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Today

Theorem 2.3: [L-Long-Reid] Let M be a closed hyperbolic 3-manifold.

Then M has infinite-sheeted covers Mi such that h(Mi) → 0.

This is a consequence of:

Theorem 2.5: [Bowen] Γ = π1(M) has a sequence of finitely generated

free subgroups Γi such that δ(Γi) → 2.

Here δ(Γi) = the ‘critical exponent’ of Γi

Theorem 2.6: [Sullivan]

λ1(Γi\H
3) =

{

δ(Γi)(2 − δ(Γi)) if δ(Γi) ≥ 1
1 otherwise.

Here λ1(Γi\H3) = the first eigenvalue of the Laplacian of Γi\H3.

Theorem 2.7: [Cheeger] For any complete Riemannian manifold Mi,

λ1(Mi) ≥ h(Mi)
2/4.



Cheeger’s inequality

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M ,

λ1(M) ≥ h(M)2/4.

Proof: (when M is closed)

Let f be an eigenfunction with eigenvalue λ1. Let

M+ = {x ∈M : f(x) ≥ 0}
M− = {x ∈M : f(x) ≤ 0}

Wlog, vol(M+) ≤ vol(M−).



Focus on M+ and take all integrals over M+:
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Claim: RHS ≥ h(M)2/4.

For any t ≥ 0, let

A(t) = Area({x ∈M+ : f(x)2 = t})
V (t) = Vol({x ∈M+ : f(x)2 ≥ t})
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t
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Co-area formula:
∫

|df2| =
∫

A(t) dt

For each t, A(t) ≥ h(M)V (t), because at least half the volume lies in

M−.



So:
∫

A(t) dt ≥ h(M)
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So,
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.



Manifolds with infinite volume

If M is complete and has infinite volume,

h(M) = inf
S

{

Area(S)

Vol(M1)

}

,

as S varies over all codim 1 submanifolds bounding a finite volume

submanifold M1.

We now consider the Laplacian

∆:L2(M) → L2(M)

f 7→ d∗df

This has spectrum in [0,∞).

0 is no longer an eigenvalue of ∆, because no non-zero constant function

is in L2(M).



λ1(M) is the infimum of the spectrum.

λ1(M) = inf

{ ||df ||2
||f ||2 : f ∈ L2(M) ∩ C∞(M)

}

.

Theorem 2.7: [Cheeger] For any complete Riemannian manifold M ,

λ1(M) ≥ h(M)2/4.

Proof: (infinite volume case)

For any t ≥ 0, let

A(t) = Area({x ∈M : f(x)2 = t})
V (t) = Vol({x ∈M : f(x)2 ≥ t})

Then V (t) <∞ because f ∈ L2.

Same proof as before.



Sullivan’s theorem

Theorem 2.6: [Sullivan] For M = Γ\H
3 a hyperbolic 3-manifold,

λ1(M) =
{

δ(Γ)(2 − δ(Γ)) if δ(Γ) ≥ 1
1 otherwise

We’ll show ≤, and focus on δ(Γ) ≥ 1, as that is all we’ll need.

δ(Γ) is the critical exponent of Γ, defined as follows.

Pick x ∈ H3.

δ(Γ) = inf







s :
∑

γ∈Γ

exp(−sd(x, γx)) <∞







ie if N(r) is the number of γx within distance r of x, then

N(r) ' exp(δ(Γ)r).



Green’s functions

Let
M = Riemannian manifold

p = point in M

λ > 0.

The associated λ-Green’s function is a function gp,λ:M → R s.t.

(∆ − λ)gp,λ = δ-function at p.

Fact: This is finite away from p, provided λ < λ1(M).



Green’s functions on H3

λ1(H
3) = 1.

Provided λ < 1 and for p ∈ H3,

gp,λ(x) ∼ const . exp(αd(x, p)) as d(x, p) → ∞

where

α = −1 −
√

1 − λ.

(Solve a 2nd order ODE).



Proof of Sullivan’s theorem

Let
M = Γ\H

3 a hyperbolic 3-manifold

p ∈M

p̃ ∈ inverse image of p

λ < λ1(M)

gp,λ = λ− Green’s function on M

g̃p,λ = pull-back to H
3

Then

g̃p,λ(p̃) =
∑

γ∈Γ

gγp̃,λ(p̃) '
∑

γ∈Γ

exp(αd(γp̃, p̃)) <∞

⇒ δ ≤ −α = 1 +
√

1 − λ.

So, λ ≤ δ(2 − δ). True for all λ < λ1(M).



Bowen’s theorem

M = Γ\H
3 a closed hyperbolic 3-manifold.

Theorem 2.5: [Bowen] Γ = π1(M) has a sequence of finitely generated

free subgroups Γi such that δ(Γi) → 2.

This relies on the following well-known old result.

Theorem 3.1: There exist finitely generated free Kleinian groups F

without parabolics and with δ(F ) arbitrarily close to 2.



Outline of proof of 3.1.

Let F be a f.g. free group.

Let R be the space of all representations φ:F → PSL(2,C) (topologised

as (PSL(2,C))n where n = rank(F )).

Let X be the representations φ in R that are discrete and faithful,

where φ(F ) contains no parabolics, and where δ(φ(F )) < 2. Such

representations are called convex cocompact.

This is an open subset of R.

There exists some φ0 ∈ X .

There exists some indiscrete φ1 ∈ R.

R is path-connected so there is a path from φ0 to φ1.



R X

f0f1

All φ ∈ ∂X are discrete and faithful.

So, for all φ ∈ ∂X , either δ(φ(F )) = 2 or φ(F ) contains parabolics.

Fact 1: If we remove the latter from R, the space is still path-connected.

So, we can choose the path φt so that, at the first time T where φT ∈ ∂X ,

δ(φT (F )) = 2.

Fact 2: δ(φ(F )) is a continuous fn of φ ∈ X .

As t→ T from below, φt(F ) ∈ X and δ(φt(F )) → 2.



Bowen’s theorem

Theorem 2.5: [Bowen] Γ = π1(M) has a sequence of finitely generated

subgroups Γi such that δ(Γi) → 2.

Theorem 3.1: There exist convex cocompact finitely generated free

Kleinian groups F with δ(F ) arbitrarily close to 2.

We now modify F a little so that it ‘almost’ sits inside Γ.

Let S be a finite generating set for F .

Definition. For ε > 0, an ε-perturbation of F is a function

φ:F → Isom+(H3) such that for all f ∈ F and all s ∈ S,

d(φ(fs±1), φ(f)s±1) ≤ ε.

Here d( , ) is the left-invariant metric on Isom+(H3).



Definition. φ:F → Isom+(H3) is a virtual homomorphism if there is a

finite index subgroup F ′ of F s.t. for all f ′ ∈ F ′ and f ∈ F ,

φ(f ′f) = φ(f ′)φ(f).

[In particular, φ|F ′ is a homomorphism.]

It is a virtual homomorphism into Γ if, in addition, φ(F ′) ≤ Γ.

Theorem 3.2. [Bowen] Let Γ be a cocompact Kleinian group. Let F be

a convex cocompact free Kleinian group. Then, for any ε > 0, there is

an ε-perturbation of F that is a virtual homomorphism into Γ.

Theorem 3.3. [Bowen] Let F be a convex cocompact free Kleinian group.

For all ε′ > 0, there is an ε > 0 such that if φ is an ε-perturbation of F

that is a virtual homomorphism, then |δ(φ(F )) − δ(F )| < ε′.

Note: If F ′ is the finite index subgroup of F , then δ(φ(F ′)) = δ(φ(F )).



We’ll focus on Theorem 3.2.

Let:
Γ = the cocompact Kleinian group

M = Γ\H
3

F = the convex cocompact free group

S = a free generating set

µ = Haar measure on Isom+(H3)

We may assume that M is a manifold.

Let δ > 0 satisfy:

∀g1, g2 ∈ Isom+(H3) s.t. d(g1, id) ≤ δ, d(g2, id) ≤ δ, and ∀s ∈ S,

d(g1sg2, s) ≤ ε.



Let B = Γ\Isom(H3) [the frame bundle over M ].

Partition B into a finite collection of subsets B1, . . . , Bn, each with

diameter ≤ δ.

Arrange that µ(∂Bi) = 0 ∀i.

Pick βi ∈ Bi.

Wlog β1 = id coset.

Construction of graph Y in B:

A vertex at each βi.

Each edge has a label s ∈ S.

βi and βj are joined by an s-labelled edge e iff

∃β′
i ∈ int(Bi), β

′
j ∈ int(Bj) s.t. β′

is = β′
j .



Link of a vertex βi:

b
Bi

i

i

s-labelled edges

s-labelled edges

B s



For each edge e define ψ(e) which will be an approximation to s:

Since diam(Bi), diam(Bj) ≤ δ, there are elements

gi ∈ Isom+(H3), s.t. d(gi, id) ≤ δ and βigi = β′
i

gj ∈ Isom+(H3), s.t. d(gj , id) ≤ δ and βjgj = β′
j

Let

ψ(e) = gisg
−1
j .

Then

βiψ(e) = βj

d(ψ(e), s) ≤ ε



We’ll define functions
w:V (Y ) → (0,∞)

w:E(Y ) → (0,∞)

s.t. for all v ∈ V (Y ) and all s ∈ S,
∑

s−labelled edges

e entering v

w(e) = w(v)

∑

s−labelled edges

e exiting v

w(e) = w(v).

This is called a weighting on Y .

For a vertex βi, define

w(βi) = µ(Bi).

For an edge e with label s running from βi to βj , define

w(e) = µ({β′
i ∈ Bi : β′

is ∈ Bj}).



Clearly
∑

s−labelled edges

e exiting βi

w(e) = w(v).

Each edge, starting at βj entering βi has weight

µ({β′
j ∈ Bj : β′

js ∈ Bi}) = µ({β′
js : β′

j ∈ Bj and β′
js ∈ Bi})

= µ({β′
i ∈ Bi : β′

is
−1 ∈ Bj}).

[The last equality uses the invariance of Haar measure under right

multiplication.]

So,
∑

s−labelled edges

e entering βi

w(e) = w(v).



For functions
w:V (Y ) → (0,∞)

w:E(Y ) → (0,∞)

to give a weighting they must satisfy linear equations with integer

coefficients. So

∃ weighting w ⇒ ∃ integral weighting w′.



Replace
each vertex v ∈ V (Y ) by w′(v) vertices

each edge e ∈ E(Y ) by w′(e) edge

Join them up so that, for each vertex v and each s ∈ S,

exactly one s-labelled edge enters v, and

exactly one s-labelled edge exits v.

Let X = this graph.

Make one of the vertices at β1 be its basepoint.



Definition of φ:F → Isom+(H3):

Each f ∈ F is a word sε1
1 . . . sεn

n (where si ∈ S and εi ∈ {−1, 1}).

This gives a path eε1
1 . . . eεn

n in X starting at the basepoint.

Define

φ(f) = ψ(e1)
ε1 . . . ψ(en)εn .

This is an ε-perturbation of F .

Define F ′ to be those f ∈ F that give loops in X.

Then, for all f ′ ∈ F , f ∈ F ,

φ(f ′f) = φ(f ′)φ(f),

φ(f ′) ∈ Γ


