Theorem [13,

Theorem 5.5] implies the developing map M̃ → H
3 is a covering map, hence M ∼= H

3/Γ is a
smooth, complete hyperbolic manifold with π1(M) ∼= Γ a discrete group. �

Our first application of Poincaré’s theorem is the following lemma, which helps us identify
Ford domains.

Lemma 2.26. Let Γ be a subgroup of PSL(2, C) with a rank 2 parabolic subgroup Γ∞ fixing
the point at infinity.

Suppose the isometric spheres corresponding to a finite set of elements of Γ, as well as
their translates under Γ∞, cut out a region G so that the quotient under face pairings and the
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group Γ∞ yields a smooth hyperbolic manifold with fundamental group Γ. Then Γ is discrete
and geometrically finite, and G must be the equivariant Ford domain of H

3/Γ.
Similarly, suppose the isometric spheres corresponding to a finite set of elements of Γ, as

well as a vertical fundamental domain for Γ∞, cut out a polyhedron P , so that face pairings
given by the isometries corresponding to isometric spheres and to elements of Γ∞ yield a
smooth hyperbolic manifold with fundamental group Γ. Then Γ is discrete and geometrically
finite, and P must be a Ford domain of H

3/Γ.

Proof. In both cases, Theorem 2.24 immediately implies that Γ is discrete. The fact that Γ
is geometrically finite follows directly from the definition.

In the case of the polyhedron P , suppose P is not a Ford domain. Since the Ford domain
is only well–defined up to choice of fundamental region for Γ∞, there is a Ford domain F
with the same choice of vertical fundamental domain for Γ∞ as for P . Since P is not a
Ford domain, F and P do not coincide. Because both are cut out by isometric spheres
corresponding to elements of Γ, there must be a visible face that cuts out the domain F that
does not agree with any of those that cut out the domain P . Hence F is a strict subset of
P , and there is some point x in H

3 which lies in the interior of P , but does not lie in the
Ford domain.

Now consider the covering map ϕ : H
3 → H

3/Γ. This map ϕ glues both P and F into
the manifold H

3/Γ, since both are fundamental regions for the manifold. Now consider ϕ
applied to x. Because x lies in the interior of P , and P is a fundamental domain, there is no
other point of P mapped to ϕ(x). On the other hand, x does not lie in the Ford domain F .
Thus there is some preimage y of ϕ(x) under ϕ which does lie in F . But F is a subset of P .
Hence we have y 6= x in P such that ϕ(x) = ϕ(y). This contradiction finishes the proof in
the case of the polyhedron P .

The proof for G is nearly identical. Again if G is not the equivariant Ford domain F , then
there is an additional visible face of F besides those that cut out G, and again there is some
point x in H

3 which lies in the interior of G, but does not lie in F . Again the covering map
ϕ : H

3 → H
3/Γ glues G and F into the manifold H

3/Γ, and again since a point x lies in G but
not in F , we have some y 6= x in F such that ϕ(x) = ϕ(y). Again this is a contradiction. �

We may now complete the proof that the Ford domain of the representation of Example
2.11 is as shown in Figure 2.

Lemma 2.27. Let ρ : π1(C) → PSL(2, C) be the representation given in Example 2.11. Then
ρ gives a minimally parabolic geometrically finite uniformization of C, and a Ford domain
is given by the intersection of a vertical fundamental domain for Γ∞ with the half–spaces
exterior to the two isometric spheres I(ρ(γ)) and I(ρ(γ−1)).

Proof. We have seen that I(ρ(γ)), I(ρ(γ−1)), and the translates of these isometric spheres
under Γ∞ are all disjoint. Select a vertical fundamental domain for Γ∞ which contains
the isometric spheres I(ρ(γ)) and I(ρ(γ−1)). This is possible by choice of ρ(α) and ρ(β),
particularly because the translation lengths |a| and |b| are greater than 2|c|.

Let P be the region in the interior of the vertical fundamental domain, exterior to the
half–spaces B(ρ(γ)) and B(ρ(γ−1)) bounded by I(ρ(γ)) and I(ρ(γ−1)), respectively. Then
when we identify vertical sides of P via elements of Γ∞, and identify I(ρ(γ)) and I(ρ(γ−1))
via ρ(γ−1), the object we obtain is a smooth hyperbolic manifold, by Theorem 2.25, since
P has no edges. Lemma 2.26 now implies that P is a Ford domain for H

3/Γ, and that Γ
is geometrically finite. Lemma 2.18 implies Γ is minimally parabolic. Finally, Lemma 2.16
shows H

3/Γ is homeomorphic to the interior of C, so this is indeed a uniformization of C. �



12 MARC LACKENBY AND JESSICA S. PURCELL

We conclude this section by stating a lemma that will help us identify representations
which are not discrete. It is essentially the Shimizu–Leutbecher lemma [18, Proposition
II.C.5].

Lemma 2.28. Let Γ be a discrete, torsion free subgroup of PSL(2, C) such that M = H
3/Γ

has a rank two cusp. Suppose that the point at infinity projects to this cusp, and let Γ∞ be
its stabilizer in Γ. Then for all ζ ∈ Γ \ Γ∞, the isometric sphere of ζ has radius at most the
minimal (Euclidean) translation length of all non-trivial elements in Γ∞.

3. Algorithm to compute Ford domains

We will use Ford domains to study geometrically finite minimally parabolic uniformizations
of the (1; 2)–compression body. To facilitate this study, we have developed algorithms to
construct Ford domains. In this section, we present an algorithm which is guaranteed to
construct the Ford domain, but is impractical. We also present a practical procedure which
we have implemented, which we conjecture will always construct the Ford domain of the
(1; 2)–compression body.

3.1. An initial algorithm. Let Γ be a discrete, geometrically finite subgroup of PSL(2, C)
such that H

3/Γ is homeomorphic to the interior of the (1; 2)–compression body. We will
assume that Γ is given by an explicit set of matrix generators. We now present an (imprac-
tical) algorithm to find the Ford domain of H

3/Γ. Assume without loss of generality that in
the universal cover H

3, the point at infinity is fixed by the rank 2 cusp subgroup, Γ∞ < Γ.

Algorithm 3.1. Enumerate all elements of the group: Γ = {g1, g2, g3, . . . }. Again we
assume that each gi is given as a matrix with explicit entries. Step through the list of group
elements. At the n-th step:

(1) Draw isometric spheres corresponding to gn and g−1
n .

(2) If these isometric spheres are visible over other previously drawn isometric spheres
(corresponding to g1, . . . , gn−1 and their inverses), check if the object obtained by
gluing pairs of currently visible, previously drawn isometric spheres via the corre-
sponding isometries satisfy the hypotheses of Theorem 2.25.

(3) If it does satisfy these hypotheses, then by the Poincaré polyhedron theorem, The-
orem 2.24, the fundamental group of the manifold is generated by isometries corre-
sponding to face identifications. Therefore, if we can write the generators of Γ as
words in the isometries of these faces, we will be done, by Lemma 2.26. Put this
manifold into a list of manifolds built by repeating the previous two steps.

(4) For each manifold in the list of manifolds built by steps (1) and (2), we have an
enumeration of words in the group elements generated by gluing isometries of faces:
L = {h1, h2, . . . }.
(a) For each generator g of Γ, step through the first n words of L to see if g equals

one of these words.
(b) If each g can be written as a word in one of the first n elements of L, we are

done. The Ford domain is given by the isometric spheres which are the faces of
this manifold.

Note that in step (2), if we find that isometric spheres glue to give a manifold, it does not
necessarily follow that this manifold is our original compression body. For example, we may
have found a non-trivial cover of the original compression body. Therefore, steps (3) and (4)
are required.
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Since Ford domains of geometrically finite hyperbolic manifolds have a finite number of
faces, after a finite number of steps, Algorithm 3.1 will have drawn all isometric spheres
corresponding to visible faces. Since identifying a finite number of generators as words in a
finite number of generators given by face pairings can be done in a finite number of steps,
after a finite number of steps the algorithm will terminate.

3.2. A practical procedure. The algorithm above is impractical for computer implemen-
tation. In this section we present a practical procedure, which will generate the Ford domain
and terminate in many cases for a (1; 2)–compression body. We conjecture it will terminate
for all cases.

We have implemented this procedure, and used the images it produced to analyze behavior
of paths of Ford domains. The computer images of this paper were generated by this program.

Procedure 3.2. Let α, β be parabolic, fixing a common point at infinity in H
3. Let γ be

loxodromic, such that 〈α, β, γ〉 ∼= (Z × Z) ∗ Z.
Conjugate such that

α =

(
1 a
0 1

)
, β =

(
1 b
0 1

)
, γ =

(
c −1
1 0

)
.

We will hold two lists: The list of elements to draw, L0, and the list of elements that have
been drawn L1. These are ordered lists.

Initialization. Replace α and β if necessary, so that the lattice generated by a and b has
generators of shortest length.

Replace γ if necessary so that γ(∞) is within the parallelogram with vertices at 0 =
γ−1(∞), a, b, and a + b.

Add γ and γ−1 to the list of elements to draw, L0.
Loop. While the list L0 is non-empty, do the following.

(1) Remove the first element of L0, call it ζ. Consider the isometric sphere of ζ. Check
I(ζ) against elements of L1. If I(ζ) is no longer visible, discard and start over with
the next element of L0. If I(ζ) is still visible, draw the isometric sphere determined
by ζ to the screen. Add ζ to the end of the list L1.

Now also draw isometric spheres of each element of the form w = αǫβδI(ζ), where
ǫ, δ lie in {0,±1,±2, · · · ± m}, with m chosen so that we draw only those translates
of I(ζ) which are contained in the region of the screen.

(2) For each ξ in the list of drawn elements L1, find integers p, q such that the center of
αpβqI(ζ) is nearest the center of ξ.

For each isometric sphere of the form αp+ǫβq+δI(ζ) = I(ζβ−q−δα−p−ǫ), with ǫ, δ
in {0,±1 ± 2,±3}, check if that isometric sphere and I(ξ) intersect visibly. That
is, check if they intersect and, if so, if the edge of their intersection is visible from
infinity. (In the case of I(ζ), no need to check for intersections of I(ζ) and the
isometric sphere of the newly added last element ζ of L1.)

We claim that if I(ξ) intersects any translate of I(ζ) under Γ∞, then that translate
will have the form αp+ǫβq+δI(ζ) where ǫ, δ are in {0,±1,±2,±3}. See Lemma 3.3
below.

(3) If αp+ǫβq+δI(ζ) and I(ξ) do intersect visibly, then the isometric sphere of the element
ξw−1 should be drawn, where w = ζβ−q−δα−p−ǫ, so that I(w) = αp+ǫβq+δI(ζ). Step
through the lists L1 and L0 to ensure the isometric sphere I(ξw−1) hasn’t been drawn
already, and is not yet slated to be drawn (to avoid adding the same sequence of faces
repeatedly – note there are more time effective ways of ensuring the same thing). If
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ξw−1 is not in either list, then add ξw−1, and wξ−1 to the end of the list L0 to be
drawn.

Lemma 3.3. Suppose α and β are parabolic fixing the point at infinity, chosen as above
such that α has the shortest translation length in the group 〈α, β〉 ∼= Z × Z, and such that
β has the shortest translation length of all parabolics independent from α. Suppose ξ and ζ
are loxodromic such that the group 〈α, β, ξ, ζ〉 is discrete. Choose integers p, q such that the
center of I(ξ) is nearer the center of αpβqI(ζ) than the center of any other translate of I(ζ)
under 〈α, β〉. Then if I(ξ) intersects any translate of I(ζ), that translate must be of the form
αp+ǫβq+δI(ζ) for ǫ, δ ∈ {0,±1,±2,±3}.

Proof. Apply an isometry to H
3 so that α translates by exactly 1 along the real axis in C.

Note that after this isometry, by Lemma 2.28, all isometric spheres have radius at most 1.
Hence if two intersect, the distance between their centers is less than 2. Let x denote the
center of αpβqI(ζ). We may apply another isometry of H

3 so that x = 0 in C. Finally, since
β is the shortest translation independent of α, β must translate x to be within the hyperbolic
triangle on C with vertices 1/2 + i

√
3/2, −1/2 + i

√
3/2, ∞.

Since the center of I(ξ), denote it by y, is closer to x than to any of the translates
of x under 〈α, β〉, the real coordinate of y in C must have absolute value at most 1/2.

Similarly, the difference in imaginary coordinates of y and βx is at least
√

3/6, for otherwise
the square of the distance between y and some lattice point of the form αǫβx is at most
(1/2)2 + (

√
3/6)2 = 1/3. Finally, we may assume the imaginary coordinate of y is positive,

by symmetry of the lattice.
Suppose I(ξ) meets αp+ǫβq+δI(ζ), where one of |ǫ| or |δ| is greater than 3. Then the

distance between y and αǫβδx on C is at most 2. On the other hand, if |δ| ≥ 3, then the
difference between the imaginary coordinates of y and αǫβδx is at least

√
3+

√
3/6 > 2, which

is a contradiction. So suppose |δ| < 3 and |ǫ| > 3. Then the difference in real coordinates of
αǫβδx and y is at least 4 − 1/2 − δ · 1/2 > 2, which is again a contradiction. �

Theorem 3.4. Suppose each of the spheres drawn by Procedure 3.2 is a face of the Ford
domain of a geometrically finite uniformization of the (1; 2)–compression body C. Then the
procedure draws (at least one translate under Γ∞ of) all visible isometric spheres, and the
procedure terminates.

Proof. The fact that the procedure terminates follows from Corollary 2.10: there are only
finitely many visible faces, and each face the procedure draws is visible.

The fact that the procedure draws all visible isometric spheres of the Ford domain will
follow from Lemma 2.26 and the Poincaré polyhedron theorem, as follows.

First, suppose the faces corresponding to γ and γ−1 are visible, and they do not intersect
each other or any other faces. Then the procedure terminates after drawing these faces and a
few translates under Γ∞. Because there are no edges of intersection, the argument of Lemma
2.27 implies that the only visible face of the Ford domain corresponds to γ (and γ−1), and
in this case we are done.

So suppose two isometric spheres drawn by the procedure intersect. Say isometric spheres
I(g) and I(h) intersect. Then the procedure will draw I(gh−1). Since the procedure only
draws visible isometric spheres, I(gh−1) must be visible. By Lemma 2.17, it intersects I(h−1)
in an edge which is mapped isometrically to the edge of I(g)∩ I(h). Changing roles of g and
h in the same lemma, the isometric sphere I(hg−1) must be visible, and I(hg−1) ∩ I(g−1) is
mapped isometrically to I(g) ∩ I(h).
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Now notice that the faces of the Ford domain corresponding to the pairs I(g) and I(g−1),
I(h) and I(h−1), and I(gh−1) and I(hg−1) are the only faces that meet the edge class of
I(g) ∩ I(h) (up to translation by Γ∞). This can be seen by noting that g takes I(g) ∩ I(h)
and I(h) to I(g−1) ∩ I(hg−1) and I(hg−1), respectively. Then apply hg−1. This sends
I(g−1) ∩ I(hg−1) and I(g−1) to I(h−1) ∩ I(gh−1) and I(h−1), respectively. Finally apply
h−1, which sends I(h−1) ∩ I(gh−1) and I(gh−1) to I(h) ∩ I(g) and I(g), respectively. Thus
the monodromy is given by h−1 ◦hg−1 ◦ g = 1. As for dihedral angles around this edge class,
because the monodromy is the identity, the sum of the dihedral angles must be a multiple
of 2π. Since there are only three faces in the edge class, and the dihedral angle between any
two faces is less than π, the sum of the dihedral angles around the edge I(h) ∩ I(g) must
be exactly 2π. Now we have the hypotheses of the Poincaré polyhedron theorem, Theorem
2.25. That theorem tells us that the gluing of the faces our procedure has drawn gives a
smooth hyperbolic manifold. Lemma 2.26 implies that the procedure has drawn the entire
Ford domain, as desired. �

One way the hypotheses of Theorem 3.4 might not hold is if there is an edge class of the
cell structure on the Ford domain that meets more than three visible faces. When two of the
visible faces intersect, say corresponding to I(g) and I(h), our procedure will draw I(gh−1).
However, if the edge class meets more than three visible faces, the isometric sphere I(gh−1)
will not be visible, and so the hypotheses of the theorem are not satisfied. In practice,
we were unable to find a structure on the (1; 2)–compression body for which this situation
arose. S. Burton found such a structure on a (1; 3)–compression body [8]. However, even in
this higher genus case the above procedure drew all visible isometric spheres for the example,
since the isometric sphere covering I(gh−1) arose as the intersection of other visible isometric
spheres. Based on experimental evidence in the case of the (1; 2)–compression body, we offer
the following conjecture.

Conjecture 3.5. Procedure 3.2 always draws the Ford domain for a geometrically finite
uniformization for the (1; 2)–compression body, and terminates.

The generalization of Procedure 3.2 to (1;n)–compression bodies, for n ≥ 3 has been
shown to be false by S. Burton [8]. That is, the procedure will not necessarily draw the full
Ford domain. This is because in the higher genus case, a choice of loxodromic generators
may give an isometric sphere which is completely covered by some visible isometric sphere.
As long as that visible isometric sphere is not one of our generators, and as long as the
isometric spheres of our generators remain disjoint from that visible isometric sphere, the
visible isometric sphere will never be drawn by the above procedure. However in the (1; 2)–
compression body case, up to translation by Γ∞ there is only one choice for loxodromic
generator, and so this issue does not seem to arise.

4. Examples of Ford domains

Recall that we are interested in isotopy classes of the core tunnel of a (1; 2)–compression
body. We use the computer program implementing Procedure 3.2 to study isotopy classes
of the core tunnel for many different geometrically finite uniformizations. To identify core
tunnels in Ford domains, we will examine the dual structure to a Ford domain. In this section,
we define the dual structure and present several examples. The examples were obtained by
computer using the procedure of the previous section.
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4.1. Paths of Ford domains. Recall that if C denotes the (1; 2)–compression body, then
π1(C) ∼= (Z × Z) ∗ Z with generators we denote α and β for the (Z × Z) factor, and γ. Let
ρ0 : π1(C) → PSL(2, C) be the representation of Example 2.11. Keeping the images of α
and β parabolic, allow the images of the three generators α, β, and γ to vary smoothly.
We obtain a smooth path of discrete, faithful representations ρt. For some amount of time,
these will be minimally parabolic geometrically finite uniformizations of C. As ρt changes
smoothly, the visible isometric spheres of H

3/ρt(π1(C)) will change smoothly. In particular,
we can change the images of the generators such that two isometric spheres bump into each
other. By Lemma 2.17, if two visible isometric spheres intersect, then a new visible face
must arise when they meet. We present two examples to illustrate some of the behavior that
may occur.

Example 4.1. Consider the smooth path of representations ρt : π1(C) → PSL(2, C) given
by

ρt(α) =

(
1 5 + i
0 1

)
, ρt(β) =

(
1 5.5i
0 1

)
, ρt(γ) =

(
−1 + i t −1

1 0

)
,

where t runs from 2 down to 1.2.
Note here that ρt(α) and ρt(β) are constant. They were chosen somewhat arbitrarily to

be parabolics fixing infinity, with large enough Euclidean translation distance that nontrivial
translations under Γ∞ = 〈ρt(α), ρt(β)〉 of the isometric spheres corresponding to ρt(γ

±1) and
ρt(γ

±2) don’t meet any of these original isometric spheres.
Consider the isometric spheres corresponding to ρt(γ). By Lemma 2.6, these have radius

1 throughout the path. When t = 2, the isometric spheres of ρt(γ) and ρt(γ
−1), which have

centers 0 and −1 + i t respectively, do not intersect, so we have the simple Ford spine with
a single face as above. However, as t decreases, these two isometric spheres first become
tangent, at t =

√
3, and then overlap for t <

√
3. As these spheres meet, the isometric

spheres corresponding to ρt(γ
2) and ρt(γ

−2) emerge, and their intersections with isometric
spheres of ρt(γ) and ρt(γ

−1), respectively, become visible, as predicted by Lemma 2.17. We
can compute explicitly that for these particular representations, for 1.2 < t <

√
3, the region

cut out by the isometric spheres of ρt(γ
±1) and ρt(γ

±2) and a vertical fundamental domain for
Γ∞ is a fundamental polyhedron for a manifold, using Poincaré’s theorem 2.25. By Lemma
2.26, these isometric spheres must define the Ford domain for the manifold H

3/ρt(π1(C)).
Thus our Ford spine has two faces, corresponding to ρt(γ) and ρt(γ

2). Figure 3 illustrates
this particular example.

We claim this is still a uniformization of C, i.e. that H
3/ρ(π1(C)) is homeomorphic to the

interior of C. The Ford spine of H
3/ρ(π1(C)) has two faces, one of which has boundary which

is the union of the 1–cell of the spine and an arc on ∂+C (corresponding to γ±2). Collapse
the 1–cell and this face. The result is a new complex with the same regular neighborhood.
It now has a single 2–cell attached to ∂+C. Thus H

3/ρ(π1(C)) is obtained by attaching a
2–handle to ∂+C × I, and then removing the boundary. So H

3/ρ(π1(C)) is homeomorphic
to the interior of C.

Example 4.2. Consider the same path as in Example 4.1, only now allow t to run from 1.2
down to 0.8. As t decreases, the isometric spheres corresponding to ρt(γ

±2) slide towards
those corresponding to ρt(γ

±1), as illustrated in Figure 4. At approximately time t = 1,
these isometric spheres meet visibly, and for 1 > t > 0.8, these isometric spheres overlap.
The isometric spheres corresponding to ρt(γ

±3) are visible during these times, and emerge
out from under the intersection between faces corresponding to ρt(γ

±1) and ρt(γ
±2), as
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Figure 3. Faces of the Ford domain meet. Left: schematic picture for t = 2
down to t = 1.2. Right: Computer generated image for t = 1.2.

Figure 4. Left: Schematic picture of path for t = 1.2 down to t = 0.8.
Right: Computer generated image, t = 0.8.

illustrated in Figure 4. Again one may show that these isometric spheres, as well as a vertical
fundamental domain for Γ∞, cut out a polyhedron which glues up to give our manifold
H

3/ρt(π1(C)), so again by Lemma 2.26, these isometric spheres cut out the Ford domain for
the manifold.

We can show that this is a uniformization of C, i.e. that H
3/ρ(π1(C)) is homeomorphic to

the interior of C, this time by considering the face of the Ford spine corresponding to γ±3.
This face has boundary consisting of two 1–cells and an arc on ∂+C. Collapse this face. In
fact, we may collapse the faces in the order they appeared, and we are again left with a single
2–cell attached to ∂+C (corresponding to γ±1). So again this is a uniformization of C.

The examples above illustrate the phenomenon of Lemma 2.17, that is, that new faces
emerge when existing faces meet in a path of uniformizations. We will see in Section 5 that
this is the only way a new face can emerge.

4.2. The dual structure. Recall that we are interested in core tunnels of the (1; 2)–
compression body C. In many cases, we can identify the core tunnel as an edge of the
geometric dual of the Ford spine. This dual is reminiscent of the canonical polyhedral de-
compositions for finite volume manifolds which were introduced by Epstein and Penner [12].
We build the dual structure as follows.

Consider again F = H
3 \⋃

g∈Γ\Γ∞

B(g). To each visible isometric sphere I(g) of F , there

is an associated edge e(g), which is the geometric dual of I(g) running from the center of
I(g) to infinity in H

3.
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Sγ
Sγ−1

Figure 5. The dual to the simplest Ford spine is an edge that lifts to a
collection of vertical geodesics in F , shown in bold.

Figure 6. Left: the lift to F of the geometric dual of a Ford spine as in
Example 4.1. Right: in this case the geometric dual to the Ford spine is a
single ideal triangle, with two sides on the same edge.

If two isometric spheres I(g1) and I(g2) of F overlap visibly, then they correspond to a
dual face F (g1, g2) which is the vertical plane bounded by e(g1) and e(g2) intersected with
F .

If visible isometric spheres of F meet (visibly) in a vertex, then their dual is a 3–
dimensional region in F bounded by dual faces.

This forms a complex C. When we take C/Γ, we obtain a complex C0 which is the
geometric dual of the Ford spine.

Example 4.3. Consider Example 2.11, which gives a minimally parabolic geometrically
finite uniformization on a (1; 2)–compression body with only one face of the Ford spine.
The geometric dual to the Ford spine for this example is a single edge running through
the geometric center of the Ford spine. This edge lifts to a collection of geodesics in F ⊂
H3 running through centers of isometric spheres corresponding to ρ(γ), ρ(γ−1), and their
translates under Γ∞. See Figure 5.

Example 4.4. Consider again Example 4.1, which describes the Ford domain of a geomet-
rically finite unifomization of C in which the isometric spheres corresponding to ρ(γ) and
ρ(γ−1) “bump”, and only isometric spheres corresponding to ρ(γ2) and ρ(γ−2) emerge. Con-
sider the geometric dual to this picture. In F/Γ∞, we see three intersections of isometric
spheres: one corresponding to ρ(γ) and ρ(γ−1), one corresponding to ρ(γ2) and ρ(γ), and
one corresponding to ρ(γ−1) and ρ(γ−2). Thus the lift of the geometric dual to F has the
form on the left of Figure 6.

These three lines of intersection in F are all glued under the action of Γ to the same single
line. The dual faces glue up to give a single ideal triangle, as on the right in Figure 6, with
two sides on the same edge (dual to the isometric sphere of γ).
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Figure 7. On the right is the lift to F of the geometric dual of the Ford
spine of Example 4.2. The dual structure meets the horosphere about infinity
in four triangles, corresponding to the four vertices of the single ideal tetra-
hedron.

Example 4.5. When Γ is the final uniformization in the path of representations considered
in Example 4.2, the dual is a single ideal tetrahedron, as shown in Figure 7. Note the
tetrahedron has two faces which are identified to each other under the action of Γ.

The dual structure, along with a horoball at infinity, also carries the topological informa-
tion of the (1; 2)–compression body.

Lemma 4.6. For M the interior of any hyperbolizable 3–manifold with a single torus bound-
ary component, let ρ : π1(M) → PSL(2, C) be a minimally parabolic geometrically finite
uniformization of M . Then there is a deformation retraction of M onto the union of the
geometric dual of its Ford spine and an embedded horoball neighborhood of the rank 2 cusp.

Proof. Because ρ is geometrically finite, there exist finitely many visible isometric spheres in
a Ford domain, which we view as F ⊂ H

3 intersected with a vertical fundamental domain.
The boundaries of these isometric spheres are circles on C, which bound disks on C. There
exists some ǫ > 0 such that the ǫ–neighborhood of the union of these disks on C is embedded
in C. Translates by Γ∞ remain embedded on C. Now let H∞ be the lift an embedded
horoball neighborhood of the rank 2 cusp to H

3. Project the ǫ–neighborhood of the union of
disks vertically onto ∂H∞. For each visible isometric sphere, there is a portion of a Euclidean
cone in H

3 \ H∞ which intersects C in the boundary of the isometric sphere, and intersects
∂H∞ in the ǫ–neighborhood. Let S denote the union of all these cones. Note they form
a regular neighborhood of the lift of the geometric dual of the Ford spine, intersected with
F \ H∞.

For the first step of the deformation retract, consider a point x in H
3\(S∪H∞). Hyperbolic

space H
3 is foliated by vertical lines, and the vertical line through x will meet ∂(H∞ ∪ S)

in exactly one point. We define a deformation retract on H
3 \ (S ∪ H∞) by taking x to this

unique point on ∂(H∞ ∪ S).
For the second step, since S is a regular neighborhood of the lift of the geometric dual of

the Ford spine in F \ H∞, we deformation retract S ∪ ∂H∞ to the union of the geometric
dual and the boundary ∂H∞. We may choose the deformation retraction to be equivariant
with respect to the action of ρ(π1(C)). Putting both steps together and taking the quotient
under ρ(π1(C)), the result is the desired deformation retraction of H

3/ρ(π1(C)). �

With this picture of the dual structure, the fact that the core tunnel is geodesic in the
case in which the Ford spine consists of a single face is immediate.

Proposition 4.7. Suppose the Ford spine of a minimally parabolic geometrically finite hy-
perbolic uniformization of a (1; 2)–compression body consists of a single face, corresponding
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to the loxodromic generator. Then the core tunnel is isotopic to a geodesic, dual to this single
face.

Proof. Let ρ : π1(C) → PSL(2, C) be a uniformization of C with one face of the Ford spine,
as in the statement of the proposition, and denote ρ(π1(C)) by Γ. As in Example 4.3, the
dual structure to the Ford spine consists of a single edge.

By Lemma 4.6, we may retract H
3/Γ onto a union of a horoball neighborhood of the cusp

and this geodesic. Thus in this case, the single geodesic, which is the edge dual to the single
face of the Ford spine, is isotopic to the core tunnel. �

In fact, for any uniformization ρ : π1(C) → PSL(2, C), the core tunnel will always be
homotopic to the edge dual to the isometric sphere corresponding to ρ(γ).

Lemma 4.8. For any uniformization ρ : π1(C) → PSL(2, C), the core tunnel will be homo-
topic to the edge dual to the isometric sphere corresponding to the loxodromic generator of
ρ(π1(C)).

Proof. Denote the loxodromic generator by ρ(γ). Consider the core tunnel in the compression
body H

3/ρ(π1(C)). Take a horoball neighborhood H∞ of the cusp. The core tunnel runs

through the horospherical torus ∂H∞ into the cusp. Denote by H̃∞ a lift of H∞ to H
3 about

the point at infinity in H
3.

There is a homeomorphism from C \ ∂+C to (H3/ρ(π1(C))) \ H̊∞. Slide the tunnel in C
so that it starts and ends at the same point, and so that the resulting loop represents γ. The
image of this loop under the homeomorphism to (H3/ρ(π1(C)))\ H̊∞ is some loop. It lifts to

an arc in H
3 starting on H̃∞ and ending on ρ(γ)(H̃∞). Extend to an arc in H

3/ρ(π1(C)) by

attaching a geodesic in H̃∞ and in ρ(γ)(H̃∞) and projecting. This is isotopic to (the interior
of) the core tunnel. Now homotope the arc to a geodesic. It will run through the isometric
sphere corresponding to ρ(γ−1) once. �

5. Paths of structures and tunnels

We have encountered examples of minimally parabolic geometrically finite uniformizations
of a (1; 2)–compression body C for which the core tunnel is geodesic. This was shown
explicitly for structures with simple Ford spines in Proposition 4.7. It can also be seen for
those with spines as in Examples 4.1 and 4.2, by constructing a deformation retract onto the
geodesic dual to the face corresponding to γ.

In this section we investigate Conjecture 1.1 more carefully. We find families of geomet-
rically finite uniformizations of C for which the core tunnel is geodesic. Those structures of
Examples 4.1 and 4.2 will fit into these families.

Our method of proof is to consider paths through the space of minimally parabolic geomet-
rically finite uniformizations, and the corresponding Ford spines and their dual structures.
We will see that in many cases, under some assumptions on the path, the core tunnel must
remain isotopic to a geodesic.

5.1. Paths and visible isometric spheres. In this subsection we will work with slightly
more general manifolds than C. We let M be the interior of a hyperbolic manifold with only
one of its boundary components a torus.

The following follows from work of Bers, Kra, and Maskit (see [5]).

Lemma 5.1. The space of minimally parabolic geometrically finite uniformizations of M is
path connected.
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Proof. Bers, Kra, and Maskit showed that the space of conjugacy classes of minimally par-
abolic geometrically finite uniformizations may be identified with the Teichmüller space of
the higher genus boundary components, quotiented out by Mod0(M), the group of isotopy
classes of homeomorphisms of M which are homotopic to the identity. Since the Teichmüller
space is path connected, the quotient will also be path connected. �

Thus given any minimally parabolic geometrically finite uniformization of C, it is con-
nected by a path of uniformizations to a uniformization admitting a simple Ford spine, as in
Lemma 2.27.

Now, we will be taking paths through the interior of the space of geometrically finite,
minimally parabolic uniformizations of the manifold M . Technically, such uniformizations
are paths of representations ρt : π1(M) → PSL(2, C). For any group element g ∈ π1(M), ρt

will give a path of isometric spheres corresponding to ρt(g).
As the isometric spheres in a Ford domain bump into each other, new isometric spheres

become visible, and in turn visible faces may become invisible. We will determine when and
how spheres become visible. First, we show that isometric spheres are visible for an open set
of time.

Lemma 5.2. Let Γ be a group with subgroup Γ∞
∼= Z × Z, and let ρt : Γ → PSL(2, C) be

a continuous path of minimally parabolic geometrically finite representations of Γ such that
ρt(Γ∞) fixes the point at infinity in H

3 for all t. Then any isometric sphere will be visible
for an open set of time.

Proof. Suppose the isometric sphere corresponding to the element g0 ∈ Γ is visible at time
t0. By Lemma 2.14, there exists x on the hemisphere I(ρt0(g0)) which is not contained in the
closure of half–spaces B(ρt0(h)) bounded by any isometric spheres corresponding to elements
of Γ \ (Γ∞ ∪ Γ∞g0). Let U be a small open ball around x which is disjoint from the closures
of these half spaces.

We claim that there is some ǫ > 0 such that for any t ∈ (t0 − ǫ, t0 + ǫ), B(ρt(h)) ∩ U = ∅
for all h ∈ Γ \ (Γ∞ ∪ Γ∞g0). We may also choose ǫ > 0 so that I(ρt(h)) ∩ U 6= ∅ for all
t ∈ (t0 − ǫ, t0 + ǫ). Hence this claim will prove the lemma, because then points in this
intersection will be visible.

Suppose that the claim is not true. There is then a sequence of times tn (where n ≥ 1)
tending to t0 and a sequence of elements gn ∈ Γ\(Γ∞ ∪Γ∞g0) such that B(ρtn(gn))∩U 6= ∅.
So ρtn(gn) lies in the subset V of PSL(2, C) defined as follows:

V = {g ∈ PSL(2, C) : B(g) ∩ U 6= ∅ and g−1(H) ∩ H = ∅},
where as usual, H denotes an embedded horoball about infinity.

We wish to argue by compactness. Note that V itself is not compact, for if g ∈ V , then so
is wg for any w ∈ Γ∞. However, we may consider a compact subset of V . Let Vnorm consist
of wg ∈ PSL(2, C) where g ∈ V and w ∈ Γ∞ is chosen such that I(wg) and I((wg)−1) have
minimal (Euclidean) distance. That is, for any other x ∈ Γ∞, the distance between I(xg)
and I((xg)−1) is at least as large as that between I(wg) and I(wg)−1).

Now Vnorm is a compact subset of PSL(2, C). By composing with a suitable element of Γ∞,
we may assume that each ρtn(gn) lies in Vnorm. Hence we may pass to a subsequence where
ρtn(gn) converges to some h ∈ PSL(2, C). Now the groups ρtn(Γ) converge algebraically to
ρt0(Γ). Since ρt0(Γ) is geometrically finite, this convergence is also geometric [7].

So h lies in ρt0(Γ). Say that h = ρt0(g) for some g ∈ Γ. Then ρtn(gg−1
n ) is an element

of ρtn(Γ) that can be made arbitrarily close to the identity in PSL(2, C) by taking large n.
Powers of this form a cyclic subgroup of PSL(2, C), and after passing to a subsequence, these
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converge geometrically to a non-discrete subgroup of PSL(2, C). But this implies that ρt0(Γ)
is not discrete, which is a contradiction. This proves the claim and hence the lemma. �

In what follows, we will analyze how the pattern of visible isometric spheres changes along
a path ρt(Γ) of minimally parabolic geometrically finite uniformizations. The first step is to
examine how two Euclidean hemispheres I(ρt(g1)) and I(ρt(g2)) interact. It would be useful
to know that during an interval [t−, t+] of time, the set of times where I(ρt(g1)) completely
covers I(ρt(g2)) is a finite collection of closed intervals. However, this need not be the case
in general. Although the set of times where I(ρt(g1)) covers I(ρt(g2)) is a closed subset
of [t−, t+], this subset can have infinitely many components. To visualise this, imagine
a continuous function [t−, t+] → R which fluctuates between positive and negative values
infinitely often near some t0 ∈ [t−, t+]. We may find a path of uniformizations where the
distance of I(ρt(g1)) below (or above) I(ρt(g2)) is equal to this function. Even if we require
our path ρt of representations to be smooth, this phenomenon can occur. However, it is
does not arise when the path of representations [t−, t+] × Γ → PSL(2, C) is real analytic.
Note that PSL(2, C) inherits an obvious real analytic structure from C

4. Moreover, any path
of minimally parabolic geometrically finite uniformizations can be approximated by a real
analytic path, by the Whitney Approximation Theorem.

Lemma 5.3. Let Γ be a group with a subgroup Γ∞
∼= Z×Z. Let ρt be a real analytic path of

uniformizations of Γ, where t ∈ [t−, t+], such that ρt(Γ∞) fixes the point at infinity in H
3 for

all t. Let g1 and g2 be elements of Γ \ Γ∞. Then, the set of times t where I(ρt(g1)) covers
I(ρt(g2)) is a finite collection of closed intervals and points in [t−, t+].

Proof. Any isometric sphere is a hyperplane. Consider the hyperboloid model for hyperbolic
space H

3, which is the positive sheet of {v ∈ R
3,1 : 〈v, v〉 = −1}. In this model, any

hyperplane is of the form {w ∈ H
3 : 〈v,w〉 = 0} for some space–like vector w ∈ R

3,1. We
may choose w so that 〈w,w〉 = 1. In other words, the norm of w is 1.

Given two hyperplanes H1 and H2 specified by space–like vectors w1 and w2 with norm
1, they are tangent if and only if 〈w1, w2〉 = 1. So, consider the isometric spheres I(ρt(g1))
and I(ρt(g2)), which are specified by space–like vectors w1(t) and w2(t) with norm 1. Then
〈w1(t), w2(t)〉 is a real analytic function of t. Hence, the set of times t where I(ρt(g1)) and
I(ρt(g2)) are tangent is finite. �

The next lemma essentially is a list of ways that Euclidean hemispheres (isometric spheres)
can emerge out from other Euclidean hemispheres in a real analytic path.

Lemma 5.4. In a real analytic path through the space of minimally parabolic, geometrically
finite uniformizations of M , the ways in which an isometric sphere may become visible (or
invisible) are as follows:

(1) On the boundary at infinity: two nested isometric spheres become tangent at a point
on the boundary at infinity, then the inner one pushes through the outer.

(2) On the boundary at infinity: two visible isometric spheres meet at a point on the
boundary at infinity, a third moves into the point of their intersection, then pushes
through.

(3) Away from the boundary at infinity: two visible isometric spheres meet at an edge of
F , a third also meets the length of the edge, then pushes through.

(4) Away from the boundary at infinity: three or more visible isometric spheres intersect
in a vertex of F , another moves into the vertex and then pushes through.
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Figure 8. The ways in which isometric spheres can become visible.

It is also possible that multiple new isometric spheres become visible or invisible simulta-
neously at the same points on the boundary at infinity, or on the same edge or vertex of
F .

No isometric sphere may become visible without intersecting any other visible isometric
sphere.

The options for single faces becoming visible are illustrated in Figure 8.

Proof. The fact that no isometric sphere may spontaneously arise without intersecting any
other isometric sphere follows from Lemma 2.6 and the fact that the path is real analytic
and hence continuous: each isometric sphere has positive radius for all time.

We now show that the above four possibilities are the only possibilities. Suppose I(g) is
visible for time t ∈ (t0, t0 + ǫ), but not at time t0. Then at time t0, the isometric sphere
corresponding to I(g) must have one of the following forms.

(1) It is covered by a single isometric sphere. In this case, it will be tangent to another
hemisphere at time t0, then push through at a point that is visible on the boundary
at infinity. This is option (1) above.

(2) It is not covered by a single isometric sphere, but is covered by two visible isometric
spheres at time t0. Then it intersects two hemispheres at their edge of intersection
at time t0, then pushes through. In this case, one of the following options holds.
(a) The newly visible isometric sphere expands in such a way as to completely cover

the old visible edge. This gives option (3) above.
(b) The new isometric sphere slides in one direction, covering only a portion of the

visible edge, and appearing on the boundary at infinity. This gives option (2)
above.

(c) The new isometric sphere slides in one direction, to cover only a portion of the
visible edge, but meets a third isometric sphere. Then the new isometric sphere
will become visible in a vertex of F . This is option (4) above.

(3) Finally, at time t0, if the new isometric sphere is not covered by either one or two
isometric spheres alone, but is covered by three or more, then in this case the isometric
sphere will meet the point where these isometric spheres intersect. As it moves out
from under the intersection, we will obtain option (4) above.

As for multiple isometric spheres: In each case above it is possible to have more than one
hemisphere meeting the point(s) where an isometric sphere is about to emerge. In the case
that a hemisphere is covered by another visible hemisphere, it is possible to have multiple
hemispheres tangent at the same point, nested within each other, at time t0. It is feasible
that at time t0 + ǫ, for any sufficiently small ǫ > 0, a smaller hemisphere has pushed out
farther than a larger one, and so we obtain two new visible isometric spheres.

Multiple distinct hemispheres may both meet the same edge of intersection of visible
isometric spheres, and then push through to form new visible isometric spheres. Similarly,
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multiple distinct hemispheres may meet the point of intersection of multiple visible isometric
spheres, and push through to become visible at the same time. �

We have seen in examples that as the isometric spheres in a Ford domain bump into each
other, new isometric spheres become visible. In the next two lemmas, we show that this is
the only way new isometric spheres may become visible. First, we set up some notation.

In the arguments below, we will consider a fixed collection of isometric spheres and how
they change. Rather than considering the entire Ford domain, we will consider instead
whether given isometric spheres are visible with respect to other isometric spheres in the
collection.

Definition 5.5. We will say an isometric sphere I(g) is visible with respect to a collection
of group elements {k1 . . . , kn} ⊂ Γ if there is an open subset of I(g) that is not contained in

Γ∞(
⋃n

j=1 B(kj)). Recall B(kj) is the open half space bounded by the isometric sphere I(kj).

Similarly, we say the intersection of two isometric spheres I(g) ∩ I(h) is visible with respect
to {k1, . . . , kn} if I(g)∩ I(h) contains an open set which is not contained in Γ∞(

⋃n
i=1 B(ki)).

Suppose we have a real analytic path, parameterized by time t, through the interior of
the space of minimally parabolic geometrically finite uniformizations of M , where M is a
hyperbolizable 3–manifold with only one rank 2 cusp. For any time t, we obtain the region
F(t) of Definition 2.7. We may choose vertical fundamental domains in a continuous manner
to obtain a path of Ford domains, given by finite polyhedra Pt.

Lemma 5.6. Suppose that at time t0, the polyhedron Pt0 is cut out by (a vertical fundamental
domain and) isometric spheres corresponding to group elements h1, . . . , hn; and for some
ǫ > 0, and all time t ∈ [t0, t0 + ǫ) the combinatorics of the visible intersections of these
isometric spheres do not change. That is, no new visible intersections of these particular
faces arise, and no visible intersections of these faces disappear. Then for all t ∈ [t0, t0 + ǫ),
faces corresponding to h1, . . . , hn remain exactly those faces that are visible in a Ford spine
at time t.

To summarize, when the combinatorics of the visible intersections of faces is unchanged,
no new visible faces may arise.

Proof. The proof is by the Poincaré polyhedron theorem. For any t ∈ (t0, t0 + ǫ), let Qt be
the polyhedron cut out by isometric spheres corresponding to the group elements h1, . . . , hn

and the vertical fundamental domain of Pt. Let Gt be the orbit of Qt under Γ∞.
Because there are no new visible intersections, and no visible intersections disappear, for

each edge of Qt arising from intersections of isometric spheres, the faces meeting that edge
cycle must be unchanged from that of Pt0 , and therefore the monodromy around that edge
is unchanged from that at time t0. Because the monodromy is the identity at time t0, it
must be the identity at time t, all t ∈ (t0, t0 + ǫ). Moreover, since the dihedral angles about
any edge at time t0 sum to 2π, and since dihedral angles about an edge with monodromy
the identity must sum to a multiple of 2π, continuity implies that the dihedral angles sum
to 2π for all t ∈ (t0, t0 + ǫ). Similarly, this is true of translates of edges under Γ∞, so holds
for edges of Gt.

Additionally, all isometric sphere faces of Gt are glued isometrically by continuity: They are
glued isometrically at time t0, when G0 is the equivariant Ford domain F , and by Lemma 2.17
their intersections with other isometric spheres continue to be glued isometrically. Therefore,
visible regions continue to be glued isometrically.



GEODESICS AND COMPRESSION BODIES 25

By Theorem 2.25, gluing faces of Gt yields a hyperbolic manifold with fundamental group
generated by the face pairings h1, . . . , hn, equivariant with respect to Γ∞. Therefore when
we quotient by Γ∞, we get a manifold whose fundamental group is isomorphic to that of
the original manifold. Then Lemma 2.26 implies that Gt must equal the equivariant Ford
domain at time t. Hence only the faces h1, . . . , hn are visible at time t. �

Lemma 5.7. Suppose that at time t0, the equivariant Ford domain Ft0 is cut out by isometric
spheres corresponding to group elements h1, . . . , hn and their translates under Γ∞; and for
some ǫ > 0 and all time t ∈ [t0, t0 + ǫ), there are no new visible intersections of faces
corresponding to the hj or their translates, although some visible intersections may disappear.
Then no new visible faces arise in this time interval.

Proof. Again let Gt be the polyhedron cut out by isometric spheres corresponding to h1, . . . , hn

at time t and their translates under Γ∞, so that Gt0 = Ft0 .
If the combinatorics of intersections of isometric spheres remains as it was at time t0, then

the previous lemma implies there are no new visible faces. So suppose the combinatorics
changes. By hypothesis, no visible intersections of faces corresponding to h1, . . . , hn arise.
Hence some intersection visible at time t0 must disappear. Without loss of generality, suppose
faces corresponding to h1 and h2 intersect visibly at time t0, but not at time t.

If a visible edge disappears, it must do so in one of the ways of Lemma 5.4. Note that each
of the ways (1), (2), and (4) in this lemma involve the Euclidean length of the edge shrinking
to zero. Only possibility (3) does not. However, in that case, an edge disappears by sliding
into another edge which was not initially visible. Because it was not initially visible, the two
isometric spheres meeting in this edge did not initially intersect visibly. Thus in case (3), two
isometric spheres that did not intersect visibly at time t0 must intersect visibly thereafter,
contradicting hypothesis. Therefore, this option of Lemma 5.4 does not happen.

Thus the Euclidean length of the visible intersection between faces corresponding to h1

and h2 must decrease to zero. Lemma 2.17 implies that the Euclidean length of the image
of the visible intersection under isometries corresponding to h1 and h2 must also decrease to
zero (as the visible edge is mapped isometrically). Applying the result to all edges in this
edge class, we see that the edge class must vanish from the Ford domain entirely. That is,
all faces which meet the edge corresponding to the visible intersection of h1 and h2 at time
t0 will cease to intersect in pairs by time t and the edge will be removed.

Now consider an edge class that remains visible with respect to faces corresponding to
h1, . . . , hn and their translates under Γ∞. By the above argument, the edge cannot meet
fewer faces than it meets at time t0, for then the entire edge would disappear. Since there are
no additional visible intersections of the hi and its translates, no additional face corresponding
to h1, . . . , hn and their translates may meet the edge. Hence a visible edge with respect to
the hi and their translates at time t corresponds to a visible edge at time t0, and has the
same monodromy, and therefore the monodromy is the identity. Since this is true for all
t ∈ (t0, t0 + ǫ), continuity implies the dihedral angles about the edge sum to 2π.

Next we show that faces corresponding to the hi are still glued isometrically. Lemma 2.17
implies that their intersections map to other intersections isometrically. It could happen that
one of the faces corresponding to h1, . . . , hn is no longer visible with respect to the hi at time
t. Then we ignore that face. For other faces, the argument of Lemma 2.15 implies that if
some portion of hj (or a translate) is visible with respect to the other h′

ks, then so must be

a portion of h−1
j . Continuity implies visible faces glue isometrically.

By the above work, when we glue via face pairings, the result must be a manifold by the
Poincaré polyhedron theorem, Theorem 2.25. Because one of the faces hi may no longer be
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visible, it could happen that the group generated by the pairings of visible faces (and the
quotient by Γ∞) no longer generates π1(M), and so these isometric spheres do not give the
full equivariant Ford domain. However, if all the hi remain visible, then Lemma 2.26 implies
that Gt is the equivariant Ford domain of our manifold, and we are finished in this case.

So now suppose some hi becomes invisible. In this case, there must be some initial time
at which a face hi is no longer visible, say all the hi are visible for t ∈ (t0, t1), but hj is not
visible at time t1. Up until this time, the above argument implies that the visible isometric
spheres corresponding to the hi and their translates under Γ∞ cut out the equivariant Ford
domain of our manifold.

Suppose that at time t1, the remaining visible isometric spheres no longer cut out the
equivariant Ford domain. This means that at time t1, some other isometric sphere, say
corresponding to k, must be visible. Lemma 5.2 implies that there is some ǫ > 0 such
that the isometric sphere corresponding to k is visible for t ∈ (t1 − ǫ, t1 + ǫ). However,
for t ∈ (t1 − ǫ, t1), the equivariant Ford domain is not cut out by an isometric sphere
corresponding to k. This is a contradiction.

Thus in all cases, we have the setup of Lemma 2.26. So Gt is the equivariant Ford domain,
and hence there are no new visible isometric spheres. �

In a real analytic path of minimally parabolic geometrically finite uniformizations of M ,
the dual structure to the Ford domain will be changing. It follows from Lemma 5.2 that a
dual edge will exist for an open set of time. The dual structure changes smoothly during the
path, except at a discrete set of points corresponding to the addition or removal of a cell of
the dual structure.

In Example 4.1, a new edge and a new 2–cell in the dual structure are created when two
visible isometric spheres meet across portions of their boundaries on C. In Example 4.2, a
new edge, two new 2–cells, and a single 3–cell are created when two visible isometric spheres
slide into each other along a third visible isometric sphere. In this case the boundaries of
the isometric spheres on C initially meet at a point where two other boundaries of visible
isometric spheres intersect.

Definition 5.8. If in a real analytic path of minimally parabolic geometrically finite uni-
formizations of M , two visible isometric spheres move to intersect across portions of their
boundaries on C, we will refer to the move as bumping at the boundary. The reverse of this
move, where two isometric spheres pull apart at the boundary, we will refer to as reverse
bumping. This is the move of Example 4.1.

If an isometric sphere slides into the visible intersection of two other isometric spheres
at a point where the intersection meets the boundary C, we call the move sliding at the
boundary. Its reverse we will call reverse sliding. This is the move of Example 4.2.

Finally, isometric spheres may also shift and change intersections internally, without affect-
ing the combinatorics of the boundary of the dual structure. We refer to these intersections
as internal moves.

For an example of an internal move, suppose two isometric spheres I(g) and I(h) form
a visible edge, and two additional isometric spheres I(k) and I(ℓ) slide together over that
edge, such that at some instant t = t0 all four isometric spheres meet in a single point. At
this instant, neither the intersection of I(g) and I(h) is visible, nor is the intersection of I(k)
and I(ℓ). However, for some ǫ > 0, the intersection of I(k) and I(ℓ) will be visible for time
(t0, t0 + ǫ), and the intersection of I(g) and I(h) will be visible for time (t0− ǫ, t0). This gives
a “retriangulation” of the existing dual structure, in which faces in the interior are removed
and replaced by other faces, and interior edges of the dual structure appear or disappear.
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Figure 9. A retriangulation of the dual structure.

An example of this phenomenon is a 2–3 Pachner move of a triangulation, or its reverse, a
3–2 move. See Figure 9.

5.2. Paths and geodesic core tunnels. We now present results that give evidence for
Conjecture 1.1. We will be considering the (1; 2)–compression body C once more.

Fix the following notation. As before, let α, β, and γ generate π1(C), with α and β generat-
ing π1(∂−C) ∼= (Z×Z). Suppose ρt : π1(C) → PSL(2, C) is a real analytic path of minimally
parabolic geometrically finite uniformizations of C. We will assume that ρt(π1(∂−C)) = Γ∞

fixes the point at infinity of H
3.

The following lemma will guarantee that all structures on a particular path through the
space of minimally parabolic geometrically finite uniformizations of C have geodesic core
tunnel.

Lemma 5.9. Suppose ρt : π1(C) → PSL(2, C) is a real analytic path of minimally parabolic
geometrically finite uniformizations of C such that at time t = 0, M0 = H

3/ρ0(π1(C)) admits
a Ford spine such that

(a) the isometric sphere corresponding to ρ0(γ) is visible, and
(b) the core tunnel is isotopic to the geometric dual of this face of the Ford spine.

Suppose that for t ∈ (0, t0), the isometric sphere corresponding to ρt(γ) remains visible. Then
the core tunnel is geodesic for all t ∈ (0, t0).

Proof. Consider the dual structure. For each t ∈ [0, t0), since ρt(γ) is visible, there is an edge
dual to it, which is a geodesic. The path ρt gives a (real analytic) one–parameter family of
embedded edges dual to ρt(γ). For any t1 ∈ (0, t0), this restricts to an ambient isotopy of
the edge dual to ρ0(γ) to the edge dual to ρt1(γ). Since the edge dual to ρ0(γ) is isotopic to
the core tunnel, the edge dual to ρt1(γ) is also isotopic to the core tunnel, and so the core
tunnel is geodesic. �

Now, we present a result that guarantees the core tunnel is geodesic for many paths of
uniformizations of C. In the proof, for g ∈ π1(C), we will sometimes denote ρt(g) by gt, or
when ρt is clear, we will simply write g to simplify notation.

Theorem 5.10. Suppose ρt : π1(C) → PSL(2, C) is a real analytic path of minimally para-
bolic geometrically finite uniformizations of C such that M0 = H

3/ρ0(π1(C)) admits a Ford
spine with just one face. Suppose for all t > 0, there is a compression disk Dt properly em-
bedded in C, which does not meet any faces of the Ford spine of Mt = H

3/ρt(π1(C)). Then
for any t > 0, the core tunnel is geodesic, isotopic to an edge dual to the Ford spine.

Proof. Suppose the isometric sphere corresponding to γ has remained visible for all time t in
(0, t0). We will show it is still visible at time t0. Because isometric spheres are visible for an
open set of time, it will follow from Lemma 5.9 that the core tunnel is geodesic at time t0.
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Figure 10. Shown are examples of structures to which Theorem 5.10 applies.

Consider a lift of the disk Dt0 to H
3, which we will continue to write as Dt0 , abusing

notation slightly.
Without loss of generality, we may assume ∂Dt0 encircles a single connected component of

the isometric spheres of F , for if not, we may replace Dt0 with a disk which has this property,
as follows. If ∂Dt0 encircles more than one connected component, then there is an arc α in
C from ∂Dt0 to itself which meets no isometric spheres of F . Then there is a disk in H

3

with boundary on α ⊂ C and on Dt0 which is disjoint from the isometric spheres of F and
with interior disjoint from Dt0 . Replace Dt0 with a portion of Dt0 and this new disk with
boundary α, reducing the number of components encircled by Dt0 . Repeat, as necessary, to
obtain Dt0 whose boundary encircles a single connected component of the isometric spheres
of F .

Without loss of generality, we may assume ∂Dt0 encircles I(γ) at time t0. Then note that
I(γ) cannot meet p(I(γ)) for any p ∈ Γ∞\{1}, or else the faces pn(I(γ)), n ∈ Z would form an
infinite strip of isometric spheres, and ∂Dt0 would have to intersect this strip, contradicting
assumption. So we may assume I(γ) (and hence I(γ−1)) meets none of its translates under
Γ∞ = Γ∞(t0).

Change generators, if necessary, so that the isometric sphere I(γ) is at least as close to
I(γ−1) as to any of the translates of I(γ−1) under ρt0(Γ∞) at time t0.

Suppose first that I(γ) and I(γ−1) are disjoint (or only meet at a single point on the
boundary at infinity). Then in this case, as in the proof of Lemma 2.27, the Poincaré poly-
hedron theorem implies that the object obtained by gluing isometric spheres corresponding
only to I(γ) and I(γ−1) and their translates under Γ∞, quotiented out by Γ∞, must be
a manifold with fundamental group isomorphic to π1(C). Then Lemma 2.26 implies that
the equivariant Ford domain in this case consists only of faces I(γ) and I(γ−1) (and their
translates under Γ∞). Thus Mt0 must have a simple Ford spine consisting of one face, so by
Proposition 4.7, the core tunnel is geodesic.

Next suppose I(γ) and I(γ−1) intersect. Then they (i.e. their boundaries) are contained
within the region of C bounded by ∂Dt0 . Let I(g) and I(h) be any isometric spheres within
this region. Then note that for any nontrivial parabolic p ∈ Γ∞ \ {1}, p(I(g)) cannot meet
I(h), for p(I(g)) must lie outside the region bounded by ∂Dt0 .

We claim that in this case, all visible isometric spheres in the region bounded by ∂Dt0

are of the form I(g) for g an element of the cyclic group 〈γ〉. Again this will follow from
Lemma 2.26, as follows. Consider the isometric spheres corresponding to the cyclic group
〈γ〉. Ford domains of cyclic groups have been studied by Jørgensen [16] and Drumm and
Poritz [11]. In particular, it is known that 〈γ〉 is geometrically finite, so a finite number
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Figure 11. Snapshots along paths. In the figures shown, the core tunnel is
geodesic because I(γ) remains visible.

of isometric spheres corresponding to this group will be visible with respect to the other
isometric spheres of the group. Moreover, they will glue to give a manifold, namely a layered
solid torus. Additionally, the Ford domain for 〈γ〉 is connected. Hence it lies entirely within
∂Dt0 , and thus it is disjoint from all its translates under Γ∞. Therefore when we consider
all translates under Γ∞ of visible isometric spheres corresponding to the cyclic group 〈γ〉,
the result is a domain in H

3 cut out by isometric spheres, which glue to give a manifold. If
we further take the quotient by Γ∞ then we obtain a manifold homeomorphic to the (1; 2)–
compression body. The fundamental group of this quotient manifold clearly contains Γ∞; it
also contains γ because it contains all of 〈γ〉. Hence the fundamental group of this manifold
is ρt(π1(C)). Lemma 2.26 implies that we have found the entire (equivariant) Ford domain.

Work of Jørgensen [15] and Drumm and Poritz [11] implies that the face I(γ) is visible in
the Ford domain of 〈γ〉. Therefore in our case, I(γ) must remain visible at time t = t0 (this
is contained in [11, Theorem 7.9], see also the two paragraphs before the statement of that
theorem). Then our result follows from Lemma 5.9. �

By Lemma 5.9, in a real analytic path of minimally parabolic geometrically finite uni-
formizations of C which begins with a simple Ford spine, if the isometric spheres corre-
sponding to γ and γ−1 remain visible throughout, then the core tunnel remains visible. We
found no topological obstruction to the isometric sphere of γ being covered. However, in
practice, we were unable to find examples of paths in which this occurred. All such examples
led to indiscrete groups.

Figure 11 shows examples of Ford domains obtained by our computer program which are
not guaranteed to have a geodesic core tunnel by Theorem 5.10. However, each of these can
be shown to have geodesic core tunnel by observation. In particular, the face I(γ) is visible
always for each of these examples. Thus by Lemma 5.9, the core tunnel is geodesic for each
of these structures. Moreover, it is actually dual to a face of the Ford spine.

This leads us to the following strengthening of Conjecture 1.1.

Conjecture 5.11. In any geometrically finite hyperbolic structure on a (1; 2)–compression
body, the core tunnel is isotopic to a geodesic dual to a face of the Ford domain.

The analogue of Conjecture 5.11 is false for finite volume manifolds. Sakuma and Weeks
conjectured in [19] that core tunnels in knot complements were isotopic to edges of the
Epstein–Penner canonical polyhedral decomposition of the knot complement [12], which
canonical decomposition is dual to the Ford domain. Sakuma and Weeks’ conjecture was
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shown to be false by Heath and Song in [14]. They showed that the knot P (−2, 3, 7) has
four distinct core tunnels, but only three edges of the canonical polyhedral decomposition.

Nevertheless, we believe Conjecture 5.11 will be true for compression bodies.

5.3. Relation to Computer Procedure. Conjecture 5.11 is intricately related to Proce-
dure 3.2.

Suppose Conjecture 5.11 is false. Then for some geometrically finite hyperbolic structure,
the faces corresponding to γ, γ−1 are not visible. In this case, it is not clear whether
Procedure 3.2 will actually find and draw all the faces of the Ford domain. Additionally,
since at least initially the procedure is drawing isometric spheres that will not be faces of the
Ford domain, it no longer follows that the procedure is drawing faces of a convex fundamental
domain for the group Γ. Hence work of Bowditch will not apply, and the procedure may
never terminate.

Similarly, suppose a face F of the Ford domain initially arose as the intersection of two
visible faces in a path through Ford domains, but that later in the path, those visible faces
or their edge of intersection becomes covered by some other face. Then it could possibly
be the case that Procedure 3.2 never draws face F . However, again based on experimental
evidence, this seems unlikely.

How might a face become invisible? If it is covered by other faces. In the interior, such a
move would occur as the dual of a 3–2 move of tetrahedra, or some similar move.

Question 5.12. For any geometrically finite hyperbolic structure on a (1; 2)–compression
body, does there exist a smooth path of Ford domains from the simple structure to this par-
ticular structure for which there are no internal moves on the Ford domain?

Note that an affirmative answer to Question 5.12 would imply Conjecture 5.11, as the faces
corresponding to γ, γ−1 cannot disappear as other faces slide together and apart, meeting
only on the boundary C ∩ F .

There is some evidence for a positive answer to Question 5.12. Our proof of Theorem 5.10
shows that 2–3 moves are impossible in the core of the Ford domain when the Ford domain
has the form of that theorem. Interestingly, in the case of once–punctured tori, Jørgensen
also found that internal moves in the Ford domain are impossible [16]. However, his proof
was similar to our proof of Theorem 5.10, and will not answer Question 5.12.

Using our computer program, we have found that 2–3 moves do occur in the (1; 2)–
compression body setting. However, in all examples encountered, there was a straightforward
way to reparameterize the path of structures to avoid these moves.
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