Surface subgroups in dimension 3

Marc Lackenby

University of Oxford

SURFACES IN 3-MANIFOLDS

Throughout: all surfaces are closed orientable and have positive genus.

Let S be a surface, and let M be a closed orientable 3-manifold.

A map $i: S \to M$ is π_1 -injective if $i_*: \pi_1(S) \to \pi_1(M)$ is an injection.

M is irreducible if every embedded 2-sphere in M bounds a 3-ball.

M is Haken if it is irreducible and contains an embedded $\pi_1\text{-injective}$ surface.

Equivalently: $\pi_1(M)$ splits as an amalgmated free product or HNN extension, but is not a free product or \mathbb{Z} .

<u>Sample Theorem</u>: [Waldhausen] If two closed Haken 3-manifolds have isomorphic π_1 , they are homeomorphic.

Unfortunately, many 3-manifolds are non-Haken.

Some Conjectures

Suppose M is closed, orientable, irreducible and has infinite π_1

<u>Conjecture</u>: (The surface subgroup conjecture) $\pi_1(M)$ contains the fundamental group of a surface.

Equivalently: M contains an immersed π_1 -injective surface.

↑

<u>Conjecture</u>: (Virtually Haken conjecture) M has a finite cover that is Haken.

↑

<u>Conjecture</u>: (Virtually positive b_1 conjecture) M has a finite cover with $b_1 > 0$.

GEOMETRISATION

[Kneser, Milnor] Any closed orientable 3-manifold M is a connected sum of prime manifolds in a unique way.

[Jaco, Shalen, Johannson] Any closed orientable prime 3-manifold has a canonical collection of disjoint embedded π_1 -injective tori which decompose it into atoroidal pieces (ie any embedded π_1 -injective torus in one of these pieces is parallel to a boundary component).

[Thurston, Perelman] Each of the pieces is 'Seifert fibred' or 'hyperbolic'.

All of the above conjectures are known to hold unless M is a closed hyperbolic 3-manifold.

We then have the following stronger conjectures:

STRONGER CONJECTURES

Let M be a closed hyperbolic 3-manifold.

<u>Conjecture</u>: (Virtually infinite b_1 conjecture) M has a finite cover with b_1 arbitrarily large.

↑

<u>Conjecture</u>: (Largeness conjecture) M has a finite cover \tilde{M} where $\pi_1(\tilde{M})$ has a non-abelian free quotient.

A group is large if it has a finite index subgroup with a non-abelian free quotient.

THE SURFACE SUBGROUP CONJECTURE

We'll focus on:

<u>Surface subgroup conjecture</u>: If M is a closed orientable irreducible 3-manifold and $\pi_1(M)$ is infinite, then $\pi_1(M)$ contains the fundamental group of a surface.

Equivalently: M contains an immersed π_1 -injective surface.

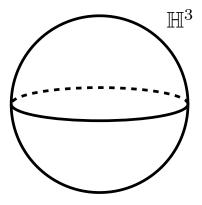
<u>Main Theorem 1.1</u>: [L] Every arithmetic hyperbolic 3-manifold contains an immersed π_1 -injective surface.

THE MAIN TECHNIQUES

- 3-orbifolds
- Golod-Shafarevich inequality
- Perelman's solution to the geometrisation conjecture
- Cheeger constants
- The first eigenvalue of the Laplacian
- The critical exponent of Kleinian groups
- Some classical 3-manifold theory
- A little arithmetic machinery

Hyperbolic 3-manifolds

Let \mathbb{H}^3 be hyperbolic 3-space.



 $\operatorname{Isom}^+(\mathbb{H}^3) \cong \operatorname{PSL}(2,\mathbb{C}).$

A discrete subgroup Γ of Isom⁺(\mathbb{H}^3) is a Kleinian group.

If Γ acts freely, then $\Gamma \setminus \mathbb{H}^3$ is an orientable hyperbolic 3-manifold.

Hyperbolic 3-orbifolds

If Γ is a discrete subgroup of Isom⁺(\mathbb{H}^3), not necessarily acting freely, then $\Gamma \setminus \mathbb{H}^3$ is an orientable hyperbolic 3-orbifold O.

One keeps track not just of the underlying space $|{\cal O}|$ but also the isotropy data.

ie, for $x \in O$, consider $\tilde{x} \in$ inverse image of x, and define the local group of x to be $\operatorname{Stab}_{\Gamma}(\tilde{x})$.

The singular locus is the set of points in O with non-trivial local group.

The local group of any $x \in O$ is a finite subgroup of SO(3) ie:

- cyclic,
- dihedral (including $\mathbb{Z}_2 \times \mathbb{Z}_2$)
- $A_4, S_4, A_5.$

DEFINITION OF ORBIFOLDS

More generally, an *n*-dimensional orbifold is a space O, where for each point $x \in O$, there is an open neighbourhood U of x and a finite subgroup $G \leq O(n)$ (called the local group of x) s.t.

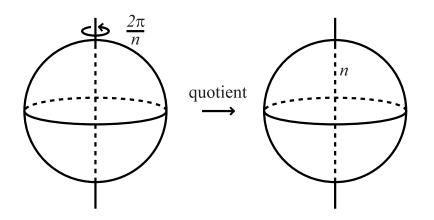
$$U \xrightarrow{\cong} G \backslash \mathbb{R}^n$$
$$x \mapsto 0$$

These neighbourhoods form 'charts' which must patch together correctly.

O is orientable if each copy of \mathbb{R}^n has an orientation that G preserves, and these orientations patch together coherently under the chart transformations.

EXAMPLE

Let Γ be the group generated by rotation of order n about a geodesic:



Then $\Gamma \setminus \mathbb{H}^3$ is a 3-ball.

Its singular locus is an arc.

Each singular point has cyclic local group of order n.

Dihedral local group:



In fact, when O is an orientable 3-orbifold, |O| is a 3-manifold and sing(O) is always a collection of simple closed curves and trivalent graphs.

<u>Main Theorem 1.2</u>: [L] Any finitely generated Kleinian group Γ containing a finite non-cyclic subgroup is either finite, virtually free or contains a surface subgroup.

The main case is when Γ is co-compact.

Equivalently in this case: Any closed hyperbolic 3-orbifold that contains a singular vertex admits an immersed π_1 -injective surface.

Commensurable groups

Two groups Γ_1 and Γ_2 are commensurable if there are finite index subgroups $\Gamma'_1 \leq \Gamma_1$ and $\Gamma'_2 \leq \Gamma_2$ such that $\Gamma'_1 \cong \Gamma'_2$.

 Γ_1 contains a surface subgroup iff Γ_2 does.

<u>Theorem 1.3</u>: [L-Long-Reid] Any arithmetic Kleinian group is commensurable with one that contains $\mathbb{Z}/2 \times \mathbb{Z}/2$.

We'll outline a proof of this in a later talk.

Note: Arithmetic Kleinian groups are neither finite nor virtually free.

Hence: $1.2 \& 1.3 \Rightarrow 1.1$

COVERING SPACES OF ORBIFOLDS

A covering map between orbifolds is a cts map $p: \tilde{O} \to O$ such that for each $x \in O$, there is an open neighbourhood U which is a copy of $G \setminus \mathbb{R}^n$ (where G is the local group of x) and each component of $p^{-1}(U)$ is a copy of $\tilde{G} \setminus \mathbb{R}^n$, for some subgroup $\tilde{G} \leq G$, and the restriction of p to this component is the canonical quotient map $\tilde{G} \setminus \mathbb{R}^n \to G \setminus \mathbb{R}^n$.

Example: For any discrete subgroup Γ in $\operatorname{Isom}(\mathbb{H}^3)$, $\mathbb{H}^3 \to \Gamma \setminus \mathbb{H}^3$ is a covering map.

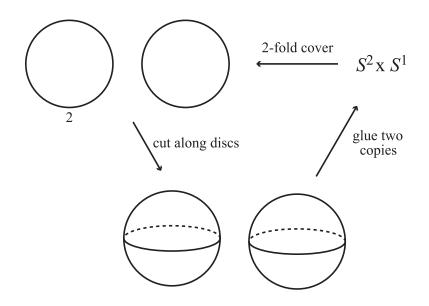
More generally, If Γ' is a subgroup of Γ , then

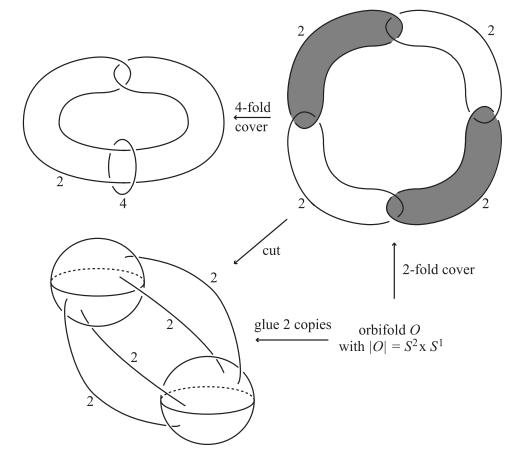
$$\Gamma' \backslash \mathbb{H}^3 \to \Gamma \backslash \mathbb{H}^3$$

is a covering map.

Fact: Any cover of a hyperbolic orbifold arises in this way.

EXAMPLES





The fundamental group of an orbifold

<u>Fact:</u> Every orbifold O has a 'universal cover' \tilde{O} .

In the case of hyperbolic 3-orbifolds, it is \mathbb{H}^3 .

The covering map $\tilde{O} \to O$ is obtained by quotienting \tilde{O} by a group of covering transformations Γ .

<u>Definition</u>: The fundamental group $\pi_1(O) = \Gamma$.

So, when O is a hyperbolic orbifold $\Gamma \setminus \mathbb{H}^n$, $\pi_1(O) = \Gamma$.

<u>General fact</u>: There is a one-one correspondence

{subgroups of $\pi_1(O)$ } \longleftrightarrow {covering spaces of O}

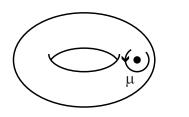
Suppose that O is orientable.

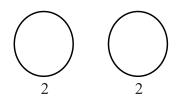
Let S_1, \ldots, S_k be the codim 2 components of sing(O) with local groups of order n_1, \ldots, n_k .

Let μ_1, \ldots, μ_k be meridian curves for S_1, \ldots, S_k . Then:

$$\pi_1(O) = \frac{\pi_1(|O| - \operatorname{sing}(O))}{\langle\!\langle \mu_1^{n_1}, \dots, \mu_k^{n_k} \rangle\!\rangle}$$

Examples:





 $\pi_1(O) = \pi_1(\text{punc torus}) / \langle\!\langle \mu^2 \rangle\!\rangle.$

 $\pi_1(O) = \mathbb{Z}/2 * \mathbb{Z}/2$

Homology of 3-orbifolds

If O is an orbifold, define

$$H_{1}(O; \mathbb{Z}) = H_{1}(\pi_{1}(O); \mathbb{Z})$$

$$= \pi_{1}(O) / [\pi_{1}(O), \pi_{1}(O)]$$

$$H_{1}(O; \mathbb{R}) = H_{1}(\pi_{1}(O); \mathbb{R})$$

$$\cong H_{1}(|O|; \mathbb{R}) \text{ when } O \text{ is orientable}$$

$$b_{1}(O) = \dim(H_{1}(O; \mathbb{R}))$$

$$H_{1}(O; \mathbb{F}_{p}) = H_{1}(\pi_{1}(O); \mathbb{F}_{p})$$

$$= \pi_{1}(O) / ([\pi_{1}(O), \pi_{1}(O)]\pi_{1}(O)^{p})$$

$$d_{p}(O) = \dim(H_{1}(O; \mathbb{F}_{p}))$$

More generally, for a group Γ ,

$$d_p(\Gamma) = \dim(H_1(\Gamma; \mathbb{F}_p)).$$

Homology of 3-orbifolds

<u>Important classical fact</u>: If M is a compact orientable 3-manifold, $b_1(M) \ge b_1(\partial M)/2.$

An orbifold version:

Lemma 1.4: If O is a compact orientable 3-orbifold, and each arc and circle of sing(O) has order a prime p, then

dim $H_1(O; \mathbb{F}_p) \ge b_1(\operatorname{sing}(O)).$

Proof:

Let X = O - int(N(sing(O))).

X is a compact orientable 3-manifold \Rightarrow

$$b_1(X) \ge b_1(\partial X)/2 \ge b_1(\operatorname{sing}(O)).$$

Killing μ_1^p, \ldots, μ_k^p doesn't change $H_1(\ ; \mathbb{F}_p)$. \Box