
Surface subgroups
in dimension 3

Lecture 4



An underlying manifold with infinite π1

Recall:

Theorem 2.1: O = Γ\H
3 has a finite cover Õ s.t.

1. Õ has at least one singular vertex;

2. every arc and simple closed curve of sing(Õ) has order 2;

3. π1(|Õ|) is infinite.

Proof outline:

Γ is a finitely generated linear group.

Theorem: (Selberg’s lemma) Any f.g. linear group Γ has a finite index

normal subgroup Γ1 that is torsion free.

So, Γ1\H
3 is a manifold (ie we’ve gone too far).

It is a regular cover of O with covering group Γ/Γ1.



Consider the group Γ2 = Γ1(Z/2 × Z/2).

Let O2 = Γ2\H
3.

Note: O2 is the quotient of a manifold by a Z/2 × Z/2 action.

So, every arc and simple closed curve of sing(O2) has order 2.

Note: O2 is covered by (Z/2 × Z/2)\H
3 which has a singular vertex.

So, O2 has at least one singular vertex.

But we have no guarantee that π1(|O2|) is infinite.

Indeed, |O2| may be the 3-sphere.



The Golod-Shafarevich inequality

How do we show that a group is infinite?

Theorem: [Golod-Shafarevich] Let G be a finitely presented group 〈X|R〉.

If
dp(G)2

4
≥ dp(G) − |X| + |R|,

where dp(G) = dim(H1(G; Fp)), then G is infinite.

Every 3-manifold group has a presentation where |X| = |R|.

Now use:

Theorem: [Lubotzky ?] If a finitely generated linear group Γ is not

virtually soluble, then for any prime p, Γ has finite index subgroups Γ1

where dp(Γ1) is arbitrarily big.



So, we can certainly arrange that π1(|O3|) = ∞ for some finite cover

O3 → O2.

But to ensure that O3 also has a singular vertex is a bit tricky.



Hyperbolic underlying space

We still have to prove:

Theorem 2.2: If a closed orientable 3-manifold M has infinite π1, then

either

1. M is hyperbolic; or

2. M has a finite cover M̃ with b1 > 0.

Proof outline:

This requires Perelman’s solution to the geometrisation conjecture.



Case 1: M is a connected sum M1]M2.

Then π1(M) is a graph of groups:

p1 1(M ) p1 2(M )
1

Fact: Any closed orientable 3-manifold has residually finite π1.

So, we may find proper finite index subgroups Γ1 ≤ π1(M1) and

Γ2 ≤ π1(M2).

We have an associated cover M̃ of M with π1(M̃) a graph of groups:



Since the graph has a cycle, b1(M̃) > 0.



Case 2: M is prime but has an embedded π1-injective torus T .

M = M1 ∪T M2. So, π1(M) =

p1 1(M )
p1(T)

p1 2(M )

Fact: Any compact orientable 3-manifold Mi with boundary a collection

of π1-injective tori has a finite cover M̃i, which restricts on each compo-

nent of ∂Mi to the characteristic p2 cover, for each sufficiently big prime

p.

Moreover, |∂Mi| ≥ 2.

So, we get a cover M̃ s.t. π1(M̃) has a graph of groups decomposition,

in which each vertex has valence ≥ 2. Again, there is a cycle.

So, b1(M̃) > 0.



Case 3: M is Seifert fibred.

ie M is a ‘circle bundle’ over a 2-orbifold F .

π1(M) infinite ⇒ F has a finite surface cover F̃ .

We get an induced S1-bundle M̃ over F̃ :

M̃ −→ M
↓ ↓
F̃ −→ F

π1(M) infinite and M 6= S2 × S1 or RP 3]RP 3

⇒ F̃ 6= S2, RP 2 ⇒ b1(F̃ ) > 0 ⇒ b1(M̃) > 0.

Case 4: M is hyperbolic.

We are done.



Arithmetic 3-manifolds

We’ve now proved:

Main Theorem 1.2: [L] Any finitely generated Kleinian group Γ contain-

ing a finite non-cyclic subgroup is either finite, virtually free or contains

a surface subgroup.

But we haven’t shown:

Main Theorem 1.1: [L] Every arithmetic hyperbolic 3-manifold contains

an immersed π1-injective surface.

which relied on:

Theorem 1.3: [L-Long-Reid] Any arithmetic Kleinian group is

commensurable with one that contains Z/2 × Z/2.

I’ll give a outline of this now.



Arithmetic 3-manifolds

Non-standard definition: A hyperbolic 3-manifold M is non-arithmetic if

there is a hyperbolic orbifold O s.t. every 3-orbifold commensurable with

M finitely covers O.

The usual definition is in terms of

number fields, quaternion algebras and orders

or

integral points in algebraic subgroups of semi-simple Lie groups.



Let g, h be non-commuting elements in the fundamental group of an

arithmetic hyperbolic 3-manifold M

Fact 1. The commensurability class of M can be recovered from g, h and

gh.

Fact 2. Any Kleinian group Γ generated by two elements g and h has an

involution

g 7→ g−1, h 7→ h−1.

This is realised by an isometry of Γ\H
3 with non-empty fixed-point set.

Theorem 1.3 is proved by upgrading this involution to all of M , after

first passing to some commensurable orbifold O.

This ⇒ Z/2 ≤ π1(O).

With more work, we get Z/2 × Z/2 ≤ π1(O).



Where next?

Conjecture: [Lubotzky-Sarnark] Any closed hyperbolic 3-manifold has a

sequence of finite covers Mi s.t. h(Mi) → 0.

Theorem 4.1: [L] The Lubotzky-Sarnak conjecture implies that every co-

compact Kleinian group containing a finite non-cyclic subgroup is large.

Hence, the Lubotzky-Sarnak conjecture implies that every arithmetic

Kleinian group is large.

Recall: a group Γ is large if some finite index subgroup has a non-abelian

free quotient.



Proof

Let Γ = cocompact Kleinian subgroup, containing a finite non-cyclic

subgroup. Let O = Γ\H
3.

Simplifying assumption: Z/2 × Z/2

2.1 ⇒ we may pass to a finite cover Õ s.t.

1. Õ has at least one singular vertex;

2. every arc and simple closed curve of sing(Õ) has order 2;

3. π1(|Õ|) is infinite

Let M = |Õ|.

2.2 ⇒ M is hyperbolic or M has a finite cover with b1 > 0.

LS conjecture ⇒ M has a sequence of finite covers Mi s.t. h(Mi) → 0.

We get induced orbifold covers Oi of Õ, where |Oi| = Mi.



S

N1

N2

singular locus



Each Oi is divided into two sub-orbifolds N1 and N2.

We may ensure:

d2(Ni) > d2(∂Ni) + 1, i = 1, 2

Take 2 independent classes in ker(H1(N1; Z/2) → H1(∂N1; Z/2))

and let Õi be the associated 4-fold cover of Oi.

This contains 4 disjoint (possibly non-orientable) surfaces, whose union

is non-separating.

So, we get a surjection π1(Õi) → ∗4(Z/2).

Since ∗4(Z/2) is virtually free non-abelian, π1(Õi) is large.



Approaches to the Lubotzky-Sarnak conjecture

Note: If M has a finite cover M̃1 with b1(M̃1) > 0, then it has sequence

of finite covers M̃i with h(M̃i) → 0.

Take cyclic covers of M̃1:

1M

2M

Thus:

Theorem 4.2: [L-Long-Reid] The positive virtual b1 conjecture for closed

hyperbolic 3-manifolds implies that every arithmetic Kleinian group is

large.



Approaches to the Lubotzky-Sarnak conjecture

A group Γ is LERF if, for every finitely generated subgroup H ≤ G, and

for every g ∈ G−H, there is a finite index subgroup K ≤ G s.t. H ≤ K

and g 6∈ K.

Old conjecture: Every finitely generated Kleinian group is LERF.

Topological consequence: Suppose π1(M) is LERF, where M is compact.

For every cover M1 → M where π1(M1) is finitely generated, and for

every compact subset C ⊂ M1, there is a finite cover M2 of M s.t.

M1

p
−→ M2 −→ M

and p|C is an embedding.

So, 2.3 ⇒

Theorem 4.3: [L-Long-Reid] If M is a closed hyperbolic 3-manifold and

π1(M) is LERF, it satisfies the Lubotzky-Sarnak conjecture.


