
ATTACHING HANDLEBODIES TO 3-MANIFOLDS
MARC LACKENBY
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ATTACHING HANDLEBODIES TO 3-MANIFOLDS
MARC LACKENBY
1. Introdution

This paper deals with a generalisation of Dehn surgery. Instead of attah-ing solid tori to a 3-manifold with toral boundary omponents, we start with a3-manifold with higher genus boundary omponents and glue on handlebodies.Our aim is to generalise well known surgery results to this setting. As is us-tomary in surgery theory, we have to assume that the initial bounded 3-manifoldsatis�es ertain generi topologial hypotheses: it will be simple, whih means thatit is ompat, orientable, irreduible, atoroidal, aylindrial, with inompressibleboundary. Our �rst and main theorem is the following.Theorem 1. LetM be a simple 3-manifold with non-empty boundary. Then thereis a �nite olletion C of essential simple losed urves on �M with the followingproperty. Suppose that H is a olletion of handlebodies, and that �: �M ! �His a homeomorphism that sends no urve in C to the boundary of a dis in H.Then M [� H is irreduible, atoroidal, word hyperboli and not Seifert �bred.Furthermore, the inlusion map of any omponent of H into M [� H indues aninjetion between their fundamental groups, and hene �1(M [� H) is in�nite.The set C we term the exeptional urves. They may be haraterised in termsof the geometry of M . For, M has a omplete �nite volume hyperboli struture,with totally geodesi boundary and possibly some usps. This may be seen byapplying Thurston's geometrisation theorem [11℄ to two opies of M glued viathe identity map along their negative Euler harateristi boundary omponents.Let N(�Musp) be a horoball neighbourhood of the usps of M , suh that, oneah omponent of �N(�Musp), the shortest Eulidean geodesi has length 1. Itis shown in [2℄, for example, that N(�Musp) is a produt neighbourhood of thetoral ends of M .Theorem 2. The set C onsists of simple losed geodesis having length at most4�(1� 4=�(S))1=4 � (1� 4=�(S))�1=4on boundary omponents S with genus at least two, and of losed Eulidean2



geodesis with length at most 2� on �N(�Musp). Hene, there is an upper boundon the number of urves in C that depends only on the genus of �M and isotherwise independent of M .Theorems 1 and 2 an be viewed as a generalisation of Thurston's hyper-boli Dehn surgery theorem [13℄ and its extension by Hodgson and Kerkho� [8℄.Thurston established the existene of a �nite set C of slopes on a torally boundedhyperboli 3-manifold, suh that, provided these slopes are avoided when surgeryis performed, the result is a 3-manifold with a hyperboli struture. Hodgson andKerkho� provided a universal upper bound, independent of the 3-manifold, onthe number of urves in C on eah torus boundary omponent.Theorems 1 and 2 should be ompared with the main theorem of [12℄, dueto Sharlemann and Wu. They onsidered the attahment of a single 2-handle toM . One is only allowed to attah it along a ertain type of urve, known as a`basi' urve, but this is not a serious restrition. They prove that the resultingmanifold is hyperboli, provided one avoids a �nite set of urves on �M , up toisotopy. Attahing a handlebody an be performed by �rst gluing on 2-handlesalong basi urves and then Dehn �lling. Thus, their result implies that, in aertain sense, most ways of attahing a handlebody give a hyperboli manifold.The limitation of Sharlemann and Wu's proedure is that the 2-handles must beattahed in sequene, and then be followed by the surgeries. Thus, the urvesthat the later 2-handles and surgeries must avoid depend on where the earlier2-handles are attahed. In Theorem 1, we attah the entire handlebody in a singlestep. This allows us to identify the exeptional urves at the outset.Of ourse, Theorem 1 raises the problem of �nding homeomorphisms � withthe required property. The approah we onsider is to start with an arbitrary�, and then modify this by applying powers of a homeomorphism f : �H ! �H.If f extends to a homeomorphism of H, then this will not hange the resultingmanifold. More generally, if some power of f extends to a homeomorphism, thenonly �nitely many manifolds are reated. We would like to avoid this situation.In fat, one must rule out a yet more general possibility: no power fn of f (wheren 6= 0) may partially extend to H. This means that there is a ompression bodyR (other than a produt) embedded in H with positive boundary �H, suh thatfn extends to a homeomorphism of R. For, if � were to map a urve C in C to3



the boundary of a dis in R, then fn�(C) would bound a dis in R for in�nitelymany n. However, if this ondition is met, we shall show that this method doesreate in�nitely many manifolds that satisfy the onlusions of Theorem 1.Theorem 3. Let M be a simple 3-manifold, let H be a olletion of handle-bodies, and let �: �M ! �H be a homeomorphism. Let f : �H ! �H be ahomeomorphism, no power of whih partially extends to H. Then, for in�nitelymany integers n, M [fnÆ� H satis�es the onlusions of Theorem 1.An alternative method of �nding suitable homeomorphisms f is to use thetheory of pseudo-Anosov maps ([14℄, [3℄). We an regard simple losed urveson �H, with ounting measure, as elements of the spae PL(�H) of projetivemeasured laminations on �H. Let B(�H) be the losure in PL(�H) of the set ofurves on �H that bound diss in H. It is a theorem of Masur [10℄ that B(�H)is nowhere dense in PL(�H). Hene that the stable and unstable laminations ofa `generi' pseudo-Anosov homeomorphism f : �H ! �H will not lie in B(�H).Theorem 4. LetM be a simple 3-manifold, let H be a olletion of handlebodies,and let �: �M ! �H be a homeomorphism. Let f : �H ! �H be a pseudo-Anosovhomeomorphism whose stable and unstable laminations do not lie in B(�H). Thenfor all but �nitely many integers n,M[fnÆ�H satis�es the onlusions of Theorem1. The proof of Theorems 1 and 2 follows two papers: [9℄, whih established theword hyperboliity of ertain surgered manifolds, and [7℄ by Hass, Wang and Zhou,whih examined boundary slopes of immersed essential surfaes in hyperboli 3-manifolds with totally geodesi boundary. Theorem 3 uses some new tehniques,involving arrangements of diss in a handlebody and a deliate ounting argu-ment. Theorem 4 is an elementary appliation of the theory of pseudo-Anosovautomorphisms.This paper suggests many interesting areas for further researh. Firstly, anthe results be upgraded to dedue the existene of a metri that is hyperbolior just negatively urved? Seondly, an Theorem 3 be strengthened so that theonlusion holds for all but �nitely many n? Thirdly, an the tehniques of thispaper be generalised to analyse Heegaard splittings?
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2. The Main Theorem
In this setion, we will prove Theorems 1 and 2. Suppose therefore thatM is a simple 3-manifold with non-empty boundary. Denote its toral boundaryomponents by �Musp and the remaining boundary omponents by �Mgeo. Wework with the omplete �nite volume hyperboli struture on M � �Musp inwhih �Mgeo is totally geodesi. Let C be the set of simple losed urves on �Mas desribed in Theorem 2. The fat that there is an upper bound on the numberof urves in C that depends only on the genus of �M is well known. A proof isgiven in [7℄ for example. Suppose that �: �M ! �H is a homeomorphism thatsends no urve in C to the boundary of a dis in H.Our �rst step is to show that the inlusion map of any omponent of H intoM [� H indues an injetion between their fundamental groups. Consider anessential loop L in H, and suppose that it is homotopially trivial in M [� H.There is then a map f :D ! M [� H, where D is a dis, suh that f j�D windsone around L. Homotope f a little, so that f�1(�H) is a olletion of simplelosed urves in the interior of D, and so that f is transverse to �H near theseurves. We suppose that L and f have been hosen so that the number of theseurves has been minimised.Claim 1. f�1(H) is a olletion of diss and a ollar on �D.If not, pik a urve L0 of f�1(�H) that is innermost in D among urves thatdo not bound diss of f�1(H) and that are not parallel in f�1(H) to �D. Itbounds a dis D0. If L0 is homotopially trivial in H, we may modify f in D0 sothat it is mapped entirely to H, thus reduing jf�1(�H)j, whih ontradits theminimality of jf�1(�H)j. If L0 is homotopially non-trivial in H, we may workwith D0 instead of D. Again the minimality assumption is violated.Claim 2. The surfae F = f�1(M) is homotopially boundary-inompressible inM . Reall from [9℄ that this means that no properly embedded essential ar inF an be homotoped in M , keeping its endpoints �xed, to an ar in �M . For,if there were suh an ar �, we ould perform a homotopy to f , taking a regularneighbourhood of � into H. There are two ases to onsider: when the endpoints
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of � lie in distint boundary omponents of F , and when they lie in the sameomponent. In the �rst ase, the result is to redue jf�1(�H)j, ontraditing theminimality assumption.In the seond ase, there are two subases: either �� lies in the ollar on �D orit does not. Suppose �rst that �� misses the ollar. The ar separates F into twoomponents, as F is planar. One of these, F 0 say, does not interset the ollar on�D. Let L0 be the boundary omponent of F 0 that runs along the neighbourhoodof �. Push L0 a little into H. Sine F 0 has fewer boundary omponents than Fand L0 is homotopially trivial inM [�H, the minimality assumption implies thatL0 is homotopially trivial in H. We may therefore remove F 0 from F and replaeit with a dis that maps to H. This redues j�F j, whih is a ontradition.Suppose now that both endpoints of � lie in the ollar on �D. We onsider thetwo halves of F ut open along �. By the minimality assumption, the boundaryurves of eah are homotopially trivial in H. But then L is trivial in H, whih isa ontradition.Claim 3. F is homotopially inompressible in M .This means that no homotopially non-trivial simple losed urve in F mapsto a homotopially trivial urve in M . The argument is similar to that of Claims1 and 2, but simpler, and so is omitted.We now follow the argument of [7℄. Let N(�Musp) be a horoball neigh-bourhood of the usps of �M , suh that on eah omponent of �N(�Musp), theshortest geodesi has length 1. Let N(�Mgeo) be the set of points at a distaneat most U from �Mgeo. By a theorem of Basmajian [1℄, if we take U to be14 log�1� 4�(S)� = sinh�1� (1� 4=�(S))1=4 � (1� 4=�(S))�1=42 � ;
then N(�Musp) [ N(�Mgeo) will be a ollar on �M . Denote N(�Musp) [N(�Mgeo) by N(�M).Claim 4. There is a least area surfae in the homotopy lass of f : (F; �F ) !(M;�M). This is an immersion.If F were losed and M had no usps, this would be Lemma 2 of [5℄, asF is homotopially inompressible, by Claim 3. This was extended to the ase6



where F has boundary and M has usps in Theorem 4.4 of [6℄. In [6℄, though,it was assumed that f�:�1(F ) ! �1(M) and f�:�1(F; �F ) ! �1(M;�M) areinjetive. However, as explained in [5℄, these hypotheses an be weakened to theassumption that F is homotopially inompressible and homotopially boundary-inompressible.We perform the homotopy in Claim 4. Let �Fusp and �Fgeo be the boundaryomponents of F that map to �Musp and �Mgeo respetively. Then F � �Fuspinherits a Riemannian metri with geodesi boundary. Its setional urvature isthe sum of the setional urvature ofM and the produt of its prinipal urvatures(see Theorem 5.5 of [4℄, for example). The prinipal urvatures sum to zero, sineF is minimal, and hene their produt is non-positive. Therefore, the setionalurvature of F is at most �1.We abuse notation slightly by denoting the omponent of �F parallel to Lby L. Let N(�Fusp) be those omponents of the inverse image of N(�Musp)in F that ontain a omponent of �Fusp. Let N(�Fgeo) be the set of pointsin F with distane at most U from �Fgeo in its intrinsi path metri. DenoteN(�Fusp) [N(�Fgeo) by N(�F ).Claim 5. N(�F ) is a ollar on �F .We start by showing that eah omponent of N(�Fgeo) is a ollar. To see this,inrease U from zero to its �nal value. Near zero, N(�Fgeo) is learly a ollar. Butsuppose that as it expands, there is some point at whih a self-tangeny is re-ated. Then there is a geodesi ar properly embedded in N(�Fgeo) with endpointsperpendiular to �Fgeo. This geodesi is the onatenation of two geodesi arswhih run from �Fgeo to the point of self-tangeny. Sine F is negatively urved,this ar is essential in F . But it lies within N(�Mgeo), whih is a ollar, and soan be homotoped into �M , keeping its endpoints �xed. This ontradits the fatthat F is homotopially boundary-inompressible.It is also lear that eah omponent of N(�Fusp) is a ollar. For, otherwise,it ontains a properly embedded ar that is essential in N(�Fusp) and that hasendpoints in �Fusp. The fat that N(�Musp) is a ollar on �Musp implies thatthis ar an be homotoped into �M . The ar is therefore inessential in F . Hene,some omponent of �N(�Fusp) bounds a dis in F . Consider the lift of this dis
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to H 3 , whih ontains the universal over of M . The boundary of the dis lies ona omponent of the inverse image of �N(�Musp), whih is a horotorus. There isa natural projetion from H 3 onto this horotorus, and this redues the area of thedis. This ontradits the assumption that F is least area.Finally, N(�Fusp) and N(�Fgeo) must be disjoint. For the former lies inN(�Musp), whereas the latter lies in N(�Mgeo), and these are disjoint. Thisproves the laim.Claim 6. Area(N(�Fgeo)) � (sinhU) (Length(�Fgeo)).Choosing orthogonal o-ordinates for the surfaeN(�Fgeo), the metri is givenby ds2 = du2 + J2(u; v)dv2;where J(u; v) > 0 and J(0; v) = 1. The urves where v is onstant are geodesisperpendiular to the boundary, and the urve u = 0 lies in the boundary. By thealulations in [7℄, �J�u � 0; �2J�u2 � J;and hene J(u; v) � osh(u). Therefore,
Area(N(�Fgeo)) = Z Length(�Fgeo)v=0 Z Uu=0 J(u; v) du dv

� Z Length(�Fgeo)v=0 Z Uu=0 oshu du dv= (sinhU) (Length(�Fgeo)):
Give �H the Riemannian metri on �N(�Musp) [ �Mgeo. Eah omponentof �F , exept the one parallel to L, is mapped to the boundary of a dis in H, byClaim 1. It is essential in �H by Claim 3. So, by assumption, it has length morethan the bound in Theorem 2 if it is simple. The non-simple ase follows from thefollowing laim.Claim 7. Eah shortest essential losed urve in �H that is homotopially trivialin H is simple.Let ~H be the universal over of H. Then � ~H is the over of �H orrespondingto the kernel of �1(�H)! �1(H). In partiular, it is a regular over. The losed8



urves in � ~H are exatly the lifts of urves in �H that are homotopially trivial inH. The shortest of these, C say, that is essential in � ~H is a geodesi. It must besimple, for otherwise, it an be modi�ed at a singular point to redue its length.We laim that C must be disjoint from its overing translates. For if C andsome translate C 0 were to interset transversely, they would do so at least twie,sine both are homologially trivial in ~H. Pik two points of intersetion, whihdivide C and C 0 eah into two ars. Glue the shorter of the two ars in C (oreither of these ars if they have the same length) to the shorter of the two in C 0,and then smooth o� to form a shorter losed urve in � ~H. If this is essential in� ~H, we have a ontradition. If not, then we may homotope the longer of its twoars onto the other, and then smooth o�. This redues the length of C or C 0,whih again is a ontradition.If C and C 0 were to interset non-transversely, then they would be equal.Hene, C would projet to a multiple of a simple losed urve C 00 in �H. If weapply the Loop Theorem to a regular neighbourhood of C 00, we see that C 00 mustalso bound a dis inH. But this is a shorter urve than C, whih is a ontradition.Hene, C projets homeomorphially to a simple losed urve in �H whih isshortest among essential urves that are trivial in H. This proves the laim.Putting together Claims 6 and 7, we obtainArea(N(�Fgeo)) � 2� j�Fgeo � Lj:
Let Length(�Fusp) be the length of the urves �N(�Fusp) on �N(�Musp).By Claim 5, eah of these urves has the same slope as the orresponding om-ponent of �F . Hene, eah (exept possibly L) has length more than 2�, byassumption. Thus, using a well known argument, whih an be found in the proofof Theorem 4.3 of [6℄, for example, we obtain the following.Claim 8. Area(N(�Fusp)) � 2� j�Fusp � Lj.Sine F is a minimal surfae in a hyperboli manifold, its setional urvatureK is at most �1. So, applying Gauss-Bonnet to F :2�(2� j�F j) = 2��(F ) = ZF K dA � �Area(F )� �Area(N(�Fusp))�Area(N(�Fgeo)) � �2�(j�F j � 1);9



whih is a ontradition. We therefore dedue that the inlusion of eah omponentof H into M [� H is �1-injetive.A very similar argument an be used to show that M [� H is irreduible.For otherwise, M would ontain a properly embedded inompressible boundary-inompressible planar surfae, eah boundary omponent of whih would extendto a dis in H. (To make this argument work, we need the fat that the inlusionof H into M [� H is �1-injetive.) We an then apply the above analysis to thissurfae.It remains to show that M [� H is word hyperboli. For this implies that�1(M [� H) ontains no rank two abelian subgroup, and hene that M [� H isatoroidal. The fat that �1(M [� H) is in�nite then gives that M [� H is notSeifert �bred.Pik a Riemannian metri g on M [�H, in whih H is an �-neighbourhood ofa graph, for small � > 0. We wish to establish a linear isoperimetri inequality forg. So, onsider a loop L that is homotopially trivial, and whih therefore formsthe boundary of a mapped-in dis f :D ! M [� H. Using a small homotopy,we may move L o� H. We an ensure that this hanges the length of L by afator that is bounded independently of L. We an also ensure that the area ofthe annulus realizing the homotopy is similarly bounded.By the argument of Claims 1, 2 and 3 and using the fat that the inlusionof H into M [� H is �1-injetive, we may homotope f , keeping it �xed on L, sothat afterwards F = f�1(M) is homotopially inompressible and homotopiallyboundary-inompressible in M , and so that f�1(H) is a olletion of diss.Let h be the hyperboli metri on M ��Musp. Sine M is ompat, the Rie-mannian manifolds (M � int(N(�Musp)); h) and (M;g) are bi-Lipshitz equiva-lent, with onstant 1, say. Also, there is a map (N(�Musp); h)! (H; g), ollaps-ing the usps to solid tori, that inreases areas by at most a fator 21, say. Initially,we will measure lengths and areas in the h metri. Note that, by onstrution, Lis disjoint from N(�Musp).We may assume that L is homotopially non-trivial in M . For otherwise itis trivial to onstrut a dis in M bounded by L with area linearly bounded by
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the length of L. (Indeed, the fat that losed urves in hyperboli spae have thisproperty is the motivation behind Gromov's theory of hyperboli groups.) Also, wewill, for the moment, assume that L is not homotopi to a urve in �Musp. Heneit has a geodesi representative L. We may realize the free homotopy between Land L with a mapped-in annulus A having area at most 2Length(L), for someonstant 2 depending only on h. We may assume that A has least possible area.Claim 9. Eah omponent of A \N(�Musp) is either a dis disjoint from L, or adis ontaining a single omponent of L \N(�Musp).Note that A \ N(�Musp) is disjoint from L, and does not ontain a oreurve of A. Suppose that the laim is not true. Then we an �nd a omponent ofA \N(�Musp) whih is not a dis or whih intersets L more than one. In theformer ase, A \ N(�Musp) has a boundary omponent that is a simple losedurve bounding a dis in A with interior disjoint from N(�Musp). However, weould then homotope this dis into N(�Musp) to redue the area of A, whih is aontradition. Thus, eah omponent of A\N(�Musp) is a dis. If one omponentintersets L in more than one ar, then the sub-ar of L between these two arsdoes not lie wholly in N(�Musp), but an be homotoped into N(�Musp). Thisontradits the fat that L is a geodesi. This proves the laim.Homotope F (minus those omponents that map to �Musp) to a least areasurfae in M � �Musp, with one boundary omponent mapping to L, and theremainder mapping to �M . Divide the boundary omponents of F into threesubsets L, �Fusp and �Fgeo. Note that F [ A is now a planar surfae with oneboundary omponent mapping to L and the remaining omponents mapping tourves in �M that bound diss in H. This surfae will extend to a dis in M [�Hwith area linearly bounded by the length of L, establishing the required linearisoperimetri inequality.We de�ne N(�Fusp) and N(�Fgeo) as before. Claim 5 now reads thatN(�Fusp) [ N(�Fgeo) is a ollar on �Fusp [ �Fgeo, whih may have non-emptyintersetion with L. However, the alulations in Claims 6 and 8 now need modi-�ation.Further divide �Fgeo into two subsets: �Fthin and �Fthik. The former is theset of points x in �Fgeo suh that, when a perpendiular geodesi is emitted from
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x in F , it meets L within a distane U . Let �Fthik be the remainder of �Fgeo.Then the argument of Claim 6 gives thatArea(N(�Fgeo)) � (sinhU) (Length(�Fthik)):By Claim 9, N(�Fusp)[ (A\N(�Musp)) is a ollar on �Fusp and possibly somediss. Using these ollars, we may assoiate to eah omponent of �Fusp a urveon �N(�Musp), namely the relevant boundary omponent of N(�Fusp) [ (A \N(�Musp)). We de�ne the length of �Fusp to be the length of these urves.Then, Claim 8, suitably modi�ed, gives thatArea(N(�Fusp) [A) � Length(�Fusp);and hene thatArea(N(�Fusp)) � Length(�Fusp)� 2 Length(L):Therefore, Area(F ) � Area(N(�Fgeo)) + Area(N(�Fusp))� (sinhU) (Length(�Fthik))+ Length(�Fusp)� 2 Length(L): (1)Also, Length(L) � Length(L) � Length(L \N(�Mgeo)) � Length(�Fthin): (2)Let 3 (respetively, 4) denote the minimal length of a geodesi on �N(�Musp)(respetively, �Mgeo) with length more than 2� (respetively, 2�= sinh(U)), andlet 5 be minf3; 4 sinh(U)g, whih is more than 2�. Then, sine eah urve of�Fusp and �Fgeo has length more than the bound in Theorem 2, we know thatLength(�Fusp) + (sinhU)(Length(�Fgeo))� 5(j�F j � 1) > �5 �(F ) � 5 Area(F )=2�: (3)The �nal inequality is an appliation of Gauss-Bonnet. So, adding (2�=5) times(3), and (sinhU) times (2), to (1), and anelling the area term, we get:(2 + sinhU)Length(L)� (1� 2�=5) (Length(�Fusp) + (sinhU)(Length(�Fgeo))) ;12



whih we summarise as
Length(L) � 6 Length(�Fgeo [ �Fusp);for some positive onstant 6 independent of L. So, by equation (3),

Length(L) � 7 Length(�Fgeo [ �Fusp) + 8 Area(F ); (4)
where 7 and 8 are positive onstants independent of L.Reall that we assumed earlier that L was not homotopi in M to a urve in�Musp. We may now drop this assumption, sine in this ase, we an easily �nda surfae F satisfying the above inequality. One method is as follows. Let L0 bethe urve in �N(�Musp) that is homotopi to L, and that is a geodesi in theEulidean Riemannian metri on �N(�Musp). Then L0 has length less than thatof L. The homotopy between L and L0 is realized by an annulus A0, say. IdentifyA0 with S1 � I, and homotope eah ar f�g � I, keeping its endpoints �xed, toa geodesi. It is not hard to alulate that the area of A0 after this homotopy isat most (Length(L) + Length(L0)) � 2 Length(L). Now let F be the union of Aand the vertial annulus above L0 in N(�Musp). Then, the area of F is at most3 Length(L). Also, the length of �Fgeo [ �Fusp is the length of L0, whih is lessthan that of L. This veri�es (4) in this ase.Changing (4) to the metri g, we get

Length(L; g) � (7=21)Length(�Fgeo [ �Fusp; g) + (8=31)Area(F; g):Now, eah omponent of H has free fundamental group, and hene is word hy-perboli. So, the urves �Fgeo [ �Fusp bound diss in H with area at most9 Length(�Fgeo [ �Fusp; g), for some onstant 9. Attahing these diss to F ,and then attahing the annulus A between L and L, we reate a dis boundedby L with area at most 10 Length(L; g), for some onstant 10 independent of L.This establishes the required linear isoperimetri inequality, and hene the proofof Theorems 1 and 2 is omplete.
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3. Modifying the gluing map by powers of a homeomorphism
In this setion, we prove Theorem 3. Therefore let �: �M ! �H be somehomeomorphism, and let f : �H ! �H be a homeomorphism, no power of whihpartially extends to H. Let C = fC1; : : : ; CjCjg be the exeptional urves on �M .Suppose that Theorem 3 does not hold. Then, there is some �nite subset S of Z,and a funtion i:Z � S ! f1; : : : ; jCjg suh that for eah n 2 Z � S, fn�(Ci(n))bounds a dis Dn in H.We wish to analyse these diss Dn in H, and we therefore introdue a de�-nition. A dis arrangement is a olletion of properly embedded diss in generalposition in a 3-manifold. Two diss arrangements are equivalent if there is a home-omorphism between their regular neighbourhoods taking one set of diss to theother. We term this a relative equivalene if the homeomorphism is the identityon the boundary of the diss. A double urve is a omponent of intersetion be-tween two of the diss. The boundary urves of a dis arrangement are simply theboundaries of the diss.Lemma 1. Fix a �nite olletion of embedded (not neessarily disjoint) simplelosed urves in general position in a surfae S. Suppose that these form theboundary urves of a dis arrangement in some irreduible 3-manifold boundedby S. Then we may isotope these diss keeping their boundaries �xed, so thatafterwards, they belong to one of only �nitely many relative equivalene lassesof dis arrangements, and so that a regular neighbourhood of these diss and S ishomeomorphi to a puntured ompression body with positive boundary S.Proof. This is by indution on partition number, whih we de�ne to be the smallestnumber of subsets into whih we may partition the olletion of diss, suh thatif two diss belong to the same subset, they are disjoint. When the partitionnumber is one, the lemma is trivial, and the indution is started. We now provethe indutive hypothesis. Let D denote the olletion of diss, and let D0 be oneof the subsets in a partition of D that realizes the partition number.First perform an isotopy to the diss not in D0 to remove any simple loseddouble urves that lie in SD0. This is ahieved by an elementary innermost urveargument.
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We now perform isotopies on the diss not in D0, supported in a regularneighbourhood ofSD0, so that afterwards any two double urves inSD0 intersetin at most one point. For if not, two double urves form a bigon in some dis inD0. We may remove an innermost bigon by an isotopy. Note that this introduesno simple losed double urves in SD0. After this isotopy, there are only �nitelymany possibilities for the double urves in SD0, up to ambient isotopy �xed onthe boundary of SD0.Throughout these isotopies, diss whih were initially disjoint have remainedso. Thus, the partition number has not inreased. Cut the ambient manifold alongSD0 to a give a 3-manifold with boundary S0, say. The remaining diss of D areut up to form a dis arrangement D0 in the ut-open 3-manifold. Its boundaryurves arise from the boundary urves of D � D0 and from the double urves inSD0. Thus, there are only �nitely many possibilities for these boundary urves.Now, D0 has lower partition number than the original D. Hene, indutively,D0 may be isotoped, keeping its boundary �xed, so that afterwards, it belongs toone of only �nitely many relative equivalene lasses of dis arrangements. Thus,the same is true of D. Also, a regular neighbourhood of S0 [SD0 is a punturedompression body with positive boundary S0, and so a regular neighbourhood ofS [SD is as required.We will always take any given �nite subolletion of the diss Dn to be oneof the dis arrangements as in Lemma 1.We de�ne the omplexity of a losed orientable surfae to be twie its genus,minus the number of its non-spherial omponents. If it is a union of 2-spheresor it is empty, we take its omplexity to be zero. Thus, omplexity is a non-negative integer, with the property that if the surfae is ompressed, its omplexitygoes down. So, if one ompression body R0 is embedded within another, R, andthey have the same positive boundary, then the omplexity of ��R is at mostthe omplexity of ��R0. This is an equality if and only if R � R0 is a regularneighbourhood of a subsurfae of ��R.Let s = maxfn : n 2 Sg. For integers s < a � b, we de�ne H(a; b) to be thesubmanifold of H formed by taking a regular neighbourhood of �H [Sa�n�bDn,and then �lling in any 2-sphere boundary omponents with 3-balls. This is a
15



ompression body with positive boundary �H. Let h(a; b) be the omplexity ofits negative boundary. Note that if a � a0 and b � b0, then h(a; b) and h(a0; b0)are at least h(a; b0).We term two pairs of integers (a; b) and (a0; b0) omparable if fa0�a takesthe urves �Da; : : : ; �Db to the urves �Da0 ; : : : ; �Db0 , and this extends to anequivalene of dis arrangements. Note that in this ase, fa0�a extends to ahomeomorphism of H(a; b) to H(a0; b0).We laim that we an �nd omparable pairs of integers (a; b) and (a0; b0),where a < a0, suh that h(a; b) = h(a; b0) = h(a0; b0). Theorem 3 follows veryquikly. For, H(a; b0) is then ambient isotopi to both H(a; b) and H(a0; b0). Sofa0�a extends to a homeomorphism of H(a; b) to itself. Hene this power of fpartially extends to H.Suppose the laim were not true. Then we will show by indution that,for eah positive integer j, there are non-negative integers p(j) and m(j) and asequene fk(j; n) : n � sg suh that for eah n � s,(i) h(k(j; n); k(j; n) + p(j)) � 2 genus(�H)� j;(ii) 0 � k(j; n)� n � m(j).This will lead to a ontradition, sine h(a; b) is non-negative, but (i) implies thatit is negative for large j.The indution starts with j = 1, where we take m(1) = p(1) = 0 andk(j; n) = n. We now prove the indutive step. Eah interval [k(j; n); k(j; n)+p(j)℄orresponds to the boundary of diss. There are a �nite number of hoies(jCjp(j)+1) for the boundary urves of these diss. By Lemma 1, we may as-sume that these diss form one of only �nitely many (d, say) dis arrangements.Thus, we assign to eah integer k(j; n) one of these d olours. If k(j; n0) andk(j; n00) are given the same olour, then the pairs (k(j; n0); k(j; n0) + p(j)) and(k(j; n00); k(j; n00) + p(j)) are omparable.For any n � s, onsider the values of k(j; n0) as n0 varies between n andn+(m(j)+1)d. By (ii) at most (m(j)+1) di�erent n0 an give the same value ofk(j; n0). Therefore, the k(j; n0) take more than d di�erent values. Therefore, wean �nd integers n0 and n00 in this interval oloured with the same olour, suh16



that k(j; n0) 6= k(j; n00). Say that k(j; n0) < k(j; n00).We let k(j + 1; n) = k(j; n0)p(j + 1) = (m(j) + 1)d+m(j) + p(j)m(j + 1) = (m(j) + 1)d+m(j):We need to hek that (i) and (ii) hold for j + 1. Sine we are assuming thatthe laim is not true, it must be the ase that h(k(j; n0); k(j; n00)+ p(j)) is stritlyless than at least one of h(k(j; n0); k(j; n0) + p(j)) and h(k(j; n00); k(j; n00) + p(j)).Hene, by (i), h(k(j; n0); k(j; n00) + p(j)) � 2 genus(�H)� j � 1. So,h(k(j + 1; n); k(j + 1; n) + p(j + 1)) = h(k(j; n0); k(j; n0) + p(j + 1))� h(k(j; n0); k(j; n00) + p(j))� 2 genus(�H)� j � 1;sine k(j; n0) + p(j + 1)� k(j; n00)� p(j)� n0 + (m(j) + 1)d+m(j) + p(j)� n00 �m(j)� p(j) � 0:This veri�es (i) for j + 1.To verify (ii), note that
k(j + 1; n) = k(j; n0) � n0 � n;

k(j + 1; n) = k(j; n0) � n0 +m(j) � n+ (m(j) + 1)d+m(j) = n+m(j + 1):This establishes the laim, and hene ompletes the proof of Theorem 3.We onlude with a proof of Theorem 4. So, let f : �H ! �H be a pseudo-Anosov homeomorphism. Suppose that, for in�nitely many n, M [fnÆ� H failsto satisfy the onlusions of Theorem 1. Then, for these n, fn�(Ci(n)) boundsa dis Dn in H, for some exeptional urve Ci(n). We may pass to a monotonesubsequene where Ci(n) is some �xed urve C. But fn�(C) tends in PL(�H)to the stable or unstable lamination of f , aording to whether the sequene isdereasing or inreasing. Hene, this lamination lies in the losed set B(�H). Thisompletes the proof of Theorem 4. 17
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