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Surfaces in 3-manifolds

Throughout: all surfaces are closed orientable and have positive genus.

Let S be a surface, and let M be a closed orientable 3-manifold.

A map i: S →M is π1-injective if i∗: π1(S)→ π1(M) is an injection.

M is irreducible if every embedded 2-sphere in M bounds a 3-ball.

M is Haken if it is irreducible and contains an embedded π1-injective

surface.

Equivalently: π1(M) splits as an amalgmated free product or HNN

extension, but is not a free product or Z.

Sample Theorem: [Waldhausen] If two closed Haken 3-manifolds have

isomorphic π1, they are homeomorphic.

Unfortunately, many 3-manifolds are non-Haken.



Some Conjectures

Suppose M is closed, orientable, irreducible and has infinite π1

Conjecture: (The surface subgroup conjecture) π1(M) contains the

fundamental group of a surface.

Equivalently: M contains an immersed π1-injective surface.

⇑

Conjecture: (Virtually Haken conjecture) M has a finite cover that is

Haken.

⇑

Conjecture: (Virtually positive b1 conjecture) M has a finite cover with

b1 > 0.



Geometrisation

[Kneser, Milnor] Any closed orientable 3-manifold M is a connected sum

of prime manifolds in a unique way.

[Jaco, Shalen, Johannson] Any closed orientable prime 3-manifold has a

canonical collection of disjoint embedded π1-injective tori which decom-

pose it into atoroidal pieces (ie any embedded π1-injective torus in one

of these pieces is parallel to a boundary component).

[Thurston, Perelman] Each of the pieces is ‘Seifert fibred’ or ‘hyperbolic’.

All of the above conjectures are known to hold unless M is a closed

hyperbolic 3-manifold.

We then have the following stronger conjectures:



Stronger conjectures

Let M be a closed hyperbolic 3-manifold.

Conjecture: (Virtually infinite b1 conjecture) M has a finite cover with

b1 arbitrarily large.

⇑

Conjecture: (Largeness conjecture) M has a finite cover M̃ where π1(M̃)

has a non-abelian free quotient.

A group is large if it has a finite index subgroup with a non-abelian free

quotient.



The surface subgroup conjecture

We’ll focus on:

Surface subgroup conjecture: If M is a closed orientable irreducible

3-manifold and π1(M) is infinite, then π1(M) contains the

fundamental group of a surface.

Equivalently: M contains an immersed π1-injective surface.

Main Theorem 1.1: [L] Every arithmetic hyperbolic 3-manifold contains

an immersed π1-injective surface.



The main techniques

• 3-orbifolds

• Golod-Shafarevich inequality

• Perelman’s solution to the geometrisation conjecture

• Cheeger constants

• The first eigenvalue of the Laplacian

• The critical exponent of Kleinian groups

• Some classical 3-manifold theory

• A little arithmetic machinery



Hyperbolic 3-manifolds

Let H3 be hyperbolic 3-space.

H3

Isom+(H3) ∼= PSL(2, C).

A discrete subgroup Γ of Isom+(H3) is a Kleinian group.

If Γ acts freely, then Γ\H3 is an orientable hyperbolic 3-manifold.



Hyperbolic 3-orbifolds

If Γ is a discrete subgroup of Isom+(H3), not necessarily acting freely,

then Γ\H3 is an orientable hyperbolic 3-orbifold O.

One keeps track not just of the underlying space |O| but also the isotropy

data.

ie, for x ∈ O, consider x̃ ∈ inverse image of x, and define the local group

of x to be StabΓ(x̃).

The singular locus is the set of points in O with non-trivial local group.

The local group of any x ∈ O is a finite subgroup of SO(3) ie:

• cyclic,

• dihedral (including Z2 × Z2)

• A4, S4, A5.



Definition of orbifolds

More generally, an n-dimensional orbifold is a space O, where for each

point x ∈ O, there is an open neighbourhood U of x and a finite subgroup

G ≤ O(n) (called the local group of x) s.t.

U
∼=
→ G\Rn

x 7→ 0

These neighbourhoods form ‘charts’ which must patch together correctly.

O is orientable if each copy of Rn has an orientation that G preserves, and

these orientations patch together coherently under the chart

transformations.



Example

Let Γ be the group generated by rotation of order n about a geodesic:
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n

n
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Then Γ\H3 is a 3-ball.

Its singular locus is an arc.

Each singular point has cyclic local group of order n.



Dihedral local group:
2p

p

p

p
n

n

2
2

quotient

fundamental
domain = 
cone on ...

=
In fact, when O is an orientable 3-orbifold, |O| is a 3-manifold and sing(O)

is always a collection of simple closed curves and trivalent graphs.



Surface subgroups again

Main Theorem 1.2: [L] Any finitely generated Kleinian group Γ contain-

ing a finite non-cyclic subgroup is either finite, virtually free or contains

a surface subgroup.

The main case is when Γ is co-compact.

Equivalently in this case: Any closed hyperbolic 3-orbifold that contains

a singular vertex admits an immersed π1-injective surface.



Commensurable groups

Two groups Γ1 and Γ2 are commensurable if there are finite index

subgroups Γ′

1 ≤ Γ1 and Γ′

2 ≤ Γ2 such that Γ′

1
∼= Γ′

2.

Γ1 contains a surface subgroup iff Γ2 does.

Theorem 1.3: [L-Long-Reid] Any arithmetic Kleinian group is

commensurable with one that contains Z/2× Z/2.

We’ll outline a proof of this in a later talk.

Note: Arithmetic Kleinian groups are neither finite nor virtually free.

Hence: 1.2 & 1.3 ⇒ 1.1



Covering spaces of orbifolds

A covering map between orbifolds is a cts map p: Õ → O such that for

each x ∈ O, there is an open neighbourhood U which is a copy of G\Rn

(where G is the local group of x) and each component of p−1(U) is a

copy of G̃\Rn, for some subgroup G̃ ≤ G, and the restriction of p to this

component is the canonical quotient map G̃\Rn → G\Rn.

Example: For any discrete subgroup Γ in Isom(H3), H3 → Γ\H3 is a

covering map.

More generally, If Γ′ is a subgroup of Γ, then

Γ′\H3 → Γ\H3

is a covering map.

Fact: Any cover of a hyperbolic orbifold arises in this way.



Examples

S  x S2 1
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The fundamental group of an orbifold

Fact: Every orbifold O has a ‘universal cover’ Õ.

In the case of hyperbolic 3-orbifolds, it is H3.

The covering map Õ → O is obtained by quotienting Õ by a group of

covering transformations Γ.

Definition: The fundamental group π1(O) = Γ.

So, when O is a hyperbolic orbifold Γ\Hn, π1(O) = Γ.

General fact: There is a one-one correspondence

{subgroups of π1(O)} ←→ {covering spaces of O}



A method of computing π1(O)

Suppose that O is orientable.

Let S1, . . . , Sk be the codim 2 components of sing(O) with local groups

of order n1, . . . , nk.

Let µ1, . . . , µk be meridian curves for S1, . . . , Sk. Then:

π1(O) =
π1(|O| − sing(O))

〈〈µn1

1 , . . . , µnk

k 〉〉
.

Examples:

m
2 2

π1(O) = π1(punc torus)/〈〈µ2〉〉. π1(O) = Z/2 ∗ Z/2



Homology of 3-orbifolds

If O is an orbifold, define

H1(O; Z) = H1(π1(O); Z)

= π1(O)/[π1(O), π1(O)]

H1(O; R) = H1(π1(O); R)

∼= H1(|O|; R) when O is orientable

b1(O) = dim(H1(O; R))

H1(O; Fp) = H1(π1(O); Fp)

= π1(O)/([π1(O), π1(O)]π1(O)p)

dp(O) = dim(H1(O; Fp))

More generally, for a group Γ,

dp(Γ) = dim(H1(Γ; Fp)).



Homology of 3-orbifolds

Important classical fact: If M is a compact orientable 3-manifold,

b1(M) ≥ b1(∂M)/2.

An orbifold version:

Lemma 1.4: If O is a compact orientable 3-orbifold, and each arc and

circle of sing(O) has order a prime p, then

dim H1(O; Fp) ≥ b1(sing(O)).

Proof:

Let X = O − int(N(sing(O))).

X is a compact orientable 3-manifold ⇒

b1(X) ≥ b1(∂X)/2 ≥ b1(sing(O)).

Killing µp
1, . . . , µ

p

k doesn’t change H1( ; Fp).


