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Abstra
tThe main theorem of this paper is a generalisation of well known results about Dehnsurgery to the 
ase of atta
hing handlebodies to a simple 3-manifold. The existen
e ofa �nite set of `ex
eptional' 
urves on the boundary of the 3-manifold is established.Provided none of these 
urves is atta
hed to the boundary of a dis
 in a handlebody,the resulting manifold is shown to be word hyperboli
 and `hyperbolike'. We then give
onstru
tions of gluing maps satisfying this 
ondition. These take the form of an arbitrarygluing map 
omposed with powers of a suitable homeomorphism of the boundary of thehandlebodies.
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ATTACHING HANDLEBODIES TO 3-MANIFOLDS
MARC LACKENBY
1. Introdu
tion

This paper deals with a generalisation of Dehn surgery. Instead of atta
h-ing solid tori to a 3-manifold with toral boundary 
omponents, we start with a3-manifold with higher genus boundary 
omponents and glue on handlebodies.Our aim is to generalise well known surgery results to this setting. As is 
us-tomary in surgery theory, we have to assume that the initial bounded 3-manifoldsatis�es 
ertain generi
 topologi
al hypotheses: it will be simple, whi
h means thatit is 
ompa
t, orientable, irredu
ible, atoroidal, a
ylindri
al, with in
ompressibleboundary. Our �rst and main theorem is the following.Theorem 1. LetM be a simple 3-manifold with non-empty boundary. Then thereis a �nite 
olle
tion C of essential simple 
losed 
urves on �M with the followingproperty. Suppose that H is a 
olle
tion of handlebodies, and that �: �M ! �His a homeomorphism that sends no 
urve in C to the boundary of a dis
 in H.Then M [� H is irredu
ible, atoroidal, word hyperboli
 and not Seifert �bred.Furthermore, the in
lusion map of any 
omponent of H into M [� H indu
es aninje
tion between their fundamental groups, and hen
e �1(M [� H) is in�nite.The set C we term the ex
eptional 
urves. They may be 
hara
terised in termsof the geometry of M . For, M has a 
omplete �nite volume hyperboli
 stru
ture,with totally geodesi
 boundary and possibly some 
usps. This may be seen byapplying Thurston's geometrisation theorem [11℄ to two 
opies of M glued viathe identity map along their negative Euler 
hara
teristi
 boundary 
omponents.Let N(�M
usp) be a horoball neighbourhood of the 
usps of M , su
h that, onea
h 
omponent of �N(�M
usp), the shortest Eu
lidean geodesi
 has length 1. Itis shown in [2℄, for example, that N(�M
usp) is a produ
t neighbourhood of thetoral ends of M .Theorem 2. The set C 
onsists of simple 
losed geodesi
s having length at most4�(1� 4=�(S))1=4 � (1� 4=�(S))�1=4on boundary 
omponents S with genus at least two, and of 
losed Eu
lidean2



geodesi
s with length at most 2� on �N(�M
usp). Hen
e, there is an upper boundon the number of 
urves in C that depends only on the genus of �M and isotherwise independent of M .Theorems 1 and 2 
an be viewed as a generalisation of Thurston's hyper-boli
 Dehn surgery theorem [13℄ and its extension by Hodgson and Ker
kho� [8℄.Thurston established the existen
e of a �nite set C of slopes on a torally boundedhyperboli
 3-manifold, su
h that, provided these slopes are avoided when surgeryis performed, the result is a 3-manifold with a hyperboli
 stru
ture. Hodgson andKer
kho� provided a universal upper bound, independent of the 3-manifold, onthe number of 
urves in C on ea
h torus boundary 
omponent.Theorems 1 and 2 should be 
ompared with the main theorem of [12℄, dueto S
harlemann and Wu. They 
onsidered the atta
hment of a single 2-handle toM . One is only allowed to atta
h it along a 
ertain type of 
urve, known as a`basi
' 
urve, but this is not a serious restri
tion. They prove that the resultingmanifold is hyperboli
, provided one avoids a �nite set of 
urves on �M , up toisotopy. Atta
hing a handlebody 
an be performed by �rst gluing on 2-handlesalong basi
 
urves and then Dehn �lling. Thus, their result implies that, in a
ertain sense, most ways of atta
hing a handlebody give a hyperboli
 manifold.The limitation of S
harlemann and Wu's pro
edure is that the 2-handles must beatta
hed in sequen
e, and then be followed by the surgeries. Thus, the 
urvesthat the later 2-handles and surgeries must avoid depend on where the earlier2-handles are atta
hed. In Theorem 1, we atta
h the entire handlebody in a singlestep. This allows us to identify the ex
eptional 
urves at the outset.Of 
ourse, Theorem 1 raises the problem of �nding homeomorphisms � withthe required property. The approa
h we 
onsider is to start with an arbitrary�, and then modify this by applying powers of a homeomorphism f : �H ! �H.If f extends to a homeomorphism of H, then this will not 
hange the resultingmanifold. More generally, if some power of f extends to a homeomorphism, thenonly �nitely many manifolds are 
reated. We would like to avoid this situation.In fa
t, one must rule out a yet more general possibility: no power fn of f (wheren 6= 0) may partially extend to H. This means that there is a 
ompression bodyR (other than a produ
t) embedded in H with positive boundary �H, su
h thatfn extends to a homeomorphism of R. For, if � were to map a 
urve C in C to3



the boundary of a dis
 in R, then fn�(C) would bound a dis
 in R for in�nitelymany n. However, if this 
ondition is met, we shall show that this method does
reate in�nitely many manifolds that satisfy the 
on
lusions of Theorem 1.Theorem 3. Let M be a simple 3-manifold, let H be a 
olle
tion of handle-bodies, and let �: �M ! �H be a homeomorphism. Let f : �H ! �H be ahomeomorphism, no power of whi
h partially extends to H. Then, for in�nitelymany integers n, M [fnÆ� H satis�es the 
on
lusions of Theorem 1.An alternative method of �nding suitable homeomorphisms f is to use thetheory of pseudo-Anosov maps ([14℄, [3℄). We 
an regard simple 
losed 
urveson �H, with 
ounting measure, as elements of the spa
e PL(�H) of proje
tivemeasured laminations on �H. Let B(�H) be the 
losure in PL(�H) of the set of
urves on �H that bound dis
s in H. It is a theorem of Masur [10℄ that B(�H)is nowhere dense in PL(�H). Hen
e that the stable and unstable laminations ofa `generi
' pseudo-Anosov homeomorphism f : �H ! �H will not lie in B(�H).Theorem 4. LetM be a simple 3-manifold, let H be a 
olle
tion of handlebodies,and let �: �M ! �H be a homeomorphism. Let f : �H ! �H be a pseudo-Anosovhomeomorphism whose stable and unstable laminations do not lie in B(�H). Thenfor all but �nitely many integers n,M[fnÆ�H satis�es the 
on
lusions of Theorem1. The proof of Theorems 1 and 2 follows two papers: [9℄, whi
h established theword hyperboli
ity of 
ertain surgered manifolds, and [7℄ by Hass, Wang and Zhou,whi
h examined boundary slopes of immersed essential surfa
es in hyperboli
 3-manifolds with totally geodesi
 boundary. Theorem 3 uses some new te
hniques,involving arrangements of dis
s in a handlebody and a deli
ate 
ounting argu-ment. Theorem 4 is an elementary appli
ation of the theory of pseudo-Anosovautomorphisms.This paper suggests many interesting areas for further resear
h. Firstly, 
anthe results be upgraded to dedu
e the existen
e of a metri
 that is hyperboli
or just negatively 
urved? Se
ondly, 
an Theorem 3 be strengthened so that the
on
lusion holds for all but �nitely many n? Thirdly, 
an the te
hniques of thispaper be generalised to analyse Heegaard splittings?
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2. The Main Theorem
In this se
tion, we will prove Theorems 1 and 2. Suppose therefore thatM is a simple 3-manifold with non-empty boundary. Denote its toral boundary
omponents by �M
usp and the remaining boundary 
omponents by �Mgeo. Wework with the 
omplete �nite volume hyperboli
 stru
ture on M � �M
usp inwhi
h �Mgeo is totally geodesi
. Let C be the set of simple 
losed 
urves on �Mas des
ribed in Theorem 2. The fa
t that there is an upper bound on the numberof 
urves in C that depends only on the genus of �M is well known. A proof isgiven in [7℄ for example. Suppose that �: �M ! �H is a homeomorphism thatsends no 
urve in C to the boundary of a dis
 in H.Our �rst step is to show that the in
lusion map of any 
omponent of H intoM [� H indu
es an inje
tion between their fundamental groups. Consider anessential loop L in H, and suppose that it is homotopi
ally trivial in M [� H.There is then a map f :D ! M [� H, where D is a dis
, su
h that f j�D windson
e around L. Homotope f a little, so that f�1(�H) is a 
olle
tion of simple
losed 
urves in the interior of D, and so that f is transverse to �H near these
urves. We suppose that L and f have been 
hosen so that the number of these
urves has been minimised.Claim 1. f�1(H) is a 
olle
tion of dis
s and a 
ollar on �D.If not, pi
k a 
urve L0 of f�1(�H) that is innermost in D among 
urves thatdo not bound dis
s of f�1(H) and that are not parallel in f�1(H) to �D. Itbounds a dis
 D0. If L0 is homotopi
ally trivial in H, we may modify f in D0 sothat it is mapped entirely to H, thus redu
ing jf�1(�H)j, whi
h 
ontradi
ts theminimality of jf�1(�H)j. If L0 is homotopi
ally non-trivial in H, we may workwith D0 instead of D. Again the minimality assumption is violated.Claim 2. The surfa
e F = f�1(M) is homotopi
ally boundary-in
ompressible inM . Re
all from [9℄ that this means that no properly embedded essential ar
 inF 
an be homotoped in M , keeping its endpoints �xed, to an ar
 in �M . For,if there were su
h an ar
 �, we 
ould perform a homotopy to f , taking a regularneighbourhood of � into H. There are two 
ases to 
onsider: when the endpoints
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of � lie in distin
t boundary 
omponents of F , and when they lie in the same
omponent. In the �rst 
ase, the result is to redu
e jf�1(�H)j, 
ontradi
ting theminimality assumption.In the se
ond 
ase, there are two sub
ases: either �� lies in the 
ollar on �D orit does not. Suppose �rst that �� misses the 
ollar. The ar
 separates F into two
omponents, as F is planar. One of these, F 0 say, does not interse
t the 
ollar on�D. Let L0 be the boundary 
omponent of F 0 that runs along the neighbourhoodof �. Push L0 a little into H. Sin
e F 0 has fewer boundary 
omponents than Fand L0 is homotopi
ally trivial inM [�H, the minimality assumption implies thatL0 is homotopi
ally trivial in H. We may therefore remove F 0 from F and repla
eit with a dis
 that maps to H. This redu
es j�F j, whi
h is a 
ontradi
tion.Suppose now that both endpoints of � lie in the 
ollar on �D. We 
onsider thetwo halves of F 
ut open along �. By the minimality assumption, the boundary
urves of ea
h are homotopi
ally trivial in H. But then L is trivial in H, whi
h isa 
ontradi
tion.Claim 3. F is homotopi
ally in
ompressible in M .This means that no homotopi
ally non-trivial simple 
losed 
urve in F mapsto a homotopi
ally trivial 
urve in M . The argument is similar to that of Claims1 and 2, but simpler, and so is omitted.We now follow the argument of [7℄. Let N(�M
usp) be a horoball neigh-bourhood of the 
usps of �M , su
h that on ea
h 
omponent of �N(�M
usp), theshortest geodesi
 has length 1. Let N(�Mgeo) be the set of points at a distan
eat most U from �Mgeo. By a theorem of Basmajian [1℄, if we take U to be14 log�1� 4�(S)� = sinh�1� (1� 4=�(S))1=4 � (1� 4=�(S))�1=42 � ;
then N(�M
usp) [ N(�Mgeo) will be a 
ollar on �M . Denote N(�M
usp) [N(�Mgeo) by N(�M).Claim 4. There is a least area surfa
e in the homotopy 
lass of f : (F; �F ) !(M;�M). This is an immersion.If F were 
losed and M had no 
usps, this would be Lemma 2 of [5℄, asF is homotopi
ally in
ompressible, by Claim 3. This was extended to the 
ase6



where F has boundary and M has 
usps in Theorem 4.4 of [6℄. In [6℄, though,it was assumed that f�:�1(F ) ! �1(M) and f�:�1(F; �F ) ! �1(M;�M) areinje
tive. However, as explained in [5℄, these hypotheses 
an be weakened to theassumption that F is homotopi
ally in
ompressible and homotopi
ally boundary-in
ompressible.We perform the homotopy in Claim 4. Let �F
usp and �Fgeo be the boundary
omponents of F that map to �M
usp and �Mgeo respe
tively. Then F � �F
uspinherits a Riemannian metri
 with geodesi
 boundary. Its se
tional 
urvature isthe sum of the se
tional 
urvature ofM and the produ
t of its prin
ipal 
urvatures(see Theorem 5.5 of [4℄, for example). The prin
ipal 
urvatures sum to zero, sin
eF is minimal, and hen
e their produ
t is non-positive. Therefore, the se
tional
urvature of F is at most �1.We abuse notation slightly by denoting the 
omponent of �F parallel to Lby L. Let N(�F
usp) be those 
omponents of the inverse image of N(�M
usp)in F that 
ontain a 
omponent of �F
usp. Let N(�Fgeo) be the set of pointsin F with distan
e at most U from �Fgeo in its intrinsi
 path metri
. DenoteN(�F
usp) [N(�Fgeo) by N(�F ).Claim 5. N(�F ) is a 
ollar on �F .We start by showing that ea
h 
omponent of N(�Fgeo) is a 
ollar. To see this,in
rease U from zero to its �nal value. Near zero, N(�Fgeo) is 
learly a 
ollar. Butsuppose that as it expands, there is some point at whi
h a self-tangen
y is 
re-ated. Then there is a geodesi
 ar
 properly embedded in N(�Fgeo) with endpointsperpendi
ular to �Fgeo. This geodesi
 is the 
on
atenation of two geodesi
 ar
swhi
h run from �Fgeo to the point of self-tangen
y. Sin
e F is negatively 
urved,this ar
 is essential in F . But it lies within N(�Mgeo), whi
h is a 
ollar, and so
an be homotoped into �M , keeping its endpoints �xed. This 
ontradi
ts the fa
tthat F is homotopi
ally boundary-in
ompressible.It is also 
lear that ea
h 
omponent of N(�F
usp) is a 
ollar. For, otherwise,it 
ontains a properly embedded ar
 that is essential in N(�F
usp) and that hasendpoints in �F
usp. The fa
t that N(�M
usp) is a 
ollar on �M
usp implies thatthis ar
 
an be homotoped into �M . The ar
 is therefore inessential in F . Hen
e,some 
omponent of �N(�F
usp) bounds a dis
 in F . Consider the lift of this dis
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to H 3 , whi
h 
ontains the universal 
over of M . The boundary of the dis
 lies ona 
omponent of the inverse image of �N(�M
usp), whi
h is a horotorus. There isa natural proje
tion from H 3 onto this horotorus, and this redu
es the area of thedis
. This 
ontradi
ts the assumption that F is least area.Finally, N(�F
usp) and N(�Fgeo) must be disjoint. For the former lies inN(�M
usp), whereas the latter lies in N(�Mgeo), and these are disjoint. Thisproves the 
laim.Claim 6. Area(N(�Fgeo)) � (sinhU) (Length(�Fgeo)).Choosing orthogonal 
o-ordinates for the surfa
eN(�Fgeo), the metri
 is givenby ds2 = du2 + J2(u; v)dv2;where J(u; v) > 0 and J(0; v) = 1. The 
urves where v is 
onstant are geodesi
sperpendi
ular to the boundary, and the 
urve u = 0 lies in the boundary. By the
al
ulations in [7℄, �J�u � 0; �2J�u2 � J;and hen
e J(u; v) � 
osh(u). Therefore,
Area(N(�Fgeo)) = Z Length(�Fgeo)v=0 Z Uu=0 J(u; v) du dv

� Z Length(�Fgeo)v=0 Z Uu=0 
oshu du dv= (sinhU) (Length(�Fgeo)):
Give �H the Riemannian metri
 on �N(�M
usp) [ �Mgeo. Ea
h 
omponentof �F , ex
ept the one parallel to L, is mapped to the boundary of a dis
 in H, byClaim 1. It is essential in �H by Claim 3. So, by assumption, it has length morethan the bound in Theorem 2 if it is simple. The non-simple 
ase follows from thefollowing 
laim.Claim 7. Ea
h shortest essential 
losed 
urve in �H that is homotopi
ally trivialin H is simple.Let ~H be the universal 
over of H. Then � ~H is the 
over of �H 
orrespondingto the kernel of �1(�H)! �1(H). In parti
ular, it is a regular 
over. The 
losed8




urves in � ~H are exa
tly the lifts of 
urves in �H that are homotopi
ally trivial inH. The shortest of these, C say, that is essential in � ~H is a geodesi
. It must besimple, for otherwise, it 
an be modi�ed at a singular point to redu
e its length.We 
laim that C must be disjoint from its 
overing translates. For if C andsome translate C 0 were to interse
t transversely, they would do so at least twi
e,sin
e both are homologi
ally trivial in ~H. Pi
k two points of interse
tion, whi
hdivide C and C 0 ea
h into two ar
s. Glue the shorter of the two ar
s in C (oreither of these ar
s if they have the same length) to the shorter of the two in C 0,and then smooth o� to form a shorter 
losed 
urve in � ~H. If this is essential in� ~H, we have a 
ontradi
tion. If not, then we may homotope the longer of its twoar
s onto the other, and then smooth o�. This redu
es the length of C or C 0,whi
h again is a 
ontradi
tion.If C and C 0 were to interse
t non-transversely, then they would be equal.Hen
e, C would proje
t to a multiple of a simple 
losed 
urve C 00 in �H. If weapply the Loop Theorem to a regular neighbourhood of C 00, we see that C 00 mustalso bound a dis
 inH. But this is a shorter 
urve than C, whi
h is a 
ontradi
tion.Hen
e, C proje
ts homeomorphi
ally to a simple 
losed 
urve in �H whi
h isshortest among essential 
urves that are trivial in H. This proves the 
laim.Putting together Claims 6 and 7, we obtainArea(N(�Fgeo)) � 2� j�Fgeo � Lj:
Let Length(�F
usp) be the length of the 
urves �N(�F
usp) on �N(�M
usp).By Claim 5, ea
h of these 
urves has the same slope as the 
orresponding 
om-ponent of �F . Hen
e, ea
h (ex
ept possibly L) has length more than 2�, byassumption. Thus, using a well known argument, whi
h 
an be found in the proofof Theorem 4.3 of [6℄, for example, we obtain the following.Claim 8. Area(N(�F
usp)) � 2� j�F
usp � Lj.Sin
e F is a minimal surfa
e in a hyperboli
 manifold, its se
tional 
urvatureK is at most �1. So, applying Gauss-Bonnet to F :2�(2� j�F j) = 2��(F ) = ZF K dA � �Area(F )� �Area(N(�F
usp))�Area(N(�Fgeo)) � �2�(j�F j � 1);9



whi
h is a 
ontradi
tion. We therefore dedu
e that the in
lusion of ea
h 
omponentof H into M [� H is �1-inje
tive.A very similar argument 
an be used to show that M [� H is irredu
ible.For otherwise, M would 
ontain a properly embedded in
ompressible boundary-in
ompressible planar surfa
e, ea
h boundary 
omponent of whi
h would extendto a dis
 in H. (To make this argument work, we need the fa
t that the in
lusionof H into M [� H is �1-inje
tive.) We 
an then apply the above analysis to thissurfa
e.It remains to show that M [� H is word hyperboli
. For this implies that�1(M [� H) 
ontains no rank two abelian subgroup, and hen
e that M [� H isatoroidal. The fa
t that �1(M [� H) is in�nite then gives that M [� H is notSeifert �bred.Pi
k a Riemannian metri
 g on M [�H, in whi
h H is an �-neighbourhood ofa graph, for small � > 0. We wish to establish a linear isoperimetri
 inequality forg. So, 
onsider a loop L that is homotopi
ally trivial, and whi
h therefore formsthe boundary of a mapped-in dis
 f :D ! M [� H. Using a small homotopy,we may move L o� H. We 
an ensure that this 
hanges the length of L by afa
tor that is bounded independently of L. We 
an also ensure that the area ofthe annulus realizing the homotopy is similarly bounded.By the argument of Claims 1, 2 and 3 and using the fa
t that the in
lusionof H into M [� H is �1-inje
tive, we may homotope f , keeping it �xed on L, sothat afterwards F = f�1(M) is homotopi
ally in
ompressible and homotopi
allyboundary-in
ompressible in M , and so that f�1(H) is a 
olle
tion of dis
s.Let h be the hyperboli
 metri
 on M ��M
usp. Sin
e M is 
ompa
t, the Rie-mannian manifolds (M � int(N(�M
usp)); h) and (M;g) are bi-Lips
hitz equiva-lent, with 
onstant 
1, say. Also, there is a map (N(�M
usp); h)! (H; g), 
ollaps-ing the 
usps to solid tori, that in
reases areas by at most a fa
tor 
21, say. Initially,we will measure lengths and areas in the h metri
. Note that, by 
onstru
tion, Lis disjoint from N(�M
usp).We may assume that L is homotopi
ally non-trivial in M . For otherwise itis trivial to 
onstru
t a dis
 in M bounded by L with area linearly bounded by
10



the length of L. (Indeed, the fa
t that 
losed 
urves in hyperboli
 spa
e have thisproperty is the motivation behind Gromov's theory of hyperboli
 groups.) Also, wewill, for the moment, assume that L is not homotopi
 to a 
urve in �M
usp. Hen
eit has a geodesi
 representative L. We may realize the free homotopy between Land L with a mapped-in annulus A having area at most 
2Length(L), for some
onstant 
2 depending only on h. We may assume that A has least possible area.Claim 9. Ea
h 
omponent of A \N(�M
usp) is either a dis
 disjoint from L, or adis
 
ontaining a single 
omponent of L \N(�M
usp).Note that A \ N(�M
usp) is disjoint from L, and does not 
ontain a 
ore
urve of A. Suppose that the 
laim is not true. Then we 
an �nd a 
omponent ofA \N(�M
usp) whi
h is not a dis
 or whi
h interse
ts L more than on
e. In theformer 
ase, A \ N(�M
usp) has a boundary 
omponent that is a simple 
losed
urve bounding a dis
 in A with interior disjoint from N(�M
usp). However, we
ould then homotope this dis
 into N(�M
usp) to redu
e the area of A, whi
h is a
ontradi
tion. Thus, ea
h 
omponent of A\N(�M
usp) is a dis
. If one 
omponentinterse
ts L in more than one ar
, then the sub-ar
 of L between these two ar
sdoes not lie wholly in N(�M
usp), but 
an be homotoped into N(�M
usp). This
ontradi
ts the fa
t that L is a geodesi
. This proves the 
laim.Homotope F (minus those 
omponents that map to �M
usp) to a least areasurfa
e in M � �M
usp, with one boundary 
omponent mapping to L, and theremainder mapping to �M . Divide the boundary 
omponents of F into threesubsets L, �F
usp and �Fgeo. Note that F [ A is now a planar surfa
e with oneboundary 
omponent mapping to L and the remaining 
omponents mapping to
urves in �M that bound dis
s in H. This surfa
e will extend to a dis
 in M [�Hwith area linearly bounded by the length of L, establishing the required linearisoperimetri
 inequality.We de�ne N(�F
usp) and N(�Fgeo) as before. Claim 5 now reads thatN(�F
usp) [ N(�Fgeo) is a 
ollar on �F
usp [ �Fgeo, whi
h may have non-emptyinterse
tion with L. However, the 
al
ulations in Claims 6 and 8 now need modi-�
ation.Further divide �Fgeo into two subsets: �Fthin and �Fthi
k. The former is theset of points x in �Fgeo su
h that, when a perpendi
ular geodesi
 is emitted from
11



x in F , it meets L within a distan
e U . Let �Fthi
k be the remainder of �Fgeo.Then the argument of Claim 6 gives thatArea(N(�Fgeo)) � (sinhU) (Length(�Fthi
k)):By Claim 9, N(�F
usp)[ (A\N(�M
usp)) is a 
ollar on �F
usp and possibly somedis
s. Using these 
ollars, we may asso
iate to ea
h 
omponent of �F
usp a 
urveon �N(�M
usp), namely the relevant boundary 
omponent of N(�F
usp) [ (A \N(�M
usp)). We de�ne the length of �F
usp to be the length of these 
urves.Then, Claim 8, suitably modi�ed, gives thatArea(N(�F
usp) [A) � Length(�F
usp);and hen
e thatArea(N(�F
usp)) � Length(�F
usp)� 
2 Length(L):Therefore, Area(F ) � Area(N(�Fgeo)) + Area(N(�F
usp))� (sinhU) (Length(�Fthi
k))+ Length(�F
usp)� 
2 Length(L): (1)Also, Length(L) � Length(L) � Length(L \N(�Mgeo)) � Length(�Fthin): (2)Let 
3 (respe
tively, 
4) denote the minimal length of a geodesi
 on �N(�M
usp)(respe
tively, �Mgeo) with length more than 2� (respe
tively, 2�= sinh(U)), andlet 
5 be minf
3; 
4 sinh(U)g, whi
h is more than 2�. Then, sin
e ea
h 
urve of�F
usp and �Fgeo has length more than the bound in Theorem 2, we know thatLength(�F
usp) + (sinhU)(Length(�Fgeo))� 
5(j�F j � 1) > �
5 �(F ) � 
5 Area(F )=2�: (3)The �nal inequality is an appli
ation of Gauss-Bonnet. So, adding (2�=
5) times(3), and (sinhU) times (2), to (1), and 
an
elling the area term, we get:(
2 + sinhU)Length(L)� (1� 2�=
5) (Length(�F
usp) + (sinhU)(Length(�Fgeo))) ;12



whi
h we summarise as
Length(L) � 
6 Length(�Fgeo [ �F
usp);for some positive 
onstant 
6 independent of L. So, by equation (3),

Length(L) � 
7 Length(�Fgeo [ �F
usp) + 
8 Area(F ); (4)
where 
7 and 
8 are positive 
onstants independent of L.Re
all that we assumed earlier that L was not homotopi
 in M to a 
urve in�M
usp. We may now drop this assumption, sin
e in this 
ase, we 
an easily �nda surfa
e F satisfying the above inequality. One method is as follows. Let L0 bethe 
urve in �N(�M
usp) that is homotopi
 to L, and that is a geodesi
 in theEu
lidean Riemannian metri
 on �N(�M
usp). Then L0 has length less than thatof L. The homotopy between L and L0 is realized by an annulus A0, say. IdentifyA0 with S1 � I, and homotope ea
h ar
 f�g � I, keeping its endpoints �xed, toa geodesi
. It is not hard to 
al
ulate that the area of A0 after this homotopy isat most (Length(L) + Length(L0)) � 2 Length(L). Now let F be the union of Aand the verti
al annulus above L0 in N(�M
usp). Then, the area of F is at most3 Length(L). Also, the length of �Fgeo [ �F
usp is the length of L0, whi
h is lessthan that of L. This veri�es (4) in this 
ase.Changing (4) to the metri
 g, we get

Length(L; g) � (
7=
21)Length(�Fgeo [ �F
usp; g) + (
8=
31)Area(F; g):Now, ea
h 
omponent of H has free fundamental group, and hen
e is word hy-perboli
. So, the 
urves �Fgeo [ �F
usp bound dis
s in H with area at most
9 Length(�Fgeo [ �F
usp; g), for some 
onstant 
9. Atta
hing these dis
s to F ,and then atta
hing the annulus A between L and L, we 
reate a dis
 boundedby L with area at most 
10 Length(L; g), for some 
onstant 
10 independent of L.This establishes the required linear isoperimetri
 inequality, and hen
e the proofof Theorems 1 and 2 is 
omplete.

13



3. Modifying the gluing map by powers of a homeomorphism
In this se
tion, we prove Theorem 3. Therefore let �: �M ! �H be somehomeomorphism, and let f : �H ! �H be a homeomorphism, no power of whi
hpartially extends to H. Let C = fC1; : : : ; CjCjg be the ex
eptional 
urves on �M .Suppose that Theorem 3 does not hold. Then, there is some �nite subset S of Z,and a fun
tion i:Z � S ! f1; : : : ; jCjg su
h that for ea
h n 2 Z � S, fn�(Ci(n))bounds a dis
 Dn in H.We wish to analyse these dis
s Dn in H, and we therefore introdu
e a de�-nition. A dis
 arrangement is a 
olle
tion of properly embedded dis
s in generalposition in a 3-manifold. Two dis
s arrangements are equivalent if there is a home-omorphism between their regular neighbourhoods taking one set of dis
s to theother. We term this a relative equivalen
e if the homeomorphism is the identityon the boundary of the dis
s. A double 
urve is a 
omponent of interse
tion be-tween two of the dis
s. The boundary 
urves of a dis
 arrangement are simply theboundaries of the dis
s.Lemma 1. Fix a �nite 
olle
tion of embedded (not ne
essarily disjoint) simple
losed 
urves in general position in a surfa
e S. Suppose that these form theboundary 
urves of a dis
 arrangement in some irredu
ible 3-manifold boundedby S. Then we may isotope these dis
s keeping their boundaries �xed, so thatafterwards, they belong to one of only �nitely many relative equivalen
e 
lassesof dis
 arrangements, and so that a regular neighbourhood of these dis
s and S ishomeomorphi
 to a pun
tured 
ompression body with positive boundary S.Proof. This is by indu
tion on partition number, whi
h we de�ne to be the smallestnumber of subsets into whi
h we may partition the 
olle
tion of dis
s, su
h thatif two dis
s belong to the same subset, they are disjoint. When the partitionnumber is one, the lemma is trivial, and the indu
tion is started. We now provethe indu
tive hypothesis. Let D denote the 
olle
tion of dis
s, and let D0 be oneof the subsets in a partition of D that realizes the partition number.First perform an isotopy to the dis
s not in D0 to remove any simple 
loseddouble 
urves that lie in SD0. This is a
hieved by an elementary innermost 
urveargument.

14



We now perform isotopies on the dis
s not in D0, supported in a regularneighbourhood ofSD0, so that afterwards any two double 
urves inSD0 interse
tin at most one point. For if not, two double 
urves form a bigon in some dis
 inD0. We may remove an innermost bigon by an isotopy. Note that this introdu
esno simple 
losed double 
urves in SD0. After this isotopy, there are only �nitelymany possibilities for the double 
urves in SD0, up to ambient isotopy �xed onthe boundary of SD0.Throughout these isotopies, dis
s whi
h were initially disjoint have remainedso. Thus, the partition number has not in
reased. Cut the ambient manifold alongSD0 to a give a 3-manifold with boundary S0, say. The remaining dis
s of D are
ut up to form a dis
 arrangement D0 in the 
ut-open 3-manifold. Its boundary
urves arise from the boundary 
urves of D � D0 and from the double 
urves inSD0. Thus, there are only �nitely many possibilities for these boundary 
urves.Now, D0 has lower partition number than the original D. Hen
e, indu
tively,D0 may be isotoped, keeping its boundary �xed, so that afterwards, it belongs toone of only �nitely many relative equivalen
e 
lasses of dis
 arrangements. Thus,the same is true of D. Also, a regular neighbourhood of S0 [SD0 is a pun
tured
ompression body with positive boundary S0, and so a regular neighbourhood ofS [SD is as required.We will always take any given �nite sub
olle
tion of the dis
s Dn to be oneof the dis
 arrangements as in Lemma 1.We de�ne the 
omplexity of a 
losed orientable surfa
e to be twi
e its genus,minus the number of its non-spheri
al 
omponents. If it is a union of 2-spheresor it is empty, we take its 
omplexity to be zero. Thus, 
omplexity is a non-negative integer, with the property that if the surfa
e is 
ompressed, its 
omplexitygoes down. So, if one 
ompression body R0 is embedded within another, R, andthey have the same positive boundary, then the 
omplexity of ��R is at mostthe 
omplexity of ��R0. This is an equality if and only if R � R0 is a regularneighbourhood of a subsurfa
e of ��R.Let s = maxfn : n 2 Sg. For integers s < a � b, we de�ne H(a; b) to be thesubmanifold of H formed by taking a regular neighbourhood of �H [Sa�n�bDn,and then �lling in any 2-sphere boundary 
omponents with 3-balls. This is a
15




ompression body with positive boundary �H. Let h(a; b) be the 
omplexity ofits negative boundary. Note that if a � a0 and b � b0, then h(a; b) and h(a0; b0)are at least h(a; b0).We term two pairs of integers (a; b) and (a0; b0) 
omparable if fa0�a takesthe 
urves �Da; : : : ; �Db to the 
urves �Da0 ; : : : ; �Db0 , and this extends to anequivalen
e of dis
 arrangements. Note that in this 
ase, fa0�a extends to ahomeomorphism of H(a; b) to H(a0; b0).We 
laim that we 
an �nd 
omparable pairs of integers (a; b) and (a0; b0),where a < a0, su
h that h(a; b) = h(a; b0) = h(a0; b0). Theorem 3 follows veryqui
kly. For, H(a; b0) is then ambient isotopi
 to both H(a; b) and H(a0; b0). Sofa0�a extends to a homeomorphism of H(a; b) to itself. Hen
e this power of fpartially extends to H.Suppose the 
laim were not true. Then we will show by indu
tion that,for ea
h positive integer j, there are non-negative integers p(j) and m(j) and asequen
e fk(j; n) : n � sg su
h that for ea
h n � s,(i) h(k(j; n); k(j; n) + p(j)) � 2 genus(�H)� j;(ii) 0 � k(j; n)� n � m(j).This will lead to a 
ontradi
tion, sin
e h(a; b) is non-negative, but (i) implies thatit is negative for large j.The indu
tion starts with j = 1, where we take m(1) = p(1) = 0 andk(j; n) = n. We now prove the indu
tive step. Ea
h interval [k(j; n); k(j; n)+p(j)℄
orresponds to the boundary of dis
s. There are a �nite number of 
hoi
es(jCjp(j)+1) for the boundary 
urves of these dis
s. By Lemma 1, we may as-sume that these dis
s form one of only �nitely many (d, say) dis
 arrangements.Thus, we assign to ea
h integer k(j; n) one of these d 
olours. If k(j; n0) andk(j; n00) are given the same 
olour, then the pairs (k(j; n0); k(j; n0) + p(j)) and(k(j; n00); k(j; n00) + p(j)) are 
omparable.For any n � s, 
onsider the values of k(j; n0) as n0 varies between n andn+(m(j)+1)d. By (ii) at most (m(j)+1) di�erent n0 
an give the same value ofk(j; n0). Therefore, the k(j; n0) take more than d di�erent values. Therefore, we
an �nd integers n0 and n00 in this interval 
oloured with the same 
olour, su
h16



that k(j; n0) 6= k(j; n00). Say that k(j; n0) < k(j; n00).We let k(j + 1; n) = k(j; n0)p(j + 1) = (m(j) + 1)d+m(j) + p(j)m(j + 1) = (m(j) + 1)d+m(j):We need to 
he
k that (i) and (ii) hold for j + 1. Sin
e we are assuming thatthe 
laim is not true, it must be the 
ase that h(k(j; n0); k(j; n00)+ p(j)) is stri
tlyless than at least one of h(k(j; n0); k(j; n0) + p(j)) and h(k(j; n00); k(j; n00) + p(j)).Hen
e, by (i), h(k(j; n0); k(j; n00) + p(j)) � 2 genus(�H)� j � 1. So,h(k(j + 1; n); k(j + 1; n) + p(j + 1)) = h(k(j; n0); k(j; n0) + p(j + 1))� h(k(j; n0); k(j; n00) + p(j))� 2 genus(�H)� j � 1;sin
e k(j; n0) + p(j + 1)� k(j; n00)� p(j)� n0 + (m(j) + 1)d+m(j) + p(j)� n00 �m(j)� p(j) � 0:This veri�es (i) for j + 1.To verify (ii), note that
k(j + 1; n) = k(j; n0) � n0 � n;

k(j + 1; n) = k(j; n0) � n0 +m(j) � n+ (m(j) + 1)d+m(j) = n+m(j + 1):This establishes the 
laim, and hen
e 
ompletes the proof of Theorem 3.We 
on
lude with a proof of Theorem 4. So, let f : �H ! �H be a pseudo-Anosov homeomorphism. Suppose that, for in�nitely many n, M [fnÆ� H failsto satisfy the 
on
lusions of Theorem 1. Then, for these n, fn�(Ci(n)) boundsa dis
 Dn in H, for some ex
eptional 
urve Ci(n). We may pass to a monotonesubsequen
e where Ci(n) is some �xed 
urve C. But fn�(C) tends in PL(�H)to the stable or unstable lamination of f , a

ording to whether the sequen
e isde
reasing or in
reasing. Hen
e, this lamination lies in the 
losed set B(�H). This
ompletes the proof of Theorem 4. 17
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