Surface subgroups
in dimension 3

Lecture 4



AN UNDERLYING MANIFOLD WITH INFINITE 7y

Recall:

Theorem 2.1: O = I'\H® has a finite cover O s.t.

. O has at least one singular vertex;

2. every arc and simple closed curve of sing(O) has order 2;

. m1(]O]) is infinite.

Proof outline:

I' is a finitely generated linear group.

Theorem: (Selberg’s lemma) Any f.g. linear group I' has a finite index
normal subgroup I'y that is torsion free.

So, ' \H? is a manifold (ie we’ve gone too far).

It is a regular cover of O with covering group I'/T';.



Consider the group I's =11 (Z/2 x Z/2).

Let Oy = I'y\HP.

Note: Os is the quotient of a manifold by a Z/2 x Z/2 action.

So, every arc and simple closed curve of sing(Os) has order 2.

Note: Os is covered by (Z/2 x Z/2)\H? which has a singular vertex.
So, Oy has at least one singular vertex.

But we have no guarantee that 71 (|Os]) is infinite.

Indeed, |O2| may be the 3-sphere.



THE GOLOD-SHAFAREVICH INEQUALITY

How do we show that a group is infinite?

Theorem: [Golod-Shafarevich| Let G be a finitely presented group (X|R).
If

DO > 4 0) - 1X1+ IR
where d,(G) = dim(H;(G;F,)), then G is infinite.
Every 3-manifold group has a presentation where | X| = |R|.
Now use:

Theorem: [Lubotzky 7| If a finitely generated linear group I' is not
virtually soluble, then for any prime p, I' has finite index subgroups I'4
where d,(I'1) is arbitrarily big.



So, we can certainly arrange that m(|Os|) = oo for some finite cover

03 — 02.

But to ensure that O3 also has a singular vertex is a bit tricky.



HYPERBOLIC UNDERLYING SPACE

We still have to prove:

Theorem 2.2: If a closed orientable 3-manifold M has infinite 71, then
either

. M is hyperbolic; or

2. M has a finite cover M with by > 0.

Proof outline:

This requires Perelman’s solution to the geometrisation conjecture.



Case 1: M is a connected sum M;fMs.
Then 71 (M) is a graph of groups:
1
([ ]
T (M) T (M)

Fact: Any closed orientable 3-manifold has residually finite 7.

So, we may find proper finite index subgroups I'y < m(M;) and
FQ S 1 (MQ)

We have an associated cover M of M with 71 (M) a graph of groups:



Since the graph has a cycle, by (M) > 0.



Case 2: M is prime but has an embedded m;-injective torus 7.
M = M1 UT MQ. SO, 7T1(M) =

o . (T) .
m(Mp) (M)

Fact: Any compact orientable 3-manifold M, with boundary a collection
of mi-injective tori has a finite cover M;, which restricts on each compo-
nent of OM; to the characteristic p? cover, for each sufficiently big prime

D
Moreover, |0M;| > 2.

So, we get a cover M s.t. 7r1(]\~4 ) has a graph of groups decomposition,
in which each vertex has valence > 2. Again, there is a cycle.

So, bl(M) > 0.



Case 3: M is Seifert fibred.
ie M is a ‘circle bundle’ over a 2-orbifold F'.
71 (M) infinite = F has a finite surface cover F.

We get an induced S'-bundle M over F:

~

M — M
| !
F — F

71 (M) infinite and M # S? x S or RP3RP?
= F # S2RP? = by (F) > 0= b (M) >0.

Case 4: M is hyperbolic.

We are done. O



ARITHMETIC 3-MANIFOLDS

We’ve now proved:

Main Theorem 1.2: [L.] Any finitely generated Kleinian group I' contain-

ing a finite non-cyclic subgroup is either finite, virtually free or contains

a surface subgroup.
But we haven’t shown:

Main Theorem 1.1: [L] Every arithmetic hyperbolic 3-manifold contains

an immersed m-injective surface.
which relied on:

Theorem 1.3:  [L-Long-Reid] Any arithmetic Kleinian group is

commensurable with one that contains Z/2 x Z /2.

I’ll give a outline of this now.



ARITHMETIC 3-MANIFOLDS

Non-standard definition: A hyperbolic 3-manifold M is non-arithmetic if

there is a hyperbolic orbifold O s.t. every 3-orbifold commensurable with
M finitely covers O.

The usual definition is in terms of
number fields, quaternion algebras and orders
or
integral points in algebraic subgroups of semi-simple Lie groups.



Let g,h be non-commuting elements in the fundamental group of an
arithmetic hyperbolic 3-manifold M

Fact 1. The commensurability class of M can be recovered from ¢, h and
gh.

Fact 2. Any Kleinian group I' generated by two elements g and h has an
involution

g—g ',  h—h"
This is realised by an isometry of I'\H? with non-empty fixed-point set.

Theorem 1.3 is proved by upgrading this involution to all of M, after
first passing to some commensurable orbifold O.

This = Z/2 < 71(0).
With more work, we get Z/2 x Z/2 < m1(O).



WHERE NEXT?

Conjecture: [Lubotzky-Sarnark] Any closed hyperbolic 3-manifold has a

sequence of finite covers M; s.t. h(M;) — 0.

Theorem 4.1: [L.| The Lubotzky-Sarnak conjecture implies that every co-

compact Kleinian group containing a finite non-cyclic subgroup is large.
Hence, the Lubotzky-Sarnak conjecture implies that every arithmetic

Kleinian group is large.

Recall: a group I' is large if some finite index subgroup has a non-abelian

free quotient.



PRrROOF

Let I' = cocompact Kleinian subgroup, containing a finite non-cyclic
subgroup. Let O = I'\H?.

Simplifying assumption: Z/2 x Z/2
2.1 = we may pass to a finite cover O s.t.

. O has at least one singular vertex;

2. every arc and simple closed curve of sing(O) has order 2;

. m(|O)) is infinite
Let M =|O0|.
2.2 = M is hyperbolic or M has a finite cover with b; > 0.

LS conjecture = M has a sequence of finite covers M; s.t. h(M;) — 0.

We get induced orbifold covers O; of O, where |0;| = M;.



singular locus



Each O; is divided into two sub-orbifolds N; and Ns.

We may ensure:

dQ(NZ) > dg(aNz)+1, 1=1,2

Take 2 independent classes in ker(H(Ny;Z/2) — HY(ONy;7/2))
and let O; be the associated 4-fold cover of O;.

This contains 4 disjoint (possibly non-orientable) surfaces, whose union

1s non-separating.
So, we get a surjection m1(0;) — **(Z/2).

Since **(Z/2) is virtually free non-abelian, m;(0;) is large. O



APPROACHES TO THE LUBOTZKY-SARNAK CONJECTURE

Note: If M has a finite cover M; with bl(Ml) > 0, then it has sequence
of finite covers M; with h(M;) — 0.

Take cyclic covers of M;:

M

M,

Thus:

Theorem 4.2: [L-Long-Reid] The positive virtual b; conjecture for closed

hyperbolic 3-manifolds implies that every arithmetic Kleinian group is
large.



APPROACHES TO THE LUBOTZKY-SARNAK CONJECTURE

A group I' is LERF if, for every finitely generated subgroup H < G, and
for every g € G — H, there is a finite index subgroup K < G s.t. H < K
and g € K.

Old conjecture: Every finitely generated Kleinian group is LERF.

Topological consequence: Suppose 71 (M) is LERF, where M is compact.

For every cover M; — M where w1 (M) is finitely generated, and for
every compact subset C C M, there is a finite cover My of M s.t.

My =5 My — M
and p|C is an embedding.
So, 2.3 =

Theorem 4.3: [L-Long-Reid| If M is a closed hyperbolic 3-manifold and
w1 (M) is LERF, it satisfies the Lubotzky-Sarnak conjecture.




