Surface subgroups in dimension 3

Lecture 2

Recall:

Main Theorem 1.2: [L] Any finitely generated Kleinian group Γ containing a finite non-cyclic subgroup is either finite, virtually free or contains a surface subgroup.

Lemma 1.4: If O is a compact orientable 3 -orbifold, and each arc and circle of $\operatorname{sing}(O)$ has order a prime p, then

$$
\operatorname{dim} H_{1}\left(O ; \mathbb{F}_{p}\right) \geq b_{1}(\operatorname{sing}(O)) .
$$

Let Γ be a Kleinian group with a finite non-cyclic subgroup.
Simplifying assumptions:

1. $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \leq \Gamma$.
2. Γ is cocompact

Then $O=\Gamma \backslash \mathbb{H}^{3}$ is a closed hyperbolic 3-orbifold.
Goal: find an infinite covering space O_{i} of O, containing a compact 3-dimensional suborbifold N_{i} such that:

1. every arc and circle of $\operatorname{sing}\left(N_{i}\right)$ has order 2 ;
2. $b_{1}\left(\operatorname{sing}\left(N_{i}\right)\right)>d_{2}\left(\partial N_{i}\right)$

By Lemma 1.4, $d_{2}\left(N_{i}\right)>d_{2}\left(\partial N_{i}\right)$.

So, ker $H^{1}\left(N_{i} ; \mathbb{F}_{2}\right) \rightarrow H_{1}\left(\partial N_{i} ; \mathbb{F}_{2}\right)$ is non-trivial.
Let S_{i} be a surface properly embedded in $N_{i}-\operatorname{sing}\left(N_{i}\right)$ dual to a nontrivial element of this kernel, and that is disjoint from ∂N_{i}.

Let \tilde{O}_{i} be the 2-fold cover of O dual to S_{i}.

$\stackrel{\text { cover dual to } S_{i}}{\longleftrightarrow}$

This has at least two ends.
We may find a finite manifold cover M_{i} of \tilde{O}_{i}.
This also has at least two ends.
Now apply ...
Lemma 1.5: Let M be an orientable hyperbolic 3-manifold with at least 2 ends. Then $\pi_{1}(M)$ contains a surface subgroup.

Proof:
Let S be a closed orientable surface separating two ends of M.
Compress S as much as possible to \bar{S} :

\bar{S} is incompressible:

Old theorem: Any properly embedded orientable incompressible surface is π_{1}-injective.

Some component of \bar{S} still separates two ends of M.
It's π_{1}-injective.
It's not a sphere, because M is irreducible (as M is hyperbolic).
Hence, $\pi_{1}(M)$ contains a surface subgroup. \square (1.5)
So, surface subgroup $\leq \pi_{1}\left(M_{i}\right) \leq \pi_{1}(O)$. \square (1.2)

Let Γ be a cocompact Kleinian group with a finite non-cyclic subgroup.
Let $O=\Gamma \backslash \mathbb{H}^{3}$.
Simplifying assumption: $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \leq \Gamma$.
Theorem 2.1: O has a finite cover \tilde{O} s.t.

1. \tilde{O} has at least one singular vertex;
2. every arc and simple closed curve of $\operatorname{sing}(\tilde{O})$ has order 2 ;
3. $\pi_{1}(|\tilde{O}|)$ is infinite

Let $M=|\tilde{O}|$.

Theorem 2.2: If a closed orientable 3 -manifold M has infinite π_{1}, then either

1. M is hyperbolic; or
2. M has a finite cover \tilde{M} with $b_{1}>0$.

In case 2 , there is an induced finite cover of \tilde{O} with underlying space \tilde{M}. So, its $\pi_{1} \rightarrow \pi_{1}(\tilde{M}) \rightarrow \mathbb{Z}$.

So, wlog M is hyperbolic.
Theorem 2.3: [L-Long-Reid] Any closed hyperbolic 3-manifold M has a sequence of infinite covers M_{i} s.t. $h\left(M_{i}\right) \rightarrow 0$.

Here $h\left(M_{i}\right)$ is the 'Cheeger constant' of M_{i}

Let M be a complete Riemannian manifold.
If M has finite volume, then its Cheeger constant $h(M)$ is

$$
\inf _{S}\left\{\frac{\operatorname{Area}(S)}{\min \left\{\operatorname{Vol}\left(M_{1}\right), \operatorname{Vol}\left(M_{2}\right)\right\}}\right\},
$$

as S ranges over all embedded codimension 1 submanifolds that separate M into M_{1} and M_{2}.

If M has infinite volume, then its Cheeger constant $h(M)$ is

$$
\inf _{S}\left\{\frac{\operatorname{Area}(S)}{\operatorname{Vol}\left(M_{1}\right)}\right\}
$$

as S ranges over all embedded codimension 1 submanifolds that bound a finite volume submanifold M_{1}.

Let X be a graph, with vertex set $V(X)$.
For $A \subseteq V(X), \partial A$ is the set of edges with one endpoint in A and one endpoint not in A.

If $V(X)$ is finite,

$$
h(X)=\min \left\{\frac{|\partial A|}{|A|}: A \subset V(X), 0<|A| \leq|V(X)| / 2\right\} .
$$

If $V(X)$ is infinite,

$$
h(X)=\inf \left\{\frac{|\partial A|}{|A|}: A \subset V(X), 0<|A|<\infty\right\} .
$$

Let

$$
\begin{aligned}
M & =\text { closed Riemannian manifold } \\
\Gamma & =\pi_{1}(M) \\
S & =\text { finite generating set for } \Gamma \\
M_{i} & =\text { covering space of } M \\
\Gamma_{i} & =\pi_{1}\left(M_{i}\right) \\
X_{i} & =\text { coset diagram of } \Gamma / \Gamma_{i} \text { w.r.t. } S
\end{aligned}
$$

Theorem 2.4: There are constants $c, C>0$ s.t. for all covers $M_{i} \rightarrow M$,

$$
c h\left(X_{i}\right) \leq h\left(M_{i}\right) \leq C h\left(X_{i}\right) .
$$

Let Γ be a cocompact Kleinian group with a finite non-cyclic subgroup.
Let $O=\Gamma \backslash \mathbb{H}^{3}$.
Simplifying assumption: $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \leq \Gamma$.
$2.1 \Rightarrow$ we may pass to a finite cover \tilde{O} s.t.

1. \tilde{O} has at least one singular vertex;
2. every arc and simple closed curve of $\operatorname{sing}(\tilde{O})$ has order 2 ;
3. $\pi_{1}(|\tilde{O}|)$ is infinite

Let $M=|\tilde{O}|$.
$2.2 \Rightarrow$ wlog M is hyperbolic.

Let T be a triangulation of M with one vertex.
Wlog, this vertex is a singular vertex of \tilde{O}.
Its edges (when oriented) \longrightarrow a generating set S for $\pi_{1}(M)$.
In the interior of each edge, pick a 'midpoint'.
In each face, pick three arcs running between the midpoints.
In each tetrahedron, pick triangles and squares with these arcs as edges:

Triangle

Square

Wlog each triangle and square intersects $\operatorname{sing}(\tilde{O})$ transversely.
$2.3 \Rightarrow M$ has covers M_{i} with $h\left(M_{i}\right) \rightarrow 0$.
Let $X_{i}=$ coset diagram of $\pi_{1}(M) / \pi_{1}\left(M_{i}\right)$ w.r.t. S.
$X_{i}=1$-skeleton of M_{i}.
$2.4 \Rightarrow h\left(X_{i}\right) \rightarrow 0$.
Let A_{i} be a finite subset of $V\left(X_{i}\right)$ s.t.

$$
\frac{\left|\partial A_{i}\right|}{\left|A_{i}\right|} \rightarrow 0 \text { as } i \rightarrow \infty .
$$

Construction of N_{i} :

Let $\left|\partial N_{i}\right| \cap X_{i}=\partial A_{i}$.
Join up these points using lifts of arcs, triangles and squares.
This bounds a compact 3 -dimensional suborbifold N_{i}.
Must check: $b_{1}\left(\operatorname{sing}\left(N_{i}\right)\right)>d_{2}\left(\partial N_{i}\right)$.
$\operatorname{sing}\left(N_{i}\right)$ is a graph with:
$\sim\left|A_{i}\right|$ trivalent vertices;
$\precsim\left|\partial A_{i}\right|$ univalent vertices.
As $\left|\partial A_{i}\right| /\left|A_{i}\right| \rightarrow 0, b_{1}\left(\operatorname{sing}\left(N_{i}\right)\right) \sim\left|A_{i}\right|$.
$d_{2}\left(\left|\partial N_{i}\right|\right) \precsim\left|\partial A_{i}\right|$
$\left|\operatorname{sing}\left(\partial N_{i}\right)\right| \precsim\left|\partial A_{i}\right|$
$\Rightarrow d_{2}\left(\partial N_{i}\right) \precsim\left|\partial A_{i}\right|$
So, for $i \gg 0, b_{1}\left(\operatorname{sing}\left(N_{i}\right)\right)>d_{2}\left(\partial N_{i}\right)$, as required.

CHEEGER CONSTANTS

Theorem 2.3: [L-Long-Reid] Let M be a closed hyperbolic 3-manifold. Then M has infinite-sheeted covers M_{i} such that $h\left(M_{i}\right) \rightarrow 0$.

This is a consequence of:
Theorem 2.5: [Bowen] $\Gamma=\pi_{1}(M)$ has a sequence of finitely generated free subgroups Γ_{i} such that $\delta\left(\Gamma_{i}\right) \rightarrow 2$.

Here $\delta\left(\Gamma_{i}\right)=$ the 'critical exponent' of Γ_{i}
Theorem 2.6: [Sullivan]

$$
\lambda_{1}\left(\Gamma_{i} \backslash \mathbb{H}^{3}\right)= \begin{cases}\delta\left(\Gamma_{i}\right)\left(2-\delta\left(\Gamma_{i}\right)\right) & \text { if } \delta\left(\Gamma_{i}\right) \geq 1 \\ 1 & \text { otherwise }\end{cases}
$$

Here $\lambda\left(\Gamma_{i} \backslash \mathbb{H}^{3}\right)=$ the first eigenvalue of the Laplacian of $\Gamma_{i} \backslash \mathbb{H}^{3}$.
Theorem 2.7: [Cheeger] For any complete Riemannian manifold M_{i}, $\lambda_{1}\left(M_{i}\right) \geq h\left(M_{i}\right)^{2} / 4$.

Let M be a closed n-dimensional Riemannian manifold.
Let $C^{\infty}(M)$ be the smooth functions $M \rightarrow \mathbb{R}$.
There is an inner product on $C^{\infty}(M)$:

$$
\langle f, g\rangle=\int_{M} f g d \mathrm{vol} .
$$

Let $*$ be the Hodge star operator on differential forms on M :

$$
*: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M)
$$

If $d x_{1}, \ldots d x_{n}$ forms an orthonormal basis at a point of $T^{*}(M)$. Then at this point

$$
*\left(d x_{1} \wedge \ldots \wedge d x_{k}\right)=d x_{k+1} \wedge \ldots \wedge d x_{n}
$$

Then there is an inner product on differential k-forms:

$$
\left\langle\omega_{1}, \omega_{2}\right\rangle=\int_{M} \omega_{1} \wedge * \omega_{2} d \mathrm{vol}
$$

Stokes theorem \Rightarrow for $\omega_{1} \in \Omega^{k-1}(M), \omega_{2} \in \Omega^{k}(M)$,

$$
\left\langle d \omega_{1}, \omega_{2}\right\rangle=\left\langle\omega_{1},(-1)^{k(n-k)} * d * \omega_{2}\right\rangle
$$

And so $(-1)^{k(n-k)} * d *$ is the formal adjoint of d.
We denote it by d^{*}.

$$
\Omega^{0}(M) \underset{d^{*}}{\stackrel{d}{\rightleftarrows}} \Omega^{1}(M) \underset{d^{*}}{\stackrel{d}{\rightleftarrows}} \ldots \underset{d^{*}}{\stackrel{d}{\rightleftarrows}} \Omega^{n}(M)
$$

The Laplacian is

$$
\begin{aligned}
\Delta: C^{\infty}(M) & \rightarrow C^{\infty}(M) \\
f & \mapsto d^{*} d f
\end{aligned}
$$

This is self-adjoint:

$$
\left\langle f, d^{*} d g\right\rangle=\langle d f, d g\rangle=\left\langle d^{*} d f, g\right\rangle
$$

There is an orthonormal set of smooth eigenfunctions u_{n} such that any $f \in C^{\infty}(M)$ is

$$
f=\sum_{n} \mu_{n} u_{n} .
$$

Say that

$$
\Delta u_{n}=\lambda_{n} u_{n}
$$

where

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \ldots
$$

Definition:

$$
\lambda_{1}(M)=\lambda_{1}
$$

Note: u_{0} is the constant function $1 / \sqrt{\operatorname{vol}(M)}$.
Note:

$$
\begin{gathered}
\langle f, f\rangle=\sum_{n} \mu_{n}^{2} . \\
\langle d f, d f\rangle=\langle f, \Delta f\rangle=\sum_{n} \mu_{n}^{2} \lambda_{n} .
\end{gathered}
$$

So:

$$
\lambda_{1}(M)=\inf \left\{\frac{\|d f\|^{2}}{\|f\|^{2}}: f \in C^{\infty}(M) \text { and } \int_{M} f=0\right\}
$$

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M,

$$
\lambda_{1}(M) \geq h(M)^{2} / 4
$$

Proof: (when M is closed)
Let f be an eigenfunction with eigenvalue λ_{1}. Let

$$
\begin{aligned}
& M_{+}=\{x \in M: f(x) \geq 0\} \\
& M_{-}=\{x \in M: f(x) \leq 0\}
\end{aligned}
$$

$\mathrm{Wlog}, \operatorname{vol}\left(M_{+}\right) \leq \operatorname{vol}\left(M_{-}\right)$.

Focus on M_{+}and take all integrals over M_{+}:

$$
\begin{aligned}
\lambda_{1} & =\frac{\int|d f|^{2}}{\int|f|^{2}} \\
& =\frac{\int|d f|^{2} \int|f|^{2}}{\left(\int f^{2}\right)^{2}} \\
& \geq \frac{\left(\int|d f| \cdot|f|\right)^{2}}{\left(\int f^{2}\right)^{2}} \text { by Cauchy-Schwarz } \\
& =\frac{1}{4} \frac{\left(\int\left|d f^{2}\right|\right)^{2}}{\left(\int f^{2}\right)^{2}}
\end{aligned}
$$

Claim: RHS $\geq h(M)^{2} / 4$.
For any $t \geq 0$, let

$$
\begin{aligned}
& A(t)=\operatorname{Area}\left(\left\{x \in M_{+}: f(x)^{2}=t\right\}\right) \\
& V(t)=\operatorname{Vol}\left(\left\{x \in M_{+}: f(x)^{2} \geq t\right\}\right)
\end{aligned}
$$

Co-area formula: $\int\left|d f^{2}\right|=\int A(t) d t$
For each $t, A(t) \geq h(M) V(t)$, because at least half the volume lies in M_{-}.

So:

$$
\begin{aligned}
\int A(t) d t & \geq h(M) \int V(t) d t \\
& =h(M) \int_{t}\left(\int_{\left\{x: f(x)^{2} \geq t\right\}} d \mathrm{vol}\right) d t \\
& =h(M) \int f^{2} d \mathrm{vol}
\end{aligned}
$$

So,

$$
\lambda_{1}(M) \geq \frac{1}{4} \frac{\left(\int\left|d f^{2}\right|\right)^{2}}{\left(\int f^{2}\right)^{2}} \geq \frac{h(M)^{2}}{4} .
$$

If M is complete and has infinite volume,

$$
h(M)=\inf _{S}\left\{\frac{\operatorname{Area}(S)}{\operatorname{Vol}\left(M_{1}\right)}\right\}
$$

as S varies over all codim 1 submanifolds bounding a finite volume submanifold M_{1}.

We now consider the Laplacian

$$
\begin{aligned}
\Delta: L^{2}(M) & \rightarrow L^{2}(M) \\
f & \mapsto d^{*} d f
\end{aligned}
$$

This has spectrum in $[0, \infty)$.
0 is no longer an eigenvalue of Δ, because no non-zero constant function is in $L^{2}(M)$.
$\lambda_{1}(M)$ is the infimum of the spectrum.

$$
\lambda_{1}(M)=\inf \left\{\frac{\|d f\|^{2}}{\|f\|^{2}}: f \in L^{2}(M) \cap C^{\infty}(M)\right\} .
$$

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M,

$$
\lambda_{1}(M) \geq h(M)^{2} / 4
$$

Proof: (infinite volume case)
For any $t \geq 0$, let

$$
\begin{aligned}
A(t) & =\operatorname{Area}\left(\left\{x \in M: f(x)^{2}=t\right\}\right) \\
V(t) & =\operatorname{Vol}\left(\left\{x \in M: f(x)^{2} \geq t\right\}\right)
\end{aligned}
$$

Then $V(t)<\infty$ because $f \in L^{2}$.
Same proof as before.

