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1. Introduction

In this paper, we investigate the homology of finite index subgroups Gi of a given

finitely presented group G. We fix a prime p, denote the field of order p by Fp, and

define dp(Gi) to be the dimension of H1(Gi; Fp). We will be interested in the situation

where dp(Gi) grows fast as a function of the index [G : Gi]. Specifically, we say that

a collection of finite index subgroups {Gi} has linear growth of mod p homology if

inf i dp(Gi)/[G : Gi] is positive. This is a natural and interesting condition that arises in

several different contexts. For example, the main theorem of [9] states that when G is a

lattice in PSL(2, C) with non-trivial torsion (equivalently, G is the fundamental group

of a finite-volume hyperbolic 3-orbifold with non-empty singular locus), then G has such

a sequence of subgroups. Another major class of groups G having such a collection of

subgroups are those that are large. By definition, this means that G has a finite index

subgroup that admits a surjective homomorphism onto a free non-abelian group. Large

groups have many nice properties, for example super-exponential subgroup growth and

infinite virtual first Betti number. One might wonder whether largeness is equivalent

to the existence of some nested sequence of finite index subgroups {Gi} with linear

growth of mod p homology for some prime p. If so, this would establish that lattices in

PSL(2, C) with non-trivial torsion are large, which would be a major breakthrough in

low-dimensional topology.

We will relate this question to an important group-theoretic concept known as Prop-

erty (τ). This was first defined by Lubotzky and Zimmer [16]. We recall its definition

now. Let G be a finitely generated group, and let {Gi} be a collection of finite index

subgroups. Let S be a finite generating set for G, and let X(G/Gi; S) be the Schreier

coset graph for G/Gi with respect to S. Property (τ) is defined in terms of the geometry

of these graphs. Specifically, we will look at subsets A of their vertex set and consider

∂A, which is defined to be the set of edges with one endpoint in A and one not in A (see

Figure 1). The Cheeger constant h(X) of a finite graph X is defined to be

h(X) = min

{ |∂A|
|A| : A ⊂ V (X) and 0 < |A| ≤ |V (X)|/2

}

,

where V (X) is the vertex set of X . Then G is said to have Property (τ) with respect

to {Gi} if inf i h(X(G/Gi; S)) is strictly positive, for some finite generating set S for G.
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It turns out that if this holds for some finite generating set then it holds for any finite

generating set (see Lemma 2.3 in [7] for example).

A

V(X) - A

A∂

Figure 1

Property (τ) relates to many other areas of mathematics, including graph theory,

representation theory and differential geometry. (See [10] for a detailed survey.) An

equivalent condition is that λ1(X(G/Gi; S)) is bounded away from zero, where λ1 is

the smallest positive eigenvalue of the Laplacian of a finite graph. To show that certain

groups G have Property (τ) with respect to certain collections of finite index subgroups

{Gi} has been a major aim of many mathematicians, for example, Clozel [4] and Bour-

gain and Gamburd [2]. Such a conclusion has many applications, in areas such as group

theory [13] and number theory [3]. The failure of Property (τ) also has some interesting

consequences. For example, the Lubotzky-Sarnak conjecture [12] proposes that any lat-

tice in PSL(2, C) has a sequence of finite index subgroups without Property (τ), and this

is part of a programme initiated in [7] to prove the virtually Haken conjecture, which is

a major unsolved problem in 3-manifold theory.

The aim of this paper is relate largeness for groups to Property (τ) and linear growth

of mod p homology. Our main theorem is as follows.

Theorem 1.1. Let G be a finitely presented group, let p be a prime and suppose that

G ≥ G1 ⊲ G2 ⊲ . . . is a nested sequence of finite index subgroups, such that each Gi+1 is

normal in Gi and has index a power of p. Suppose that {Gi} has linear growth of mod

p homology. Then, at least one of the following must hold:

(i) some Gi admits a surjective homomorphism onto (Z/pZ)∗(Z/pZ) and some normal

subgroup of Gi, with index a power of p, admits a surjective homomorphism onto

a non-abelian free group; in particular, G is large;

(ii) G has Property (τ) with respect to {Gi}.
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The two possible conclusions in this theorem can be viewed as a ‘win/win’ scenario,

because largeness and Property (τ) are both extremely useful.

As an almost immediate consequence of Theorem 1.1, we obtain the following char-

acterisation of large finitely presented groups. We will give a proof of this, assuming

Theorem 1.1, in Section 2.

Theorem 1.2. Let G be a finitely presented group. Then the following are equivalent:

(i) G is large;

(ii) there exists a sequence of finite index subgroups, G ≥ G1 ⊲ G2 ⊲ . . . , and a prime p

such that

(1) Gi+1 is normal in Gi and has index a power of p, for each i;

(2) G does not have Property (τ) with respect to {Gi}; and

(3) {Gi} has linear growth of mod p homology.

Theorem 1.1 can also be used to provide a substantial class of groups that have

Property (τ) with respect to some nested sequence of finite index subgroups.

Theorem 1.3. Let G be a finitely presented group and let p be a prime. Suppose that

G has an infinite nested sequence of subnormal subgroups, each with index a power of

p, and with linear growth of mod p homology. Then G has such a sequence that also

has Property (τ).

Theorem 1.1 bears a strong resemblance to another result of the author. In [8], the

following was proved:

Theorem 1.4. Let G be a finitely presented group, and let {Gi} be a nested sequence

of finite index normal subgroups. Then at least one of the following holds:

(i) Gi is an amalgamated free product or HNN extension for all sufficiently large i;

(ii) G has Property (τ) with respect to {Gi};

(iii) inf i d(Gi)/[G : Gi] is zero.

Here, d( ) is the rank of a group, which is the minimal size of a generating set. In

this paper, dp( ) plays this rôle; using dp( ) rather than d( ), we strengthen (i) to deduce

that G is large. Not only are the statements of Theorems 1.1 and 1.4 very similar,

but also their proofs follow similar lines, although the proof of Theorem 1.1 is more

complicated. The geometry and topology of Schreier coset graphs play a central rôle
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in both arguments. The main difference is that a key application of the Seifert - van

Kampen theorem in the proof of the Theorem 1.4 is replaced by the Mayer - Vietoris

theorem with mod p coefficients in the proof of Theorem 1.1.

There is an interesting application of Theorem 1.1 to low-dimensional topology and

geometry. A major area of research in this field is the study of lattices in PSL(2, C)

(or, equivalently, finite-volume hyperbolic 3-orbifolds). An important unsolved problem

asks whether any such lattice is a large group. As mentioned above, it was shown in [9]

that if such a lattice contains a non-trivial torsion element then it has a nested sequence

{Gi} of finite index subgroups with linear growth of mod p homology, for some prime p.

Moreover, these subgroups are all normal in G1 and have index a power of p. Thus, we

deduce from Theorem 1.1 that either G has Property (τ) with respect to {Gi} or that

G is large. In [9], we show that the following conjecture of Lubotzky and Zelmanov,

which we have termed the GS-τ Conjecture, implies that we can arrange that the former

possibility does not arise.

Conjecture 1.5. (GS-τ Conjecture) Let G be a group with finite presentation 〈X |R〉,
and let p be a prime. Suppose that dp(G)2/4 > |R|−|X |+dp(G). Then G does not have

Property (τ) with respect to some infinite nested sequence {Gi} of normal subgroups

with index a power of p.

Thus, Theorem 1.1 and the argument in [9] give the following result.

Theorem 1.6. The GS-τ Conjecture implies that any lattice in PSL(2, C) with non-

trivial torsion is large.

After an earlier version of this paper was first distributed, Ershov [5] discovered

some examples of finitely generated groups satisfying an inequality similar to that in

Conjecture 1.5, but which have Property (τ) with respect to all sequences of finite

index subgroups (indeed, they have Property (T)). This casts some doubt on Conjecture

1.5, but it nevertheless remains open as stated. Moreover, one does not need the full

conjecture to deduce that lattices in PSL(2, C) with non-trivial torsion are large. For

more details, see [9].

It is natural to ask which finitely generated groups G have a sequence of subnormal

subgroups, each with index a power of p and with linear growth of mod p homology. We

prove a stronger version of the following result in Section 8, which gives an alternative

characterisation of these groups.
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Theorem 1.7. Let G be a finitely generated group, and let p be a prime. Then the

following are equivalent:

(i) G has an infinite nested sequence of subnormal subgroups, each with index a power

of p, and with linear growth of mod p homology;

(ii) the pro-p completion of G has exponential subgroup growth.

Combining Theorems 1.3 and 1.7, we have the following interesting corollary.

Corollary 1.8. Let G be a finitely presented group, and let p be a prime. Suppose

that the pro-p completion of G has exponential subgroup growth. Then G has a nested

sequence of subnormal subgroups, each with index a power of p, which has Property (τ).

Property (τ) plays a prominent rôle in the statement of Theorem 1.1. But one might

wonder to what extent it is needed. Might it be true that conclusion (i) of Theorem

1.1 always holds? We will see how this question relates to error-correcting codes. We

will show that if (i) does not hold, then an infinite collection of linear codes can be

constructed that are ‘asymptotically good’. These are very important in the theory of

error-correcting codes, because they have large rate and large Hamming distance. More

details of this relationship can be found in Section 6.

We now briefly describe the plan of the paper. In Section 2, we recall the definition

of Property (τ), and then go on to prove Theorems 1.2 and 1.3 from Theorem 1.1. In

Section 3, we give a necessary and sufficient topological condition on a finite connected

2-complex (satisfying some generic conditions) for its fundamental group to admit a

surjective homomorphism onto a non-abelian free group. This is a key step in the proof

of Theorem 1.1, which is presented in Sections 4 and 5. Section 5 in particular is the

heart of the paper. In Section 6, we establish a link between large groups and error-

correcting codes. In Section 7, we show that the assumption of finite presentability in

Theorems 1.1 and 1.3 cannot be weakened to being finitely generated. This is because

the (generalised) lamplighter group (Z/pZ) ≀ Z, which is finitely generated, satisfies the

remaining hypotheses of Theorem 1.1 and 1.3 but satisfies none of their conclusions.

Finally, in Section 8, we relate linear growth of mod p homology to the subgroup growth

of the group’s pro-p completion.

I am grateful to Jim Howie and Alex Lubotzky who suggested to me the examples

in Section 7. I would also like to thank Andrei Jaikin who suggested an improvement

to an earlier version of Proposition 4.2.

5



2. Property (τ)

In this section, we establish some elementary facts about Property (τ) and then go

on to deduce Theorems 1.2 and 1.3 from Theorem 1.1.

The following two lemmas are elementary and well known.

Lemma 2.1. Let G and K be finitely generated groups, and let φ: G → K be a surjective

homomorphism. Let {Ki} be a collection of finite index subgroups of K. Then K has

Property (τ) with respect to {Ki} if and only if G has Property (τ) with respect to

{φ−1(Ki)}.

Proof. Let S be a finite generating set for G. Then φ(S) forms a finite generating set

for K. Now, φ induces a bijection between the right cosets G/φ−1(Ki) and K/Ki. This

respects right multiplication by elements of G. Hence, the coset graphs X(G/φ−1(Ki); S)

and X(K/Ki; φ(S)) are isomorphic. The lemma follows immediately.

Lemma 2.2. Let G be a finitely generated group, and let K be a finite index subgroup.

Let {Ki} be a collection of finite index subgroups of K. Then G has Property (τ) with

respect to {Ki} if and only if K has Property (τ) with respect to {Ki}.

Proof. This is essentially contained in the proof of Lemma 2.5 in [7], but we include the

proof here for the sake of completeness, and because we are explicitly dealing here with

subgroups that need not be normal.

Let S be a finite generating set for G. Let T be a maximal tree in X(G/K; S). Then

the edges not in T form a finite generating set S̃ for K, by the Reidemeister-Schreier

process. For any subgroup Ki of K, X(G/Ki; S) is a covering space of X(G/K; S). The

inverse image of T in X(G/Ki; S) is a forest F . If one were to collapse each component

of this forest to a point, one would obtain X(K/Ki; S̃).

Let A be any non-empty subset of the vertex set of X(K/Ki; S̃). Its inverse image

Ã in X(G/Ki; S) is a union of components of F . It is clear that |Ã| = [G : K]|A| and

|∂Ã| = |∂A|. Hence, h(X(G/Ki; S)) ≤ h(X(K/Ki; S̃))/[G : K]. So if h(X(K/Ki; S̃))

has zero infimum, then so does h(X(G/Ki; S)).

Now consider a non-empty subset B of the vertex set of X(G/Ki; S) such that

|∂B|/|B| = h(X(G/Ki; S)) and |B| ≤ |V (X(G/Ki; S))|/2. Let B be the vertices of

X(G/Ki; S) lying in the union of those components of F that intersect B. Thus, B

clearly contains B. If a component of F lies in B but does not lie entirely in B, then it
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contains an edge of ∂B. Hence,

|B| ≤ |B| ≤ |B|+ [G : K]|∂B|.

If an edge lies in ∂B but not in ∂B, then it joins two different components of F , at

least one of which contains an edge of ∂B. There are at most 2|S|[G : K] edges with an

endpoint in this component of F . Hence,

|∂B| ≤ (2|S|[G : K] + 1)|∂B|.

Now, B projects to a set of vertices in X(K/Ki; S̃) with size that has been scaled by a

factor of [G : K]−1 and with the same size boundary. Hence,

h(X(K/Ki; S̃))

≤ |∂B|
[G : K]−1 min{|B|, |Bc|}

≤ [G : K](2|S|[G : K] + 1)
|∂B|

min{|B|, |Bc| − [G : K]|∂B|}

≤ [G : K](2|S|[G : K] + 1) max

{

h,
h

1 − [G : K]h

}

,

where h = h(X(G/Ki; S)), and provided that |Bc| − [G : K]|∂B| > 0. This assumption

certainly holds if h < [G : K]−1. So, if h(X(G/Ki; S)) has zero infimum, then so does

h(X(K/Ki; S̃)).

We are now in a position to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. (ii) ⇒ (i) is an immediate consequence of Theorem 1.1. In the

other direction, suppose that some finite index subgroup G1 of G admits a surjective

homomorphism φ1 onto a non-abelian free group F . Let φ2: F → Z be projection onto

the first free summand. Now, Z does not have Property (τ) with respect to {pi
Z},

by the earlier example. Let Gi be φ−1
1 φ−1

2 (pi−1
Z). Then, for each i, Gi+1 is normal

in Gi and has index p. By Lemma 2.1, G1 does not have Property (τ) with respect

to {Gi}. By Lemma 2.2, G also does not have Property (τ) with respect to {Gi}.
Now, φ−1

2 (pi−1
Z) forms a nested sequence of finite index subgroups in F , and any such

sequence has linear growth of mod p homology. As each Gi surjects onto φ−1
2 (pi−1

Z),

dp(Gi) ≥ dp(φ
−1
2 (pi−1

Z)). Hence, {Gi} has linear growth of mod p homology.

Proof of Theorem 1.3. If the given sequence of subgroups has Property (τ), we are done.

If not, then Theorem 1.1 implies that some finite index subnormal subgroup of G, with

index a power of p, admits a surjective homomorphism onto a non-abelian free group
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F . By passing to a smaller subgroup of G if necessary, we may assume that F has

arbitrarily large rank. We claim that F then has a sequence of normal subgroups, each

with index a power of p, with linear growth of mod p homology and with Property (τ).

Their inverse images in G form the required subgroups by Lemmas 2.1 and 2.2. There

are many ways to prove this claim. One is to use the fact that SL(3, Z) has Property

(τ) with respect to its principal congruence subgroups [10]. Let Kn denote the level pn

principal congruence subgroup. Then Kn+1 is normal in Kn and has index a power of

p, for all n ≥ 1. If the rank of F is large enough, it admits a surjective homomorphism

onto K1. The inverse images of Kn in F then form the required subgroups.

3. Cocycles and large groups

In this section, we will study connected finite 2-complexes K and give a necessary

and sufficient topological condition for π1(K) to admit a free non-abelian quotient. We

make convention throughout this paper that the attaching map of each 2-cell of K is

cellular; that is, the boundary path of the 2-cell can be expressed as a concatenation of

a finite sequence of paths, each of which is a homeomorphism onto a 1-cell of K.

The necessary and sufficient condition will be phrased in terms of regular cocycles.

These are particularly nice representatives of elements of H1(K). We will show that

any such cohomology class is represented by a regular cocycle.

A regular cocycle is just a non-empty finite graph Γ embedded within K in a

certain way, together with orientation information. The graph must satisfy the following

conditions:

(i) Γ is disjoint from the 0-skeleton of K;

(ii) its vertices V (Γ) are the intersection of Γ with the 1-skeleton of K;

(iii) for any 2-cell with quotient map i: D → K, where D is a 2-disc, D ∩ i−1(Γ) is a

finite collection of properly embedded disjoint arcs with endpoints precisely ∂D ∩
i−1(V (Γ)).

We then say that the graph is regularly embedded. A regular cocycle is a regularly

embedded graph with a transverse orientation assigned to each arc in each 2-cell, with

the requirement that near each vertex of Γ, these transverse orientations all coincide.

A regular cocycle determines an element of H1(K), as follows. It assigns to each

oriented 1-cell of K a weight, which is just its signed intersection number with Γ.

The total weight of the boundary of any 2-cell is clearly zero. This therefore gives a
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well-defined cellular cocycle and hence an element of H1(K).

Conversely, one may construct a representative regular cocycle for any element of

H1(K), as follows. Pick a cellular cocycle representing the cohomology class. This is

just an assignment of an integer weight to each oriented 1-cell, with the property that

the weights of the boundary of any 2-cell sum to zero. For any 1-cell e, with weight

w(e), say, place |w(e)| vertices of Γ on the interior of e. Give e an orientation, so that

its weight is non-negative. Assign the same transverse orientation to the vertices on

e. Since the total evaluation around each 2-cell is zero, there is a way to insert the

transversely oriented edges of Γ into the 2-cells, forming a regular cocycle.

Note that a connected regular cocycle represents a non-trivial element of H1(K) if

and only if it is non-separating. For, if it is separating, then its evaluation of any closed

loop in K is zero, and hence it represents the trivial cohomology class. Conversely, if

it is non-separating, then its evaluation on some closed loop is non-zero, and so the

associated cohomology class is non-trivial.

We say that a point x in K is locally separating if it has a connected neighbourhood

U such that U − x is disconnected. The valence of a 1-cell of K is the total number of

times the 2-cells of K run over it. In the second half of the following result, we consider

only finite 2-complexes with no locally separating points and no 1-cells with valence 1.

Note that any finite 2-complex can be transformed into a finite 2-complex with these

properties, without changing its fundamental group. For, we may replace each 0-cell

with a 2-sphere and each 1-cell with a tube. Thus, any finitely presented group arises

as the fundamental group of a finite 2-complex with these properties.

For a group G and positive integer n, let ∗nG denote the free product of n copies of

G. For a space X with a basepoint, let
∨n

X denote the wedge of n copies of X glued

along their basepoints.

Theorem 3.1. Let K be a finite connected 2-complex. Then π1(K) admits a surjective

homomorphism onto ∗n
Z if K contains n disjoint regular cocycles whose union is non-

separating. Furthermore, the converse also holds, provided K has no locally separating

points and no 1-cells with valence 1.

Proof. Suppose first that K contains n disjoint regular cocycles C1, . . . , Cn whose union

is non-separating. These have disjoint product neighbourhoods Ci × [−1, 1]. Define a

map f : K →
∨n

S1, as follows. Away from
⋃

(Ci × [−1, 1]), send everything to the

central vertex of
∨n

S1. On Ci × [−1, 1], first project onto the second factor [−1, 1],

and then compose this with the quotient map [−1, 1] → S1 that identifies the endpoints
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of the interval, and then map this to the ith circle of
∨n

S1. Pick a basepoint b for

K away from the neighbourhoods of the cocycles. We claim that the induced map

f∗: π1(K, b) → ∗n
Z is a surjection. This is because the ith free generator of ∗n

Z may be

realised by a loop that starts at b, runs to Ci, crosses it transversely, and returns to b.

We may ensure that this is the only point of intersection between the loop and
⋃

Ci, by

the hypothesis that
⋃

Ci is non-separating.

Conversely, suppose that π1(K) admits a surjective homomorphism onto ∗n
Z. We

will show that this is induced by a map f : K →
∨n

S1. Pick a basepoint b for K in

the 0-skeleton. Pick a maximal tree T in the 1-skeleton of K. Let f send this tree to

the central vertex of
∨n

S1. Each remaining of edge e of K, when oriented, determines

an element of π1(K, b), given by the path that starts at b, runs along T to the initial

vertex of e, then along e, then back to b by a path in T . The image of this element of

π1(K, b) under the given homomorphism is an element of ∗n
Z, which we may take to

be a reduced word. This then gives a path in
∨n

S1. Define the restriction of f to e

to be this path. Since we started with a homomorphism π1(K) → ∗n
Z, the boundary

of each 2-cell is sent a homotopically trivial loop in
∨n

S1, and hence, there is a way

to extend f over the 2-cells. Pick points p1, . . . , pn, one in each circle of
∨n

S1, disjoint

from the central vertex. Then it is clear that we may ensure that, for each i, f−1(pi)

is a regularly embedded graph. Moreover, if we impose orientations on the circles, then

these graphs inherit transverse orientations, making them regular cocycles C1, . . . , Cn,

say. These cocycles are clearly disjoint, but their union may not yet be non-separating.

The aim now is to modify f by a homotopy, thereby changing the cocycles Ci, to ensure

that this is the case.

Define a graph Y , whose vertices correspond to the components of the complement

of
⋃

Ci. Let its edges be in one-one correspondence with the components of
⋃

Ci, and

where incidence between edges and vertices in Y is defined by topological incidence in

K. The edges inherit an orientation from
⋃

Ci, and also inherit a label i. We will modify

f , thereby giving new regular cocycles Ci, and hence a new graph Y . At each stage,

the number of components of
⋃

Ci will decrease, and so this process is guaranteed to

terminate. The aim is to ensure that Y satisfies the following condition:

(∗) no vertex of Y has two edges pointing into it with the same label, or two edges

pointing out of it with the same label.

Suppose now that (∗) is violated. Let E1 and E2 be distinct components of Ci, say,

both pointing into the same component X of K − ⋃

Ci. Since K contains no locally

separating points, each 1-cell of K has non-zero valence. Hence, neither E1 nor E2 is
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a point. Pick an embedded arc α, with one endpoint on E1 and the other endpoint

on E2, and with interior in X . Since every 1-cell of K has valence at least two, every

vertex of the graphs E1 and E2 has valence at least two. So neither graph is a tree.

Hence, each contains a point in the interior of an edge such that removing that point

from Ei does not disconnect Ei. We may assume that the endpoints of α are these

two points. Because K has no locally separating points, we may arrange for α to miss

the 0-cells of K. We may ensure that α intersects each 1-cell in a finite collection of

points, and each 2-cell in a finite collection of arcs, each of which is properly embedded,

except the arc(s) containing the endpoints of α. Let α × [−1, 1] be a thickening of α,

so that (α × [−1, 1]) ∩
⋃

Ci = ∂α × [−1, 1]. We now modify f , leaving it unchanged

away from a small regular neighbourhood of α × [−1, 1]. In α × [−1, 1], modify f so

that the intersection of the new Ci with α × [−1, 1] is α × {−1, 1}, and the other Cj

remain disjoint from α × [−1, 1]. There is an obvious way to extend this definition of

f to a small neighbourhood of α × [−1, 1], so that it remains unchanged outside of this

neighbourhood. Note that this changes f on 2-cells D which intersect α only in points,

with the introduction of a new arc of Ci ∩ D around each of these points. (See Figure

2.) Now, we have arranged that E1 − ∂α and E2 − ∂α are both connected. So, this

operation has the effect of combining E1 and E2 into a single connected cocycle, thereby

reducing the number of components of
⋃

Ci.

E1 E2

a

Figure 2
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Hence, we may assume that (∗) holds, after possibly homotoping f . This homotopy

has the effect of changing the induced homomorphism f∗: π1(K) → ∗n
Z by a conjugacy,

but it remains a surjective homomorphism.

We claim that Y then has a single vertex, with n edges, labelled 1, . . . , n. This

will show that
⋃

Ci is non-separating as required. To prove this claim, we use the

hypothesis that f∗ is surjective. This implies that there are loops ℓ1, . . . , ℓn, based at

the basepoint of K, that are sent to the free generators of ∗n
Z. Pick these loops so that

they have the fewest number of intersections with
⋃

Ci. The loops determine loops in

the graph Y . No loop can travel over Ci in one direction, and then back across Ci in the

other direction. For, by property (∗), it would have to return to the same component

of Ci. We could then remove this sub-arc of the loop, and replace it by an arc in Ci,

and then perform a small homotopy, reducing the number of intersections with
⋃

Ci

by two. The resulting loop still is sent to the same element of ∗n
Z, which contradicts

our minimality assumption. Hence, the word that ℓi spells, as it runs over
⋃

Ci, is a

reduced word. It therefore runs over Ci exactly once, and is disjoint from the other

cocycles. Hence, emanating from the vertex of Y that corresponds to the component of

K −
⋃

Ci containing the basepoint, there is an edge labelled i, for each i, and each such

edge returns to this vertex. Therefore, Y is a bouquet of circles, as required.

In this theorem, we worked with 2-complexes for convenience. We could just as eas-

ily have worked with smooth manifolds. In this case, transversely oriented, codimension

one submanifolds play the rôle of regular cocycles. Essentially the same argument as for

Theorem 3.1 gives the following.

Theorem 3.2. Let M be a connected smooth manifold. Then π1(M) admits a surjective

homomorphism onto ∗n
Z if and only if M contains n disjoint, transversely oriented,

codimension one submanifolds whose union is non-separating.

All of the above is fairly well known. What is possibly less widely known is that

one can replicate much of this work using cohomology with coefficients in Fp, the field

of order a prime p. Therefore, fix a prime p.

A regular mod p cocycle has a similar definition to a regular cocycle. Again, it is

a non-empty finite graph Γ embedded in K, with a little extra structure. It must be

disjoint from the 0-skeleton of K. However, unlike the case of regular cocycles, it has

two type of vertices, which we term edge vertices and interior vertices. The edge vertices

are the intersection of Γ with the 1-skeleton of K. The vertices of Γ on the boundary

of any 2-cell are therefore edge vertices, and we require them to have valence one in

that 2-cell. Each interior vertex lies in the interior of a 2-cell of K. The edges of Γ are

12



given a transverse orientation and a weight, which is a non-zero integer mod p. These

must satisfy the following local conditions near the vertices. Near the edge vertices,

the transverse orientations and the weights must all be locally equivalent. Around any

interior vertex, the total weight (signed according to the transverse orientations) must

be congruent to zero mod p. We also insist that each interior vertex has at least one

edge incident to it. (See Figure 3.)

1
2

1 1 1
1

11

interior
vertex

edge
vertex

Figure 3

We will see that, as before, any element of H1(K; Fp) is represented by a regular

mod p cocycle, and conversely, a regular mod p cocycle determines a class in H1(K; Fp).

The following states that, for non-trivial cohomology classes, we may ensure that the

regular mod p cocycle is also non-separating.

Proposition 3.3. Let K be a finite connected 2-complex and let p be a prime. Then

any non-trivial element of H1(K; Fp) is represented by a non-separating regular mod p

cocycle.

Proof. Any element of H1(K; Fp) is represented by a cellular 1-dimensional cocycle c.

This is an assignment to each oriented 1-cell e of an integer mod p which we denote by

c(e), with the proviso that the sum of the integers around any 2-cell is zero mod p. From

this, we build a regular mod p cocycle Γ as follows. Into each 1-cell e for which c(e) is

non-zero mod p, we place an edge vertex of Γ with weight c(e). If a 2-cell contains a 1-

cell with non-zero weight in its boundary, insert into it a single interior vertex. Join this

vertex to each edge vertex in the boundary of the 2-cell. The fact that the total weight

of c around the 2-cell is zero mod p implies that the local condition near the interior

vertex is satisfied. Thus, it is trivial that any element of H1(K; Fp) is represented by a

regular mod p cocycle Γ.

13



The aim now is to ensure that Γ is non-separating when the cohomology class is

non-zero. To establish this, we will perform a sequence of alterations to Γ. Each will

reduce the number of edge vertices, and so this sequence is guaranteed to terminate.

Suppose that Γ is separating, and let K1 be some component of K − Γ. Then, there is

some edge vertex in the boundary of K1 that is incident to another component of K−Γ.

Let Γ′ be the component of Γ minus its interior vertices that contains this edge vertex.

Then all the edges of Γ′ are compatibly oriented and have the same weight w, say.

Remove Γ′ from Γ. For each edge in the boundary of K1 but not in Γ′, add or subtract

w to its weight, according to whether the transverse orientation of the edge points into

or out of K1. If both sides of the edge lie in K1, then leave its weight unchanged. If this

procedure changes the weight of any edge to zero mod p, then remove it. If any interior

vertices become isolated, remove them. The result is a new regular mod p cocycle,

representing the same cohomology class, and with fewer edge vertices. Repeating this

process a sufficient number of times, we therefore end with a non-separating regular mod

p cocycle.

The proof of the above result gives the following extra information which will be

useful later.

Addendum 3.4. Let K be a finite 2-complex and let p be a prime. If a regular mod

p cocycle Γ represents a non-trivial element of H1(K; Fp), then some subgraph of Γ

is a regular mod p cocycle (with possibly different weights) which represents the same

cohomology class and is non-separating in K.

There is also a more technical version of Proposition 3.3 that deals with subcom-

plexes.

Proposition 3.5. Let K be a finite 2-complex and let p be a prime. Let L be

a subcomplex of K. Suppose that there is a non-trivial element α in the kernel of

H1(K; Fp) → H1(L; Fp), the map induced by inclusion. Then α is represented by a

regular mod p cocycle that is non-separating in K and disjoint from L.

Proof. Pick a cellular cochain c that represents α. Since the restriction of c to L is

cohomologically trivial, it is a coboundary in L. Subtracting this coboundary from c

does not change the class it represents, but afterwards its evaluation on any 1-cell in L

is trivial. Thus, when the construction in the proof of Proposition 3.3 is performed, a

regular mod p cocycle Γ is created that is disjoint from L. Applying Addendum 3.4, we

can ensure that Γ is non-separating in K and still disjoint from L.
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There is also a corresponding version of Theorem 3.1 for regular mod p cocycles,

which works best when p = 2. This will be a crucial tool in proving that certain groups

are large.

Theorem 3.6. Let K be a finite connected 2-complex, and let p be a prime. Then

π1(K) admits a surjective homomorphism onto ∗n(Z/pZ) if K contains n disjoint regular

mod p cocycles whose union is non-separating. Furthermore the converse holds when

p = 2 and K contains no locally separating points and no 1-cells with valence 1.

Proof. The proof is very similar to that of Theorem 3.1, and so we will only focus on

those parts where the details differ.

Suppose first that K contains n disjoint regular mod p cocycles whose union is non-

separating. Then we construct a map f : K →
∨n

L(p), where L(p) is the 2-complex

consisting of a single 0-cell, a single 1-cell, and a 2-cell that winds p times around the

1-skeleton. Outside of a small regular neighbourhood of the cocycles, everything is sent

by f to the central vertex of
∨n

L(p). On product neighbourhoods of the edges and edge

vertices of the cocycles, f is defined to collapse these products onto an interval and then

map this interval w times around the relevant 1-cell of
∨n

L(p), where w is the weight

of the edge. Finally, near the interior vertices of the cocycles, f maps onto the relevant

2-cell of
∨n

L(p). The proof that f∗: π1(K) → ∗n(Z/pZ) is a surjection is similar to the

corresponding proof for Theorem 3.1.

Suppose now that π1(K) admits a surjective homomorphism onto ∗n(Z/pZ). Sup-

pose also that p = 2 and K contains no locally separating points and no 1-cells with

valence 1. Then, exactly as in the proof of Theorem 3.1, this homomorphism is induced

by a map f : K →
∨n

L(2). Let αi be the regular mod 2 cocycle in
∨n

L(2) that has

exactly one edge vertex in the ith 1-cell and exactly one interior vertex in the ith 2-cell.

Then we may arrange that f−1(αi) forms a regular mod 2 cocycle Ci for each i. We

may also arrange that each interior vertex of
⋃

Ci has valence 2. However, as in the

proof of Theorem 3.1, the union of these cocycles may not yet be non-separating in K.

We may need to modify f by a homotopy before this condition is satisfied.

Define a graph Y whose vertices correspond to complementary components of
⋃

Ci,

and whose edges correspond to the components of
⋃

Ci. It may not be the case that a

component of
⋃

Ci has a regular neighbourhood that is a product. If it is not a product,

then using the fact that p = 2, it is adjacent to a single complementary region of
⋃

Ci,

and we therefore define the corresponding edge of Y to be a loop. The edges of Y come

with an integer label between 1 and n, depending on which cocycle Ci they came from.

However, they do not necessarily come with a well-defined orientation. Again, we will
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homotope f , to ensure that a certain condition holds:

(∗′) no vertex of Y has two distinct edges adjacent to it with the same label.

Each modification will reduce the number of components of
⋃

Ci, and so they

are guaranteed to terminate. The modifications are exactly as before, except now the

transverse orientations of E1 and E2 at the endpoints of α might not point towards each

other or away from each other. However, this is easily rectified by the introduction of

two interior vertices near one of the endpoints of α. The argument now proceeds exactly

as in the proof of Theorem 3.1.

The following consequence of Theorem 3.6 gives a method for proving that certain

groups are large.

Theorem 3.7. Let K be a finite cell complex, and let A and B be subcomplexes such

that K = A∪B. Let p be a prime and let Fp be the field of order p. Suppose that both

of the maps

H1(A; Fp) → H1(A ∩ B; Fp)

H1(B; Fp) → H1(A ∩ B; Fp)

induced by inclusion are not injections. In the case p = 2, suppose also that the kernel

of at least one of these maps has dimension more than one. Then π1(K) admits a

surjective homomorphism onto (Z/pZ) ∗ (Z/pZ). Furthermore, some normal subgroup

of π1(K) with index a power of p admits a surjective homomorphism onto a non-abelian

free group. Hence, π1(K) is large.

Proof. We may restrict attention to the 2-skeleton of K, since this has the same funda-

mental group as K, and since the relevant homomorphisms between cohomology groups

are unchanged. Thus, we may assume that K is a 2-complex.

Pick a non-trivial element of the kernel of H1(A; Fp) → H1(A ∩ B; Fp). By Propo-

sition 3.5, this is represented by a regular mod p cocycle that is disjoint from A ∩ B

and that is non-separating in A. It is therefore a regular mod p cocycle in K. The

same argument gives a non-separating regular mod p cocycle in B that is disjoint from

A ∩ B. Hence, we obtain two disjoint regular mod p cocycles in K whose union is non-

separating. By Theorem 3.6, this implies that π1(K) admits a surjective homomorphism

onto (Z/pZ) ∗ (Z/pZ). When p is odd, (Z/pZ) ∗ (Z/pZ) contains a free non-abelian nor-

mal subgroup with index a power of p. The inverse image of this subgroup in π1(K) is

also normal and has index a power of p. It surjects on this free non-abelian group. This

therefore proves the theorem when p is odd.
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Now, (Z/2Z)∗ (Z/2Z) does not have a free non-abelian group as a subgroup, and so

the theorem is not yet fully proved when p = 2. In this case, however, we are assuming

that the kernel of one of the maps, say H1(A; Fp) → H1(A ∩ B; Fp), has dimension

at least two. Construct the finite-sheeted covering space of A corresponding to this

kernel. The inverse image of A ∩ B is a disjoint union of at least four copies of A ∩ B.

Attach to each of these a copy of B. The result is a finite-sheeted regular cover K̃ of

K with degree a power of 2. In each copy of B, there is a non-separating regular mod

2 cocycle. The union of these is therefore non-separating in K̃. Thus, by Theorem 3.6,

π1(K̃) admits a surjective homomorphism onto ∗4(Z/2Z). This contains a normal free

non-abelian subgroup, with index a power of 2. Its inverse image in π1(K̃) surjects onto

this non-abelian free group. By passing a further subgroup if necessary, we may assume

that this is normal in π1(K) and has index a power of 2 in π1(K).

Thus, one route to proving that a cell complex K has large fundamental group is

to find a decomposition into subcomplexes A and B where |H1(A; Fp)| and |H1(B; Fp)|
are both bigger than 2|H1(A ∩ B; Fp)|. This suggests the following definition.

Definition. Let K be a finite cell complex. Consider all ways of decomposing K into

two sets A and B, where A and B are subcomplexes in some subdivision of the cell

structure on K. Let the mod p Cheeger constant of K, denoted hp(K), be

inf

{ |H1(A ∩ B; Fp)|
min{|H1(A; Fp)|, |H1(B; Fp)|}

}

.

Theorem 3.7 has the following immediate corollary. (See Lemma 2.2 in [11] for a

related result.)

Corollary 3.8. Let K be a finite connected cell complex, and let p be a prime. Suppose

that

hp(K) <

{

1 if p is odd;
1/2 if p = 2.

Then π1(K) admits a surjective homomorphism onto (Z/pZ) ∗ (Z/pZ). Furthermore,

some normal subgroup of π1(K) with index a power of p admits a surjective homomor-

phism onto a non-abelian free group. Hence, π1(K) is large.

The following result summarises much of what has been done in this section.

Theorem 3.9. Let K be a finite connected 2-complex with fundamental group G.

Suppose that K has no locally separating points and no 1-cells with valence 1. Then

the following are equivalent:

(i) G is large;
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(ii) in some finite-sheeted covering space K̃ of K, there are two disjoint regular cocycles

whose union is non-separating;

(iii) in some finite-sheeted covering space K̃ of K, there are two disjoint regular mod p

cocycles whose union is non-separating, for some odd prime p;

(iv) in some finite-sheeted covering space K̃ of K, there are three disjoint regular mod

2 cocycles whose union is non-separating.

Proof. Note first that condition of having no locally separating points and no 1-cells

with valence 1 is preserved under finite covers.

(i) ⇒ (ii): Since G is large, some finite index subgroup of G admits a surjective

homomorphism onto Z ∗ Z. Let K̃ be the covering space of K corresponding to this

subgroup. By Theorem 3.1, it has two disjoint regular cocycles whose union is non-

separating.

(ii) ⇒ (iii): This is obvious, because a regular cocycle becomes a regular mod p

cocycle when every edge is given weight 1.

(iii) ⇒ (i): By Theorem 3.6, the fundamental group of K̃ admits a surjective homo-

morphism onto (Z/pZ) ∗ (Z/pZ). But this contains a non-abelian free group as a finite

index normal subgroup. Hence, G is large.

(i) ⇒ (iv): This is very similar to (i) ⇒ (ii) ⇒ (iii). Since G is large, some finite

index subgroup admits a surjective homomorphism onto Z ∗ Z ∗ Z. The corresponding

covering space has three disjoint regular cocycles whose union is non-separating. Each

is, by definition, a regular mod 2 cocycle when every edge is given weight 1.

(iv) ⇒ (i): This proof is essentially the same as (iii) ⇒ (i), using the fact that

(Z/2Z)∗(Z/2Z)∗(Z/2Z) has a free non-abelian group as a finite index normal subgroup.

4. Cheeger decompositions of coset diagrams

The following result was a key technical lemma in [7] (Lemma 2.1 there).

Lemma 4.1. Let X be a Cayley graph of a finite group, and let D be a non-empty

subset of V (X) such that |∂D|/|D| = h(X) and |D| ≤ |V (X)|/2. Then |D| > |V (X)|/4.

Furthermore, the subgraphs induced by D and its complement Dc are connected.
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This was useful when analysing finite index normal subgroups H of a group G,

because then a finite generating set for G determines a Cayley graph of G/H . However,

in this paper, we wish to consider subgroups that are not necessarily normal. Thus, the

following generalisation will be necessary.

Proposition 4.2. Let G be a group with a finite generating set S, and let {Gi} be a

sequence of finite index subgroups, where each Gi is normal in Gi−1. Let S be a finite

set of generators for G, and let Xi be X(G/Gi; S). Then h(Xi) is a non-increasing

sequence. Suppose that, for some i, h(Xi) < h(Xi−1). Then, there is some non-empty

subset D of V (Xi) such that |∂D|/|D| = h(Xi) and |V (Xi)|/4 < |D| ≤ |V (Xi)|/2.

Proof. The fact that h(Xi) is non-increasing is trivial. Therefore, let us concentrate

on the second part of the proposition. Consider a non-empty subset D of V (Xi) such

that |∂D|/|D| = h(Xi) and |D| ≤ |V (Xi)|/2. Pick D so that |D| is as large as possible

subject to these two conditions. Let us suppose that |D| ≤ |V (Xi)|/4, with the aim

of reaching a contradiction. Now, Gi is normal in Gi−1 and so Gi−1/Gi acts on Xi by

covering transformations. Let g be any element of Gi−1/Gi. We consider g(D) ∪ D. It

is shown in [7] (see the proof of Lemma 2.1 there) that

|∂(g(D) ∪ D)| = |∂D|+ |∂g(D)| − |∂(g(D)∩ D)| − 2e(g(D)− D, D − g(D)),

where e(g(D)−D, D−g(D)) denotes the number of edges joining g(D)−D to D−g(D).

By the definition of h(Xi), we must have that |∂(g(D)∩ D)| ≥ h(Xi)|g(D)∩ D|. Thus,

|∂(g(D)∪ D)| ≤ h(Xi)(|D|+ |g(D)| − |g(D) ∩ D|) = h(Xi)|g(D)∪ D|.

Now, g(D)∪D is at most half the vertices of Xi, by our assumption that |D| ≤ |V (Xi)|/4.

As |D| was assumed to be maximal, |g(D)∪D|must be equal to |D| and hence g(D) = D.

This is true for each g ∈ Gi−1/Gi. Thus, D is invariant under the action of Gi−1/Gi on

Xi, and therefore descends to a subset D′ of V (Xi−1). Now, |∂D′| = |∂D|/[Gi−1 : Gi]

and |D′| = |D|/[Gi−1 : Gi]. Hence,

h(Xi−1) ≤ |∂D′|/|D′| = |∂D|/|D| = h(Xi) ≤ h(Xi−1).

Thus, these must be equalities, which contradicts our hypothesis that h(Xi) < h(Xi−1).

Hence, it must have been the case that |D| > |V (Xi)|/4.

19



5. Proof of the main theorem

In this paper, we will be concentrating on groups G having a sequence of finite

index subgroups {Gi} with linear growth of mod p homology, for some prime p. It will

be helpful to introduce a quantity that measures the growth rate of dp(Gi). This is the

mod p homology gradient which is defined to be

inf
i

(dp(Gi) − 1)

[G : Gi]
.

This quantity is most relevant when each Gi+1 is normal in Gi and has index a power

of p. In this case, we have the following well-known proposition.

Proposition 5.1. Let G be a finitely generated group, and let H be a subnormal

subgroup with index a power of a prime p. Then

dp(H)− 1 ≤ [G : H ](dp(G) − 1).

This appears as Proposition 3.7 in [9] for example. It implies that when each Gi+1

is normal in Gi and has index a power of p, (dp(Gi) − 1)/[G : Gi] is a non-increasing

function of i. In particular, the infimum in the definition of mod p homology gradient

is a limit.

We will, in fact, need the following stronger result.

Proposition 5.2. Let K be a connected 2-complex, and let Γ be a connected union of

1-cells such that the map H1(Γ; Fp) → H1(K; Fp) induced by inclusion is a surjection,

for some prime p. Let K̃ → K be a finite-sheeted covering such that π1(K̃) is subnormal

in π1(K) and has index a power of p. Let Γ̃ be the inverse image of Γ in K̃. Then Γ̃ is

connected and the map H1(Γ̃; Fp) → H1(K̃; Fp) induced by inclusion is a surjection.

To prove this, we will require the following.

Lemma 5.3. Let Γ be a path-connected subset of a path-connected space L such that

the map π1(Γ) → π1(L) induced by inclusion is surjection. Let q: L̃ → L be a covering

map, and Γ̃ be the inverse image of Γ in L̃. Then Γ̃ is path-connected and the map

π1(Γ̃) → π1(L̃) induced by inclusion is a surjection.

Proof. Let b be a basepoint for L in Γ. The restriction of q to any path-component

of Γ̃ is a covering map onto Γ, which is therefore surjective. Thus, to show that Γ̃ is

path-connected, it suffices to show that any two points of q−1(b) lie in the same path-

component of Γ̃. We may assume that one of these points is a basepoint b̃ of L̃. Pick
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a path from b̃ to the other point in q−1(b). This projects to a loop ℓ in L based at b.

Since π1(Γ, b) → π1(L, b) is a surjection, ℓ is homotopic, relative to its endpoints, to a

loop in Γ. This lifts to a path in Γ̃ joining the two points of q−1(b).

We now show that π1(Γ̃, b̃) → π1(L̃, b̃) is a surjection. Given any loop ℓ̃ in L̃ based

at b̃, we project it to a loop ℓ in L. This is homotopic relative to its endpoints to a loop

in Γ. This homotopy lifts to a homotopy, relative to endpoints, between ℓ̃ and a loop in

Γ̃.

Proof of Proposition 5.2. Note first that an obvious induction allows us to reduce to the

case where π1(K̃) is a normal subgroup of π1(K) with index a power of p.

Pick a maximal tree in Γ and extend it to a maximal tree T in the 1-skeleton of K.

Let K be obtained from K by collapsing T to a point, and let Γ be the image of Γ in

K. Then clearly the map H1(Γ; Fp) → H1(K; Fp) induced by inclusion is a surjection.

Suppose that we could prove the theorem for K and Γ. Then this would clearly imply

the theorem for K and Γ. Thus, we may assume that K has a single 0-cell. It therefore

specifies a presentation for π1(K), once we have picked an orientation on each of the

1-cells of K.

Let G and H denote the groups π1(K) and π1(K̃) respectively. Let H ′ denote

[H, H ]Hp, the subgroup of H generated by the commutators and pth powers of H . This

is a characteristic subgroup of H , with index a power of p. We are assuming that H is

a normal subgroup of G with index a power of p. Hence, H ′ is a normal subgroup of G

with index a power of p. In other words, G/H ′ is a finite p-group.

Now, H1(G/H ′; Fp) is isomorphic to H1(G; Fp). Hence, the 1-cells of Γ form a

generating set for H1(G/H ′; Fp). It is a well known fact that in any finite p-group C,

a set of elements forms a generating set for C if and only if they form a generating set

for H1(C; Fp). Thus, the 1-cells of Γ form a generating set for G/H ′. Let L be the

2-complex obtained from K by attaching a 2-cell along each word in H ′. Then L has

fundamental group G/H ′. The map π1(Γ) → π1(L) induced by inclusion is a surjection.

Let L̃ be the covering space of L corresponding to the subgroup H/H ′. This is obtained

from K̃ by attaching various 2-cells. But one may view their 1-skeletons as the same. By

Lemma 5.3, the inverse image of Γ in L̃ is a connected graph. This is a copy of Γ̃, and so

Γ̃ is connected. The map π1(Γ̃) → π1(L̃) induced by inclusion is a surjection, by Lemma

5.3. The natural map π1(L̃) → H1(L̃; Fp) is a surjection. This implies that the map

H1(Γ̃; Fp) → H1(L̃; Fp) is a surjection. The map H1(K̃; Fp) → H1(L̃; Fp) induced by

inclusion is an isomorphism. Hence, H1(Γ̃; Fp) → H1(K̃; Fp) is a surjection, as required.
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Before we prove Theorem 1.1, we introduce some terminology. If K is a topological

space and p is a prime, then dp(K) denotes the dimension of H1(K; Fp).

Proof of Theorem 1.1. Suppose that {Gi} has linear growth of mod p homology, and

that G does not have Property (τ) with respect to {Gi}. Our aim is to show that some

Gi admits a surjective homomorphism onto (Z/pZ) ∗ (Z/pZ) and that some normal

subgroup of Gi, with index a power of p, admits a surjective homomorphism onto a

non-abelian free group.

We fix ǫ to be some real number strictly between 0 and
√

10/3 − 1, but where we

view it as very small. Since the mod p homology gradient of {Gi} is non-zero, there is

some j such that (dp(Gj) − 1)/[G : Gj ] is at most (1 + ǫ) times the mod p homology

gradient of {Gi}. The mod p homology gradient of {Gi : i ≥ j} (viewed as subgroups of

Gj) is [G : Gj ] times the mod p homology gradient of {Gi} (viewed as subgroups of G).

So, dp(Gj) − 1 is at most (1 + ǫ) times the mod p homology gradient of {Gi : i ≥ j}.
Hence, by replacing G by Gj , and replacing {Gi} by {Gi : i ≥ j}, we may assume that

dp(G) − 1 is at most (1 + ǫ) times the mod p homology gradient of {Gi}. We may also

assume (by replacing G by G1) that the index of each Gi in G is a power of p.

Let S be a set of elements of G that forms a basis for H1(G; Fp). Extend this

to a finite generating set S+ for G. Let K be a finite 2-complex having fundamental

group G, arising from a finite presentation of G with generating set S+. Thus, K has

a single vertex and |S+| edges. Let L be the sum of the lengths of the relations in this

presentation. Let Ki → K be the covering corresponding to Gi. Our aim is to show

that its mod p Cheeger constant satisfies the inequality hp(Ki) < 1/2 for all sufficiently

large i. Corollary 3.8 will then prove the theorem.

Let Xi be the 1-skeleton of Ki. Then Xi = X(G/Gi; S+). Let Γi be the subgraph

of Xi consisting of those edges labelled by S. By Proposition 5.2, Γi is connected and

the inclusion Γi → Ki induces a surjection H1(Γi; Fp) → H1(Ki; Fp).

Since we are assuming that G does not have Property (τ) with respect to {Gi},
inf i h(Xi) = 0. Since the subgroups Gi are nested, h(Xi) is a non-increasing sequence.

Hence h(Xi) → 0. Let us focus on those values of i for which h(Xi) < h(Xi−1). This

occurs infinitely often. Proposition 4.2 asserts that there is a non-empty subset Di of

V (Xi) such that |∂Di|/|Di| = h(Xi) and |V (Xi)|/4 < |Di| ≤ |V (Xi)|/2. We will use Di

to construct a decomposition of Ki into two overlapping subsets. Let Ai (respectively,

Bi) be the closure of the union of those cells in Ki that intersect Di (respectively, Dc
i ).

Let Ci be Ai ∩ Bi. The edges of Ai ∩ Γi are of three types (that are not mutually

exclusive):
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(i) those edges with both endpoints in Di,

(ii) those edges in ∂Di,

(iii) those edges in the boundary of a 2-cell that intersects both Di and Dc
i .

If we consider the dp(G) oriented edges of Γi emanating from each vertex in Di, we will

cover every edge in (i), and possibly others. Hence, there are at most |Di|dp(G) edges

of type (i) in Ai ∩ Γi.

Any type (iii) edge lies in a 2-cell that intersects both Di and Dc
i . This 2-cell

therefore intersects an edge in ∂Di. Consider one of the endpoints of the latter edge.

At most L 2-cells run over this vertex. Each 2-cell runs over at most L edges. So, there

are no more than |∂Di|L2 type (iii) edges. There are |∂Di| type (ii) edges, and so, there

are at most |∂Di|(L2 + 1) type (ii) and (iii) edges in total. A similar argument gives

that there are at most |∂Di|(L2 + 2) vertices in Ci.

We claim that each component of Ai ∩ Γi and Bi ∩ Γi contains a vertex in Ci.

Consider any component of Ai ∩ Γi. Since Γi is connected, there is a path in Γi from

this component to Bi ∩ Γi. The first point in this path that lies in Bi is the required

vertex in Ci. The argument for components of Bi ∩ Γi is similar. So, |Ai ∩ Γi| and

|Bi ∩ Γi| are both at most |∂Di|(L2 + 2).

Now, the following is an excerpt from the Mayer-Vietoris sequence applied to Γi∩Ai

and Γi ∩ Bi:

H1(Γi ∩ Ai; Fp) ⊕ H1(Γi ∩ Bi; Fp) → H1(Γi; Fp) → H0(Γi ∩ Ci; Fp).

The exactness of this sequence implies that the subspace of H1(Γi; Fp) generated by

the images of H1(Γi ∩Ai; Fp) and H1(Γi ∩Bi; Fp) has codimension at most the number

of components of Γi ∩ Ci. This is at most the number of vertices in Ci, which is at

most |∂Di|(L2 + 2). Let Im(H1(Γi ∩ Ai; Fp)) denote the image of H1(Γi ∩ Ai; Fp) in

H1(Ki; Fp), and define Im(H1(Γi ∩ Bi; Fp)) and Im(H1(Γi; Fp)) similarly. Note that

this latter group is all of H1(Ki; Fp) by Proposition 5.2. We deduce that the sum of

the subspaces Im(H1(Γi ∩ Ai; Fp)) and Im(H1(Γi ∩ Bi; Fp)) has codimension at most

|∂Di|(L2 + 2) in H1(Ki; Fp).
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Now, Γi ∩ Ai has at most |Di|dp(G) + |∂Di|(L2 + 1) edges. It has at least |Di|
vertices. Hence,

dp(Γi ∩ Ai) = −χ(Γi ∩ Ai) + |Γi ∩ Ai|
≤ |Di|dp(G) + |∂Di|(L2 + 1) − |Di| + |∂Di|(L2 + 2)

= |Di|(dp(G)− 1 + h(Xi)(2L2 + 3))

≤ 1
2
[G : Gi](dp(G)− 1 + h(Xi)(2L2 + 3))

≤ 1
2
(1 + ǫ)[G : Gi](dp(G)− 1) when h(Xi) is sufficiently small

≤ 1
2
(1 + ǫ)2(dp(Gi) − 1).

A similar sequence of inequalities holds for dp(Γi∩Bi) but with |Di| replaced throughout

by |Dc
i | and with 1

2 replaced throughout by 3
4 . Here, we are using the fact that |Dc

i | ≤
3
4 [G : Gi]. So, when h(Xi) is sufficiently small, Im(H1(Γi ∩ Ai; Fp)) and Im(H1(Γi ∩
Bi; Fp)) each have dimension at most 3

4(1 + ǫ)2dp(Gi). Note that 3
4 (1 + ǫ)2 < 5

6 , by our

assumption that ǫ <
√

10/3− 1. We saw above that the sum of Im(H1(Γi∩Ai; Fp)) and

Im(H1(Γi∩Bi; Fp)) has codimension at most |∂Di|(L2+2), which equals h(Xi)|Di|(L2+

2), and this is small compared with dp(Gi). Therefore, when h(Xi) is sufficiently small,

Im(H1(Γi ∩ Ai; Fp)) and Im(H1(Γi ∩ Bi; Fp)) each have dimension at least dp(Gi)/6.

Since H1(Γi ∩ Ai; Fp) → H1(Ki; Fp) factors through H1(Ai; Fp), this must also have

dimension at least dp(Gi)/6. When h(Xi) is sufficiently small, this is significantly more

than dp(Ci). Thus, we deduce that, when i is sufficiently large, dp(Ci) is less than

both dp(Ai) − 1 and dp(Bi) − 1. The mod p Cheeger constant of Ki is therefore less

than 1/2. Corollary 3.8 then implies that Gi admits a surjective homomorphism onto

(Z/pZ) ∗ (Z/pZ). Furthermore, some normal subgroup of Gi with index a power of p

admits a surjective homomorphism onto a non-abelian free group. Hence, G is large.

6. Error-correcting codes and large groups

Let G be a finitely presented group, and let {Gi} be a nested sequence of finite index

subgroups. Suppose that {Gi} has linear growth of mod p homology. Does this imply

that G is large? Let K be a finite 2-complex with fundamental group G, and let Ki be

the covering space corresponding to the subgroup Gi. Then one might suspect that the

sheer number of elements of H1(Ki; Fp) might force the existence of two regular mod p

cocycles that are disjoint and whose union is non-separating. Hence, by Theorem 3.6,

Gi would admit a surjective homomorphism onto (Z/pZ) ∗ (Z/pZ), establishing (i), at

least when p is odd. However, it appears not to be possible to turn this reasoning into a

proof, due to the intervention of error-correcting codes. In this section, we explain how

these codes play a rôle.
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We first introduce a new concept: the relative size of a cohomology class. Let K be

a finite cell complex. For a cellular 1-dimensional cocycle c on K, let its support supp(c)

be those 1-cells with non-zero evaluation under c. For an element α ∈ H1(K; Fp),

consider the following quantity. The relative size of α is

min{|supp(c)| : c is a cellular cocycle representing α}
Number of 1-cells of K

.

The relevance of this quantity is apparent in the following result.

Theorem 6.1. Let K be a finite connected 2-complex, and let {Ki → K} be a collection

of finite-sheeted covering spaces. Suppose that {π1(Ki)} has linear growth of mod p

homology for some prime p. Then one of the following must hold:

(i) π1(Ki) admits a surjective homomorphism onto (Z/pZ)∗(Z/pZ) for infinitely many

i, and π1(K) is large, or

(ii) there is some ǫ > 0 such that the relative size of any non-trivial class in H1(Ki; Fp)

is at least ǫ, for all i.

The following will be useful in the proof of this.

Lemma 6.2. Let K be a finite 2-complex. Let M be the maximal valence of any its

1-cells. Let c be a cellular cocycle representing a class α in H1(K; Fp), for some prime

p. Then α is represented by a regular mod p cocycle Γ containing at most M |supp(c)|
edges, at most |supp(c)| edge vertices.

Proof. Recall from Proposition 3.3 the construction of a regular mod p cocycle Γ from

the cellular cocycle c. Each 1-cell in supp(c) is assigned an edge vertex of Γ. Each such

edge vertex is adjacent to at most M edges. Also, every edge is adjacent to some edge

vertex. Hence, Γ contains at most M |supp(c)| edges.

Proof of Theorem 6.1. Suppose that (ii) does not hold. Then there exist non-trivial

elements of H1(Ki; Fp) with arbitrarily small relative size. Let Γ be a regular mod p

cocycle representing one of these cohomology classes, and let e(Γ) and ev(Γ) denote its

number of edges and edge vertices. By Lemma 6.2, we may ensure that the ratios of

e(Γ) and ev(Γ) to the number of 1-cells of Ki is arbitrarily close to zero. (Note that

the maximal valence of the 1-cells of Ki is the same for all i.) By Addendum 3.4, we

may arrange that Γ is non-separating, without increasing its number of edges and edge

vertices. Note that e(Γ) forms an upper bound on dp(Γ). Let N (Γ) be a thin regular

neighbourhood of Γ. Then ∂N (Γ) is a graph with as many edges as Γ, and at most

2ev(Γ) components. Thus, dp(∂N (Γ)) is bounded above by e(Γ). We are assuming that

{π1(Ki)} has linear growth of mod p homology. Hence, the ratios of e(Γ) and ev(Γ) to
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dp(Ki) are both arbitrarily close to zero. Consider the Mayer-Vietoris sequence applied

to N (Γ) and Ki − int(N (Γ)):

H1(∂N (Γ); Fp) → H1(N (Γ); Fp) ⊕H1(Ki − int(N (Γ)); Fp)

→ H1(Ki; Fp) → H0(∂N (Γ); Fp).

Now, the dimensions of H1(∂N (Γ); Fp), H1(N (Γ); Fp) and H0(∂N (Γ); Fp) are all small

compared with dp(Ki). Hence, the ratio of dp(Ki) and dp(Ki − int(N (Γ))) tends to 1.

So, the ratio of dp(∂N (Γ)) and dp(Ki − int(N (Γ))) tends to zero. Therefore, the map

H1(Ki − int(N (Γ)); Fp) → H1(∂N (Γ); Fp) induced by inclusion has non-trivial kernel.

Subdivide Ki so that N (Γ) is a subcomplex. By Proposition 3.5, there is a regular mod

p cocycle Γ′ in Ki − int(N (Γ)) such that Γ′ is non-separating in Ki − int(N (Γ)) and

disjoint from ∂N (Γ). So, Γ∪Γ′ is non-separating in Ki. By Theorem 3.6, π1(Ki) admits

a surjective homomorphism onto (Z/pZ) ∗ (Z/pZ). When p > 2, this gives (i). So, let us

suppose now that p = 2. We may assume that the kernel of H1(Ki − int(N (Γ)); Fp) →
H1(∂N (Γ); Fp) has dimension at least two. Pick two linearly independent elements in

this kernel, and consider the cover of Ki − int(N (Γ)), with order 4, dual to these two

elements. This extends to a cover K̃i of Ki. The inverse image of Γ in K̃i has at least

4 components. The complement of their union is, by construction, connected. So, by

Theorem 3.6, π1(K̃i) admits a surjective homomorphism onto ∗4(Z/2Z), and hence G is

large.

Theorem 6.1 leads naturally to the following question: how can the relative sizes of

the non-trivial cohomology classes of Ki not have zero infimum? The answer is: when

they form error correcting codes with large Hamming distance.

Recall that a linear code is a subspace C of a finite vector space (Fp)
n. The rate

r of the code is dim(C)/n. The Hamming distance d of C is the smallest number of

non-zero co-ordinates in a non-trivial element of C. One of the main goals of coding

theory is to construct codes with large rate and large Hamming distance. Specifically,

an infinite collection of codes is known as asymptotically good if r/n and d/n are both

bounded away from zero. The construction of asymptotically good sequences of codes is

an interesting and difficult problem. They were first proved to exist using probabilistic

methods, but explicit constructions are now available ([6],[17]).

In our situation, the ambient vector space V of the code is the space of cellular

1-dimensional mod p cochains on Ki. It has a natural basis, where each basis element

is supported on a single 1-cell. Hence, its dimension is equal to the number of 1-cells of

Ki. Pick a basis for H1(Ki; Fp), and represent each element by a cellular cocycle. The

subspace of V spanned by these cocycles we view as the code Ci. Let ni be the dimension
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of V , and let ri and di be the rate and Hamming distance of Ci. The assumption that

{π1(Ki)} has linear growth of mod p homology is equivalent to the statement that ri/ni

is bounded away from zero. The quantity di/ni simply measures the smallest ratio

between the support size of a non-trivial cocycle in Ci and the number of 1-cells of

Ki. Hence, it is an upper bound for the smallest relative size of a non-trivial class in

H1(Ki; Fp). Thus, we have the following.

Theorem 6.3. Let K be a finite connected 2-complex, and let {Ki → K} be a collection

of finite-sheeted covering spaces. Suppose that {π1(Ki)} has linear growth of mod p

homology for some prime p. Suppose also that there is some ǫ > 0 such that the relative

size of any non-trivial class in H1(Ki; Fp) is at least ǫ. Then the codes Ci described

above are asymptotically good.

Combining Theorems 6.1 and 6.3, we have the following result.

Theorem 6.4. Let K be a finite connected 2-complex, and let {Ki → K} be a collection

of finite-sheeted covering spaces. Suppose that {π1(Ki)} has linear growth of mod p

homology for some prime p. Then either π1(K) is large or the codes Ci described above

are asymptotically good.

7. Finitely generated versus finitely presented

In Theorem 1.1, we assumed that G was finitely presented. The remaining hypothe-

ses make sense when G is only finitely generated. So, it is natural to enquire whether

Theorem 1.1 remains true when the hypothesis of being finite presented is weakened to

being finitely generated. In this section, we show that the answer is ‘no’, by analysing

a collection of examples. These were suggested to the author by Jim Howie. Using

the same examples, we also show that the hypothesis of finite presentability cannot be

weakened in Theorem 1.3 and Corollary 1.8. The argument here was supplied by Alex

Lubotzky.

The groups we will study are the generalised lamplighter groups (Z/pZ) ≀Z. (When

p = 2, this is the usual lamplighter group.) Each is a semi-direct product (⊕∞
−∞(Z/pZ))⋊

Z. Here, an arbitrary element of ⊕∞
−∞(Z/pZ) is required to have only finitely many non-

zero co-ordinates. To define the semi-direct product, we must specify the action of Z on

⊕∞
−∞(Z/pZ). The action of an integer n in Z on ⊕∞

−∞(Z/pZ) simply shifts the indexing

set n to the right. These groups are finitely generated but not finitely presented [1].

Indeed, each is generated by two elements a and b, where a shifts the indexing set one to

the right, and b lies in ⊕∞
−∞(Z/pZ), with a single non-zero entry which takes the value
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1 in the zero copy of Z/pZ.

Proposition 7.1. The generalised lamplighter group G = (Z/pZ) ≀ Z has a nested

sequence of finite index normal subgroups {Gi}, each with index a power of p, with the

following properties:

(i) G does not have Property (τ) with respect to {Gi}, and

(ii) {Gi} has linear growth of mod p homology.

But G is not large.

Proof. By the definition of the semi-direct product, G admits a surjective homomorphism

φ onto Z. Let Gi be φ−1(pi
Z). Then Gi is normal and has index pi. Clearly, these

subgroups are nested.

(i): Lemma 2.1 states that G has property (τ) with respect to Gi if and only if Z

has property (τ) with respect to {pi
Z}. But, we have already seen in the example in

Section 2 that this is not the case.

(ii): We claim that dp(Gi) ≥ [G : Gi]. To do this, we will find pi linearly independent

homomorphisms Gi → Fp. Now, Gi is the subgroup of G generated by ⊕∞
−∞(Z/pZ) and

api

. Each homomorphism will send api

to the identity. To define such a homomorphism,

it suffices to define a homomorphism ⊕∞
−∞(Z/pZ) → Fp which is invariant under the

action of api

. Let j be an integer between 0 and pi − 1. Define

⊕∞
−∞(Z/pZ)

φj−→ Fp

(nk)∞k=−∞ 7→
∞
∑

k=−∞

npik+j .

These are clearly linearly independent, as required.

Finally, G is not large, because it is soluble.

We now show that Theorem 1.3 does not remain true for finitely generated, infinitely

presented groups.

Proposition 7.2. The generalised lamplighter group G = (Z/pZ) ≀ Z does not have

Property (τ) with respect to any infinite collection of finite index subgroups.

However, as we have seen in Proposition 7.1, G does have a nested sequence of

normal subgroups, each with index a power of p, that have linear growth of mod p

homology. Hence, by Corollary 1.8, the pro-p completion of G has exponential subgroup

growth.
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Proof of Proposition 7.2. Now, G is amenable, and Theorem 3.1 of [15] asserts that

a finitely generated amenable group does not have Property (τ) with respect to any

infinite family of finite index normal subgroups. However, the assumption of normality

is not required in the proof of that theorem. The proposition now follows.

I am grateful to Alex Lubotzky who informed me of his work with Weiss [15], which

formed the basis for this proof.

8. Subgroup growth and linear growth of homology

Throughout this paper, the main focus has been on groups having a sequence of

subnormal subgroups, each with index a power of a prime p, and with linear growth

of mod p homology. In this section, we show how the existence of such a sequence of

subgroups has equivalent characterisations in terms of subgroup growth.

For a group G, let sn(G) be the number of subgroups with index at most n, and let

an(G) be the number of subgroups with index precisely n. Let s⊳⊳
n (G) and a⊳⊳

n (G) be

the number of subnormal subgroups with index at most n and precisely n, respectively.

A group is said to have (at least) exponential subgroup growth if

lim sup
n

log sn(G)

n
> 0.

If p is a prime, let Ĝ(p) be the pro-p completion of G. It turns out that the subgroup

growth of a finitely generated pro-p group is at most exponential. In other words,

lim supn log sn(Ĝ(p))/n is finite (Theorem 3.6 of [14]).

The following is a stronger version of Theorem 1.7, which was stated in the Intro-

duction.

Theorem 8.1. Let G be a finitely generated group, and let p be a prime. Then the

following are equivalent:

(i) G has an infinite nested sequence of subnormal subgroups, each with index a power

of p, and with linear growth of mod p homology;

(ii) Ĝ(p) has exponential subgroup growth;

(iii) lim supn(loga⊳⊳
pn(G))/pn > 0;

(iv) infn≥1(loga⊳⊳
pn(G))/pn > 0.

Proof. (ii)⇔(iii): There is a one-one correspondence between subnormal subgroups of

G with index pn and subgroups of Ĝ(p) with index pn. In addition, any finite index
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subgroup of Ĝ(p) has index a power of p. Thus, the equivalence of (ii) and (iii) is

consequence of the following general fact. Any sequence of non-negative integers cj has

at least exponential growth (that is, lim supj(log cj)/j > 0) if and only if the partial

sums
∑j

i=0 ci have at least exponential growth. In this case, the sequence cj is a⊳⊳
j (G)

if j is a power of p, and zero otherwise.

(i)⇒(iv): Suppose that G has a sequence of subgroups G = G1 ⊲ G2 ⊲ . . . such that

Gn/Gn+1 is a non-trivial finite p-group for each n, and with linear growth of mod p

homology. Let λ be infn(dp(Gn) − 1)/[G : Gn], the mod p homology gradient, which

is therefore positive. Now, any finite p-group has a subnormal series, where successive

quotients are cyclic of order p. Thus, by refining the sequence {Gn} if necessary, we may

assume that each Gn/Gn+1 is cyclic of order p. By Proposition 5.1, (dp(Gn)−1)/[G : Gn]

is a non-increasing function of n. Thus, infn(dp(Gn)−1)/[G : Gn] is still λ. Any normal

subgroup of Gn with index p arises as the kernel of a non-trivial homomorphism Gn →
Z/pZ. There are pdp(Gn) − 1 such homomorphisms. The number of homomorphisms

with a given kernel is p − 1. Thus, there are (pdp(Gn) − 1)/(p− 1) normal subgroups of

Gn with index p. Each gives a subnormal subgroup of G with index [G : Gn]p = pn.

Hence, when n ≥ 1, a⊳⊳
pn(G) is at least

pλpn−1+1 − 1

p − 1
,

and so we deduce that lim infn(log a⊳⊳
pn(G))/pn is positive. Finally, note that a⊳⊳

pn(G) is

always more than 1, when n ≥ 1, and so (loga⊳⊳
pn(G))/pn is strictly positive. Thus, we

deduce (iv).

(iv)⇒(iii): This is trivial.

(iii)⇒(i): Define

rn = max{dp(H) : H ⊳⊳ G and [G : H ] = pn}.

Let us suppose that (i) does not hold. We claim that lim supn rn/pn = 0. For otherwise,

lim supn rn/pn is positive, and therefore so is lim supn(rn − 1)/pn. Let λ be this latter

value. Note that, by Proposition 5.1, (rn − 1)/pn is a non-increasing function of n.

Thus, λ is actually the infimum and limit of this sequence. Hence, for each n, there is

a subnormal subgroup Gn, with index pn such that dp(Gn) − 1 ≥ λpn. For each n, we

may find a subnormal sequence

G = Gn,1 ⊲ Gn,2 ⊲ . . . ⊲ Gn,n = Gn
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such that Gn,i/Gn,i+1 is cyclic of order p for each i. Now, (dp(Gn,i) − 1)/pi ≥ λ by

Proposition 5.1. Since G has only finitely many subgroups of index p, we may find

a subsequence of the Gn where Gn,2 is a fixed group G2. By passing to a further

subsequence, we may assume that Gn,3 is a fixed group G3, and so on. Thus, we

obtain a sequence of subnormal subgroups G = G1 ⊲ G2 ⊲ . . ., each with index p in its

predecessor, and with linear growth of mod p homology. This is condition (i), which we

are assuming does not hold. This contradiction proves the claim: lim supn rn/pn = 0.

Hence, limn→∞ (
∑n

i=0 ri) /pn = 0. Now, any subnormal subgroup of G with index pn is

a normal subgroup of some subnormal subgroup of G with index pn−1. Hence,

a⊳⊳
pn(G) ≤ a⊳⊳

pn−1(G)prn−1 .

Thus, by induction,

a⊳⊳
pn(G) ≤ p

∑

n−1

i=0
ri .

Taking logs:

log a⊳⊳
pn(G) ≤ (log p)

n−1
∑

i=0

ri.

Therefore,
(

loga⊳⊳
pn(G)

)

/pn → 0,

which means that (iii) does not hold, as required.
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