Surface subgroups
in dimension 3

Lecture 3



TODAY

Theorem 2.3: [L-Long-Reid| Let M be a closed hyperbolic 3-manifold.
Then M has infinite-sheeted covers M; such that h(M;) — 0.

This is a consequence of:

Theorem 2.5: [Bowen| I' = 71 (M) has a sequence of finitely generated

free subgroups I'; such that §(T";) — 2.
Here §(I';) = the ‘critical exponent’ of T';

Theorem 2.6: [Sullivan]
A (T;\H?) = {fi(ﬂ-)@ —5(Iy)) if6(Ty) >1

otherwise.

Here A\ (I';\H?) = the first eigenvalue of the Laplacian of I';\H?>.

Theorem 2.7: [Cheeger| For any complete Riemannian manifold M;,

A (M;) > h(M;)?/4.




CHEEGER’S INEQUALITY

Theorem 2.7: [Cheeger| For any complete Riemannian manifold M,

A (M) > h(M)?/4.

Proof: (when M is closed)

Let f be an eigenfunction with eigenvalue \;. Let

M, ={xe M: f(x)> 0}
M_={zxeM: f(xr) <0}

Wlog, vol(M,) < vol(M_).



Focus on M, and take all integrals over M :
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Claim: RHS > h(M)?/4.

A =

> by Cauchy-Schwarz

For any t > 0, let
A(t) = Area({x € My : f(2)* =1t})
V(t) = Vol({x € M : f(x)? > t})



Co-area formula: [ |df?| = [ A(t) dt

For each t, A(t) > h(M)V(t), because at least half the volume lies in
M-_.



So:

So,

/ A(t) dt > h(M) / V(t) dt
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A (M) > 1



MANIFOLDS WITH INFINITE VOLUME

If M is complete and has infinite volume,

00 =y |

as S varies over all codim 1 submanifolds bounding a finite volume
submanifold M;.

We now consider the Laplacian
A: L*(M) — L*(M)
f=ddf

This has spectrum in [0, c0).

0 is no longer an eigenvalue of A, because no non-zero constant function
is in L?(M).



A1(M) is the infimum of the spectrum.

Y 4 /i PR
A(M) = f{HfHQ . feLAM)NC (M)}.

Theorem 2.7: [Cheeger| For any complete Riemannian manifold M,

A (M) > h(M)?/4.

Proof: (infinite volume case)

For any t > 0, let
A(t) = Area({x € M : f(x)* =t})
V(t) = Vol({z € M : f(x)* > t})

Then V() < co because f € L?.

Same proof as before. O



SULLIVAN’S THEOREM

Theorem 2.6: [Sullivan] For M = T'\H® a hyperbolic 3-manifold,
_ 3 >
M) = (D=5 5T > 1

1 otherwise

We'll show <, and focus on §(I') > 1, as that is all we’ll need.
o(I") is the critical exponent of T', defined as follows.
Pick x € H>.

O(I') =inf ¢ s: Zexp(—sd(m,’yx)) < 00

vell

ie if N(r) is the number of vz within distance r of x, then

N(r) ~exp(d(I)r).



(GGREEN’S FUNCTIONS

Let
M = Riemannian manifold

p = point in M
A > 0.

The associated \-Green’s function is a function g, x: M — R s.t.

(A — X\)gp A = 0-function at p.

Fact: This is finite away from p, provided A < A\ (M).



GREEN’S FUNCTIONS ON H?

A (H3) = 1.
Provided A < 1 and for p € H3,

gp.a(x) ~ const . exp(ad(x,p)) as d(z,p) — oo

where

a=—-1—-—v1-A\
(Solve a 2nd order ODE).



PROOF OF SULLIVAN’S THEOREM

Let
M =T\H® a hyperbolic 3-manifold

peM

p € inverse image of p

A< A (M)
gp,x» = A — Green’s function on M
dp.» = pull-back to H?

Then
Gon(D) =D _ gypa(P) = > exp(ad(yp,p)) < o0

yel’ yel’

=< —a=14++vV1-A\
So, A < (2 —9). True for all A < A (M). O



BOWEN’S THEOREM

M =T\H? a closed hyperbolic 3-manifold.

Theorem 2.5: [Bowen| I' = 71 (M) has a sequence of finitely generated

free subgroups I'; such that §(T";) — 2.
This relies on the following well-known old result.

Theorem 3.1: There exist finitely generated free Kleinian groups F

without parabolics and with §(F') arbitrarily close to 2.



OUTLINE OF PROOF OF 3.1.

Let F' be a f.g. free group.

Let R be the space of all representations ¢: F' — PSL(2,C) (topologised
as (PSL(2,C))™ where n = rank(F)).

Let X be the representations ¢ in R that are discrete and faithful,
where ¢(F') contains no parabolics, and where §(¢(F)) < 2. Such

representations are called convex cocompact.
This is an open subset of ‘R.

There exists some ¢y € X.

There exists some indiscrete ¢; € R.

R is path-connected so there is a path from ¢ to ¢;.



Vs

¢,

All ¢ € X are discrete and faithful.
So, for all ¢ € OX, either 6(¢(F)) = 2 or ¢(F) contains parabolics.
Fact 1: If we remove the latter from R, the space is still path-connected.

So, we can choose the path ¢; so that, at the first time 1" where ¢ € 0X,
o(¢r(F)) = 2.
Fact 2: §(¢(F)) is a continuous fn of ¢ € X.

As t — T from below, ¢¢(F') € X and 0(¢¢(F)) — 2. O



BOWEN’S THEOREM

Theorem 2.5: [Bowen| I' = 71 (M) has a sequence of finitely generated
subgroups I'; such that 6(I';) — 2.

Theorem 3.1: There exist convex cocompact finitely generated free

Kleinian groups F' with §(F") arbitrarily close to 2.
We now modify F' a little so that it ‘almost’ sits inside I'.
Let S be a finite generating set for F'.

Definition. For ¢ > 0, an e-perturbation of F is a function
¢: F — Isom™ (H?) such that for all f € F and all s € S,

d(d(fs), ¢(f)s™!) <e.

Here d( , ) is the left-invariant metric on Isom™ (H?).



Definition. ¢: F — Isom™ (H?) is a virtual homomorphism if there is a
finite index subgroup F’ of F' s.t. for all f' € F/ and f € F,

o(f'f) = o(f)o(f)-

[In particular, ¢|F” is a homomorphism.]
It is a virtual homomorphism into I' if, in addition, ¢(F") <T.

Theorem 3.2. [Bowen| Let I' be a cocompact Kleinian group. Let F be

a convex cocompact free Kleinian group. Then, for any ¢ > 0, there is
an e-perturbation of F' that is a virtual homomorphism into I'.

Theorem 3.3. [Bowen]| Let F' be a convex cocompact free Kleinian group.
For all ¢ > 0, there is an € > 0 such that if ¢ is an e-perturbation of F
that is a virtual homomorphism, then |§(¢(F')) — §(F)| < €.

Note: If F’ is the finite index subgroup of F', then 6(¢(F')) = 6(o(F)).



We’ll focus on Theorem 3.2.

Let:
I' = the cocompact Kleinian group

M =T\H*
' = the convex cocompact free group
S = a free generating set

1 = Haar measure on Isom™ (H?)

We may assume that M is a manifold.

Let 6 > 0 satisfy:
Vg1, g2 € Isom™ (H?) s.t. d(g1,id) < §,d(gs,id) < 8, and Vs € S,

d(g1892,5) < €.



Let B = I'\Isom(H?) [the frame bundle over M].

Partition B into a finite collection of subsets Bi,...,B,, each with
diameter < 4.

Arrange that pu(0B;) = 0 Vi.
Pick ﬁ1 € B;.
Wlog 31 = id coset.

Construction of graph Y in B:

A vertex at each ;.
Each edge has a label s € S.

B and (B; are joined by an s-labelled edge e iff

36; € int(B;), B € int(By) s.t. Bis = .
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For each edge e define 1 (e) which will be an approximation to s:

Since diam(B;), diam(B;) < d, there are elements

g; € Isom+(H3), s.t. d(g;,id) < § and B;9; = 0;

1

g; € Isom " (HY), s.t. d(g;,id) <6 and B9, = 5

Let
w(e) = gisg; .
Then
Bi(e) = B;

d(y(e),s) < €



We’ll define functions
w:V(Y) — (0,00)

w: E(Y) — (0, 00)
s.t. for allv € V(Y) and all s € S,
Y. w(e) =w)

s—labelled edges
e entering v

Z w(e) = w(v).

s—labelled edges
e exiting v

This is called a weighting on Y.

For a vertex f3;, define
w(fB;) = p(B;).

For an edge e with label s running from 3; to 3;, define

w(e) = u({B; € B; : Bis € Bj}).



Clearly

Z w(e) = w(v).
s—labelled edges

e exiting B;

Each edge, starting at §; entering (3; has weight

u({B, € By : Bis € BiY) = u({B}s : 8} € B; and s € B;})
— u({B € B;: Bs™" € B;}).

[The last equality uses the invariance of Haar measure under right
multiplication.]

So,
Z w(e) = w(v).

s—labelled edges
e entering f3;



For functions

w:V(Y) — (0,00)
w: E(Y) — (0, 00)
to give a weighting they must satisfy linear equations with integer

coefficients. So

3 weighting w = 3 integral weighting w’.



Replace
each vertex v € V(Y') by w'(v) vertices

each edge e € E(Y) by w'(e) edge
Join them up so that, for each vertex v and each s € S,

exactly one s-labelled edge enters v, and

exactly one s-labelled edge exits v.

Let X = this graph.

Make one of the vertices at 3 be its basepoint.



Definition of ¢: F' — Isom™ (H?):

Each f € F is a word s{'...s{» (where s; € S and ¢; € {—1,1}).

n

This gives a path e}’ ...ef" in X starting at the basepoint.

n

Define

This is an e-perturbation of F'.
Define F’ to be those f € F that give loops in X.
Then, for all f' € F, f € F,

o(f'f) = o(f)e(f),
¢(f') el



