
Surface subgroups
in dimension 3

Lecture 2



Recall:

Main Theorem 1.2: [L] Any finitely generated Kleinian group Γ contain-

ing a finite non-cyclic subgroup is either finite, virtually free or contains

a surface subgroup.

Lemma 1.4: If O is a compact orientable 3-orbifold, and each arc and

circle of sing(O) has order a prime p, then

dim H1(O; Fp) ≥ b1(sing(O)).



Endgame of proof of 1.2

Let Γ be a Kleinian group with a finite non-cyclic subgroup.

Simplifying assumptions:

1. Z/2 × Z/2 ≤ Γ.

2. Γ is cocompact

Then O = Γ\H
3 is a closed hyperbolic 3-orbifold.

Goal: find an infinite covering space Oi of O, containing a compact

3-dimensional suborbifold Ni such that:

1. every arc and circle of sing(Ni) has order 2;

2. b1(sing(Ni)) > d2(∂Ni)

By Lemma 1.4, d2(Ni) > d2(∂Ni).



So, ker H1(Ni; F2) → H1(∂Ni; F2) is non-trivial.

Let Si be a surface properly embedded in Ni − sing(Ni) dual to a non-

trivial element of this kernel, and that is disjoint from ∂Ni.

Let Õi be the 2-fold cover of O dual to Si.
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This has at least two ends.

We may find a finite manifold cover Mi of Õi.

This also has at least two ends.

Now apply ...

Lemma 1.5: Let M be an orientable hyperbolic 3-manifold with at least

2 ends. Then π1(M) contains a surface subgroup.

Proof:

Let S be a closed orientable surface separating two ends of M .

Compress S as much as possible to S:



D

S

compress

S is incompressible:
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Old theorem: Any properly embedded orientable incompressible surface

is π1-injective.



Some component of S still separates two ends of M .

It’s π1-injective.

It’s not a sphere, because M is irreducible (as M is hyperbolic).

Hence, π1(M) contains a surface subgroup. (1.5)

So, surface subgroup ≤ π1(Mi) ≤ π1(O). (1.2)



Three main theorems

Let Γ be a cocompact Kleinian group with a finite non-cyclic subgroup.

Let O = Γ\H
3.

Simplifying assumption: Z/2 × Z/2 ≤ Γ.

Theorem 2.1: O has a finite cover Õ s.t.

1. Õ has at least one singular vertex;

2. every arc and simple closed curve of sing(Õ) has order 2;

3. π1(|Õ|) is infinite

Let M = |Õ|.



Theorem 2.2: If a closed orientable 3-manifold M has infinite π1, then

either

1. M is hyperbolic; or

2. M has a finite cover M̃ with b1 > 0.

In case 2, there is an induced finite cover of Õ with underlying space M̃ .

So, its π1 � π1(M̃) � Z.

So, wlog M is hyperbolic.

Theorem 2.3: [L-Long-Reid] Any closed hyperbolic 3-manifold M has a

sequence of infinite covers Mi s.t. h(Mi) → 0.

Here h(Mi) is the ‘Cheeger constant’ of Mi



Cheeger constants

Let M be a complete Riemannian manifold.

If M has finite volume, then its Cheeger constant h(M) is

inf
S

{

Area(S)

min{Vol(M1), Vol(M2)}

}

,

as S ranges over all embedded codimension 1 submanifolds that separate

M into M1 and M2.

M S1 M 2



If M has infinite volume, then its Cheeger constant h(M) is

inf
S

{

Area(S)

Vol(M1)

}

,

as S ranges over all embedded codimension 1 submanifolds that bound

a finite volume submanifold M1.

M S1



Cheeger constants of graphs

Let X be a graph, with vertex set V (X).

For A ⊆ V (X), ∂A is the set of edges with one endpoint in A and one

endpoint not in A.

A

V(X) - A

A∂

If V (X) is finite,

h(X) = min

{

|∂A|

|A|
: A ⊂ V (X), 0 < |A| ≤ |V (X)|/2

}

.



If V (X) is infinite,

h(X) = inf

{

|∂A|

|A|
: A ⊂ V (X), 0 < |A| < ∞

}

.

Let
M = closed Riemannian manifold

Γ = π1(M)

S = finite generating set for Γ

Mi = covering space of M

Γi = π1(Mi)

Xi = coset diagram of Γ/Γi w.r.t. S

Theorem 2.4: There are constants c, C > 0 s.t. for all covers Mi → M ,

c h(Xi) ≤ h(Mi) ≤ C h(Xi).



2.1, 2.2, 2.3, 2.4 ⇒ Goal

Let Γ be a cocompact Kleinian group with a finite non-cyclic subgroup.

Let O = Γ\H
3.

Simplifying assumption: Z/2 × Z/2 ≤ Γ.

2.1 ⇒ we may pass to a finite cover Õ s.t.

1. Õ has at least one singular vertex;

2. every arc and simple closed curve of sing(Õ) has order 2;

3. π1(|Õ|) is infinite

Let M = |Õ|.

2.2 ⇒ wlog M is hyperbolic.



Let T be a triangulation of M with one vertex.

Wlog, this vertex is a singular vertex of Õ.

Its edges (when oriented) −→ a generating set S for π1(M).

In the interior of each edge, pick a ‘midpoint’.

In each face, pick three arcs running between the midpoints.

In each tetrahedron, pick triangles and squares with these arcs as edges:

Triangle Square

Wlog each triangle and square intersects sing(Õ) transversely.



2.3 ⇒ M has covers Mi with h(Mi) → 0.

Let Xi = coset diagram of π1(M)/π1(Mi) w.r.t. S.

Xi = 1-skeleton of Mi.

2.4 ⇒ h(Xi) → 0.

Let Ai be a finite subset of V (Xi) s.t.

|∂Ai|

|Ai|
→ 0 as i → ∞.



Construction of Ni:

Let |∂Ni| ∩ Xi = ∂Ai.

Join up these points using lifts of arcs, triangles and squares.

This bounds a compact 3-dimensional suborbifold Ni.

Must check: b1(sing(Ni)) > d2(∂Ni).

sing(Ni) is a graph with:

∼ |Ai| trivalent vertices;

- |∂Ai| univalent vertices.

As |∂Ai|/|Ai| → 0, b1(sing(Ni)) ∼ |Ai|.

d2(|∂Ni|) - |∂Ai|

|sing(∂Ni)| - |∂Ai|

⇒ d2(∂Ni) - |∂Ai|

So, for i >> 0, b1(sing(Ni)) > d2(∂Ni), as required.



Cheeger constants

Theorem 2.3: [L-Long-Reid] Let M be a closed hyperbolic 3-manifold.

Then M has infinite-sheeted covers Mi such that h(Mi) → 0.

This is a consequence of:

Theorem 2.5: [Bowen] Γ = π1(M) has a sequence of finitely generated

free subgroups Γi such that δ(Γi) → 2.

Here δ(Γi) = the ‘critical exponent’ of Γi

Theorem 2.6: [Sullivan]

λ1(Γi\H
3) =

{

δ(Γi)(2 − δ(Γi)) if δ(Γi) ≥ 1
1 otherwise.

Here λ(Γi\H
3) = the first eigenvalue of the Laplacian of Γi\H

3.

Theorem 2.7: [Cheeger] For any complete Riemannian manifold Mi,

λ1(Mi) ≥ h(Mi)
2/4.



Preliminaries on Riemannian manifolds

Let M be a closed n-dimensional Riemannian manifold.

Let C∞(M) be the smooth functions M → R.

There is an inner product on C∞(M):

〈f, g〉 =

∫

M

fg dvol.

Let ∗ be the Hodge star operator on differential forms on M :

∗: Ωk(M) → Ωn−k(M)

If dx1, . . . dxn forms an orthonormal basis at a point of T ∗(M). Then at

this point

∗(dx1 ∧ . . . ∧ dxk) = dxk+1 ∧ . . . ∧ dxn.



Then there is an inner product on differential k-forms:

〈ω1, ω2〉 =

∫

M

ω1 ∧ ∗ω2 dvol.

Stokes theorem ⇒ for ω1 ∈ Ωk−1(M), ω2 ∈ Ωk(M),

〈dω1, ω2〉 = 〈ω1, (−1)k(n−k) ∗ d ∗ ω2〉

And so (−1)k(n−k) ∗ d∗ is the formal adjoint of d.

We denote it by d∗.

d d d
Ω0(M) � Ω1(M) � . . . � Ωn(M)

d∗ d∗ d∗



The Laplacian is
∆: C∞(M) → C∞(M)

f 7→ d∗df

This is self-adjoint:

〈f, d∗dg〉 = 〈df, dg〉 = 〈d∗df, g〉

There is an orthonormal set of smooth eigenfunctions un such that any

f ∈ C∞(M) is

f =
∑

n

µnun.

Say that

∆un = λnun,

where

0 = λ0 < λ1 ≤ λ2 . . .



Definition:

λ1(M) = λ1

Note: u0 is the constant function 1/
√

vol(M).

Note:

〈f, f〉 =
∑

n

µ2
n.

〈df, df〉 = 〈f, ∆f〉 =
∑

n

µ2
nλn.

So:

λ1(M) = inf

{

||df ||2

||f ||2
: f ∈ C∞(M) and

∫

M

f = 0

}

.



Cheeger’s inequality

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M ,

λ1(M) ≥ h(M)2/4.

Proof: (when M is closed)

Let f be an eigenfunction with eigenvalue λ1. Let

M+ = {x ∈ M : f(x) ≥ 0}

M− = {x ∈ M : f(x) ≤ 0}

Wlog, vol(M+) ≤ vol(M−).



Focus on M+ and take all integrals over M+:

λ1 =

∫

|df |2
∫

|f |2

=

∫

|df |2
∫

|f |2
(∫

f2
)2

≥

(∫

|df |.|f |
)2

(∫

f2
)2 by Cauchy-Schwarz

=
1

4

(∫

|df2|
)2

(∫

f2
)2

Claim: RHS ≥ h(M)2/4.

For any t ≥ 0, let

A(t) = Area({x ∈ M+ : f(x)2 = t})

V (t) = Vol({x ∈ M+ : f(x)2 ≥ t})



0

t
M+

M -

Co-area formula:
∫

|df2| =
∫

A(t) dt

For each t, A(t) ≥ h(M)V (t), because at least half the volume lies in

M−.



So:
∫

A(t) dt ≥ h(M)

∫

V (t) dt

= h(M)

∫

t

(

∫

{x:f(x)2≥t}

dvol

)

dt

= h(M)

∫

f2 dvol

So,

λ1(M) ≥
1

4

(∫

|df2|
)2

(∫

f2
)2 ≥

h(M)2

4
.



Manifolds with infinite volume

If M is complete and has infinite volume,

h(M) = inf
S

{

Area(S)

Vol(M1)

}

,

as S varies over all codim 1 submanifolds bounding a finite volume

submanifold M1.

We now consider the Laplacian

∆: L2(M) → L2(M)

f 7→ d∗df

This has spectrum in [0,∞).

0 is no longer an eigenvalue of ∆, because no non-zero constant function

is in L2(M).



λ1(M) is the infimum of the spectrum.

λ1(M) = inf

{

||df ||2

||f ||2
: f ∈ L2(M) ∩ C∞(M)

}

.

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M ,

λ1(M) ≥ h(M)2/4.

Proof: (infinite volume case)

For any t ≥ 0, let

A(t) = Area({x ∈ M : f(x)2 = t})

V (t) = Vol({x ∈ M : f(x)2 ≥ t})

Then V (t) < ∞ because f ∈ L2.

Same proof as before.


