Surface subgroups in dimension 3

Lecture 3

Today

Theorem 2.3: [L-Long-Reid] Let M be a closed hyperbolic 3-manifold. Then M has infinite-sheeted covers M_i such that $h(M_i) \to 0$.

This is a consequence of:

Theorem 2.5: [Bowen] $\Gamma = \pi_1(M)$ has a sequence of finitely generated free subgroups Γ_i such that $\delta(\Gamma_i) \to 2$.

Here $\delta(\Gamma_i)$ = the 'critical exponent' of Γ_i

Theorem 2.6: [Sullivan]

$$\lambda_1(\Gamma_i \backslash \mathbb{H}^3) = \begin{cases} \delta(\Gamma_i)(2 - \delta(\Gamma_i)) & \text{if } \delta(\Gamma_i) \ge 1\\ 1 & \text{otherwise.} \end{cases}$$

Here $\lambda_1(\Gamma_i\backslash\mathbb{H}^3)$ = the first eigenvalue of the Laplacian of $\Gamma_i\backslash\mathbb{H}^3$.

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M_i , $\lambda_1(M_i) \geq h(M_i)^2/4$.

CHEEGER'S INEQUALITY

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M,

$$\lambda_1(M) \ge h(M)^2/4.$$

Proof: (when M is closed)

Let f be an eigenfunction with eigenvalue λ_1 . Let

$$M_{+} = \{ x \in M : f(x) \ge 0 \}$$

$$M_{-} = \{ x \in M : f(x) \le 0 \}$$

Wlog, $\operatorname{vol}(M_+) \leq \operatorname{vol}(M_-)$.

Focus on M_+ and take all integrals over M_+ :

$$\lambda_{1} = \frac{\int |df|^{2}}{\int |f|^{2}}$$

$$= \frac{\int |df|^{2} \int |f|^{2}}{\left(\int f^{2}\right)^{2}}$$

$$\geq \frac{\left(\int |df| \cdot |f|\right)^{2}}{\left(\int f^{2}\right)^{2}} \text{ by Cauchy-Schwarz}$$

$$= \frac{1}{4} \frac{\left(\int |df^{2}|\right)^{2}}{\left(\int f^{2}\right)^{2}}$$

Claim: RHS $\geq h(M)^2/4$.

For any $t \geq 0$, let

$$A(t) = \text{Area}(\{x \in M_+ : f(x)^2 = t\})$$
$$V(t) = \text{Vol}(\{x \in M_+ : f(x)^2 \ge t\})$$

Co-area formula: $\int |df^2| = \int A(t) dt$

For each t, $A(t) \ge h(M)V(t)$, because at least half the volume lies in M_- .

So:

$$\int A(t) dt \ge h(M) \int V(t) dt$$

$$= h(M) \int_t \left(\int_{\{x: f(x)^2 \ge t\}} d\text{vol} \right) dt$$

$$= h(M) \int_t f^2 d\text{vol}$$

So,

$$\lambda_1(M) \ge \frac{1}{4} \frac{\left(\int |df^2|\right)^2}{\left(\int f^2\right)^2} \ge \frac{h(M)^2}{4}.$$

Manifolds with infinite volume

If M is complete and has infinite volume,

$$h(M) = \inf_{S} \left\{ \frac{\operatorname{Area}(S)}{\operatorname{Vol}(M_1)} \right\},$$

as S varies over all codim 1 submanifolds bounding a finite volume submanifold M_1 .

We now consider the Laplacian

$$\Delta: L^2(M) \to L^2(M)$$

$$f \mapsto d^*df$$

This has spectrum in $[0, \infty)$.

0 is no longer an eigenvalue of Δ , because no non-zero constant function is in $L^2(M)$.

 $\lambda_1(M)$ is the infimum of the spectrum.

$$\lambda_1(M) = \inf \left\{ \frac{||df||^2}{||f||^2} : f \in L^2(M) \cap C^{\infty}(M) \right\}.$$

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M,

$$\lambda_1(M) \ge h(M)^2/4.$$

Proof: (infinite volume case)

For any $t \geq 0$, let

$$A(t) = \text{Area}(\{x \in M : f(x)^2 = t\})$$

$$V(t) = \operatorname{Vol}(\{x \in M : f(x)^2 \ge t\})$$

Then $V(t) < \infty$ because $f \in L^2$.

Same proof as before. \Box

Sullivan's theorem

Theorem 2.6: [Sullivan] For $M = \Gamma \backslash \mathbb{H}^3$ a hyperbolic 3-manifold,

$$\lambda_1(M) = \begin{cases} \delta(\Gamma)(2 - \delta(\Gamma)) & \text{if } \delta(\Gamma) \ge 1\\ 1 & \text{otherwise} \end{cases}$$

We'll show \leq , and focus on $\delta(\Gamma) \geq 1$, as that is all we'll need.

 $\delta(\Gamma)$ is the critical exponent of Γ , defined as follows.

Pick $x \in \mathbb{H}^3$.

$$\delta(\Gamma) = \inf \left\{ s : \sum_{\gamma \in \Gamma} \exp(-sd(x, \gamma x)) < \infty \right\}$$

ie if N(r) is the number of γx within distance r of x, then

$$N(r) \simeq \exp(\delta(\Gamma)r).$$

Green's functions

Let

$$M=$$
 Riemannian manifold
$$p= \text{point in } M$$

$$\lambda>0.$$

The associated λ -Green's function is a function $g_{p,\lambda}: M \to \mathbb{R}$ s.t.

$$(\Delta - \lambda)g_{p,\lambda} = \delta$$
-function at p .

<u>Fact:</u> This is finite away from p, provided $\lambda < \lambda_1(M)$.

Green's functions on \mathbb{H}^3

$$\lambda_1(\mathbb{H}^3)=1.$$

Provided $\lambda < 1$ and for $p \in \mathbb{H}^3$,

$$g_{p,\lambda}(x) \sim \text{const}$$
. $\exp(\alpha d(x,p))$ as $d(x,p) \to \infty$

where

$$\alpha = -1 - \sqrt{1 - \lambda}.$$

(Solve a 2nd order ODE).

PROOF OF SULLIVAN'S THEOREM

Let

$$M = \Gamma \backslash \mathbb{H}^3$$
 a hyperbolic 3-manifold $p \in M$ $\tilde{p} \in \text{inverse image of } p$ $\lambda < \lambda_1(M)$ $g_{p,\lambda} = \lambda - \text{Green's function on } M$ $\tilde{g}_{p,\lambda} = \text{pull-back to } \mathbb{H}^3$

Then

$$\tilde{g}_{p,\lambda}(\tilde{p}) = \sum_{\gamma \in \Gamma} g_{\gamma \tilde{p},\lambda}(\tilde{p}) \simeq \sum_{\gamma \in \Gamma} \exp(\alpha d(\gamma \tilde{p},\tilde{p})) < \infty$$

$$\Rightarrow \delta \le -\alpha = 1 + \sqrt{1 - \lambda}.$$

So,
$$\lambda \leq \delta(2-\delta)$$
. True for all $\lambda < \lambda_1(M)$. \square

BOWEN'S THEOREM

 $M = \Gamma \backslash \mathbb{H}^3$ a closed hyperbolic 3-manifold.

Theorem 2.5: [Bowen] $\Gamma = \pi_1(M)$ has a sequence of finitely generated free subgroups Γ_i such that $\delta(\Gamma_i) \to 2$.

This relies on the following well-known old result.

<u>Theorem 3.1</u>: There exist finitely generated free Kleinian groups F without parabolics and with $\delta(F)$ arbitrarily close to 2.

OUTLINE OF PROOF OF 3.1.

Let F be a f.g. free group.

Let \mathcal{R} be the space of all representations $\phi: F \to \mathrm{PSL}(2,\mathbb{C})$ (topologised as $(\mathrm{PSL}(2,\mathbb{C}))^n$ where $n = \mathrm{rank}(F)$).

Let \mathcal{X} be the representations ϕ in \mathcal{R} that are discrete and faithful, where $\phi(F)$ contains no parabolics, and where $\delta(\phi(F)) < 2$. Such representations are called **convex cocompact**.

This is an open subset of \mathcal{R} .

There exists some $\phi_0 \in \mathcal{X}$.

There exists some indiscrete $\phi_1 \in \mathcal{R}$.

 \mathcal{R} is path-connected so there is a path from ϕ_0 to ϕ_1 .

All $\phi \in \partial \mathcal{X}$ are discrete and faithful.

So, for all $\phi \in \partial \mathcal{X}$, either $\delta(\phi(F)) = 2$ or $\phi(F)$ contains parabolics.

Fact 1: If we remove the latter from \mathcal{R} , the space is still path-connected.

So, we can choose the path ϕ_t so that, at the first time T where $\phi_T \in \partial \mathcal{X}$, $\delta(\phi_T(F)) = 2$.

Fact 2: $\delta(\phi(F))$ is a continuous fn of $\phi \in \overline{\mathcal{X}}$.

As $t \to T$ from below, $\phi_t(F) \in \mathcal{X}$ and $\delta(\phi_t(F)) \to 2$. \square

Bowen's Theorem

Theorem 2.5: [Bowen] $\Gamma = \pi_1(M)$ has a sequence of finitely generated subgroups Γ_i such that $\delta(\Gamma_i) \to 2$.

Theorem 3.1: There exist convex cocompact finitely generated free Kleinian groups F with $\delta(F)$ arbitrarily close to 2.

We now modify F a little so that it 'almost' sits inside Γ .

Let S be a finite generating set for F.

<u>Definition.</u> For $\epsilon > 0$, an ϵ -perturbation of F is a function $\phi: F \to \text{Isom}^+(\mathbb{H}^3)$ such that for all $f \in F$ and all $s \in S$,

$$d(\phi(fs^{\pm 1}), \phi(f)s^{\pm 1}) \le \epsilon.$$

Here $d(\ ,\)$ is the left-invariant metric on $\mathrm{Isom}^+(\mathbb{H}^3).$

<u>Definition.</u> $\phi: F \to \text{Isom}^+(\mathbb{H}^3)$ is a virtual homomorphism if there is a finite index subgroup F' of F s.t. for all $f' \in F'$ and $f \in F$,

$$\phi(f'f) = \phi(f')\phi(f).$$

[In particular, $\phi|F'$ is a homomorphism.] It is a virtual homomorphism into Γ if, in addition, $\phi(F') \leq \Gamma$.

<u>Theorem 3.2</u>. [Bowen] Let Γ be a cocompact Kleinian group. Let F be a convex cocompact free Kleinian group. Then, for any $\epsilon > 0$, there is an ϵ -perturbation of F that is a virtual homomorphism into Γ .

Theorem 3.3. [Bowen] Let F be a convex cocompact free Kleinian group. For all $\epsilon' > 0$, there is an $\epsilon > 0$ such that if ϕ is an ϵ -perturbation of F that is a virtual homomorphism, then $|\delta(\phi(F)) - \delta(F)| < \epsilon'$.

<u>Note</u>: If F' is the finite index subgroup of F, then $\delta(\phi(F')) = \delta(\phi(F))$.

We'll focus on Theorem 3.2.

Let:

 Γ = the cocompact Kleinian group

 $M = \Gamma \backslash \mathbb{H}^3$

F = the convex cocompact free group

S = a free generating set

 $\mu = \text{Haar measure on Isom}^+(\mathbb{H}^3)$

We may assume that M is a manifold.

Let $\delta > 0$ satisfy:

$$\forall g_1, g_2 \in \text{Isom}^+(\mathbb{H}^3) \text{ s.t. } d(g_1, \text{id}) \leq \delta, d(g_2, \text{id}) \leq \delta, \text{ and } \forall s \in S,$$

$$d(g_1sg_2,s) \le \epsilon.$$

Let $B = \Gamma \backslash \text{Isom}(\mathbb{H}^3)$ [the frame bundle over M].

Partition B into a finite collection of subsets B_1, \ldots, B_n , each with diameter $\leq \delta$.

Arrange that $\mu(\partial B_i) = 0 \ \forall i$.

Pick $\beta_i \in B_i$.

Wlog $\beta_1 = id$ coset.

Construction of graph Y in B:

A vertex at each β_i .

Each edge has a label $s \in S$.

 β_i and β_j are joined by an s-labelled edge e iff

$$\exists \beta_i' \in \text{int}(B_i), \beta_j' \in \text{int}(B_j) \text{ s.t. } \beta_i' s = \beta_j'.$$

Link of a vertex β_i :

For each edge e define $\psi(e)$ which will be an approximation to s: Since $\operatorname{diam}(B_i), \operatorname{diam}(B_j) \leq \delta$, there are elements

$$g_i \in \text{Isom}^+(\mathbb{H}^3)$$
, s.t. $d(g_i, \text{id}) \leq \delta$ and $\beta_i g_i = \beta_i'$
 $g_j \in \text{Isom}^+(\mathbb{H}^3)$, s.t. $d(g_j, \text{id}) \leq \delta$ and $\beta_j g_j = \beta_j'$

Let

$$\psi(e) = g_i s g_j^{-1}.$$

Then

$$\beta_i \psi(e) = \beta_j$$

$$d(\psi(e), s) \le \epsilon$$

We'll define functions

$$w: V(Y) \to (0, \infty)$$

$$w: E(Y) \to (0, \infty)$$

s.t. for all $v \in V(Y)$ and all $s \in S$,

$$\sum_{\substack{s-\text{labelled edges} \\ e \text{ entering v}}} w(e) = w(v)$$

$$\sum_{\substack{s-\text{labelled edges} \\ e \text{ exiting v}}} w(e) = w(v).$$

This is called a weighting on Y.

For a vertex β_i , define

$$w(\beta_i) = \mu(B_i).$$

For an edge e with label s running from β_i to β_j , define

$$w(e) = \mu(\{\beta_i' \in B_i : \beta_i' s \in B_j\}).$$

Clearly

$$\sum_{\substack{s-\text{labelled edges} \\ e \text{ exiting } \beta_{\mathbf{i}}}} w(e) = w(v).$$

Each edge, starting at β_j entering β_i has weight

$$\mu(\{\beta'_j \in B_j : \beta'_j s \in B_i\}) = \mu(\{\beta'_j s : \beta'_j \in B_j \text{ and } \beta'_j s \in B_i\})$$
$$= \mu(\{\beta'_i \in B_i : \beta'_i s^{-1} \in B_j\}).$$

[The last equality uses the invariance of Haar measure under right multiplication.]

So,

$$\sum_{\substack{s-\text{labelled edges}\\ e \text{ entering } \beta_{\mathrm{i}}}} w(e) = w(v).$$

For functions

$$w:V(Y)\to (0,\infty)$$

$$w: E(Y) \to (0, \infty)$$

to give a weighting they must satisfy linear equations with integer coefficients. So

 \exists weighting $w \Rightarrow \exists$ integral weighting w'.

Replace

each vertex $v \in V(Y)$ by w'(v) vertices each edge $e \in E(Y)$ by w'(e) edge

Join them up so that, for each vertex v and each $s \in S$,

exactly one s-labelled edge enters v, and exactly one s-labelled edge exits v.

Let X =this graph.

Make one of the vertices at β_1 be its basepoint.

<u>Definition</u> of $\phi: F \to \text{Isom}^+(\mathbb{H}^3)$:

Each $f \in F$ is a word $s_1^{\epsilon_1} \dots s_n^{\epsilon_n}$ (where $s_i \in S$ and $\epsilon_i \in \{-1, 1\}$).

This gives a path $e_1^{\epsilon_1} \dots e_n^{\epsilon_n}$ in X starting at the basepoint.

Define

$$\phi(f) = \psi(e_1)^{\epsilon_1} \dots \psi(e_n)^{\epsilon_n}.$$

This is an ϵ -perturbation of F.

Define F' to be those $f \in F$ that give loops in X.

Then, for all $f' \in F$, $f \in F$,

$$\phi(f'f) = \phi(f')\phi(f),$$

$$\phi(f') \in \Gamma$$