Surface subgroups
in dimension 3

Lecture 2



Recall:

Main Theorem 1.2: [L] Any finitely generated Kleinian group I' contain-

ing a finite non-cyclic subgroup is either finite, virtually free or contains
a surface subgroup.

Lemma 1.4: If O is a compact orientable 3-orbifold, and each arc and

circle of sing(O) has order a prime p, then

dim H,(O;F,) > b1(sing(0)).



ENDGAME OF PROOF OF 1.2

Let I' be a Kleinian group with a finite non-cyclic subgroup.

Simplifying assumptions:

L ZJ2xZ]2 <T.
. I' is cocompact
Then O = I'\H? is a closed hyperbolic 3-orbifold.

Goal: find an infinite covering space O; of O, containing a compact
3-dimensional suborbifold N; such that:

. every arc and circle of sing(N;) has order 2;
. b1 (sing(V;)) > da(ON;)
By Lemma 1.4, do(N;) > da(ON;).



SO, ker Hl (NZ, Fz) — H1 ((9N2, FQ) is non-trivial.

Let S; be a surface properly embedded in N; — sing(N;) dual to a non-
trivial element of this kernel, and that is disjoint from ON;.

Let Oz be the 2-fold cover of O dual to .S;.

Si singular locus




This has at least two ends.

We may find a finite manifold cover M; of O;.
This also has at least two ends.

Now apply ...

Lemma 1.5: Let M be an orientable hyperbolic 3-manifold with at least

2 ends. Then 71 (M) contains a surface subgroup.
Proof:
Let S be a closed orientable surface separating two ends of M.

Compress S as much as possible to S:
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S is incompressible:

Old theorem: Any properly embedded orientable incompressible surface

is mp-injective.



Some component of S still separates two ends of M.

It’s m-injective.

It’s not a sphere, because M is irreducible (as M is hyperbolic).
Hence, 7 (M) contains a surface subgroup. O (1.5)

So, surface subgroup < 7 (M;) < 7 (0). O (1.2)



THREE MAIN THEOREMS

Let I' be a cocompact Kleinian group with a finite non-cyclic subgroup.
Let O = I'\H?.
Simplifying assumption: Z/2 x Z/2 < T.

Theorem 2.1: O has a finite cover O s.t.

. O has at least one singular vertex;

2. every arc and simple closed curve of sing(O) has order 2;

. m1(|O)) is infinite

Let M = |O|.



Theorem 2.2: If a closed orientable 3-manifold M has infinite 71, then

either

. M is hyperbolic; or

2. M has a finite cover M with by > 0.

In case 2, there is an induced finite cover of O with underlying space M.
SO, its m — 7T1(M) —» ..

So, wlog M is hyperbolic.

Theorem 2.3: [L-Long-Reid] Any closed hyperbolic 3-manifold M has a
sequence of infinite covers M; s.t. h(M;) — 0.

Here h(M;) is the ‘Cheeger constant’ of M;



CHEEGER CONSTANTS

Let M be a complete Riemannian manifold.

If M has finite volume, then its Cheeger constant h(M) is

' Area(5)
Hg*f { min{Vol(M;), Vol(M-)} } 7

as S ranges over all embedded codimension 1 submanifolds that separate
M into My and M.



If M has infinite volume, then its Cheeger constant h(M) is

Y {woan |

as S ranges over all embedded codimension 1 submanifolds that bound
a finite volume submanifold M.



CHEEGER CONSTANTS OF GRAPHS

Let X be a graph, with vertex set V(X).

For A C V(X), 0A is the set of edges with one endpoint in A and one
endpoint not in A.

If V(X) is finite,

h(X) = min {% LA CV(X),0< |A| < |V(X)|/2} .



If V(X) is infinite,

h(X) :inf{% ACV(X),0< 4] < oo}.

Let
M = closed Riemannian manifold

['=m (M)
S = finite generating set for I'
M; = covering space of M
['; = w1 (M;)
X; = coset diagram of I'/T"; w.r.t. S

Theorem 2.4: There are constants ¢,C' > 0 s.t. for all covers M; — M,




2.1,2.2, 23, 2.4 = Goal

Let I' be a cocompact Kleinian group with a finite non-cyclic subgroup.
Let O = I'\H?.

Simplifying assumption: Z/2 x Z/2 <T.

2.1 = we may pass to a finite cover O s.t.

. O has at least one singular vertex;

2. every arc and simple closed curve of sing(O) has order 2;

. m1(|O)) is infinite
Let M = |O|.

2.2 = wlog M is hyperbolic.



Let T" be a triangulation of M with one vertex.
Wlog, this vertex is a singular vertex of O.

Its edges (when oriented) — a generating set S for m (M).

In the interior of each edge, pick a ‘midpoint’.
In each face, pick three arcs running between the midpoints.
In each tetrahedron, pick triangles and squares with these arcs as edges:

Triangle Square

Wlog each triangle and square intersects sing(O) transversely.



2.3 = M has covers M; with h(M;) — 0.

Let X; = coset diagram of m (M) /m(M;) w.r.t. S.
X; = 1-skeleton of M,;.

24 = h(X;)— 0.

Let A; be a finite subset of V(Xj;) s.t.

|0A;]
| Al

— 0 as 7 — oo.




Construction of N;:

Let laNzl M X@ = (914@
Join up these points using lifts of arcs, triangles and squares.
This bounds a compact 3-dimensional suborbifold ;.

Must check: by (sing(N;)) > da(ON;).

sing(N;) is a graph with:
~ | A;| trivalent vertices;
= |0A;| univalent vertices.

As [0A4;|/|Ai] = 0, ba(sing(Ny)) ~ [A].

do(|ON;]) Z |0A;]
sing(ON;)| 3 |0A;]
= d2(ON;) 3 |0A;]

So, for ¢ >> 0, by (sing(N;)) > do(0N;), as required.



CHEEGER CONSTANTS

Theorem 2.3: [L-Long-Reid| Let M be a closed hyperbolic 3-manifold.
Then M has infinite-sheeted covers M; such that h(M;) — 0.

This is a consequence of:

Theorem 2.5: [Bowen| I' = 71 (M) has a sequence of finitely generated

free subgroups I'; such that §(T";) — 2.
Here §(I';) = the ‘critical exponent’ of T';

Theorem 2.6: [Sullivan]
A (D \H?) = {5(Fi)(2 —6(Ty) if () > 1

1 otherwise.

Here \(I';\H®) = the first eigenvalue of the Laplacian of I";\H?.

Theorem 2.7: [Cheeger| For any complete Riemannian manifold M;,

A (M;) > h(M;)?/4.




PRELIMINARIES ON RIEMANNIAN MANIFOLDS

Let M be a closed n-dimensional Riemannian manifold.
Let C*°(M) be the smooth functions M — R.

There is an inner product on C*°(M):
(19) = [ sg dvol
M

Let x be the Hodge star operator on differential forms on M:

w: QF (M) — Q" * (M)

If dxy,...dx, forms an orthonormal basis at a point of T*(M). Then at
this point
x(dry A ... Ndxg) = drgar A ... ANdxy,.



Then there is an inner product on differential k-forms:

(W1, wo) = / w1 A *ws dvol.
M

Stokes theorem = for w; € Q¥ 1 (M), wy € QF (M),

(dw1,w2) = (w1, (—1)k(n_k) * d * wa)

And so (—1)*(™=F) « dx is the formal adjoint of d.

We denote it by d*.



The Laplacian is
A:C*(M) — C°°(M)

[ ddf
This is self-adjoint:
(f,d*dg) = (df,dg) = (d"df, g)

There is an orthonormal set of smooth eigenfunctions u,, such that any

feC>®(M)is

= Z HnUnp.
Say that

Auy, = )\nuna

where
O=Xg < A1 < Ag...



Definition:

Note: ug is the constant function 1/4/vol(M).

=Zui-

(df.df) = (f,Af) = Zun

Note:

So: ,
||df|]

1117

Al(M)—inf{ . f € C°(M) and /Mfzo}.



CHEEGER’S INEQUALITY

Theorem 2.7: [Cheeger| For any complete Riemannian manifold M,

A (M) > h(M)?/4.

Proof: (when M is closed)

Let f be an eigenfunction with eigenvalue \;. Let

M, ={xe M: f(x)> 0}
M_={zxeM: f(xr) <0}

Wlog, vol(M,) < vol(M_).



Focus on M, and take all integrals over M :
J ldf[?

JIfI?

SR g

(J )
(/ 1df1.1f1)?
(fr2)°
1 ([ a2
([

Claim: RHS > h(M)?/4.

A =

> by Cauchy-Schwarz

For any t > 0, let
A(t) = Area({x € My : f(2)* =1t})
V(t) = Vol({x € M : f(x)? > t})



Co-area formula: [ |df?| = [ A(t) dt

For each t, A(t) > h(M)V(t), because at least half the volume lies in
M-_.



So:

So,

/ A(t) dt > h(M) / V(t) dt

) /( [ M) "
t {z:f(x)?2>t}

= h(M) / f? dvol

(J1dr?)” _ han)*
(7 =

1
A (M) > 1



MANIFOLDS WITH INFINITE VOLUME

If M is complete and has infinite volume,

00 =y |

as S varies over all codim 1 submanifolds bounding a finite volume
submanifold M;.

We now consider the Laplacian
A: L*(M) — L*(M)
f=ddf

This has spectrum in [0, c0).

0 is no longer an eigenvalue of A, because no non-zero constant function
is in L?(M).



A1(M) is the infimum of the spectrum.

Y 4 /i PR
A(M) = f{HfHQ . feLAM)NC (M)}.

Theorem 2.7: [Cheeger| For any complete Riemannian manifold M,

A (M) > h(M)?/4.

Proof: (infinite volume case)

For any t > 0, let
A(t) = Area({x € M : f(x)* =t})
V(t) = Vol({z € M : f(x)* > t})

Then V() < co because f € L?.

Same proof as before. O



